xref: /linux/kernel/trace/trace_events_filter.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * trace_events_filter - generic event filtering
4  *
5  * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6  */
7 
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/mutex.h>
11 #include <linux/perf_event.h>
12 #include <linux/slab.h>
13 
14 #include "trace.h"
15 #include "trace_output.h"
16 
17 #define DEFAULT_SYS_FILTER_MESSAGE					\
18 	"### global filter ###\n"					\
19 	"# Use this to set filters for multiple events.\n"		\
20 	"# Only events with the given fields will be affected.\n"	\
21 	"# If no events are modified, an error message will be displayed here"
22 
23 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
24 #define OPS					\
25 	C( OP_GLOB,	"~"  ),			\
26 	C( OP_NE,	"!=" ),			\
27 	C( OP_EQ,	"==" ),			\
28 	C( OP_LE,	"<=" ),			\
29 	C( OP_LT,	"<"  ),			\
30 	C( OP_GE,	">=" ),			\
31 	C( OP_GT,	">"  ),			\
32 	C( OP_BAND,	"&"  ),			\
33 	C( OP_MAX,	NULL )
34 
35 #undef C
36 #define C(a, b)	a
37 
38 enum filter_op_ids { OPS };
39 
40 #undef C
41 #define C(a, b)	b
42 
43 static const char * ops[] = { OPS };
44 
45 /*
46  * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
47  * pred_funcs_##type below must match the order of them above.
48  */
49 #define PRED_FUNC_START			OP_LE
50 #define PRED_FUNC_MAX			(OP_BAND - PRED_FUNC_START)
51 
52 #define ERRORS								\
53 	C(NONE,			"No error"),				\
54 	C(INVALID_OP,		"Invalid operator"),			\
55 	C(TOO_MANY_OPEN,	"Too many '('"),			\
56 	C(TOO_MANY_CLOSE,	"Too few '('"),				\
57 	C(MISSING_QUOTE,	"Missing matching quote"),		\
58 	C(OPERAND_TOO_LONG,	"Operand too long"),			\
59 	C(EXPECT_STRING,	"Expecting string field"),		\
60 	C(EXPECT_DIGIT,		"Expecting numeric field"),		\
61 	C(ILLEGAL_FIELD_OP,	"Illegal operation for field type"),	\
62 	C(FIELD_NOT_FOUND,	"Field not found"),			\
63 	C(ILLEGAL_INTVAL,	"Illegal integer value"),		\
64 	C(BAD_SUBSYS_FILTER,	"Couldn't find or set field in one of a subsystem's events"), \
65 	C(TOO_MANY_PREDS,	"Too many terms in predicate expression"), \
66 	C(INVALID_FILTER,	"Meaningless filter expression"),	\
67 	C(IP_FIELD_ONLY,	"Only 'ip' field is supported for function trace"), \
68 	C(INVALID_VALUE,	"Invalid value (did you forget quotes)?"), \
69 	C(ERRNO,		"Error"),				\
70 	C(NO_FILTER,		"No filter found")
71 
72 #undef C
73 #define C(a, b)		FILT_ERR_##a
74 
75 enum { ERRORS };
76 
77 #undef C
78 #define C(a, b)		b
79 
80 static const char *err_text[] = { ERRORS };
81 
82 /* Called after a '!' character but "!=" and "!~" are not "not"s */
83 static bool is_not(const char *str)
84 {
85 	switch (str[1]) {
86 	case '=':
87 	case '~':
88 		return false;
89 	}
90 	return true;
91 }
92 
93 /**
94  * prog_entry - a singe entry in the filter program
95  * @target:	     Index to jump to on a branch (actually one minus the index)
96  * @when_to_branch:  The value of the result of the predicate to do a branch
97  * @pred:	     The predicate to execute.
98  */
99 struct prog_entry {
100 	int			target;
101 	int			when_to_branch;
102 	struct filter_pred	*pred;
103 };
104 
105 /**
106  * update_preds- assign a program entry a label target
107  * @prog: The program array
108  * @N: The index of the current entry in @prog
109  * @when_to_branch: What to assign a program entry for its branch condition
110  *
111  * The program entry at @N has a target that points to the index of a program
112  * entry that can have its target and when_to_branch fields updated.
113  * Update the current program entry denoted by index @N target field to be
114  * that of the updated entry. This will denote the entry to update if
115  * we are processing an "||" after an "&&"
116  */
117 static void update_preds(struct prog_entry *prog, int N, int invert)
118 {
119 	int t, s;
120 
121 	t = prog[N].target;
122 	s = prog[t].target;
123 	prog[t].when_to_branch = invert;
124 	prog[t].target = N;
125 	prog[N].target = s;
126 }
127 
128 struct filter_parse_error {
129 	int lasterr;
130 	int lasterr_pos;
131 };
132 
133 static void parse_error(struct filter_parse_error *pe, int err, int pos)
134 {
135 	pe->lasterr = err;
136 	pe->lasterr_pos = pos;
137 }
138 
139 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
140 			     struct filter_parse_error *pe,
141 			     struct filter_pred **pred);
142 
143 enum {
144 	INVERT		= 1,
145 	PROCESS_AND	= 2,
146 	PROCESS_OR	= 4,
147 };
148 
149 /*
150  * Without going into a formal proof, this explains the method that is used in
151  * parsing the logical expressions.
152  *
153  * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
154  * The first pass will convert it into the following program:
155  *
156  * n1: r=a;       l1: if (!r) goto l4;
157  * n2: r=b;       l2: if (!r) goto l4;
158  * n3: r=c; r=!r; l3: if (r) goto l4;
159  * n4: r=g; r=!r; l4: if (r) goto l5;
160  * n5: r=d;       l5: if (r) goto T
161  * n6: r=e;       l6: if (!r) goto l7;
162  * n7: r=f; r=!r; l7: if (!r) goto F
163  * T: return TRUE
164  * F: return FALSE
165  *
166  * To do this, we use a data structure to represent each of the above
167  * predicate and conditions that has:
168  *
169  *  predicate, when_to_branch, invert, target
170  *
171  * The "predicate" will hold the function to determine the result "r".
172  * The "when_to_branch" denotes what "r" should be if a branch is to be taken
173  * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
174  * The "invert" holds whether the value should be reversed before testing.
175  * The "target" contains the label "l#" to jump to.
176  *
177  * A stack is created to hold values when parentheses are used.
178  *
179  * To simplify the logic, the labels will start at 0 and not 1.
180  *
181  * The possible invert values are 1 and 0. The number of "!"s that are in scope
182  * before the predicate determines the invert value, if the number is odd then
183  * the invert value is 1 and 0 otherwise. This means the invert value only
184  * needs to be toggled when a new "!" is introduced compared to what is stored
185  * on the stack, where parentheses were used.
186  *
187  * The top of the stack and "invert" are initialized to zero.
188  *
189  * ** FIRST PASS **
190  *
191  * #1 A loop through all the tokens is done:
192  *
193  * #2 If the token is an "(", the stack is push, and the current stack value
194  *    gets the current invert value, and the loop continues to the next token.
195  *    The top of the stack saves the "invert" value to keep track of what
196  *    the current inversion is. As "!(a && !b || c)" would require all
197  *    predicates being affected separately by the "!" before the parentheses.
198  *    And that would end up being equivalent to "(!a || b) && !c"
199  *
200  * #3 If the token is an "!", the current "invert" value gets inverted, and
201  *    the loop continues. Note, if the next token is a predicate, then
202  *    this "invert" value is only valid for the current program entry,
203  *    and does not affect other predicates later on.
204  *
205  * The only other acceptable token is the predicate string.
206  *
207  * #4 A new entry into the program is added saving: the predicate and the
208  *    current value of "invert". The target is currently assigned to the
209  *    previous program index (this will not be its final value).
210  *
211  * #5 We now enter another loop and look at the next token. The only valid
212  *    tokens are ")", "&&", "||" or end of the input string "\0".
213  *
214  * #6 The invert variable is reset to the current value saved on the top of
215  *    the stack.
216  *
217  * #7 The top of the stack holds not only the current invert value, but also
218  *    if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
219  *    precedence than "||". That is "a && b || c && d" is equivalent to
220  *    "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
221  *    to be processed. This is the case if an "&&" was the last token. If it was
222  *    then we call update_preds(). This takes the program, the current index in
223  *    the program, and the current value of "invert".  More will be described
224  *    below about this function.
225  *
226  * #8 If the next token is "&&" then we set a flag in the top of the stack
227  *    that denotes that "&&" needs to be processed, break out of this loop
228  *    and continue with the outer loop.
