xref: /linux/kernel/trace/bpf_trace.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16 
17 #include <asm/tlb.h>
18 
19 #include "trace_probe.h"
20 #include "trace.h"
21 
22 #define bpf_event_rcu_dereference(p)					\
23 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
24 
25 #ifdef CONFIG_MODULES
26 struct bpf_trace_module {
27 	struct module *module;
28 	struct list_head list;
29 };
30 
31 static LIST_HEAD(bpf_trace_modules);
32 static DEFINE_MUTEX(bpf_module_mutex);
33 
34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
35 {
36 	struct bpf_raw_event_map *btp, *ret = NULL;
37 	struct bpf_trace_module *btm;
38 	unsigned int i;
39 
40 	mutex_lock(&bpf_module_mutex);
41 	list_for_each_entry(btm, &bpf_trace_modules, list) {
42 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
43 			btp = &btm->module->bpf_raw_events[i];
44 			if (!strcmp(btp->tp->name, name)) {
45 				if (try_module_get(btm->module))
46 					ret = btp;
47 				goto out;
48 			}
49 		}
50 	}
51 out:
52 	mutex_unlock(&bpf_module_mutex);
53 	return ret;
54 }
55 #else
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 	return NULL;
59 }
60 #endif /* CONFIG_MODULES */
61 
62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
64 
65 /**
66  * trace_call_bpf - invoke BPF program
67  * @call: tracepoint event
68  * @ctx: opaque context pointer
69  *
70  * kprobe handlers execute BPF programs via this helper.
71  * Can be used from static tracepoints in the future.
72  *
73  * Return: BPF programs always return an integer which is interpreted by
74  * kprobe handler as:
75  * 0 - return from kprobe (event is filtered out)
76  * 1 - store kprobe event into ring buffer
77  * Other values are reserved and currently alias to 1
78  */
79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
80 {
81 	unsigned int ret;
82 
83 	if (in_nmi()) /* not supported yet */
84 		return 1;
85 
86 	preempt_disable();
87 
88 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
89 		/*
90 		 * since some bpf program is already running on this cpu,
91 		 * don't call into another bpf program (same or different)
92 		 * and don't send kprobe event into ring-buffer,
93 		 * so return zero here
94 		 */
95 		ret = 0;
96 		goto out;
97 	}
98 
99 	/*
100 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
101 	 * to all call sites, we did a bpf_prog_array_valid() there to check
102 	 * whether call->prog_array is empty or not, which is
103 	 * a heurisitc to speed up execution.
104 	 *
105 	 * If bpf_prog_array_valid() fetched prog_array was
106 	 * non-NULL, we go into trace_call_bpf() and do the actual
107 	 * proper rcu_dereference() under RCU lock.
108 	 * If it turns out that prog_array is NULL then, we bail out.
109 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
110 	 * was NULL, you'll skip the prog_array with the risk of missing
111 	 * out of events when it was updated in between this and the
112 	 * rcu_dereference() which is accepted risk.
113 	 */
114 	ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
115 
116  out:
117 	__this_cpu_dec(bpf_prog_active);
118 	preempt_enable();
119 
120 	return ret;
121 }
122 EXPORT_SYMBOL_GPL(trace_call_bpf);
123 
124 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
125 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
126 {
127 	regs_set_return_value(regs, rc);
128 	override_function_with_return(regs);
129 	return 0;
130 }
131 
132 static const struct bpf_func_proto bpf_override_return_proto = {
133 	.func		= bpf_override_return,
134 	.gpl_only	= true,
135 	.ret_type	= RET_INTEGER,
136 	.arg1_type	= ARG_PTR_TO_CTX,
137 	.arg2_type	= ARG_ANYTHING,
138 };
139 #endif
140 
141 BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
142 {
143 	int ret;
144 
145 	ret = security_locked_down(LOCKDOWN_BPF_READ);
146 	if (ret < 0)
147 		goto out;
148 
149 	ret = probe_kernel_read(dst, unsafe_ptr, size);
150 	if (unlikely(ret < 0))
151 out:
152 		memset(dst, 0, size);
153 
154 	return ret;
155 }
156 
157 static const struct bpf_func_proto bpf_probe_read_proto = {
158 	.func		= bpf_probe_read,
159 	.gpl_only	= true,
160 	.ret_type	= RET_INTEGER,
161 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
162 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
163 	.arg3_type	= ARG_ANYTHING,
164 };
165 
166 BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
167 	   u32, size)
168 {
169 	/*
170 	 * Ensure we're in user context which is safe for the helper to
171 	 * run. This helper has no business in a kthread.
172 	 *
173 	 * access_ok() should prevent writing to non-user memory, but in
174 	 * some situations (nommu, temporary switch, etc) access_ok() does
175 	 * not provide enough validation, hence the check on KERNEL_DS.
176 	 *
177 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
178 	 * state, when the task or mm are switched. This is specifically
179 	 * required to prevent the use of temporary mm.
