xref: /linux/kernel/trace/ftrace.c (revision 908fc4c2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Infrastructure for profiling code inserted by 'gcc -pg'.
4  *
5  * Copyright (C) 2007-2008 Steven Rostedt <srostedt@redhat.com>
6  * Copyright (C) 2004-2008 Ingo Molnar <mingo@redhat.com>
7  *
8  * Originally ported from the -rt patch by:
9  *   Copyright (C) 2007 Arnaldo Carvalho de Melo <acme@redhat.com>
10  *
11  * Based on code in the latency_tracer, that is:
12  *
13  *  Copyright (C) 2004-2006 Ingo Molnar
14  *  Copyright (C) 2004 Nadia Yvette Chambers
15  */
16 
17 #include <linux/stop_machine.h>
18 #include <linux/clocksource.h>
19 #include <linux/sched/task.h>
20 #include <linux/kallsyms.h>
21 #include <linux/security.h>
22 #include <linux/seq_file.h>
23 #include <linux/tracefs.h>
24 #include <linux/hardirq.h>
25 #include <linux/kthread.h>
26 #include <linux/uaccess.h>
27 #include <linux/bsearch.h>
28 #include <linux/module.h>
29 #include <linux/ftrace.h>
30 #include <linux/sysctl.h>
31 #include <linux/slab.h>
32 #include <linux/ctype.h>
33 #include <linux/sort.h>
34 #include <linux/list.h>
35 #include <linux/hash.h>
36 #include <linux/rcupdate.h>
37 #include <linux/kprobes.h>
38 
39 #include <trace/events/sched.h>
40 
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 
44 #include "ftrace_internal.h"
45 #include "trace_output.h"
46 #include "trace_stat.h"
47 
48 #define FTRACE_INVALID_FUNCTION		"__ftrace_invalid_address__"
49 
50 #define FTRACE_WARN_ON(cond)			\
51 	({					\
52 		int ___r = cond;		\
53 		if (WARN_ON(___r))		\
54 			ftrace_kill();		\
55 		___r;				\
56 	})
57 
58 #define FTRACE_WARN_ON_ONCE(cond)		\
59 	({					\
60 		int ___r = cond;		\
61 		if (WARN_ON_ONCE(___r))		\
62 			ftrace_kill();		\
63 		___r;				\
64 	})
65 
66 /* hash bits for specific function selection */
67 #define FTRACE_HASH_DEFAULT_BITS 10
68 #define FTRACE_HASH_MAX_BITS 12
69 
70 #ifdef CONFIG_DYNAMIC_FTRACE
71 #define INIT_OPS_HASH(opsname)	\
72 	.func_hash		= &opsname.local_hash,			\
73 	.local_hash.regex_lock	= __MUTEX_INITIALIZER(opsname.local_hash.regex_lock),
74 #else
75 #define INIT_OPS_HASH(opsname)
76 #endif
77 
78 enum {
79 	FTRACE_MODIFY_ENABLE_FL		= (1 << 0),
80 	FTRACE_MODIFY_MAY_SLEEP_FL	= (1 << 1),
81 };
82 
83 struct ftrace_ops ftrace_list_end __read_mostly = {
84 	.func		= ftrace_stub,
85 	.flags		= FTRACE_OPS_FL_STUB,
86 	INIT_OPS_HASH(ftrace_list_end)
87 };
88 
89 /* ftrace_enabled is a method to turn ftrace on or off */
90 int ftrace_enabled __read_mostly;
91 static int __maybe_unused last_ftrace_enabled;
92 
93 /* Current function tracing op */
94 struct ftrace_ops *function_trace_op __read_mostly = &ftrace_list_end;
95 /* What to set function_trace_op to */
96 static struct ftrace_ops *set_function_trace_op;
97 
98 static bool ftrace_pids_enabled(struct ftrace_ops *ops)
99 {
100 	struct trace_array *tr;
101 
102 	if (!(ops->flags & FTRACE_OPS_FL_PID) || !ops->private)
103 		return false;
104 
105 	tr = ops->private;
106 
107 	return tr->function_pids != NULL || tr->function_no_pids != NULL;
108 }
109 
110 static void ftrace_update_trampoline(struct ftrace_ops *ops);
111 
112 /*
113  * ftrace_disabled is set when an anomaly is discovered.
114  * ftrace_disabled is much stronger than ftrace_enabled.
115  */
116 static int ftrace_disabled __read_mostly;
117 
118 DEFINE_MUTEX(ftrace_lock);
119 
120 struct ftrace_ops __rcu *ftrace_ops_list __read_mostly = &ftrace_list_end;
121 ftrace_func_t ftrace_trace_function __read_mostly = ftrace_stub;
122 struct ftrace_ops global_ops;
123 
124 /* Defined by vmlinux.lds.h see the comment above arch_ftrace_ops_list_func for details */
125 void ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
126 			  struct ftrace_ops *op, struct ftrace_regs *fregs);
127 
128 static inline void ftrace_ops_init(struct ftrace_ops *ops)
129 {
130 #ifdef CONFIG_DYNAMIC_FTRACE
131 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED)) {
132 		mutex_init(&ops->local_hash.regex_lock);
133 		ops->func_hash = &ops->local_hash;
134 		ops->flags |= FTRACE_OPS_FL_INITIALIZED;
135 	}
136 #endif
137 }
138 
139 static void ftrace_pid_func(unsigned long ip, unsigned long parent_ip,
140 			    struct ftrace_ops *op, struct ftrace_regs *fregs)
141 {
142 	struct trace_array *tr = op->private;
143 	int pid;
144 
145 	if (tr) {
146 		pid = this_cpu_read(tr->array_buffer.data->ftrace_ignore_pid);
147 		if (pid == FTRACE_PID_IGNORE)
148 			return;
149 		if (pid != FTRACE_PID_TRACE &&
150 		    pid != current->pid)
151 			return;
152 	}
153 
154 	op->saved_func(ip, parent_ip, op, fregs);
155 }
156 
157 static void ftrace_sync_ipi(void *data)
158 {
159 	/* Probably not needed, but do it anyway */
160 	smp_rmb();
161 }
162 
163 static ftrace_func_t ftrace_ops_get_list_func(struct ftrace_ops *ops)
164 {
165 	/*
166 	 * If this is a dynamic, RCU, or per CPU ops, or we force list func,
167 	 * then it needs to call the list anyway.
168 	 */
169 	if (ops->flags & (FTRACE_OPS_FL_DYNAMIC | FTRACE_OPS_FL_RCU) ||
170 	    FTRACE_FORCE_LIST_FUNC)
171 		return ftrace_ops_list_func;
172 
173 	return ftrace_ops_get_func(ops);
174 }
175 
176 static void update_ftrace_function(void)
177 {
178 	ftrace_func_t func;
179 
180 	/*
181 	 * Prepare the ftrace_ops that the arch callback will use.
182 	 * If there's only one ftrace_ops registered, the ftrace_ops_list
183 	 * will point to the ops we want.
184 	 */
185 	set_function_trace_op = rcu_dereference_protected(ftrace_ops_list,
186 						lockdep_is_held(&ftrace_lock));
187 
188 	/* If there's no ftrace_ops registered, just call the stub function */
189 	if (set_function_trace_op == &ftrace_list_end) {
190 		func = ftrace_stub;
191 
192 	/*
193 	 * If we are at the end of the list and this ops is
194 	 * recursion safe and not dynamic and the arch supports passing ops,
195 	 * then have the mcount trampoline call the function directly.
196 	 */
197 	} else if (rcu_dereference_protected(ftrace_ops_list->next,
198 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
199 		func = ftrace_ops_get_list_func(ftrace_ops_list);
200 
201 	} else {
202 		/* Just use the default ftrace_ops */
203 		set_function_trace_op = &ftrace_list_end;
204 		func = ftrace_ops_list_func;
205 	}
206 
207 	update_function_graph_func();
208 
209 	/* If there's no change, then do nothing more here */
210 	if (ftrace_trace_function == func)
211 		return;
212 
213 	/*
214 	 * If we are using the list function, it doesn't care
215 	 * about the function_trace_ops.
216 	 */
217 	if (func == ftrace_ops_list_func) {
218 		ftrace_trace_function = func;
219 		/*
220 		 * Don't even bother setting function_trace_ops,
221 		 * it would be racy to do so anyway.
222 		 */
223 		return;
224 	}
225 
226 #ifndef CONFIG_DYNAMIC_FTRACE
227 	/*
228 	 * For static tracing, we need to be a bit more careful.
229 	 * The function change takes affect immediately. Thus,
230 	 * we need to coordinate the setting of the function_trace_ops
231 	 * with the setting of the ftrace_trace_function.
232 	 *
233 	 * Set the function to the list ops, which will call the
234 	 * function we want, albeit indirectly, but it handles the
235 	 * ftrace_ops and doesn't depend on function_trace_op.
236 	 */
237 	ftrace_trace_function = ftrace_ops_list_func;
238 	/*
239 	 * Make sure all CPUs see this. Yes this is slow, but static
240 	 * tracing is slow and nasty to have enabled.
241 	 */
242 	synchronize_rcu_tasks_rude();
243 	/* Now all cpus are using the list ops. */
244 	function_trace_op = set_function_trace_op;
245 	/* Make sure the function_trace_op is visible on all CPUs */
246 	smp_wmb();
247 	/* Nasty way to force a rmb on all cpus */
248 	smp_call_function(ftrace_sync_ipi, NULL, 1);
249 	/* OK, we are all set to update the ftrace_trace_function now! */
250 #endif /* !CONFIG_DYNAMIC_FTRACE */
251 
252 	ftrace_trace_function = func;
253 }
254 
255 static void add_ftrace_ops(struct ftrace_ops __rcu **list,
256 			   struct ftrace_ops *ops)
257 {
258 	rcu_assign_pointer(ops->next, *list);
259 
260 	/*
261 	 * We are entering ops into the list but another
262 	 * CPU might be walking that list. We need to make sure
263 	 * the ops->next pointer is valid before another CPU sees
264 	 * the ops pointer included into the list.
265 	 */
266 	rcu_assign_pointer(*list, ops);
267 }
268 
269 static int remove_ftrace_ops(struct ftrace_ops __rcu **list,
270 			     struct ftrace_ops *ops)
271 {
272 	struct ftrace_ops **p;
273 
274 	/*
275 	 * If we are removing the last function, then simply point
276 	 * to the ftrace_stub.
277 	 */
278 	if (rcu_dereference_protected(*list,
279 			lockdep_is_held(&ftrace_lock)) == ops &&
280 	    rcu_dereference_protected(ops->next,
281 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
282 		*list = &ftrace_list_end;
283 		return 0;
284 	}
285 
286 	for (p = list; *p != &ftrace_list_end; p = &(*p)->next)
287 		if (*p == ops)
288 			break;
289 
290 	if (*p != ops)
291 		return -1;
292 
293 	*p = (*p)->next;
294 	return 0;
295 }
296 
297 static void ftrace_update_trampoline(struct ftrace_ops *ops);
298 
299 int __register_ftrace_function(struct ftrace_ops *ops)
300 {
301 	if (ops->flags & FTRACE_OPS_FL_DELETED)
302 		return -EINVAL;
303 
304 	if (WARN_ON(ops->flags & FTRACE_OPS_FL_ENABLED))
305 		return -EBUSY;
306 
307 #ifndef CONFIG_DYNAMIC_FTRACE_WITH_REGS
308 	/*
309 	 * If the ftrace_ops specifies SAVE_REGS, then it only can be used
310 	 * if the arch supports it, or SAVE_REGS_IF_SUPPORTED is also set.
311 	 * Setting SAVE_REGS_IF_SUPPORTED makes SAVE_REGS irrelevant.
312 	 */
313 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS &&
314 	    !(ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED))
315 		return -EINVAL;
316 
317 	if (ops->flags & FTRACE_OPS_FL_SAVE_REGS_IF_SUPPORTED)
318 		ops->flags |= FTRACE_OPS_FL_SAVE_REGS;
319 #endif
320 	if (!ftrace_enabled && (ops->flags & FTRACE_OPS_FL_PERMANENT))
321 		return -EBUSY;
322 
323 	if (!is_kernel_core_data((unsigned long)ops))
324 		ops->flags |= FTRACE_OPS_FL_DYNAMIC;
325 
326 	add_ftrace_ops(&ftrace_ops_list, ops);
327 
328 	/* Always save the function, and reset at unregistering */
329 	ops->saved_func = ops->func;
330 
331 	if (ftrace_pids_enabled(ops))
332 		ops->func = ftrace_pid_func;
333 
334 	ftrace_update_trampoline(ops);
335 
336 	if (ftrace_enabled)
337 		update_ftrace_function();
338 
339 	return 0;
340 }
341 
342 int __unregister_ftrace_function(struct ftrace_ops *ops)
343 {
344 	int ret;
345 
346 	if (WARN_ON(!(ops->flags & FTRACE_OPS_FL_ENABLED)))
347 		return -EBUSY;
348 
349 	ret = remove_ftrace_ops(&ftrace_ops_list, ops);
350 
351 	if (ret < 0)
352 		return ret;
353 
354 	if (ftrace_enabled)
355 		update_ftrace_function();
356 
357 	ops->func = ops->saved_func;
358 
359 	return 0;
360 }
361 
362 static void ftrace_update_pid_func(void)
363 {
364 	struct ftrace_ops *op;
365 
366 	/* Only do something if we are tracing something */
367 	if (ftrace_trace_function == ftrace_stub)
368 		return;
369 
370 	do_for_each_ftrace_op(op, ftrace_ops_list) {
371 		if (op->flags & FTRACE_OPS_FL_PID) {
372 			op->func = ftrace_pids_enabled(op) ?
373 				ftrace_pid_func : op->saved_func;
374 			ftrace_update_trampoline(op);
375 		}
376 	} while_for_each_ftrace_op(op);
377 
378 	update_ftrace_function();
379 }
380 
381 #ifdef CONFIG_FUNCTION_PROFILER
382 struct ftrace_profile {
383 	struct hlist_node		node;
384 	unsigned long			ip;
385 	unsigned long			counter;
386 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
387 	unsigned long long		time;
388 	unsigned long long		time_squared;
389 #endif
390 };
391 
392 struct ftrace_profile_page {
393 	struct ftrace_profile_page	*next;
394 	unsigned long			index;
395 	struct ftrace_profile		records[];
396 };
397 
398 struct ftrace_profile_stat {
399 	atomic_t			disabled;
400 	struct hlist_head		*hash;
401 	struct ftrace_profile_page	*pages;
402 	struct ftrace_profile_page	*start;
403 	struct tracer_stat		stat;
404 };
405 
406 #define PROFILE_RECORDS_SIZE						\
407 	(PAGE_SIZE - offsetof(struct ftrace_profile_page, records))
408 
409 #define PROFILES_PER_PAGE					\
410 	(PROFILE_RECORDS_SIZE / sizeof(struct ftrace_profile))
411 
412 static int ftrace_profile_enabled __read_mostly;
413 
414 /* ftrace_profile_lock - synchronize the enable and disable of the profiler */
415 static DEFINE_MUTEX(ftrace_profile_lock);
416 
417 static DEFINE_PER_CPU(struct ftrace_profile_stat, ftrace_profile_stats);
418 
419 #define FTRACE_PROFILE_HASH_BITS 10
420 #define FTRACE_PROFILE_HASH_SIZE (1 << FTRACE_PROFILE_HASH_BITS)
421 
422 static void *
423 function_stat_next(void *v, int idx)
424 {
425 	struct ftrace_profile *rec = v;
426 	struct ftrace_profile_page *pg;
427 
428 	pg = (struct ftrace_profile_page *)((unsigned long)rec & PAGE_MASK);
429 
430  again:
431 	if (idx != 0)
432 		rec++;
433 
434 	if ((void *)rec >= (void *)&pg->records[pg->index]) {
435 		pg = pg->next;
436 		if (!pg)
437 			return NULL;
438 		rec = &pg->records[0];
439 		if (!rec->counter)
440 			goto again;
441 	}
442 
443 	return rec;
444 }
445 
446 static void *function_stat_start(struct tracer_stat *trace)
447 {
448 	struct ftrace_profile_stat *stat =
449 		container_of(trace, struct ftrace_profile_stat, stat);
450 
451 	if (!stat || !stat->start)
452 		return NULL;
453 
454 	return function_stat_next(&stat->start->records[0], 0);
455 }
456 
457 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
458 /* function graph compares on total time */
459 static int function_stat_cmp(const void *p1, const void *p2)
460 {
461 	const struct ftrace_profile *a = p1;
462 	const struct ftrace_profile *b = p2;
463 
464 	if (a->time < b->time)
465 		return -1;
466 	if (a->time > b->time)
467 		return 1;
468 	else
469 		return 0;
470 }
471 #else
472 /* not function graph compares against hits */
473 static int function_stat_cmp(const void *p1, const void *p2)
474 {
475 	const struct ftrace_profile *a = p1;
476 	const struct ftrace_profile *b = p2;
477 
478 	if (a->counter < b->counter)
479 		return -1;
480 	if (a->counter > b->counter)
481 		return 1;
482 	else
483 		return 0;
484 }
485 #endif
486 
487 static int function_stat_headers(struct seq_file *m)
488 {
489 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
490 	seq_puts(m, "  Function                               "
491 		 "Hit    Time            Avg             s^2\n"
492 		    "  --------                               "
493 		 "---    ----            ---             ---\n");
494 #else
495 	seq_puts(m, "  Function                               Hit\n"
496 		    "  --------                               ---\n");
497 #endif
498 	return 0;
499 }
500 
501 static int function_stat_show(struct seq_file *m, void *v)
502 {
503 	struct ftrace_profile *rec = v;
504 	char str[KSYM_SYMBOL_LEN];
505 	int ret = 0;
506 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
507 	static struct trace_seq s;
508 	unsigned long long avg;
509 	unsigned long long stddev;
510 #endif
511 	mutex_lock(&ftrace_profile_lock);
512 
513 	/* we raced with function_profile_reset() */
514 	if (unlikely(rec->counter == 0)) {
515 		ret = -EBUSY;
516 		goto out;
517 	}
518 
519 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
520 	avg = div64_ul(rec->time, rec->counter);
521 	if (tracing_thresh && (avg < tracing_thresh))
522 		goto out;
523 #endif
524 
525 	kallsyms_lookup(rec->ip, NULL, NULL, NULL, str);
526 	seq_printf(m, "  %-30.30s  %10lu", str, rec->counter);
527 
528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
529 	seq_puts(m, "    ");
530 
531 	/* Sample standard deviation (s^2) */
532 	if (rec->counter <= 1)
533 		stddev = 0;
534 	else {
535 		/*
536 		 * Apply Welford's method:
537 		 * s^2 = 1 / (n * (n-1)) * (n * \Sum (x_i)^2 - (\Sum x_i)^2)
538 		 */
539 		stddev = rec->counter * rec->time_squared -
540 			 rec->time * rec->time;
541 
542 		/*
543 		 * Divide only 1000 for ns^2 -> us^2 conversion.
544 		 * trace_print_graph_duration will divide 1000 again.
545 		 */
546 		stddev = div64_ul(stddev,
547 				  rec->counter * (rec->counter - 1) * 1000);
548 	}
549 
550 	trace_seq_init(&s);
551 	trace_print_graph_duration(rec->time, &s);
552 	trace_seq_puts(&s, "    ");
553 	trace_print_graph_duration(avg, &s);
554 	trace_seq_puts(&s, "    ");
555 	trace_print_graph_duration(stddev, &s);
556 	trace_print_seq(m, &s);
557 #endif
558 	seq_putc(m, '\n');
559 out:
560 	mutex_unlock(&ftrace_profile_lock);
561 
562 	return ret;
563 }
564 
565 static void ftrace_profile_reset(struct ftrace_profile_stat *stat)
566 {
567 	struct ftrace_profile_page *pg;
568 
569 	pg = stat->pages = stat->start;
570 
571 	while (pg) {
572 		memset(pg->records, 0, PROFILE_RECORDS_SIZE);
573 		pg->index = 0;
574 		pg = pg->next;
575 	}
576 
577 	memset(stat->hash, 0,
578 	       FTRACE_PROFILE_HASH_SIZE * sizeof(struct hlist_head));
579 }
580 
581 static int ftrace_profile_pages_init(struct ftrace_profile_stat *stat)
582 {
583 	struct ftrace_profile_page *pg;
584 	int functions;
585 	int pages;
586 	int i;
587 
588 	/* If we already allocated, do nothing */
589 	if (stat->pages)
590 		return 0;
591 
592 	stat->pages = (void *)get_zeroed_page(GFP_KERNEL);
593 	if (!stat->pages)
594 		return -ENOMEM;
595 
596 #ifdef CONFIG_DYNAMIC_FTRACE
597 	functions = ftrace_update_tot_cnt;
598 #else
599 	/*
600 	 * We do not know the number of functions that exist because
601 	 * dynamic tracing is what counts them. With past experience
602 	 * we have around 20K functions. That should be more than enough.
603 	 * It is highly unlikely we will execute every function in
604 	 * the kernel.
605 	 */
606 	functions = 20000;
607 #endif
608 
609 	pg = stat->start = stat->pages;
610 
611 	pages = DIV_ROUND_UP(functions, PROFILES_PER_PAGE);
612 
613 	for (i = 1; i < pages; i++) {
614 		pg->next = (void *)get_zeroed_page(GFP_KERNEL);
615 		if (!pg->next)
616 			goto out_free;
617 		pg = pg->next;
618 	}
619 
620 	return 0;
621 
622  out_free:
623 	pg = stat->start;
624 	while (pg) {
625 		unsigned long tmp = (unsigned long)pg;
626 
627 		pg = pg->next;
628 		free_page(tmp);
629 	}
630 
631 	stat->pages = NULL;
632 	stat->start = NULL;
633 
634 	return -ENOMEM;
635 }
636 
637 static int ftrace_profile_init_cpu(int cpu)
638 {
639 	struct ftrace_profile_stat *stat;
640 	int size;
641 
642 	stat = &per_cpu(ftrace_profile_stats, cpu);
643 
644 	if (stat->hash) {
645 		/* If the profile is already created, simply reset it */
646 		ftrace_profile_reset(stat);
647 		return 0;
648 	}
649 
650 	/*
651 	 * We are profiling all functions, but usually only a few thousand
652 	 * functions are hit. We'll make a hash of 1024 items.
653 	 */
654 	size = FTRACE_PROFILE_HASH_SIZE;
655 
656 	stat->hash = kcalloc(size, sizeof(struct hlist_head), GFP_KERNEL);
657 
658 	if (!stat->hash)
659 		return -ENOMEM;
660 
661 	/* Preallocate the function profiling pages */
662 	if (ftrace_profile_pages_init(stat) < 0) {
663 		kfree(stat->hash);
664 		stat->hash = NULL;
665 		return -ENOMEM;
666 	}
667 
668 	return 0;
669 }
670 
671 static int ftrace_profile_init(void)
672 {
673 	int cpu;
674 	int ret = 0;
675 
676 	for_each_possible_cpu(cpu) {
677 		ret = ftrace_profile_init_cpu(cpu);
678 		if (ret)
679 			break;
680 	}
681 
682 	return ret;
683 }
684 
685 /* interrupts must be disabled */
686 static struct ftrace_profile *
687 ftrace_find_profiled_func(struct ftrace_profile_stat *stat, unsigned long ip)
688 {
689 	struct ftrace_profile *rec;
690 	struct hlist_head *hhd;
691 	unsigned long key;
692 
693 	key = hash_long(ip, FTRACE_PROFILE_HASH_BITS);
694 	hhd = &stat->hash[key];
695 
696 	if (hlist_empty(hhd))
697 		return NULL;
698 
699 	hlist_for_each_entry_rcu_notrace(rec, hhd, node) {
700 		if (rec->ip == ip)
701 			return rec;
702 	}
703 
704 	return NULL;
705 }
706 
707 static void ftrace_add_profile(struct ftrace_profile_stat *stat,
708 			       struct ftrace_profile *rec)
709 {
710 	unsigned long key;
711 
712 	key = hash_long(rec->ip, FTRACE_PROFILE_HASH_BITS);
713 	hlist_add_head_rcu(&rec->node, &stat->hash[key]);
714 }
715 
716 /*
717  * The memory is already allocated, this simply finds a new record to use.
718  */
719 static struct ftrace_profile *
720 ftrace_profile_alloc(struct ftrace_profile_stat *stat, unsigned long ip)
721 {
722 	struct ftrace_profile *rec = NULL;
723 
724 	/* prevent recursion (from NMIs) */
725 	if (atomic_inc_return(&stat->disabled) != 1)
726 		goto out;
727 
728 	/*
729 	 * Try to find the function again since an NMI
730 	 * could have added it
731 	 */
732 	rec = ftrace_find_profiled_func(stat, ip);
733 	if (rec)
734 		goto out;
735 
736 	if (stat->pages->index == PROFILES_PER_PAGE) {
737 		if (!stat->pages->next)
738 			goto out;
739 		stat->pages = stat->pages->next;
740 	}
741 
742 	rec = &stat->pages->records[stat->pages->index++];
743 	rec->ip = ip;
744 	ftrace_add_profile(stat, rec);
745 
746  out:
747 	atomic_dec(&stat->disabled);
748 
749 	return rec;
750 }
751 
752 static void
753 function_profile_call(unsigned long ip, unsigned long parent_ip,
754 		      struct ftrace_ops *ops, struct ftrace_regs *fregs)
755 {
756 	struct ftrace_profile_stat *stat;
757 	struct ftrace_profile *rec;
758 	unsigned long flags;
759 
760 	if (!ftrace_profile_enabled)
761 		return;
762 
763 	local_irq_save(flags);
764 
765 	stat = this_cpu_ptr(&ftrace_profile_stats);
766 	if (!stat->hash || !ftrace_profile_enabled)
767 		goto out;
768 
769 	rec = ftrace_find_profiled_func(stat, ip);
770 	if (!rec) {
771 		rec = ftrace_profile_alloc(stat, ip);
772 		if (!rec)
773 			goto out;
774 	}
775 
776 	rec->counter++;
777  out:
778 	local_irq_restore(flags);
779 }
780 
781 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
782 static bool fgraph_graph_time = true;
783 
784 void ftrace_graph_graph_time_control(bool enable)
785 {
786 	fgraph_graph_time = enable;
787 }
788 
789 static int profile_graph_entry(struct ftrace_graph_ent *trace)
790 {
791 	struct ftrace_ret_stack *ret_stack;
792 
793 	function_profile_call(trace->func, 0, NULL, NULL);
794 
795 	/* If function graph is shutting down, ret_stack can be NULL */
796 	if (!current->ret_stack)
797 		return 0;
798 
799 	ret_stack = ftrace_graph_get_ret_stack(current, 0);
800 	if (ret_stack)
801 		ret_stack->subtime = 0;
802 
803 	return 1;
804 }
805 
806 static void profile_graph_return(struct ftrace_graph_ret *trace)
807 {
808 	struct ftrace_ret_stack *ret_stack;
809 	struct ftrace_profile_stat *stat;
810 	unsigned long long calltime;
811 	struct ftrace_profile *rec;
812 	unsigned long flags;
813 
814 	local_irq_save(flags);
815 	stat = this_cpu_ptr(&ftrace_profile_stats);
816 	if (!stat->hash || !ftrace_profile_enabled)
817 		goto out;
818 
819 	/* If the calltime was zero'd ignore it */
820 	if (!trace->calltime)
821 		goto out;
822 
823 	calltime = trace->rettime - trace->calltime;
824 
825 	if (!fgraph_graph_time) {
826 
827 		/* Append this call time to the parent time to subtract */
828 		ret_stack = ftrace_graph_get_ret_stack(current, 1);
829 		if (ret_stack)
830 			ret_stack->subtime += calltime;
831 
832 		ret_stack = ftrace_graph_get_ret_stack(current, 0);
833 		if (ret_stack && ret_stack->subtime < calltime)
834 			calltime -= ret_stack->subtime;
835 		else
836 			calltime = 0;
837 	}
838 
839 	rec = ftrace_find_profiled_func(stat, trace->func);
840 	if (rec) {
841 		rec->time += calltime;
842 		rec->time_squared += calltime * calltime;
843 	}
844 
845  out:
846 	local_irq_restore(flags);
847 }
848 
849 static struct fgraph_ops fprofiler_ops = {
850 	.entryfunc = &profile_graph_entry,
851 	.retfunc = &profile_graph_return,
852 };
853 
854 static int register_ftrace_profiler(void)
855 {
856 	return register_ftrace_graph(&fprofiler_ops);
857 }
858 
859 static void unregister_ftrace_profiler(void)
860 {
861 	unregister_ftrace_graph(&fprofiler_ops);
862 }
863 #else
864 static struct ftrace_ops ftrace_profile_ops __read_mostly = {
865 	.func		= function_profile_call,
866 	.flags		= FTRACE_OPS_FL_INITIALIZED,
867 	INIT_OPS_HASH(ftrace_profile_ops)
868 };
869 
870 static int register_ftrace_profiler(void)
871 {
872 	return register_ftrace_function(&ftrace_profile_ops);
873 }
874 
875 static void unregister_ftrace_profiler(void)
876 {
877 	unregister_ftrace_function(&ftrace_profile_ops);
878 }
879 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
880 
881 static ssize_t
882 ftrace_profile_write(struct file *filp, const char __user *ubuf,
883 		     size_t cnt, loff_t *ppos)
884 {
885 	unsigned long val;
886 	int ret;
887 
888 	ret = kstrtoul_from_user(ubuf, cnt, 10, &val);
889 	if (ret)
890 		return ret;
891 
892 	val = !!val;
893 
894 	mutex_lock(&ftrace_profile_lock);
895 	if (ftrace_profile_enabled ^ val) {
896 		if (val) {
897 			ret = ftrace_profile_init();
898 			if (ret < 0) {
899 				cnt = ret;
900 				goto out;
901 			}
902 
903 			ret = register_ftrace_profiler();
904 			if (ret < 0) {
905 				cnt = ret;
906 				goto out;
907 			}
908 			ftrace_profile_enabled = 1;
909 		} else {
910 			ftrace_profile_enabled = 0;
911 			/*
912 			 * unregister_ftrace_profiler calls stop_machine
913 			 * so this acts like an synchronize_rcu.
914 			 */
915 			unregister_ftrace_profiler();
916 		}
917 	}
918  out:
919 	mutex_unlock(&ftrace_profile_lock);
920 
921 	*ppos += cnt;
922 
923 	return cnt;
924 }
925 
926 static ssize_t
927 ftrace_profile_read(struct file *filp, char __user *ubuf,
928 		     size_t cnt, loff_t *ppos)
929 {
930 	char buf[64];		/* big enough to hold a number */
931 	int r;
932 
933 	r = sprintf(buf, "%u\n", ftrace_profile_enabled);
934 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
935 }
936 
937 static const struct file_operations ftrace_profile_fops = {
938 	.open		= tracing_open_generic,
939 	.read		= ftrace_profile_read,
940 	.write		= ftrace_profile_write,
941 	.llseek		= default_llseek,
942 };
943 
944 /* used to initialize the real stat files */
945 static struct tracer_stat function_stats __initdata = {
946 	.name		= "functions",
947 	.stat_start	= function_stat_start,
948 	.stat_next	= function_stat_next,
949 	.stat_cmp	= function_stat_cmp,
950 	.stat_headers	= function_stat_headers,
951 	.stat_show	= function_stat_show
952 };
953 
954 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
955 {
956 	struct ftrace_profile_stat *stat;
957 	char *name;
958 	int ret;
959 	int cpu;
960 
961 	for_each_possible_cpu(cpu) {
962 		stat = &per_cpu(ftrace_profile_stats, cpu);
963 
964 		name = kasprintf(GFP_KERNEL, "function%d", cpu);
965 		if (!name) {
966 			/*
967 			 * The files created are permanent, if something happens
968 			 * we still do not free memory.
969 			 */
970 			WARN(1,
971 			     "Could not allocate stat file for cpu %d\n",
972 			     cpu);
973 			return;
974 		}
975 		stat->stat = function_stats;
976 		stat->stat.name = name;
977 		ret = register_stat_tracer(&stat->stat);
978 		if (ret) {
979 			WARN(1,
980 			     "Could not register function stat for cpu %d\n",
981 			     cpu);
982 			kfree(name);
983 			return;
984 		}
985 	}
986 
987 	trace_create_file("function_profile_enabled",
988 			  TRACE_MODE_WRITE, d_tracer, NULL,
989 			  &ftrace_profile_fops);
990 }
991 
992 #else /* CONFIG_FUNCTION_PROFILER */
993 static __init void ftrace_profile_tracefs(struct dentry *d_tracer)
994 {
995 }
996 #endif /* CONFIG_FUNCTION_PROFILER */
997 
998 #ifdef CONFIG_DYNAMIC_FTRACE
999 
1000 static struct ftrace_ops *removed_ops;
1001 
1002 /*
1003  * Set when doing a global update, like enabling all recs or disabling them.
1004  * It is not set when just updating a single ftrace_ops.
1005  */
1006 static bool update_all_ops;
1007 
1008 #ifndef CONFIG_FTRACE_MCOUNT_RECORD
1009 # error Dynamic ftrace depends on MCOUNT_RECORD
1010 #endif
1011 
1012 struct ftrace_func_probe {
1013 	struct ftrace_probe_ops	*probe_ops;
1014 	struct ftrace_ops	ops;
1015 	struct trace_array	*tr;
1016 	struct list_head	list;
1017 	void			*data;
1018 	int			ref;
1019 };
1020 
1021 /*
1022  * We make these constant because no one should touch them,
1023  * but they are used as the default "empty hash", to avoid allocating
1024  * it all the time. These are in a read only section such that if
1025  * anyone does try to modify it, it will cause an exception.
1026  */
1027 static const struct hlist_head empty_buckets[1];
1028 static const struct ftrace_hash empty_hash = {
1029 	.buckets = (struct hlist_head *)empty_buckets,
1030 };
1031 #define EMPTY_HASH	((struct ftrace_hash *)&empty_hash)
1032 
1033 struct ftrace_ops global_ops = {
1034 	.func				= ftrace_stub,
1035 	.local_hash.notrace_hash	= EMPTY_HASH,
1036 	.local_hash.filter_hash		= EMPTY_HASH,
1037 	INIT_OPS_HASH(global_ops)
1038 	.flags				= FTRACE_OPS_FL_INITIALIZED |
1039 					  FTRACE_OPS_FL_PID,
1040 };
1041 
1042 /*
1043  * Used by the stack unwinder to know about dynamic ftrace trampolines.
1044  */
1045 struct ftrace_ops *ftrace_ops_trampoline(unsigned long addr)
1046 {
1047 	struct ftrace_ops *op = NULL;
1048 
1049 	/*
1050 	 * Some of the ops may be dynamically allocated,
1051 	 * they are freed after a synchronize_rcu().
1052 	 */
1053 	preempt_disable_notrace();
1054 
1055 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1056 		/*
1057 		 * This is to check for dynamically allocated trampolines.
1058 		 * Trampolines that are in kernel text will have
1059 		 * core_kernel_text() return true.
1060 		 */
1061 		if (op->trampoline && op->trampoline_size)
1062 			if (addr >= op->trampoline &&
1063 			    addr < op->trampoline + op->trampoline_size) {
1064 				preempt_enable_notrace();
1065 				return op;
1066 			}
1067 	} while_for_each_ftrace_op(op);
1068 	preempt_enable_notrace();
1069 
1070 	return NULL;
1071 }
1072 
1073 /*
1074  * This is used by __kernel_text_address() to return true if the
1075  * address is on a dynamically allocated trampoline that would
1076  * not return true for either core_kernel_text() or
1077  * is_module_text_address().
