xref: /linux/kernel/time/timer.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 
47 #include <linux/uaccess.h>
48 #include <asm/unistd.h>
49 #include <asm/div64.h>
50 #include <asm/timex.h>
51 #include <asm/io.h>
52 
53 #include "tick-internal.h"
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/timer.h>
57 
58 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
59 
60 EXPORT_SYMBOL(jiffies_64);
61 
62 /*
63  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
64  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
65  * level has a different granularity.
66  *
67  * The level granularity is:		LVL_CLK_DIV ^ lvl
68  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
69  *
70  * The array level of a newly armed timer depends on the relative expiry
71  * time. The farther the expiry time is away the higher the array level and
72  * therefor the granularity becomes.
73  *
74  * Contrary to the original timer wheel implementation, which aims for 'exact'
75  * expiry of the timers, this implementation removes the need for recascading
76  * the timers into the lower array levels. The previous 'classic' timer wheel
77  * implementation of the kernel already violated the 'exact' expiry by adding
78  * slack to the expiry time to provide batched expiration. The granularity
79  * levels provide implicit batching.
80  *
81  * This is an optimization of the original timer wheel implementation for the
82  * majority of the timer wheel use cases: timeouts. The vast majority of
83  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
84  * the timeout expires it indicates that normal operation is disturbed, so it
85  * does not matter much whether the timeout comes with a slight delay.
86  *
87  * The only exception to this are networking timers with a small expiry
88  * time. They rely on the granularity. Those fit into the first wheel level,
89  * which has HZ granularity.
90  *
91  * We don't have cascading anymore. timers with a expiry time above the
92  * capacity of the last wheel level are force expired at the maximum timeout
93  * value of the last wheel level. From data sampling we know that the maximum
94  * value observed is 5 days (network connection tracking), so this should not
95  * be an issue.
96  *
97  * The currently chosen array constants values are a good compromise between
98  * array size and granularity.
99  *
100  * This results in the following granularity and range levels:
101  *
102  * HZ 1000 steps
103  * Level Offset  Granularity            Range
104  *  0      0         1 ms                0 ms -         63 ms
105  *  1     64         8 ms               64 ms -        511 ms
106  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
107  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
108  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
109  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
110  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
111  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
112  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
113  *
114  * HZ  300
115  * Level Offset  Granularity            Range
116  *  0	   0         3 ms                0 ms -        210 ms
117  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
118  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
119  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
120  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
121  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
122  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
123  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
124  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
125  *
126  * HZ  250
127  * Level Offset  Granularity            Range
128  *  0	   0         4 ms                0 ms -        255 ms
129  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
130  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
131  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
132  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
133  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
134  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
135  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
136  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
137  *
138  * HZ  100
139  * Level Offset  Granularity            Range
140  *  0	   0         10 ms               0 ms -        630 ms
141  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
142  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
143  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
144  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
145  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
146  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
147  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
148  */
149 
150 /* Clock divisor for the next level */
151 #define LVL_CLK_SHIFT	3
152 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
153 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
154 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
155 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
156 
157 /*
158  * The time start value for each level to select the bucket at enqueue
159  * time.
160  */
161 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
162 
163 /* Size of each clock level */
164 #define LVL_BITS	6
165 #define LVL_SIZE	(1UL << LVL_BITS)
166 #define LVL_MASK	(LVL_SIZE - 1)
167 #define LVL_OFFS(n)	((n) * LVL_SIZE)
168 
169 /* Level depth */
170 #if HZ > 100
171 # define LVL_DEPTH	9
172 # else
173 # define LVL_DEPTH	8
174 #endif
175 
176 /* The cutoff (max. capacity of the wheel) */
177 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
178 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
179 
180 /*
181  * The resulting wheel size. If NOHZ is configured we allocate two
182  * wheels so we have a separate storage for the deferrable timers.
183  */
184 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
185 
186 #ifdef CONFIG_NO_HZ_COMMON
187 # define NR_BASES	2
188 # define BASE_STD	0
189 # define BASE_DEF	1
190 #else
191 # define NR_BASES	1
192 # define BASE_STD	0
193 # define BASE_DEF	0
194 #endif
195 
196 struct timer_base {
197 	raw_spinlock_t		lock;
198 	struct timer_list	*running_timer;
199 #ifdef CONFIG_PREEMPT_RT
200 	spinlock_t		expiry_lock;
201 	atomic_t		timer_waiters;
202 #endif
203 	unsigned long		clk;
204 	unsigned long		next_expiry;
205 	unsigned int		cpu;
206 	bool			is_idle;
207 	bool			must_forward_clk;
208 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
209 	struct hlist_head	vectors[WHEEL_SIZE];
210 } ____cacheline_aligned;
211 
212 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
213 
214 #ifdef CONFIG_NO_HZ_COMMON
215 
216 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
217 static DEFINE_MUTEX(timer_keys_mutex);
218 
219 static void timer_update_keys(struct work_struct *work);
220 static DECLARE_WORK(timer_update_work, timer_update_keys);
221 
222 #ifdef CONFIG_SMP
223 unsigned int sysctl_timer_migration = 1;
224 
225 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
226 
227 static void timers_update_migration(void)
228 {
229 	if (sysctl_timer_migration && tick_nohz_active)
230 		static_branch_enable(&timers_migration_enabled);
231 	else
232 		static_branch_disable(&timers_migration_enabled);
233 }
234 #else
235 static inline void timers_update_migration(void) { }
236 #endif /* !CONFIG_SMP */
237 
238 static void timer_update_keys(struct work_struct *work)
239 {
240 	mutex_lock(&timer_keys_mutex);
241 	timers_update_migration();
242 	static_branch_enable(&timers_nohz_active);
243 	mutex_unlock(&timer_keys_mutex);
244 }
245 
246 void timers_update_nohz(void)
247 {
248 	schedule_work(&timer_update_work);
249 }
250 
251 int timer_migration_handler(struct ctl_table *table, int write,
252 			    void __user *buffer, size_t *lenp,
253 			    loff_t *ppos)
254 {
255 	int ret;
256 
257 	mutex_lock(&timer_keys_mutex);
258 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
259 	if (!ret && write)
260 		timers_update_migration();
261 	mutex_unlock(&timer_keys_mutex);
262 	return ret;
263 }
264 
265 static inline bool is_timers_nohz_active(void)
266 {
267 	return static_branch_unlikely(&timers_nohz_active);
268 }
269 #else
270 static inline bool is_timers_nohz_active(void) { return false; }
271 #endif /* NO_HZ_COMMON */
272 
273 static unsigned long round_jiffies_common(unsigned long j, int cpu,
274 		bool force_up)
275 {
276 	int rem;
277 	unsigned long original = j;
278 
279 	/*
280 	 * We don't want all cpus firing their timers at once hitting the
281 	 * same lock or cachelines, so we skew each extra cpu with an extra
282 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
283 	 * already did this.
284 	 * The skew is done by adding 3*cpunr, then round, then subtract this
285 	 * extra offset again.
286 	 */
287 	j += cpu * 3;
288 
289 	rem = j % HZ;
290 
291 	/*
292 	 * If the target jiffie is just after a whole second (which can happen
293 	 * due to delays of the timer irq, long irq off times etc etc) then
294 	 * we should round down to the whole second, not up. Use 1/4th second
295 	 * as cutoff for this rounding as an extreme upper bound for this.
296 	 * But never round down if @force_up is set.
297 	 */
298 	if (rem < HZ/4 && !force_up) /* round down */
299 		j = j - rem;
300 	else /* round up */
301 		j = j - rem + HZ;
302 
303 	/* now that we have rounded, subtract the extra skew again */
304 	j -= cpu * 3;
305 
306 	/*
307 	 * Make sure j is still in the future. Otherwise return the
308 	 * unmodified value.
309 	 */
310 	return time_is_after_jiffies(j) ? j : original;
311 }
312 
313 /**
314  * __round_jiffies - function to round jiffies to a full second
315  * @j: the time in (absolute) jiffies that should be rounded
316  * @cpu: the processor number on which the timeout will happen
317  *
318  * __round_jiffies() rounds an absolute time in the future (in jiffies)
319  * up or down to (approximately) full seconds. This is useful for timers
320  * for which the exact time they fire does not matter too much, as long as
321  * they fire approximately every X seconds.