229  *
230  * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
231  *    This is called with the program, the current index in the program, but
232  *    this time with an inverted value of "invert" (that is !invert). This is
233  *    because the value taken will become the "when_to_branch" value of the
234  *    program.
235  *    Note, this is called when the next token is not an "&&". As stated before,
236  *    "&&" takes higher precedence, and "||" should not be processed yet if the
237  *    next logical operation is "&&".
238  *
239  * #10 If the next token is "||" then we set a flag in the top of the stack
240  *     that denotes that "||" needs to be processed, break out of this loop
241  *     and continue with the outer loop.
242  *
243  * #11 If this is the end of the input string "\0" then we break out of both
244  *     loops.
245  *
246  * #12 Otherwise, the next token is ")", where we pop the stack and continue
247  *     this inner loop.
248  *
249  * Now to discuss the update_pred() function, as that is key to the setting up
250  * of the program. Remember the "target" of the program is initialized to the
251  * previous index and not the "l" label. The target holds the index into the
252  * program that gets affected by the operand. Thus if we have something like
253  *  "a || b && c", when we process "a" the target will be "-1" (undefined).
254  * When we process "b", its target is "0", which is the index of "a", as that's
255  * the predicate that is affected by "||". But because the next token after "b"
256  * is "&&" we don't call update_preds(). Instead continue to "c". As the
257  * next token after "c" is not "&&" but the end of input, we first process the
258  * "&&" by calling update_preds() for the "&&" then we process the "||" by
259  * callin updates_preds() with the values for processing "||".
260  *
261  * What does that mean? What update_preds() does is to first save the "target"
262  * of the program entry indexed by the current program entry's "target"
263  * (remember the "target" is initialized to previous program entry), and then
264  * sets that "target" to the current index which represents the label "l#".
265  * That entry's "when_to_branch" is set to the value passed in (the "invert"
266  * or "!invert"). Then it sets the current program entry's target to the saved
267  * "target" value (the old value of the program that had its "target" updated
268  * to the label).
269  *
270  * Looking back at "a || b && c", we have the following steps:
271  *  "a"  - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
272  *  "||" - flag that we need to process "||"; continue outer loop
273  *  "b"  - prog[1] = { "b", X, 0 }
274  *  "&&" - flag that we need to process "&&"; continue outer loop
275  * (Notice we did not process "||")
276  *  "c"  - prog[2] = { "c", X, 1 }
277  *  update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
278  *    t = prog[2].target; // t = 1
279  *    s = prog[t].target; // s = 0
280  *    prog[t].target = 2; // Set target to "l2"
281  *    prog[t].when_to_branch = 0;
282  *    prog[2].target = s;
283  * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
284  *    t = prog[2].target; // t = 0
285  *    s = prog[t].target; // s = -1
286  *    prog[t].target = 2; // Set target to "l2"
287  *    prog[t].when_to_branch = 1;
288  *    prog[2].target = s;
289  *
290  * #13 Which brings us to the final step of the first pass, which is to set
291  *     the last program entry's when_to_branch and target, which will be
292  *     when_to_branch = 0; target = N; ( the label after the program entry after
293  *     the last program entry processed above).
294  *
295  * If we denote "TRUE" to be the entry after the last program entry processed,
296  * and "FALSE" the program entry after that, we are now done with the first
297  * pass.
298  *
299  * Making the above "a || b && c" have a progam of:
300  *  prog[0] = { "a", 1, 2 }
301  *  prog[1] = { "b", 0, 2 }
302  *  prog[2] = { "c", 0, 3 }
303  *
304  * Which translates into:
305  * n0: r = a; l0: if (r) goto l2;
306  * n1: r = b; l1: if (!r) goto l2;
307  * n2: r = c; l2: if (!r) goto l3;  // Which is the same as "goto F;"
308  * T: return TRUE; l3:
309  * F: return FALSE
310  *
311  * Although, after the first pass, the program is correct, it is
312  * inefficient. The simple sample of "a || b && c" could be easily been
313  * converted into:
314  * n0: r = a; if (r) goto T
315  * n1: r = b; if (!r) goto F
316  * n2: r = c; if (!r) goto F
317  * T: return TRUE;
318  * F: return FALSE;
319  *
320  * The First Pass is over the input string. The next too passes are over
321  * the program itself.
322  *
323  * ** SECOND PASS **
324  *
325  * Which brings us to the second pass. If a jump to a label has the
326  * same condition as that label, it can instead jump to its target.
327  * The original example of "a && !(!b || (c && g)) || d || e && !f"
328  * where the first pass gives us:
329  *
330  * n1: r=a;       l1: if (!r) goto l4;
331  * n2: r=b;       l2: if (!r) goto l4;
332  * n3: r=c; r=!r; l3: if (r) goto l4;
333  * n4: r=g; r=!r; l4: if (r) goto l5;
334  * n5: r=d;       l5: if (r) goto T
335  * n6: r=e;       l6: if (!r) goto l7;
336  * n7: r=f; r=!r; l7: if (!r) goto F:
337  * T: return TRUE;
338  * F: return FALSE
339  *
340  * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
341  * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
342  * to go directly to T. To accomplish this, we start from the last
343  * entry in the program and work our way back. If the target of the entry
344  * has the same "when_to_branch" then we could use that entry's target.
345  * Doing this, the above would end up as:
346  *
347  * n1: r=a;       l1: if (!r) goto l4;
348  * n2: r=b;       l2: if (!r) goto l4;
349  * n3: r=c; r=!r; l3: if (r) goto T;
350  * n4: r=g; r=!r; l4: if (r) goto T;
351  * n5: r=d;       l5: if (r) goto T;
352  * n6: r=e;       l6: if (!r) goto F;
353  * n7: r=f; r=!r; l7: if (!r) goto F;
354  * T: return TRUE
355  * F: return FALSE
356  *
357  * In that same pass, if the "when_to_branch" doesn't match, we can simply
358  * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
359  * where "l4: if (r) goto T;", then we can convert l2 to be:
360  * "l2: if (!r) goto n5;".
361  *
362  * This will have the second pass give us:
363  * n1: r=a;       l1: if (!r) goto n5;
364  * n2: r=b;       l2: if (!r) goto n5;
365  * n3: r=c; r=!r; l3: if (r) goto T;
366  * n4: r=g; r=!r; l4: if (r) goto T;
367  * n5: r=d;       l5: if (r) goto T
368  * n6: r=e;       l6: if (!r) goto F;
369  * n7: r=f; r=!r; l7: if (!r) goto F
370  * T: return TRUE
371  * F: return FALSE
372  *
373  * Notice, all the "l#" labels are no longer used, and they can now
374  * be discarded.
375  *
376  * ** THIRD PASS **
377  *
378  * For the third pass we deal with the inverts. As they simply just
379  * make the "when_to_branch" get inverted, a simple loop over the
380  * program to that does: "when_to_branch ^= invert;" will do the
381  * job, leaving us with:
382  * n1: r=a; if (!r) goto n5;
383  * n2: r=b; if (!r) goto n5;
384  * n3: r=c: if (!r) goto T;
385  * n4: r=g; if (!r) goto T;
386  * n5: r=d; if (r) goto T
387  * n6: r=e; if (!r) goto F;
388  * n7: r=f; if (r) goto F
389  * T: return TRUE
390  * F: return FALSE
391  *
392  * As "r = a; if (!r) goto n5;" is obviously the same as
393  * "if (!a) goto n5;" without doing anything we can interperate the
394  * program as:
395  * n1: if (!a) goto n5;
396  * n2: if (!b) goto n5;
397  * n3: if (!c) goto T;
398  * n4: if (!g) goto T;
399  * n5: if (d) goto T
400  * n6: if (!e) goto F;
401  * n7: if (f) goto F
402  * T: return TRUE
403  * F: return FALSE
404  *
405  * Since the inverts are discarded at the end, there's no reason to store
406  * them in the program array (and waste memory). A separate array to hold
407  * the inverts is used and freed at the end.