1078  */
1079 bool is_ftrace_trampoline(unsigned long addr)
1080 {
1081 	return ftrace_ops_trampoline(addr) != NULL;
1082 }
1083 
1084 struct ftrace_page {
1085 	struct ftrace_page	*next;
1086 	struct dyn_ftrace	*records;
1087 	int			index;
1088 	int			order;
1089 };
1090 
1091 #define ENTRY_SIZE sizeof(struct dyn_ftrace)
1092 #define ENTRIES_PER_PAGE (PAGE_SIZE / ENTRY_SIZE)
1093 
1094 static struct ftrace_page	*ftrace_pages_start;
1095 static struct ftrace_page	*ftrace_pages;
1096 
1097 static __always_inline unsigned long
1098 ftrace_hash_key(struct ftrace_hash *hash, unsigned long ip)
1099 {
1100 	if (hash->size_bits > 0)
1101 		return hash_long(ip, hash->size_bits);
1102 
1103 	return 0;
1104 }
1105 
1106 /* Only use this function if ftrace_hash_empty() has already been tested */
1107 static __always_inline struct ftrace_func_entry *
1108 __ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1109 {
1110 	unsigned long key;
1111 	struct ftrace_func_entry *entry;
1112 	struct hlist_head *hhd;
1113 
1114 	key = ftrace_hash_key(hash, ip);
1115 	hhd = &hash->buckets[key];
1116 
1117 	hlist_for_each_entry_rcu_notrace(entry, hhd, hlist) {
1118 		if (entry->ip == ip)
1119 			return entry;
1120 	}
1121 	return NULL;
1122 }
1123 
1124 /**
1125  * ftrace_lookup_ip - Test to see if an ip exists in an ftrace_hash
1126  * @hash: The hash to look at
1127  * @ip: The instruction pointer to test
1128  *
1129  * Search a given @hash to see if a given instruction pointer (@ip)
1130  * exists in it.
1131  *
1132  * Returns the entry that holds the @ip if found. NULL otherwise.
1133  */
1134 struct ftrace_func_entry *
1135 ftrace_lookup_ip(struct ftrace_hash *hash, unsigned long ip)
1136 {
1137 	if (ftrace_hash_empty(hash))
1138 		return NULL;
1139 
1140 	return __ftrace_lookup_ip(hash, ip);
1141 }
1142 
1143 static void __add_hash_entry(struct ftrace_hash *hash,
1144 			     struct ftrace_func_entry *entry)
1145 {
1146 	struct hlist_head *hhd;
1147 	unsigned long key;
1148 
1149 	key = ftrace_hash_key(hash, entry->ip);
1150 	hhd = &hash->buckets[key];
1151 	hlist_add_head(&entry->hlist, hhd);
1152 	hash->count++;
1153 }
1154 
1155 static int add_hash_entry(struct ftrace_hash *hash, unsigned long ip)
1156 {
1157 	struct ftrace_func_entry *entry;
1158 
1159 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1160 	if (!entry)
1161 		return -ENOMEM;
1162 
1163 	entry->ip = ip;
1164 	__add_hash_entry(hash, entry);
1165 
1166 	return 0;
1167 }
1168 
1169 static void
1170 free_hash_entry(struct ftrace_hash *hash,
1171 		  struct ftrace_func_entry *entry)
1172 {
1173 	hlist_del(&entry->hlist);
1174 	kfree(entry);
1175 	hash->count--;
1176 }
1177 
1178 static void
1179 remove_hash_entry(struct ftrace_hash *hash,
1180 		  struct ftrace_func_entry *entry)
1181 {
1182 	hlist_del_rcu(&entry->hlist);
1183 	hash->count--;
1184 }
1185 
1186 static void ftrace_hash_clear(struct ftrace_hash *hash)
1187 {
1188 	struct hlist_head *hhd;
1189 	struct hlist_node *tn;
1190 	struct ftrace_func_entry *entry;
1191 	int size = 1 << hash->size_bits;
1192 	int i;
1193 
1194 	if (!hash->count)
1195 		return;
1196 
1197 	for (i = 0; i < size; i++) {
1198 		hhd = &hash->buckets[i];
1199 		hlist_for_each_entry_safe(entry, tn, hhd, hlist)
1200 			free_hash_entry(hash, entry);
1201 	}
1202 	FTRACE_WARN_ON(hash->count);
1203 }
1204 
1205 static void free_ftrace_mod(struct ftrace_mod_load *ftrace_mod)
1206 {
1207 	list_del(&ftrace_mod->list);
1208 	kfree(ftrace_mod->module);
1209 	kfree(ftrace_mod->func);
1210 	kfree(ftrace_mod);
1211 }
1212 
1213 static void clear_ftrace_mod_list(struct list_head *head)
1214 {
1215 	struct ftrace_mod_load *p, *n;
1216 
1217 	/* stack tracer isn't supported yet */
1218 	if (!head)
1219 		return;
1220 
1221 	mutex_lock(&ftrace_lock);
1222 	list_for_each_entry_safe(p, n, head, list)
1223 		free_ftrace_mod(p);
1224 	mutex_unlock(&ftrace_lock);
1225 }
1226 
1227 static void free_ftrace_hash(struct ftrace_hash *hash)
1228 {
1229 	if (!hash || hash == EMPTY_HASH)
1230 		return;
1231 	ftrace_hash_clear(hash);
1232 	kfree(hash->buckets);
1233 	kfree(hash);
1234 }
1235 
1236 static void __free_ftrace_hash_rcu(struct rcu_head *rcu)
1237 {
1238 	struct ftrace_hash *hash;
1239 
1240 	hash = container_of(rcu, struct ftrace_hash, rcu);
1241 	free_ftrace_hash(hash);
1242 }
1243 
1244 static void free_ftrace_hash_rcu(struct ftrace_hash *hash)
1245 {
1246 	if (!hash || hash == EMPTY_HASH)
1247 		return;
1248 	call_rcu(&hash->rcu, __free_ftrace_hash_rcu);
1249 }
1250 
1251 void ftrace_free_filter(struct ftrace_ops *ops)
1252 {
1253 	ftrace_ops_init(ops);
1254 	free_ftrace_hash(ops->func_hash->filter_hash);
1255 	free_ftrace_hash(ops->func_hash->notrace_hash);
1256 }
1257 
1258 static struct ftrace_hash *alloc_ftrace_hash(int size_bits)
1259 {
1260 	struct ftrace_hash *hash;
1261 	int size;
1262 
1263 	hash = kzalloc(sizeof(*hash), GFP_KERNEL);
1264 	if (!hash)
1265 		return NULL;
1266 
1267 	size = 1 << size_bits;
1268 	hash->buckets = kcalloc(size, sizeof(*hash->buckets), GFP_KERNEL);
1269 
1270 	if (!hash->buckets) {
1271 		kfree(hash);
1272 		return NULL;
1273 	}
1274 
1275 	hash->size_bits = size_bits;
1276 
1277 	return hash;
1278 }
1279 
1280 
1281 static int ftrace_add_mod(struct trace_array *tr,
1282 			  const char *func, const char *module,
1283 			  int enable)
1284 {
1285 	struct ftrace_mod_load *ftrace_mod;
1286 	struct list_head *mod_head = enable ? &tr->mod_trace : &tr->mod_notrace;
1287 
1288 	ftrace_mod = kzalloc(sizeof(*ftrace_mod), GFP_KERNEL);
1289 	if (!ftrace_mod)
1290 		return -ENOMEM;
1291 
1292 	ftrace_mod->func = kstrdup(func, GFP_KERNEL);
1293 	ftrace_mod->module = kstrdup(module, GFP_KERNEL);
1294 	ftrace_mod->enable = enable;
1295 
1296 	if (!ftrace_mod->func || !ftrace_mod->module)
1297 		goto out_free;
1298 
1299 	list_add(&ftrace_mod->list, mod_head);
1300 
1301 	return 0;
1302 
1303  out_free:
1304 	free_ftrace_mod(ftrace_mod);
1305 
1306 	return -ENOMEM;
1307 }
1308 
1309 static struct ftrace_hash *
1310 alloc_and_copy_ftrace_hash(int size_bits, struct ftrace_hash *hash)
1311 {
1312 	struct ftrace_func_entry *entry;
1313 	struct ftrace_hash *new_hash;
1314 	int size;
1315 	int ret;
1316 	int i;
1317 
1318 	new_hash = alloc_ftrace_hash(size_bits);
1319 	if (!new_hash)
1320 		return NULL;
1321 
1322 	if (hash)
1323 		new_hash->flags = hash->flags;
1324 
1325 	/* Empty hash? */
1326 	if (ftrace_hash_empty(hash))
1327 		return new_hash;
1328 
1329 	size = 1 << hash->size_bits;
1330 	for (i = 0; i < size; i++) {
1331 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
1332 			ret = add_hash_entry(new_hash, entry->ip);
1333 			if (ret < 0)
1334 				goto free_hash;
1335 		}
1336 	}
1337 
1338 	FTRACE_WARN_ON(new_hash->count != hash->count);
1339 
1340 	return new_hash;
1341 
1342  free_hash:
1343 	free_ftrace_hash(new_hash);
1344 	return NULL;
1345 }
1346 
1347 static void
1348 ftrace_hash_rec_disable_modify(struct ftrace_ops *ops, int filter_hash);
1349 static void
1350 ftrace_hash_rec_enable_modify(struct ftrace_ops *ops, int filter_hash);
1351 
1352 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1353 				       struct ftrace_hash *new_hash);
1354 
1355 static struct ftrace_hash *dup_hash(struct ftrace_hash *src, int size)
1356 {
1357 	struct ftrace_func_entry *entry;
1358 	struct ftrace_hash *new_hash;
1359 	struct hlist_head *hhd;
1360 	struct hlist_node *tn;
1361 	int bits = 0;
1362 	int i;
1363 
1364 	/*
1365 	 * Use around half the size (max bit of it), but
1366 	 * a minimum of 2 is fine (as size of 0 or 1 both give 1 for bits).
1367 	 */
1368 	bits = fls(size / 2);
1369 
1370 	/* Don't allocate too much */
1371 	if (bits > FTRACE_HASH_MAX_BITS)
1372 		bits = FTRACE_HASH_MAX_BITS;
1373 
1374 	new_hash = alloc_ftrace_hash(bits);
1375 	if (!new_hash)
1376 		return NULL;
1377 
1378 	new_hash->flags = src->flags;
1379 
1380 	size = 1 << src->size_bits;
1381 	for (i = 0; i < size; i++) {
1382 		hhd = &src->buckets[i];
1383 		hlist_for_each_entry_safe(entry, tn, hhd, hlist) {
1384 			remove_hash_entry(src, entry);
1385 			__add_hash_entry(new_hash, entry);
1386 		}
1387 	}
1388 	return new_hash;
1389 }
1390 
1391 static struct ftrace_hash *
1392 __ftrace_hash_move(struct ftrace_hash *src)
1393 {
1394 	int size = src->count;
1395 
1396 	/*
1397 	 * If the new source is empty, just return the empty_hash.
1398 	 */
1399 	if (ftrace_hash_empty(src))
1400 		return EMPTY_HASH;
1401 
1402 	return dup_hash(src, size);
1403 }
1404 
1405 static int
1406 ftrace_hash_move(struct ftrace_ops *ops, int enable,
1407 		 struct ftrace_hash **dst, struct ftrace_hash *src)
1408 {
1409 	struct ftrace_hash *new_hash;
1410 	int ret;
1411 
1412 	/* Reject setting notrace hash on IPMODIFY ftrace_ops */
1413 	if (ops->flags & FTRACE_OPS_FL_IPMODIFY && !enable)
1414 		return -EINVAL;
1415 
1416 	new_hash = __ftrace_hash_move(src);
1417 	if (!new_hash)
1418 		return -ENOMEM;
1419 
1420 	/* Make sure this can be applied if it is IPMODIFY ftrace_ops */
1421 	if (enable) {
1422 		/* IPMODIFY should be updated only when filter_hash updating */
1423 		ret = ftrace_hash_ipmodify_update(ops, new_hash);
1424 		if (ret < 0) {
1425 			free_ftrace_hash(new_hash);
1426 			return ret;
1427 		}
1428 	}
1429 
1430 	/*
1431 	 * Remove the current set, update the hash and add
1432 	 * them back.
1433 	 */
1434 	ftrace_hash_rec_disable_modify(ops, enable);
1435 
1436 	rcu_assign_pointer(*dst, new_hash);
1437 
1438 	ftrace_hash_rec_enable_modify(ops, enable);
1439 
1440 	return 0;
1441 }
1442 
1443 static bool hash_contains_ip(unsigned long ip,
1444 			     struct ftrace_ops_hash *hash)
1445 {
1446 	/*
1447 	 * The function record is a match if it exists in the filter
1448 	 * hash and not in the notrace hash. Note, an empty hash is
1449 	 * considered a match for the filter hash, but an empty
1450 	 * notrace hash is considered not in the notrace hash.
1451 	 */
1452 	return (ftrace_hash_empty(hash->filter_hash) ||
1453 		__ftrace_lookup_ip(hash->filter_hash, ip)) &&
1454 		(ftrace_hash_empty(hash->notrace_hash) ||
1455 		 !__ftrace_lookup_ip(hash->notrace_hash, ip));
1456 }
1457 
1458 /*
1459  * Test the hashes for this ops to see if we want to call
1460  * the ops->func or not.
1461  *
1462  * It's a match if the ip is in the ops->filter_hash or
1463  * the filter_hash does not exist or is empty,
1464  *  AND
1465  * the ip is not in the ops->notrace_hash.
1466  *
1467  * This needs to be called with preemption disabled as
1468  * the hashes are freed with call_rcu().
1469  */
1470 int
1471 ftrace_ops_test(struct ftrace_ops *ops, unsigned long ip, void *regs)
1472 {
1473 	struct ftrace_ops_hash hash;
1474 	int ret;
1475 
1476 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_REGS
1477 	/*
1478 	 * There's a small race when adding ops that the ftrace handler
1479 	 * that wants regs, may be called without them. We can not
1480 	 * allow that handler to be called if regs is NULL.
1481 	 */
1482 	if (regs == NULL && (ops->flags & FTRACE_OPS_FL_SAVE_REGS))
1483 		return 0;
1484 #endif
1485 
1486 	rcu_assign_pointer(hash.filter_hash, ops->func_hash->filter_hash);
1487 	rcu_assign_pointer(hash.notrace_hash, ops->func_hash->notrace_hash);
1488 
1489 	if (hash_contains_ip(ip, &hash))
1490 		ret = 1;
1491 	else
1492 		ret = 0;
1493 
1494 	return ret;
1495 }
1496 
1497 /*
1498  * This is a double for. Do not use 'break' to break out of the loop,
1499  * you must use a goto.
1500  */
1501 #define do_for_each_ftrace_rec(pg, rec)					\
1502 	for (pg = ftrace_pages_start; pg; pg = pg->next) {		\
1503 		int _____i;						\
1504 		for (_____i = 0; _____i < pg->index; _____i++) {	\
1505 			rec = &pg->records[_____i];
1506 
1507 #define while_for_each_ftrace_rec()		\
1508 		}				\
1509 	}
1510 
1511 
1512 static int ftrace_cmp_recs(const void *a, const void *b)
1513 {
1514 	const struct dyn_ftrace *key = a;
1515 	const struct dyn_ftrace *rec = b;
1516 
1517 	if (key->flags < rec->ip)
1518 		return -1;
1519 	if (key->ip >= rec->ip + MCOUNT_INSN_SIZE)
1520 		return 1;
1521 	return 0;
1522 }
1523 
1524 static struct dyn_ftrace *lookup_rec(unsigned long start, unsigned long end)
1525 {
1526 	struct ftrace_page *pg;
1527 	struct dyn_ftrace *rec = NULL;
1528 	struct dyn_ftrace key;
1529 
1530 	key.ip = start;
1531 	key.flags = end;	/* overload flags, as it is unsigned long */
1532 
1533 	for (pg = ftrace_pages_start; pg; pg = pg->next) {
1534 		if (end < pg->records[0].ip ||
1535 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
1536 			continue;
1537 		rec = bsearch(&key, pg->records, pg->index,
1538 			      sizeof(struct dyn_ftrace),
1539 			      ftrace_cmp_recs);
1540 		if (rec)
1541 			break;
1542 	}
1543 	return rec;
1544 }
1545 
1546 /**
1547  * ftrace_location_range - return the first address of a traced location
1548  *	if it touches the given ip range
1549  * @start: start of range to search.
1550  * @end: end of range to search (inclusive). @end points to the last byte
1551  *	to check.
1552  *
1553  * Returns rec->ip if the related ftrace location is a least partly within
1554  * the given address range. That is, the first address of the instruction
1555  * that is either a NOP or call to the function tracer. It checks the ftrace
1556  * internal tables to determine if the address belongs or not.
1557  */
1558 unsigned long ftrace_location_range(unsigned long start, unsigned long end)
1559 {
1560 	struct dyn_ftrace *rec;
1561 
1562 	rec = lookup_rec(start, end);
1563 	if (rec)
1564 		return rec->ip;
1565 
1566 	return 0;
1567 }
1568 
1569 /**
1570  * ftrace_location - return the ftrace location
1571  * @ip: the instruction pointer to check
1572  *
1573  * If @ip matches the ftrace location, return @ip.
1574  * If @ip matches sym+0, return sym's ftrace location.
1575  * Otherwise, return 0.
1576  */
1577 unsigned long ftrace_location(unsigned long ip)
1578 {
1579 	struct dyn_ftrace *rec;
1580 	unsigned long offset;
1581 	unsigned long size;
1582 
1583 	rec = lookup_rec(ip, ip);
1584 	if (!rec) {
1585 		if (!kallsyms_lookup_size_offset(ip, &size, &offset))
1586 			goto out;
1587 
1588 		/* map sym+0 to __fentry__ */
1589 		if (!offset)
1590 			rec = lookup_rec(ip, ip + size - 1);
1591 	}
1592 
1593 	if (rec)
1594 		return rec->ip;
1595 
1596 out:
1597 	return 0;
1598 }
1599 
1600 /**
1601  * ftrace_text_reserved - return true if range contains an ftrace location
1602  * @start: start of range to search
1603  * @end: end of range to search (inclusive). @end points to the last byte to check.
1604  *
1605  * Returns 1 if @start and @end contains a ftrace location.
1606  * That is, the instruction that is either a NOP or call to
1607  * the function tracer. It checks the ftrace internal tables to
1608  * determine if the address belongs or not.
1609  */
1610 int ftrace_text_reserved(const void *start, const void *end)
1611 {
1612 	unsigned long ret;
1613 
1614 	ret = ftrace_location_range((unsigned long)start,
1615 				    (unsigned long)end);
1616 
1617 	return (int)!!ret;
1618 }
1619 
1620 /* Test if ops registered to this rec needs regs */
1621 static bool test_rec_ops_needs_regs(struct dyn_ftrace *rec)
1622 {
1623 	struct ftrace_ops *ops;
1624 	bool keep_regs = false;
1625 
1626 	for (ops = ftrace_ops_list;
1627 	     ops != &ftrace_list_end; ops = ops->next) {
1628 		/* pass rec in as regs to have non-NULL val */
1629 		if (ftrace_ops_test(ops, rec->ip, rec)) {
1630 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1631 				keep_regs = true;
1632 				break;
1633 			}
1634 		}
1635 	}
1636 
1637 	return  keep_regs;
1638 }
1639 
1640 static struct ftrace_ops *
1641 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec);
1642 static struct ftrace_ops *
1643 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude);
1644 static struct ftrace_ops *
1645 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec, struct ftrace_ops *ops);
1646 
1647 static bool __ftrace_hash_rec_update(struct ftrace_ops *ops,
1648 				     int filter_hash,
1649 				     bool inc)
1650 {
1651 	struct ftrace_hash *hash;
1652 	struct ftrace_hash *other_hash;
1653 	struct ftrace_page *pg;
1654 	struct dyn_ftrace *rec;
1655 	bool update = false;
1656 	int count = 0;
1657 	int all = false;
1658 
1659 	/* Only update if the ops has been registered */
1660 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1661 		return false;
1662 
1663 	/*
1664 	 * In the filter_hash case:
1665 	 *   If the count is zero, we update all records.
1666 	 *   Otherwise we just update the items in the hash.
1667 	 *
1668 	 * In the notrace_hash case:
1669 	 *   We enable the update in the hash.
1670 	 *   As disabling notrace means enabling the tracing,
1671 	 *   and enabling notrace means disabling, the inc variable
1672 	 *   gets inversed.
1673 	 */
1674 	if (filter_hash) {
1675 		hash = ops->func_hash->filter_hash;
1676 		other_hash = ops->func_hash->notrace_hash;
1677 		if (ftrace_hash_empty(hash))
1678 			all = true;
1679 	} else {
1680 		inc = !inc;
1681 		hash = ops->func_hash->notrace_hash;
1682 		other_hash = ops->func_hash->filter_hash;
1683 		/*
1684 		 * If the notrace hash has no items,
1685 		 * then there's nothing to do.
1686 		 */
1687 		if (ftrace_hash_empty(hash))
1688 			return false;
1689 	}
1690 
1691 	do_for_each_ftrace_rec(pg, rec) {
1692 		int in_other_hash = 0;
1693 		int in_hash = 0;
1694 		int match = 0;
1695 
1696 		if (rec->flags & FTRACE_FL_DISABLED)
1697 			continue;
1698 
1699 		if (all) {
1700 			/*
1701 			 * Only the filter_hash affects all records.
1702 			 * Update if the record is not in the notrace hash.
1703 			 */
1704 			if (!other_hash || !ftrace_lookup_ip(other_hash, rec->ip))
1705 				match = 1;
1706 		} else {
1707 			in_hash = !!ftrace_lookup_ip(hash, rec->ip);
1708 			in_other_hash = !!ftrace_lookup_ip(other_hash, rec->ip);
1709 
1710 			/*
1711 			 * If filter_hash is set, we want to match all functions
1712 			 * that are in the hash but not in the other hash.
1713 			 *
1714 			 * If filter_hash is not set, then we are decrementing.
1715 			 * That means we match anything that is in the hash
1716 			 * and also in the other_hash. That is, we need to turn
1717 			 * off functions in the other hash because they are disabled
1718 			 * by this hash.
1719 			 */
1720 			if (filter_hash && in_hash && !in_other_hash)
1721 				match = 1;
1722 			else if (!filter_hash && in_hash &&
1723 				 (in_other_hash || ftrace_hash_empty(other_hash)))
1724 				match = 1;
1725 		}
1726 		if (!match)
1727 			continue;
1728 
1729 		if (inc) {
1730 			rec->flags++;
1731 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == FTRACE_REF_MAX))
1732 				return false;
1733 
1734 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1735 				rec->flags |= FTRACE_FL_DIRECT;
1736 
1737 			/*
1738 			 * If there's only a single callback registered to a
1739 			 * function, and the ops has a trampoline registered
1740 			 * for it, then we can call it directly.
1741 			 */
1742 			if (ftrace_rec_count(rec) == 1 && ops->trampoline)
1743 				rec->flags |= FTRACE_FL_TRAMP;
1744 			else
1745 				/*
1746 				 * If we are adding another function callback
1747 				 * to this function, and the previous had a
1748 				 * custom trampoline in use, then we need to go
1749 				 * back to the default trampoline.
1750 				 */
1751 				rec->flags &= ~FTRACE_FL_TRAMP;
1752 
1753 			/*
1754 			 * If any ops wants regs saved for this function
1755 			 * then all ops will get saved regs.
1756 			 */
1757 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
1758 				rec->flags |= FTRACE_FL_REGS;
1759 		} else {
1760 			if (FTRACE_WARN_ON(ftrace_rec_count(rec) == 0))
1761 				return false;
1762 			rec->flags--;
1763 
1764 			/*
1765 			 * Only the internal direct_ops should have the
1766 			 * DIRECT flag set. Thus, if it is removing a
1767 			 * function, then that function should no longer
1768 			 * be direct.
1769 			 */
1770 			if (ops->flags & FTRACE_OPS_FL_DIRECT)
1771 				rec->flags &= ~FTRACE_FL_DIRECT;
1772 
1773 			/*
1774 			 * If the rec had REGS enabled and the ops that is
1775 			 * being removed had REGS set, then see if there is
1776 			 * still any ops for this record that wants regs.
1777 			 * If not, we can stop recording them.
1778 			 */
1779 			if (ftrace_rec_count(rec) > 0 &&
1780 			    rec->flags & FTRACE_FL_REGS &&
1781 			    ops->flags & FTRACE_OPS_FL_SAVE_REGS) {
1782 				if (!test_rec_ops_needs_regs(rec))
1783 					rec->flags &= ~FTRACE_FL_REGS;
1784 			}
1785 
1786 			/*
1787 			 * The TRAMP needs to be set only if rec count
1788 			 * is decremented to one, and the ops that is
1789 			 * left has a trampoline. As TRAMP can only be
1790 			 * enabled if there is only a single ops attached
1791 			 * to it.
1792 			 */
1793 			if (ftrace_rec_count(rec) == 1 &&
1794 			    ftrace_find_tramp_ops_any_other(rec, ops))
1795 				rec->flags |= FTRACE_FL_TRAMP;
1796 			else
1797 				rec->flags &= ~FTRACE_FL_TRAMP;
1798 
1799 			/*
1800 			 * flags will be cleared in ftrace_check_record()
1801 			 * if rec count is zero.
1802 			 */
1803 		}
1804 		count++;
1805 
1806 		/* Must match FTRACE_UPDATE_CALLS in ftrace_modify_all_code() */
1807 		update |= ftrace_test_record(rec, true) != FTRACE_UPDATE_IGNORE;
1808 
1809 		/* Shortcut, if we handled all records, we are done. */
1810 		if (!all && count == hash->count)
1811 			return update;
1812 	} while_for_each_ftrace_rec();
1813 
1814 	return update;
1815 }
1816 
1817 static bool ftrace_hash_rec_disable(struct ftrace_ops *ops,
1818 				    int filter_hash)
1819 {
1820 	return __ftrace_hash_rec_update(ops, filter_hash, 0);
1821 }
1822 
1823 static bool ftrace_hash_rec_enable(struct ftrace_ops *ops,
1824 				   int filter_hash)
1825 {
1826 	return __ftrace_hash_rec_update(ops, filter_hash, 1);
1827 }
1828 
1829 static void ftrace_hash_rec_update_modify(struct ftrace_ops *ops,
1830 					  int filter_hash, int inc)
1831 {
1832 	struct ftrace_ops *op;
1833 
1834 	__ftrace_hash_rec_update(ops, filter_hash, inc);
1835 
1836 	if (ops->func_hash != &global_ops.local_hash)
1837 		return;
1838 
1839 	/*
1840 	 * If the ops shares the global_ops hash, then we need to update
1841 	 * all ops that are enabled and use this hash.
1842 	 */
1843 	do_for_each_ftrace_op(op, ftrace_ops_list) {
1844 		/* Already done */
1845 		if (op == ops)
1846 			continue;
1847 		if (op->func_hash == &global_ops.local_hash)
1848 			__ftrace_hash_rec_update(op, filter_hash, inc);
1849 	} while_for_each_ftrace_op(op);
1850 }
1851 
1852 static void ftrace_hash_rec_disable_modify(struct ftrace_ops *ops,
1853 					   int filter_hash)
1854 {
1855 	ftrace_hash_rec_update_modify(ops, filter_hash, 0);
1856 }
1857 
1858 static void ftrace_hash_rec_enable_modify(struct ftrace_ops *ops,
1859 					  int filter_hash)
1860 {
1861 	ftrace_hash_rec_update_modify(ops, filter_hash, 1);
1862 }
1863 
1864 /*
1865  * Try to update IPMODIFY flag on each ftrace_rec. Return 0 if it is OK
1866  * or no-needed to update, -EBUSY if it detects a conflict of the flag
1867  * on a ftrace_rec, and -EINVAL if the new_hash tries to trace all recs.
1868  * Note that old_hash and new_hash has below meanings
1869  *  - If the hash is NULL, it hits all recs (if IPMODIFY is set, this is rejected)
1870  *  - If the hash is EMPTY_HASH, it hits nothing
1871  *  - Anything else hits the recs which match the hash entries.
1872  */
1873 static int __ftrace_hash_update_ipmodify(struct ftrace_ops *ops,
1874 					 struct ftrace_hash *old_hash,
1875 					 struct ftrace_hash *new_hash)
1876 {
1877 	struct ftrace_page *pg;
1878 	struct dyn_ftrace *rec, *end = NULL;
1879 	int in_old, in_new;
1880 
1881 	/* Only update if the ops has been registered */
1882 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
1883 		return 0;
1884 
1885 	if (!(ops->flags & FTRACE_OPS_FL_IPMODIFY))
1886 		return 0;
1887 
1888 	/*
1889 	 * Since the IPMODIFY is a very address sensitive action, we do not
1890 	 * allow ftrace_ops to set all functions to new hash.
1891 	 */
1892 	if (!new_hash || !old_hash)
1893 		return -EINVAL;
1894 
1895 	/* Update rec->flags */
1896 	do_for_each_ftrace_rec(pg, rec) {
1897 
1898 		if (rec->flags & FTRACE_FL_DISABLED)
1899 			continue;
1900 
1901 		/* We need to update only differences of filter_hash */
1902 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1903 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1904 		if (in_old == in_new)
1905 			continue;
1906 
1907 		if (in_new) {
1908 			/* New entries must ensure no others are using it */
1909 			if (rec->flags & FTRACE_FL_IPMODIFY)
1910 				goto rollback;
1911 			rec->flags |= FTRACE_FL_IPMODIFY;
1912 		} else /* Removed entry */
1913 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1914 	} while_for_each_ftrace_rec();
1915 
1916 	return 0;
1917 
1918 rollback:
1919 	end = rec;
1920 
1921 	/* Roll back what we did above */
1922 	do_for_each_ftrace_rec(pg, rec) {
1923 
1924 		if (rec->flags & FTRACE_FL_DISABLED)
1925 			continue;
1926 
1927 		if (rec == end)
1928 			goto err_out;
1929 
1930 		in_old = !!ftrace_lookup_ip(old_hash, rec->ip);
1931 		in_new = !!ftrace_lookup_ip(new_hash, rec->ip);
1932 		if (in_old == in_new)
1933 			continue;
1934 
1935 		if (in_new)
1936 			rec->flags &= ~FTRACE_FL_IPMODIFY;
1937 		else
1938 			rec->flags |= FTRACE_FL_IPMODIFY;
1939 	} while_for_each_ftrace_rec();
1940 
1941 err_out:
1942 	return -EBUSY;
1943 }
1944 
1945 static int ftrace_hash_ipmodify_enable(struct ftrace_ops *ops)
1946 {
1947 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1948 
1949 	if (ftrace_hash_empty(hash))
1950 		hash = NULL;
1951 
1952 	return __ftrace_hash_update_ipmodify(ops, EMPTY_HASH, hash);
1953 }
1954 
1955 /* Disabling always succeeds */
1956 static void ftrace_hash_ipmodify_disable(struct ftrace_ops *ops)
1957 {
1958 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
1959 
1960 	if (ftrace_hash_empty(hash))
1961 		hash = NULL;
1962 
1963 	__ftrace_hash_update_ipmodify(ops, hash, EMPTY_HASH);
1964 }
1965 
1966 static int ftrace_hash_ipmodify_update(struct ftrace_ops *ops,
1967 				       struct ftrace_hash *new_hash)
1968 {
1969 	struct ftrace_hash *old_hash = ops->func_hash->filter_hash;
1970 
1971 	if (ftrace_hash_empty(old_hash))
1972 		old_hash = NULL;
1973 
1974 	if (ftrace_hash_empty(new_hash))
1975 		new_hash = NULL;
1976 
1977 	return __ftrace_hash_update_ipmodify(ops, old_hash, new_hash);
1978 }
1979 
1980 static void print_ip_ins(const char *fmt, const unsigned char *p)
1981 {
1982 	char ins[MCOUNT_INSN_SIZE];
1983 	int i;
1984 
1985 	if (copy_from_kernel_nofault(ins, p, MCOUNT_INSN_SIZE)) {
1986 		printk(KERN_CONT "%s[FAULT] %px\n", fmt, p);
1987 		return;
1988 	}
1989 
1990 	printk(KERN_CONT "%s", fmt);
1991 
1992 	for (i = 0; i < MCOUNT_INSN_SIZE; i++)
1993 		printk(KERN_CONT "%s%02x", i ? ":" : "", ins[i]);
1994 }
1995 
1996 enum ftrace_bug_type ftrace_bug_type;
1997 const void *ftrace_expected;
1998 
1999 static void print_bug_type(void)
2000 {
2001 	switch (ftrace_bug_type) {
2002 	case FTRACE_BUG_UNKNOWN:
2003 		break;
2004 	case FTRACE_BUG_INIT:
2005 		pr_info("Initializing ftrace call sites\n");
2006 		break;
2007 	case FTRACE_BUG_NOP:
2008 		pr_info("Setting ftrace call site to NOP\n");
2009 		break;
2010 	case FTRACE_BUG_CALL:
2011 		pr_info("Setting ftrace call site to call ftrace function\n");
2012 		break;
2013 	case FTRACE_BUG_UPDATE:
2014 		pr_info("Updating ftrace call site to call a different ftrace function\n");
2015 		break;
2016 	}
2017 }
2018 
2019 /**
2020  * ftrace_bug - report and shutdown function tracer
2021  * @failed: The failed type (EFAULT, EINVAL, EPERM)
2022  * @rec: The record that failed
2023  *
2024  * The arch code that enables or disables the function tracing
2025  * can call ftrace_bug() when it has detected a problem in
2026  * modifying the code. @failed should be one of either:
2027  * EFAULT - if the problem happens on reading the @ip address
2028  * EINVAL - if what is read at @ip is not what was expected
2029  * EPERM - if the problem happens on writing to the @ip address
2030  */
2031 void ftrace_bug(int failed, struct dyn_ftrace *rec)
2032 {
2033 	unsigned long ip = rec ? rec->ip : 0;
2034 
2035 	pr_info("------------[ ftrace bug ]------------\n");
2036 
2037 	switch (failed) {
2038 	case -EFAULT:
2039 		pr_info("ftrace faulted on modifying ");
2040 		print_ip_sym(KERN_INFO, ip);
2041 		break;
2042 	case -EINVAL:
2043 		pr_info("ftrace failed to modify ");
2044 		print_ip_sym(KERN_INFO, ip);
2045 		print_ip_ins(" actual:   ", (unsigned char *)ip);
2046 		pr_cont("\n");
2047 		if (ftrace_expected) {
2048 			print_ip_ins(" expected: ", ftrace_expected);
2049 			pr_cont("\n");
2050 		}
2051 		break;
2052 	case -EPERM:
2053 		pr_info("ftrace faulted on writing ");
2054 		print_ip_sym(KERN_INFO, ip);
2055 		break;
2056 	default:
2057 		pr_info("ftrace faulted on unknown error ");
2058 		print_ip_sym(KERN_INFO, ip);
2059 	}
2060 	print_bug_type();
2061 	if (rec) {
2062 		struct ftrace_ops *ops = NULL;
2063 
2064 		pr_info("ftrace record flags: %lx\n", rec->flags);
2065 		pr_cont(" (%ld)%s", ftrace_rec_count(rec),
2066 			rec->flags & FTRACE_FL_REGS ? " R" : "  ");
2067 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
2068 			ops = ftrace_find_tramp_ops_any(rec);
2069 			if (ops) {
2070 				do {
2071 					pr_cont("\ttramp: %pS (%pS)",
2072 						(void *)ops->trampoline,
2073 						(void *)ops->func);
2074 					ops = ftrace_find_tramp_ops_next(rec, ops);
2075 				} while (ops);
2076 			} else
2077 				pr_cont("\ttramp: ERROR!");
2078 
2079 		}
2080 		ip = ftrace_get_addr_curr(rec);
2081 		pr_cont("\n expected tramp: %lx\n", ip);
2082 	}
2083 
2084 	FTRACE_WARN_ON_ONCE(1);
2085 }
2086 
2087 static int ftrace_check_record(struct dyn_ftrace *rec, bool enable, bool update)
2088 {
2089 	unsigned long flag = 0UL;
2090 
2091 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2092 
2093 	if (rec->flags & FTRACE_FL_DISABLED)
2094 		return FTRACE_UPDATE_IGNORE;
2095 
2096 	/*
2097 	 * If we are updating calls:
2098 	 *
2099 	 *   If the record has a ref count, then we need to enable it
2100 	 *   because someone is using it.
2101 	 *
2102 	 *   Otherwise we make sure its disabled.
2103 	 *
2104 	 * If we are disabling calls, then disable all records that
2105 	 * are enabled.
2106 	 */
2107 	if (enable && ftrace_rec_count(rec))
2108 		flag = FTRACE_FL_ENABLED;
2109 
2110 	/*
2111 	 * If enabling and the REGS flag does not match the REGS_EN, or
2112 	 * the TRAMP flag doesn't match the TRAMP_EN, then do not ignore
2113 	 * this record. Set flags to fail the compare against ENABLED.
2114 	 * Same for direct calls.