180 	 */
181 
182 	if (unlikely(in_interrupt() ||
183 		     current->flags & (PF_KTHREAD | PF_EXITING)))
184 		return -EPERM;
185 	if (unlikely(uaccess_kernel()))
186 		return -EPERM;
187 	if (unlikely(!nmi_uaccess_okay()))
188 		return -EPERM;
189 	if (!access_ok(unsafe_ptr, size))
190 		return -EPERM;
191 
192 	return probe_kernel_write(unsafe_ptr, src, size);
193 }
194 
195 static const struct bpf_func_proto bpf_probe_write_user_proto = {
196 	.func		= bpf_probe_write_user,
197 	.gpl_only	= true,
198 	.ret_type	= RET_INTEGER,
199 	.arg1_type	= ARG_ANYTHING,
200 	.arg2_type	= ARG_PTR_TO_MEM,
201 	.arg3_type	= ARG_CONST_SIZE,
202 };
203 
204 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
205 {
206 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
207 			    current->comm, task_pid_nr(current));
208 
209 	return &bpf_probe_write_user_proto;
210 }
211 
212 /*
213  * Only limited trace_printk() conversion specifiers allowed:
214  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
215  */
216 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
217 	   u64, arg2, u64, arg3)
218 {
219 	bool str_seen = false;
220 	int mod[3] = {};
221 	int fmt_cnt = 0;
222 	u64 unsafe_addr;
223 	char buf[64];
224 	int i;
225 
226 	/*
227 	 * bpf_check()->check_func_arg()->check_stack_boundary()
228 	 * guarantees that fmt points to bpf program stack,
229 	 * fmt_size bytes of it were initialized and fmt_size > 0
230 	 */
231 	if (fmt[--fmt_size] != 0)
232 		return -EINVAL;
233 
234 	/* check format string for allowed specifiers */
235 	for (i = 0; i < fmt_size; i++) {
236 		if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
237 			return -EINVAL;
238 
239 		if (fmt[i] != '%')
240 			continue;
241 
242 		if (fmt_cnt >= 3)
243 			return -EINVAL;
244 
245 		/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
246 		i++;
247 		if (fmt[i] == 'l') {
248 			mod[fmt_cnt]++;
249 			i++;
250 		} else if (fmt[i] == 'p' || fmt[i] == 's') {
251 			mod[fmt_cnt]++;
252 			/* disallow any further format extensions */
253 			if (fmt[i + 1] != 0 &&
254 			    !isspace(fmt[i + 1]) &&
255 			    !ispunct(fmt[i + 1]))
256 				return -EINVAL;
257 			fmt_cnt++;
258 			if (fmt[i] == 's') {
259 				if (str_seen)
260 					/* allow only one '%s' per fmt string */
261 					return -EINVAL;
262 				str_seen = true;
263 
264 				switch (fmt_cnt) {
265 				case 1:
266 					unsafe_addr = arg1;
267 					arg1 = (long) buf;
268 					break;
269 				case 2:
270 					unsafe_addr = arg2;
271 					arg2 = (long) buf;
272 					break;
273 				case 3:
274 					unsafe_addr = arg3;
275 					arg3 = (long) buf;
276 					break;
277 				}
278 				buf[0] = 0;
279 				strncpy_from_unsafe(buf,
280 						    (void *) (long) unsafe_addr,
281 						    sizeof(buf));
282 			}
283 			continue;
284 		}
285 
286 		if (fmt[i] == 'l') {
287 			mod[fmt_cnt]++;
288 			i++;
289 		}
290 
291 		if (fmt[i] != 'i' && fmt[i] != 'd' &&
292 		    fmt[i] != 'u' && fmt[i] != 'x')
293 			return -EINVAL;
294 		fmt_cnt++;
295 	}
296 
297 /* Horrid workaround for getting va_list handling working with different
298  * argument type combinations generically for 32 and 64 bit archs.
299  */
300 #define __BPF_TP_EMIT()	__BPF_ARG3_TP()
301 #define __BPF_TP(...)							\
302 	__trace_printk(0 /* Fake ip */,					\
303 		       fmt, ##__VA_ARGS__)
304 
305 #define __BPF_ARG1_TP(...)						\
306 	((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))	\
307 	  ? __BPF_TP(arg1, ##__VA_ARGS__)				\
308 	  : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))	\
309 	      ? __BPF_TP((long)arg1, ##__VA_ARGS__)			\
310 	      : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
311 
312 #define __BPF_ARG2_TP(...)						\
313 	((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))	\
314 	  ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)				\
315 	  : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))	\
316 	      ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)		\
317 	      : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
318 
319 #define __BPF_ARG3_TP(...)						\
320 	((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))	\
321 	  ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)				\
322 	  : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))	\
323 	      ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)		\
324 	      : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
325 
326 	return __BPF_TP_EMIT();
327 }
328 
329 static const struct bpf_func_proto bpf_trace_printk_proto = {
330 	.func		= bpf_trace_printk,
331 	.gpl_only	= true,
332 	.ret_type	= RET_INTEGER,
333 	.arg1_type	= ARG_PTR_TO_MEM,
334 	.arg2_type	= ARG_CONST_SIZE,
335 };
336 
337 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
338 {
339 	/*
340 	 * this program might be calling bpf_trace_printk,
341 	 * so allocate per-cpu printk buffers
342 	 */
343 	trace_printk_init_buffers();
344 
345 	return &bpf_trace_printk_proto;
346 }
347 
348 static __always_inline int
349 get_map_perf_counter(struct bpf_map *map, u64 flags,
350 		     u64 *value, u64 *enabled, u64 *running)
351 {
352 	struct bpf_array *array = container_of(map, struct bpf_array, map);
353 	unsigned int cpu = smp_processor_id();
354 	u64 index = flags & BPF_F_INDEX_MASK;
355 	struct bpf_event_entry *ee;
356 
357 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
358 		return -EINVAL;
359 	if (index == BPF_F_CURRENT_CPU)
360 		index = cpu;
361 	if (unlikely(index >= array->map.max_entries))
362 		return -E2BIG;
363 
364 	ee = READ_ONCE(array->ptrs[index]);
365 	if (!ee)
366 		return -ENOENT;
367 
368 	return perf_event_read_local(ee->event, value, enabled, running);
369 }
370 
371 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
372 {
373 	u64 value = 0;
374 	int err;
375 
376 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
377 	/*
378 	 * this api is ugly since we miss [-22..-2] range of valid
379 	 * counter values, but that's uapi
380 	 */
381 	if (err)
382 		return err;
383 	return value;
384 }
385 
386 static const struct bpf_func_proto bpf_perf_event_read_proto = {
387 	.func		= bpf_perf_event_read,
388 	.gpl_only	= true,
389 	.ret_type	= RET_INTEGER,