322  *
323  * By rounding these timers to whole seconds, all such timers will fire
324  * at the same time, rather than at various times spread out. The goal
325  * of this is to have the CPU wake up less, which saves power.
326  *
327  * The exact rounding is skewed for each processor to avoid all
328  * processors firing at the exact same time, which could lead
329  * to lock contention or spurious cache line bouncing.
330  *
331  * The return value is the rounded version of the @j parameter.
332  */
333 unsigned long __round_jiffies(unsigned long j, int cpu)
334 {
335 	return round_jiffies_common(j, cpu, false);
336 }
337 EXPORT_SYMBOL_GPL(__round_jiffies);
338 
339 /**
340  * __round_jiffies_relative - function to round jiffies to a full second
341  * @j: the time in (relative) jiffies that should be rounded
342  * @cpu: the processor number on which the timeout will happen
343  *
344  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
345  * up or down to (approximately) full seconds. This is useful for timers
346  * for which the exact time they fire does not matter too much, as long as
347  * they fire approximately every X seconds.
348  *
349  * By rounding these timers to whole seconds, all such timers will fire
350  * at the same time, rather than at various times spread out. The goal
351  * of this is to have the CPU wake up less, which saves power.
352  *
353  * The exact rounding is skewed for each processor to avoid all
354  * processors firing at the exact same time, which could lead
355  * to lock contention or spurious cache line bouncing.
356  *
357  * The return value is the rounded version of the @j parameter.
358  */
359 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
360 {
361 	unsigned long j0 = jiffies;
362 
363 	/* Use j0 because jiffies might change while we run */
364 	return round_jiffies_common(j + j0, cpu, false) - j0;
365 }
366 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
367 
368 /**
369  * round_jiffies - function to round jiffies to a full second
370  * @j: the time in (absolute) jiffies that should be rounded
371  *
372  * round_jiffies() rounds an absolute time in the future (in jiffies)
373  * up or down to (approximately) full seconds. This is useful for timers
374  * for which the exact time they fire does not matter too much, as long as
375  * they fire approximately every X seconds.
376  *
377  * By rounding these timers to whole seconds, all such timers will fire
378  * at the same time, rather than at various times spread out. The goal
379  * of this is to have the CPU wake up less, which saves power.
380  *
381  * The return value is the rounded version of the @j parameter.
382  */
383 unsigned long round_jiffies(unsigned long j)
384 {
385 	return round_jiffies_common(j, raw_smp_processor_id(), false);
386 }
387 EXPORT_SYMBOL_GPL(round_jiffies);
388 
389 /**
390  * round_jiffies_relative - function to round jiffies to a full second
391  * @j: the time in (relative) jiffies that should be rounded
392  *
393  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
394  * up or down to (approximately) full seconds. This is useful for timers
395  * for which the exact time they fire does not matter too much, as long as
396  * they fire approximately every X seconds.
397  *
398  * By rounding these timers to whole seconds, all such timers will fire
399  * at the same time, rather than at various times spread out. The goal
400  * of this is to have the CPU wake up less, which saves power.
401  *
402  * The return value is the rounded version of the @j parameter.
403  */
404 unsigned long round_jiffies_relative(unsigned long j)
405 {
406 	return __round_jiffies_relative(j, raw_smp_processor_id());
407 }
408 EXPORT_SYMBOL_GPL(round_jiffies_relative);
409 
410 /**
411  * __round_jiffies_up - function to round jiffies up to a full second
412  * @j: the time in (absolute) jiffies that should be rounded
413  * @cpu: the processor number on which the timeout will happen
414  *
415  * This is the same as __round_jiffies() except that it will never
416  * round down.  This is useful for timeouts for which the exact time
417  * of firing does not matter too much, as long as they don't fire too
418  * early.
419  */
420 unsigned long __round_jiffies_up(unsigned long j, int cpu)
421 {
422 	return round_jiffies_common(j, cpu, true);
423 }
424 EXPORT_SYMBOL_GPL(__round_jiffies_up);
425 
426 /**
427  * __round_jiffies_up_relative - function to round jiffies up to a full second
428  * @j: the time in (relative) jiffies that should be rounded
429  * @cpu: the processor number on which the timeout will happen
430  *
431  * This is the same as __round_jiffies_relative() except that it will never
432  * round down.  This is useful for timeouts for which the exact time
433  * of firing does not matter too much, as long as they don't fire too
434  * early.
435  */
436 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
437 {
438 	unsigned long j0 = jiffies;
439 
440 	/* Use j0 because jiffies might change while we run */
441 	return round_jiffies_common(j + j0, cpu, true) - j0;
442 }
443 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
444 
445 /**
446  * round_jiffies_up - function to round jiffies up to a full second
447  * @j: the time in (absolute) jiffies that should be rounded
448  *
449  * This is the same as round_jiffies() except that it will never
450  * round down.  This is useful for timeouts for which the exact time
451  * of firing does not matter too much, as long as they don't fire too
452  * early.
453  */
454 unsigned long round_jiffies_up(unsigned long j)
455 {
456 	return round_jiffies_common(j, raw_smp_processor_id(), true);
457 }
458 EXPORT_SYMBOL_GPL(round_jiffies_up);
459 
460 /**
461  * round_jiffies_up_relative - function to round jiffies up to a full second
462  * @j: the time in (relative) jiffies that should be rounded
463  *
464  * This is the same as round_jiffies_relative() except that it will never
465  * round down.  This is useful for timeouts for which the exact time
466  * of firing does not matter too much, as long as they don't fire too
467  * early.
468  */
469 unsigned long round_jiffies_up_relative(unsigned long j)
470 {
471 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
472 }
473 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
474 
475 
476 static inline unsigned int timer_get_idx(struct timer_list *timer)
477 {
478 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
479 }
480 
481 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
482 {
483 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
484 			idx << TIMER_ARRAYSHIFT;
485 }
486 
487 /*
488  * Helper function to calculate the array index for a given expiry
489  * time.
490  */
491 static inline unsigned calc_index(unsigned expires, unsigned lvl)
492 {
493 	expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
494 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
495 }
496 
497 static int calc_wheel_index(unsigned long expires, unsigned long clk)
498 {
499 	unsigned long delta = expires - clk;
500 	unsigned int idx;
501 
502 	if (delta < LVL_START(1)) {
503 		idx = calc_index(expires, 0);
504 	} else if (delta < LVL_START(2)) {
505 		idx = calc_index(expires, 1);
506 	} else if (delta < LVL_START(3)) {
507 		idx = calc_index(expires, 2);
508 	} else if (delta < LVL_START(4)) {
509 		idx = calc_index(expires, 3);
510 	} else if (delta < LVL_START(5)) {
511 		idx = calc_index(expires, 4);
512 	} else if (delta < LVL_START(6)) {
513 		idx = calc_index(expires, 5);
514 	} else if (delta < LVL_START(7)) {
515 		idx = calc_index(expires, 6);
516 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
517 		idx = calc_index(expires, 7);
518 	} else if ((long) delta < 0) {
519 		idx = clk & LVL_MASK;
520 	} else {
521 		/*
522 		 * Force expire obscene large timeouts to expire at the
523 		 * capacity limit of the wheel.
524 		 */
525 		if (expires >= WHEEL_TIMEOUT_CUTOFF)
526 			expires = WHEEL_TIMEOUT_MAX;
527 
528 		idx = calc_index(expires, LVL_DEPTH - 1);
529 	}
530 	return idx;
531 }
532 
533 /*
534  * Enqueue the timer into the hash bucket, mark it pending in
535  * the bitmap and store the index in the timer flags.
536  */
537 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
538 			  unsigned int idx)
539 {
540 	hlist_add_head(&timer->entry, base->vectors + idx);
541 	__set_bit(idx, base->pending_map);
542 	timer_set_idx(timer, idx);
543 
544 	trace_timer_start(timer, timer->expires, timer->flags);
545 }
546 
547 static void
548 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
549 {
550 	unsigned int idx;
551 
552 	idx = calc_wheel_index(timer->expires, base->clk);
553 	enqueue_timer(base, timer, idx);
554 }
555 
556 static void
557 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
558 {
559 	if (!is_timers_nohz_active())
560 		return;
561 
562 	/*
563 	 * TODO: This wants some optimizing similar to the code below, but we
564 	 * will do that when we switch from push to pull for deferrable timers.