2115 	 */
2116 	if (flag) {
2117 		if (!(rec->flags & FTRACE_FL_REGS) !=
2118 		    !(rec->flags & FTRACE_FL_REGS_EN))
2119 			flag |= FTRACE_FL_REGS;
2120 
2121 		if (!(rec->flags & FTRACE_FL_TRAMP) !=
2122 		    !(rec->flags & FTRACE_FL_TRAMP_EN))
2123 			flag |= FTRACE_FL_TRAMP;
2124 
2125 		/*
2126 		 * Direct calls are special, as count matters.
2127 		 * We must test the record for direct, if the
2128 		 * DIRECT and DIRECT_EN do not match, but only
2129 		 * if the count is 1. That's because, if the
2130 		 * count is something other than one, we do not
2131 		 * want the direct enabled (it will be done via the
2132 		 * direct helper). But if DIRECT_EN is set, and
2133 		 * the count is not one, we need to clear it.
2134 		 */
2135 		if (ftrace_rec_count(rec) == 1) {
2136 			if (!(rec->flags & FTRACE_FL_DIRECT) !=
2137 			    !(rec->flags & FTRACE_FL_DIRECT_EN))
2138 				flag |= FTRACE_FL_DIRECT;
2139 		} else if (rec->flags & FTRACE_FL_DIRECT_EN) {
2140 			flag |= FTRACE_FL_DIRECT;
2141 		}
2142 	}
2143 
2144 	/* If the state of this record hasn't changed, then do nothing */
2145 	if ((rec->flags & FTRACE_FL_ENABLED) == flag)
2146 		return FTRACE_UPDATE_IGNORE;
2147 
2148 	if (flag) {
2149 		/* Save off if rec is being enabled (for return value) */
2150 		flag ^= rec->flags & FTRACE_FL_ENABLED;
2151 
2152 		if (update) {
2153 			rec->flags |= FTRACE_FL_ENABLED;
2154 			if (flag & FTRACE_FL_REGS) {
2155 				if (rec->flags & FTRACE_FL_REGS)
2156 					rec->flags |= FTRACE_FL_REGS_EN;
2157 				else
2158 					rec->flags &= ~FTRACE_FL_REGS_EN;
2159 			}
2160 			if (flag & FTRACE_FL_TRAMP) {
2161 				if (rec->flags & FTRACE_FL_TRAMP)
2162 					rec->flags |= FTRACE_FL_TRAMP_EN;
2163 				else
2164 					rec->flags &= ~FTRACE_FL_TRAMP_EN;
2165 			}
2166 
2167 			if (flag & FTRACE_FL_DIRECT) {
2168 				/*
2169 				 * If there's only one user (direct_ops helper)
2170 				 * then we can call the direct function
2171 				 * directly (no ftrace trampoline).
2172 				 */
2173 				if (ftrace_rec_count(rec) == 1) {
2174 					if (rec->flags & FTRACE_FL_DIRECT)
2175 						rec->flags |= FTRACE_FL_DIRECT_EN;
2176 					else
2177 						rec->flags &= ~FTRACE_FL_DIRECT_EN;
2178 				} else {
2179 					/*
2180 					 * Can only call directly if there's
2181 					 * only one callback to the function.
2182 					 */
2183 					rec->flags &= ~FTRACE_FL_DIRECT_EN;
2184 				}
2185 			}
2186 		}
2187 
2188 		/*
2189 		 * If this record is being updated from a nop, then
2190 		 *   return UPDATE_MAKE_CALL.
2191 		 * Otherwise,
2192 		 *   return UPDATE_MODIFY_CALL to tell the caller to convert
2193 		 *   from the save regs, to a non-save regs function or
2194 		 *   vice versa, or from a trampoline call.
2195 		 */
2196 		if (flag & FTRACE_FL_ENABLED) {
2197 			ftrace_bug_type = FTRACE_BUG_CALL;
2198 			return FTRACE_UPDATE_MAKE_CALL;
2199 		}
2200 
2201 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2202 		return FTRACE_UPDATE_MODIFY_CALL;
2203 	}
2204 
2205 	if (update) {
2206 		/* If there's no more users, clear all flags */
2207 		if (!ftrace_rec_count(rec))
2208 			rec->flags = 0;
2209 		else
2210 			/*
2211 			 * Just disable the record, but keep the ops TRAMP
2212 			 * and REGS states. The _EN flags must be disabled though.
2213 			 */
2214 			rec->flags &= ~(FTRACE_FL_ENABLED | FTRACE_FL_TRAMP_EN |
2215 					FTRACE_FL_REGS_EN | FTRACE_FL_DIRECT_EN);
2216 	}
2217 
2218 	ftrace_bug_type = FTRACE_BUG_NOP;
2219 	return FTRACE_UPDATE_MAKE_NOP;
2220 }
2221 
2222 /**
2223  * ftrace_update_record - set a record that now is tracing or not
2224  * @rec: the record to update
2225  * @enable: set to true if the record is tracing, false to force disable
2226  *
2227  * The records that represent all functions that can be traced need
2228  * to be updated when tracing has been enabled.
2229  */
2230 int ftrace_update_record(struct dyn_ftrace *rec, bool enable)
2231 {
2232 	return ftrace_check_record(rec, enable, true);
2233 }
2234 
2235 /**
2236  * ftrace_test_record - check if the record has been enabled or not
2237  * @rec: the record to test
2238  * @enable: set to true to check if enabled, false if it is disabled
2239  *
2240  * The arch code may need to test if a record is already set to
2241  * tracing to determine how to modify the function code that it
2242  * represents.
2243  */
2244 int ftrace_test_record(struct dyn_ftrace *rec, bool enable)
2245 {
2246 	return ftrace_check_record(rec, enable, false);
2247 }
2248 
2249 static struct ftrace_ops *
2250 ftrace_find_tramp_ops_any(struct dyn_ftrace *rec)
2251 {
2252 	struct ftrace_ops *op;
2253 	unsigned long ip = rec->ip;
2254 
2255 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2256 
2257 		if (!op->trampoline)
2258 			continue;
2259 
2260 		if (hash_contains_ip(ip, op->func_hash))
2261 			return op;
2262 	} while_for_each_ftrace_op(op);
2263 
2264 	return NULL;
2265 }
2266 
2267 static struct ftrace_ops *
2268 ftrace_find_tramp_ops_any_other(struct dyn_ftrace *rec, struct ftrace_ops *op_exclude)
2269 {
2270 	struct ftrace_ops *op;
2271 	unsigned long ip = rec->ip;
2272 
2273 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2274 
2275 		if (op == op_exclude || !op->trampoline)
2276 			continue;
2277 
2278 		if (hash_contains_ip(ip, op->func_hash))
2279 			return op;
2280 	} while_for_each_ftrace_op(op);
2281 
2282 	return NULL;
2283 }
2284 
2285 static struct ftrace_ops *
2286 ftrace_find_tramp_ops_next(struct dyn_ftrace *rec,
2287 			   struct ftrace_ops *op)
2288 {
2289 	unsigned long ip = rec->ip;
2290 
2291 	while_for_each_ftrace_op(op) {
2292 
2293 		if (!op->trampoline)
2294 			continue;
2295 
2296 		if (hash_contains_ip(ip, op->func_hash))
2297 			return op;
2298 	}
2299 
2300 	return NULL;
2301 }
2302 
2303 static struct ftrace_ops *
2304 ftrace_find_tramp_ops_curr(struct dyn_ftrace *rec)
2305 {
2306 	struct ftrace_ops *op;
2307 	unsigned long ip = rec->ip;
2308 
2309 	/*
2310 	 * Need to check removed ops first.
2311 	 * If they are being removed, and this rec has a tramp,
2312 	 * and this rec is in the ops list, then it would be the
2313 	 * one with the tramp.
2314 	 */
2315 	if (removed_ops) {
2316 		if (hash_contains_ip(ip, &removed_ops->old_hash))
2317 			return removed_ops;
2318 	}
2319 
2320 	/*
2321 	 * Need to find the current trampoline for a rec.
2322 	 * Now, a trampoline is only attached to a rec if there
2323 	 * was a single 'ops' attached to it. But this can be called
2324 	 * when we are adding another op to the rec or removing the
2325 	 * current one. Thus, if the op is being added, we can
2326 	 * ignore it because it hasn't attached itself to the rec
2327 	 * yet.
2328 	 *
2329 	 * If an ops is being modified (hooking to different functions)
2330 	 * then we don't care about the new functions that are being
2331 	 * added, just the old ones (that are probably being removed).
2332 	 *
2333 	 * If we are adding an ops to a function that already is using
2334 	 * a trampoline, it needs to be removed (trampolines are only
2335 	 * for single ops connected), then an ops that is not being
2336 	 * modified also needs to be checked.
2337 	 */
2338 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2339 
2340 		if (!op->trampoline)
2341 			continue;
2342 
2343 		/*
2344 		 * If the ops is being added, it hasn't gotten to
2345 		 * the point to be removed from this tree yet.
2346 		 */
2347 		if (op->flags & FTRACE_OPS_FL_ADDING)
2348 			continue;
2349 
2350 
2351 		/*
2352 		 * If the ops is being modified and is in the old
2353 		 * hash, then it is probably being removed from this
2354 		 * function.
2355 		 */
2356 		if ((op->flags & FTRACE_OPS_FL_MODIFYING) &&
2357 		    hash_contains_ip(ip, &op->old_hash))
2358 			return op;
2359 		/*
2360 		 * If the ops is not being added or modified, and it's
2361 		 * in its normal filter hash, then this must be the one
2362 		 * we want!
2363 		 */
2364 		if (!(op->flags & FTRACE_OPS_FL_MODIFYING) &&
2365 		    hash_contains_ip(ip, op->func_hash))
2366 			return op;
2367 
2368 	} while_for_each_ftrace_op(op);
2369 
2370 	return NULL;
2371 }
2372 
2373 static struct ftrace_ops *
2374 ftrace_find_tramp_ops_new(struct dyn_ftrace *rec)
2375 {
2376 	struct ftrace_ops *op;
2377 	unsigned long ip = rec->ip;
2378 
2379 	do_for_each_ftrace_op(op, ftrace_ops_list) {
2380 		/* pass rec in as regs to have non-NULL val */
2381 		if (hash_contains_ip(ip, op->func_hash))
2382 			return op;
2383 	} while_for_each_ftrace_op(op);
2384 
2385 	return NULL;
2386 }
2387 
2388 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
2389 /* Protected by rcu_tasks for reading, and direct_mutex for writing */
2390 static struct ftrace_hash *direct_functions = EMPTY_HASH;
2391 static DEFINE_MUTEX(direct_mutex);
2392 int ftrace_direct_func_count;
2393 
2394 /*
2395  * Search the direct_functions hash to see if the given instruction pointer
2396  * has a direct caller attached to it.
2397  */
2398 unsigned long ftrace_find_rec_direct(unsigned long ip)
2399 {
2400 	struct ftrace_func_entry *entry;
2401 
2402 	entry = __ftrace_lookup_ip(direct_functions, ip);
2403 	if (!entry)
2404 		return 0;
2405 
2406 	return entry->direct;
2407 }
2408 
2409 static struct ftrace_func_entry*
2410 ftrace_add_rec_direct(unsigned long ip, unsigned long addr,
2411 		      struct ftrace_hash **free_hash)
2412 {
2413 	struct ftrace_func_entry *entry;
2414 
2415 	if (ftrace_hash_empty(direct_functions) ||
2416 	    direct_functions->count > 2 * (1 << direct_functions->size_bits)) {
2417 		struct ftrace_hash *new_hash;
2418 		int size = ftrace_hash_empty(direct_functions) ? 0 :
2419 			direct_functions->count + 1;
2420 
2421 		if (size < 32)
2422 			size = 32;
2423 
2424 		new_hash = dup_hash(direct_functions, size);
2425 		if (!new_hash)
2426 			return NULL;
2427 
2428 		*free_hash = direct_functions;
2429 		direct_functions = new_hash;
2430 	}
2431 
2432 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2433 	if (!entry)
2434 		return NULL;
2435 
2436 	entry->ip = ip;
2437 	entry->direct = addr;
2438 	__add_hash_entry(direct_functions, entry);
2439 	return entry;
2440 }
2441 
2442 static void call_direct_funcs(unsigned long ip, unsigned long pip,
2443 			      struct ftrace_ops *ops, struct ftrace_regs *fregs)
2444 {
2445 	struct pt_regs *regs = ftrace_get_regs(fregs);
2446 	unsigned long addr;
2447 
2448 	addr = ftrace_find_rec_direct(ip);
2449 	if (!addr)
2450 		return;
2451 
2452 	arch_ftrace_set_direct_caller(regs, addr);
2453 }
2454 
2455 struct ftrace_ops direct_ops = {
2456 	.func		= call_direct_funcs,
2457 	.flags		= FTRACE_OPS_FL_IPMODIFY
2458 			  | FTRACE_OPS_FL_DIRECT | FTRACE_OPS_FL_SAVE_REGS
2459 			  | FTRACE_OPS_FL_PERMANENT,
2460 	/*
2461 	 * By declaring the main trampoline as this trampoline
2462 	 * it will never have one allocated for it. Allocated
2463 	 * trampolines should not call direct functions.
2464 	 * The direct_ops should only be called by the builtin
2465 	 * ftrace_regs_caller trampoline.
2466 	 */
2467 	.trampoline	= FTRACE_REGS_ADDR,
2468 };
2469 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
2470 
2471 /**
2472  * ftrace_get_addr_new - Get the call address to set to
2473  * @rec:  The ftrace record descriptor
2474  *
2475  * If the record has the FTRACE_FL_REGS set, that means that it
2476  * wants to convert to a callback that saves all regs. If FTRACE_FL_REGS
2477  * is not set, then it wants to convert to the normal callback.
2478  *
2479  * Returns the address of the trampoline to set to
2480  */
2481 unsigned long ftrace_get_addr_new(struct dyn_ftrace *rec)
2482 {
2483 	struct ftrace_ops *ops;
2484 	unsigned long addr;
2485 
2486 	if ((rec->flags & FTRACE_FL_DIRECT) &&
2487 	    (ftrace_rec_count(rec) == 1)) {
2488 		addr = ftrace_find_rec_direct(rec->ip);
2489 		if (addr)
2490 			return addr;
2491 		WARN_ON_ONCE(1);
2492 	}
2493 
2494 	/* Trampolines take precedence over regs */
2495 	if (rec->flags & FTRACE_FL_TRAMP) {
2496 		ops = ftrace_find_tramp_ops_new(rec);
2497 		if (FTRACE_WARN_ON(!ops || !ops->trampoline)) {
2498 			pr_warn("Bad trampoline accounting at: %p (%pS) (%lx)\n",
2499 				(void *)rec->ip, (void *)rec->ip, rec->flags);
2500 			/* Ftrace is shutting down, return anything */
2501 			return (unsigned long)FTRACE_ADDR;
2502 		}
2503 		return ops->trampoline;
2504 	}
2505 
2506 	if (rec->flags & FTRACE_FL_REGS)
2507 		return (unsigned long)FTRACE_REGS_ADDR;
2508 	else
2509 		return (unsigned long)FTRACE_ADDR;
2510 }
2511 
2512 /**
2513  * ftrace_get_addr_curr - Get the call address that is already there
2514  * @rec:  The ftrace record descriptor
2515  *
2516  * The FTRACE_FL_REGS_EN is set when the record already points to
2517  * a function that saves all the regs. Basically the '_EN' version
2518  * represents the current state of the function.
2519  *
2520  * Returns the address of the trampoline that is currently being called
2521  */
2522 unsigned long ftrace_get_addr_curr(struct dyn_ftrace *rec)
2523 {
2524 	struct ftrace_ops *ops;
2525 	unsigned long addr;
2526 
2527 	/* Direct calls take precedence over trampolines */
2528 	if (rec->flags & FTRACE_FL_DIRECT_EN) {
2529 		addr = ftrace_find_rec_direct(rec->ip);
2530 		if (addr)
2531 			return addr;
2532 		WARN_ON_ONCE(1);
2533 	}
2534 
2535 	/* Trampolines take precedence over regs */
2536 	if (rec->flags & FTRACE_FL_TRAMP_EN) {
2537 		ops = ftrace_find_tramp_ops_curr(rec);
2538 		if (FTRACE_WARN_ON(!ops)) {
2539 			pr_warn("Bad trampoline accounting at: %p (%pS)\n",
2540 				(void *)rec->ip, (void *)rec->ip);
2541 			/* Ftrace is shutting down, return anything */
2542 			return (unsigned long)FTRACE_ADDR;
2543 		}
2544 		return ops->trampoline;
2545 	}
2546 
2547 	if (rec->flags & FTRACE_FL_REGS_EN)
2548 		return (unsigned long)FTRACE_REGS_ADDR;
2549 	else
2550 		return (unsigned long)FTRACE_ADDR;
2551 }
2552 
2553 static int
2554 __ftrace_replace_code(struct dyn_ftrace *rec, bool enable)
2555 {
2556 	unsigned long ftrace_old_addr;
2557 	unsigned long ftrace_addr;
2558 	int ret;
2559 
2560 	ftrace_addr = ftrace_get_addr_new(rec);
2561 
2562 	/* This needs to be done before we call ftrace_update_record */
2563 	ftrace_old_addr = ftrace_get_addr_curr(rec);
2564 
2565 	ret = ftrace_update_record(rec, enable);
2566 
2567 	ftrace_bug_type = FTRACE_BUG_UNKNOWN;
2568 
2569 	switch (ret) {
2570 	case FTRACE_UPDATE_IGNORE:
2571 		return 0;
2572 
2573 	case FTRACE_UPDATE_MAKE_CALL:
2574 		ftrace_bug_type = FTRACE_BUG_CALL;
2575 		return ftrace_make_call(rec, ftrace_addr);
2576 
2577 	case FTRACE_UPDATE_MAKE_NOP:
2578 		ftrace_bug_type = FTRACE_BUG_NOP;
2579 		return ftrace_make_nop(NULL, rec, ftrace_old_addr);
2580 
2581 	case FTRACE_UPDATE_MODIFY_CALL:
2582 		ftrace_bug_type = FTRACE_BUG_UPDATE;
2583 		return ftrace_modify_call(rec, ftrace_old_addr, ftrace_addr);
2584 	}
2585 
2586 	return -1; /* unknown ftrace bug */
2587 }
2588 
2589 void __weak ftrace_replace_code(int mod_flags)
2590 {
2591 	struct dyn_ftrace *rec;
2592 	struct ftrace_page *pg;
2593 	bool enable = mod_flags & FTRACE_MODIFY_ENABLE_FL;
2594 	int schedulable = mod_flags & FTRACE_MODIFY_MAY_SLEEP_FL;
2595 	int failed;
2596 
2597 	if (unlikely(ftrace_disabled))
2598 		return;
2599 
2600 	do_for_each_ftrace_rec(pg, rec) {
2601 
2602 		if (rec->flags & FTRACE_FL_DISABLED)
2603 			continue;
2604 
2605 		failed = __ftrace_replace_code(rec, enable);
2606 		if (failed) {
2607 			ftrace_bug(failed, rec);
2608 			/* Stop processing */
2609 			return;
2610 		}
2611 		if (schedulable)
2612 			cond_resched();
2613 	} while_for_each_ftrace_rec();
2614 }
2615 
2616 struct ftrace_rec_iter {
2617 	struct ftrace_page	*pg;
2618 	int			index;
2619 };
2620 
2621 /**
2622  * ftrace_rec_iter_start - start up iterating over traced functions
2623  *
2624  * Returns an iterator handle that is used to iterate over all
2625  * the records that represent address locations where functions
2626  * are traced.
2627  *
2628  * May return NULL if no records are available.
2629  */
2630 struct ftrace_rec_iter *ftrace_rec_iter_start(void)
2631 {
2632 	/*
2633 	 * We only use a single iterator.
2634 	 * Protected by the ftrace_lock mutex.
2635 	 */
2636 	static struct ftrace_rec_iter ftrace_rec_iter;
2637 	struct ftrace_rec_iter *iter = &ftrace_rec_iter;
2638 
2639 	iter->pg = ftrace_pages_start;
2640 	iter->index = 0;
2641 
2642 	/* Could have empty pages */
2643 	while (iter->pg && !iter->pg->index)
2644 		iter->pg = iter->pg->next;
2645 
2646 	if (!iter->pg)
2647 		return NULL;
2648 
2649 	return iter;
2650 }
2651 
2652 /**
2653  * ftrace_rec_iter_next - get the next record to process.
2654  * @iter: The handle to the iterator.
2655  *
2656  * Returns the next iterator after the given iterator @iter.
2657  */
2658 struct ftrace_rec_iter *ftrace_rec_iter_next(struct ftrace_rec_iter *iter)
2659 {
2660 	iter->index++;
2661 
2662 	if (iter->index >= iter->pg->index) {
2663 		iter->pg = iter->pg->next;
2664 		iter->index = 0;
2665 
2666 		/* Could have empty pages */
2667 		while (iter->pg && !iter->pg->index)
2668 			iter->pg = iter->pg->next;
2669 	}
2670 
2671 	if (!iter->pg)
2672 		return NULL;
2673 
2674 	return iter;
2675 }
2676 
2677 /**
2678  * ftrace_rec_iter_record - get the record at the iterator location
2679  * @iter: The current iterator location
2680  *
2681  * Returns the record that the current @iter is at.
2682  */
2683 struct dyn_ftrace *ftrace_rec_iter_record(struct ftrace_rec_iter *iter)
2684 {
2685 	return &iter->pg->records[iter->index];
2686 }
2687 
2688 static int
2689 ftrace_nop_initialize(struct module *mod, struct dyn_ftrace *rec)
2690 {
2691 	int ret;
2692 
2693 	if (unlikely(ftrace_disabled))
2694 		return 0;
2695 
2696 	ret = ftrace_init_nop(mod, rec);
2697 	if (ret) {
2698 		ftrace_bug_type = FTRACE_BUG_INIT;
2699 		ftrace_bug(ret, rec);
2700 		return 0;
2701 	}
2702 	return 1;
2703 }
2704 
2705 /*
2706  * archs can override this function if they must do something
2707  * before the modifying code is performed.
2708  */
2709 void __weak ftrace_arch_code_modify_prepare(void)
2710 {
2711 }
2712 
2713 /*
2714  * archs can override this function if they must do something
2715  * after the modifying code is performed.
2716  */
2717 void __weak ftrace_arch_code_modify_post_process(void)
2718 {
2719 }
2720 
2721 void ftrace_modify_all_code(int command)
2722 {
2723 	int update = command & FTRACE_UPDATE_TRACE_FUNC;
2724 	int mod_flags = 0;
2725 	int err = 0;
2726 
2727 	if (command & FTRACE_MAY_SLEEP)
2728 		mod_flags = FTRACE_MODIFY_MAY_SLEEP_FL;
2729 
2730 	/*
2731 	 * If the ftrace_caller calls a ftrace_ops func directly,
2732 	 * we need to make sure that it only traces functions it
2733 	 * expects to trace. When doing the switch of functions,
2734 	 * we need to update to the ftrace_ops_list_func first
2735 	 * before the transition between old and new calls are set,
2736 	 * as the ftrace_ops_list_func will check the ops hashes
2737 	 * to make sure the ops are having the right functions
2738 	 * traced.
2739 	 */
2740 	if (update) {
2741 		err = ftrace_update_ftrace_func(ftrace_ops_list_func);
2742 		if (FTRACE_WARN_ON(err))
2743 			return;
2744 	}
2745 
2746 	if (command & FTRACE_UPDATE_CALLS)
2747 		ftrace_replace_code(mod_flags | FTRACE_MODIFY_ENABLE_FL);
2748 	else if (command & FTRACE_DISABLE_CALLS)
2749 		ftrace_replace_code(mod_flags);
2750 
2751 	if (update && ftrace_trace_function != ftrace_ops_list_func) {
2752 		function_trace_op = set_function_trace_op;
2753 		smp_wmb();
2754 		/* If irqs are disabled, we are in stop machine */
2755 		if (!irqs_disabled())
2756 			smp_call_function(ftrace_sync_ipi, NULL, 1);
2757 		err = ftrace_update_ftrace_func(ftrace_trace_function);
2758 		if (FTRACE_WARN_ON(err))
2759 			return;
2760 	}
2761 
2762 	if (command & FTRACE_START_FUNC_RET)
2763 		err = ftrace_enable_ftrace_graph_caller();
2764 	else if (command & FTRACE_STOP_FUNC_RET)
2765 		err = ftrace_disable_ftrace_graph_caller();
2766 	FTRACE_WARN_ON(err);
2767 }
2768 
2769 static int __ftrace_modify_code(void *data)
2770 {
2771 	int *command = data;
2772 
2773 	ftrace_modify_all_code(*command);
2774 
2775 	return 0;
2776 }
2777 
2778 /**
2779  * ftrace_run_stop_machine - go back to the stop machine method
2780  * @command: The command to tell ftrace what to do
2781  *
2782  * If an arch needs to fall back to the stop machine method, the
2783  * it can call this function.
2784  */
2785 void ftrace_run_stop_machine(int command)
2786 {
2787 	stop_machine(__ftrace_modify_code, &command, NULL);
2788 }
2789 
2790 /**
2791  * arch_ftrace_update_code - modify the code to trace or not trace
2792  * @command: The command that needs to be done
2793  *
2794  * Archs can override this function if it does not need to
2795  * run stop_machine() to modify code.
2796  */
2797 void __weak arch_ftrace_update_code(int command)
2798 {
2799 	ftrace_run_stop_machine(command);
2800 }
2801 
2802 static void ftrace_run_update_code(int command)
2803 {
2804 	ftrace_arch_code_modify_prepare();
2805 
2806 	/*
2807 	 * By default we use stop_machine() to modify the code.
2808 	 * But archs can do what ever they want as long as it
2809 	 * is safe. The stop_machine() is the safest, but also
2810 	 * produces the most overhead.
2811 	 */
2812 	arch_ftrace_update_code(command);
2813 
2814 	ftrace_arch_code_modify_post_process();
2815 }
2816 
2817 static void ftrace_run_modify_code(struct ftrace_ops *ops, int command,
2818 				   struct ftrace_ops_hash *old_hash)
2819 {
2820 	ops->flags |= FTRACE_OPS_FL_MODIFYING;
2821 	ops->old_hash.filter_hash = old_hash->filter_hash;
2822 	ops->old_hash.notrace_hash = old_hash->notrace_hash;
2823 	ftrace_run_update_code(command);
2824 	ops->old_hash.filter_hash = NULL;
2825 	ops->old_hash.notrace_hash = NULL;
2826 	ops->flags &= ~FTRACE_OPS_FL_MODIFYING;
2827 }
2828 
2829 static ftrace_func_t saved_ftrace_func;
2830 static int ftrace_start_up;
2831 
2832 void __weak arch_ftrace_trampoline_free(struct ftrace_ops *ops)
2833 {
2834 }
2835 
2836 /* List of trace_ops that have allocated trampolines */
2837 static LIST_HEAD(ftrace_ops_trampoline_list);
2838 
2839 static void ftrace_add_trampoline_to_kallsyms(struct ftrace_ops *ops)
2840 {
2841 	lockdep_assert_held(&ftrace_lock);
2842 	list_add_rcu(&ops->list, &ftrace_ops_trampoline_list);
2843 }
2844 
2845 static void ftrace_remove_trampoline_from_kallsyms(struct ftrace_ops *ops)
2846 {
2847 	lockdep_assert_held(&ftrace_lock);
2848 	list_del_rcu(&ops->list);
2849 	synchronize_rcu();
2850 }
2851 
2852 /*
2853  * "__builtin__ftrace" is used as a module name in /proc/kallsyms for symbols
2854  * for pages allocated for ftrace purposes, even though "__builtin__ftrace" is
2855  * not a module.
2856  */
2857 #define FTRACE_TRAMPOLINE_MOD "__builtin__ftrace"
2858 #define FTRACE_TRAMPOLINE_SYM "ftrace_trampoline"
2859 
2860 static void ftrace_trampoline_free(struct ftrace_ops *ops)
2861 {
2862 	if (ops && (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP) &&
2863 	    ops->trampoline) {
2864 		/*
2865 		 * Record the text poke event before the ksymbol unregister
2866 		 * event.
2867 		 */
2868 		perf_event_text_poke((void *)ops->trampoline,
2869 				     (void *)ops->trampoline,
2870 				     ops->trampoline_size, NULL, 0);
2871 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
2872 				   ops->trampoline, ops->trampoline_size,
2873 				   true, FTRACE_TRAMPOLINE_SYM);
2874 		/* Remove from kallsyms after the perf events */
2875 		ftrace_remove_trampoline_from_kallsyms(ops);
2876 	}
2877 
2878 	arch_ftrace_trampoline_free(ops);
2879 }
2880 
2881 static void ftrace_startup_enable(int command)
2882 {
2883 	if (saved_ftrace_func != ftrace_trace_function) {
2884 		saved_ftrace_func = ftrace_trace_function;
2885 		command |= FTRACE_UPDATE_TRACE_FUNC;
2886 	}
2887 
2888 	if (!command || !ftrace_enabled)
2889 		return;
2890 
2891 	ftrace_run_update_code(command);
2892 }
2893 
2894 static void ftrace_startup_all(int command)
2895 {
2896 	update_all_ops = true;
2897 	ftrace_startup_enable(command);
2898 	update_all_ops = false;
2899 }
2900 
2901 int ftrace_startup(struct ftrace_ops *ops, int command)
2902 {
2903 	int ret;
2904 
2905 	if (unlikely(ftrace_disabled))
2906 		return -ENODEV;
2907 
2908 	ret = __register_ftrace_function(ops);
2909 	if (ret)
2910 		return ret;
2911 
2912 	ftrace_start_up++;
2913 
2914 	/*
2915 	 * Note that ftrace probes uses this to start up
2916 	 * and modify functions it will probe. But we still
2917 	 * set the ADDING flag for modification, as probes
2918 	 * do not have trampolines. If they add them in the
2919 	 * future, then the probes will need to distinguish
2920 	 * between adding and updating probes.
2921 	 */
2922 	ops->flags |= FTRACE_OPS_FL_ENABLED | FTRACE_OPS_FL_ADDING;
2923 
2924 	ret = ftrace_hash_ipmodify_enable(ops);
2925 	if (ret < 0) {
2926 		/* Rollback registration process */
2927 		__unregister_ftrace_function(ops);
2928 		ftrace_start_up--;
2929 		ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2930 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2931 			ftrace_trampoline_free(ops);
2932 		return ret;
2933 	}
2934 
2935 	if (ftrace_hash_rec_enable(ops, 1))
2936 		command |= FTRACE_UPDATE_CALLS;
2937 
2938 	ftrace_startup_enable(command);
2939 
2940 	ops->flags &= ~FTRACE_OPS_FL_ADDING;
2941 
2942 	return 0;
2943 }
2944 
2945 int ftrace_shutdown(struct ftrace_ops *ops, int command)
2946 {
2947 	int ret;
2948 
2949 	if (unlikely(ftrace_disabled))
2950 		return -ENODEV;
2951 
2952 	ret = __unregister_ftrace_function(ops);
2953 	if (ret)
2954 		return ret;
2955 
2956 	ftrace_start_up--;
2957 	/*
2958 	 * Just warn in case of unbalance, no need to kill ftrace, it's not
2959 	 * critical but the ftrace_call callers may be never nopped again after
2960 	 * further ftrace uses.
2961 	 */
2962 	WARN_ON_ONCE(ftrace_start_up < 0);
2963 
2964 	/* Disabling ipmodify never fails */
2965 	ftrace_hash_ipmodify_disable(ops);
2966 
2967 	if (ftrace_hash_rec_disable(ops, 1))
2968 		command |= FTRACE_UPDATE_CALLS;
2969 
2970 	ops->flags &= ~FTRACE_OPS_FL_ENABLED;
2971 
2972 	if (saved_ftrace_func != ftrace_trace_function) {
2973 		saved_ftrace_func = ftrace_trace_function;
2974 		command |= FTRACE_UPDATE_TRACE_FUNC;
2975 	}
2976 
2977 	if (!command || !ftrace_enabled) {
2978 		/*
2979 		 * If these are dynamic or per_cpu ops, they still
2980 		 * need their data freed. Since, function tracing is
2981 		 * not currently active, we can just free them
2982 		 * without synchronizing all CPUs.
2983 		 */
2984 		if (ops->flags & FTRACE_OPS_FL_DYNAMIC)
2985 			goto free_ops;
2986 
2987 		return 0;
2988 	}
2989 
2990 	/*
2991 	 * If the ops uses a trampoline, then it needs to be
2992 	 * tested first on update.
2993 	 */
2994 	ops->flags |= FTRACE_OPS_FL_REMOVING;
2995 	removed_ops = ops;
2996 
2997 	/* The trampoline logic checks the old hashes */
2998 	ops->old_hash.filter_hash = ops->func_hash->filter_hash;
2999 	ops->old_hash.notrace_hash = ops->func_hash->notrace_hash;
3000 
3001 	ftrace_run_update_code(command);
3002 
3003 	/*
3004 	 * If there's no more ops registered with ftrace, run a
3005 	 * sanity check to make sure all rec flags are cleared.
3006 	 */
3007 	if (rcu_dereference_protected(ftrace_ops_list,
3008 			lockdep_is_held(&ftrace_lock)) == &ftrace_list_end) {
3009 		struct ftrace_page *pg;
3010 		struct dyn_ftrace *rec;
3011 
3012 		do_for_each_ftrace_rec(pg, rec) {
3013 			if (FTRACE_WARN_ON_ONCE(rec->flags & ~FTRACE_FL_DISABLED))
3014 				pr_warn("  %pS flags:%lx\n",
3015 					(void *)rec->ip, rec->flags);
3016 		} while_for_each_ftrace_rec();
3017 	}
3018 
3019 	ops->old_hash.filter_hash = NULL;
3020 	ops->old_hash.notrace_hash = NULL;
3021 
3022 	removed_ops = NULL;
3023 	ops->flags &= ~FTRACE_OPS_FL_REMOVING;
3024 
3025 	/*
3026 	 * Dynamic ops may be freed, we must make sure that all
3027 	 * callers are done before leaving this function.
3028 	 * The same goes for freeing the per_cpu data of the per_cpu
3029 	 * ops.
3030 	 */
3031 	if (ops->flags & FTRACE_OPS_FL_DYNAMIC) {
3032 		/*
3033 		 * We need to do a hard force of sched synchronization.
3034 		 * This is because we use preempt_disable() to do RCU, but
3035 		 * the function tracers can be called where RCU is not watching
3036 		 * (like before user_exit()). We can not rely on the RCU
3037 		 * infrastructure to do the synchronization, thus we must do it
3038 		 * ourselves.
3039 		 */
3040 		synchronize_rcu_tasks_rude();
3041 
3042 		/*
3043 		 * When the kernel is preemptive, tasks can be preempted
3044 		 * while on a ftrace trampoline. Just scheduling a task on
3045 		 * a CPU is not good enough to flush them. Calling
3046 		 * synchronize_rcu_tasks() will wait for those tasks to
3047 		 * execute and either schedule voluntarily or enter user space.
3048 		 */
3049 		if (IS_ENABLED(CONFIG_PREEMPTION))
3050 			synchronize_rcu_tasks();
3051 
3052  free_ops:
3053 		ftrace_trampoline_free(ops);
3054 	}
3055 
3056 	return 0;
3057 }
3058 
3059 static u64		ftrace_update_time;
3060 unsigned long		ftrace_update_tot_cnt;
3061 unsigned long		ftrace_number_of_pages;
3062 unsigned long		ftrace_number_of_groups;
3063 
3064 static inline int ops_traces_mod(struct ftrace_ops *ops)
3065 {
3066 	/*
3067 	 * Filter_hash being empty will default to trace module.
3068 	 * But notrace hash requires a test of individual module functions.
3069 	 */
3070 	return ftrace_hash_empty(ops->func_hash->filter_hash) &&
3071 		ftrace_hash_empty(ops->func_hash->notrace_hash);
3072 }
3073 
3074 /*
3075  * Check if the current ops references the record.
3076  *
3077  * If the ops traces all functions, then it was already accounted for.
3078  * If the ops does not trace the current record function, skip it.
3079  * If the ops ignores the function via notrace filter, skip it.