390 	.arg1_type	= ARG_CONST_MAP_PTR,
391 	.arg2_type	= ARG_ANYTHING,
392 };
393 
394 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
395 	   struct bpf_perf_event_value *, buf, u32, size)
396 {
397 	int err = -EINVAL;
398 
399 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
400 		goto clear;
401 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
402 				   &buf->running);
403 	if (unlikely(err))
404 		goto clear;
405 	return 0;
406 clear:
407 	memset(buf, 0, size);
408 	return err;
409 }
410 
411 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
412 	.func		= bpf_perf_event_read_value,
413 	.gpl_only	= true,
414 	.ret_type	= RET_INTEGER,
415 	.arg1_type	= ARG_CONST_MAP_PTR,
416 	.arg2_type	= ARG_ANYTHING,
417 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
418 	.arg4_type	= ARG_CONST_SIZE,
419 };
420 
421 static __always_inline u64
422 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
423 			u64 flags, struct perf_sample_data *sd)
424 {
425 	struct bpf_array *array = container_of(map, struct bpf_array, map);
426 	unsigned int cpu = smp_processor_id();
427 	u64 index = flags & BPF_F_INDEX_MASK;
428 	struct bpf_event_entry *ee;
429 	struct perf_event *event;
430 
431 	if (index == BPF_F_CURRENT_CPU)
432 		index = cpu;
433 	if (unlikely(index >= array->map.max_entries))
434 		return -E2BIG;
435 
436 	ee = READ_ONCE(array->ptrs[index]);
437 	if (!ee)
438 		return -ENOENT;
439 
440 	event = ee->event;
441 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
442 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
443 		return -EINVAL;
444 
445 	if (unlikely(event->oncpu != cpu))
446 		return -EOPNOTSUPP;
447 
448 	return perf_event_output(event, sd, regs);
449 }
450 
451 /*
452  * Support executing tracepoints in normal, irq, and nmi context that each call
453  * bpf_perf_event_output
454  */
455 struct bpf_trace_sample_data {
456 	struct perf_sample_data sds[3];
457 };
458 
459 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
460 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
461 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
462 	   u64, flags, void *, data, u64, size)
463 {
464 	struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
465 	int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
466 	struct perf_raw_record raw = {
467 		.frag = {
468 			.size = size,
469 			.data = data,
470 		},
471 	};
472 	struct perf_sample_data *sd;
473 	int err;
474 
475 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
476 		err = -EBUSY;
477 		goto out;
478 	}
479 
480 	sd = &sds->sds[nest_level - 1];
481 
482 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
483 		err = -EINVAL;
484 		goto out;
485 	}
486 
487 	perf_sample_data_init(sd, 0, 0);
488 	sd->raw = &raw;
489 
490 	err = __bpf_perf_event_output(regs, map, flags, sd);
491 
492 out:
493 	this_cpu_dec(bpf_trace_nest_level);
494 	return err;
495 }
496 
497 static const struct bpf_func_proto bpf_perf_event_output_proto = {
498 	.func		= bpf_perf_event_output,
499 	.gpl_only	= true,
500 	.ret_type	= RET_INTEGER,
501 	.arg1_type	= ARG_PTR_TO_CTX,
502 	.arg2_type	= ARG_CONST_MAP_PTR,
503 	.arg3_type	= ARG_ANYTHING,
504 	.arg4_type	= ARG_PTR_TO_MEM,
505 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
506 };
507 
508 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
509 struct bpf_nested_pt_regs {
510 	struct pt_regs regs[3];
511 };
512 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
513 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
514 
515 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
516 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
517 {
518 	int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
519 	struct perf_raw_frag frag = {
520 		.copy		= ctx_copy,
521 		.size		= ctx_size,
522 		.data		= ctx,
523 	};
524 	struct perf_raw_record raw = {
525 		.frag = {
526 			{
527 				.next	= ctx_size ? &frag : NULL,
528 			},
529 			.size	= meta_size,
530 			.data	= meta,
531 		},
532 	};
533 	struct perf_sample_data *sd;
534 	struct pt_regs *regs;
535 	u64 ret;
536 
537 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
538 		ret = -EBUSY;
539 		goto out;
540 	}
541 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
542 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
543 
544 	perf_fetch_caller_regs(regs);
545 	perf_sample_data_init(sd, 0, 0);
546 	sd->raw = &raw;
547 
548 	ret = __bpf_perf_event_output(regs, map, flags, sd);
549 out:
550 	this_cpu_dec(bpf_event_output_nest_level);
551 	return ret;
552 }
553 
554 BPF_CALL_0(bpf_get_current_task)
555 {
556 	return (long) current;
557 }
558 
559 static const struct bpf_func_proto bpf_get_current_task_proto = {
560 	.func		= bpf_get_current_task,
561 	.gpl_only	= true,
562 	.ret_type	= RET_INTEGER,
563 };
564 
565 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
566 {
567 	struct bpf_array *array = container_of(map, struct bpf_array, map);
568 	struct cgroup *cgrp;
569 
570 	if (unlikely(idx >= array->map.max_entries))
571 		return -E2BIG;
572 
573 	cgrp = READ_ONCE(array->ptrs[idx]);
574 	if (unlikely(!cgrp))
575 		return -EAGAIN;
576 
577 	return task_under_cgroup_hierarchy(current, cgrp);
578 }
579 
580 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
581 	.func           = bpf_current_task_under_cgroup,
582 	.gpl_only       = false,
583 	.ret_type       = RET_INTEGER,
584 	.arg1_type      = ARG_CONST_MAP_PTR,
585 	.arg2_type      = ARG_ANYTHING,
586 };
587 
588 BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
589 	   const void *, unsafe_ptr)
590 {
591 	int ret;
592 
593 	ret = security_locked_down(LOCKDOWN_BPF_READ);
594 	if (ret < 0)
595 		goto out;
596 
597 	/*
598 	 * The strncpy_from_unsafe() call will likely not fill the entire
599 	 * buffer, but that's okay in this circumstance as we're probing
600 	 * arbitrary memory anyway similar to bpf_probe_read() and might
601 	 * as well probe the stack. Thus, memory is explicitly cleared
602 	 * only in error case, so that improper users ignoring return
603 	 * code altogether don't copy garbage; otherwise length of string
604 	 * is returned that can be used for bpf_perf_event_output() et al.