565 	 */
566 	if (timer->flags & TIMER_DEFERRABLE) {
567 		if (tick_nohz_full_cpu(base->cpu))
568 			wake_up_nohz_cpu(base->cpu);
569 		return;
570 	}
571 
572 	/*
573 	 * We might have to IPI the remote CPU if the base is idle and the
574 	 * timer is not deferrable. If the other CPU is on the way to idle
575 	 * then it can't set base->is_idle as we hold the base lock:
576 	 */
577 	if (!base->is_idle)
578 		return;
579 
580 	/* Check whether this is the new first expiring timer: */
581 	if (time_after_eq(timer->expires, base->next_expiry))
582 		return;
583 
584 	/*
585 	 * Set the next expiry time and kick the CPU so it can reevaluate the
586 	 * wheel:
587 	 */
588 	base->next_expiry = timer->expires;
589 	wake_up_nohz_cpu(base->cpu);
590 }
591 
592 static void
593 internal_add_timer(struct timer_base *base, struct timer_list *timer)
594 {
595 	__internal_add_timer(base, timer);
596 	trigger_dyntick_cpu(base, timer);
597 }
598 
599 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
600 
601 static struct debug_obj_descr timer_debug_descr;
602 
603 static void *timer_debug_hint(void *addr)
604 {
605 	return ((struct timer_list *) addr)->function;
606 }
607 
608 static bool timer_is_static_object(void *addr)
609 {
610 	struct timer_list *timer = addr;
611 
612 	return (timer->entry.pprev == NULL &&
613 		timer->entry.next == TIMER_ENTRY_STATIC);
614 }
615 
616 /*
617  * fixup_init is called when:
618  * - an active object is initialized
619  */
620 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
621 {
622 	struct timer_list *timer = addr;
623 
624 	switch (state) {
625 	case ODEBUG_STATE_ACTIVE:
626 		del_timer_sync(timer);
627 		debug_object_init(timer, &timer_debug_descr);
628 		return true;
629 	default:
630 		return false;
631 	}
632 }
633 
634 /* Stub timer callback for improperly used timers. */
635 static void stub_timer(struct timer_list *unused)
636 {
637 	WARN_ON(1);
638 }
639 
640 /*
641  * fixup_activate is called when:
642  * - an active object is activated
643  * - an unknown non-static object is activated
644  */
645 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
646 {
647 	struct timer_list *timer = addr;
648 
649 	switch (state) {
650 	case ODEBUG_STATE_NOTAVAILABLE:
651 		timer_setup(timer, stub_timer, 0);
652 		return true;
653 
654 	case ODEBUG_STATE_ACTIVE:
655 		WARN_ON(1);
656 		/* fall through */
657 	default:
658 		return false;
659 	}
660 }
661 
662 /*
663  * fixup_free is called when:
664  * - an active object is freed
665  */
666 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
667 {
668 	struct timer_list *timer = addr;
669 
670 	switch (state) {
671 	case ODEBUG_STATE_ACTIVE:
672 		del_timer_sync(timer);
673 		debug_object_free(timer, &timer_debug_descr);
674 		return true;
675 	default:
676 		return false;
677 	}
678 }
679 
680 /*
681  * fixup_assert_init is called when:
682  * - an untracked/uninit-ed object is found
683  */
684 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
685 {
686 	struct timer_list *timer = addr;
687 
688 	switch (state) {
689 	case ODEBUG_STATE_NOTAVAILABLE:
690 		timer_setup(timer, stub_timer, 0);
691 		return true;
692 	default:
693 		return false;
694 	}
695 }
696 
697 static struct debug_obj_descr timer_debug_descr = {
698 	.name			= "timer_list",
699 	.debug_hint		= timer_debug_hint,
700 	.is_static_object	= timer_is_static_object,
701 	.fixup_init		= timer_fixup_init,
702 	.fixup_activate		= timer_fixup_activate,
703 	.fixup_free		= timer_fixup_free,
704 	.fixup_assert_init	= timer_fixup_assert_init,
705 };
706 
707 static inline void debug_timer_init(struct timer_list *timer)
708 {
709 	debug_object_init(timer, &timer_debug_descr);
710 }
711 
712 static inline void debug_timer_activate(struct timer_list *timer)
713 {
714 	debug_object_activate(timer, &timer_debug_descr);
715 }
716 
717 static inline void debug_timer_deactivate(struct timer_list *timer)
718 {
719 	debug_object_deactivate(timer, &timer_debug_descr);
720 }
721 
722 static inline void debug_timer_free(struct timer_list *timer)
723 {
724 	debug_object_free(timer, &timer_debug_descr);
725 }
726 
727 static inline void debug_timer_assert_init(struct timer_list *timer)
728 {
729 	debug_object_assert_init(timer, &timer_debug_descr);
730 }
731 
732 static void do_init_timer(struct timer_list *timer,
733 			  void (*func)(struct timer_list *),
734 			  unsigned int flags,
735 			  const char *name, struct lock_class_key *key);
736 
737 void init_timer_on_stack_key(struct timer_list *timer,
738 			     void (*func)(struct timer_list *),
739 			     unsigned int flags,
740 			     const char *name, struct lock_class_key *key)
741 {
742 	debug_object_init_on_stack(timer, &timer_debug_descr);
743 	do_init_timer(timer, func, flags, name, key);
744 }
745 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
746 
747 void destroy_timer_on_stack(struct timer_list *timer)
748 {
749 	debug_object_free(timer, &timer_debug_descr);
750 }
751 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
752 
753 #else
754 static inline void debug_timer_init(struct timer_list *timer) { }
755 static inline void debug_timer_activate(struct timer_list *timer) { }
756 static inline void debug_timer_deactivate(struct timer_list *timer) { }
757 static inline void debug_timer_assert_init(struct timer_list *timer) { }
758 #endif
759 
760 static inline void debug_init(struct timer_list *timer)
761 {
762 	debug_timer_init(timer);
763 	trace_timer_init(timer);
764 }
765 
766 static inline void debug_deactivate(struct timer_list *timer)
767 {
768 	debug_timer_deactivate(timer);
769 	trace_timer_cancel(timer);
770 }
771 
772 static inline void debug_assert_init(struct timer_list *timer)
773 {
774 	debug_timer_assert_init(timer);
775 }
776 
777 static void do_init_timer(struct timer_list *timer,
778 			  void (*func)(struct timer_list *),
779 			  unsigned int flags,
780 			  const char *name, struct lock_class_key *key)
781 {
782 	timer->entry.pprev = NULL;
783 	timer->function = func;
784 	timer->flags = flags | raw_smp_processor_id();
785 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
786 }
787 
788 /**
789  * init_timer_key - initialize a timer
790  * @timer: the timer to be initialized
791  * @func: timer callback function
792  * @flags: timer flags
793  * @name: name of the timer
794  * @key: lockdep class key of the fake lock used for tracking timer
795  *       sync lock dependencies
796  *
797  * init_timer_key() must be done to a timer prior calling *any* of the
798  * other timer functions.
799  */
800 void init_timer_key(struct timer_list *timer,
801 		    void (*func)(struct timer_list *), unsigned int flags,
802 		    const char *name, struct lock_class_key *key)
803 {
804 	debug_init(timer);
805 	do_init_timer(timer, func, flags, name, key);
806 }
807 EXPORT_SYMBOL(init_timer_key);
808 
809 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
810 {
811 	struct hlist_node *entry = &timer->entry;
812 
813 	debug_deactivate(timer);
814 
815 	__hlist_del(entry);
816 	if (clear_pending)
817 		entry->pprev = NULL;
818 	entry->next = LIST_POISON2;
819 }
820 
821 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
822 			     bool clear_pending)
823 {
824 	unsigned idx = timer_get_idx(timer);
825 
826 	if (!timer_pending(timer))
827 		return 0;
828 
829 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
830 		__clear_bit(idx, base->pending_map);
831 
832 	detach_timer(timer, clear_pending);
833 	return 1;
834 }
835 
836 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
837 {
838 	struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
839 
840 	/*
841 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
842 	 * to use the deferrable base.
843 	 */
844 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
845 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
846 	return base;
847 }
848 
849 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
850 {
851 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
852 
853 	/*
854 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
855 	 * to use the deferrable base.