3080  */
3081 static inline bool
3082 ops_references_rec(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3083 {
3084 	/* If ops isn't enabled, ignore it */
3085 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
3086 		return false;
3087 
3088 	/* If ops traces all then it includes this function */
3089 	if (ops_traces_mod(ops))
3090 		return true;
3091 
3092 	/* The function must be in the filter */
3093 	if (!ftrace_hash_empty(ops->func_hash->filter_hash) &&
3094 	    !__ftrace_lookup_ip(ops->func_hash->filter_hash, rec->ip))
3095 		return false;
3096 
3097 	/* If in notrace hash, we ignore it too */
3098 	if (ftrace_lookup_ip(ops->func_hash->notrace_hash, rec->ip))
3099 		return false;
3100 
3101 	return true;
3102 }
3103 
3104 static int ftrace_update_code(struct module *mod, struct ftrace_page *new_pgs)
3105 {
3106 	bool init_nop = ftrace_need_init_nop();
3107 	struct ftrace_page *pg;
3108 	struct dyn_ftrace *p;
3109 	u64 start, stop;
3110 	unsigned long update_cnt = 0;
3111 	unsigned long rec_flags = 0;
3112 	int i;
3113 
3114 	start = ftrace_now(raw_smp_processor_id());
3115 
3116 	/*
3117 	 * When a module is loaded, this function is called to convert
3118 	 * the calls to mcount in its text to nops, and also to create
3119 	 * an entry in the ftrace data. Now, if ftrace is activated
3120 	 * after this call, but before the module sets its text to
3121 	 * read-only, the modification of enabling ftrace can fail if
3122 	 * the read-only is done while ftrace is converting the calls.
3123 	 * To prevent this, the module's records are set as disabled
3124 	 * and will be enabled after the call to set the module's text
3125 	 * to read-only.
3126 	 */
3127 	if (mod)
3128 		rec_flags |= FTRACE_FL_DISABLED;
3129 
3130 	for (pg = new_pgs; pg; pg = pg->next) {
3131 
3132 		for (i = 0; i < pg->index; i++) {
3133 
3134 			/* If something went wrong, bail without enabling anything */
3135 			if (unlikely(ftrace_disabled))
3136 				return -1;
3137 
3138 			p = &pg->records[i];
3139 			p->flags = rec_flags;
3140 
3141 			/*
3142 			 * Do the initial record conversion from mcount jump
3143 			 * to the NOP instructions.
3144 			 */
3145 			if (init_nop && !ftrace_nop_initialize(mod, p))
3146 				break;
3147 
3148 			update_cnt++;
3149 		}
3150 	}
3151 
3152 	stop = ftrace_now(raw_smp_processor_id());
3153 	ftrace_update_time = stop - start;
3154 	ftrace_update_tot_cnt += update_cnt;
3155 
3156 	return 0;
3157 }
3158 
3159 static int ftrace_allocate_records(struct ftrace_page *pg, int count)
3160 {
3161 	int order;
3162 	int pages;
3163 	int cnt;
3164 
3165 	if (WARN_ON(!count))
3166 		return -EINVAL;
3167 
3168 	/* We want to fill as much as possible, with no empty pages */
3169 	pages = DIV_ROUND_UP(count, ENTRIES_PER_PAGE);
3170 	order = fls(pages) - 1;
3171 
3172  again:
3173 	pg->records = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
3174 
3175 	if (!pg->records) {
3176 		/* if we can't allocate this size, try something smaller */
3177 		if (!order)
3178 			return -ENOMEM;
3179 		order >>= 1;
3180 		goto again;
3181 	}
3182 
3183 	ftrace_number_of_pages += 1 << order;
3184 	ftrace_number_of_groups++;
3185 
3186 	cnt = (PAGE_SIZE << order) / ENTRY_SIZE;
3187 	pg->order = order;
3188 
3189 	if (cnt > count)
3190 		cnt = count;
3191 
3192 	return cnt;
3193 }
3194 
3195 static struct ftrace_page *
3196 ftrace_allocate_pages(unsigned long num_to_init)
3197 {
3198 	struct ftrace_page *start_pg;
3199 	struct ftrace_page *pg;
3200 	int cnt;
3201 
3202 	if (!num_to_init)
3203 		return NULL;
3204 
3205 	start_pg = pg = kzalloc(sizeof(*pg), GFP_KERNEL);
3206 	if (!pg)
3207 		return NULL;
3208 
3209 	/*
3210 	 * Try to allocate as much as possible in one continues
3211 	 * location that fills in all of the space. We want to
3212 	 * waste as little space as possible.
3213 	 */
3214 	for (;;) {
3215 		cnt = ftrace_allocate_records(pg, num_to_init);
3216 		if (cnt < 0)
3217 			goto free_pages;
3218 
3219 		num_to_init -= cnt;
3220 		if (!num_to_init)
3221 			break;
3222 
3223 		pg->next = kzalloc(sizeof(*pg), GFP_KERNEL);
3224 		if (!pg->next)
3225 			goto free_pages;
3226 
3227 		pg = pg->next;
3228 	}
3229 
3230 	return start_pg;
3231 
3232  free_pages:
3233 	pg = start_pg;
3234 	while (pg) {
3235 		if (pg->records) {
3236 			free_pages((unsigned long)pg->records, pg->order);
3237 			ftrace_number_of_pages -= 1 << pg->order;
3238 		}
3239 		start_pg = pg->next;
3240 		kfree(pg);
3241 		pg = start_pg;
3242 		ftrace_number_of_groups--;
3243 	}
3244 	pr_info("ftrace: FAILED to allocate memory for functions\n");
3245 	return NULL;
3246 }
3247 
3248 #define FTRACE_BUFF_MAX (KSYM_SYMBOL_LEN+4) /* room for wildcards */
3249 
3250 struct ftrace_iterator {
3251 	loff_t				pos;
3252 	loff_t				func_pos;
3253 	loff_t				mod_pos;
3254 	struct ftrace_page		*pg;
3255 	struct dyn_ftrace		*func;
3256 	struct ftrace_func_probe	*probe;
3257 	struct ftrace_func_entry	*probe_entry;
3258 	struct trace_parser		parser;
3259 	struct ftrace_hash		*hash;
3260 	struct ftrace_ops		*ops;
3261 	struct trace_array		*tr;
3262 	struct list_head		*mod_list;
3263 	int				pidx;
3264 	int				idx;
3265 	unsigned			flags;
3266 };
3267 
3268 static void *
3269 t_probe_next(struct seq_file *m, loff_t *pos)
3270 {
3271 	struct ftrace_iterator *iter = m->private;
3272 	struct trace_array *tr = iter->ops->private;
3273 	struct list_head *func_probes;
3274 	struct ftrace_hash *hash;
3275 	struct list_head *next;
3276 	struct hlist_node *hnd = NULL;
3277 	struct hlist_head *hhd;
3278 	int size;
3279 
3280 	(*pos)++;
3281 	iter->pos = *pos;
3282 
3283 	if (!tr)
3284 		return NULL;
3285 
3286 	func_probes = &tr->func_probes;
3287 	if (list_empty(func_probes))
3288 		return NULL;
3289 
3290 	if (!iter->probe) {
3291 		next = func_probes->next;
3292 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3293 	}
3294 
3295 	if (iter->probe_entry)
3296 		hnd = &iter->probe_entry->hlist;
3297 
3298 	hash = iter->probe->ops.func_hash->filter_hash;
3299 
3300 	/*
3301 	 * A probe being registered may temporarily have an empty hash
3302 	 * and it's at the end of the func_probes list.
3303 	 */
3304 	if (!hash || hash == EMPTY_HASH)
3305 		return NULL;
3306 
3307 	size = 1 << hash->size_bits;
3308 
3309  retry:
3310 	if (iter->pidx >= size) {
3311 		if (iter->probe->list.next == func_probes)
3312 			return NULL;
3313 		next = iter->probe->list.next;
3314 		iter->probe = list_entry(next, struct ftrace_func_probe, list);
3315 		hash = iter->probe->ops.func_hash->filter_hash;
3316 		size = 1 << hash->size_bits;
3317 		iter->pidx = 0;
3318 	}
3319 
3320 	hhd = &hash->buckets[iter->pidx];
3321 
3322 	if (hlist_empty(hhd)) {
3323 		iter->pidx++;
3324 		hnd = NULL;
3325 		goto retry;
3326 	}
3327 
3328 	if (!hnd)
3329 		hnd = hhd->first;
3330 	else {
3331 		hnd = hnd->next;
3332 		if (!hnd) {
3333 			iter->pidx++;
3334 			goto retry;
3335 		}
3336 	}
3337 
3338 	if (WARN_ON_ONCE(!hnd))
3339 		return NULL;
3340 
3341 	iter->probe_entry = hlist_entry(hnd, struct ftrace_func_entry, hlist);
3342 
3343 	return iter;
3344 }
3345 
3346 static void *t_probe_start(struct seq_file *m, loff_t *pos)
3347 {
3348 	struct ftrace_iterator *iter = m->private;
3349 	void *p = NULL;
3350 	loff_t l;
3351 
3352 	if (!(iter->flags & FTRACE_ITER_DO_PROBES))
3353 		return NULL;
3354 
3355 	if (iter->mod_pos > *pos)
3356 		return NULL;
3357 
3358 	iter->probe = NULL;
3359 	iter->probe_entry = NULL;
3360 	iter->pidx = 0;
3361 	for (l = 0; l <= (*pos - iter->mod_pos); ) {
3362 		p = t_probe_next(m, &l);
3363 		if (!p)
3364 			break;
3365 	}
3366 	if (!p)
3367 		return NULL;
3368 
3369 	/* Only set this if we have an item */
3370 	iter->flags |= FTRACE_ITER_PROBE;
3371 
3372 	return iter;
3373 }
3374 
3375 static int
3376 t_probe_show(struct seq_file *m, struct ftrace_iterator *iter)
3377 {
3378 	struct ftrace_func_entry *probe_entry;
3379 	struct ftrace_probe_ops *probe_ops;
3380 	struct ftrace_func_probe *probe;
3381 
3382 	probe = iter->probe;
3383 	probe_entry = iter->probe_entry;
3384 
3385 	if (WARN_ON_ONCE(!probe || !probe_entry))
3386 		return -EIO;
3387 
3388 	probe_ops = probe->probe_ops;
3389 
3390 	if (probe_ops->print)
3391 		return probe_ops->print(m, probe_entry->ip, probe_ops, probe->data);
3392 
3393 	seq_printf(m, "%ps:%ps\n", (void *)probe_entry->ip,
3394 		   (void *)probe_ops->func);
3395 
3396 	return 0;
3397 }
3398 
3399 static void *
3400 t_mod_next(struct seq_file *m, loff_t *pos)
3401 {
3402 	struct ftrace_iterator *iter = m->private;
3403 	struct trace_array *tr = iter->tr;
3404 
3405 	(*pos)++;
3406 	iter->pos = *pos;
3407 
3408 	iter->mod_list = iter->mod_list->next;
3409 
3410 	if (iter->mod_list == &tr->mod_trace ||
3411 	    iter->mod_list == &tr->mod_notrace) {
3412 		iter->flags &= ~FTRACE_ITER_MOD;
3413 		return NULL;
3414 	}
3415 
3416 	iter->mod_pos = *pos;
3417 
3418 	return iter;
3419 }
3420 
3421 static void *t_mod_start(struct seq_file *m, loff_t *pos)
3422 {
3423 	struct ftrace_iterator *iter = m->private;
3424 	void *p = NULL;
3425 	loff_t l;
3426 
3427 	if (iter->func_pos > *pos)
3428 		return NULL;
3429 
3430 	iter->mod_pos = iter->func_pos;
3431 
3432 	/* probes are only available if tr is set */
3433 	if (!iter->tr)
3434 		return NULL;
3435 
3436 	for (l = 0; l <= (*pos - iter->func_pos); ) {
3437 		p = t_mod_next(m, &l);
3438 		if (!p)
3439 			break;
3440 	}
3441 	if (!p) {
3442 		iter->flags &= ~FTRACE_ITER_MOD;
3443 		return t_probe_start(m, pos);
3444 	}
3445 
3446 	/* Only set this if we have an item */
3447 	iter->flags |= FTRACE_ITER_MOD;
3448 
3449 	return iter;
3450 }
3451 
3452 static int
3453 t_mod_show(struct seq_file *m, struct ftrace_iterator *iter)
3454 {
3455 	struct ftrace_mod_load *ftrace_mod;
3456 	struct trace_array *tr = iter->tr;
3457 
3458 	if (WARN_ON_ONCE(!iter->mod_list) ||
3459 			 iter->mod_list == &tr->mod_trace ||
3460 			 iter->mod_list == &tr->mod_notrace)
3461 		return -EIO;
3462 
3463 	ftrace_mod = list_entry(iter->mod_list, struct ftrace_mod_load, list);
3464 
3465 	if (ftrace_mod->func)
3466 		seq_printf(m, "%s", ftrace_mod->func);
3467 	else
3468 		seq_putc(m, '*');
3469 
3470 	seq_printf(m, ":mod:%s\n", ftrace_mod->module);
3471 
3472 	return 0;
3473 }
3474 
3475 static void *
3476 t_func_next(struct seq_file *m, loff_t *pos)
3477 {
3478 	struct ftrace_iterator *iter = m->private;
3479 	struct dyn_ftrace *rec = NULL;
3480 
3481 	(*pos)++;
3482 
3483  retry:
3484 	if (iter->idx >= iter->pg->index) {
3485 		if (iter->pg->next) {
3486 			iter->pg = iter->pg->next;
3487 			iter->idx = 0;
3488 			goto retry;
3489 		}
3490 	} else {
3491 		rec = &iter->pg->records[iter->idx++];
3492 		if (((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3493 		     !ftrace_lookup_ip(iter->hash, rec->ip)) ||
3494 
3495 		    ((iter->flags & FTRACE_ITER_ENABLED) &&
3496 		     !(rec->flags & FTRACE_FL_ENABLED))) {
3497 
3498 			rec = NULL;
3499 			goto retry;
3500 		}
3501 	}
3502 
3503 	if (!rec)
3504 		return NULL;
3505 
3506 	iter->pos = iter->func_pos = *pos;
3507 	iter->func = rec;
3508 
3509 	return iter;
3510 }
3511 
3512 static void *
3513 t_next(struct seq_file *m, void *v, loff_t *pos)
3514 {
3515 	struct ftrace_iterator *iter = m->private;
3516 	loff_t l = *pos; /* t_probe_start() must use original pos */
3517 	void *ret;
3518 
3519 	if (unlikely(ftrace_disabled))
3520 		return NULL;
3521 
3522 	if (iter->flags & FTRACE_ITER_PROBE)
3523 		return t_probe_next(m, pos);
3524 
3525 	if (iter->flags & FTRACE_ITER_MOD)
3526 		return t_mod_next(m, pos);
3527 
3528 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3529 		/* next must increment pos, and t_probe_start does not */
3530 		(*pos)++;
3531 		return t_mod_start(m, &l);
3532 	}
3533 
3534 	ret = t_func_next(m, pos);
3535 
3536 	if (!ret)
3537 		return t_mod_start(m, &l);
3538 
3539 	return ret;
3540 }
3541 
3542 static void reset_iter_read(struct ftrace_iterator *iter)
3543 {
3544 	iter->pos = 0;
3545 	iter->func_pos = 0;
3546 	iter->flags &= ~(FTRACE_ITER_PRINTALL | FTRACE_ITER_PROBE | FTRACE_ITER_MOD);
3547 }
3548 
3549 static void *t_start(struct seq_file *m, loff_t *pos)
3550 {
3551 	struct ftrace_iterator *iter = m->private;
3552 	void *p = NULL;
3553 	loff_t l;
3554 
3555 	mutex_lock(&ftrace_lock);
3556 
3557 	if (unlikely(ftrace_disabled))
3558 		return NULL;
3559 
3560 	/*
3561 	 * If an lseek was done, then reset and start from beginning.
3562 	 */
3563 	if (*pos < iter->pos)
3564 		reset_iter_read(iter);
3565 
3566 	/*
3567 	 * For set_ftrace_filter reading, if we have the filter
3568 	 * off, we can short cut and just print out that all
3569 	 * functions are enabled.
3570 	 */
3571 	if ((iter->flags & (FTRACE_ITER_FILTER | FTRACE_ITER_NOTRACE)) &&
3572 	    ftrace_hash_empty(iter->hash)) {
3573 		iter->func_pos = 1; /* Account for the message */
3574 		if (*pos > 0)
3575 			return t_mod_start(m, pos);
3576 		iter->flags |= FTRACE_ITER_PRINTALL;
3577 		/* reset in case of seek/pread */
3578 		iter->flags &= ~FTRACE_ITER_PROBE;
3579 		return iter;
3580 	}
3581 
3582 	if (iter->flags & FTRACE_ITER_MOD)
3583 		return t_mod_start(m, pos);
3584 
3585 	/*
3586 	 * Unfortunately, we need to restart at ftrace_pages_start
3587 	 * every time we let go of the ftrace_mutex. This is because
3588 	 * those pointers can change without the lock.
3589 	 */
3590 	iter->pg = ftrace_pages_start;
3591 	iter->idx = 0;
3592 	for (l = 0; l <= *pos; ) {
3593 		p = t_func_next(m, &l);
3594 		if (!p)
3595 			break;
3596 	}
3597 
3598 	if (!p)
3599 		return t_mod_start(m, pos);
3600 
3601 	return iter;
3602 }
3603 
3604 static void t_stop(struct seq_file *m, void *p)
3605 {
3606 	mutex_unlock(&ftrace_lock);
3607 }
3608 
3609 void * __weak
3610 arch_ftrace_trampoline_func(struct ftrace_ops *ops, struct dyn_ftrace *rec)
3611 {
3612 	return NULL;
3613 }
3614 
3615 static void add_trampoline_func(struct seq_file *m, struct ftrace_ops *ops,
3616 				struct dyn_ftrace *rec)
3617 {
3618 	void *ptr;
3619 
3620 	ptr = arch_ftrace_trampoline_func(ops, rec);
3621 	if (ptr)
3622 		seq_printf(m, " ->%pS", ptr);
3623 }
3624 
3625 #ifdef FTRACE_MCOUNT_MAX_OFFSET
3626 /*
3627  * Weak functions can still have an mcount/fentry that is saved in
3628  * the __mcount_loc section. These can be detected by having a
3629  * symbol offset of greater than FTRACE_MCOUNT_MAX_OFFSET, as the
3630  * symbol found by kallsyms is not the function that the mcount/fentry
3631  * is part of. The offset is much greater in these cases.
3632  *
3633  * Test the record to make sure that the ip points to a valid kallsyms
3634  * and if not, mark it disabled.
3635  */
3636 static int test_for_valid_rec(struct dyn_ftrace *rec)
3637 {
3638 	char str[KSYM_SYMBOL_LEN];
3639 	unsigned long offset;
3640 	const char *ret;
3641 
3642 	ret = kallsyms_lookup(rec->ip, NULL, &offset, NULL, str);
3643 
3644 	/* Weak functions can cause invalid addresses */
3645 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3646 		rec->flags |= FTRACE_FL_DISABLED;
3647 		return 0;
3648 	}
3649 	return 1;
3650 }
3651 
3652 static struct workqueue_struct *ftrace_check_wq __initdata;
3653 static struct work_struct ftrace_check_work __initdata;
3654 
3655 /*
3656  * Scan all the mcount/fentry entries to make sure they are valid.
3657  */
3658 static __init void ftrace_check_work_func(struct work_struct *work)
3659 {
3660 	struct ftrace_page *pg;
3661 	struct dyn_ftrace *rec;
3662 
3663 	mutex_lock(&ftrace_lock);
3664 	do_for_each_ftrace_rec(pg, rec) {
3665 		test_for_valid_rec(rec);
3666 	} while_for_each_ftrace_rec();
3667 	mutex_unlock(&ftrace_lock);
3668 }
3669 
3670 static int __init ftrace_check_for_weak_functions(void)
3671 {
3672 	INIT_WORK(&ftrace_check_work, ftrace_check_work_func);
3673 
3674 	ftrace_check_wq = alloc_workqueue("ftrace_check_wq", WQ_UNBOUND, 0);
3675 
3676 	queue_work(ftrace_check_wq, &ftrace_check_work);
3677 	return 0;
3678 }
3679 
3680 static int __init ftrace_check_sync(void)
3681 {
3682 	/* Make sure the ftrace_check updates are finished */
3683 	if (ftrace_check_wq)
3684 		destroy_workqueue(ftrace_check_wq);
3685 	return 0;
3686 }
3687 
3688 late_initcall_sync(ftrace_check_sync);
3689 subsys_initcall(ftrace_check_for_weak_functions);
3690 
3691 static int print_rec(struct seq_file *m, unsigned long ip)
3692 {
3693 	unsigned long offset;
3694 	char str[KSYM_SYMBOL_LEN];
3695 	char *modname;
3696 	const char *ret;
3697 
3698 	ret = kallsyms_lookup(ip, NULL, &offset, &modname, str);
3699 	/* Weak functions can cause invalid addresses */
3700 	if (!ret || offset > FTRACE_MCOUNT_MAX_OFFSET) {
3701 		snprintf(str, KSYM_SYMBOL_LEN, "%s_%ld",
3702 			 FTRACE_INVALID_FUNCTION, offset);
3703 		ret = NULL;
3704 	}
3705 
3706 	seq_puts(m, str);
3707 	if (modname)
3708 		seq_printf(m, " [%s]", modname);
3709 	return ret == NULL ? -1 : 0;
3710 }
3711 #else
3712 static inline int test_for_valid_rec(struct dyn_ftrace *rec)
3713 {
3714 	return 1;
3715 }
3716 
3717 static inline int print_rec(struct seq_file *m, unsigned long ip)
3718 {
3719 	seq_printf(m, "%ps", (void *)ip);
3720 	return 0;
3721 }
3722 #endif
3723 
3724 static int t_show(struct seq_file *m, void *v)
3725 {
3726 	struct ftrace_iterator *iter = m->private;
3727 	struct dyn_ftrace *rec;
3728 
3729 	if (iter->flags & FTRACE_ITER_PROBE)
3730 		return t_probe_show(m, iter);
3731 
3732 	if (iter->flags & FTRACE_ITER_MOD)
3733 		return t_mod_show(m, iter);
3734 
3735 	if (iter->flags & FTRACE_ITER_PRINTALL) {
3736 		if (iter->flags & FTRACE_ITER_NOTRACE)
3737 			seq_puts(m, "#### no functions disabled ####\n");
3738 		else
3739 			seq_puts(m, "#### all functions enabled ####\n");
3740 		return 0;
3741 	}
3742 
3743 	rec = iter->func;
3744 
3745 	if (!rec)
3746 		return 0;
3747 
3748 	if (print_rec(m, rec->ip)) {
3749 		/* This should only happen when a rec is disabled */
3750 		WARN_ON_ONCE(!(rec->flags & FTRACE_FL_DISABLED));
3751 		seq_putc(m, '\n');
3752 		return 0;
3753 	}
3754 
3755 	if (iter->flags & FTRACE_ITER_ENABLED) {
3756 		struct ftrace_ops *ops;
3757 
3758 		seq_printf(m, " (%ld)%s%s%s",
3759 			   ftrace_rec_count(rec),
3760 			   rec->flags & FTRACE_FL_REGS ? " R" : "  ",
3761 			   rec->flags & FTRACE_FL_IPMODIFY ? " I" : "  ",
3762 			   rec->flags & FTRACE_FL_DIRECT ? " D" : "  ");
3763 		if (rec->flags & FTRACE_FL_TRAMP_EN) {
3764 			ops = ftrace_find_tramp_ops_any(rec);
3765 			if (ops) {
3766 				do {
3767 					seq_printf(m, "\ttramp: %pS (%pS)",
3768 						   (void *)ops->trampoline,
3769 						   (void *)ops->func);
3770 					add_trampoline_func(m, ops, rec);
3771 					ops = ftrace_find_tramp_ops_next(rec, ops);
3772 				} while (ops);
3773 			} else
3774 				seq_puts(m, "\ttramp: ERROR!");
3775 		} else {
3776 			add_trampoline_func(m, NULL, rec);
3777 		}
3778 		if (rec->flags & FTRACE_FL_DIRECT) {
3779 			unsigned long direct;
3780 
3781 			direct = ftrace_find_rec_direct(rec->ip);
3782 			if (direct)
3783 				seq_printf(m, "\n\tdirect-->%pS", (void *)direct);
3784 		}
3785 	}
3786 
3787 	seq_putc(m, '\n');
3788 
3789 	return 0;
3790 }
3791 
3792 static const struct seq_operations show_ftrace_seq_ops = {
3793 	.start = t_start,
3794 	.next = t_next,
3795 	.stop = t_stop,
3796 	.show = t_show,
3797 };
3798 
3799 static int
3800 ftrace_avail_open(struct inode *inode, struct file *file)
3801 {
3802 	struct ftrace_iterator *iter;
3803 	int ret;
3804 
3805 	ret = security_locked_down(LOCKDOWN_TRACEFS);
3806 	if (ret)
3807 		return ret;
3808 
3809 	if (unlikely(ftrace_disabled))
3810 		return -ENODEV;
3811 
3812 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3813 	if (!iter)
3814 		return -ENOMEM;
3815 
3816 	iter->pg = ftrace_pages_start;
3817 	iter->ops = &global_ops;
3818 
3819 	return 0;
3820 }
3821 
3822 static int
3823 ftrace_enabled_open(struct inode *inode, struct file *file)
3824 {
3825 	struct ftrace_iterator *iter;
3826 
3827 	/*
3828 	 * This shows us what functions are currently being
3829 	 * traced and by what. Not sure if we want lockdown
3830 	 * to hide such critical information for an admin.
3831 	 * Although, perhaps it can show information we don't
3832 	 * want people to see, but if something is tracing
3833 	 * something, we probably want to know about it.
3834 	 */
3835 
3836 	iter = __seq_open_private(file, &show_ftrace_seq_ops, sizeof(*iter));
3837 	if (!iter)
3838 		return -ENOMEM;
3839 
3840 	iter->pg = ftrace_pages_start;
3841 	iter->flags = FTRACE_ITER_ENABLED;
3842 	iter->ops = &global_ops;
3843 
3844 	return 0;
3845 }
3846 
3847 /**
3848  * ftrace_regex_open - initialize function tracer filter files
3849  * @ops: The ftrace_ops that hold the hash filters
3850  * @flag: The type of filter to process
3851  * @inode: The inode, usually passed in to your open routine
3852  * @file: The file, usually passed in to your open routine
3853  *
3854  * ftrace_regex_open() initializes the filter files for the
3855  * @ops. Depending on @flag it may process the filter hash or
3856  * the notrace hash of @ops. With this called from the open
3857  * routine, you can use ftrace_filter_write() for the write
3858  * routine if @flag has FTRACE_ITER_FILTER set, or
3859  * ftrace_notrace_write() if @flag has FTRACE_ITER_NOTRACE set.
3860  * tracing_lseek() should be used as the lseek routine, and
3861  * release must call ftrace_regex_release().
3862  */
3863 int
3864 ftrace_regex_open(struct ftrace_ops *ops, int flag,
3865 		  struct inode *inode, struct file *file)
3866 {
3867 	struct ftrace_iterator *iter;
3868 	struct ftrace_hash *hash;
3869 	struct list_head *mod_head;
3870 	struct trace_array *tr = ops->private;
3871 	int ret = -ENOMEM;
3872 
3873 	ftrace_ops_init(ops);
3874 
3875 	if (unlikely(ftrace_disabled))
3876 		return -ENODEV;
3877 
3878 	if (tracing_check_open_get_tr(tr))
3879 		return -ENODEV;
3880 
3881 	iter = kzalloc(sizeof(*iter), GFP_KERNEL);
3882 	if (!iter)
3883 		goto out;
3884 
3885 	if (trace_parser_get_init(&iter->parser, FTRACE_BUFF_MAX))
3886 		goto out;
3887 
3888 	iter->ops = ops;
3889 	iter->flags = flag;
3890 	iter->tr = tr;
3891 
3892 	mutex_lock(&ops->func_hash->regex_lock);
3893 
3894 	if (flag & FTRACE_ITER_NOTRACE) {
3895 		hash = ops->func_hash->notrace_hash;
3896 		mod_head = tr ? &tr->mod_notrace : NULL;
3897 	} else {
3898 		hash = ops->func_hash->filter_hash;
3899 		mod_head = tr ? &tr->mod_trace : NULL;
3900 	}
3901 
3902 	iter->mod_list = mod_head;
3903 
3904 	if (file->f_mode & FMODE_WRITE) {
3905 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
3906 
3907 		if (file->f_flags & O_TRUNC) {
3908 			iter->hash = alloc_ftrace_hash(size_bits);
3909 			clear_ftrace_mod_list(mod_head);
3910 	        } else {
3911 			iter->hash = alloc_and_copy_ftrace_hash(size_bits, hash);
3912 		}
3913 
3914 		if (!iter->hash) {
3915 			trace_parser_put(&iter->parser);
3916 			goto out_unlock;
3917 		}
3918 	} else
3919 		iter->hash = hash;
3920 
3921 	ret = 0;
3922 
3923 	if (file->f_mode & FMODE_READ) {
3924 		iter->pg = ftrace_pages_start;
3925 
3926 		ret = seq_open(file, &show_ftrace_seq_ops);
3927 		if (!ret) {
3928 			struct seq_file *m = file->private_data;
3929 			m->private = iter;
3930 		} else {
3931 			/* Failed */
3932 			free_ftrace_hash(iter->hash);
3933 			trace_parser_put(&iter->parser);
3934 		}
3935 	} else
3936 		file->private_data = iter;
3937 
3938  out_unlock:
3939 	mutex_unlock(&ops->func_hash->regex_lock);
3940 
3941  out:
3942 	if (ret) {
3943 		kfree(iter);
3944 		if (tr)
3945 			trace_array_put(tr);
3946 	}
3947 
3948 	return ret;
3949 }
3950 
3951 static int
3952 ftrace_filter_open(struct inode *inode, struct file *file)
3953 {
3954 	struct ftrace_ops *ops = inode->i_private;
3955 
3956 	/* Checks for tracefs lockdown */
3957 	return ftrace_regex_open(ops,
3958 			FTRACE_ITER_FILTER | FTRACE_ITER_DO_PROBES,
3959 			inode, file);
3960 }
3961 
3962 static int
3963 ftrace_notrace_open(struct inode *inode, struct file *file)
3964 {
3965 	struct ftrace_ops *ops = inode->i_private;
3966 
3967 	/* Checks for tracefs lockdown */
3968 	return ftrace_regex_open(ops, FTRACE_ITER_NOTRACE,
3969 				 inode, file);
3970 }
3971 
3972 /* Type for quick search ftrace basic regexes (globs) from filter_parse_regex */
3973 struct ftrace_glob {
3974 	char *search;
3975 	unsigned len;
3976 	int type;
3977 };
3978 
3979 /*
3980  * If symbols in an architecture don't correspond exactly to the user-visible
3981  * name of what they represent, it is possible to define this function to
3982  * perform the necessary adjustments.
3983 */
3984 char * __weak arch_ftrace_match_adjust(char *str, const char *search)
3985 {
3986 	return str;
3987 }
3988 
3989 static int ftrace_match(char *str, struct ftrace_glob *g)
3990 {
3991 	int matched = 0;
3992 	int slen;
3993 
3994 	str = arch_ftrace_match_adjust(str, g->search);
3995 
3996 	switch (g->type) {
3997 	case MATCH_FULL:
3998 		if (strcmp(str, g->search) == 0)
3999 			matched = 1;
4000 		break;
4001 	case MATCH_FRONT_ONLY:
4002 		if (strncmp(str, g->search, g->len) == 0)
4003 			matched = 1;
4004 		break;
4005 	case MATCH_MIDDLE_ONLY:
4006 		if (strstr(str, g->search))
4007 			matched = 1;
4008 		break;
4009 	case MATCH_END_ONLY:
4010 		slen = strlen(str);
4011 		if (slen >= g->len &&
4012 		    memcmp(str + slen - g->len, g->search, g->len) == 0)
4013 			matched = 1;
4014 		break;
4015 	case MATCH_GLOB:
4016 		if (glob_match(g->search, str))
4017 			matched = 1;
4018 		break;
4019 	}
4020 
4021 	return matched;
4022 }
4023 
4024 static int
4025 enter_record(struct ftrace_hash *hash, struct dyn_ftrace *rec, int clear_filter)
4026 {
4027 	struct ftrace_func_entry *entry;
4028 	int ret = 0;
4029 
4030 	entry = ftrace_lookup_ip(hash, rec->ip);
4031 	if (clear_filter) {
4032 		/* Do nothing if it doesn't exist */
4033 		if (!entry)
4034 			return 0;
4035 
4036 		free_hash_entry(hash, entry);
4037 	} else {
4038 		/* Do nothing if it exists */
4039 		if (entry)
4040 			return 0;
4041 
4042 		ret = add_hash_entry(hash, rec->ip);
4043 	}
4044 	return ret;
4045 }
4046 
4047 static int
4048 add_rec_by_index(struct ftrace_hash *hash, struct ftrace_glob *func_g,
4049 		 int clear_filter)
4050 {
4051 	long index = simple_strtoul(func_g->search, NULL, 0);
4052 	struct ftrace_page *pg;
4053 	struct dyn_ftrace *rec;
4054 
4055 	/* The index starts at 1 */
4056 	if (--index < 0)
4057 		return 0;
4058 
4059 	do_for_each_ftrace_rec(pg, rec) {
4060 		if (pg->index <= index) {
4061 			index -= pg->index;
4062 			/* this is a double loop, break goes to the next page */
4063 			break;
4064 		}
4065 		rec = &pg->records[index];
4066 		enter_record(hash, rec, clear_filter);
4067 		return 1;
4068 	} while_for_each_ftrace_rec();
4069 	return 0;
4070 }
4071 
4072 #ifdef FTRACE_MCOUNT_MAX_OFFSET
4073 static int lookup_ip(unsigned long ip, char **modname, char *str)
4074 {
4075 	unsigned long offset;
4076 
4077 	kallsyms_lookup(ip, NULL, &offset, modname, str);
4078 	if (offset > FTRACE_MCOUNT_MAX_OFFSET)
4079 		return -1;
4080 	return 0;
4081 }
4082 #else
4083 static int lookup_ip(unsigned long ip, char **modname, char *str)
4084 {
4085 	kallsyms_lookup(ip, NULL, NULL, modname, str);
4086 	return 0;
4087 }
4088 #endif
4089 
4090 static int
4091 ftrace_match_record(struct dyn_ftrace *rec, struct ftrace_glob *func_g,
4092 		struct ftrace_glob *mod_g, int exclude_mod)
4093 {
4094 	char str[KSYM_SYMBOL_LEN];
4095 	char *modname;
4096 
4097 	if (lookup_ip(rec->ip, &modname, str)) {
4098 		/* This should only happen when a rec is disabled */
4099 		WARN_ON_ONCE(system_state == SYSTEM_RUNNING &&
4100 			     !(rec->flags & FTRACE_FL_DISABLED));
4101 		return 0;
4102 	}
4103 
4104 	if (mod_g) {
4105 		int mod_matches = (modname) ? ftrace_match(modname, mod_g) : 0;
4106 
4107 		/* blank module name to match all modules */
4108 		if (!mod_g->len) {
4109 			/* blank module globbing: modname xor exclude_mod */
4110 			if (!exclude_mod != !modname)
4111 				goto func_match;
4112 			return 0;
4113 		}
4114 
4115 		/*
4116 		 * exclude_mod is set to trace everything but the given
4117 		 * module. If it is set and the module matches, then
4118 		 * return 0. If it is not set, and the module doesn't match
4119 		 * also return 0. Otherwise, check the function to see if
4120 		 * that matches.