605 	 */
606 	ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
607 	if (unlikely(ret < 0))
608 out:
609 		memset(dst, 0, size);
610 
611 	return ret;
612 }
613 
614 static const struct bpf_func_proto bpf_probe_read_str_proto = {
615 	.func		= bpf_probe_read_str,
616 	.gpl_only	= true,
617 	.ret_type	= RET_INTEGER,
618 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
619 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
620 	.arg3_type	= ARG_ANYTHING,
621 };
622 
623 struct send_signal_irq_work {
624 	struct irq_work irq_work;
625 	struct task_struct *task;
626 	u32 sig;
627 };
628 
629 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
630 
631 static void do_bpf_send_signal(struct irq_work *entry)
632 {
633 	struct send_signal_irq_work *work;
634 
635 	work = container_of(entry, struct send_signal_irq_work, irq_work);
636 	group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, PIDTYPE_TGID);
637 }
638 
639 BPF_CALL_1(bpf_send_signal, u32, sig)
640 {
641 	struct send_signal_irq_work *work = NULL;
642 
643 	/* Similar to bpf_probe_write_user, task needs to be
644 	 * in a sound condition and kernel memory access be
645 	 * permitted in order to send signal to the current
646 	 * task.
647 	 */
648 	if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
649 		return -EPERM;
650 	if (unlikely(uaccess_kernel()))
651 		return -EPERM;
652 	if (unlikely(!nmi_uaccess_okay()))
653 		return -EPERM;
654 
655 	if (in_nmi()) {
656 		/* Do an early check on signal validity. Otherwise,
657 		 * the error is lost in deferred irq_work.
658 		 */
659 		if (unlikely(!valid_signal(sig)))
660 			return -EINVAL;
661 
662 		work = this_cpu_ptr(&send_signal_work);
663 		if (work->irq_work.flags & IRQ_WORK_BUSY)
664 			return -EBUSY;
665 
666 		/* Add the current task, which is the target of sending signal,
667 		 * to the irq_work. The current task may change when queued
668 		 * irq works get executed.
669 		 */
670 		work->task = current;
671 		work->sig = sig;
672 		irq_work_queue(&work->irq_work);
673 		return 0;
674 	}
675 
676 	return group_send_sig_info(sig, SEND_SIG_PRIV, current, PIDTYPE_TGID);
677 }
678 
679 static const struct bpf_func_proto bpf_send_signal_proto = {
680 	.func		= bpf_send_signal,
681 	.gpl_only	= false,
682 	.ret_type	= RET_INTEGER,
683 	.arg1_type	= ARG_ANYTHING,
684 };
685 
686 static const struct bpf_func_proto *
687 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
688 {
689 	switch (func_id) {
690 	case BPF_FUNC_map_lookup_elem:
691 		return &bpf_map_lookup_elem_proto;
692 	case BPF_FUNC_map_update_elem:
693 		return &bpf_map_update_elem_proto;
694 	case BPF_FUNC_map_delete_elem:
695 		return &bpf_map_delete_elem_proto;
696 	case BPF_FUNC_map_push_elem:
697 		return &bpf_map_push_elem_proto;
698 	case BPF_FUNC_map_pop_elem:
699 		return &bpf_map_pop_elem_proto;
700 	case BPF_FUNC_map_peek_elem:
701 		return &bpf_map_peek_elem_proto;
702 	case BPF_FUNC_probe_read:
703 		return &bpf_probe_read_proto;
704 	case BPF_FUNC_ktime_get_ns:
705 		return &bpf_ktime_get_ns_proto;
706 	case BPF_FUNC_tail_call:
707 		return &bpf_tail_call_proto;
708 	case BPF_FUNC_get_current_pid_tgid:
709 		return &bpf_get_current_pid_tgid_proto;
710 	case BPF_FUNC_get_current_task:
711 		return &bpf_get_current_task_proto;
712 	case BPF_FUNC_get_current_uid_gid:
713 		return &bpf_get_current_uid_gid_proto;
714 	case BPF_FUNC_get_current_comm:
715 		return &bpf_get_current_comm_proto;
716 	case BPF_FUNC_trace_printk:
717 		return bpf_get_trace_printk_proto();
718 	case BPF_FUNC_get_smp_processor_id:
719 		return &bpf_get_smp_processor_id_proto;
720 	case BPF_FUNC_get_numa_node_id:
721 		return &bpf_get_numa_node_id_proto;
722 	case BPF_FUNC_perf_event_read:
723 		return &bpf_perf_event_read_proto;
724 	case BPF_FUNC_probe_write_user:
725 		return bpf_get_probe_write_proto();
726 	case BPF_FUNC_current_task_under_cgroup:
727 		return &bpf_current_task_under_cgroup_proto;
728 	case BPF_FUNC_get_prandom_u32:
729 		return &bpf_get_prandom_u32_proto;
730 	case BPF_FUNC_probe_read_str:
731 		return &bpf_probe_read_str_proto;
732 #ifdef CONFIG_CGROUPS
733 	case BPF_FUNC_get_current_cgroup_id:
734 		return &bpf_get_current_cgroup_id_proto;
735 #endif
736 	case BPF_FUNC_send_signal:
737 		return &bpf_send_signal_proto;
738 	default:
739 		return NULL;
740 	}
741 }
742 
743 static const struct bpf_func_proto *
744 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
745 {
746 	switch (func_id) {
747 	case BPF_FUNC_perf_event_output:
748 		return &bpf_perf_event_output_proto;
749 	case BPF_FUNC_get_stackid:
750 		return &bpf_get_stackid_proto;
751 	case BPF_FUNC_get_stack:
752 		return &bpf_get_stack_proto;
753 	case BPF_FUNC_perf_event_read_value:
754 		return &bpf_perf_event_read_value_proto;
755 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
756 	case BPF_FUNC_override_return:
757 		return &bpf_override_return_proto;
758 #endif
759 	default:
760 		return tracing_func_proto(func_id, prog);
761 	}
762 }
763 
764 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
765 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
766 					const struct bpf_prog *prog,
767 					struct bpf_insn_access_aux *info)
768 {
769 	if (off < 0 || off >= sizeof(struct pt_regs))
770 		return false;
771 	if (type != BPF_READ)
772 		return false;
773 	if (off % size != 0)
774 		return false;
775 	/*
776 	 * Assertion for 32 bit to make sure last 8 byte access
777 	 * (BPF_DW) to the last 4 byte member is disallowed.