856 	 */
857 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
858 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
859 	return base;
860 }
861 
862 static inline struct timer_base *get_timer_base(u32 tflags)
863 {
864 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
865 }
866 
867 static inline struct timer_base *
868 get_target_base(struct timer_base *base, unsigned tflags)
869 {
870 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
871 	if (static_branch_likely(&timers_migration_enabled) &&
872 	    !(tflags & TIMER_PINNED))
873 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
874 #endif
875 	return get_timer_this_cpu_base(tflags);
876 }
877 
878 static inline void forward_timer_base(struct timer_base *base)
879 {
880 #ifdef CONFIG_NO_HZ_COMMON
881 	unsigned long jnow;
882 
883 	/*
884 	 * We only forward the base when we are idle or have just come out of
885 	 * idle (must_forward_clk logic), and have a delta between base clock
886 	 * and jiffies. In the common case, run_timers will take care of it.
887 	 */
888 	if (likely(!base->must_forward_clk))
889 		return;
890 
891 	jnow = READ_ONCE(jiffies);
892 	base->must_forward_clk = base->is_idle;
893 	if ((long)(jnow - base->clk) < 2)
894 		return;
895 
896 	/*
897 	 * If the next expiry value is > jiffies, then we fast forward to
898 	 * jiffies otherwise we forward to the next expiry value.
899 	 */
900 	if (time_after(base->next_expiry, jnow))
901 		base->clk = jnow;
902 	else
903 		base->clk = base->next_expiry;
904 #endif
905 }
906 
907 
908 /*
909  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
910  * that all timers which are tied to this base are locked, and the base itself
911  * is locked too.
912  *
913  * So __run_timers/migrate_timers can safely modify all timers which could
914  * be found in the base->vectors array.
915  *
916  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
917  * to wait until the migration is done.
918  */
919 static struct timer_base *lock_timer_base(struct timer_list *timer,
920 					  unsigned long *flags)
921 	__acquires(timer->base->lock)
922 {
923 	for (;;) {
924 		struct timer_base *base;
925 		u32 tf;
926 
927 		/*
928 		 * We need to use READ_ONCE() here, otherwise the compiler
929 		 * might re-read @tf between the check for TIMER_MIGRATING
930 		 * and spin_lock().
931 		 */
932 		tf = READ_ONCE(timer->flags);
933 
934 		if (!(tf & TIMER_MIGRATING)) {
935 			base = get_timer_base(tf);
936 			raw_spin_lock_irqsave(&base->lock, *flags);
937 			if (timer->flags == tf)
938 				return base;
939 			raw_spin_unlock_irqrestore(&base->lock, *flags);
940 		}
941 		cpu_relax();
942 	}
943 }
944 
945 #define MOD_TIMER_PENDING_ONLY		0x01
946 #define MOD_TIMER_REDUCE		0x02
947 
948 static inline int
949 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
950 {
951 	struct timer_base *base, *new_base;
952 	unsigned int idx = UINT_MAX;
953 	unsigned long clk = 0, flags;
954 	int ret = 0;
955 
956 	BUG_ON(!timer->function);
957 
958 	/*
959 	 * This is a common optimization triggered by the networking code - if
960 	 * the timer is re-modified to have the same timeout or ends up in the
961 	 * same array bucket then just return:
962 	 */
963 	if (timer_pending(timer)) {
964 		/*
965 		 * The downside of this optimization is that it can result in
966 		 * larger granularity than you would get from adding a new
967 		 * timer with this expiry.
968 		 */
969 		long diff = timer->expires - expires;
970 
971 		if (!diff)
972 			return 1;
973 		if (options & MOD_TIMER_REDUCE && diff <= 0)
974 			return 1;
975 
976 		/*
977 		 * We lock timer base and calculate the bucket index right
978 		 * here. If the timer ends up in the same bucket, then we
979 		 * just update the expiry time and avoid the whole
980 		 * dequeue/enqueue dance.
981 		 */
982 		base = lock_timer_base(timer, &flags);
983 		forward_timer_base(base);
984 
985 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
986 		    time_before_eq(timer->expires, expires)) {
987 			ret = 1;
988 			goto out_unlock;
989 		}
990 
991 		clk = base->clk;
992 		idx = calc_wheel_index(expires, clk);
993 
994 		/*
995 		 * Retrieve and compare the array index of the pending
996 		 * timer. If it matches set the expiry to the new value so a
997 		 * subsequent call will exit in the expires check above.
998 		 */
999 		if (idx == timer_get_idx(timer)) {
1000 			if (!(options & MOD_TIMER_REDUCE))
1001 				timer->expires = expires;
1002 			else if (time_after(timer->expires, expires))
1003 				timer->expires = expires;
1004 			ret = 1;
1005 			goto out_unlock;
1006 		}
1007 	} else {
1008 		base = lock_timer_base(timer, &flags);
1009 		forward_timer_base(base);
1010 	}
1011 
1012 	ret = detach_if_pending(timer, base, false);
1013 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1014 		goto out_unlock;
1015 
1016 	new_base = get_target_base(base, timer->flags);
1017 
1018 	if (base != new_base) {
1019 		/*
1020 		 * We are trying to schedule the timer on the new base.
1021 		 * However we can't change timer's base while it is running,
1022 		 * otherwise del_timer_sync() can't detect that the timer's
1023 		 * handler yet has not finished. This also guarantees that the
1024 		 * timer is serialized wrt itself.
1025 		 */
1026 		if (likely(base->running_timer != timer)) {
1027 			/* See the comment in lock_timer_base() */
1028 			timer->flags |= TIMER_MIGRATING;
1029 
1030 			raw_spin_unlock(&base->lock);
1031 			base = new_base;
1032 			raw_spin_lock(&base->lock);
1033 			WRITE_ONCE(timer->flags,
1034 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1035 			forward_timer_base(base);
1036 		}
1037 	}
1038 
1039 	debug_timer_activate(timer);
1040 
1041 	timer->expires = expires;
1042 	/*
1043 	 * If 'idx' was calculated above and the base time did not advance
1044 	 * between calculating 'idx' and possibly switching the base, only
1045 	 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1046 	 * we need to (re)calculate the wheel index via
1047 	 * internal_add_timer().
1048 	 */
1049 	if (idx != UINT_MAX && clk == base->clk) {
1050 		enqueue_timer(base, timer, idx);
1051 		trigger_dyntick_cpu(base, timer);
1052 	} else {
1053 		internal_add_timer(base, timer);
1054 	}
1055 
1056 out_unlock:
1057 	raw_spin_unlock_irqrestore(&base->lock, flags);
1058 
1059 	return ret;
1060 }
1061 
1062 /**
1063  * mod_timer_pending - modify a pending timer's timeout
1064  * @timer: the pending timer to be modified
1065  * @expires: new timeout in jiffies
1066  *
1067  * mod_timer_pending() is the same for pending timers as mod_timer(),
1068  * but will not re-activate and modify already deleted timers.
1069  *
1070  * It is useful for unserialized use of timers.
1071  */
1072 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1073 {
1074 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1075 }
1076 EXPORT_SYMBOL(mod_timer_pending);
1077 
1078 /**
1079  * mod_timer - modify a timer's timeout
1080  * @timer: the timer to be modified
1081  * @expires: new timeout in jiffies
1082  *
1083  * mod_timer() is a more efficient way to update the expire field of an
1084  * active timer (if the timer is inactive it will be activated)
1085  *
1086  * mod_timer(timer, expires) is equivalent to:
1087  *
1088  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1089  *
1090  * Note that if there are multiple unserialized concurrent users of the
1091  * same timer, then mod_timer() is the only safe way to modify the timeout,
1092  * since add_timer() cannot modify an already running timer.
1093  *
1094  * The function returns whether it has modified a pending timer or not.
1095  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1096  * active timer returns 1.)
1097  */
1098 int mod_timer(struct timer_list *timer, unsigned long expires)
1099 {
1100 	return __mod_timer(timer, expires, 0);
1101 }
1102 EXPORT_SYMBOL(mod_timer);
1103 
1104 /**
1105  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1106  * @timer:	The timer to be modified
1107  * @expires:	New timeout in jiffies
1108  *
1109  * timer_reduce() is very similar to mod_timer(), except that it will only
1110  * modify a running timer if that would reduce the expiration time (it will
1111  * start a timer that isn't running).