4121 		 */
4122 		if (!mod_matches == !exclude_mod)
4123 			return 0;
4124 func_match:
4125 		/* blank search means to match all funcs in the mod */
4126 		if (!func_g->len)
4127 			return 1;
4128 	}
4129 
4130 	return ftrace_match(str, func_g);
4131 }
4132 
4133 static int
4134 match_records(struct ftrace_hash *hash, char *func, int len, char *mod)
4135 {
4136 	struct ftrace_page *pg;
4137 	struct dyn_ftrace *rec;
4138 	struct ftrace_glob func_g = { .type = MATCH_FULL };
4139 	struct ftrace_glob mod_g = { .type = MATCH_FULL };
4140 	struct ftrace_glob *mod_match = (mod) ? &mod_g : NULL;
4141 	int exclude_mod = 0;
4142 	int found = 0;
4143 	int ret;
4144 	int clear_filter = 0;
4145 
4146 	if (func) {
4147 		func_g.type = filter_parse_regex(func, len, &func_g.search,
4148 						 &clear_filter);
4149 		func_g.len = strlen(func_g.search);
4150 	}
4151 
4152 	if (mod) {
4153 		mod_g.type = filter_parse_regex(mod, strlen(mod),
4154 				&mod_g.search, &exclude_mod);
4155 		mod_g.len = strlen(mod_g.search);
4156 	}
4157 
4158 	mutex_lock(&ftrace_lock);
4159 
4160 	if (unlikely(ftrace_disabled))
4161 		goto out_unlock;
4162 
4163 	if (func_g.type == MATCH_INDEX) {
4164 		found = add_rec_by_index(hash, &func_g, clear_filter);
4165 		goto out_unlock;
4166 	}
4167 
4168 	do_for_each_ftrace_rec(pg, rec) {
4169 
4170 		if (rec->flags & FTRACE_FL_DISABLED)
4171 			continue;
4172 
4173 		if (ftrace_match_record(rec, &func_g, mod_match, exclude_mod)) {
4174 			ret = enter_record(hash, rec, clear_filter);
4175 			if (ret < 0) {
4176 				found = ret;
4177 				goto out_unlock;
4178 			}
4179 			found = 1;
4180 		}
4181 	} while_for_each_ftrace_rec();
4182  out_unlock:
4183 	mutex_unlock(&ftrace_lock);
4184 
4185 	return found;
4186 }
4187 
4188 static int
4189 ftrace_match_records(struct ftrace_hash *hash, char *buff, int len)
4190 {
4191 	return match_records(hash, buff, len, NULL);
4192 }
4193 
4194 static void ftrace_ops_update_code(struct ftrace_ops *ops,
4195 				   struct ftrace_ops_hash *old_hash)
4196 {
4197 	struct ftrace_ops *op;
4198 
4199 	if (!ftrace_enabled)
4200 		return;
4201 
4202 	if (ops->flags & FTRACE_OPS_FL_ENABLED) {
4203 		ftrace_run_modify_code(ops, FTRACE_UPDATE_CALLS, old_hash);
4204 		return;
4205 	}
4206 
4207 	/*
4208 	 * If this is the shared global_ops filter, then we need to
4209 	 * check if there is another ops that shares it, is enabled.
4210 	 * If so, we still need to run the modify code.
4211 	 */
4212 	if (ops->func_hash != &global_ops.local_hash)
4213 		return;
4214 
4215 	do_for_each_ftrace_op(op, ftrace_ops_list) {
4216 		if (op->func_hash == &global_ops.local_hash &&
4217 		    op->flags & FTRACE_OPS_FL_ENABLED) {
4218 			ftrace_run_modify_code(op, FTRACE_UPDATE_CALLS, old_hash);
4219 			/* Only need to do this once */
4220 			return;
4221 		}
4222 	} while_for_each_ftrace_op(op);
4223 }
4224 
4225 static int ftrace_hash_move_and_update_ops(struct ftrace_ops *ops,
4226 					   struct ftrace_hash **orig_hash,
4227 					   struct ftrace_hash *hash,
4228 					   int enable)
4229 {
4230 	struct ftrace_ops_hash old_hash_ops;
4231 	struct ftrace_hash *old_hash;
4232 	int ret;
4233 
4234 	old_hash = *orig_hash;
4235 	old_hash_ops.filter_hash = ops->func_hash->filter_hash;
4236 	old_hash_ops.notrace_hash = ops->func_hash->notrace_hash;
4237 	ret = ftrace_hash_move(ops, enable, orig_hash, hash);
4238 	if (!ret) {
4239 		ftrace_ops_update_code(ops, &old_hash_ops);
4240 		free_ftrace_hash_rcu(old_hash);
4241 	}
4242 	return ret;
4243 }
4244 
4245 static bool module_exists(const char *module)
4246 {
4247 	/* All modules have the symbol __this_module */
4248 	static const char this_mod[] = "__this_module";
4249 	char modname[MAX_PARAM_PREFIX_LEN + sizeof(this_mod) + 2];
4250 	unsigned long val;
4251 	int n;
4252 
4253 	n = snprintf(modname, sizeof(modname), "%s:%s", module, this_mod);
4254 
4255 	if (n > sizeof(modname) - 1)
4256 		return false;
4257 
4258 	val = module_kallsyms_lookup_name(modname);
4259 	return val != 0;
4260 }
4261 
4262 static int cache_mod(struct trace_array *tr,
4263 		     const char *func, char *module, int enable)
4264 {
4265 	struct ftrace_mod_load *ftrace_mod, *n;
4266 	struct list_head *head = enable ? &tr->mod_trace : &tr->mod_notrace;
4267 	int ret;
4268 
4269 	mutex_lock(&ftrace_lock);
4270 
4271 	/* We do not cache inverse filters */
4272 	if (func[0] == '!') {
4273 		func++;
4274 		ret = -EINVAL;
4275 
4276 		/* Look to remove this hash */
4277 		list_for_each_entry_safe(ftrace_mod, n, head, list) {
4278 			if (strcmp(ftrace_mod->module, module) != 0)
4279 				continue;
4280 
4281 			/* no func matches all */
4282 			if (strcmp(func, "*") == 0 ||
4283 			    (ftrace_mod->func &&
4284 			     strcmp(ftrace_mod->func, func) == 0)) {
4285 				ret = 0;
4286 				free_ftrace_mod(ftrace_mod);
4287 				continue;
4288 			}
4289 		}
4290 		goto out;
4291 	}
4292 
4293 	ret = -EINVAL;
4294 	/* We only care about modules that have not been loaded yet */
4295 	if (module_exists(module))
4296 		goto out;
4297 
4298 	/* Save this string off, and execute it when the module is loaded */
4299 	ret = ftrace_add_mod(tr, func, module, enable);
4300  out:
4301 	mutex_unlock(&ftrace_lock);
4302 
4303 	return ret;
4304 }
4305 
4306 static int
4307 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
4308 		 int reset, int enable);
4309 
4310 #ifdef CONFIG_MODULES
4311 static void process_mod_list(struct list_head *head, struct ftrace_ops *ops,
4312 			     char *mod, bool enable)
4313 {
4314 	struct ftrace_mod_load *ftrace_mod, *n;
4315 	struct ftrace_hash **orig_hash, *new_hash;
4316 	LIST_HEAD(process_mods);
4317 	char *func;
4318 
4319 	mutex_lock(&ops->func_hash->regex_lock);
4320 
4321 	if (enable)
4322 		orig_hash = &ops->func_hash->filter_hash;
4323 	else
4324 		orig_hash = &ops->func_hash->notrace_hash;
4325 
4326 	new_hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS,
4327 					      *orig_hash);
4328 	if (!new_hash)
4329 		goto out; /* warn? */
4330 
4331 	mutex_lock(&ftrace_lock);
4332 
4333 	list_for_each_entry_safe(ftrace_mod, n, head, list) {
4334 
4335 		if (strcmp(ftrace_mod->module, mod) != 0)
4336 			continue;
4337 
4338 		if (ftrace_mod->func)
4339 			func = kstrdup(ftrace_mod->func, GFP_KERNEL);
4340 		else
4341 			func = kstrdup("*", GFP_KERNEL);
4342 
4343 		if (!func) /* warn? */
4344 			continue;
4345 
4346 		list_move(&ftrace_mod->list, &process_mods);
4347 
4348 		/* Use the newly allocated func, as it may be "*" */
4349 		kfree(ftrace_mod->func);
4350 		ftrace_mod->func = func;
4351 	}
4352 
4353 	mutex_unlock(&ftrace_lock);
4354 
4355 	list_for_each_entry_safe(ftrace_mod, n, &process_mods, list) {
4356 
4357 		func = ftrace_mod->func;
4358 
4359 		/* Grabs ftrace_lock, which is why we have this extra step */
4360 		match_records(new_hash, func, strlen(func), mod);
4361 		free_ftrace_mod(ftrace_mod);
4362 	}
4363 
4364 	if (enable && list_empty(head))
4365 		new_hash->flags &= ~FTRACE_HASH_FL_MOD;
4366 
4367 	mutex_lock(&ftrace_lock);
4368 
4369 	ftrace_hash_move_and_update_ops(ops, orig_hash,
4370 					      new_hash, enable);
4371 	mutex_unlock(&ftrace_lock);
4372 
4373  out:
4374 	mutex_unlock(&ops->func_hash->regex_lock);
4375 
4376 	free_ftrace_hash(new_hash);
4377 }
4378 
4379 static void process_cached_mods(const char *mod_name)
4380 {
4381 	struct trace_array *tr;
4382 	char *mod;
4383 
4384 	mod = kstrdup(mod_name, GFP_KERNEL);
4385 	if (!mod)
4386 		return;
4387 
4388 	mutex_lock(&trace_types_lock);
4389 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
4390 		if (!list_empty(&tr->mod_trace))
4391 			process_mod_list(&tr->mod_trace, tr->ops, mod, true);
4392 		if (!list_empty(&tr->mod_notrace))
4393 			process_mod_list(&tr->mod_notrace, tr->ops, mod, false);
4394 	}
4395 	mutex_unlock(&trace_types_lock);
4396 
4397 	kfree(mod);
4398 }
4399 #endif
4400 
4401 /*
4402  * We register the module command as a template to show others how
4403  * to register the a command as well.
4404  */
4405 
4406 static int
4407 ftrace_mod_callback(struct trace_array *tr, struct ftrace_hash *hash,
4408 		    char *func_orig, char *cmd, char *module, int enable)
4409 {
4410 	char *func;
4411 	int ret;
4412 
4413 	/* match_records() modifies func, and we need the original */
4414 	func = kstrdup(func_orig, GFP_KERNEL);
4415 	if (!func)
4416 		return -ENOMEM;
4417 
4418 	/*
4419 	 * cmd == 'mod' because we only registered this func
4420 	 * for the 'mod' ftrace_func_command.
4421 	 * But if you register one func with multiple commands,
4422 	 * you can tell which command was used by the cmd
4423 	 * parameter.
4424 	 */
4425 	ret = match_records(hash, func, strlen(func), module);
4426 	kfree(func);
4427 
4428 	if (!ret)
4429 		return cache_mod(tr, func_orig, module, enable);
4430 	if (ret < 0)
4431 		return ret;
4432 	return 0;
4433 }
4434 
4435 static struct ftrace_func_command ftrace_mod_cmd = {
4436 	.name			= "mod",
4437 	.func			= ftrace_mod_callback,
4438 };
4439 
4440 static int __init ftrace_mod_cmd_init(void)
4441 {
4442 	return register_ftrace_command(&ftrace_mod_cmd);
4443 }
4444 core_initcall(ftrace_mod_cmd_init);
4445 
4446 static void function_trace_probe_call(unsigned long ip, unsigned long parent_ip,
4447 				      struct ftrace_ops *op, struct ftrace_regs *fregs)
4448 {
4449 	struct ftrace_probe_ops *probe_ops;
4450 	struct ftrace_func_probe *probe;
4451 
4452 	probe = container_of(op, struct ftrace_func_probe, ops);
4453 	probe_ops = probe->probe_ops;
4454 
4455 	/*
4456 	 * Disable preemption for these calls to prevent a RCU grace
4457 	 * period. This syncs the hash iteration and freeing of items
4458 	 * on the hash. rcu_read_lock is too dangerous here.
4459 	 */
4460 	preempt_disable_notrace();
4461 	probe_ops->func(ip, parent_ip, probe->tr, probe_ops, probe->data);
4462 	preempt_enable_notrace();
4463 }
4464 
4465 struct ftrace_func_map {
4466 	struct ftrace_func_entry	entry;
4467 	void				*data;
4468 };
4469 
4470 struct ftrace_func_mapper {
4471 	struct ftrace_hash		hash;
4472 };
4473 
4474 /**
4475  * allocate_ftrace_func_mapper - allocate a new ftrace_func_mapper
4476  *
4477  * Returns a ftrace_func_mapper descriptor that can be used to map ips to data.
4478  */
4479 struct ftrace_func_mapper *allocate_ftrace_func_mapper(void)
4480 {
4481 	struct ftrace_hash *hash;
4482 
4483 	/*
4484 	 * The mapper is simply a ftrace_hash, but since the entries
4485 	 * in the hash are not ftrace_func_entry type, we define it
4486 	 * as a separate structure.
4487 	 */
4488 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
4489 	return (struct ftrace_func_mapper *)hash;
4490 }
4491 
4492 /**
4493  * ftrace_func_mapper_find_ip - Find some data mapped to an ip
4494  * @mapper: The mapper that has the ip maps
4495  * @ip: the instruction pointer to find the data for
4496  *
4497  * Returns the data mapped to @ip if found otherwise NULL. The return
4498  * is actually the address of the mapper data pointer. The address is
4499  * returned for use cases where the data is no bigger than a long, and
4500  * the user can use the data pointer as its data instead of having to
4501  * allocate more memory for the reference.
4502  */
4503 void **ftrace_func_mapper_find_ip(struct ftrace_func_mapper *mapper,
4504 				  unsigned long ip)
4505 {
4506 	struct ftrace_func_entry *entry;
4507 	struct ftrace_func_map *map;
4508 
4509 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4510 	if (!entry)
4511 		return NULL;
4512 
4513 	map = (struct ftrace_func_map *)entry;
4514 	return &map->data;
4515 }
4516 
4517 /**
4518  * ftrace_func_mapper_add_ip - Map some data to an ip
4519  * @mapper: The mapper that has the ip maps
4520  * @ip: The instruction pointer address to map @data to
4521  * @data: The data to map to @ip
4522  *
4523  * Returns 0 on success otherwise an error.
4524  */
4525 int ftrace_func_mapper_add_ip(struct ftrace_func_mapper *mapper,
4526 			      unsigned long ip, void *data)
4527 {
4528 	struct ftrace_func_entry *entry;
4529 	struct ftrace_func_map *map;
4530 
4531 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4532 	if (entry)
4533 		return -EBUSY;
4534 
4535 	map = kmalloc(sizeof(*map), GFP_KERNEL);
4536 	if (!map)
4537 		return -ENOMEM;
4538 
4539 	map->entry.ip = ip;
4540 	map->data = data;
4541 
4542 	__add_hash_entry(&mapper->hash, &map->entry);
4543 
4544 	return 0;
4545 }
4546 
4547 /**
4548  * ftrace_func_mapper_remove_ip - Remove an ip from the mapping
4549  * @mapper: The mapper that has the ip maps
4550  * @ip: The instruction pointer address to remove the data from
4551  *
4552  * Returns the data if it is found, otherwise NULL.
4553  * Note, if the data pointer is used as the data itself, (see
4554  * ftrace_func_mapper_find_ip(), then the return value may be meaningless,
4555  * if the data pointer was set to zero.
4556  */
4557 void *ftrace_func_mapper_remove_ip(struct ftrace_func_mapper *mapper,
4558 				   unsigned long ip)
4559 {
4560 	struct ftrace_func_entry *entry;
4561 	struct ftrace_func_map *map;
4562 	void *data;
4563 
4564 	entry = ftrace_lookup_ip(&mapper->hash, ip);
4565 	if (!entry)
4566 		return NULL;
4567 
4568 	map = (struct ftrace_func_map *)entry;
4569 	data = map->data;
4570 
4571 	remove_hash_entry(&mapper->hash, entry);
4572 	kfree(entry);
4573 
4574 	return data;
4575 }
4576 
4577 /**
4578  * free_ftrace_func_mapper - free a mapping of ips and data
4579  * @mapper: The mapper that has the ip maps
4580  * @free_func: A function to be called on each data item.
4581  *
4582  * This is used to free the function mapper. The @free_func is optional
4583  * and can be used if the data needs to be freed as well.
4584  */
4585 void free_ftrace_func_mapper(struct ftrace_func_mapper *mapper,
4586 			     ftrace_mapper_func free_func)
4587 {
4588 	struct ftrace_func_entry *entry;
4589 	struct ftrace_func_map *map;
4590 	struct hlist_head *hhd;
4591 	int size, i;
4592 
4593 	if (!mapper)
4594 		return;
4595 
4596 	if (free_func && mapper->hash.count) {
4597 		size = 1 << mapper->hash.size_bits;
4598 		for (i = 0; i < size; i++) {
4599 			hhd = &mapper->hash.buckets[i];
4600 			hlist_for_each_entry(entry, hhd, hlist) {
4601 				map = (struct ftrace_func_map *)entry;
4602 				free_func(map);
4603 			}
4604 		}
4605 	}
4606 	free_ftrace_hash(&mapper->hash);
4607 }
4608 
4609 static void release_probe(struct ftrace_func_probe *probe)
4610 {
4611 	struct ftrace_probe_ops *probe_ops;
4612 
4613 	mutex_lock(&ftrace_lock);
4614 
4615 	WARN_ON(probe->ref <= 0);
4616 
4617 	/* Subtract the ref that was used to protect this instance */
4618 	probe->ref--;
4619 
4620 	if (!probe->ref) {
4621 		probe_ops = probe->probe_ops;
4622 		/*
4623 		 * Sending zero as ip tells probe_ops to free
4624 		 * the probe->data itself
4625 		 */
4626 		if (probe_ops->free)
4627 			probe_ops->free(probe_ops, probe->tr, 0, probe->data);
4628 		list_del(&probe->list);
4629 		kfree(probe);
4630 	}
4631 	mutex_unlock(&ftrace_lock);
4632 }
4633 
4634 static void acquire_probe_locked(struct ftrace_func_probe *probe)
4635 {
4636 	/*
4637 	 * Add one ref to keep it from being freed when releasing the
4638 	 * ftrace_lock mutex.
4639 	 */
4640 	probe->ref++;
4641 }
4642 
4643 int
4644 register_ftrace_function_probe(char *glob, struct trace_array *tr,
4645 			       struct ftrace_probe_ops *probe_ops,
4646 			       void *data)
4647 {
4648 	struct ftrace_func_probe *probe = NULL, *iter;
4649 	struct ftrace_func_entry *entry;
4650 	struct ftrace_hash **orig_hash;
4651 	struct ftrace_hash *old_hash;
4652 	struct ftrace_hash *hash;
4653 	int count = 0;
4654 	int size;
4655 	int ret;
4656 	int i;
4657 
4658 	if (WARN_ON(!tr))
4659 		return -EINVAL;
4660 
4661 	/* We do not support '!' for function probes */
4662 	if (WARN_ON(glob[0] == '!'))
4663 		return -EINVAL;
4664 
4665 
4666 	mutex_lock(&ftrace_lock);
4667 	/* Check if the probe_ops is already registered */
4668 	list_for_each_entry(iter, &tr->func_probes, list) {
4669 		if (iter->probe_ops == probe_ops) {
4670 			probe = iter;
4671 			break;
4672 		}
4673 	}
4674 	if (!probe) {
4675 		probe = kzalloc(sizeof(*probe), GFP_KERNEL);
4676 		if (!probe) {
4677 			mutex_unlock(&ftrace_lock);
4678 			return -ENOMEM;
4679 		}
4680 		probe->probe_ops = probe_ops;
4681 		probe->ops.func = function_trace_probe_call;
4682 		probe->tr = tr;
4683 		ftrace_ops_init(&probe->ops);
4684 		list_add(&probe->list, &tr->func_probes);
4685 	}
4686 
4687 	acquire_probe_locked(probe);
4688 
4689 	mutex_unlock(&ftrace_lock);
4690 
4691 	/*
4692 	 * Note, there's a small window here that the func_hash->filter_hash
4693 	 * may be NULL or empty. Need to be careful when reading the loop.
4694 	 */
4695 	mutex_lock(&probe->ops.func_hash->regex_lock);
4696 
4697 	orig_hash = &probe->ops.func_hash->filter_hash;
4698 	old_hash = *orig_hash;
4699 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4700 
4701 	if (!hash) {
4702 		ret = -ENOMEM;
4703 		goto out;
4704 	}
4705 
4706 	ret = ftrace_match_records(hash, glob, strlen(glob));
4707 
4708 	/* Nothing found? */
4709 	if (!ret)
4710 		ret = -EINVAL;
4711 
4712 	if (ret < 0)
4713 		goto out;
4714 
4715 	size = 1 << hash->size_bits;
4716 	for (i = 0; i < size; i++) {
4717 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4718 			if (ftrace_lookup_ip(old_hash, entry->ip))
4719 				continue;
4720 			/*
4721 			 * The caller might want to do something special
4722 			 * for each function we find. We call the callback
4723 			 * to give the caller an opportunity to do so.
4724 			 */
4725 			if (probe_ops->init) {
4726 				ret = probe_ops->init(probe_ops, tr,
4727 						      entry->ip, data,
4728 						      &probe->data);
4729 				if (ret < 0) {
4730 					if (probe_ops->free && count)
4731 						probe_ops->free(probe_ops, tr,
4732 								0, probe->data);
4733 					probe->data = NULL;
4734 					goto out;
4735 				}
4736 			}
4737 			count++;
4738 		}
4739 	}
4740 
4741 	mutex_lock(&ftrace_lock);
4742 
4743 	if (!count) {
4744 		/* Nothing was added? */
4745 		ret = -EINVAL;
4746 		goto out_unlock;
4747 	}
4748 
4749 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4750 					      hash, 1);
4751 	if (ret < 0)
4752 		goto err_unlock;
4753 
4754 	/* One ref for each new function traced */
4755 	probe->ref += count;
4756 
4757 	if (!(probe->ops.flags & FTRACE_OPS_FL_ENABLED))
4758 		ret = ftrace_startup(&probe->ops, 0);
4759 
4760  out_unlock:
4761 	mutex_unlock(&ftrace_lock);
4762 
4763 	if (!ret)
4764 		ret = count;
4765  out:
4766 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4767 	free_ftrace_hash(hash);
4768 
4769 	release_probe(probe);
4770 
4771 	return ret;
4772 
4773  err_unlock:
4774 	if (!probe_ops->free || !count)
4775 		goto out_unlock;
4776 
4777 	/* Failed to do the move, need to call the free functions */
4778 	for (i = 0; i < size; i++) {
4779 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
4780 			if (ftrace_lookup_ip(old_hash, entry->ip))
4781 				continue;
4782 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4783 		}
4784 	}
4785 	goto out_unlock;
4786 }
4787 
4788 int
4789 unregister_ftrace_function_probe_func(char *glob, struct trace_array *tr,
4790 				      struct ftrace_probe_ops *probe_ops)
4791 {
4792 	struct ftrace_func_probe *probe = NULL, *iter;
4793 	struct ftrace_ops_hash old_hash_ops;
4794 	struct ftrace_func_entry *entry;
4795 	struct ftrace_glob func_g;
4796 	struct ftrace_hash **orig_hash;
4797 	struct ftrace_hash *old_hash;
4798 	struct ftrace_hash *hash = NULL;
4799 	struct hlist_node *tmp;
4800 	struct hlist_head hhd;
4801 	char str[KSYM_SYMBOL_LEN];
4802 	int count = 0;
4803 	int i, ret = -ENODEV;
4804 	int size;
4805 
4806 	if (!glob || !strlen(glob) || !strcmp(glob, "*"))
4807 		func_g.search = NULL;
4808 	else {
4809 		int not;
4810 
4811 		func_g.type = filter_parse_regex(glob, strlen(glob),
4812 						 &func_g.search, &not);
4813 		func_g.len = strlen(func_g.search);
4814 
4815 		/* we do not support '!' for function probes */
4816 		if (WARN_ON(not))
4817 			return -EINVAL;
4818 	}
4819 
4820 	mutex_lock(&ftrace_lock);
4821 	/* Check if the probe_ops is already registered */
4822 	list_for_each_entry(iter, &tr->func_probes, list) {
4823 		if (iter->probe_ops == probe_ops) {
4824 			probe = iter;
4825 			break;
4826 		}
4827 	}
4828 	if (!probe)
4829 		goto err_unlock_ftrace;
4830 
4831 	ret = -EINVAL;
4832 	if (!(probe->ops.flags & FTRACE_OPS_FL_INITIALIZED))
4833 		goto err_unlock_ftrace;
4834 
4835 	acquire_probe_locked(probe);
4836 
4837 	mutex_unlock(&ftrace_lock);
4838 
4839 	mutex_lock(&probe->ops.func_hash->regex_lock);
4840 
4841 	orig_hash = &probe->ops.func_hash->filter_hash;
4842 	old_hash = *orig_hash;
4843 
4844 	if (ftrace_hash_empty(old_hash))
4845 		goto out_unlock;
4846 
4847 	old_hash_ops.filter_hash = old_hash;
4848 	/* Probes only have filters */
4849 	old_hash_ops.notrace_hash = NULL;
4850 
4851 	ret = -ENOMEM;
4852 	hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, old_hash);
4853 	if (!hash)
4854 		goto out_unlock;
4855 
4856 	INIT_HLIST_HEAD(&hhd);
4857 
4858 	size = 1 << hash->size_bits;
4859 	for (i = 0; i < size; i++) {
4860 		hlist_for_each_entry_safe(entry, tmp, &hash->buckets[i], hlist) {
4861 
4862 			if (func_g.search) {
4863 				kallsyms_lookup(entry->ip, NULL, NULL,
4864 						NULL, str);
4865 				if (!ftrace_match(str, &func_g))
4866 					continue;
4867 			}
4868 			count++;
4869 			remove_hash_entry(hash, entry);
4870 			hlist_add_head(&entry->hlist, &hhd);
4871 		}
4872 	}
4873 
4874 	/* Nothing found? */
4875 	if (!count) {
4876 		ret = -EINVAL;
4877 		goto out_unlock;
4878 	}
4879 
4880 	mutex_lock(&ftrace_lock);
4881 
4882 	WARN_ON(probe->ref < count);
4883 
4884 	probe->ref -= count;
4885 
4886 	if (ftrace_hash_empty(hash))
4887 		ftrace_shutdown(&probe->ops, 0);
4888 
4889 	ret = ftrace_hash_move_and_update_ops(&probe->ops, orig_hash,
4890 					      hash, 1);
4891 
4892 	/* still need to update the function call sites */
4893 	if (ftrace_enabled && !ftrace_hash_empty(hash))
4894 		ftrace_run_modify_code(&probe->ops, FTRACE_UPDATE_CALLS,
4895 				       &old_hash_ops);
4896 	synchronize_rcu();
4897 
4898 	hlist_for_each_entry_safe(entry, tmp, &hhd, hlist) {
4899 		hlist_del(&entry->hlist);
4900 		if (probe_ops->free)
4901 			probe_ops->free(probe_ops, tr, entry->ip, probe->data);
4902 		kfree(entry);
4903 	}
4904 	mutex_unlock(&ftrace_lock);
4905 
4906  out_unlock:
4907 	mutex_unlock(&probe->ops.func_hash->regex_lock);
4908 	free_ftrace_hash(hash);
4909 
4910 	release_probe(probe);
4911 
4912 	return ret;
4913 
4914  err_unlock_ftrace:
4915 	mutex_unlock(&ftrace_lock);
4916 	return ret;
4917 }
4918 
4919 void clear_ftrace_function_probes(struct trace_array *tr)
4920 {
4921 	struct ftrace_func_probe *probe, *n;
4922 
4923 	list_for_each_entry_safe(probe, n, &tr->func_probes, list)
4924 		unregister_ftrace_function_probe_func(NULL, tr, probe->probe_ops);
4925 }
4926 
4927 static LIST_HEAD(ftrace_commands);
4928 static DEFINE_MUTEX(ftrace_cmd_mutex);
4929 
4930 /*
4931  * Currently we only register ftrace commands from __init, so mark this
4932  * __init too.
4933  */
4934 __init int register_ftrace_command(struct ftrace_func_command *cmd)
4935 {
4936 	struct ftrace_func_command *p;
4937 	int ret = 0;
4938 
4939 	mutex_lock(&ftrace_cmd_mutex);
4940 	list_for_each_entry(p, &ftrace_commands, list) {
4941 		if (strcmp(cmd->name, p->name) == 0) {
4942 			ret = -EBUSY;
4943 			goto out_unlock;
4944 		}
4945 	}
4946 	list_add(&cmd->list, &ftrace_commands);
4947  out_unlock:
4948 	mutex_unlock(&ftrace_cmd_mutex);
4949 
4950 	return ret;
4951 }
4952 
4953 /*
4954  * Currently we only unregister ftrace commands from __init, so mark
4955  * this __init too.
4956  */
4957 __init int unregister_ftrace_command(struct ftrace_func_command *cmd)
4958 {
4959 	struct ftrace_func_command *p, *n;
4960 	int ret = -ENODEV;
4961 
4962 	mutex_lock(&ftrace_cmd_mutex);
4963 	list_for_each_entry_safe(p, n, &ftrace_commands, list) {
4964 		if (strcmp(cmd->name, p->name) == 0) {
4965 			ret = 0;
4966 			list_del_init(&p->list);
4967 			goto out_unlock;
4968 		}
4969 	}
4970  out_unlock:
4971 	mutex_unlock(&ftrace_cmd_mutex);
4972 
4973 	return ret;
4974 }
4975 
4976 static int ftrace_process_regex(struct ftrace_iterator *iter,
4977 				char *buff, int len, int enable)
4978 {
4979 	struct ftrace_hash *hash = iter->hash;
4980 	struct trace_array *tr = iter->ops->private;
4981 	char *func, *command, *next = buff;
4982 	struct ftrace_func_command *p;
4983 	int ret = -EINVAL;
4984 
4985 	func = strsep(&next, ":");
4986 
4987 	if (!next) {
4988 		ret = ftrace_match_records(hash, func, len);
4989 		if (!ret)
4990 			ret = -EINVAL;
4991 		if (ret < 0)
4992 			return ret;
4993 		return 0;
4994 	}
4995 
4996 	/* command found */
4997 
4998 	command = strsep(&next, ":");
4999 
5000 	mutex_lock(&ftrace_cmd_mutex);
5001 	list_for_each_entry(p, &ftrace_commands, list) {
5002 		if (strcmp(p->name, command) == 0) {
5003 			ret = p->func(tr, hash, func, command, next, enable);
5004 			goto out_unlock;
5005 		}
5006 	}
5007  out_unlock:
5008 	mutex_unlock(&ftrace_cmd_mutex);
5009 
5010 	return ret;
5011 }
5012 
5013 static ssize_t
5014 ftrace_regex_write(struct file *file, const char __user *ubuf,
5015 		   size_t cnt, loff_t *ppos, int enable)
5016 {
5017 	struct ftrace_iterator *iter;
5018 	struct trace_parser *parser;
5019 	ssize_t ret, read;
5020 
5021 	if (!cnt)
5022 		return 0;
5023 
5024 	if (file->f_mode & FMODE_READ) {
5025 		struct seq_file *m = file->private_data;
5026 		iter = m->private;
5027 	} else
5028 		iter = file->private_data;
5029 
5030 	if (unlikely(ftrace_disabled))
5031 		return -ENODEV;
5032 
5033 	/* iter->hash is a local copy, so we don't need regex_lock */
5034 
5035 	parser = &iter->parser;
5036 	read = trace_get_user(parser, ubuf, cnt, ppos);
5037 
5038 	if (read >= 0 && trace_parser_loaded(parser) &&
5039 	    !trace_parser_cont(parser)) {
5040 		ret = ftrace_process_regex(iter, parser->buffer,
5041 					   parser->idx, enable);
5042 		trace_parser_clear(parser);
5043 		if (ret < 0)
5044 			goto out;
5045 	}
5046 
5047 	ret = read;
5048  out:
5049 	return ret;
5050 }
5051 
5052 ssize_t
5053 ftrace_filter_write(struct file *file, const char __user *ubuf,
5054 		    size_t cnt, loff_t *ppos)
5055 {
5056 	return ftrace_regex_write(file, ubuf, cnt, ppos, 1);
5057 }
5058 
5059 ssize_t
5060 ftrace_notrace_write(struct file *file, const char __user *ubuf,
5061 		     size_t cnt, loff_t *ppos)
5062 {
5063 	return ftrace_regex_write(file, ubuf, cnt, ppos, 0);
5064 }
5065 
5066 static int
5067 __ftrace_match_addr(struct ftrace_hash *hash, unsigned long ip, int remove)
5068 {
5069 	struct ftrace_func_entry *entry;
5070 
5071 	ip = ftrace_location(ip);
5072 	if (!ip)
5073 		return -EINVAL;
5074 
5075 	if (remove) {
5076 		entry = ftrace_lookup_ip(hash, ip);
5077 		if (!entry)
5078 			return -ENOENT;
5079 		free_hash_entry(hash, entry);
5080 		return 0;
5081 	}
5082 
5083 	return add_hash_entry(hash, ip);
5084 }
5085 
5086 static int
5087 ftrace_match_addr(struct ftrace_hash *hash, unsigned long *ips,
5088 		  unsigned int cnt, int remove)
5089 {
5090 	unsigned int i;
5091 	int err;
5092 
5093 	for (i = 0; i < cnt; i++) {
5094 		err = __ftrace_match_addr(hash, ips[i], remove);
5095 		if (err) {
5096 			/*
5097 			 * This expects the @hash is a temporary hash and if this
5098 			 * fails the caller must free the @hash.
5099 			 */
5100 			return err;
5101 		}
5102 	}
5103 	return 0;
5104 }
5105 
5106 static int
5107 ftrace_set_hash(struct ftrace_ops *ops, unsigned char *buf, int len,
5108 		unsigned long *ips, unsigned int cnt,
5109 		int remove, int reset, int enable)
5110 {
5111 	struct ftrace_hash **orig_hash;
5112 	struct ftrace_hash *hash;
5113 	int ret;
5114 
5115 	if (unlikely(ftrace_disabled))
5116 		return -ENODEV;
5117 
5118 	mutex_lock(&ops->func_hash->regex_lock);
5119 
5120 	if (enable)
5121 		orig_hash = &ops->func_hash->filter_hash;
5122 	else
5123 		orig_hash = &ops->func_hash->notrace_hash;
5124 
5125 	if (reset)
5126 		hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5127 	else
5128 		hash = alloc_and_copy_ftrace_hash(FTRACE_HASH_DEFAULT_BITS, *orig_hash);
5129 
5130 	if (!hash) {
5131 		ret = -ENOMEM;
5132 		goto out_regex_unlock;
5133 	}
5134 
5135 	if (buf && !ftrace_match_records(hash, buf, len)) {
5136 		ret = -EINVAL;
5137 		goto out_regex_unlock;
5138 	}
5139 	if (ips) {
5140 		ret = ftrace_match_addr(hash, ips, cnt, remove);
5141 		if (ret < 0)
5142 			goto out_regex_unlock;
5143 	}
5144 
5145 	mutex_lock(&ftrace_lock);
5146 	ret = ftrace_hash_move_and_update_ops(ops, orig_hash, hash, enable);
5147 	mutex_unlock(&ftrace_lock);
5148 
5149  out_regex_unlock:
5150 	mutex_unlock(&ops->func_hash->regex_lock);
5151 
5152 	free_ftrace_hash(hash);
5153 	return ret;
5154 }
5155 
5156 static int
5157 ftrace_set_addr(struct ftrace_ops *ops, unsigned long *ips, unsigned int cnt,
5158 		int remove, int reset, int enable)
5159 {
5160 	return ftrace_set_hash(ops, NULL, 0, ips, cnt, remove, reset, enable);
5161 }
5162 
5163 #ifdef CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS
5164 
5165 struct ftrace_direct_func {
5166 	struct list_head	next;
5167 	unsigned long		addr;
5168 	int			count;
5169 };
5170 
5171 static LIST_HEAD(ftrace_direct_funcs);
5172 
5173 /**
5174  * ftrace_find_direct_func - test an address if it is a registered direct caller
5175  * @addr: The address of a registered direct caller
5176  *
5177  * This searches to see if a ftrace direct caller has been registered
5178  * at a specific address, and if so, it returns a descriptor for it.
5179  *
5180  * This can be used by architecture code to see if an address is
5181  * a direct caller (trampoline) attached to a fentry/mcount location.
5182  * This is useful for the function_graph tracer, as it may need to
5183  * do adjustments if it traced a location that also has a direct
5184  * trampoline attached to it.