408  */
409 static struct prog_entry *
410 predicate_parse(const char *str, int nr_parens, int nr_preds,
411 		parse_pred_fn parse_pred, void *data,
412 		struct filter_parse_error *pe)
413 {
414 	struct prog_entry *prog_stack;
415 	struct prog_entry *prog;
416 	const char *ptr = str;
417 	char *inverts = NULL;
418 	int *op_stack;
419 	int *top;
420 	int invert = 0;
421 	int ret = -ENOMEM;
422 	int len;
423 	int N = 0;
424 	int i;
425 
426 	nr_preds += 2; /* For TRUE and FALSE */
427 
428 	op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
429 	if (!op_stack)
430 		return ERR_PTR(-ENOMEM);
431 	prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
432 	if (!prog_stack) {
433 		parse_error(pe, -ENOMEM, 0);
434 		goto out_free;
435 	}
436 	inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
437 	if (!inverts) {
438 		parse_error(pe, -ENOMEM, 0);
439 		goto out_free;
440 	}
441 
442 	top = op_stack;
443 	prog = prog_stack;
444 	*top = 0;
445 
446 	/* First pass */
447 	while (*ptr) {						/* #1 */
448 		const char *next = ptr++;
449 
450 		if (isspace(*next))
451 			continue;
452 
453 		switch (*next) {
454 		case '(':					/* #2 */
455 			if (top - op_stack > nr_parens) {
456 				ret = -EINVAL;
457 				goto out_free;
458 			}
459 			*(++top) = invert;
460 			continue;
461 		case '!':					/* #3 */
462 			if (!is_not(next))
463 				break;
464 			invert = !invert;
465 			continue;
466 		}
467 
468 		if (N >= nr_preds) {
469 			parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
470 			goto out_free;
471 		}
472 
473 		inverts[N] = invert;				/* #4 */
474 		prog[N].target = N-1;
475 
476 		len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
477 		if (len < 0) {
478 			ret = len;
479 			goto out_free;
480 		}
481 		ptr = next + len;
482 
483 		N++;
484 
485 		ret = -1;
486 		while (1) {					/* #5 */
487 			next = ptr++;
488 			if (isspace(*next))
489 				continue;
490 
491 			switch (*next) {
492 			case ')':
493 			case '\0':
494 				break;
495 			case '&':
496 			case '|':
497 				/* accepting only "&&" or "||" */
498 				if (next[1] == next[0]) {
499 					ptr++;
500 					break;
501 				}
502 				/* fall through */
503 			default:
504 				parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
505 					    next - str);
506 				goto out_free;
507 			}
508 
509 			invert = *top & INVERT;
510 
511 			if (*top & PROCESS_AND) {		/* #7 */
512 				update_preds(prog, N - 1, invert);
513 				*top &= ~PROCESS_AND;
514 			}
515 			if (*next == '&') {			/* #8 */
516 				*top |= PROCESS_AND;
517 				break;
518 			}
519 			if (*top & PROCESS_OR) {		/* #9 */
520 				update_preds(prog, N - 1, !invert);
521 				*top &= ~PROCESS_OR;
522 			}
523 			if (*next == '|') {			/* #10 */
524 				*top |= PROCESS_OR;
525 				break;
526 			}
527 			if (!*next)				/* #11 */
528 				goto out;
529 
530 			if (top == op_stack) {
531 				ret = -1;
532 				/* Too few '(' */
533 				parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
534 				goto out_free;
535 			}
536 			top--;					/* #12 */
537 		}
538 	}
539  out:
540 	if (top != op_stack) {
541 		/* Too many '(' */
542 		parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
543 		goto out_free;
544 	}
545 
546 	if (!N) {
547 		/* No program? */
548 		ret = -EINVAL;
549 		parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
550 		goto out_free;
551 	}
552 
553 	prog[N].pred = NULL;					/* #13 */
554 	prog[N].target = 1;		/* TRUE */
555 	prog[N+1].pred = NULL;
556 	prog[N+1].target = 0;		/* FALSE */
557 	prog[N-1].target = N;
558 	prog[N-1].when_to_branch = false;
559 
560 	/* Second Pass */
561 	for (i = N-1 ; i--; ) {
562 		int target = prog[i].target;
563 		if (prog[i].when_to_branch == prog[target].when_to_branch)
564 			prog[i].target = prog[target].target;
565 	}
566 
567 	/* Third Pass */
568 	for (i = 0; i < N; i++) {
569 		invert = inverts[i] ^ prog[i].when_to_branch;
570 		prog[i].when_to_branch = invert;
571 		/* Make sure the program always moves forward */
572 		if (WARN_ON(prog[i].target <= i)) {
573 			ret = -EINVAL;
574 			goto out_free;
575 		}
576 	}
577 
578 	kfree(op_stack);
579 	kfree(inverts);
580 	return prog;
581 out_free:
582 	kfree(op_stack);
583 	kfree(inverts);
584 	if (prog_stack) {
585 		for (i = 0; prog_stack[i].pred; i++)
586 			kfree(prog_stack[i].pred);
587 		kfree(prog_stack);
588 	}
589 	return ERR_PTR(ret);
590 }
591 
592 #define DEFINE_COMPARISON_PRED(type)					\
593 static int filter_pred_LT_##type(struct filter_pred *pred, void *event)	\
594 {									\
595 	type *addr = (type *)(event + pred->offset);			\
596 	type val = (type)pred->val;					\
597 	return *addr < val;						\
598 }									\
599 static int filter_pred_LE_##type(struct filter_pred *pred, void *event)	\
600 {									\
601 	type *addr = (type *)(event + pred->offset);			\
602 	type val = (type)pred->val;					\
603 	return *addr <= val;						\
604 }									\
605 static int filter_pred_GT_##type(struct filter_pred *pred, void *event)	\
606 {									\
607 	type *addr = (type *)(event + pred->offset);			\
608 	type val = (type)pred->val;					\
609 	return *addr > val;					\
610 }									\
611 static int filter_pred_GE_##type(struct filter_pred *pred, void *event)	\
612 {									\
613 	type *addr = (type *)(event + pred->offset);			\
614 	type val = (type)pred->val;					\
615 	return *addr >= val;						\
616 }									\
617 static int filter_pred_BAND_##type(struct filter_pred *pred, void *event) \
618 {									\
619 	type *addr = (type *)(event + pred->offset);			\
620 	type val = (type)pred->val;					\
621 	return !!(*addr & val);						\
622 }									\
623 static const filter_pred_fn_t pred_funcs_##type[] = {			\
624 	filter_pred_LE_##type,						\
625 	filter_pred_LT_##type,						\
626 	filter_pred_GE_##type,						\
627 	filter_pred_GT_##type,						\
628 	filter_pred_BAND_##type,					\
629 };
630 
631 #define DEFINE_EQUALITY_PRED(size)					\
632 static int filter_pred_##size(struct filter_pred *pred, void *event)	\
633 {									\
634 	u##size *addr = (u##size *)(event + pred->offset);		\
635 	u##size val = (u##size)pred->val;				\
636 	int match;							\
637 									\
638 	match = (val == *addr) ^ pred->not;				\
639 									\
640 	return match;							\
641 }
642 
643 DEFINE_COMPARISON_PRED(s64);
644 DEFINE_COMPARISON_PRED(u64);
645 DEFINE_COMPARISON_PRED(s32);
646 DEFINE_COMPARISON_PRED(u32);
647 DEFINE_COMPARISON_PRED(s16);
648 DEFINE_COMPARISON_PRED(u16);
649 DEFINE_COMPARISON_PRED(s8);
650 DEFINE_COMPARISON_PRED(u8);
651 
652 DEFINE_EQUALITY_PRED(64);
653 DEFINE_EQUALITY_PRED(32);
654 DEFINE_EQUALITY_PRED(16);
655 DEFINE_EQUALITY_PRED(8);
656 
657 /* Filter predicate for fixed sized arrays of characters */
658 static int filter_pred_string(struct filter_pred *pred, void *event)
659 {
660 	char *addr = (char *)(event + pred->offset);
661 	int cmp, match;
662 
663 	cmp = pred->regex.match(addr, &pred->regex, pred->regex.field_len);
664 
665 	match = cmp ^ pred->not;
666 
667 	return match;
668 }
669 
670 /* Filter predicate for char * pointers */
671 static int filter_pred_pchar(struct filter_pred *pred, void *event)
672 {
673 	char **addr = (char **)(event + pred->offset);
674 	int cmp, match;
675 	int len = strlen(*addr) + 1;	/* including tailing '\0' */
676 
677 	cmp = pred->regex.match(*addr, &pred->regex, len);
678 
679 	match = cmp ^ pred->not;
680 
681 	return match;
682 }
683 
684 /*
685  * Filter predicate for dynamic sized arrays of characters.
686  * These are implemented through a list of strings at the end
687  * of the entry.
688  * Also each of these strings have a field in the entry which
689  * contains its offset from the beginning of the entry.
690  * We have then first to get this field, dereference it
691  * and add it to the address of the entry, and at last we have
692  * the address of the string.