778 	 */
779 	if (off + size > sizeof(struct pt_regs))
780 		return false;
781 
782 	return true;
783 }
784 
785 const struct bpf_verifier_ops kprobe_verifier_ops = {
786 	.get_func_proto  = kprobe_prog_func_proto,
787 	.is_valid_access = kprobe_prog_is_valid_access,
788 };
789 
790 const struct bpf_prog_ops kprobe_prog_ops = {
791 };
792 
793 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
794 	   u64, flags, void *, data, u64, size)
795 {
796 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
797 
798 	/*
799 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
800 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
801 	 * from there and call the same bpf_perf_event_output() helper inline.
802 	 */
803 	return ____bpf_perf_event_output(regs, map, flags, data, size);
804 }
805 
806 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
807 	.func		= bpf_perf_event_output_tp,
808 	.gpl_only	= true,
809 	.ret_type	= RET_INTEGER,
810 	.arg1_type	= ARG_PTR_TO_CTX,
811 	.arg2_type	= ARG_CONST_MAP_PTR,
812 	.arg3_type	= ARG_ANYTHING,
813 	.arg4_type	= ARG_PTR_TO_MEM,
814 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
815 };
816 
817 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
818 	   u64, flags)
819 {
820 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
821 
822 	/*
823 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
824 	 * the other helper's function body cannot be inlined due to being
825 	 * external, thus we need to call raw helper function.
826 	 */
827 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
828 			       flags, 0, 0);
829 }
830 
831 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
832 	.func		= bpf_get_stackid_tp,
833 	.gpl_only	= true,
834 	.ret_type	= RET_INTEGER,
835 	.arg1_type	= ARG_PTR_TO_CTX,
836 	.arg2_type	= ARG_CONST_MAP_PTR,
837 	.arg3_type	= ARG_ANYTHING,
838 };
839 
840 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
841 	   u64, flags)
842 {
843 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
844 
845 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
846 			     (unsigned long) size, flags, 0);
847 }
848 
849 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
850 	.func		= bpf_get_stack_tp,
851 	.gpl_only	= true,
852 	.ret_type	= RET_INTEGER,
853 	.arg1_type	= ARG_PTR_TO_CTX,
854 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
855 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
856 	.arg4_type	= ARG_ANYTHING,
857 };
858 
859 static const struct bpf_func_proto *
860 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
861 {
862 	switch (func_id) {
863 	case BPF_FUNC_perf_event_output:
864 		return &bpf_perf_event_output_proto_tp;
865 	case BPF_FUNC_get_stackid:
866 		return &bpf_get_stackid_proto_tp;
867 	case BPF_FUNC_get_stack:
868 		return &bpf_get_stack_proto_tp;
869 	default:
870 		return tracing_func_proto(func_id, prog);
871 	}
872 }
873 
874 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
875 				    const struct bpf_prog *prog,
876 				    struct bpf_insn_access_aux *info)
877 {
878 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
879 		return false;
880 	if (type != BPF_READ)
881 		return false;
882 	if (off % size != 0)
883 		return false;
884 
885 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
886 	return true;
887 }
888 
889 const struct bpf_verifier_ops tracepoint_verifier_ops = {
890 	.get_func_proto  = tp_prog_func_proto,
891 	.is_valid_access = tp_prog_is_valid_access,
892 };
893 
894 const struct bpf_prog_ops tracepoint_prog_ops = {
895 };
896 
897 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
898 	   struct bpf_perf_event_value *, buf, u32, size)
899 {
900 	int err = -EINVAL;
901 
902 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
903 		goto clear;
904 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
905 				    &buf->running);
906 	if (unlikely(err))
907 		goto clear;
908 	return 0;
909 clear:
910 	memset(buf, 0, size);
911 	return err;
912 }
913 
914 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
915          .func           = bpf_perf_prog_read_value,
916          .gpl_only       = true,
917          .ret_type       = RET_INTEGER,
918          .arg1_type      = ARG_PTR_TO_CTX,
919          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
920          .arg3_type      = ARG_CONST_SIZE,
921 };
922 
923 static const struct bpf_func_proto *
924 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
925 {
926 	switch (func_id) {
927 	case BPF_FUNC_perf_event_output:
928 		return &bpf_perf_event_output_proto_tp;
929 	case BPF_FUNC_get_stackid:
930 		return &bpf_get_stackid_proto_tp;
931 	case BPF_FUNC_get_stack:
932 		return &bpf_get_stack_proto_tp;
933 	case BPF_FUNC_perf_prog_read_value:
934 		return &bpf_perf_prog_read_value_proto;
935 	default:
936 		return tracing_func_proto(func_id, prog);
937 	}
938 }
939 
940 /*
941  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
942  * to avoid potential recursive reuse issue when/if tracepoints are added
943  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
944  *
945  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
946  * in normal, irq, and nmi context.