5185  */
5186 struct ftrace_direct_func *ftrace_find_direct_func(unsigned long addr)
5187 {
5188 	struct ftrace_direct_func *entry;
5189 	bool found = false;
5190 
5191 	/* May be called by fgraph trampoline (protected by rcu tasks) */
5192 	list_for_each_entry_rcu(entry, &ftrace_direct_funcs, next) {
5193 		if (entry->addr == addr) {
5194 			found = true;
5195 			break;
5196 		}
5197 	}
5198 	if (found)
5199 		return entry;
5200 
5201 	return NULL;
5202 }
5203 
5204 static struct ftrace_direct_func *ftrace_alloc_direct_func(unsigned long addr)
5205 {
5206 	struct ftrace_direct_func *direct;
5207 
5208 	direct = kmalloc(sizeof(*direct), GFP_KERNEL);
5209 	if (!direct)
5210 		return NULL;
5211 	direct->addr = addr;
5212 	direct->count = 0;
5213 	list_add_rcu(&direct->next, &ftrace_direct_funcs);
5214 	ftrace_direct_func_count++;
5215 	return direct;
5216 }
5217 
5218 /**
5219  * register_ftrace_direct - Call a custom trampoline directly
5220  * @ip: The address of the nop at the beginning of a function
5221  * @addr: The address of the trampoline to call at @ip
5222  *
5223  * This is used to connect a direct call from the nop location (@ip)
5224  * at the start of ftrace traced functions. The location that it calls
5225  * (@addr) must be able to handle a direct call, and save the parameters
5226  * of the function being traced, and restore them (or inject new ones
5227  * if needed), before returning.
5228  *
5229  * Returns:
5230  *  0 on success
5231  *  -EBUSY - Another direct function is already attached (there can be only one)
5232  *  -ENODEV - @ip does not point to a ftrace nop location (or not supported)
5233  *  -ENOMEM - There was an allocation failure.
5234  */
5235 int register_ftrace_direct(unsigned long ip, unsigned long addr)
5236 {
5237 	struct ftrace_direct_func *direct;
5238 	struct ftrace_func_entry *entry;
5239 	struct ftrace_hash *free_hash = NULL;
5240 	struct dyn_ftrace *rec;
5241 	int ret = -ENODEV;
5242 
5243 	mutex_lock(&direct_mutex);
5244 
5245 	ip = ftrace_location(ip);
5246 	if (!ip)
5247 		goto out_unlock;
5248 
5249 	/* See if there's a direct function at @ip already */
5250 	ret = -EBUSY;
5251 	if (ftrace_find_rec_direct(ip))
5252 		goto out_unlock;
5253 
5254 	ret = -ENODEV;
5255 	rec = lookup_rec(ip, ip);
5256 	if (!rec)
5257 		goto out_unlock;
5258 
5259 	/*
5260 	 * Check if the rec says it has a direct call but we didn't
5261 	 * find one earlier?
5262 	 */
5263 	if (WARN_ON(rec->flags & FTRACE_FL_DIRECT))
5264 		goto out_unlock;
5265 
5266 	/* Make sure the ip points to the exact record */
5267 	if (ip != rec->ip) {
5268 		ip = rec->ip;
5269 		/* Need to check this ip for a direct. */
5270 		if (ftrace_find_rec_direct(ip))
5271 			goto out_unlock;
5272 	}
5273 
5274 	ret = -ENOMEM;
5275 	direct = ftrace_find_direct_func(addr);
5276 	if (!direct) {
5277 		direct = ftrace_alloc_direct_func(addr);
5278 		if (!direct)
5279 			goto out_unlock;
5280 	}
5281 
5282 	entry = ftrace_add_rec_direct(ip, addr, &free_hash);
5283 	if (!entry)
5284 		goto out_unlock;
5285 
5286 	ret = ftrace_set_filter_ip(&direct_ops, ip, 0, 0);
5287 
5288 	if (!ret && !(direct_ops.flags & FTRACE_OPS_FL_ENABLED)) {
5289 		ret = register_ftrace_function(&direct_ops);
5290 		if (ret)
5291 			ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5292 	}
5293 
5294 	if (ret) {
5295 		remove_hash_entry(direct_functions, entry);
5296 		kfree(entry);
5297 		if (!direct->count) {
5298 			list_del_rcu(&direct->next);
5299 			synchronize_rcu_tasks();
5300 			kfree(direct);
5301 			if (free_hash)
5302 				free_ftrace_hash(free_hash);
5303 			free_hash = NULL;
5304 			ftrace_direct_func_count--;
5305 		}
5306 	} else {
5307 		direct->count++;
5308 	}
5309  out_unlock:
5310 	mutex_unlock(&direct_mutex);
5311 
5312 	if (free_hash) {
5313 		synchronize_rcu_tasks();
5314 		free_ftrace_hash(free_hash);
5315 	}
5316 
5317 	return ret;
5318 }
5319 EXPORT_SYMBOL_GPL(register_ftrace_direct);
5320 
5321 static struct ftrace_func_entry *find_direct_entry(unsigned long *ip,
5322 						   struct dyn_ftrace **recp)
5323 {
5324 	struct ftrace_func_entry *entry;
5325 	struct dyn_ftrace *rec;
5326 
5327 	rec = lookup_rec(*ip, *ip);
5328 	if (!rec)
5329 		return NULL;
5330 
5331 	entry = __ftrace_lookup_ip(direct_functions, rec->ip);
5332 	if (!entry) {
5333 		WARN_ON(rec->flags & FTRACE_FL_DIRECT);
5334 		return NULL;
5335 	}
5336 
5337 	WARN_ON(!(rec->flags & FTRACE_FL_DIRECT));
5338 
5339 	/* Passed in ip just needs to be on the call site */
5340 	*ip = rec->ip;
5341 
5342 	if (recp)
5343 		*recp = rec;
5344 
5345 	return entry;
5346 }
5347 
5348 int unregister_ftrace_direct(unsigned long ip, unsigned long addr)
5349 {
5350 	struct ftrace_direct_func *direct;
5351 	struct ftrace_func_entry *entry;
5352 	struct ftrace_hash *hash;
5353 	int ret = -ENODEV;
5354 
5355 	mutex_lock(&direct_mutex);
5356 
5357 	ip = ftrace_location(ip);
5358 	if (!ip)
5359 		goto out_unlock;
5360 
5361 	entry = find_direct_entry(&ip, NULL);
5362 	if (!entry)
5363 		goto out_unlock;
5364 
5365 	hash = direct_ops.func_hash->filter_hash;
5366 	if (hash->count == 1)
5367 		unregister_ftrace_function(&direct_ops);
5368 
5369 	ret = ftrace_set_filter_ip(&direct_ops, ip, 1, 0);
5370 
5371 	WARN_ON(ret);
5372 
5373 	remove_hash_entry(direct_functions, entry);
5374 
5375 	direct = ftrace_find_direct_func(addr);
5376 	if (!WARN_ON(!direct)) {
5377 		/* This is the good path (see the ! before WARN) */
5378 		direct->count--;
5379 		WARN_ON(direct->count < 0);
5380 		if (!direct->count) {
5381 			list_del_rcu(&direct->next);
5382 			synchronize_rcu_tasks();
5383 			kfree(direct);
5384 			kfree(entry);
5385 			ftrace_direct_func_count--;
5386 		}
5387 	}
5388  out_unlock:
5389 	mutex_unlock(&direct_mutex);
5390 
5391 	return ret;
5392 }
5393 EXPORT_SYMBOL_GPL(unregister_ftrace_direct);
5394 
5395 static struct ftrace_ops stub_ops = {
5396 	.func		= ftrace_stub,
5397 };
5398 
5399 /**
5400  * ftrace_modify_direct_caller - modify ftrace nop directly
5401  * @entry: The ftrace hash entry of the direct helper for @rec
5402  * @rec: The record representing the function site to patch
5403  * @old_addr: The location that the site at @rec->ip currently calls
5404  * @new_addr: The location that the site at @rec->ip should call
5405  *
5406  * An architecture may overwrite this function to optimize the
5407  * changing of the direct callback on an ftrace nop location.
5408  * This is called with the ftrace_lock mutex held, and no other
5409  * ftrace callbacks are on the associated record (@rec). Thus,
5410  * it is safe to modify the ftrace record, where it should be
5411  * currently calling @old_addr directly, to call @new_addr.
5412  *
5413  * Safety checks should be made to make sure that the code at
5414  * @rec->ip is currently calling @old_addr. And this must
5415  * also update entry->direct to @new_addr.
5416  */
5417 int __weak ftrace_modify_direct_caller(struct ftrace_func_entry *entry,
5418 				       struct dyn_ftrace *rec,
5419 				       unsigned long old_addr,
5420 				       unsigned long new_addr)
5421 {
5422 	unsigned long ip = rec->ip;
5423 	int ret;
5424 
5425 	/*
5426 	 * The ftrace_lock was used to determine if the record
5427 	 * had more than one registered user to it. If it did,
5428 	 * we needed to prevent that from changing to do the quick
5429 	 * switch. But if it did not (only a direct caller was attached)
5430 	 * then this function is called. But this function can deal
5431 	 * with attached callers to the rec that we care about, and
5432 	 * since this function uses standard ftrace calls that take
5433 	 * the ftrace_lock mutex, we need to release it.
5434 	 */
5435 	mutex_unlock(&ftrace_lock);
5436 
5437 	/*
5438 	 * By setting a stub function at the same address, we force
5439 	 * the code to call the iterator and the direct_ops helper.
5440 	 * This means that @ip does not call the direct call, and
5441 	 * we can simply modify it.
5442 	 */
5443 	ret = ftrace_set_filter_ip(&stub_ops, ip, 0, 0);
5444 	if (ret)
5445 		goto out_lock;
5446 
5447 	ret = register_ftrace_function(&stub_ops);
5448 	if (ret) {
5449 		ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5450 		goto out_lock;
5451 	}
5452 
5453 	entry->direct = new_addr;
5454 
5455 	/*
5456 	 * By removing the stub, we put back the direct call, calling
5457 	 * the @new_addr.
5458 	 */
5459 	unregister_ftrace_function(&stub_ops);
5460 	ftrace_set_filter_ip(&stub_ops, ip, 1, 0);
5461 
5462  out_lock:
5463 	mutex_lock(&ftrace_lock);
5464 
5465 	return ret;
5466 }
5467 
5468 /**
5469  * modify_ftrace_direct - Modify an existing direct call to call something else
5470  * @ip: The instruction pointer to modify
5471  * @old_addr: The address that the current @ip calls directly
5472  * @new_addr: The address that the @ip should call
5473  *
5474  * This modifies a ftrace direct caller at an instruction pointer without
5475  * having to disable it first. The direct call will switch over to the
5476  * @new_addr without missing anything.
5477  *
5478  * Returns: zero on success. Non zero on error, which includes:
5479  *  -ENODEV : the @ip given has no direct caller attached
5480  *  -EINVAL : the @old_addr does not match the current direct caller
5481  */
5482 int modify_ftrace_direct(unsigned long ip,
5483 			 unsigned long old_addr, unsigned long new_addr)
5484 {
5485 	struct ftrace_direct_func *direct, *new_direct = NULL;
5486 	struct ftrace_func_entry *entry;
5487 	struct dyn_ftrace *rec;
5488 	int ret = -ENODEV;
5489 
5490 	mutex_lock(&direct_mutex);
5491 
5492 	mutex_lock(&ftrace_lock);
5493 
5494 	ip = ftrace_location(ip);
5495 	if (!ip)
5496 		goto out_unlock;
5497 
5498 	entry = find_direct_entry(&ip, &rec);
5499 	if (!entry)
5500 		goto out_unlock;
5501 
5502 	ret = -EINVAL;
5503 	if (entry->direct != old_addr)
5504 		goto out_unlock;
5505 
5506 	direct = ftrace_find_direct_func(old_addr);
5507 	if (WARN_ON(!direct))
5508 		goto out_unlock;
5509 	if (direct->count > 1) {
5510 		ret = -ENOMEM;
5511 		new_direct = ftrace_alloc_direct_func(new_addr);
5512 		if (!new_direct)
5513 			goto out_unlock;
5514 		direct->count--;
5515 		new_direct->count++;
5516 	} else {
5517 		direct->addr = new_addr;
5518 	}
5519 
5520 	/*
5521 	 * If there's no other ftrace callback on the rec->ip location,
5522 	 * then it can be changed directly by the architecture.
5523 	 * If there is another caller, then we just need to change the
5524 	 * direct caller helper to point to @new_addr.
5525 	 */
5526 	if (ftrace_rec_count(rec) == 1) {
5527 		ret = ftrace_modify_direct_caller(entry, rec, old_addr, new_addr);
5528 	} else {
5529 		entry->direct = new_addr;
5530 		ret = 0;
5531 	}
5532 
5533 	if (unlikely(ret && new_direct)) {
5534 		direct->count++;
5535 		list_del_rcu(&new_direct->next);
5536 		synchronize_rcu_tasks();
5537 		kfree(new_direct);
5538 		ftrace_direct_func_count--;
5539 	}
5540 
5541  out_unlock:
5542 	mutex_unlock(&ftrace_lock);
5543 	mutex_unlock(&direct_mutex);
5544 	return ret;
5545 }
5546 EXPORT_SYMBOL_GPL(modify_ftrace_direct);
5547 
5548 #define MULTI_FLAGS (FTRACE_OPS_FL_IPMODIFY | FTRACE_OPS_FL_DIRECT | \
5549 		     FTRACE_OPS_FL_SAVE_REGS)
5550 
5551 static int check_direct_multi(struct ftrace_ops *ops)
5552 {
5553 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5554 		return -EINVAL;
5555 	if ((ops->flags & MULTI_FLAGS) != MULTI_FLAGS)
5556 		return -EINVAL;
5557 	return 0;
5558 }
5559 
5560 static void remove_direct_functions_hash(struct ftrace_hash *hash, unsigned long addr)
5561 {
5562 	struct ftrace_func_entry *entry, *del;
5563 	int size, i;
5564 
5565 	size = 1 << hash->size_bits;
5566 	for (i = 0; i < size; i++) {
5567 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5568 			del = __ftrace_lookup_ip(direct_functions, entry->ip);
5569 			if (del && del->direct == addr) {
5570 				remove_hash_entry(direct_functions, del);
5571 				kfree(del);
5572 			}
5573 		}
5574 	}
5575 }
5576 
5577 /**
5578  * register_ftrace_direct_multi - Call a custom trampoline directly
5579  * for multiple functions registered in @ops
5580  * @ops: The address of the struct ftrace_ops object
5581  * @addr: The address of the trampoline to call at @ops functions
5582  *
5583  * This is used to connect a direct calls to @addr from the nop locations
5584  * of the functions registered in @ops (with by ftrace_set_filter_ip
5585  * function).
5586  *
5587  * The location that it calls (@addr) must be able to handle a direct call,
5588  * and save the parameters of the function being traced, and restore them
5589  * (or inject new ones if needed), before returning.
5590  *
5591  * Returns:
5592  *  0 on success
5593  *  -EINVAL  - The @ops object was already registered with this call or
5594  *             when there are no functions in @ops object.
5595  *  -EBUSY   - Another direct function is already attached (there can be only one)
5596  *  -ENODEV  - @ip does not point to a ftrace nop location (or not supported)
5597  *  -ENOMEM  - There was an allocation failure.
5598  */
5599 int register_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5600 {
5601 	struct ftrace_hash *hash, *free_hash = NULL;
5602 	struct ftrace_func_entry *entry, *new;
5603 	int err = -EBUSY, size, i;
5604 
5605 	if (ops->func || ops->trampoline)
5606 		return -EINVAL;
5607 	if (!(ops->flags & FTRACE_OPS_FL_INITIALIZED))
5608 		return -EINVAL;
5609 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
5610 		return -EINVAL;
5611 
5612 	hash = ops->func_hash->filter_hash;
5613 	if (ftrace_hash_empty(hash))
5614 		return -EINVAL;
5615 
5616 	mutex_lock(&direct_mutex);
5617 
5618 	/* Make sure requested entries are not already registered.. */
5619 	size = 1 << hash->size_bits;
5620 	for (i = 0; i < size; i++) {
5621 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5622 			if (ftrace_find_rec_direct(entry->ip))
5623 				goto out_unlock;
5624 		}
5625 	}
5626 
5627 	/* ... and insert them to direct_functions hash. */
5628 	err = -ENOMEM;
5629 	for (i = 0; i < size; i++) {
5630 		hlist_for_each_entry(entry, &hash->buckets[i], hlist) {
5631 			new = ftrace_add_rec_direct(entry->ip, addr, &free_hash);
5632 			if (!new)
5633 				goto out_remove;
5634 			entry->direct = addr;
5635 		}
5636 	}
5637 
5638 	ops->func = call_direct_funcs;
5639 	ops->flags = MULTI_FLAGS;
5640 	ops->trampoline = FTRACE_REGS_ADDR;
5641 
5642 	err = register_ftrace_function(ops);
5643 
5644  out_remove:
5645 	if (err)
5646 		remove_direct_functions_hash(hash, addr);
5647 
5648  out_unlock:
5649 	mutex_unlock(&direct_mutex);
5650 
5651 	if (free_hash) {
5652 		synchronize_rcu_tasks();
5653 		free_ftrace_hash(free_hash);
5654 	}
5655 	return err;
5656 }
5657 EXPORT_SYMBOL_GPL(register_ftrace_direct_multi);
5658 
5659 /**
5660  * unregister_ftrace_direct_multi - Remove calls to custom trampoline
5661  * previously registered by register_ftrace_direct_multi for @ops object.
5662  * @ops: The address of the struct ftrace_ops object
5663  *
5664  * This is used to remove a direct calls to @addr from the nop locations
5665  * of the functions registered in @ops (with by ftrace_set_filter_ip
5666  * function).
5667  *
5668  * Returns:
5669  *  0 on success
5670  *  -EINVAL - The @ops object was not properly registered.
5671  */
5672 int unregister_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5673 {
5674 	struct ftrace_hash *hash = ops->func_hash->filter_hash;
5675 	int err;
5676 
5677 	if (check_direct_multi(ops))
5678 		return -EINVAL;
5679 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5680 		return -EINVAL;
5681 
5682 	mutex_lock(&direct_mutex);
5683 	err = unregister_ftrace_function(ops);
5684 	remove_direct_functions_hash(hash, addr);
5685 	mutex_unlock(&direct_mutex);
5686 
5687 	/* cleanup for possible another register call */
5688 	ops->func = NULL;
5689 	ops->trampoline = 0;
5690 	return err;
5691 }
5692 EXPORT_SYMBOL_GPL(unregister_ftrace_direct_multi);
5693 
5694 /**
5695  * modify_ftrace_direct_multi - Modify an existing direct 'multi' call
5696  * to call something else
5697  * @ops: The address of the struct ftrace_ops object
5698  * @addr: The address of the new trampoline to call at @ops functions
5699  *
5700  * This is used to unregister currently registered direct caller and
5701  * register new one @addr on functions registered in @ops object.
5702  *
5703  * Note there's window between ftrace_shutdown and ftrace_startup calls
5704  * where there will be no callbacks called.
5705  *
5706  * Returns: zero on success. Non zero on error, which includes:
5707  *  -EINVAL - The @ops object was not properly registered.
5708  */
5709 int modify_ftrace_direct_multi(struct ftrace_ops *ops, unsigned long addr)
5710 {
5711 	struct ftrace_hash *hash;
5712 	struct ftrace_func_entry *entry, *iter;
5713 	static struct ftrace_ops tmp_ops = {
5714 		.func		= ftrace_stub,
5715 		.flags		= FTRACE_OPS_FL_STUB,
5716 	};
5717 	int i, size;
5718 	int err;
5719 
5720 	if (check_direct_multi(ops))
5721 		return -EINVAL;
5722 	if (!(ops->flags & FTRACE_OPS_FL_ENABLED))
5723 		return -EINVAL;
5724 
5725 	mutex_lock(&direct_mutex);
5726 
5727 	/* Enable the tmp_ops to have the same functions as the direct ops */
5728 	ftrace_ops_init(&tmp_ops);
5729 	tmp_ops.func_hash = ops->func_hash;
5730 
5731 	err = register_ftrace_function(&tmp_ops);
5732 	if (err)
5733 		goto out_direct;
5734 
5735 	/*
5736 	 * Now the ftrace_ops_list_func() is called to do the direct callers.
5737 	 * We can safely change the direct functions attached to each entry.
5738 	 */
5739 	mutex_lock(&ftrace_lock);
5740 
5741 	hash = ops->func_hash->filter_hash;
5742 	size = 1 << hash->size_bits;
5743 	for (i = 0; i < size; i++) {
5744 		hlist_for_each_entry(iter, &hash->buckets[i], hlist) {
5745 			entry = __ftrace_lookup_ip(direct_functions, iter->ip);
5746 			if (!entry)
5747 				continue;
5748 			entry->direct = addr;
5749 		}
5750 	}
5751 
5752 	mutex_unlock(&ftrace_lock);
5753 
5754 	/* Removing the tmp_ops will add the updated direct callers to the functions */
5755 	unregister_ftrace_function(&tmp_ops);
5756 
5757  out_direct:
5758 	mutex_unlock(&direct_mutex);
5759 	return err;
5760 }
5761 EXPORT_SYMBOL_GPL(modify_ftrace_direct_multi);
5762 #endif /* CONFIG_DYNAMIC_FTRACE_WITH_DIRECT_CALLS */
5763 
5764 /**
5765  * ftrace_set_filter_ip - set a function to filter on in ftrace by address
5766  * @ops - the ops to set the filter with
5767  * @ip - the address to add to or remove from the filter.
5768  * @remove - non zero to remove the ip from the filter
5769  * @reset - non zero to reset all filters before applying this filter.
5770  *
5771  * Filters denote which functions should be enabled when tracing is enabled
5772  * If @ip is NULL, it fails to update filter.
5773  */
5774 int ftrace_set_filter_ip(struct ftrace_ops *ops, unsigned long ip,
5775 			 int remove, int reset)
5776 {
5777 	ftrace_ops_init(ops);
5778 	return ftrace_set_addr(ops, &ip, 1, remove, reset, 1);
5779 }
5780 EXPORT_SYMBOL_GPL(ftrace_set_filter_ip);
5781 
5782 /**
5783  * ftrace_set_filter_ips - set functions to filter on in ftrace by addresses
5784  * @ops - the ops to set the filter with
5785  * @ips - the array of addresses to add to or remove from the filter.
5786  * @cnt - the number of addresses in @ips
5787  * @remove - non zero to remove ips from the filter
5788  * @reset - non zero to reset all filters before applying this filter.
5789  *
5790  * Filters denote which functions should be enabled when tracing is enabled
5791  * If @ips array or any ip specified within is NULL , it fails to update filter.
5792  */
5793 int ftrace_set_filter_ips(struct ftrace_ops *ops, unsigned long *ips,
5794 			  unsigned int cnt, int remove, int reset)
5795 {
5796 	ftrace_ops_init(ops);
5797 	return ftrace_set_addr(ops, ips, cnt, remove, reset, 1);
5798 }
5799 EXPORT_SYMBOL_GPL(ftrace_set_filter_ips);
5800 
5801 /**
5802  * ftrace_ops_set_global_filter - setup ops to use global filters
5803  * @ops - the ops which will use the global filters
5804  *
5805  * ftrace users who need global function trace filtering should call this.
5806  * It can set the global filter only if ops were not initialized before.
5807  */
5808 void ftrace_ops_set_global_filter(struct ftrace_ops *ops)
5809 {
5810 	if (ops->flags & FTRACE_OPS_FL_INITIALIZED)
5811 		return;
5812 
5813 	ftrace_ops_init(ops);
5814 	ops->func_hash = &global_ops.local_hash;
5815 }
5816 EXPORT_SYMBOL_GPL(ftrace_ops_set_global_filter);
5817 
5818 static int
5819 ftrace_set_regex(struct ftrace_ops *ops, unsigned char *buf, int len,
5820 		 int reset, int enable)
5821 {
5822 	return ftrace_set_hash(ops, buf, len, NULL, 0, 0, reset, enable);
5823 }
5824 
5825 /**
5826  * ftrace_set_filter - set a function to filter on in ftrace
5827  * @ops - the ops to set the filter with
5828  * @buf - the string that holds the function filter text.
5829  * @len - the length of the string.
5830  * @reset - non zero to reset all filters before applying this filter.
5831  *
5832  * Filters denote which functions should be enabled when tracing is enabled.
5833  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5834  */
5835 int ftrace_set_filter(struct ftrace_ops *ops, unsigned char *buf,
5836 		       int len, int reset)
5837 {
5838 	ftrace_ops_init(ops);
5839 	return ftrace_set_regex(ops, buf, len, reset, 1);
5840 }
5841 EXPORT_SYMBOL_GPL(ftrace_set_filter);
5842 
5843 /**
5844  * ftrace_set_notrace - set a function to not trace in ftrace
5845  * @ops - the ops to set the notrace filter with
5846  * @buf - the string that holds the function notrace text.
5847  * @len - the length of the string.
5848  * @reset - non zero to reset all filters before applying this filter.
5849  *
5850  * Notrace Filters denote which functions should not be enabled when tracing
5851  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5852  * for tracing.
5853  */
5854 int ftrace_set_notrace(struct ftrace_ops *ops, unsigned char *buf,
5855 			int len, int reset)
5856 {
5857 	ftrace_ops_init(ops);
5858 	return ftrace_set_regex(ops, buf, len, reset, 0);
5859 }
5860 EXPORT_SYMBOL_GPL(ftrace_set_notrace);
5861 /**
5862  * ftrace_set_global_filter - set a function to filter on with global tracers
5863  * @buf - the string that holds the function filter text.
5864  * @len - the length of the string.
5865  * @reset - non zero to reset all filters before applying this filter.
5866  *
5867  * Filters denote which functions should be enabled when tracing is enabled.
5868  * If @buf is NULL and reset is set, all functions will be enabled for tracing.
5869  */
5870 void ftrace_set_global_filter(unsigned char *buf, int len, int reset)
5871 {
5872 	ftrace_set_regex(&global_ops, buf, len, reset, 1);
5873 }
5874 EXPORT_SYMBOL_GPL(ftrace_set_global_filter);
5875 
5876 /**
5877  * ftrace_set_global_notrace - set a function to not trace with global tracers
5878  * @buf - the string that holds the function notrace text.
5879  * @len - the length of the string.
5880  * @reset - non zero to reset all filters before applying this filter.
5881  *
5882  * Notrace Filters denote which functions should not be enabled when tracing
5883  * is enabled. If @buf is NULL and reset is set, all functions will be enabled
5884  * for tracing.
5885  */
5886 void ftrace_set_global_notrace(unsigned char *buf, int len, int reset)
5887 {
5888 	ftrace_set_regex(&global_ops, buf, len, reset, 0);
5889 }
5890 EXPORT_SYMBOL_GPL(ftrace_set_global_notrace);
5891 
5892 /*
5893  * command line interface to allow users to set filters on boot up.
5894  */
5895 #define FTRACE_FILTER_SIZE		COMMAND_LINE_SIZE
5896 static char ftrace_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5897 static char ftrace_filter_buf[FTRACE_FILTER_SIZE] __initdata;
5898 
5899 /* Used by function selftest to not test if filter is set */
5900 bool ftrace_filter_param __initdata;
5901 
5902 static int __init set_ftrace_notrace(char *str)
5903 {
5904 	ftrace_filter_param = true;
5905 	strlcpy(ftrace_notrace_buf, str, FTRACE_FILTER_SIZE);
5906 	return 1;
5907 }
5908 __setup("ftrace_notrace=", set_ftrace_notrace);
5909 
5910 static int __init set_ftrace_filter(char *str)
5911 {
5912 	ftrace_filter_param = true;
5913 	strlcpy(ftrace_filter_buf, str, FTRACE_FILTER_SIZE);
5914 	return 1;
5915 }
5916 __setup("ftrace_filter=", set_ftrace_filter);
5917 
5918 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5919 static char ftrace_graph_buf[FTRACE_FILTER_SIZE] __initdata;
5920 static char ftrace_graph_notrace_buf[FTRACE_FILTER_SIZE] __initdata;
5921 static int ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer);
5922 
5923 static int __init set_graph_function(char *str)
5924 {
5925 	strlcpy(ftrace_graph_buf, str, FTRACE_FILTER_SIZE);
5926 	return 1;
5927 }
5928 __setup("ftrace_graph_filter=", set_graph_function);
5929 
5930 static int __init set_graph_notrace_function(char *str)
5931 {
5932 	strlcpy(ftrace_graph_notrace_buf, str, FTRACE_FILTER_SIZE);
5933 	return 1;
5934 }
5935 __setup("ftrace_graph_notrace=", set_graph_notrace_function);
5936 
5937 static int __init set_graph_max_depth_function(char *str)
5938 {
5939 	if (!str)
5940 		return 0;
5941 	fgraph_max_depth = simple_strtoul(str, NULL, 0);
5942 	return 1;
5943 }
5944 __setup("ftrace_graph_max_depth=", set_graph_max_depth_function);
5945 
5946 static void __init set_ftrace_early_graph(char *buf, int enable)
5947 {
5948 	int ret;
5949 	char *func;
5950 	struct ftrace_hash *hash;
5951 
5952 	hash = alloc_ftrace_hash(FTRACE_HASH_DEFAULT_BITS);
5953 	if (MEM_FAIL(!hash, "Failed to allocate hash\n"))
5954 		return;
5955 
5956 	while (buf) {
5957 		func = strsep(&buf, ",");
5958 		/* we allow only one expression at a time */
5959 		ret = ftrace_graph_set_hash(hash, func);
5960 		if (ret)
5961 			printk(KERN_DEBUG "ftrace: function %s not "
5962 					  "traceable\n", func);
5963 	}
5964 
5965 	if (enable)
5966 		ftrace_graph_hash = hash;
5967 	else
5968 		ftrace_graph_notrace_hash = hash;
5969 }
5970 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5971 
5972 void __init
5973 ftrace_set_early_filter(struct ftrace_ops *ops, char *buf, int enable)
5974 {
5975 	char *func;
5976 
5977 	ftrace_ops_init(ops);
5978 
5979 	while (buf) {
5980 		func = strsep(&buf, ",");
5981 		ftrace_set_regex(ops, func, strlen(func), 0, enable);
5982 	}
5983 }
5984 
5985 static void __init set_ftrace_early_filters(void)
5986 {
5987 	if (ftrace_filter_buf[0])
5988 		ftrace_set_early_filter(&global_ops, ftrace_filter_buf, 1);
5989 	if (ftrace_notrace_buf[0])
5990 		ftrace_set_early_filter(&global_ops, ftrace_notrace_buf, 0);
5991 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
5992 	if (ftrace_graph_buf[0])
5993 		set_ftrace_early_graph(ftrace_graph_buf, 1);
5994 	if (ftrace_graph_notrace_buf[0])
5995 		set_ftrace_early_graph(ftrace_graph_notrace_buf, 0);
5996 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
5997 }
5998 
5999 int ftrace_regex_release(struct inode *inode, struct file *file)
6000 {
6001 	struct seq_file *m = (struct seq_file *)file->private_data;
6002 	struct ftrace_iterator *iter;
6003 	struct ftrace_hash **orig_hash;
6004 	struct trace_parser *parser;
6005 	int filter_hash;
6006 
6007 	if (file->f_mode & FMODE_READ) {
6008 		iter = m->private;
6009 		seq_release(inode, file);
6010 	} else
6011 		iter = file->private_data;
6012 
6013 	parser = &iter->parser;
6014 	if (trace_parser_loaded(parser)) {
6015 		int enable = !(iter->flags & FTRACE_ITER_NOTRACE);
6016 
6017 		ftrace_process_regex(iter, parser->buffer,
6018 				     parser->idx, enable);
6019 	}
6020 
6021 	trace_parser_put(parser);
6022 
6023 	mutex_lock(&iter->ops->func_hash->regex_lock);
6024 
6025 	if (file->f_mode & FMODE_WRITE) {
6026 		filter_hash = !!(iter->flags & FTRACE_ITER_FILTER);
6027 
6028 		if (filter_hash) {
6029 			orig_hash = &iter->ops->func_hash->filter_hash;
6030 			if (iter->tr && !list_empty(&iter->tr->mod_trace))
6031 				iter->hash->flags |= FTRACE_HASH_FL_MOD;
6032 		} else
6033 			orig_hash = &iter->ops->func_hash->notrace_hash;
6034 
6035 		mutex_lock(&ftrace_lock);
6036 		ftrace_hash_move_and_update_ops(iter->ops, orig_hash,
6037 						      iter->hash, filter_hash);
6038 		mutex_unlock(&ftrace_lock);
6039 	} else {
6040 		/* For read only, the hash is the ops hash */
6041 		iter->hash = NULL;
6042 	}
6043 
6044 	mutex_unlock(&iter->ops->func_hash->regex_lock);
6045 	free_ftrace_hash(iter->hash);
6046 	if (iter->tr)
6047 		trace_array_put(iter->tr);
6048 	kfree(iter);
6049 
6050 	return 0;
6051 }
6052 
6053 static const struct file_operations ftrace_avail_fops = {
6054 	.open = ftrace_avail_open,
6055 	.read = seq_read,
6056 	.llseek = seq_lseek,
6057 	.release = seq_release_private,
6058 };
6059 
6060 static const struct file_operations ftrace_enabled_fops = {
6061 	.open = ftrace_enabled_open,
6062 	.read = seq_read,
6063 	.llseek = seq_lseek,
6064 	.release = seq_release_private,
6065 };
6066 
6067 static const struct file_operations ftrace_filter_fops = {
6068 	.open = ftrace_filter_open,
6069 	.read = seq_read,
6070 	.write = ftrace_filter_write,
6071 	.llseek = tracing_lseek,
6072 	.release = ftrace_regex_release,
6073 };
6074 
6075 static const struct file_operations ftrace_notrace_fops = {
6076 	.open = ftrace_notrace_open,
6077 	.read = seq_read,
6078 	.write = ftrace_notrace_write,
6079 	.llseek = tracing_lseek,
6080 	.release = ftrace_regex_release,
6081 };
6082 
6083 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6084 
6085 static DEFINE_MUTEX(graph_lock);
6086 
6087 struct ftrace_hash __rcu *ftrace_graph_hash = EMPTY_HASH;
6088 struct ftrace_hash __rcu *ftrace_graph_notrace_hash = EMPTY_HASH;
6089 
6090 enum graph_filter_type {
6091 	GRAPH_FILTER_NOTRACE	= 0,
6092 	GRAPH_FILTER_FUNCTION,
6093 };
6094 
6095 #define FTRACE_GRAPH_EMPTY	((void *)1)
6096 
6097 struct ftrace_graph_data {
6098 	struct ftrace_hash		*hash;
6099 	struct ftrace_func_entry	*entry;
6100 	int				idx;   /* for hash table iteration */
6101 	enum graph_filter_type		type;
6102 	struct ftrace_hash		*new_hash;
6103 	const struct seq_operations	*seq_ops;
6104 	struct trace_parser		parser;
6105 };
6106 
6107 static void *
6108 __g_next(struct seq_file *m, loff_t *pos)
6109 {
6110 	struct ftrace_graph_data *fgd = m->private;
6111 	struct ftrace_func_entry *entry = fgd->entry;
6112 	struct hlist_head *head;
6113 	int i, idx = fgd->idx;
6114 
6115 	if (*pos >= fgd->hash->count)
6116 		return NULL;
6117 
6118 	if (entry) {
6119 		hlist_for_each_entry_continue(entry, hlist) {
6120 			fgd->entry = entry;
6121 			return entry;
6122 		}
6123 
6124 		idx++;
6125 	}
6126 
6127 	for (i = idx; i < 1 << fgd->hash->size_bits; i++) {
6128 		head = &fgd->hash->buckets[i];
6129 		hlist_for_each_entry(entry, head, hlist) {
6130 			fgd->entry = entry;
6131 			fgd->idx = i;
6132 			return entry;
6133 		}
6134 	}
6135 	return NULL;
6136 }
6137 
6138 static void *
6139 g_next(struct seq_file *m, void *v, loff_t *pos)
6140 {
6141 	(*pos)++;
6142 	return __g_next(m, pos);
6143 }
6144 
6145 static void *g_start(struct seq_file *m, loff_t *pos)
6146 {
6147 	struct ftrace_graph_data *fgd = m->private;
6148 
6149 	mutex_lock(&graph_lock);
6150 
6151 	if (fgd->type == GRAPH_FILTER_FUNCTION)
6152 		fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6153 					lockdep_is_held(&graph_lock));
6154 	else
6155 		fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6156 					lockdep_is_held(&graph_lock));
6157 
6158 	/* Nothing, tell g_show to print all functions are enabled */
6159 	if (ftrace_hash_empty(fgd->hash) && !*pos)
6160 		return FTRACE_GRAPH_EMPTY;
6161 
6162 	fgd->idx = 0;
6163 	fgd->entry = NULL;
6164 	return __g_next(m, pos);
6165 }
6166 
6167 static void g_stop(struct seq_file *m, void *p)
6168 {
6169 	mutex_unlock(&graph_lock);
6170 }
6171 
6172 static int g_show(struct seq_file *m, void *v)
6173 {
6174 	struct ftrace_func_entry *entry = v;
6175 
6176 	if (!entry)
6177 		return 0;
6178 
6179 	if (entry == FTRACE_GRAPH_EMPTY) {
6180 		struct ftrace_graph_data *fgd = m->private;
6181 
6182 		if (fgd->type == GRAPH_FILTER_FUNCTION)
6183 			seq_puts(m, "#### all functions enabled ####\n");
6184 		else
6185 			seq_puts(m, "#### no functions disabled ####\n");
6186 		return 0;
6187 	}
6188 
6189 	seq_printf(m, "%ps\n", (void *)entry->ip);
6190 
6191 	return 0;
6192 }
6193 
6194 static const struct seq_operations ftrace_graph_seq_ops = {
6195 	.start = g_start,
6196 	.next = g_next,
6197 	.stop = g_stop,
6198 	.show = g_show,
6199 };
6200 
6201 static int
6202 __ftrace_graph_open(struct inode *inode, struct file *file,
6203 		    struct ftrace_graph_data *fgd)
6204 {
6205 	int ret;
6206 	struct ftrace_hash *new_hash = NULL;
6207 
6208 	ret = security_locked_down(LOCKDOWN_TRACEFS);
6209 	if (ret)
6210 		return ret;
6211 
6212 	if (file->f_mode & FMODE_WRITE) {
6213 		const int size_bits = FTRACE_HASH_DEFAULT_BITS;
6214 
6215 		if (trace_parser_get_init(&fgd->parser, FTRACE_BUFF_MAX))
6216 			return -ENOMEM;
6217 
6218 		if (file->f_flags & O_TRUNC)
6219 			new_hash = alloc_ftrace_hash(size_bits);
6220 		else
6221 			new_hash = alloc_and_copy_ftrace_hash(size_bits,
6222 							      fgd->hash);
6223 		if (!new_hash) {
6224 			ret = -ENOMEM;
6225 			goto out;
6226 		}
6227 	}
6228 
6229 	if (file->f_mode & FMODE_READ) {
6230 		ret = seq_open(file, &ftrace_graph_seq_ops);
6231 		if (!ret) {
6232 			struct seq_file *m = file->private_data;
6233 			m->private = fgd;
6234 		} else {
6235 			/* Failed */
6236 			free_ftrace_hash(new_hash);
6237 			new_hash = NULL;
6238 		}
6239 	} else
6240 		file->private_data = fgd;
6241 
6242 out:
6243 	if (ret < 0 && file->f_mode & FMODE_WRITE)
6244 		trace_parser_put(&fgd->parser);
6245 
6246 	fgd->new_hash = new_hash;
6247 
6248 	/*
6249 	 * All uses of fgd->hash must be taken with the graph_lock
6250 	 * held. The graph_lock is going to be released, so force
6251 	 * fgd->hash to be reinitialized when it is taken again.