1112  */
1113 int timer_reduce(struct timer_list *timer, unsigned long expires)
1114 {
1115 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1116 }
1117 EXPORT_SYMBOL(timer_reduce);
1118 
1119 /**
1120  * add_timer - start a timer
1121  * @timer: the timer to be added
1122  *
1123  * The kernel will do a ->function(@timer) callback from the
1124  * timer interrupt at the ->expires point in the future. The
1125  * current time is 'jiffies'.
1126  *
1127  * The timer's ->expires, ->function fields must be set prior calling this
1128  * function.
1129  *
1130  * Timers with an ->expires field in the past will be executed in the next
1131  * timer tick.
1132  */
1133 void add_timer(struct timer_list *timer)
1134 {
1135 	BUG_ON(timer_pending(timer));
1136 	mod_timer(timer, timer->expires);
1137 }
1138 EXPORT_SYMBOL(add_timer);
1139 
1140 /**
1141  * add_timer_on - start a timer on a particular CPU
1142  * @timer: the timer to be added
1143  * @cpu: the CPU to start it on
1144  *
1145  * This is not very scalable on SMP. Double adds are not possible.
1146  */
1147 void add_timer_on(struct timer_list *timer, int cpu)
1148 {
1149 	struct timer_base *new_base, *base;
1150 	unsigned long flags;
1151 
1152 	BUG_ON(timer_pending(timer) || !timer->function);
1153 
1154 	new_base = get_timer_cpu_base(timer->flags, cpu);
1155 
1156 	/*
1157 	 * If @timer was on a different CPU, it should be migrated with the
1158 	 * old base locked to prevent other operations proceeding with the
1159 	 * wrong base locked.  See lock_timer_base().
1160 	 */
1161 	base = lock_timer_base(timer, &flags);
1162 	if (base != new_base) {
1163 		timer->flags |= TIMER_MIGRATING;
1164 
1165 		raw_spin_unlock(&base->lock);
1166 		base = new_base;
1167 		raw_spin_lock(&base->lock);
1168 		WRITE_ONCE(timer->flags,
1169 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1170 	}
1171 	forward_timer_base(base);
1172 
1173 	debug_timer_activate(timer);
1174 	internal_add_timer(base, timer);
1175 	raw_spin_unlock_irqrestore(&base->lock, flags);
1176 }
1177 EXPORT_SYMBOL_GPL(add_timer_on);
1178 
1179 /**
1180  * del_timer - deactivate a timer.
1181  * @timer: the timer to be deactivated
1182  *
1183  * del_timer() deactivates a timer - this works on both active and inactive
1184  * timers.
1185  *
1186  * The function returns whether it has deactivated a pending timer or not.
1187  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1188  * active timer returns 1.)
1189  */
1190 int del_timer(struct timer_list *timer)
1191 {
1192 	struct timer_base *base;
1193 	unsigned long flags;
1194 	int ret = 0;
1195 
1196 	debug_assert_init(timer);
1197 
1198 	if (timer_pending(timer)) {
1199 		base = lock_timer_base(timer, &flags);
1200 		ret = detach_if_pending(timer, base, true);
1201 		raw_spin_unlock_irqrestore(&base->lock, flags);
1202 	}
1203 
1204 	return ret;
1205 }
1206 EXPORT_SYMBOL(del_timer);
1207 
1208 /**
1209  * try_to_del_timer_sync - Try to deactivate a timer
1210  * @timer: timer to delete
1211  *
1212  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1213  * exit the timer is not queued and the handler is not running on any CPU.
1214  */
1215 int try_to_del_timer_sync(struct timer_list *timer)
1216 {
1217 	struct timer_base *base;
1218 	unsigned long flags;
1219 	int ret = -1;
1220 
1221 	debug_assert_init(timer);
1222 
1223 	base = lock_timer_base(timer, &flags);
1224 
1225 	if (base->running_timer != timer)
1226 		ret = detach_if_pending(timer, base, true);
1227 
1228 	raw_spin_unlock_irqrestore(&base->lock, flags);
1229 
1230 	return ret;
1231 }
1232 EXPORT_SYMBOL(try_to_del_timer_sync);
1233 
1234 #ifdef CONFIG_PREEMPT_RT
1235 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1236 {
1237 	spin_lock_init(&base->expiry_lock);
1238 }
1239 
1240 static inline void timer_base_lock_expiry(struct timer_base *base)
1241 {
1242 	spin_lock(&base->expiry_lock);
1243 }
1244 
1245 static inline void timer_base_unlock_expiry(struct timer_base *base)
1246 {
1247 	spin_unlock(&base->expiry_lock);
1248 }
1249 
1250 /*
1251  * The counterpart to del_timer_wait_running().
1252  *
1253  * If there is a waiter for base->expiry_lock, then it was waiting for the
1254  * timer callback to finish. Drop expiry_lock and reaquire it. That allows
1255  * the waiter to acquire the lock and make progress.
1256  */
1257 static void timer_sync_wait_running(struct timer_base *base)
1258 {
1259 	if (atomic_read(&base->timer_waiters)) {
1260 		spin_unlock(&base->expiry_lock);
1261 		spin_lock(&base->expiry_lock);
1262 	}
1263 }
1264 
1265 /*
1266  * This function is called on PREEMPT_RT kernels when the fast path
1267  * deletion of a timer failed because the timer callback function was
1268  * running.
1269  *
1270  * This prevents priority inversion, if the softirq thread on a remote CPU
1271  * got preempted, and it prevents a life lock when the task which tries to
1272  * delete a timer preempted the softirq thread running the timer callback
1273  * function.
1274  */
1275 static void del_timer_wait_running(struct timer_list *timer)
1276 {
1277 	u32 tf;
1278 
1279 	tf = READ_ONCE(timer->flags);
1280 	if (!(tf & TIMER_MIGRATING)) {
1281 		struct timer_base *base = get_timer_base(tf);
1282 
1283 		/*
1284 		 * Mark the base as contended and grab the expiry lock,
1285 		 * which is held by the softirq across the timer
1286 		 * callback. Drop the lock immediately so the softirq can
1287 		 * expire the next timer. In theory the timer could already
1288 		 * be running again, but that's more than unlikely and just
1289 		 * causes another wait loop.
1290 		 */
1291 		atomic_inc(&base->timer_waiters);
1292 		spin_lock_bh(&base->expiry_lock);
1293 		atomic_dec(&base->timer_waiters);
1294 		spin_unlock_bh(&base->expiry_lock);
1295 	}
1296 }
1297 #else
1298 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1299 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1300 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1301 static inline void timer_sync_wait_running(struct timer_base *base) { }
1302 static inline void del_timer_wait_running(struct timer_list *timer) { }
1303 #endif
1304 
1305 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
1306 /**
1307  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1308  * @timer: the timer to be deactivated
1309  *
1310  * This function only differs from del_timer() on SMP: besides deactivating
1311  * the timer it also makes sure the handler has finished executing on other
1312  * CPUs.
1313  *
1314  * Synchronization rules: Callers must prevent restarting of the timer,
1315  * otherwise this function is meaningless. It must not be called from
1316  * interrupt contexts unless the timer is an irqsafe one. The caller must
1317  * not hold locks which would prevent completion of the timer's
1318  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1319  * timer is not queued and the handler is not running on any CPU.
1320  *
1321  * Note: For !irqsafe timers, you must not hold locks that are held in
1322  *   interrupt context while calling this function. Even if the lock has
1323  *   nothing to do with the timer in question.  Here's why::
1324  *
1325  *    CPU0                             CPU1
1326  *    ----                             ----
1327  *                                     <SOFTIRQ>
1328  *                                       call_timer_fn();
1329  *                                       base->running_timer = mytimer;
1330  *    spin_lock_irq(somelock);
1331  *                                     <IRQ>
1332  *                                        spin_lock(somelock);
1333  *    del_timer_sync(mytimer);
1334  *    while (base->running_timer == mytimer);
1335  *
1336  * Now del_timer_sync() will never return and never release somelock.
1337  * The interrupt on the other CPU is waiting to grab somelock but
1338  * it has interrupted the softirq that CPU0 is waiting to finish.
1339  *
1340  * The function returns whether it has deactivated a pending timer or not.
1341  */
1342 int del_timer_sync(struct timer_list *timer)
1343 {
1344 	int ret;
1345 
1346 #ifdef CONFIG_LOCKDEP
1347 	unsigned long flags;
1348 
1349 	/*
1350 	 * If lockdep gives a backtrace here, please reference
1351 	 * the synchronization rules above.