947  */
948 struct bpf_raw_tp_regs {
949 	struct pt_regs regs[3];
950 };
951 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
952 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
953 static struct pt_regs *get_bpf_raw_tp_regs(void)
954 {
955 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
956 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
957 
958 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
959 		this_cpu_dec(bpf_raw_tp_nest_level);
960 		return ERR_PTR(-EBUSY);
961 	}
962 
963 	return &tp_regs->regs[nest_level - 1];
964 }
965 
966 static void put_bpf_raw_tp_regs(void)
967 {
968 	this_cpu_dec(bpf_raw_tp_nest_level);
969 }
970 
971 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
972 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
973 {
974 	struct pt_regs *regs = get_bpf_raw_tp_regs();
975 	int ret;
976 
977 	if (IS_ERR(regs))
978 		return PTR_ERR(regs);
979 
980 	perf_fetch_caller_regs(regs);
981 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
982 
983 	put_bpf_raw_tp_regs();
984 	return ret;
985 }
986 
987 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
988 	.func		= bpf_perf_event_output_raw_tp,
989 	.gpl_only	= true,
990 	.ret_type	= RET_INTEGER,
991 	.arg1_type	= ARG_PTR_TO_CTX,
992 	.arg2_type	= ARG_CONST_MAP_PTR,
993 	.arg3_type	= ARG_ANYTHING,
994 	.arg4_type	= ARG_PTR_TO_MEM,
995 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
996 };
997 
998 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
999 	   struct bpf_map *, map, u64, flags)
1000 {
1001 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1002 	int ret;
1003 
1004 	if (IS_ERR(regs))
1005 		return PTR_ERR(regs);
1006 
1007 	perf_fetch_caller_regs(regs);
1008 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1009 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1010 			      flags, 0, 0);
1011 	put_bpf_raw_tp_regs();
1012 	return ret;
1013 }
1014 
1015 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1016 	.func		= bpf_get_stackid_raw_tp,
1017 	.gpl_only	= true,
1018 	.ret_type	= RET_INTEGER,
1019 	.arg1_type	= ARG_PTR_TO_CTX,
1020 	.arg2_type	= ARG_CONST_MAP_PTR,
1021 	.arg3_type	= ARG_ANYTHING,
1022 };
1023 
1024 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1025 	   void *, buf, u32, size, u64, flags)
1026 {
1027 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1028 	int ret;
1029 
1030 	if (IS_ERR(regs))
1031 		return PTR_ERR(regs);
1032 
1033 	perf_fetch_caller_regs(regs);
1034 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1035 			    (unsigned long) size, flags, 0);
1036 	put_bpf_raw_tp_regs();
1037 	return ret;
1038 }
1039 
1040 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1041 	.func		= bpf_get_stack_raw_tp,
1042 	.gpl_only	= true,
1043 	.ret_type	= RET_INTEGER,
1044 	.arg1_type	= ARG_PTR_TO_CTX,
1045 	.arg2_type	= ARG_PTR_TO_MEM,
1046 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1047 	.arg4_type	= ARG_ANYTHING,
1048 };
1049 
1050 static const struct bpf_func_proto *
1051 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1052 {
1053 	switch (func_id) {
1054 	case BPF_FUNC_perf_event_output:
1055 		return &bpf_perf_event_output_proto_raw_tp;
1056 	case BPF_FUNC_get_stackid:
1057 		return &bpf_get_stackid_proto_raw_tp;
1058 	case BPF_FUNC_get_stack:
1059 		return &bpf_get_stack_proto_raw_tp;
1060 	default:
1061 		return tracing_func_proto(func_id, prog);
1062 	}
1063 }
1064 
1065 static bool raw_tp_prog_is_valid_access(int off, int size,
1066 					enum bpf_access_type type,
1067 					const struct bpf_prog *prog,
1068 					struct bpf_insn_access_aux *info)
1069 {
1070 	/* largest tracepoint in the kernel has 12 args */
1071 	if (off < 0 || off >= sizeof(__u64) * 12)
1072 		return false;
1073 	if (type != BPF_READ)
1074 		return false;
1075 	if (off % size != 0)
1076 		return false;
1077 	return true;
1078 }
1079 
1080 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1081 	.get_func_proto  = raw_tp_prog_func_proto,
1082 	.is_valid_access = raw_tp_prog_is_valid_access,
1083 };
1084 
1085 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1086 };
1087 
1088 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1089 						 enum bpf_access_type type,
1090 						 const struct bpf_prog *prog,
1091 						 struct bpf_insn_access_aux *info)
1092 {
1093 	if (off == 0) {
1094 		if (size != sizeof(u64) || type != BPF_READ)
1095 			return false;
1096 		info->reg_type = PTR_TO_TP_BUFFER;
1097 	}
1098 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1099 }
1100 
1101 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1102 	.get_func_proto  = raw_tp_prog_func_proto,
1103 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
1104 };
1105 
1106 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1107 };
1108 
1109 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1110 				    const struct bpf_prog *prog,
1111 				    struct bpf_insn_access_aux *info)
1112 {
1113 	const int size_u64 = sizeof(u64);
1114 
1115 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1116 		return false;
1117 	if (type != BPF_READ)
1118 		return false;
1119 	if (off % size != 0) {
1120 		if (sizeof(unsigned long) != 4)
1121 			return false;
1122 		if (size != 8)
1123 			return false;
1124 		if (off % size != 4)
1125 			return false;