6252 	 */
6253 	fgd->hash = NULL;
6254 
6255 	return ret;
6256 }
6257 
6258 static int
6259 ftrace_graph_open(struct inode *inode, struct file *file)
6260 {
6261 	struct ftrace_graph_data *fgd;
6262 	int ret;
6263 
6264 	if (unlikely(ftrace_disabled))
6265 		return -ENODEV;
6266 
6267 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6268 	if (fgd == NULL)
6269 		return -ENOMEM;
6270 
6271 	mutex_lock(&graph_lock);
6272 
6273 	fgd->hash = rcu_dereference_protected(ftrace_graph_hash,
6274 					lockdep_is_held(&graph_lock));
6275 	fgd->type = GRAPH_FILTER_FUNCTION;
6276 	fgd->seq_ops = &ftrace_graph_seq_ops;
6277 
6278 	ret = __ftrace_graph_open(inode, file, fgd);
6279 	if (ret < 0)
6280 		kfree(fgd);
6281 
6282 	mutex_unlock(&graph_lock);
6283 	return ret;
6284 }
6285 
6286 static int
6287 ftrace_graph_notrace_open(struct inode *inode, struct file *file)
6288 {
6289 	struct ftrace_graph_data *fgd;
6290 	int ret;
6291 
6292 	if (unlikely(ftrace_disabled))
6293 		return -ENODEV;
6294 
6295 	fgd = kmalloc(sizeof(*fgd), GFP_KERNEL);
6296 	if (fgd == NULL)
6297 		return -ENOMEM;
6298 
6299 	mutex_lock(&graph_lock);
6300 
6301 	fgd->hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6302 					lockdep_is_held(&graph_lock));
6303 	fgd->type = GRAPH_FILTER_NOTRACE;
6304 	fgd->seq_ops = &ftrace_graph_seq_ops;
6305 
6306 	ret = __ftrace_graph_open(inode, file, fgd);
6307 	if (ret < 0)
6308 		kfree(fgd);
6309 
6310 	mutex_unlock(&graph_lock);
6311 	return ret;
6312 }
6313 
6314 static int
6315 ftrace_graph_release(struct inode *inode, struct file *file)
6316 {
6317 	struct ftrace_graph_data *fgd;
6318 	struct ftrace_hash *old_hash, *new_hash;
6319 	struct trace_parser *parser;
6320 	int ret = 0;
6321 
6322 	if (file->f_mode & FMODE_READ) {
6323 		struct seq_file *m = file->private_data;
6324 
6325 		fgd = m->private;
6326 		seq_release(inode, file);
6327 	} else {
6328 		fgd = file->private_data;
6329 	}
6330 
6331 
6332 	if (file->f_mode & FMODE_WRITE) {
6333 
6334 		parser = &fgd->parser;
6335 
6336 		if (trace_parser_loaded((parser))) {
6337 			ret = ftrace_graph_set_hash(fgd->new_hash,
6338 						    parser->buffer);
6339 		}
6340 
6341 		trace_parser_put(parser);
6342 
6343 		new_hash = __ftrace_hash_move(fgd->new_hash);
6344 		if (!new_hash) {
6345 			ret = -ENOMEM;
6346 			goto out;
6347 		}
6348 
6349 		mutex_lock(&graph_lock);
6350 
6351 		if (fgd->type == GRAPH_FILTER_FUNCTION) {
6352 			old_hash = rcu_dereference_protected(ftrace_graph_hash,
6353 					lockdep_is_held(&graph_lock));
6354 			rcu_assign_pointer(ftrace_graph_hash, new_hash);
6355 		} else {
6356 			old_hash = rcu_dereference_protected(ftrace_graph_notrace_hash,
6357 					lockdep_is_held(&graph_lock));
6358 			rcu_assign_pointer(ftrace_graph_notrace_hash, new_hash);
6359 		}
6360 
6361 		mutex_unlock(&graph_lock);
6362 
6363 		/*
6364 		 * We need to do a hard force of sched synchronization.
6365 		 * This is because we use preempt_disable() to do RCU, but
6366 		 * the function tracers can be called where RCU is not watching
6367 		 * (like before user_exit()). We can not rely on the RCU
6368 		 * infrastructure to do the synchronization, thus we must do it
6369 		 * ourselves.
6370 		 */
6371 		if (old_hash != EMPTY_HASH)
6372 			synchronize_rcu_tasks_rude();
6373 
6374 		free_ftrace_hash(old_hash);
6375 	}
6376 
6377  out:
6378 	free_ftrace_hash(fgd->new_hash);
6379 	kfree(fgd);
6380 
6381 	return ret;
6382 }
6383 
6384 static int
6385 ftrace_graph_set_hash(struct ftrace_hash *hash, char *buffer)
6386 {
6387 	struct ftrace_glob func_g;
6388 	struct dyn_ftrace *rec;
6389 	struct ftrace_page *pg;
6390 	struct ftrace_func_entry *entry;
6391 	int fail = 1;
6392 	int not;
6393 
6394 	/* decode regex */
6395 	func_g.type = filter_parse_regex(buffer, strlen(buffer),
6396 					 &func_g.search, &not);
6397 
6398 	func_g.len = strlen(func_g.search);
6399 
6400 	mutex_lock(&ftrace_lock);
6401 
6402 	if (unlikely(ftrace_disabled)) {
6403 		mutex_unlock(&ftrace_lock);
6404 		return -ENODEV;
6405 	}
6406 
6407 	do_for_each_ftrace_rec(pg, rec) {
6408 
6409 		if (rec->flags & FTRACE_FL_DISABLED)
6410 			continue;
6411 
6412 		if (ftrace_match_record(rec, &func_g, NULL, 0)) {
6413 			entry = ftrace_lookup_ip(hash, rec->ip);
6414 
6415 			if (!not) {
6416 				fail = 0;
6417 
6418 				if (entry)
6419 					continue;
6420 				if (add_hash_entry(hash, rec->ip) < 0)
6421 					goto out;
6422 			} else {
6423 				if (entry) {
6424 					free_hash_entry(hash, entry);
6425 					fail = 0;
6426 				}
6427 			}
6428 		}
6429 	} while_for_each_ftrace_rec();
6430 out:
6431 	mutex_unlock(&ftrace_lock);
6432 
6433 	if (fail)
6434 		return -EINVAL;
6435 
6436 	return 0;
6437 }
6438 
6439 static ssize_t
6440 ftrace_graph_write(struct file *file, const char __user *ubuf,
6441 		   size_t cnt, loff_t *ppos)
6442 {
6443 	ssize_t read, ret = 0;
6444 	struct ftrace_graph_data *fgd = file->private_data;
6445 	struct trace_parser *parser;
6446 
6447 	if (!cnt)
6448 		return 0;
6449 
6450 	/* Read mode uses seq functions */
6451 	if (file->f_mode & FMODE_READ) {
6452 		struct seq_file *m = file->private_data;
6453 		fgd = m->private;
6454 	}
6455 
6456 	parser = &fgd->parser;
6457 
6458 	read = trace_get_user(parser, ubuf, cnt, ppos);
6459 
6460 	if (read >= 0 && trace_parser_loaded(parser) &&
6461 	    !trace_parser_cont(parser)) {
6462 
6463 		ret = ftrace_graph_set_hash(fgd->new_hash,
6464 					    parser->buffer);
6465 		trace_parser_clear(parser);
6466 	}
6467 
6468 	if (!ret)
6469 		ret = read;
6470 
6471 	return ret;
6472 }
6473 
6474 static const struct file_operations ftrace_graph_fops = {
6475 	.open		= ftrace_graph_open,
6476 	.read		= seq_read,
6477 	.write		= ftrace_graph_write,
6478 	.llseek		= tracing_lseek,
6479 	.release	= ftrace_graph_release,
6480 };
6481 
6482 static const struct file_operations ftrace_graph_notrace_fops = {
6483 	.open		= ftrace_graph_notrace_open,
6484 	.read		= seq_read,
6485 	.write		= ftrace_graph_write,
6486 	.llseek		= tracing_lseek,
6487 	.release	= ftrace_graph_release,
6488 };
6489 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6490 
6491 void ftrace_create_filter_files(struct ftrace_ops *ops,
6492 				struct dentry *parent)
6493 {
6494 
6495 	trace_create_file("set_ftrace_filter", TRACE_MODE_WRITE, parent,
6496 			  ops, &ftrace_filter_fops);
6497 
6498 	trace_create_file("set_ftrace_notrace", TRACE_MODE_WRITE, parent,
6499 			  ops, &ftrace_notrace_fops);
6500 }
6501 
6502 /*
6503  * The name "destroy_filter_files" is really a misnomer. Although
6504  * in the future, it may actually delete the files, but this is
6505  * really intended to make sure the ops passed in are disabled
6506  * and that when this function returns, the caller is free to
6507  * free the ops.
6508  *
6509  * The "destroy" name is only to match the "create" name that this
6510  * should be paired with.
6511  */
6512 void ftrace_destroy_filter_files(struct ftrace_ops *ops)
6513 {
6514 	mutex_lock(&ftrace_lock);
6515 	if (ops->flags & FTRACE_OPS_FL_ENABLED)
6516 		ftrace_shutdown(ops, 0);
6517 	ops->flags |= FTRACE_OPS_FL_DELETED;
6518 	ftrace_free_filter(ops);
6519 	mutex_unlock(&ftrace_lock);
6520 }
6521 
6522 static __init int ftrace_init_dyn_tracefs(struct dentry *d_tracer)
6523 {
6524 
6525 	trace_create_file("available_filter_functions", TRACE_MODE_READ,
6526 			d_tracer, NULL, &ftrace_avail_fops);
6527 
6528 	trace_create_file("enabled_functions", TRACE_MODE_READ,
6529 			d_tracer, NULL, &ftrace_enabled_fops);
6530 
6531 	ftrace_create_filter_files(&global_ops, d_tracer);
6532 
6533 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
6534 	trace_create_file("set_graph_function", TRACE_MODE_WRITE, d_tracer,
6535 				    NULL,
6536 				    &ftrace_graph_fops);
6537 	trace_create_file("set_graph_notrace", TRACE_MODE_WRITE, d_tracer,
6538 				    NULL,
6539 				    &ftrace_graph_notrace_fops);
6540 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
6541 
6542 	return 0;
6543 }
6544 
6545 static int ftrace_cmp_ips(const void *a, const void *b)
6546 {
6547 	const unsigned long *ipa = a;
6548 	const unsigned long *ipb = b;
6549 
6550 	if (*ipa > *ipb)
6551 		return 1;
6552 	if (*ipa < *ipb)
6553 		return -1;
6554 	return 0;
6555 }
6556 
6557 #ifdef CONFIG_FTRACE_SORT_STARTUP_TEST
6558 static void test_is_sorted(unsigned long *start, unsigned long count)
6559 {
6560 	int i;
6561 
6562 	for (i = 1; i < count; i++) {
6563 		if (WARN(start[i - 1] > start[i],
6564 			 "[%d] %pS at %lx is not sorted with %pS at %lx\n", i,
6565 			 (void *)start[i - 1], start[i - 1],
6566 			 (void *)start[i], start[i]))
6567 			break;
6568 	}
6569 	if (i == count)
6570 		pr_info("ftrace section at %px sorted properly\n", start);
6571 }
6572 #else
6573 static void test_is_sorted(unsigned long *start, unsigned long count)
6574 {
6575 }
6576 #endif
6577 
6578 static int ftrace_process_locs(struct module *mod,
6579 			       unsigned long *start,
6580 			       unsigned long *end)
6581 {
6582 	struct ftrace_page *start_pg;
6583 	struct ftrace_page *pg;
6584 	struct dyn_ftrace *rec;
6585 	unsigned long count;
6586 	unsigned long *p;
6587 	unsigned long addr;
6588 	unsigned long flags = 0; /* Shut up gcc */
6589 	int ret = -ENOMEM;
6590 
6591 	count = end - start;
6592 
6593 	if (!count)
6594 		return 0;
6595 
6596 	/*
6597 	 * Sorting mcount in vmlinux at build time depend on
6598 	 * CONFIG_BUILDTIME_MCOUNT_SORT, while mcount loc in
6599 	 * modules can not be sorted at build time.
6600 	 */
6601 	if (!IS_ENABLED(CONFIG_BUILDTIME_MCOUNT_SORT) || mod) {
6602 		sort(start, count, sizeof(*start),
6603 		     ftrace_cmp_ips, NULL);
6604 	} else {
6605 		test_is_sorted(start, count);
6606 	}
6607 
6608 	start_pg = ftrace_allocate_pages(count);
6609 	if (!start_pg)
6610 		return -ENOMEM;
6611 
6612 	mutex_lock(&ftrace_lock);
6613 
6614 	/*
6615 	 * Core and each module needs their own pages, as
6616 	 * modules will free them when they are removed.
6617 	 * Force a new page to be allocated for modules.
6618 	 */
6619 	if (!mod) {
6620 		WARN_ON(ftrace_pages || ftrace_pages_start);
6621 		/* First initialization */
6622 		ftrace_pages = ftrace_pages_start = start_pg;
6623 	} else {
6624 		if (!ftrace_pages)
6625 			goto out;
6626 
6627 		if (WARN_ON(ftrace_pages->next)) {
6628 			/* Hmm, we have free pages? */
6629 			while (ftrace_pages->next)
6630 				ftrace_pages = ftrace_pages->next;
6631 		}
6632 
6633 		ftrace_pages->next = start_pg;
6634 	}
6635 
6636 	p = start;
6637 	pg = start_pg;
6638 	while (p < end) {
6639 		unsigned long end_offset;
6640 		addr = ftrace_call_adjust(*p++);
6641 		/*
6642 		 * Some architecture linkers will pad between
6643 		 * the different mcount_loc sections of different
6644 		 * object files to satisfy alignments.
6645 		 * Skip any NULL pointers.
6646 		 */
6647 		if (!addr)
6648 			continue;
6649 
6650 		end_offset = (pg->index+1) * sizeof(pg->records[0]);
6651 		if (end_offset > PAGE_SIZE << pg->order) {
6652 			/* We should have allocated enough */
6653 			if (WARN_ON(!pg->next))
6654 				break;
6655 			pg = pg->next;
6656 		}
6657 
6658 		rec = &pg->records[pg->index++];
6659 		rec->ip = addr;
6660 	}
6661 
6662 	/* We should have used all pages */
6663 	WARN_ON(pg->next);
6664 
6665 	/* Assign the last page to ftrace_pages */
6666 	ftrace_pages = pg;
6667 
6668 	/*
6669 	 * We only need to disable interrupts on start up
6670 	 * because we are modifying code that an interrupt
6671 	 * may execute, and the modification is not atomic.
6672 	 * But for modules, nothing runs the code we modify
6673 	 * until we are finished with it, and there's no
6674 	 * reason to cause large interrupt latencies while we do it.
6675 	 */
6676 	if (!mod)
6677 		local_irq_save(flags);
6678 	ftrace_update_code(mod, start_pg);
6679 	if (!mod)
6680 		local_irq_restore(flags);
6681 	ret = 0;
6682  out:
6683 	mutex_unlock(&ftrace_lock);
6684 
6685 	return ret;
6686 }
6687 
6688 struct ftrace_mod_func {
6689 	struct list_head	list;
6690 	char			*name;
6691 	unsigned long		ip;
6692 	unsigned int		size;
6693 };
6694 
6695 struct ftrace_mod_map {
6696 	struct rcu_head		rcu;
6697 	struct list_head	list;
6698 	struct module		*mod;
6699 	unsigned long		start_addr;
6700 	unsigned long		end_addr;
6701 	struct list_head	funcs;
6702 	unsigned int		num_funcs;
6703 };
6704 
6705 static int ftrace_get_trampoline_kallsym(unsigned int symnum,
6706 					 unsigned long *value, char *type,
6707 					 char *name, char *module_name,
6708 					 int *exported)
6709 {
6710 	struct ftrace_ops *op;
6711 
6712 	list_for_each_entry_rcu(op, &ftrace_ops_trampoline_list, list) {
6713 		if (!op->trampoline || symnum--)
6714 			continue;
6715 		*value = op->trampoline;
6716 		*type = 't';
6717 		strlcpy(name, FTRACE_TRAMPOLINE_SYM, KSYM_NAME_LEN);
6718 		strlcpy(module_name, FTRACE_TRAMPOLINE_MOD, MODULE_NAME_LEN);
6719 		*exported = 0;
6720 		return 0;
6721 	}
6722 
6723 	return -ERANGE;
6724 }
6725 
6726 #ifdef CONFIG_MODULES
6727 
6728 #define next_to_ftrace_page(p) container_of(p, struct ftrace_page, next)
6729 
6730 static LIST_HEAD(ftrace_mod_maps);
6731 
6732 static int referenced_filters(struct dyn_ftrace *rec)
6733 {
6734 	struct ftrace_ops *ops;
6735 	int cnt = 0;
6736 
6737 	for (ops = ftrace_ops_list; ops != &ftrace_list_end; ops = ops->next) {
6738 		if (ops_references_rec(ops, rec)) {
6739 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_DIRECT))
6740 				continue;
6741 			if (WARN_ON_ONCE(ops->flags & FTRACE_OPS_FL_IPMODIFY))
6742 				continue;
6743 			cnt++;
6744 			if (ops->flags & FTRACE_OPS_FL_SAVE_REGS)
6745 				rec->flags |= FTRACE_FL_REGS;
6746 			if (cnt == 1 && ops->trampoline)
6747 				rec->flags |= FTRACE_FL_TRAMP;
6748 			else
6749 				rec->flags &= ~FTRACE_FL_TRAMP;
6750 		}
6751 	}
6752 
6753 	return cnt;
6754 }
6755 
6756 static void
6757 clear_mod_from_hash(struct ftrace_page *pg, struct ftrace_hash *hash)
6758 {
6759 	struct ftrace_func_entry *entry;
6760 	struct dyn_ftrace *rec;
6761 	int i;
6762 
6763 	if (ftrace_hash_empty(hash))
6764 		return;
6765 
6766 	for (i = 0; i < pg->index; i++) {
6767 		rec = &pg->records[i];
6768 		entry = __ftrace_lookup_ip(hash, rec->ip);
6769 		/*
6770 		 * Do not allow this rec to match again.
6771 		 * Yeah, it may waste some memory, but will be removed
6772 		 * if/when the hash is modified again.
6773 		 */
6774 		if (entry)
6775 			entry->ip = 0;
6776 	}
6777 }
6778 
6779 /* Clear any records from hashes */
6780 static void clear_mod_from_hashes(struct ftrace_page *pg)
6781 {
6782 	struct trace_array *tr;
6783 
6784 	mutex_lock(&trace_types_lock);
6785 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
6786 		if (!tr->ops || !tr->ops->func_hash)
6787 			continue;
6788 		mutex_lock(&tr->ops->func_hash->regex_lock);
6789 		clear_mod_from_hash(pg, tr->ops->func_hash->filter_hash);
6790 		clear_mod_from_hash(pg, tr->ops->func_hash->notrace_hash);
6791 		mutex_unlock(&tr->ops->func_hash->regex_lock);
6792 	}
6793 	mutex_unlock(&trace_types_lock);
6794 }
6795 
6796 static void ftrace_free_mod_map(struct rcu_head *rcu)
6797 {
6798 	struct ftrace_mod_map *mod_map = container_of(rcu, struct ftrace_mod_map, rcu);
6799 	struct ftrace_mod_func *mod_func;
6800 	struct ftrace_mod_func *n;
6801 
6802 	/* All the contents of mod_map are now not visible to readers */
6803 	list_for_each_entry_safe(mod_func, n, &mod_map->funcs, list) {
6804 		kfree(mod_func->name);
6805 		list_del(&mod_func->list);
6806 		kfree(mod_func);
6807 	}
6808 
6809 	kfree(mod_map);
6810 }
6811 
6812 void ftrace_release_mod(struct module *mod)
6813 {
6814 	struct ftrace_mod_map *mod_map;
6815 	struct ftrace_mod_map *n;
6816 	struct dyn_ftrace *rec;
6817 	struct ftrace_page **last_pg;
6818 	struct ftrace_page *tmp_page = NULL;
6819 	struct ftrace_page *pg;
6820 
6821 	mutex_lock(&ftrace_lock);
6822 
6823 	if (ftrace_disabled)
6824 		goto out_unlock;
6825 
6826 	list_for_each_entry_safe(mod_map, n, &ftrace_mod_maps, list) {
6827 		if (mod_map->mod == mod) {
6828 			list_del_rcu(&mod_map->list);
6829 			call_rcu(&mod_map->rcu, ftrace_free_mod_map);
6830 			break;
6831 		}
6832 	}
6833 
6834 	/*
6835 	 * Each module has its own ftrace_pages, remove
6836 	 * them from the list.
6837 	 */
6838 	last_pg = &ftrace_pages_start;
6839 	for (pg = ftrace_pages_start; pg; pg = *last_pg) {
6840 		rec = &pg->records[0];
6841 		if (within_module_core(rec->ip, mod) ||
6842 		    within_module_init(rec->ip, mod)) {
6843 			/*
6844 			 * As core pages are first, the first
6845 			 * page should never be a module page.
6846 			 */
6847 			if (WARN_ON(pg == ftrace_pages_start))
6848 				goto out_unlock;
6849 
6850 			/* Check if we are deleting the last page */
6851 			if (pg == ftrace_pages)
6852 				ftrace_pages = next_to_ftrace_page(last_pg);
6853 
6854 			ftrace_update_tot_cnt -= pg->index;
6855 			*last_pg = pg->next;
6856 
6857 			pg->next = tmp_page;
6858 			tmp_page = pg;
6859 		} else
6860 			last_pg = &pg->next;
6861 	}
6862  out_unlock:
6863 	mutex_unlock(&ftrace_lock);
6864 
6865 	for (pg = tmp_page; pg; pg = tmp_page) {
6866 
6867 		/* Needs to be called outside of ftrace_lock */
6868 		clear_mod_from_hashes(pg);
6869 
6870 		if (pg->records) {
6871 			free_pages((unsigned long)pg->records, pg->order);
6872 			ftrace_number_of_pages -= 1 << pg->order;
6873 		}
6874 		tmp_page = pg->next;
6875 		kfree(pg);
6876 		ftrace_number_of_groups--;
6877 	}
6878 }
6879 
6880 void ftrace_module_enable(struct module *mod)
6881 {
6882 	struct dyn_ftrace *rec;
6883 	struct ftrace_page *pg;
6884 
6885 	mutex_lock(&ftrace_lock);
6886 
6887 	if (ftrace_disabled)
6888 		goto out_unlock;
6889 
6890 	/*
6891 	 * If the tracing is enabled, go ahead and enable the record.
6892 	 *
6893 	 * The reason not to enable the record immediately is the
6894 	 * inherent check of ftrace_make_nop/ftrace_make_call for
6895 	 * correct previous instructions.  Making first the NOP
6896 	 * conversion puts the module to the correct state, thus
6897 	 * passing the ftrace_make_call check.
6898 	 *
6899 	 * We also delay this to after the module code already set the
6900 	 * text to read-only, as we now need to set it back to read-write
6901 	 * so that we can modify the text.
6902 	 */
6903 	if (ftrace_start_up)
6904 		ftrace_arch_code_modify_prepare();
6905 
6906 	do_for_each_ftrace_rec(pg, rec) {
6907 		int cnt;
6908 		/*
6909 		 * do_for_each_ftrace_rec() is a double loop.
6910 		 * module text shares the pg. If a record is
6911 		 * not part of this module, then skip this pg,
6912 		 * which the "break" will do.
6913 		 */
6914 		if (!within_module_core(rec->ip, mod) &&
6915 		    !within_module_init(rec->ip, mod))
6916 			break;
6917 
6918 		/* Weak functions should still be ignored */
6919 		if (!test_for_valid_rec(rec)) {
6920 			/* Clear all other flags. Should not be enabled anyway */
6921 			rec->flags = FTRACE_FL_DISABLED;
6922 			continue;
6923 		}
6924 
6925 		cnt = 0;
6926 
6927 		/*
6928 		 * When adding a module, we need to check if tracers are
6929 		 * currently enabled and if they are, and can trace this record,
6930 		 * we need to enable the module functions as well as update the
6931 		 * reference counts for those function records.
6932 		 */
6933 		if (ftrace_start_up)
6934 			cnt += referenced_filters(rec);
6935 
6936 		rec->flags &= ~FTRACE_FL_DISABLED;
6937 		rec->flags += cnt;
6938 
6939 		if (ftrace_start_up && cnt) {
6940 			int failed = __ftrace_replace_code(rec, 1);
6941 			if (failed) {
6942 				ftrace_bug(failed, rec);
6943 				goto out_loop;
6944 			}
6945 		}
6946 
6947 	} while_for_each_ftrace_rec();
6948 
6949  out_loop:
6950 	if (ftrace_start_up)
6951 		ftrace_arch_code_modify_post_process();
6952 
6953  out_unlock:
6954 	mutex_unlock(&ftrace_lock);
6955 
6956 	process_cached_mods(mod->name);
6957 }
6958 
6959 void ftrace_module_init(struct module *mod)
6960 {
6961 	int ret;
6962 
6963 	if (ftrace_disabled || !mod->num_ftrace_callsites)
6964 		return;
6965 
6966 	ret = ftrace_process_locs(mod, mod->ftrace_callsites,
6967 				  mod->ftrace_callsites + mod->num_ftrace_callsites);
6968 	if (ret)
6969 		pr_warn("ftrace: failed to allocate entries for module '%s' functions\n",
6970 			mod->name);
6971 }
6972 
6973 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
6974 				struct dyn_ftrace *rec)
6975 {
6976 	struct ftrace_mod_func *mod_func;
6977 	unsigned long symsize;
6978 	unsigned long offset;
6979 	char str[KSYM_SYMBOL_LEN];
6980 	char *modname;
6981 	const char *ret;
6982 
6983 	ret = kallsyms_lookup(rec->ip, &symsize, &offset, &modname, str);
6984 	if (!ret)
6985 		return;
6986 
6987 	mod_func = kmalloc(sizeof(*mod_func), GFP_KERNEL);
6988 	if (!mod_func)
6989 		return;
6990 
6991 	mod_func->name = kstrdup(str, GFP_KERNEL);
6992 	if (!mod_func->name) {
6993 		kfree(mod_func);
6994 		return;
6995 	}
6996 
6997 	mod_func->ip = rec->ip - offset;
6998 	mod_func->size = symsize;
6999 
7000 	mod_map->num_funcs++;
7001 
7002 	list_add_rcu(&mod_func->list, &mod_map->funcs);
7003 }
7004 
7005 static struct ftrace_mod_map *
7006 allocate_ftrace_mod_map(struct module *mod,
7007 			unsigned long start, unsigned long end)
7008 {
7009 	struct ftrace_mod_map *mod_map;
7010 
7011 	mod_map = kmalloc(sizeof(*mod_map), GFP_KERNEL);
7012 	if (!mod_map)
7013 		return NULL;
7014 
7015 	mod_map->mod = mod;
7016 	mod_map->start_addr = start;
7017 	mod_map->end_addr = end;
7018 	mod_map->num_funcs = 0;
7019 
7020 	INIT_LIST_HEAD_RCU(&mod_map->funcs);
7021 
7022 	list_add_rcu(&mod_map->list, &ftrace_mod_maps);
7023 
7024 	return mod_map;
7025 }
7026 
7027 static const char *
7028 ftrace_func_address_lookup(struct ftrace_mod_map *mod_map,
7029 			   unsigned long addr, unsigned long *size,
7030 			   unsigned long *off, char *sym)
7031 {
7032 	struct ftrace_mod_func *found_func =  NULL;
7033 	struct ftrace_mod_func *mod_func;
7034 
7035 	list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7036 		if (addr >= mod_func->ip &&
7037 		    addr < mod_func->ip + mod_func->size) {
7038 			found_func = mod_func;
7039 			break;
7040 		}
7041 	}
7042 
7043 	if (found_func) {
7044 		if (size)
7045 			*size = found_func->size;
7046 		if (off)
7047 			*off = addr - found_func->ip;
7048 		if (sym)
7049 			strlcpy(sym, found_func->name, KSYM_NAME_LEN);
7050 
7051 		return found_func->name;
7052 	}
7053 
7054 	return NULL;
7055 }
7056 
7057 const char *
7058 ftrace_mod_address_lookup(unsigned long addr, unsigned long *size,
7059 		   unsigned long *off, char **modname, char *sym)
7060 {
7061 	struct ftrace_mod_map *mod_map;
7062 	const char *ret = NULL;
7063 
7064 	/* mod_map is freed via call_rcu() */
7065 	preempt_disable();
7066 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7067 		ret = ftrace_func_address_lookup(mod_map, addr, size, off, sym);
7068 		if (ret) {
7069 			if (modname)
7070 				*modname = mod_map->mod->name;
7071 			break;
7072 		}
7073 	}
7074 	preempt_enable();
7075 
7076 	return ret;
7077 }
7078 
7079 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7080 			   char *type, char *name,
7081 			   char *module_name, int *exported)
7082 {
7083 	struct ftrace_mod_map *mod_map;
7084 	struct ftrace_mod_func *mod_func;
7085 	int ret;
7086 
7087 	preempt_disable();
7088 	list_for_each_entry_rcu(mod_map, &ftrace_mod_maps, list) {
7089 
7090 		if (symnum >= mod_map->num_funcs) {
7091 			symnum -= mod_map->num_funcs;
7092 			continue;
7093 		}
7094 
7095 		list_for_each_entry_rcu(mod_func, &mod_map->funcs, list) {
7096 			if (symnum > 1) {
7097 				symnum--;
7098 				continue;
7099 			}
7100 
7101 			*value = mod_func->ip;
7102 			*type = 'T';
7103 			strlcpy(name, mod_func->name, KSYM_NAME_LEN);
7104 			strlcpy(module_name, mod_map->mod->name, MODULE_NAME_LEN);
7105 			*exported = 1;
7106 			preempt_enable();
7107 			return 0;
7108 		}
7109 		WARN_ON(1);
7110 		break;
7111 	}
7112 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7113 					    module_name, exported);
7114 	preempt_enable();
7115 	return ret;
7116 }
7117 
7118 #else
7119 static void save_ftrace_mod_rec(struct ftrace_mod_map *mod_map,
7120 				struct dyn_ftrace *rec) { }
7121 static inline struct ftrace_mod_map *
7122 allocate_ftrace_mod_map(struct module *mod,
7123 			unsigned long start, unsigned long end)
7124 {
7125 	return NULL;
7126 }
7127 int ftrace_mod_get_kallsym(unsigned int symnum, unsigned long *value,
7128 			   char *type, char *name, char *module_name,
7129 			   int *exported)
7130 {
7131 	int ret;
7132 
7133 	preempt_disable();
7134 	ret = ftrace_get_trampoline_kallsym(symnum, value, type, name,
7135 					    module_name, exported);
7136 	preempt_enable();
7137 	return ret;
7138 }
7139 #endif /* CONFIG_MODULES */
7140 
7141 struct ftrace_init_func {
7142 	struct list_head list;
7143 	unsigned long ip;
7144 };
7145 
7146 /* Clear any init ips from hashes */
7147 static void
7148 clear_func_from_hash(struct ftrace_init_func *func, struct ftrace_hash *hash)
7149 {
7150 	struct ftrace_func_entry *entry;
7151 
7152 	entry = ftrace_lookup_ip(hash, func->ip);
7153 	/*
7154 	 * Do not allow this rec to match again.
7155 	 * Yeah, it may waste some memory, but will be removed
7156 	 * if/when the hash is modified again.
7157 	 */
7158 	if (entry)
7159 		entry->ip = 0;
7160 }
7161 
7162 static void
7163 clear_func_from_hashes(struct ftrace_init_func *func)
7164 {
7165 	struct trace_array *tr;
7166 
7167 	mutex_lock(&trace_types_lock);
7168 	list_for_each_entry(tr, &ftrace_trace_arrays, list) {
7169 		if (!tr->ops || !tr->ops->func_hash)
7170 			continue;
7171 		mutex_lock(&tr->ops->func_hash->regex_lock);
7172 		clear_func_from_hash(func, tr->ops->func_hash->filter_hash);
7173 		clear_func_from_hash(func, tr->ops->func_hash->notrace_hash);
7174 		mutex_unlock(&tr->ops->func_hash->regex_lock);
7175 	}
7176 	mutex_unlock(&trace_types_lock);
7177 }
7178 
7179 static void add_to_clear_hash_list(struct list_head *clear_list,
7180 				   struct dyn_ftrace *rec)
7181 {
7182 	struct ftrace_init_func *func;
7183 
7184 	func = kmalloc(sizeof(*func), GFP_KERNEL);
7185 	if (!func) {
7186 		MEM_FAIL(1, "alloc failure, ftrace filter could be stale\n");
7187 		return;
7188 	}
7189 
7190 	func->ip = rec->ip;
7191 	list_add(&func->list, clear_list);
7192 }
7193 
7194 void ftrace_free_mem(struct module *mod, void *start_ptr, void *end_ptr)
7195 {
7196 	unsigned long start = (unsigned long)(start_ptr);
7197 	unsigned long end = (unsigned long)(end_ptr);
7198 	struct ftrace_page **last_pg = &ftrace_pages_start;
7199 	struct ftrace_page *pg;
7200 	struct dyn_ftrace *rec;
7201 	struct dyn_ftrace key;
7202 	struct ftrace_mod_map *mod_map = NULL;
7203 	struct ftrace_init_func *func, *func_next;
7204 	struct list_head clear_hash;
7205 
7206 	INIT_LIST_HEAD(&clear_hash);
7207 
7208 	key.ip = start;
7209 	key.flags = end;	/* overload flags, as it is unsigned long */
7210 
7211 	mutex_lock(&ftrace_lock);
7212 
7213 	/*
7214 	 * If we are freeing module init memory, then check if
7215 	 * any tracer is active. If so, we need to save a mapping of
7216 	 * the module functions being freed with the address.