1352 	 */
1353 	local_irq_save(flags);
1354 	lock_map_acquire(&timer->lockdep_map);
1355 	lock_map_release(&timer->lockdep_map);
1356 	local_irq_restore(flags);
1357 #endif
1358 	/*
1359 	 * don't use it in hardirq context, because it
1360 	 * could lead to deadlock.
1361 	 */
1362 	WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1363 
1364 	do {
1365 		ret = try_to_del_timer_sync(timer);
1366 
1367 		if (unlikely(ret < 0)) {
1368 			del_timer_wait_running(timer);
1369 			cpu_relax();
1370 		}
1371 	} while (ret < 0);
1372 
1373 	return ret;
1374 }
1375 EXPORT_SYMBOL(del_timer_sync);
1376 #endif
1377 
1378 static void call_timer_fn(struct timer_list *timer,
1379 			  void (*fn)(struct timer_list *),
1380 			  unsigned long baseclk)
1381 {
1382 	int count = preempt_count();
1383 
1384 #ifdef CONFIG_LOCKDEP
1385 	/*
1386 	 * It is permissible to free the timer from inside the
1387 	 * function that is called from it, this we need to take into
1388 	 * account for lockdep too. To avoid bogus "held lock freed"
1389 	 * warnings as well as problems when looking into
1390 	 * timer->lockdep_map, make a copy and use that here.
1391 	 */
1392 	struct lockdep_map lockdep_map;
1393 
1394 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1395 #endif
1396 	/*
1397 	 * Couple the lock chain with the lock chain at
1398 	 * del_timer_sync() by acquiring the lock_map around the fn()
1399 	 * call here and in del_timer_sync().
1400 	 */
1401 	lock_map_acquire(&lockdep_map);
1402 
1403 	trace_timer_expire_entry(timer, baseclk);
1404 	fn(timer);
1405 	trace_timer_expire_exit(timer);
1406 
1407 	lock_map_release(&lockdep_map);
1408 
1409 	if (count != preempt_count()) {
1410 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1411 			  fn, count, preempt_count());
1412 		/*
1413 		 * Restore the preempt count. That gives us a decent
1414 		 * chance to survive and extract information. If the
1415 		 * callback kept a lock held, bad luck, but not worse
1416 		 * than the BUG() we had.
1417 		 */
1418 		preempt_count_set(count);
1419 	}
1420 }
1421 
1422 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1423 {
1424 	/*
1425 	 * This value is required only for tracing. base->clk was
1426 	 * incremented directly before expire_timers was called. But expiry
1427 	 * is related to the old base->clk value.
1428 	 */
1429 	unsigned long baseclk = base->clk - 1;
1430 
1431 	while (!hlist_empty(head)) {
1432 		struct timer_list *timer;
1433 		void (*fn)(struct timer_list *);
1434 
1435 		timer = hlist_entry(head->first, struct timer_list, entry);
1436 
1437 		base->running_timer = timer;
1438 		detach_timer(timer, true);
1439 
1440 		fn = timer->function;
1441 
1442 		if (timer->flags & TIMER_IRQSAFE) {
1443 			raw_spin_unlock(&base->lock);
1444 			call_timer_fn(timer, fn, baseclk);
1445 			base->running_timer = NULL;
1446 			raw_spin_lock(&base->lock);
1447 		} else {
1448 			raw_spin_unlock_irq(&base->lock);
1449 			call_timer_fn(timer, fn, baseclk);
1450 			base->running_timer = NULL;
1451 			timer_sync_wait_running(base);
1452 			raw_spin_lock_irq(&base->lock);
1453 		}
1454 	}
1455 }
1456 
1457 static int __collect_expired_timers(struct timer_base *base,
1458 				    struct hlist_head *heads)
1459 {
1460 	unsigned long clk = base->clk;
1461 	struct hlist_head *vec;
1462 	int i, levels = 0;
1463 	unsigned int idx;
1464 
1465 	for (i = 0; i < LVL_DEPTH; i++) {
1466 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1467 
1468 		if (__test_and_clear_bit(idx, base->pending_map)) {
1469 			vec = base->vectors + idx;
1470 			hlist_move_list(vec, heads++);
1471 			levels++;
1472 		}
1473 		/* Is it time to look at the next level? */
1474 		if (clk & LVL_CLK_MASK)
1475 			break;
1476 		/* Shift clock for the next level granularity */
1477 		clk >>= LVL_CLK_SHIFT;
1478 	}
1479 	return levels;
1480 }
1481 
1482 #ifdef CONFIG_NO_HZ_COMMON
1483 /*
1484  * Find the next pending bucket of a level. Search from level start (@offset)
1485  * + @clk upwards and if nothing there, search from start of the level
1486  * (@offset) up to @offset + clk.
1487  */
1488 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1489 			       unsigned clk)
1490 {
1491 	unsigned pos, start = offset + clk;
1492 	unsigned end = offset + LVL_SIZE;
1493 
1494 	pos = find_next_bit(base->pending_map, end, start);
1495 	if (pos < end)
1496 		return pos - start;
1497 
1498 	pos = find_next_bit(base->pending_map, start, offset);
1499 	return pos < start ? pos + LVL_SIZE - start : -1;
1500 }
1501 
1502 /*
1503  * Search the first expiring timer in the various clock levels. Caller must
1504  * hold base->lock.
1505  */
1506 static unsigned long __next_timer_interrupt(struct timer_base *base)
1507 {
1508 	unsigned long clk, next, adj;
1509 	unsigned lvl, offset = 0;
1510 
1511 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1512 	clk = base->clk;
1513 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1514 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1515 
1516 		if (pos >= 0) {
1517 			unsigned long tmp = clk + (unsigned long) pos;
1518 
1519 			tmp <<= LVL_SHIFT(lvl);
1520 			if (time_before(tmp, next))
1521 				next = tmp;
1522 		}
1523 		/*
1524 		 * Clock for the next level. If the current level clock lower
1525 		 * bits are zero, we look at the next level as is. If not we
1526 		 * need to advance it by one because that's going to be the
1527 		 * next expiring bucket in that level. base->clk is the next
1528 		 * expiring jiffie. So in case of:
1529 		 *
1530 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1531 		 *  0    0    0    0    0    0
1532 		 *
1533 		 * we have to look at all levels @index 0. With
1534 		 *
1535 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1536 		 *  0    0    0    0    0    2
1537 		 *
1538 		 * LVL0 has the next expiring bucket @index 2. The upper
1539 		 * levels have the next expiring bucket @index 1.
1540 		 *
1541 		 * In case that the propagation wraps the next level the same
1542 		 * rules apply:
1543 		 *
1544 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1545 		 *  0    0    0    0    F    2
1546 		 *
1547 		 * So after looking at LVL0 we get:
1548 		 *
1549 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1550 		 *  0    0    0    1    0
1551 		 *
1552 		 * So no propagation from LVL1 to LVL2 because that happened
1553 		 * with the add already, but then we need to propagate further
1554 		 * from LVL2 to LVL3.
1555 		 *
1556 		 * So the simple check whether the lower bits of the current
1557 		 * level are 0 or not is sufficient for all cases.
1558 		 */
1559 		adj = clk & LVL_CLK_MASK ? 1 : 0;
1560 		clk >>= LVL_CLK_SHIFT;
1561 		clk += adj;
1562 	}
1563 	return next;
1564 }
1565 
1566 /*
1567  * Check, if the next hrtimer event is before the next timer wheel
1568  * event:
1569  */
1570 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1571 {
1572 	u64 nextevt = hrtimer_get_next_event();
1573 
1574 	/*
1575 	 * If high resolution timers are enabled
1576 	 * hrtimer_get_next_event() returns KTIME_MAX.
1577 	 */
1578 	if (expires <= nextevt)
1579 		return expires;
1580 
1581 	/*
1582 	 * If the next timer is already expired, return the tick base
1583 	 * time so the tick is fired immediately.
1584 	 */
1585 	if (nextevt <= basem)
1586 		return basem;
1587 
1588 	/*
1589 	 * Round up to the next jiffie. High resolution timers are
1590 	 * off, so the hrtimers are expired in the tick and we need to
1591 	 * make sure that this tick really expires the timer to avoid
1592 	 * a ping pong of the nohz stop code.