693  */
694 static int filter_pred_strloc(struct filter_pred *pred, void *event)
695 {
696 	u32 str_item = *(u32 *)(event + pred->offset);
697 	int str_loc = str_item & 0xffff;
698 	int str_len = str_item >> 16;
699 	char *addr = (char *)(event + str_loc);
700 	int cmp, match;
701 
702 	cmp = pred->regex.match(addr, &pred->regex, str_len);
703 
704 	match = cmp ^ pred->not;
705 
706 	return match;
707 }
708 
709 /* Filter predicate for CPUs. */
710 static int filter_pred_cpu(struct filter_pred *pred, void *event)
711 {
712 	int cpu, cmp;
713 
714 	cpu = raw_smp_processor_id();
715 	cmp = pred->val;
716 
717 	switch (pred->op) {
718 	case OP_EQ:
719 		return cpu == cmp;
720 	case OP_NE:
721 		return cpu != cmp;
722 	case OP_LT:
723 		return cpu < cmp;
724 	case OP_LE:
725 		return cpu <= cmp;
726 	case OP_GT:
727 		return cpu > cmp;
728 	case OP_GE:
729 		return cpu >= cmp;
730 	default:
731 		return 0;
732 	}
733 }
734 
735 /* Filter predicate for COMM. */
736 static int filter_pred_comm(struct filter_pred *pred, void *event)
737 {
738 	int cmp;
739 
740 	cmp = pred->regex.match(current->comm, &pred->regex,
741 				TASK_COMM_LEN);
742 	return cmp ^ pred->not;
743 }
744 
745 static int filter_pred_none(struct filter_pred *pred, void *event)
746 {
747 	return 0;
748 }
749 
750 /*
751  * regex_match_foo - Basic regex callbacks
752  *
753  * @str: the string to be searched
754  * @r:   the regex structure containing the pattern string
755  * @len: the length of the string to be searched (including '\0')
756  *
757  * Note:
758  * - @str might not be NULL-terminated if it's of type DYN_STRING
759  *   or STATIC_STRING, unless @len is zero.
760  */
761 
762 static int regex_match_full(char *str, struct regex *r, int len)
763 {
764 	/* len of zero means str is dynamic and ends with '\0' */
765 	if (!len)
766 		return strcmp(str, r->pattern) == 0;
767 
768 	return strncmp(str, r->pattern, len) == 0;
769 }
770 
771 static int regex_match_front(char *str, struct regex *r, int len)
772 {
773 	if (len && len < r->len)
774 		return 0;
775 
776 	return strncmp(str, r->pattern, r->len) == 0;
777 }
778 
779 static int regex_match_middle(char *str, struct regex *r, int len)
780 {
781 	if (!len)
782 		return strstr(str, r->pattern) != NULL;
783 
784 	return strnstr(str, r->pattern, len) != NULL;
785 }
786 
787 static int regex_match_end(char *str, struct regex *r, int len)
788 {
789 	int strlen = len - 1;
790 
791 	if (strlen >= r->len &&
792 	    memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
793 		return 1;
794 	return 0;
795 }
796 
797 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
798 {
799 	if (glob_match(r->pattern, str))
800 		return 1;
801 	return 0;
802 }
803 
804 /**
805  * filter_parse_regex - parse a basic regex
806  * @buff:   the raw regex
807  * @len:    length of the regex
808  * @search: will point to the beginning of the string to compare
809  * @not:    tell whether the match will have to be inverted
810  *
811  * This passes in a buffer containing a regex and this function will
812  * set search to point to the search part of the buffer and
813  * return the type of search it is (see enum above).
814  * This does modify buff.
815  *
816  * Returns enum type.
817  *  search returns the pointer to use for comparison.
818  *  not returns 1 if buff started with a '!'
819  *     0 otherwise.
820  */
821 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
822 {
823 	int type = MATCH_FULL;
824 	int i;
825 
826 	if (buff[0] == '!') {
827 		*not = 1;
828 		buff++;
829 		len--;
830 	} else
831 		*not = 0;
832 
833 	*search = buff;
834 
835 	if (isdigit(buff[0]))
836 		return MATCH_INDEX;
837 
838 	for (i = 0; i < len; i++) {
839 		if (buff[i] == '*') {
840 			if (!i) {
841 				type = MATCH_END_ONLY;
842 			} else if (i == len - 1) {
843 				if (type == MATCH_END_ONLY)
844 					type = MATCH_MIDDLE_ONLY;
845 				else
846 					type = MATCH_FRONT_ONLY;
847 				buff[i] = 0;
848 				break;
849 			} else {	/* pattern continues, use full glob */
850 				return MATCH_GLOB;
851 			}
852 		} else if (strchr("[?\\", buff[i])) {
853 			return MATCH_GLOB;
854 		}
855 	}
856 	if (buff[0] == '*')
857 		*search = buff + 1;
858 
859 	return type;
860 }
861 
862 static void filter_build_regex(struct filter_pred *pred)
863 {
864 	struct regex *r = &pred->regex;
865 	char *search;
866 	enum regex_type type = MATCH_FULL;
867 
868 	if (pred->op == OP_GLOB) {
869 		type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
870 		r->len = strlen(search);
871 		memmove(r->pattern, search, r->len+1);
872 	}
873 
874 	switch (type) {
875 	/* MATCH_INDEX should not happen, but if it does, match full */
876 	case MATCH_INDEX:
877 	case MATCH_FULL:
878 		r->match = regex_match_full;
879 		break;
880 	case MATCH_FRONT_ONLY:
881 		r->match = regex_match_front;
882 		break;
883 	case MATCH_MIDDLE_ONLY:
884 		r->match = regex_match_middle;
885 		break;
886 	case MATCH_END_ONLY:
887 		r->match = regex_match_end;
888 		break;
889 	case MATCH_GLOB:
890 		r->match = regex_match_glob;
891 		break;
892 	}
893 }
894 
895 /* return 1 if event matches, 0 otherwise (discard) */
896 int filter_match_preds(struct event_filter *filter, void *rec)
897 {
898 	struct prog_entry *prog;
899 	int i;
900 
901 	/* no filter is considered a match */
902 	if (!filter)
903 		return 1;
904 
905 	/* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
906 	prog = rcu_dereference_raw(filter->prog);
907 	if (!prog)
908 		return 1;
909 
910 	for (i = 0; prog[i].pred; i++) {
911 		struct filter_pred *pred = prog[i].pred;
912 		int match = pred->fn(pred, rec);
913 		if (match == prog[i].when_to_branch)
914 			i = prog[i].target;
915 	}
916 	return prog[i].target;
917 }
918 EXPORT_SYMBOL_GPL(filter_match_preds);
919 
920 static void remove_filter_string(struct event_filter *filter)
921 {
922 	if (!filter)
923 		return;
924 
925 	kfree(filter->filter_string);
926 	filter->filter_string = NULL;
927 }
928 
929 static void append_filter_err(struct trace_array *tr,
930 			      struct filter_parse_error *pe,
931 			      struct event_filter *filter)
932 {
933 	struct trace_seq *s;
934 	int pos = pe->lasterr_pos;
935 	char *buf;
936 	int len;
937 
938 	if (WARN_ON(!filter->filter_string))
939 		return;
940 
941 	s = kmalloc(sizeof(*s), GFP_KERNEL);
942 	if (!s)
943 		return;
944 	trace_seq_init(s);
945 
946 	len = strlen(filter->filter_string);
947 	if (pos > len)
948 		pos = len;
949 
950 	/* indexing is off by one */
951 	if (pos)
952 		pos++;
953 
954 	trace_seq_puts(s, filter->filter_string);
955 	if (pe->lasterr > 0) {
956 		trace_seq_printf(s, "\n%*s", pos, "^");
957 		trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
958 		tracing_log_err(tr, "event filter parse error",
959 				filter->filter_string, err_text,
960 				pe->lasterr, pe->lasterr_pos);
961 	} else {
962 		trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
963 		tracing_log_err(tr, "event filter parse error",
964 				filter->filter_string, err_text,
965 				FILT_ERR_ERRNO, 0);
966 	}
967 	trace_seq_putc(s, 0);
968 	buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
969 	if (buf) {