1126 	}
1127 
1128 	switch (off) {
1129 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1130 		bpf_ctx_record_field_size(info, size_u64);
1131 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1132 			return false;
1133 		break;
1134 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
1135 		bpf_ctx_record_field_size(info, size_u64);
1136 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1137 			return false;
1138 		break;
1139 	default:
1140 		if (size != sizeof(long))
1141 			return false;
1142 	}
1143 
1144 	return true;
1145 }
1146 
1147 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1148 				      const struct bpf_insn *si,
1149 				      struct bpf_insn *insn_buf,
1150 				      struct bpf_prog *prog, u32 *target_size)
1151 {
1152 	struct bpf_insn *insn = insn_buf;
1153 
1154 	switch (si->off) {
1155 	case offsetof(struct bpf_perf_event_data, sample_period):
1156 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1157 						       data), si->dst_reg, si->src_reg,
1158 				      offsetof(struct bpf_perf_event_data_kern, data));
1159 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1160 				      bpf_target_off(struct perf_sample_data, period, 8,
1161 						     target_size));
1162 		break;
1163 	case offsetof(struct bpf_perf_event_data, addr):
1164 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1165 						       data), si->dst_reg, si->src_reg,
1166 				      offsetof(struct bpf_perf_event_data_kern, data));
1167 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1168 				      bpf_target_off(struct perf_sample_data, addr, 8,
1169 						     target_size));
1170 		break;
1171 	default:
1172 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1173 						       regs), si->dst_reg, si->src_reg,
1174 				      offsetof(struct bpf_perf_event_data_kern, regs));
1175 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1176 				      si->off);
1177 		break;
1178 	}
1179 
1180 	return insn - insn_buf;
1181 }
1182 
1183 const struct bpf_verifier_ops perf_event_verifier_ops = {
1184 	.get_func_proto		= pe_prog_func_proto,
1185 	.is_valid_access	= pe_prog_is_valid_access,
1186 	.convert_ctx_access	= pe_prog_convert_ctx_access,
1187 };
1188 
1189 const struct bpf_prog_ops perf_event_prog_ops = {
1190 };
1191 
1192 static DEFINE_MUTEX(bpf_event_mutex);
1193 
1194 #define BPF_TRACE_MAX_PROGS 64
1195 
1196 int perf_event_attach_bpf_prog(struct perf_event *event,
1197 			       struct bpf_prog *prog)
1198 {
1199 	struct bpf_prog_array *old_array;
1200 	struct bpf_prog_array *new_array;
1201 	int ret = -EEXIST;
1202 
1203 	/*
1204 	 * Kprobe override only works if they are on the function entry,
1205 	 * and only if they are on the opt-in list.
1206 	 */
1207 	if (prog->kprobe_override &&
1208 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
1209 	     !trace_kprobe_error_injectable(event->tp_event)))
1210 		return -EINVAL;
1211 
1212 	mutex_lock(&bpf_event_mutex);
1213 
1214 	if (event->prog)
1215 		goto unlock;
1216 
1217 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1218 	if (old_array &&
1219 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1220 		ret = -E2BIG;
1221 		goto unlock;
1222 	}
1223 
1224 	ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1225 	if (ret < 0)
1226 		goto unlock;
1227 
1228 	/* set the new array to event->tp_event and set event->prog */
1229 	event->prog = prog;
1230 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
1231 	bpf_prog_array_free(old_array);
1232 
1233 unlock:
1234 	mutex_unlock(&bpf_event_mutex);
1235 	return ret;
1236 }
1237 
1238 void perf_event_detach_bpf_prog(struct perf_event *event)
1239 {
1240 	struct bpf_prog_array *old_array;
1241 	struct bpf_prog_array *new_array;
1242 	int ret;
1243 
1244 	mutex_lock(&bpf_event_mutex);
1245 
1246 	if (!event->prog)
1247 		goto unlock;
1248 
1249 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1250 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1251 	if (ret == -ENOENT)
1252 		goto unlock;
1253 	if (ret < 0) {
1254 		bpf_prog_array_delete_safe(old_array, event->prog);
1255 	} else {
1256 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
1257 		bpf_prog_array_free(old_array);
1258 	}
1259 
1260 	bpf_prog_put(event->prog);
1261 	event->prog = NULL;
1262 
1263 unlock:
1264 	mutex_unlock(&bpf_event_mutex);
1265 }
1266 
1267 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1268 {
1269 	struct perf_event_query_bpf __user *uquery = info;
1270 	struct perf_event_query_bpf query = {};
1271 	struct bpf_prog_array *progs;
1272 	u32 *ids, prog_cnt, ids_len;
1273 	int ret;
1274 
1275 	if (!capable(CAP_SYS_ADMIN))
1276 		return -EPERM;
1277 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
1278 		return -EINVAL;
1279 	if (copy_from_user(&query, uquery, sizeof(query)))
1280 		return -EFAULT;
1281 
1282 	ids_len = query.ids_len;
1283 	if (ids_len > BPF_TRACE_MAX_PROGS)
1284 		return -E2BIG;
1285 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1286 	if (!ids)
1287 		return -ENOMEM;
1288 	/*
1289 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1290 	 * is required when user only wants to check for uquery->prog_cnt.
1291 	 * There is no need to check for it since the case is handled
1292 	 * gracefully in bpf_prog_array_copy_info.