7217 	 */
7218 	if (mod && ftrace_ops_list != &ftrace_list_end)
7219 		mod_map = allocate_ftrace_mod_map(mod, start, end);
7220 
7221 	for (pg = ftrace_pages_start; pg; last_pg = &pg->next, pg = *last_pg) {
7222 		if (end < pg->records[0].ip ||
7223 		    start >= (pg->records[pg->index - 1].ip + MCOUNT_INSN_SIZE))
7224 			continue;
7225  again:
7226 		rec = bsearch(&key, pg->records, pg->index,
7227 			      sizeof(struct dyn_ftrace),
7228 			      ftrace_cmp_recs);
7229 		if (!rec)
7230 			continue;
7231 
7232 		/* rec will be cleared from hashes after ftrace_lock unlock */
7233 		add_to_clear_hash_list(&clear_hash, rec);
7234 
7235 		if (mod_map)
7236 			save_ftrace_mod_rec(mod_map, rec);
7237 
7238 		pg->index--;
7239 		ftrace_update_tot_cnt--;
7240 		if (!pg->index) {
7241 			*last_pg = pg->next;
7242 			if (pg->records) {
7243 				free_pages((unsigned long)pg->records, pg->order);
7244 				ftrace_number_of_pages -= 1 << pg->order;
7245 			}
7246 			ftrace_number_of_groups--;
7247 			kfree(pg);
7248 			pg = container_of(last_pg, struct ftrace_page, next);
7249 			if (!(*last_pg))
7250 				ftrace_pages = pg;
7251 			continue;
7252 		}
7253 		memmove(rec, rec + 1,
7254 			(pg->index - (rec - pg->records)) * sizeof(*rec));
7255 		/* More than one function may be in this block */
7256 		goto again;
7257 	}
7258 	mutex_unlock(&ftrace_lock);
7259 
7260 	list_for_each_entry_safe(func, func_next, &clear_hash, list) {
7261 		clear_func_from_hashes(func);
7262 		kfree(func);
7263 	}
7264 }
7265 
7266 void __init ftrace_free_init_mem(void)
7267 {
7268 	void *start = (void *)(&__init_begin);
7269 	void *end = (void *)(&__init_end);
7270 
7271 	ftrace_boot_snapshot();
7272 
7273 	ftrace_free_mem(NULL, start, end);
7274 }
7275 
7276 int __init __weak ftrace_dyn_arch_init(void)
7277 {
7278 	return 0;
7279 }
7280 
7281 void __init ftrace_init(void)
7282 {
7283 	extern unsigned long __start_mcount_loc[];
7284 	extern unsigned long __stop_mcount_loc[];
7285 	unsigned long count, flags;
7286 	int ret;
7287 
7288 	local_irq_save(flags);
7289 	ret = ftrace_dyn_arch_init();
7290 	local_irq_restore(flags);
7291 	if (ret)
7292 		goto failed;
7293 
7294 	count = __stop_mcount_loc - __start_mcount_loc;
7295 	if (!count) {
7296 		pr_info("ftrace: No functions to be traced?\n");
7297 		goto failed;
7298 	}
7299 
7300 	pr_info("ftrace: allocating %ld entries in %ld pages\n",
7301 		count, count / ENTRIES_PER_PAGE + 1);
7302 
7303 	ret = ftrace_process_locs(NULL,
7304 				  __start_mcount_loc,
7305 				  __stop_mcount_loc);
7306 	if (ret) {
7307 		pr_warn("ftrace: failed to allocate entries for functions\n");
7308 		goto failed;
7309 	}
7310 
7311 	pr_info("ftrace: allocated %ld pages with %ld groups\n",
7312 		ftrace_number_of_pages, ftrace_number_of_groups);
7313 
7314 	last_ftrace_enabled = ftrace_enabled = 1;
7315 
7316 	set_ftrace_early_filters();
7317 
7318 	return;
7319  failed:
7320 	ftrace_disabled = 1;
7321 }
7322 
7323 /* Do nothing if arch does not support this */
7324 void __weak arch_ftrace_update_trampoline(struct ftrace_ops *ops)
7325 {
7326 }
7327 
7328 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7329 {
7330 	unsigned long trampoline = ops->trampoline;
7331 
7332 	arch_ftrace_update_trampoline(ops);
7333 	if (ops->trampoline && ops->trampoline != trampoline &&
7334 	    (ops->flags & FTRACE_OPS_FL_ALLOC_TRAMP)) {
7335 		/* Add to kallsyms before the perf events */
7336 		ftrace_add_trampoline_to_kallsyms(ops);
7337 		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
7338 				   ops->trampoline, ops->trampoline_size, false,
7339 				   FTRACE_TRAMPOLINE_SYM);
7340 		/*
7341 		 * Record the perf text poke event after the ksymbol register
7342 		 * event.
7343 		 */
7344 		perf_event_text_poke((void *)ops->trampoline, NULL, 0,
7345 				     (void *)ops->trampoline,
7346 				     ops->trampoline_size);
7347 	}
7348 }
7349 
7350 void ftrace_init_trace_array(struct trace_array *tr)
7351 {
7352 	INIT_LIST_HEAD(&tr->func_probes);
7353 	INIT_LIST_HEAD(&tr->mod_trace);
7354 	INIT_LIST_HEAD(&tr->mod_notrace);
7355 }
7356 #else
7357 
7358 struct ftrace_ops global_ops = {
7359 	.func			= ftrace_stub,
7360 	.flags			= FTRACE_OPS_FL_INITIALIZED |
7361 				  FTRACE_OPS_FL_PID,
7362 };
7363 
7364 static int __init ftrace_nodyn_init(void)
7365 {
7366 	ftrace_enabled = 1;
7367 	return 0;
7368 }
7369 core_initcall(ftrace_nodyn_init);
7370 
7371 static inline int ftrace_init_dyn_tracefs(struct dentry *d_tracer) { return 0; }
7372 static inline void ftrace_startup_all(int command) { }
7373 
7374 static void ftrace_update_trampoline(struct ftrace_ops *ops)
7375 {
7376 }
7377 
7378 #endif /* CONFIG_DYNAMIC_FTRACE */
7379 
7380 __init void ftrace_init_global_array_ops(struct trace_array *tr)
7381 {
7382 	tr->ops = &global_ops;
7383 	tr->ops->private = tr;
7384 	ftrace_init_trace_array(tr);
7385 }
7386 
7387 void ftrace_init_array_ops(struct trace_array *tr, ftrace_func_t func)
7388 {
7389 	/* If we filter on pids, update to use the pid function */
7390 	if (tr->flags & TRACE_ARRAY_FL_GLOBAL) {
7391 		if (WARN_ON(tr->ops->func != ftrace_stub))
7392 			printk("ftrace ops had %pS for function\n",
7393 			       tr->ops->func);
7394 	}
7395 	tr->ops->func = func;
7396 	tr->ops->private = tr;
7397 }
7398 
7399 void ftrace_reset_array_ops(struct trace_array *tr)
7400 {
7401 	tr->ops->func = ftrace_stub;
7402 }
7403 
7404 static nokprobe_inline void
7405 __ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7406 		       struct ftrace_ops *ignored, struct ftrace_regs *fregs)
7407 {
7408 	struct pt_regs *regs = ftrace_get_regs(fregs);
7409 	struct ftrace_ops *op;
7410 	int bit;
7411 
7412 	/*
7413 	 * The ftrace_test_and_set_recursion() will disable preemption,
7414 	 * which is required since some of the ops may be dynamically
7415 	 * allocated, they must be freed after a synchronize_rcu().
7416 	 */
7417 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7418 	if (bit < 0)
7419 		return;
7420 
7421 	do_for_each_ftrace_op(op, ftrace_ops_list) {
7422 		/* Stub functions don't need to be called nor tested */
7423 		if (op->flags & FTRACE_OPS_FL_STUB)
7424 			continue;
7425 		/*
7426 		 * Check the following for each ops before calling their func:
7427 		 *  if RCU flag is set, then rcu_is_watching() must be true
7428 		 *  if PER_CPU is set, then ftrace_function_local_disable()
7429 		 *                          must be false
7430 		 *  Otherwise test if the ip matches the ops filter
7431 		 *
7432 		 * If any of the above fails then the op->func() is not executed.
7433 		 */
7434 		if ((!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching()) &&
7435 		    ftrace_ops_test(op, ip, regs)) {
7436 			if (FTRACE_WARN_ON(!op->func)) {
7437 				pr_warn("op=%p %pS\n", op, op);
7438 				goto out;
7439 			}
7440 			op->func(ip, parent_ip, op, fregs);
7441 		}
7442 	} while_for_each_ftrace_op(op);
7443 out:
7444 	trace_clear_recursion(bit);
7445 }
7446 
7447 /*
7448  * Some archs only support passing ip and parent_ip. Even though
7449  * the list function ignores the op parameter, we do not want any
7450  * C side effects, where a function is called without the caller
7451  * sending a third parameter.
7452  * Archs are to support both the regs and ftrace_ops at the same time.
7453  * If they support ftrace_ops, it is assumed they support regs.
7454  * If call backs want to use regs, they must either check for regs
7455  * being NULL, or CONFIG_DYNAMIC_FTRACE_WITH_REGS.
7456  * Note, CONFIG_DYNAMIC_FTRACE_WITH_REGS expects a full regs to be saved.
7457  * An architecture can pass partial regs with ftrace_ops and still
7458  * set the ARCH_SUPPORTS_FTRACE_OPS.
7459  *
7460  * In vmlinux.lds.h, ftrace_ops_list_func() is defined to be
7461  * arch_ftrace_ops_list_func.
7462  */
7463 #if ARCH_SUPPORTS_FTRACE_OPS
7464 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip,
7465 			       struct ftrace_ops *op, struct ftrace_regs *fregs)
7466 {
7467 	__ftrace_ops_list_func(ip, parent_ip, NULL, fregs);
7468 }
7469 #else
7470 void arch_ftrace_ops_list_func(unsigned long ip, unsigned long parent_ip)
7471 {
7472 	__ftrace_ops_list_func(ip, parent_ip, NULL, NULL);
7473 }
7474 #endif
7475 NOKPROBE_SYMBOL(arch_ftrace_ops_list_func);
7476 
7477 /*
7478  * If there's only one function registered but it does not support
7479  * recursion, needs RCU protection and/or requires per cpu handling, then
7480  * this function will be called by the mcount trampoline.
7481  */
7482 static void ftrace_ops_assist_func(unsigned long ip, unsigned long parent_ip,
7483 				   struct ftrace_ops *op, struct ftrace_regs *fregs)
7484 {
7485 	int bit;
7486 
7487 	bit = trace_test_and_set_recursion(ip, parent_ip, TRACE_LIST_START);
7488 	if (bit < 0)
7489 		return;
7490 
7491 	if (!(op->flags & FTRACE_OPS_FL_RCU) || rcu_is_watching())
7492 		op->func(ip, parent_ip, op, fregs);
7493 
7494 	trace_clear_recursion(bit);
7495 }
7496 NOKPROBE_SYMBOL(ftrace_ops_assist_func);
7497 
7498 /**
7499  * ftrace_ops_get_func - get the function a trampoline should call
7500  * @ops: the ops to get the function for
7501  *
7502  * Normally the mcount trampoline will call the ops->func, but there
7503  * are times that it should not. For example, if the ops does not
7504  * have its own recursion protection, then it should call the
7505  * ftrace_ops_assist_func() instead.
7506  *
7507  * Returns the function that the trampoline should call for @ops.
7508  */
7509 ftrace_func_t ftrace_ops_get_func(struct ftrace_ops *ops)
7510 {
7511 	/*
7512 	 * If the function does not handle recursion or needs to be RCU safe,
7513 	 * then we need to call the assist handler.
7514 	 */
7515 	if (ops->flags & (FTRACE_OPS_FL_RECURSION |
7516 			  FTRACE_OPS_FL_RCU))
7517 		return ftrace_ops_assist_func;
7518 
7519 	return ops->func;
7520 }
7521 
7522 static void
7523 ftrace_filter_pid_sched_switch_probe(void *data, bool preempt,
7524 				     struct task_struct *prev,
7525 				     struct task_struct *next,
7526 				     unsigned int prev_state)
7527 {
7528 	struct trace_array *tr = data;
7529 	struct trace_pid_list *pid_list;
7530 	struct trace_pid_list *no_pid_list;
7531 
7532 	pid_list = rcu_dereference_sched(tr->function_pids);
7533 	no_pid_list = rcu_dereference_sched(tr->function_no_pids);
7534 
7535 	if (trace_ignore_this_task(pid_list, no_pid_list, next))
7536 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7537 			       FTRACE_PID_IGNORE);
7538 	else
7539 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7540 			       next->pid);
7541 }
7542 
7543 static void
7544 ftrace_pid_follow_sched_process_fork(void *data,
7545 				     struct task_struct *self,
7546 				     struct task_struct *task)
7547 {
7548 	struct trace_pid_list *pid_list;
7549 	struct trace_array *tr = data;
7550 
7551 	pid_list = rcu_dereference_sched(tr->function_pids);
7552 	trace_filter_add_remove_task(pid_list, self, task);
7553 
7554 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7555 	trace_filter_add_remove_task(pid_list, self, task);
7556 }
7557 
7558 static void
7559 ftrace_pid_follow_sched_process_exit(void *data, struct task_struct *task)
7560 {
7561 	struct trace_pid_list *pid_list;
7562 	struct trace_array *tr = data;
7563 
7564 	pid_list = rcu_dereference_sched(tr->function_pids);
7565 	trace_filter_add_remove_task(pid_list, NULL, task);
7566 
7567 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7568 	trace_filter_add_remove_task(pid_list, NULL, task);
7569 }
7570 
7571 void ftrace_pid_follow_fork(struct trace_array *tr, bool enable)
7572 {
7573 	if (enable) {
7574 		register_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7575 						  tr);
7576 		register_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7577 						  tr);
7578 	} else {
7579 		unregister_trace_sched_process_fork(ftrace_pid_follow_sched_process_fork,
7580 						    tr);
7581 		unregister_trace_sched_process_free(ftrace_pid_follow_sched_process_exit,
7582 						    tr);
7583 	}
7584 }
7585 
7586 static void clear_ftrace_pids(struct trace_array *tr, int type)
7587 {
7588 	struct trace_pid_list *pid_list;
7589 	struct trace_pid_list *no_pid_list;
7590 	int cpu;
7591 
7592 	pid_list = rcu_dereference_protected(tr->function_pids,
7593 					     lockdep_is_held(&ftrace_lock));
7594 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7595 						lockdep_is_held(&ftrace_lock));
7596 
7597 	/* Make sure there's something to do */
7598 	if (!pid_type_enabled(type, pid_list, no_pid_list))
7599 		return;
7600 
7601 	/* See if the pids still need to be checked after this */
7602 	if (!still_need_pid_events(type, pid_list, no_pid_list)) {
7603 		unregister_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7604 		for_each_possible_cpu(cpu)
7605 			per_cpu_ptr(tr->array_buffer.data, cpu)->ftrace_ignore_pid = FTRACE_PID_TRACE;
7606 	}
7607 
7608 	if (type & TRACE_PIDS)
7609 		rcu_assign_pointer(tr->function_pids, NULL);
7610 
7611 	if (type & TRACE_NO_PIDS)
7612 		rcu_assign_pointer(tr->function_no_pids, NULL);
7613 
7614 	/* Wait till all users are no longer using pid filtering */
7615 	synchronize_rcu();
7616 
7617 	if ((type & TRACE_PIDS) && pid_list)
7618 		trace_pid_list_free(pid_list);
7619 
7620 	if ((type & TRACE_NO_PIDS) && no_pid_list)
7621 		trace_pid_list_free(no_pid_list);
7622 }
7623 
7624 void ftrace_clear_pids(struct trace_array *tr)
7625 {
7626 	mutex_lock(&ftrace_lock);
7627 
7628 	clear_ftrace_pids(tr, TRACE_PIDS | TRACE_NO_PIDS);
7629 
7630 	mutex_unlock(&ftrace_lock);
7631 }
7632 
7633 static void ftrace_pid_reset(struct trace_array *tr, int type)
7634 {
7635 	mutex_lock(&ftrace_lock);
7636 	clear_ftrace_pids(tr, type);
7637 
7638 	ftrace_update_pid_func();
7639 	ftrace_startup_all(0);
7640 
7641 	mutex_unlock(&ftrace_lock);
7642 }
7643 
7644 /* Greater than any max PID */
7645 #define FTRACE_NO_PIDS		(void *)(PID_MAX_LIMIT + 1)
7646 
7647 static void *fpid_start(struct seq_file *m, loff_t *pos)
7648 	__acquires(RCU)
7649 {
7650 	struct trace_pid_list *pid_list;
7651 	struct trace_array *tr = m->private;
7652 
7653 	mutex_lock(&ftrace_lock);
7654 	rcu_read_lock_sched();
7655 
7656 	pid_list = rcu_dereference_sched(tr->function_pids);
7657 
7658 	if (!pid_list)
7659 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7660 
7661 	return trace_pid_start(pid_list, pos);
7662 }
7663 
7664 static void *fpid_next(struct seq_file *m, void *v, loff_t *pos)
7665 {
7666 	struct trace_array *tr = m->private;
7667 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_pids);
7668 
7669 	if (v == FTRACE_NO_PIDS) {
7670 		(*pos)++;
7671 		return NULL;
7672 	}
7673 	return trace_pid_next(pid_list, v, pos);
7674 }
7675 
7676 static void fpid_stop(struct seq_file *m, void *p)
7677 	__releases(RCU)
7678 {
7679 	rcu_read_unlock_sched();
7680 	mutex_unlock(&ftrace_lock);
7681 }
7682 
7683 static int fpid_show(struct seq_file *m, void *v)
7684 {
7685 	if (v == FTRACE_NO_PIDS) {
7686 		seq_puts(m, "no pid\n");
7687 		return 0;
7688 	}
7689 
7690 	return trace_pid_show(m, v);
7691 }
7692 
7693 static const struct seq_operations ftrace_pid_sops = {
7694 	.start = fpid_start,
7695 	.next = fpid_next,
7696 	.stop = fpid_stop,
7697 	.show = fpid_show,
7698 };
7699 
7700 static void *fnpid_start(struct seq_file *m, loff_t *pos)
7701 	__acquires(RCU)
7702 {
7703 	struct trace_pid_list *pid_list;
7704 	struct trace_array *tr = m->private;
7705 
7706 	mutex_lock(&ftrace_lock);
7707 	rcu_read_lock_sched();
7708 
7709 	pid_list = rcu_dereference_sched(tr->function_no_pids);
7710 
7711 	if (!pid_list)
7712 		return !(*pos) ? FTRACE_NO_PIDS : NULL;
7713 
7714 	return trace_pid_start(pid_list, pos);
7715 }
7716 
7717 static void *fnpid_next(struct seq_file *m, void *v, loff_t *pos)
7718 {
7719 	struct trace_array *tr = m->private;
7720 	struct trace_pid_list *pid_list = rcu_dereference_sched(tr->function_no_pids);
7721 
7722 	if (v == FTRACE_NO_PIDS) {
7723 		(*pos)++;
7724 		return NULL;
7725 	}
7726 	return trace_pid_next(pid_list, v, pos);
7727 }
7728 
7729 static const struct seq_operations ftrace_no_pid_sops = {
7730 	.start = fnpid_start,
7731 	.next = fnpid_next,
7732 	.stop = fpid_stop,
7733 	.show = fpid_show,
7734 };
7735 
7736 static int pid_open(struct inode *inode, struct file *file, int type)
7737 {
7738 	const struct seq_operations *seq_ops;
7739 	struct trace_array *tr = inode->i_private;
7740 	struct seq_file *m;
7741 	int ret = 0;
7742 
7743 	ret = tracing_check_open_get_tr(tr);
7744 	if (ret)
7745 		return ret;
7746 
7747 	if ((file->f_mode & FMODE_WRITE) &&
7748 	    (file->f_flags & O_TRUNC))
7749 		ftrace_pid_reset(tr, type);
7750 
7751 	switch (type) {
7752 	case TRACE_PIDS:
7753 		seq_ops = &ftrace_pid_sops;
7754 		break;
7755 	case TRACE_NO_PIDS:
7756 		seq_ops = &ftrace_no_pid_sops;
7757 		break;
7758 	default:
7759 		trace_array_put(tr);
7760 		WARN_ON_ONCE(1);
7761 		return -EINVAL;
7762 	}
7763 
7764 	ret = seq_open(file, seq_ops);
7765 	if (ret < 0) {
7766 		trace_array_put(tr);
7767 	} else {
7768 		m = file->private_data;
7769 		/* copy tr over to seq ops */
7770 		m->private = tr;
7771 	}
7772 
7773 	return ret;
7774 }
7775 
7776 static int
7777 ftrace_pid_open(struct inode *inode, struct file *file)
7778 {
7779 	return pid_open(inode, file, TRACE_PIDS);
7780 }
7781 
7782 static int
7783 ftrace_no_pid_open(struct inode *inode, struct file *file)
7784 {
7785 	return pid_open(inode, file, TRACE_NO_PIDS);
7786 }
7787 
7788 static void ignore_task_cpu(void *data)
7789 {
7790 	struct trace_array *tr = data;
7791 	struct trace_pid_list *pid_list;
7792 	struct trace_pid_list *no_pid_list;
7793 
7794 	/*
7795 	 * This function is called by on_each_cpu() while the
7796 	 * event_mutex is held.
7797 	 */
7798 	pid_list = rcu_dereference_protected(tr->function_pids,
7799 					     mutex_is_locked(&ftrace_lock));
7800 	no_pid_list = rcu_dereference_protected(tr->function_no_pids,
7801 						mutex_is_locked(&ftrace_lock));
7802 
7803 	if (trace_ignore_this_task(pid_list, no_pid_list, current))
7804 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7805 			       FTRACE_PID_IGNORE);
7806 	else
7807 		this_cpu_write(tr->array_buffer.data->ftrace_ignore_pid,
7808 			       current->pid);
7809 }
7810 
7811 static ssize_t
7812 pid_write(struct file *filp, const char __user *ubuf,
7813 	  size_t cnt, loff_t *ppos, int type)
7814 {
7815 	struct seq_file *m = filp->private_data;
7816 	struct trace_array *tr = m->private;
7817 	struct trace_pid_list *filtered_pids;
7818 	struct trace_pid_list *other_pids;
7819 	struct trace_pid_list *pid_list;
7820 	ssize_t ret;
7821 
7822 	if (!cnt)
7823 		return 0;
7824 
7825 	mutex_lock(&ftrace_lock);
7826 
7827 	switch (type) {
7828 	case TRACE_PIDS:
7829 		filtered_pids = rcu_dereference_protected(tr->function_pids,
7830 					     lockdep_is_held(&ftrace_lock));
7831 		other_pids = rcu_dereference_protected(tr->function_no_pids,
7832 					     lockdep_is_held(&ftrace_lock));
7833 		break;
7834 	case TRACE_NO_PIDS:
7835 		filtered_pids = rcu_dereference_protected(tr->function_no_pids,
7836 					     lockdep_is_held(&ftrace_lock));
7837 		other_pids = rcu_dereference_protected(tr->function_pids,
7838 					     lockdep_is_held(&ftrace_lock));
7839 		break;
7840 	default:
7841 		ret = -EINVAL;
7842 		WARN_ON_ONCE(1);
7843 		goto out;
7844 	}
7845 
7846 	ret = trace_pid_write(filtered_pids, &pid_list, ubuf, cnt);
7847 	if (ret < 0)
7848 		goto out;
7849 
7850 	switch (type) {
7851 	case TRACE_PIDS:
7852 		rcu_assign_pointer(tr->function_pids, pid_list);
7853 		break;
7854 	case TRACE_NO_PIDS:
7855 		rcu_assign_pointer(tr->function_no_pids, pid_list);
7856 		break;
7857 	}
7858 
7859 
7860 	if (filtered_pids) {
7861 		synchronize_rcu();
7862 		trace_pid_list_free(filtered_pids);
7863 	} else if (pid_list && !other_pids) {
7864 		/* Register a probe to set whether to ignore the tracing of a task */
7865 		register_trace_sched_switch(ftrace_filter_pid_sched_switch_probe, tr);
7866 	}
7867 
7868 	/*
7869 	 * Ignoring of pids is done at task switch. But we have to
7870 	 * check for those tasks that are currently running.
7871 	 * Always do this in case a pid was appended or removed.
7872 	 */
7873 	on_each_cpu(ignore_task_cpu, tr, 1);
7874 
7875 	ftrace_update_pid_func();
7876 	ftrace_startup_all(0);
7877  out:
7878 	mutex_unlock(&ftrace_lock);
7879 
7880 	if (ret > 0)
7881 		*ppos += ret;
7882 
7883 	return ret;
7884 }
7885 
7886 static ssize_t
7887 ftrace_pid_write(struct file *filp, const char __user *ubuf,
7888 		 size_t cnt, loff_t *ppos)
7889 {
7890 	return pid_write(filp, ubuf, cnt, ppos, TRACE_PIDS);
7891 }
7892 
7893 static ssize_t
7894 ftrace_no_pid_write(struct file *filp, const char __user *ubuf,
7895 		    size_t cnt, loff_t *ppos)
7896 {
7897 	return pid_write(filp, ubuf, cnt, ppos, TRACE_NO_PIDS);
7898 }
7899 
7900 static int
7901 ftrace_pid_release(struct inode *inode, struct file *file)
7902 {
7903 	struct trace_array *tr = inode->i_private;
7904 
7905 	trace_array_put(tr);
7906 
7907 	return seq_release(inode, file);
7908 }
7909 
7910 static const struct file_operations ftrace_pid_fops = {
7911 	.open		= ftrace_pid_open,
7912 	.write		= ftrace_pid_write,
7913 	.read		= seq_read,
7914 	.llseek		= tracing_lseek,
7915 	.release	= ftrace_pid_release,
7916 };
7917 
7918 static const struct file_operations ftrace_no_pid_fops = {
7919 	.open		= ftrace_no_pid_open,
7920 	.write		= ftrace_no_pid_write,
7921 	.read		= seq_read,
7922 	.llseek		= tracing_lseek,
7923 	.release	= ftrace_pid_release,
7924 };
7925 
7926 void ftrace_init_tracefs(struct trace_array *tr, struct dentry *d_tracer)
7927 {
7928 	trace_create_file("set_ftrace_pid", TRACE_MODE_WRITE, d_tracer,
7929 			    tr, &ftrace_pid_fops);
7930 	trace_create_file("set_ftrace_notrace_pid", TRACE_MODE_WRITE,
7931 			  d_tracer, tr, &ftrace_no_pid_fops);
7932 }
7933 
7934 void __init ftrace_init_tracefs_toplevel(struct trace_array *tr,
7935 					 struct dentry *d_tracer)
7936 {
7937 	/* Only the top level directory has the dyn_tracefs and profile */
7938 	WARN_ON(!(tr->flags & TRACE_ARRAY_FL_GLOBAL));
7939 
7940 	ftrace_init_dyn_tracefs(d_tracer);
7941 	ftrace_profile_tracefs(d_tracer);
7942 }
7943 
7944 /**
7945  * ftrace_kill - kill ftrace
7946  *
7947  * This function should be used by panic code. It stops ftrace
7948  * but in a not so nice way. If you need to simply kill ftrace
7949  * from a non-atomic section, use ftrace_kill.
7950  */
7951 void ftrace_kill(void)
7952 {
7953 	ftrace_disabled = 1;
7954 	ftrace_enabled = 0;
7955 	ftrace_trace_function = ftrace_stub;
7956 }
7957 
7958 /**
7959  * ftrace_is_dead - Test if ftrace is dead or not.
7960  *
7961  * Returns 1 if ftrace is "dead", zero otherwise.
7962  */
7963 int ftrace_is_dead(void)
7964 {
7965 	return ftrace_disabled;
7966 }
7967 
7968 /**
7969  * register_ftrace_function - register a function for profiling
7970  * @ops:	ops structure that holds the function for profiling.
7971  *
7972  * Register a function to be called by all functions in the
7973  * kernel.
7974  *
7975  * Note: @ops->func and all the functions it calls must be labeled
7976  *       with "notrace", otherwise it will go into a
7977  *       recursive loop.
7978  */
7979 int register_ftrace_function(struct ftrace_ops *ops)
7980 {
7981 	int ret;
7982 
7983 	ftrace_ops_init(ops);
7984 
7985 	mutex_lock(&ftrace_lock);
7986 
7987 	ret = ftrace_startup(ops, 0);
7988 
7989 	mutex_unlock(&ftrace_lock);
7990 
7991 	return ret;
7992 }
7993 EXPORT_SYMBOL_GPL(register_ftrace_function);
7994 
7995 /**
7996  * unregister_ftrace_function - unregister a function for profiling.
7997  * @ops:	ops structure that holds the function to unregister
7998  *
7999  * Unregister a function that was added to be called by ftrace profiling.
8000  */
8001 int unregister_ftrace_function(struct ftrace_ops *ops)
8002 {
8003 	int ret;
8004 
8005 	mutex_lock(&ftrace_lock);
8006 	ret = ftrace_shutdown(ops, 0);
8007 	mutex_unlock(&ftrace_lock);
8008 
8009 	return ret;
8010 }
8011 EXPORT_SYMBOL_GPL(unregister_ftrace_function);
8012 
8013 static int symbols_cmp(const void *a, const void *b)
8014 {
8015 	const char **str_a = (const char **) a;
8016 	const char **str_b = (const char **) b;
8017 
8018 	return strcmp(*str_a, *str_b);
8019 }
8020 
8021 struct kallsyms_data {
8022 	unsigned long *addrs;
8023 	const char **syms;
8024 	size_t cnt;
8025 	size_t found;
8026 };
8027 
8028 static int kallsyms_callback(void *data, const char *name,
8029 			     struct module *mod, unsigned long addr)
8030 {
8031 	struct kallsyms_data *args = data;
8032 	const char **sym;
8033 	int idx;
8034 
8035 	sym = bsearch(&name, args->syms, args->cnt, sizeof(*args->syms), symbols_cmp);
8036 	if (!sym)
8037 		return 0;
8038 
8039 	idx = sym - args->syms;
8040 	if (args->addrs[idx])
8041 		return 0;
8042 
8043 	addr = ftrace_location(addr);
8044 	if (!addr)
8045 		return 0;
8046 
8047 	args->addrs[idx] = addr;
8048 	args->found++;
8049 	return args->found == args->cnt ? 1 : 0;
8050 }
8051 
8052 /**
8053  * ftrace_lookup_symbols - Lookup addresses for array of symbols
8054  *
8055  * @sorted_syms: array of symbols pointers symbols to resolve,
8056  * must be alphabetically sorted
8057  * @cnt: number of symbols/addresses in @syms/@addrs arrays
8058  * @addrs: array for storing resulting addresses
8059  *
8060  * This function looks up addresses for array of symbols provided in
8061  * @syms array (must be alphabetically sorted) and stores them in
8062  * @addrs array, which needs to be big enough to store at least @cnt
8063  * addresses.
8064  *
8065  * This function returns 0 if all provided symbols are found,
8066  * -ESRCH otherwise.
8067  */
8068 int ftrace_lookup_symbols(const char **sorted_syms, size_t cnt, unsigned long *addrs)
8069 {
8070 	struct kallsyms_data args;
8071 	int err;
8072 
8073 	memset(addrs, 0, sizeof(*addrs) * cnt);
8074 	args.addrs = addrs;
8075 	args.syms = sorted_syms;
8076 	args.cnt = cnt;
8077 	args.found = 0;
8078 	err = kallsyms_on_each_symbol(kallsyms_callback, &args);
8079 	if (err < 0)
8080 		return err;
8081 	return args.found == args.cnt ? 0 : -ESRCH;
8082 }
8083 
8084 #ifdef CONFIG_SYSCTL
8085 
8086 #ifdef CONFIG_DYNAMIC_FTRACE
8087 static void ftrace_startup_sysctl(void)
8088 {
8089 	int command;
8090 
8091 	if (unlikely(ftrace_disabled))
8092 		return;
8093 
8094 	/* Force update next time */
8095 	saved_ftrace_func = NULL;
8096 	/* ftrace_start_up is true if we want ftrace running */
8097 	if (ftrace_start_up) {
8098 		command = FTRACE_UPDATE_CALLS;
8099 		if (ftrace_graph_active)
8100 			command |= FTRACE_START_FUNC_RET;
8101 		ftrace_startup_enable(command);
8102 	}
8103 }
8104 
8105 static void ftrace_shutdown_sysctl(void)
8106 {
8107 	int command;
8108 
8109 	if (unlikely(ftrace_disabled))
8110 		return;
8111 
8112 	/* ftrace_start_up is true if ftrace is running */
8113 	if (ftrace_start_up) {
8114 		command = FTRACE_DISABLE_CALLS;
8115 		if (ftrace_graph_active)
8116 			command |= FTRACE_STOP_FUNC_RET;
8117 		ftrace_run_update_code(command);
8118 	}
8119 }
8120 #else
8121 # define ftrace_startup_sysctl()       do { } while (0)
8122 # define ftrace_shutdown_sysctl()      do { } while (0)
8123 #endif /* CONFIG_DYNAMIC_FTRACE */
8124 
8125 static bool is_permanent_ops_registered(void)
8126 {
8127 	struct ftrace_ops *op;
8128 
8129 	do_for_each_ftrace_op(op, ftrace_ops_list) {
8130 		if (op->flags & FTRACE_OPS_FL_PERMANENT)
8131 			return true;
8132 	} while_for_each_ftrace_op(op);
8133 
8134 	return false;
8135 }
8136 
8137 static int
8138 ftrace_enable_sysctl(struct ctl_table *table, int write,
8139 		     void *buffer, size_t *lenp, loff_t *ppos)
8140 {
8141 	int ret = -ENODEV;
8142 
8143 	mutex_lock(&ftrace_lock);
8144 
8145 	if (unlikely(ftrace_disabled))
8146 		goto out;
8147 
8148 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8149 
8150 	if (ret || !write || (last_ftrace_enabled == !!ftrace_enabled))
8151 		goto out;
8152 
8153 	if (ftrace_enabled) {
8154 
8155 		/* we are starting ftrace again */
8156 		if (rcu_dereference_protected(ftrace_ops_list,
8157 			lockdep_is_held(&ftrace_lock)) != &ftrace_list_end)
8158 			update_ftrace_function();
8159 
8160 		ftrace_startup_sysctl();
8161 
8162 	} else {
8163 		if (is_permanent_ops_registered()) {
8164 			ftrace_enabled = true;
8165 			ret = -EBUSY;
8166 			goto out;
8167 		}
8168 
8169 		/* stopping ftrace calls (just send to ftrace_stub) */
8170 		ftrace_trace_function = ftrace_stub;
8171 
8172 		ftrace_shutdown_sysctl();
8173 	}
8174 
8175 	last_ftrace_enabled = !!ftrace_enabled;
8176  out:
8177 	mutex_unlock(&ftrace_lock);
8178 	return ret;
8179 }
8180 
8181 static struct ctl_table ftrace_sysctls[] = {
8182 	{
8183 		.procname       = "ftrace_enabled",
8184 		.data           = &ftrace_enabled,
8185 		.maxlen         = sizeof(int),
8186 		.mode           = 0644,
8187 		.proc_handler   = ftrace_enable_sysctl,
8188 	},
8189 	{}
8190 };
8191 
8192 static int __init ftrace_sysctl_init(void)
8193 {
8194 	register_sysctl_init("kernel", ftrace_sysctls);
8195 	return 0;
8196 }
8197 late_initcall(ftrace_sysctl_init);
8198 #endif
8199