970 		kfree(filter->filter_string);
971 		filter->filter_string = buf;
972 	}
973 	kfree(s);
974 }
975 
976 static inline struct event_filter *event_filter(struct trace_event_file *file)
977 {
978 	return file->filter;
979 }
980 
981 /* caller must hold event_mutex */
982 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
983 {
984 	struct event_filter *filter = event_filter(file);
985 
986 	if (filter && filter->filter_string)
987 		trace_seq_printf(s, "%s\n", filter->filter_string);
988 	else
989 		trace_seq_puts(s, "none\n");
990 }
991 
992 void print_subsystem_event_filter(struct event_subsystem *system,
993 				  struct trace_seq *s)
994 {
995 	struct event_filter *filter;
996 
997 	mutex_lock(&event_mutex);
998 	filter = system->filter;
999 	if (filter && filter->filter_string)
1000 		trace_seq_printf(s, "%s\n", filter->filter_string);
1001 	else
1002 		trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1003 	mutex_unlock(&event_mutex);
1004 }
1005 
1006 static void free_prog(struct event_filter *filter)
1007 {
1008 	struct prog_entry *prog;
1009 	int i;
1010 
1011 	prog = rcu_access_pointer(filter->prog);
1012 	if (!prog)
1013 		return;
1014 
1015 	for (i = 0; prog[i].pred; i++)
1016 		kfree(prog[i].pred);
1017 	kfree(prog);
1018 }
1019 
1020 static void filter_disable(struct trace_event_file *file)
1021 {
1022 	unsigned long old_flags = file->flags;
1023 
1024 	file->flags &= ~EVENT_FILE_FL_FILTERED;
1025 
1026 	if (old_flags != file->flags)
1027 		trace_buffered_event_disable();
1028 }
1029 
1030 static void __free_filter(struct event_filter *filter)
1031 {
1032 	if (!filter)
1033 		return;
1034 
1035 	free_prog(filter);
1036 	kfree(filter->filter_string);
1037 	kfree(filter);
1038 }
1039 
1040 void free_event_filter(struct event_filter *filter)
1041 {
1042 	__free_filter(filter);
1043 }
1044 
1045 static inline void __remove_filter(struct trace_event_file *file)
1046 {
1047 	filter_disable(file);
1048 	remove_filter_string(file->filter);
1049 }
1050 
1051 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1052 					struct trace_array *tr)
1053 {
1054 	struct trace_event_file *file;
1055 
1056 	list_for_each_entry(file, &tr->events, list) {
1057 		if (file->system != dir)
1058 			continue;
1059 		__remove_filter(file);
1060 	}
1061 }
1062 
1063 static inline void __free_subsystem_filter(struct trace_event_file *file)
1064 {
1065 	__free_filter(file->filter);
1066 	file->filter = NULL;
1067 }
1068 
1069 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1070 					  struct trace_array *tr)
1071 {
1072 	struct trace_event_file *file;
1073 
1074 	list_for_each_entry(file, &tr->events, list) {
1075 		if (file->system != dir)
1076 			continue;
1077 		__free_subsystem_filter(file);
1078 	}
1079 }
1080 
1081 int filter_assign_type(const char *type)
1082 {
1083 	if (strstr(type, "__data_loc") && strstr(type, "char"))
1084 		return FILTER_DYN_STRING;
1085 
1086 	if (strchr(type, '[') && strstr(type, "char"))
1087 		return FILTER_STATIC_STRING;
1088 
1089 	if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1090 		return FILTER_PTR_STRING;
1091 
1092 	return FILTER_OTHER;
1093 }
1094 
1095 static filter_pred_fn_t select_comparison_fn(enum filter_op_ids op,
1096 					    int field_size, int field_is_signed)
1097 {
1098 	filter_pred_fn_t fn = NULL;
1099 	int pred_func_index = -1;
1100 
1101 	switch (op) {
1102 	case OP_EQ:
1103 	case OP_NE:
1104 		break;
1105 	default:
1106 		if (WARN_ON_ONCE(op < PRED_FUNC_START))
1107 			return NULL;
1108 		pred_func_index = op - PRED_FUNC_START;
1109 		if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1110 			return NULL;
1111 	}
1112 
1113 	switch (field_size) {
1114 	case 8:
1115 		if (pred_func_index < 0)
1116 			fn = filter_pred_64;
1117 		else if (field_is_signed)
1118 			fn = pred_funcs_s64[pred_func_index];
1119 		else
1120 			fn = pred_funcs_u64[pred_func_index];
1121 		break;
1122 	case 4:
1123 		if (pred_func_index < 0)
1124 			fn = filter_pred_32;
1125 		else if (field_is_signed)
1126 			fn = pred_funcs_s32[pred_func_index];
1127 		else
1128 			fn = pred_funcs_u32[pred_func_index];
1129 		break;
1130 	case 2:
1131 		if (pred_func_index < 0)
1132 			fn = filter_pred_16;
1133 		else if (field_is_signed)
1134 			fn = pred_funcs_s16[pred_func_index];
1135 		else
1136 			fn = pred_funcs_u16[pred_func_index];
1137 		break;
1138 	case 1:
1139 		if (pred_func_index < 0)
1140 			fn = filter_pred_8;
1141 		else if (field_is_signed)
1142 			fn = pred_funcs_s8[pred_func_index];
1143 		else
1144 			fn = pred_funcs_u8[pred_func_index];
1145 		break;
1146 	}
1147 
1148 	return fn;
1149 }
1150 
1151 /* Called when a predicate is encountered by predicate_parse() */
1152 static int parse_pred(const char *str, void *data,
1153 		      int pos, struct filter_parse_error *pe,
1154 		      struct filter_pred **pred_ptr)
1155 {
1156 	struct trace_event_call *call = data;
1157 	struct ftrace_event_field *field;
1158 	struct filter_pred *pred = NULL;
1159 	char num_buf[24];	/* Big enough to hold an address */
1160 	char *field_name;
1161 	char q;
1162 	u64 val;
1163 	int len;
1164 	int ret;
1165 	int op;
1166 	int s;
1167 	int i = 0;
1168 
1169 	/* First find the field to associate to */
1170 	while (isspace(str[i]))
1171 		i++;
1172 	s = i;
1173 
1174 	while (isalnum(str[i]) || str[i] == '_')
1175 		i++;
1176 
1177 	len = i - s;
1178 
1179 	if (!len)
1180 		return -1;
1181 
1182 	field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1183 	if (!field_name)
1184 		return -ENOMEM;
1185 
1186 	/* Make sure that the field exists */
1187 
1188 	field = trace_find_event_field(call, field_name);
1189 	kfree(field_name);
1190 	if (!field) {
1191 		parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1192 		return -EINVAL;
1193 	}
1194 
1195 	while (isspace(str[i]))
1196 		i++;
1197 
1198 	/* Make sure this op is supported */
1199 	for (op = 0; ops[op]; op++) {
1200 		/* This is why '<=' must come before '<' in ops[] */
1201 		if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1202 			break;
1203 	}
1204 
1205 	if (!ops[op]) {
1206 		parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1207 		goto err_free;
1208 	}
1209 
1210 	i += strlen(ops[op]);
1211 
1212 	while (isspace(str[i]))
1213 		i++;
1214 
1215 	s = i;
1216 
1217 	pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1218 	if (!pred)
1219 		return -ENOMEM;
1220 
1221 	pred->field = field;
1222 	pred->offset = field->offset;
1223 	pred->op = op;
1224 
1225 	if (ftrace_event_is_function(call)) {
1226 		/*
1227 		 * Perf does things different with function events.
1228 		 * It only allows an "ip" field, and expects a string.
1229 		 * But the string does not need to be surrounded by quotes.
1230 		 * If it is a string, the assigned function as a nop,
1231 		 * (perf doesn't use it) and grab everything.
1232 		 */
1233 		if (strcmp(field->name, "ip") != 0) {
1234 			parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1235 			goto err_free;
1236 		}
1237 		pred->fn = filter_pred_none;
1238 
1239 		/*
1240 		 * Quotes are not required, but if they exist then we need
1241 		 * to read them till we hit a matching one.