1293 	 */
1294 
1295 	mutex_lock(&bpf_event_mutex);
1296 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1297 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1298 	mutex_unlock(&bpf_event_mutex);
1299 
1300 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1301 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1302 		ret = -EFAULT;
1303 
1304 	kfree(ids);
1305 	return ret;
1306 }
1307 
1308 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1309 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1310 
1311 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1312 {
1313 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1314 
1315 	for (; btp < __stop__bpf_raw_tp; btp++) {
1316 		if (!strcmp(btp->tp->name, name))
1317 			return btp;
1318 	}
1319 
1320 	return bpf_get_raw_tracepoint_module(name);
1321 }
1322 
1323 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1324 {
1325 	struct module *mod = __module_address((unsigned long)btp);
1326 
1327 	if (mod)
1328 		module_put(mod);
1329 }
1330 
1331 static __always_inline
1332 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1333 {
1334 	rcu_read_lock();
1335 	preempt_disable();
1336 	(void) BPF_PROG_RUN(prog, args);
1337 	preempt_enable();
1338 	rcu_read_unlock();
1339 }
1340 
1341 #define UNPACK(...)			__VA_ARGS__
1342 #define REPEAT_1(FN, DL, X, ...)	FN(X)
1343 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1344 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1345 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1346 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1347 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1348 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1349 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1350 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1351 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1352 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1353 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1354 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
1355 
1356 #define SARG(X)		u64 arg##X
1357 #define COPY(X)		args[X] = arg##X
1358 
1359 #define __DL_COM	(,)
1360 #define __DL_SEM	(;)
1361 
1362 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1363 
1364 #define BPF_TRACE_DEFN_x(x)						\
1365 	void bpf_trace_run##x(struct bpf_prog *prog,			\
1366 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
1367 	{								\
1368 		u64 args[x];						\
1369 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
1370 		__bpf_trace_run(prog, args);				\
1371 	}								\
1372 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1373 BPF_TRACE_DEFN_x(1);
1374 BPF_TRACE_DEFN_x(2);
1375 BPF_TRACE_DEFN_x(3);
1376 BPF_TRACE_DEFN_x(4);
1377 BPF_TRACE_DEFN_x(5);
1378 BPF_TRACE_DEFN_x(6);
1379 BPF_TRACE_DEFN_x(7);
1380 BPF_TRACE_DEFN_x(8);
1381 BPF_TRACE_DEFN_x(9);
1382 BPF_TRACE_DEFN_x(10);
1383 BPF_TRACE_DEFN_x(11);
1384 BPF_TRACE_DEFN_x(12);
1385 
1386 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1387 {
1388 	struct tracepoint *tp = btp->tp;
1389 
1390 	/*
1391 	 * check that program doesn't access arguments beyond what's
1392 	 * available in this tracepoint
1393 	 */
1394 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1395 		return -EINVAL;
1396 
1397 	if (prog->aux->max_tp_access > btp->writable_size)
1398 		return -EINVAL;
1399 
1400 	return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1401 }
1402 
1403 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1404 {
1405 	return __bpf_probe_register(btp, prog);
1406 }
1407 
1408 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1409 {
1410 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1411 }
1412 
1413 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1414 			    u32 *fd_type, const char **buf,
1415 			    u64 *probe_offset, u64 *probe_addr)
1416 {
1417 	bool is_tracepoint, is_syscall_tp;
1418 	struct bpf_prog *prog;
1419 	int flags, err = 0;
1420 
1421 	prog = event->prog;
1422 	if (!prog)
1423 		return -ENOENT;
1424 
1425 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1426 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1427 		return -EOPNOTSUPP;
1428 
1429 	*prog_id = prog->aux->id;
1430 	flags = event->tp_event->flags;
1431 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1432 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
1433 
1434 	if (is_tracepoint || is_syscall_tp) {
1435 		*buf = is_tracepoint ? event->tp_event->tp->name
1436 				     : event->tp_event->name;
1437 		*fd_type = BPF_FD_TYPE_TRACEPOINT;
1438 		*probe_offset = 0x0;
1439 		*probe_addr = 0x0;
1440 	} else {
1441 		/* kprobe/uprobe */
1442 		err = -EOPNOTSUPP;
1443 #ifdef CONFIG_KPROBE_EVENTS
1444 		if (flags & TRACE_EVENT_FL_KPROBE)
1445 			err = bpf_get_kprobe_info(event, fd_type, buf,
1446 						  probe_offset, probe_addr,
1447 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1448 #endif
1449 #ifdef CONFIG_UPROBE_EVENTS
1450 		if (flags & TRACE_EVENT_FL_UPROBE)
1451 			err = bpf_get_uprobe_info(event, fd_type, buf,
1452 						  probe_offset,
1453 						  event->attr.type == PERF_TYPE_TRACEPOINT);
1454 #endif
1455 	}
1456 
1457 	return err;
1458 }
1459 
1460 static int __init send_signal_irq_work_init(void)
1461 {
1462 	int cpu;
1463 	struct send_signal_irq_work *work;
1464 
1465 	for_each_possible_cpu(cpu) {
1466 		work = per_cpu_ptr(&send_signal_work, cpu);
1467 		init_irq_work(&work->irq_work, do_bpf_send_signal);
1468 	}
1469 	return 0;
1470 }
1471 
1472 subsys_initcall(send_signal_irq_work_init);
1473 
1474 #ifdef CONFIG_MODULES
1475 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1476 			    void *module)
1477 {
1478 	struct bpf_trace_module *btm, *tmp;
1479 	struct module *mod = module;
1480 
1481 	if (mod->num_bpf_raw_events == 0 ||
1482 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1483 		return 0;
1484 
1485 	mutex_lock(&bpf_module_mutex);
1486 
1487 	switch (op) {
1488 	case MODULE_STATE_COMING:
1489 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1490 		if (btm) {
1491 			btm->module = module;
1492 			list_add(&btm->list, &bpf_trace_modules);
1493 		}
1494 		break;
1495 	case MODULE_STATE_GOING:
1496 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1497 			if (btm->module == module) {
1498 				list_del(&btm->list);
1499 				kfree(btm);
1500 				break;
1501 			}
1502 		}
1503 		break;
1504 	}
1505 
1506 	mutex_unlock(&bpf_module_mutex);
1507 
1508 	return 0;
1509 }
1510 
1511 static struct notifier_block bpf_module_nb = {
1512 	.notifier_call = bpf_event_notify,
1513 };
1514 
1515 static int __init bpf_event_init(void)
1516 {
1517 	register_module_notifier(&bpf_module_nb);
1518 	return 0;
1519 }
1520 
1521 fs_initcall(bpf_event_init);
1522 #endif /* CONFIG_MODULES */
1523