1593 	 *
1594 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1595 	 */
1596 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1597 }
1598 
1599 /**
1600  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1601  * @basej:	base time jiffies
1602  * @basem:	base time clock monotonic
1603  *
1604  * Returns the tick aligned clock monotonic time of the next pending
1605  * timer or KTIME_MAX if no timer is pending.
1606  */
1607 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1608 {
1609 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1610 	u64 expires = KTIME_MAX;
1611 	unsigned long nextevt;
1612 	bool is_max_delta;
1613 
1614 	/*
1615 	 * Pretend that there is no timer pending if the cpu is offline.
1616 	 * Possible pending timers will be migrated later to an active cpu.
1617 	 */
1618 	if (cpu_is_offline(smp_processor_id()))
1619 		return expires;
1620 
1621 	raw_spin_lock(&base->lock);
1622 	nextevt = __next_timer_interrupt(base);
1623 	is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1624 	base->next_expiry = nextevt;
1625 	/*
1626 	 * We have a fresh next event. Check whether we can forward the
1627 	 * base. We can only do that when @basej is past base->clk
1628 	 * otherwise we might rewind base->clk.
1629 	 */
1630 	if (time_after(basej, base->clk)) {
1631 		if (time_after(nextevt, basej))
1632 			base->clk = basej;
1633 		else if (time_after(nextevt, base->clk))
1634 			base->clk = nextevt;
1635 	}
1636 
1637 	if (time_before_eq(nextevt, basej)) {
1638 		expires = basem;
1639 		base->is_idle = false;
1640 	} else {
1641 		if (!is_max_delta)
1642 			expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1643 		/*
1644 		 * If we expect to sleep more than a tick, mark the base idle.
1645 		 * Also the tick is stopped so any added timer must forward
1646 		 * the base clk itself to keep granularity small. This idle
1647 		 * logic is only maintained for the BASE_STD base, deferrable
1648 		 * timers may still see large granularity skew (by design).
1649 		 */
1650 		if ((expires - basem) > TICK_NSEC) {
1651 			base->must_forward_clk = true;
1652 			base->is_idle = true;
1653 		}
1654 	}
1655 	raw_spin_unlock(&base->lock);
1656 
1657 	return cmp_next_hrtimer_event(basem, expires);
1658 }
1659 
1660 /**
1661  * timer_clear_idle - Clear the idle state of the timer base
1662  *
1663  * Called with interrupts disabled
1664  */
1665 void timer_clear_idle(void)
1666 {
1667 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1668 
1669 	/*
1670 	 * We do this unlocked. The worst outcome is a remote enqueue sending
1671 	 * a pointless IPI, but taking the lock would just make the window for
1672 	 * sending the IPI a few instructions smaller for the cost of taking
1673 	 * the lock in the exit from idle path.
1674 	 */
1675 	base->is_idle = false;
1676 }
1677 
1678 static int collect_expired_timers(struct timer_base *base,
1679 				  struct hlist_head *heads)
1680 {
1681 	unsigned long now = READ_ONCE(jiffies);
1682 
1683 	/*
1684 	 * NOHZ optimization. After a long idle sleep we need to forward the
1685 	 * base to current jiffies. Avoid a loop by searching the bitfield for
1686 	 * the next expiring timer.
1687 	 */
1688 	if ((long)(now - base->clk) > 2) {
1689 		unsigned long next = __next_timer_interrupt(base);
1690 
1691 		/*
1692 		 * If the next timer is ahead of time forward to current
1693 		 * jiffies, otherwise forward to the next expiry time:
1694 		 */
1695 		if (time_after(next, now)) {
1696 			/*
1697 			 * The call site will increment base->clk and then
1698 			 * terminate the expiry loop immediately.
1699 			 */
1700 			base->clk = now;
1701 			return 0;
1702 		}
1703 		base->clk = next;
1704 	}
1705 	return __collect_expired_timers(base, heads);
1706 }
1707 #else
1708 static inline int collect_expired_timers(struct timer_base *base,
1709 					 struct hlist_head *heads)
1710 {
1711 	return __collect_expired_timers(base, heads);
1712 }
1713 #endif
1714 
1715 /*
1716  * Called from the timer interrupt handler to charge one tick to the current
1717  * process.  user_tick is 1 if the tick is user time, 0 for system.
1718  */
1719 void update_process_times(int user_tick)
1720 {
1721 	struct task_struct *p = current;
1722 
1723 	/* Note: this timer irq context must be accounted for as well. */
1724 	account_process_tick(p, user_tick);
1725 	run_local_timers();
1726 	rcu_sched_clock_irq(user_tick);
1727 #ifdef CONFIG_IRQ_WORK
1728 	if (in_irq())
1729 		irq_work_tick();
1730 #endif
1731 	scheduler_tick();
1732 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1733 		run_posix_cpu_timers();
1734 }
1735 
1736 /**
1737  * __run_timers - run all expired timers (if any) on this CPU.
1738  * @base: the timer vector to be processed.
1739  */
1740 static inline void __run_timers(struct timer_base *base)
1741 {
1742 	struct hlist_head heads[LVL_DEPTH];
1743 	int levels;
1744 
1745 	if (!time_after_eq(jiffies, base->clk))
1746 		return;
1747 
1748 	timer_base_lock_expiry(base);
1749 	raw_spin_lock_irq(&base->lock);
1750 
1751 	/*
1752 	 * timer_base::must_forward_clk must be cleared before running
1753 	 * timers so that any timer functions that call mod_timer() will
1754 	 * not try to forward the base. Idle tracking / clock forwarding
1755 	 * logic is only used with BASE_STD timers.
1756 	 *
1757 	 * The must_forward_clk flag is cleared unconditionally also for
1758 	 * the deferrable base. The deferrable base is not affected by idle
1759 	 * tracking and never forwarded, so clearing the flag is a NOOP.
1760 	 *
1761 	 * The fact that the deferrable base is never forwarded can cause
1762 	 * large variations in granularity for deferrable timers, but they
1763 	 * can be deferred for long periods due to idle anyway.
1764 	 */
1765 	base->must_forward_clk = false;
1766 
1767 	while (time_after_eq(jiffies, base->clk)) {
1768 
1769 		levels = collect_expired_timers(base, heads);
1770 		base->clk++;
1771 
1772 		while (levels--)
1773 			expire_timers(base, heads + levels);
1774 	}
1775 	raw_spin_unlock_irq(&base->lock);
1776 	timer_base_unlock_expiry(base);
1777 }
1778 
1779 /*
1780  * This function runs timers and the timer-tq in bottom half context.
1781  */
1782 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1783 {
1784 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1785 
1786 	__run_timers(base);
1787 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1788 		__run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1789 }
1790 
1791 /*
1792  * Called by the local, per-CPU timer interrupt on SMP.
1793  */
1794 void run_local_timers(void)
1795 {
1796 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1797 
1798 	hrtimer_run_queues();
1799 	/* Raise the softirq only if required. */
1800 	if (time_before(jiffies, base->clk)) {
1801 		if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1802 			return;
1803 		/* CPU is awake, so check the deferrable base. */
1804 		base++;
1805 		if (time_before(jiffies, base->clk))
1806 			return;
1807 	}
1808 	raise_softirq(TIMER_SOFTIRQ);
1809 }
1810 
1811 /*
1812  * Since schedule_timeout()'s timer is defined on the stack, it must store
1813  * the target task on the stack as well.
1814  */
1815 struct process_timer {
1816 	struct timer_list timer;
1817 	struct task_struct *task;
1818 };
1819 
1820 static void process_timeout(struct timer_list *t)
1821 {
1822 	struct process_timer *timeout = from_timer(timeout, t, timer);
1823 
1824 	wake_up_process(timeout->task);
1825 }
1826 
1827 /**
1828  * schedule_timeout - sleep until timeout
1829  * @timeout: timeout value in jiffies
1830  *
1831  * Make the current task sleep until @timeout jiffies have
1832  * elapsed. The routine will return immediately unless
1833  * the current task state has been set (see set_current_state()).
1834  *
1835  * You can set the task state as follows -
1836  *
1837  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1838  * pass before the routine returns unless the current task is explicitly
1839  * woken up, (e.g. by wake_up_process())".
1840  *
1841  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1842  * delivered to the current task or the current task is explicitly woken
1843  * up.