1242 		 */
1243 		if (str[i] == '\'' || str[i] == '"')
1244 			q = str[i];
1245 		else
1246 			q = 0;
1247 
1248 		for (i++; str[i]; i++) {
1249 			if (q && str[i] == q)
1250 				break;
1251 			if (!q && (str[i] == ')' || str[i] == '&' ||
1252 				   str[i] == '|'))
1253 				break;
1254 		}
1255 		/* Skip quotes */
1256 		if (q)
1257 			s++;
1258 		len = i - s;
1259 		if (len >= MAX_FILTER_STR_VAL) {
1260 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1261 			goto err_free;
1262 		}
1263 
1264 		pred->regex.len = len;
1265 		strncpy(pred->regex.pattern, str + s, len);
1266 		pred->regex.pattern[len] = 0;
1267 
1268 	/* This is either a string, or an integer */
1269 	} else if (str[i] == '\'' || str[i] == '"') {
1270 		char q = str[i];
1271 
1272 		/* Make sure the op is OK for strings */
1273 		switch (op) {
1274 		case OP_NE:
1275 			pred->not = 1;
1276 			/* Fall through */
1277 		case OP_GLOB:
1278 		case OP_EQ:
1279 			break;
1280 		default:
1281 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1282 			goto err_free;
1283 		}
1284 
1285 		/* Make sure the field is OK for strings */
1286 		if (!is_string_field(field)) {
1287 			parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1288 			goto err_free;
1289 		}
1290 
1291 		for (i++; str[i]; i++) {
1292 			if (str[i] == q)
1293 				break;
1294 		}
1295 		if (!str[i]) {
1296 			parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1297 			goto err_free;
1298 		}
1299 
1300 		/* Skip quotes */
1301 		s++;
1302 		len = i - s;
1303 		if (len >= MAX_FILTER_STR_VAL) {
1304 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1305 			goto err_free;
1306 		}
1307 
1308 		pred->regex.len = len;
1309 		strncpy(pred->regex.pattern, str + s, len);
1310 		pred->regex.pattern[len] = 0;
1311 
1312 		filter_build_regex(pred);
1313 
1314 		if (field->filter_type == FILTER_COMM) {
1315 			pred->fn = filter_pred_comm;
1316 
1317 		} else if (field->filter_type == FILTER_STATIC_STRING) {
1318 			pred->fn = filter_pred_string;
1319 			pred->regex.field_len = field->size;
1320 
1321 		} else if (field->filter_type == FILTER_DYN_STRING)
1322 			pred->fn = filter_pred_strloc;
1323 		else
1324 			pred->fn = filter_pred_pchar;
1325 		/* go past the last quote */
1326 		i++;
1327 
1328 	} else if (isdigit(str[i]) || str[i] == '-') {
1329 
1330 		/* Make sure the field is not a string */
1331 		if (is_string_field(field)) {
1332 			parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
1333 			goto err_free;
1334 		}
1335 
1336 		if (op == OP_GLOB) {
1337 			parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1338 			goto err_free;
1339 		}
1340 
1341 		if (str[i] == '-')
1342 			i++;
1343 
1344 		/* We allow 0xDEADBEEF */
1345 		while (isalnum(str[i]))
1346 			i++;
1347 
1348 		len = i - s;
1349 		/* 0xfeedfacedeadbeef is 18 chars max */
1350 		if (len >= sizeof(num_buf)) {
1351 			parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1352 			goto err_free;
1353 		}
1354 
1355 		strncpy(num_buf, str + s, len);
1356 		num_buf[len] = 0;
1357 
1358 		/* Make sure it is a value */
1359 		if (field->is_signed)
1360 			ret = kstrtoll(num_buf, 0, &val);
1361 		else
1362 			ret = kstrtoull(num_buf, 0, &val);
1363 		if (ret) {
1364 			parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
1365 			goto err_free;
1366 		}
1367 
1368 		pred->val = val;
1369 
1370 		if (field->filter_type == FILTER_CPU)
1371 			pred->fn = filter_pred_cpu;
1372 		else {
1373 			pred->fn = select_comparison_fn(pred->op, field->size,
1374 							field->is_signed);
1375 			if (pred->op == OP_NE)
1376 				pred->not = 1;
1377 		}
1378 
1379 	} else {
1380 		parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1381 		goto err_free;
1382 	}
1383 
1384 	*pred_ptr = pred;
1385 	return i;
1386 
1387 err_free:
1388 	kfree(pred);
1389 	return -EINVAL;
1390 }
1391 
1392 enum {
1393 	TOO_MANY_CLOSE		= -1,
1394 	TOO_MANY_OPEN		= -2,
1395 	MISSING_QUOTE		= -3,
1396 };
1397 
1398 /*
1399  * Read the filter string once to calculate the number of predicates
1400  * as well as how deep the parentheses go.
1401  *
1402  * Returns:
1403  *   0 - everything is fine (err is undefined)
1404  *  -1 - too many ')'
1405  *  -2 - too many '('
1406  *  -3 - No matching quote
1407  */
1408 static int calc_stack(const char *str, int *parens, int *preds, int *err)
1409 {
1410 	bool is_pred = false;
1411 	int nr_preds = 0;
1412 	int open = 1; /* Count the expression as "(E)" */
1413 	int last_quote = 0;
1414 	int max_open = 1;
1415 	int quote = 0;
1416 	int i;
1417 
1418 	*err = 0;
1419 
1420 	for (i = 0; str[i]; i++) {
1421 		if (isspace(str[i]))
1422 			continue;
1423 		if (quote) {
1424 			if (str[i] == quote)
1425 			       quote = 0;
1426 			continue;
1427 		}
1428 
1429 		switch (str[i]) {
1430 		case '\'':
1431 		case '"':
1432 			quote = str[i];
1433 			last_quote = i;
1434 			break;
1435 		case '|':
1436 		case '&':
1437 			if (str[i+1] != str[i])
1438 				break;
1439 			is_pred = false;
1440 			continue;
1441 		case '(':
1442 			is_pred = false;
1443 			open++;
1444 			if (open > max_open)
1445 				max_open = open;
1446 			continue;
1447 		case ')':
1448 			is_pred = false;
1449 			if (open == 1) {
1450 				*err = i;
1451 				return TOO_MANY_CLOSE;
1452 			}
1453 			open--;
1454 			continue;
1455 		}
1456 		if (!is_pred) {
1457 			nr_preds++;
1458 			is_pred = true;
1459 		}
1460 	}
1461 
1462 	if (quote) {
1463 		*err = last_quote;
1464 		return MISSING_QUOTE;
1465 	}
1466 
1467 	if (open != 1) {
1468 		int level = open;
1469 
1470 		/* find the bad open */
1471 		for (i--; i; i--) {
1472 			if (quote) {
1473 				if (str[i] == quote)
1474 					quote = 0;
1475 				continue;
1476 			}
1477 			switch (str[i]) {
1478 			case '(':
1479 				if (level == open) {
1480 					*err = i;
1481 					return TOO_MANY_OPEN;
1482 				}
1483 				level--;
1484 				break;
1485 			case ')':
1486 				level++;
1487 				break;
1488 			case '\'':
1489 			case '"':
1490 				quote = str[i];
1491 				break;
1492 			}
1493 		}
1494 		/* First character is the '(' with missing ')' */
1495 		*err = 0;
1496 		return TOO_MANY_OPEN;
1497 	}
1498 
1499 	/* Set the size of the required stacks */
1500 	*parens = max_open;
1501 	*preds = nr_preds;
1502 	return 0;
1503 }
1504 
1505 static int process_preds(struct trace_event_call *call,
1506 			 const char *filter_string,
1507 			 struct event_filter *filter,
1508 			 struct filter_parse_error *pe)
1509 {
1510 	struct prog_entry *prog;
1511 	int nr_parens;
1512 	int nr_preds;
1513 	int index;
1514 	int ret;
1515 
1516 	ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
1517 	if (ret < 0) {
1518 		switch (ret) {
1519 		case MISSING_QUOTE:
1520 			parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
1521 			break;
1522 		case TOO_MANY_OPEN:
1523 			parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
1524 			break;
1525 		default:
1526 			parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
1527 		}
1528 		return ret;
1529 	}
1530 
1531 	if (!nr_preds)
1532 		return -EINVAL;
1533 
1534 	prog = predicate_parse(filter_string, nr_parens, nr_preds,
1535 			       parse_pred, call, pe);
1536 	if (IS_ERR(prog))
1537 		return PTR_ERR(prog);
1538 
1539 	rcu_assign_pointer(filter->prog, prog);
1540 	return 0;
1541 }
1542 
1543 static inline void event_set_filtered_flag(struct trace_event_file *file)
1544 {
1545 	unsigned long old_flags = file->flags;
1546 
1547 	file->flags |= EVENT_FILE_FL_FILTERED;
1548 
1549 	if (old_flags != file->flags)
1550 		trace_buffered_event_enable();
1551 }
1552 
1553 static inline void event_set_filter(struct trace_event_file *file,
1554 				    struct event_filter *filter)
1555 {
1556 	rcu_assign_pointer(file->filter, filter);
1557 }
1558 
1559 static inline void event_clear_filter(struct trace_event_file *file)
1560 {
1561 	RCU_INIT_POINTER(file->filter, NULL);
1562 }
1563 
1564 static inline void
1565 event_set_no_set_filter_flag(struct trace_event_file *file)
1566 {
1567 	file->flags |= EVENT_FILE_FL_NO_SET_FILTER;
1568 }
1569 
1570 static inline void
1571 event_clear_no_set_filter_flag(struct trace_event_file *file)
1572 {
1573 	file->flags &= ~EVENT_FILE_FL_NO_SET_FILTER;
1574 }
1575 
1576 static inline bool
1577 event_no_set_filter_flag(struct trace_event_file *file)
1578 {
1579 	if (file->flags & EVENT_FILE_FL_NO_SET_FILTER)
1580 		return true;
1581 
1582 	return false;
1583 }
1584 
1585 struct filter_list {
1586 	struct list_head	list;
1587 	struct event_filter	*filter;
1588 };
1589 
1590 static int process_system_preds(struct trace_subsystem_dir *dir,
1591 				struct trace_array *tr,
1592 				struct filter_parse_error *pe,
1593 				char *filter_string)
1594 {
1595 	struct trace_event_file *file;
1596 	struct filter_list *filter_item;
1597 	struct event_filter *filter = NULL;
1598 	struct filter_list *tmp;
1599 	LIST_HEAD(filter_list);
1600 	bool fail = true;
1601 	int err;
1602 
1603 	list_for_each_entry(file, &tr->events, list) {
1604 
1605 		if (file->system != dir)
1606 			continue;
1607 
1608 		filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1609 		if (!filter)
1610 			goto fail_mem;
1611 
1612 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1613 		if (!filter->filter_string)
1614 			goto fail_mem;
1615 
1616 		err = process_preds(file->event_call, filter_string, filter, pe);
1617 		if (err) {
1618 			filter_disable(file);
1619 			parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1620 			append_filter_err(tr, pe, filter);
1621 		} else
1622 			event_set_filtered_flag(file);
1623 
1624 
1625 		filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
1626 		if (!filter_item)
1627 			goto fail_mem;
1628 
1629 		list_add_tail(&filter_item->list, &filter_list);
1630 		/*
1631 		 * Regardless of if this returned an error, we still
1632 		 * replace the filter for the call.
1633 		 */
1634 		filter_item->filter = event_filter(file);
1635 		event_set_filter(file, filter);
1636 		filter = NULL;
1637 
1638 		fail = false;
1639 	}
1640 
1641 	if (fail)
1642 		goto fail;
1643 
1644 	/*
1645 	 * The calls can still be using the old filters.
1646 	 * Do a synchronize_rcu() and to ensure all calls are
1647 	 * done with them before we free them.
1648 	 */
1649 	tracepoint_synchronize_unregister();
1650 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1651 		__free_filter(filter_item->filter);
1652 		list_del(&filter_item->list);
1653 		kfree(filter_item);
1654 	}
1655 	return 0;
1656  fail:
1657 	/* No call succeeded */
1658 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1659 		list_del(&filter_item->list);
1660 		kfree(filter_item);
1661 	}
1662 	parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
1663 	return -EINVAL;
1664  fail_mem:
1665 	__free_filter(filter);
1666 	/* If any call succeeded, we still need to sync */
1667 	if (!fail)
1668 		tracepoint_synchronize_unregister();
1669 	list_for_each_entry_safe(filter_item, tmp, &filter_list, list) {
1670 		__free_filter(filter_item->filter);
1671 		list_del(&filter_item->list);
1672 		kfree(filter_item);
1673 	}
1674 	return -ENOMEM;
1675 }
1676 
1677 static int create_filter_start(char *filter_string, bool set_str,
1678 			       struct filter_parse_error **pse,
1679 			       struct event_filter **filterp)
1680 {
1681 	struct event_filter *filter;
1682 	struct filter_parse_error *pe = NULL;
1683 	int err = 0;
1684 
1685 	if (WARN_ON_ONCE(*pse || *filterp))
1686 		return -EINVAL;
1687 
1688 	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
1689 	if (filter && set_str) {
1690 		filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
1691 		if (!filter->filter_string)
1692 			err = -ENOMEM;
1693 	}
1694 
1695 	pe = kzalloc(sizeof(*pe), GFP_KERNEL);
1696 
1697 	if (!filter || !pe || err) {
1698 		kfree(pe);
1699 		__free_filter(filter);
1700 		return -ENOMEM;
1701 	}
1702 
1703 	/* we're committed to creating a new filter */
1704 	*filterp = filter;
1705 	*pse = pe;
1706 
1707 	return 0;
1708 }
1709 
1710 static void create_filter_finish(struct filter_parse_error *pe)
1711 {
1712 	kfree(pe);
1713 }
1714 
1715 /**
1716  * create_filter - create a filter for a trace_event_call
1717  * @call: trace_event_call to create a filter for
1718  * @filter_str: filter string
1719  * @set_str: remember @filter_str and enable detailed error in filter
1720  * @filterp: out param for created filter (always updated on return)
1721  *           Must be a pointer that references a NULL pointer.
1722  *
1723  * Creates a filter for @call with @filter_str.  If @set_str is %true,
1724  * @filter_str is copied and recorded in the new filter.
1725  *
1726  * On success, returns 0 and *@filterp points to the new filter.  On
1727  * failure, returns -errno and *@filterp may point to %NULL or to a new
1728  * filter.  In the latter case, the returned filter contains error
1729  * information if @set_str is %true and the caller is responsible for
1730  * freeing it.
1731  */
1732 static int create_filter(struct trace_array *tr,
1733 			 struct trace_event_call *call,
1734 			 char *filter_string, bool set_str,
1735 			 struct event_filter **filterp)
1736 {
1737 	struct filter_parse_error *pe = NULL;
1738 	int err;
1739 
1740 	/* filterp must point to NULL */
1741 	if (WARN_ON(*filterp))
1742 		*filterp = NULL;
1743 
1744 	err = create_filter_start(filter_string, set_str, &pe, filterp);
1745 	if (err)
1746 		return err;
1747 
1748 	err = process_preds(call, filter_string, *filterp, pe);
1749 	if (err && set_str)
1750 		append_filter_err(tr, pe, *filterp);
1751 	create_filter_finish(pe);
1752 
1753 	return err;
1754 }
1755 
1756 int create_event_filter(struct trace_array *tr,
1757 			struct trace_event_call *call,
1758 			char *filter_str, bool set_str,
1759 			struct event_filter **filterp)
1760 {
1761 	return create_filter(tr, call, filter_str, set_str, filterp);
1762 }
1763 
1764 /**
1765  * create_system_filter - create a filter for an event_subsystem
1766  * @system: event_subsystem to create a filter for
1767  * @filter_str: filter string
1768  * @filterp: out param for created filter (always updated on return)
1769  *
1770  * Identical to create_filter() except that it creates a subsystem filter
1771  * and always remembers @filter_str.
1772  */
1773 static int create_system_filter(struct trace_subsystem_dir *dir,
1774 				struct trace_array *tr,
1775 				char *filter_str, struct event_filter **filterp)
1776 {
1777 	struct filter_parse_error *pe = NULL;
1778 	int err;
1779 
1780 	err = create_filter_start(filter_str, true, &pe, filterp);
1781 	if (!err) {
1782 		err = process_system_preds(dir, tr, pe, filter_str);
1783 		if (!err) {
1784 			/* System filters just show a default message */
1785 			kfree((*filterp)->filter_string);
1786 			(*filterp)->filter_string = NULL;
1787 		} else {
1788 			append_filter_err(tr, pe, *filterp);
1789 		}
1790 	}
1791 	create_filter_finish(pe);
1792 
1793 	return err;
1794 }
1795 
1796 /* caller must hold event_mutex */
1797 int apply_event_filter(struct trace_event_file *file, char *filter_string)
1798 {
1799 	struct trace_event_call *call = file->event_call;
1800 	struct event_filter *filter = NULL;
1801 	int err;
1802 
1803 	if (!strcmp(strstrip(filter_string), "0")) {
1804 		filter_disable(file);
1805 		filter = event_filter(file);
1806 
1807 		if (!filter)
1808 			return 0;
1809 
1810 		event_clear_filter(file);
1811 
1812 		/* Make sure the filter is not being used */
1813 		tracepoint_synchronize_unregister();
1814 		__free_filter(filter);
1815 
1816 		return 0;
1817 	}
1818 
1819 	err = create_filter(file->tr, call, filter_string, true, &filter);
1820 
1821 	/*
1822 	 * Always swap the call filter with the new filter
1823 	 * even if there was an error. If there was an error
1824 	 * in the filter, we disable the filter and show the error
1825 	 * string
1826 	 */
1827 	if (filter) {
1828 		struct event_filter *tmp;
1829 
1830 		tmp = event_filter(file);
1831 		if (!err)
1832 			event_set_filtered_flag(file);
1833 		else
1834 			filter_disable(file);
1835 
1836 		event_set_filter(file, filter);
1837 
1838 		if (tmp) {
1839 			/* Make sure the call is done with the filter */
1840 			tracepoint_synchronize_unregister();
1841 			__free_filter(tmp);
1842 		}
1843 	}
1844 
1845 	return err;
1846 }
1847 
1848 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
1849 				 char *filter_string)
1850 {
1851 	struct event_subsystem *system = dir->subsystem;
1852 	struct trace_array *tr = dir->tr;
1853 	struct event_filter *filter = NULL;
1854 	int err = 0;
1855 
1856 	mutex_lock(&event_mutex);
1857 
1858 	/* Make sure the system still has events */
1859 	if (!dir->nr_events) {
1860 		err = -ENODEV;
1861 		goto out_unlock;
1862 	}
1863 
1864 	if (!strcmp(strstrip(filter_string), "0")) {
1865 		filter_free_subsystem_preds(dir, tr);
1866 		remove_filter_string(system->filter);
1867 		filter = system->filter;
1868 		system->filter = NULL;
1869 		/* Ensure all filters are no longer used */
1870 		tracepoint_synchronize_unregister();
1871 		filter_free_subsystem_filters(dir, tr);
1872 		__free_filter(filter);
1873 		goto out_unlock;
1874 	}
1875 
1876 	err = create_system_filter(dir, tr, filter_string, &filter);
1877 	if (filter) {
1878 		/*
1879 		 * No event actually uses the system filter
1880 		 * we can free it without synchronize_rcu().