1844  *
1845  * The current task state is guaranteed to be TASK_RUNNING when this
1846  * routine returns.
1847  *
1848  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1849  * the CPU away without a bound on the timeout. In this case the return
1850  * value will be %MAX_SCHEDULE_TIMEOUT.
1851  *
1852  * Returns 0 when the timer has expired otherwise the remaining time in
1853  * jiffies will be returned.  In all cases the return value is guaranteed
1854  * to be non-negative.
1855  */
1856 signed long __sched schedule_timeout(signed long timeout)
1857 {
1858 	struct process_timer timer;
1859 	unsigned long expire;
1860 
1861 	switch (timeout)
1862 	{
1863 	case MAX_SCHEDULE_TIMEOUT:
1864 		/*
1865 		 * These two special cases are useful to be comfortable
1866 		 * in the caller. Nothing more. We could take
1867 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1868 		 * but I' d like to return a valid offset (>=0) to allow
1869 		 * the caller to do everything it want with the retval.
1870 		 */
1871 		schedule();
1872 		goto out;
1873 	default:
1874 		/*
1875 		 * Another bit of PARANOID. Note that the retval will be
1876 		 * 0 since no piece of kernel is supposed to do a check
1877 		 * for a negative retval of schedule_timeout() (since it
1878 		 * should never happens anyway). You just have the printk()
1879 		 * that will tell you if something is gone wrong and where.
1880 		 */
1881 		if (timeout < 0) {
1882 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1883 				"value %lx\n", timeout);
1884 			dump_stack();
1885 			current->state = TASK_RUNNING;
1886 			goto out;
1887 		}
1888 	}
1889 
1890 	expire = timeout + jiffies;
1891 
1892 	timer.task = current;
1893 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
1894 	__mod_timer(&timer.timer, expire, 0);
1895 	schedule();
1896 	del_singleshot_timer_sync(&timer.timer);
1897 
1898 	/* Remove the timer from the object tracker */
1899 	destroy_timer_on_stack(&timer.timer);
1900 
1901 	timeout = expire - jiffies;
1902 
1903  out:
1904 	return timeout < 0 ? 0 : timeout;
1905 }
1906 EXPORT_SYMBOL(schedule_timeout);
1907 
1908 /*
1909  * We can use __set_current_state() here because schedule_timeout() calls
1910  * schedule() unconditionally.
1911  */
1912 signed long __sched schedule_timeout_interruptible(signed long timeout)
1913 {
1914 	__set_current_state(TASK_INTERRUPTIBLE);
1915 	return schedule_timeout(timeout);
1916 }
1917 EXPORT_SYMBOL(schedule_timeout_interruptible);
1918 
1919 signed long __sched schedule_timeout_killable(signed long timeout)
1920 {
1921 	__set_current_state(TASK_KILLABLE);
1922 	return schedule_timeout(timeout);
1923 }
1924 EXPORT_SYMBOL(schedule_timeout_killable);
1925 
1926 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1927 {
1928 	__set_current_state(TASK_UNINTERRUPTIBLE);
1929 	return schedule_timeout(timeout);
1930 }
1931 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1932 
1933 /*
1934  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1935  * to load average.
1936  */
1937 signed long __sched schedule_timeout_idle(signed long timeout)
1938 {
1939 	__set_current_state(TASK_IDLE);
1940 	return schedule_timeout(timeout);
1941 }
1942 EXPORT_SYMBOL(schedule_timeout_idle);
1943 
1944 #ifdef CONFIG_HOTPLUG_CPU
1945 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1946 {
1947 	struct timer_list *timer;
1948 	int cpu = new_base->cpu;
1949 
1950 	while (!hlist_empty(head)) {
1951 		timer = hlist_entry(head->first, struct timer_list, entry);
1952 		detach_timer(timer, false);
1953 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1954 		internal_add_timer(new_base, timer);
1955 	}
1956 }
1957 
1958 int timers_prepare_cpu(unsigned int cpu)
1959 {
1960 	struct timer_base *base;
1961 	int b;
1962 
1963 	for (b = 0; b < NR_BASES; b++) {
1964 		base = per_cpu_ptr(&timer_bases[b], cpu);
1965 		base->clk = jiffies;
1966 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1967 		base->is_idle = false;
1968 		base->must_forward_clk = true;
1969 	}
1970 	return 0;
1971 }
1972 
1973 int timers_dead_cpu(unsigned int cpu)
1974 {
1975 	struct timer_base *old_base;
1976 	struct timer_base *new_base;
1977 	int b, i;
1978 
1979 	BUG_ON(cpu_online(cpu));
1980 
1981 	for (b = 0; b < NR_BASES; b++) {
1982 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
1983 		new_base = get_cpu_ptr(&timer_bases[b]);
1984 		/*
1985 		 * The caller is globally serialized and nobody else
1986 		 * takes two locks at once, deadlock is not possible.
1987 		 */
1988 		raw_spin_lock_irq(&new_base->lock);
1989 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1990 
1991 		/*
1992 		 * The current CPUs base clock might be stale. Update it
1993 		 * before moving the timers over.
1994 		 */
1995 		forward_timer_base(new_base);
1996 
1997 		BUG_ON(old_base->running_timer);
1998 
1999 		for (i = 0; i < WHEEL_SIZE; i++)
2000 			migrate_timer_list(new_base, old_base->vectors + i);
2001 
2002 		raw_spin_unlock(&old_base->lock);
2003 		raw_spin_unlock_irq(&new_base->lock);
2004 		put_cpu_ptr(&timer_bases);
2005 	}
2006 	return 0;
2007 }
2008 
2009 #endif /* CONFIG_HOTPLUG_CPU */
2010 
2011 static void __init init_timer_cpu(int cpu)
2012 {
2013 	struct timer_base *base;
2014 	int i;
2015 
2016 	for (i = 0; i < NR_BASES; i++) {
2017 		base = per_cpu_ptr(&timer_bases[i], cpu);
2018 		base->cpu = cpu;
2019 		raw_spin_lock_init(&base->lock);
2020 		base->clk = jiffies;
2021 		timer_base_init_expiry_lock(base);
2022 	}
2023 }
2024 
2025 static void __init init_timer_cpus(void)
2026 {
2027 	int cpu;
2028 
2029 	for_each_possible_cpu(cpu)
2030 		init_timer_cpu(cpu);
2031 }
2032 
2033 void __init init_timers(void)
2034 {
2035 	init_timer_cpus();
2036 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2037 }
2038 
2039 /**
2040  * msleep - sleep safely even with waitqueue interruptions
2041  * @msecs: Time in milliseconds to sleep for
2042  */
2043 void msleep(unsigned int msecs)
2044 {
2045 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2046 
2047 	while (timeout)
2048 		timeout = schedule_timeout_uninterruptible(timeout);
2049 }
2050 
2051 EXPORT_SYMBOL(msleep);
2052 
2053 /**
2054  * msleep_interruptible - sleep waiting for signals
2055  * @msecs: Time in milliseconds to sleep for
2056  */
2057 unsigned long msleep_interruptible(unsigned int msecs)
2058 {
2059 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2060 
2061 	while (timeout && !signal_pending(current))
2062 		timeout = schedule_timeout_interruptible(timeout);
2063 	return jiffies_to_msecs(timeout);
2064 }
2065 
2066 EXPORT_SYMBOL(msleep_interruptible);
2067 
2068 /**
2069  * usleep_range - Sleep for an approximate time
2070  * @min: Minimum time in usecs to sleep
2071  * @max: Maximum time in usecs to sleep
2072  *
2073  * In non-atomic context where the exact wakeup time is flexible, use
2074  * usleep_range() instead of udelay().  The sleep improves responsiveness
2075  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2076  * power usage by allowing hrtimers to take advantage of an already-
2077  * scheduled interrupt instead of scheduling a new one just for this sleep.
2078  */
2079 void __sched usleep_range(unsigned long min, unsigned long max)
2080 {
2081 	ktime_t exp = ktime_add_us(ktime_get(), min);
2082 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2083 
2084 	for (;;) {
2085 		__set_current_state(TASK_UNINTERRUPTIBLE);
2086 		/* Do not return before the requested sleep time has elapsed */
2087 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2088 			break;
2089 	}
2090 }
2091 EXPORT_SYMBOL(usleep_range);
2092