1881 		 */
1882 		__free_filter(system->filter);
1883 		system->filter = filter;
1884 	}
1885 out_unlock:
1886 	mutex_unlock(&event_mutex);
1887 
1888 	return err;
1889 }
1890 
1891 #ifdef CONFIG_PERF_EVENTS
1892 
1893 void ftrace_profile_free_filter(struct perf_event *event)
1894 {
1895 	struct event_filter *filter = event->filter;
1896 
1897 	event->filter = NULL;
1898 	__free_filter(filter);
1899 }
1900 
1901 struct function_filter_data {
1902 	struct ftrace_ops *ops;
1903 	int first_filter;
1904 	int first_notrace;
1905 };
1906 
1907 #ifdef CONFIG_FUNCTION_TRACER
1908 static char **
1909 ftrace_function_filter_re(char *buf, int len, int *count)
1910 {
1911 	char *str, **re;
1912 
1913 	str = kstrndup(buf, len, GFP_KERNEL);
1914 	if (!str)
1915 		return NULL;
1916 
1917 	/*
1918 	 * The argv_split function takes white space
1919 	 * as a separator, so convert ',' into spaces.
1920 	 */
1921 	strreplace(str, ',', ' ');
1922 
1923 	re = argv_split(GFP_KERNEL, str, count);
1924 	kfree(str);
1925 	return re;
1926 }
1927 
1928 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
1929 				      int reset, char *re, int len)
1930 {
1931 	int ret;
1932 
1933 	if (filter)
1934 		ret = ftrace_set_filter(ops, re, len, reset);
1935 	else
1936 		ret = ftrace_set_notrace(ops, re, len, reset);
1937 
1938 	return ret;
1939 }
1940 
1941 static int __ftrace_function_set_filter(int filter, char *buf, int len,
1942 					struct function_filter_data *data)
1943 {
1944 	int i, re_cnt, ret = -EINVAL;
1945 	int *reset;
1946 	char **re;
1947 
1948 	reset = filter ? &data->first_filter : &data->first_notrace;
1949 
1950 	/*
1951 	 * The 'ip' field could have multiple filters set, separated
1952 	 * either by space or comma. We first cut the filter and apply
1953 	 * all pieces separatelly.
1954 	 */
1955 	re = ftrace_function_filter_re(buf, len, &re_cnt);
1956 	if (!re)
1957 		return -EINVAL;
1958 
1959 	for (i = 0; i < re_cnt; i++) {
1960 		ret = ftrace_function_set_regexp(data->ops, filter, *reset,
1961 						 re[i], strlen(re[i]));
1962 		if (ret)
1963 			break;
1964 
1965 		if (*reset)
1966 			*reset = 0;
1967 	}
1968 
1969 	argv_free(re);
1970 	return ret;
1971 }
1972 
1973 static int ftrace_function_check_pred(struct filter_pred *pred)
1974 {
1975 	struct ftrace_event_field *field = pred->field;
1976 
1977 	/*
1978 	 * Check the predicate for function trace, verify:
1979 	 *  - only '==' and '!=' is used
1980 	 *  - the 'ip' field is used
1981 	 */
1982 	if ((pred->op != OP_EQ) && (pred->op != OP_NE))
1983 		return -EINVAL;
1984 
1985 	if (strcmp(field->name, "ip"))
1986 		return -EINVAL;
1987 
1988 	return 0;
1989 }
1990 
1991 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
1992 					   struct function_filter_data *data)
1993 {
1994 	int ret;
1995 
1996 	/* Checking the node is valid for function trace. */
1997 	ret = ftrace_function_check_pred(pred);
1998 	if (ret)
1999 		return ret;
2000 
2001 	return __ftrace_function_set_filter(pred->op == OP_EQ,
2002 					    pred->regex.pattern,
2003 					    pred->regex.len,
2004 					    data);
2005 }
2006 
2007 static bool is_or(struct prog_entry *prog, int i)
2008 {
2009 	int target;
2010 
2011 	/*
2012 	 * Only "||" is allowed for function events, thus,
2013 	 * all true branches should jump to true, and any
2014 	 * false branch should jump to false.
2015 	 */
2016 	target = prog[i].target + 1;
2017 	/* True and false have NULL preds (all prog entries should jump to one */
2018 	if (prog[target].pred)
2019 		return false;
2020 
2021 	/* prog[target].target is 1 for TRUE, 0 for FALSE */
2022 	return prog[i].when_to_branch == prog[target].target;
2023 }
2024 
2025 static int ftrace_function_set_filter(struct perf_event *event,
2026 				      struct event_filter *filter)
2027 {
2028 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2029 						lockdep_is_held(&event_mutex));
2030 	struct function_filter_data data = {
2031 		.first_filter  = 1,
2032 		.first_notrace = 1,
2033 		.ops           = &event->ftrace_ops,
2034 	};
2035 	int i;
2036 
2037 	for (i = 0; prog[i].pred; i++) {
2038 		struct filter_pred *pred = prog[i].pred;
2039 
2040 		if (!is_or(prog, i))
2041 			return -EINVAL;
2042 
2043 		if (ftrace_function_set_filter_pred(pred, &data) < 0)
2044 			return -EINVAL;
2045 	}
2046 	return 0;
2047 }
2048 #else
2049 static int ftrace_function_set_filter(struct perf_event *event,
2050 				      struct event_filter *filter)
2051 {
2052 	return -ENODEV;
2053 }
2054 #endif /* CONFIG_FUNCTION_TRACER */
2055 
2056 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2057 			      char *filter_str)
2058 {
2059 	int err;
2060 	struct event_filter *filter = NULL;
2061 	struct trace_event_call *call;
2062 
2063 	mutex_lock(&event_mutex);
2064 
2065 	call = event->tp_event;
2066 
2067 	err = -EINVAL;
2068 	if (!call)
2069 		goto out_unlock;
2070 
2071 	err = -EEXIST;
2072 	if (event->filter)
2073 		goto out_unlock;
2074 
2075 	err = create_filter(NULL, call, filter_str, false, &filter);
2076 	if (err)
2077 		goto free_filter;
2078 
2079 	if (ftrace_event_is_function(call))
2080 		err = ftrace_function_set_filter(event, filter);
2081 	else
2082 		event->filter = filter;
2083 
2084 free_filter:
2085 	if (err || ftrace_event_is_function(call))
2086 		__free_filter(filter);
2087 
2088 out_unlock:
2089 	mutex_unlock(&event_mutex);
2090 
2091 	return err;
2092 }
2093 
2094 #endif /* CONFIG_PERF_EVENTS */
2095 
2096 #ifdef CONFIG_FTRACE_STARTUP_TEST
2097 
2098 #include <linux/types.h>
2099 #include <linux/tracepoint.h>
2100 
2101 #define CREATE_TRACE_POINTS
2102 #include "trace_events_filter_test.h"
2103 
2104 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2105 { \
2106 	.filter = FILTER, \
2107 	.rec    = { .a = va, .b = vb, .c = vc, .d = vd, \
2108 		    .e = ve, .f = vf, .g = vg, .h = vh }, \
2109 	.match  = m, \
2110 	.not_visited = nvisit, \
2111 }
2112 #define YES 1
2113 #define NO  0
2114 
2115 static struct test_filter_data_t {
2116 	char *filter;
2117 	struct trace_event_raw_ftrace_test_filter rec;
2118 	int match;
2119 	char *not_visited;
2120 } test_filter_data[] = {
2121 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2122 	       "e == 1 && f == 1 && g == 1 && h == 1"
2123 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2124 	DATA_REC(NO,  0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2125 	DATA_REC(NO,  1, 1, 1, 1, 1, 1, 1, 0, ""),
2126 #undef FILTER
2127 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2128 	       "e == 1 || f == 1 || g == 1 || h == 1"
2129 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2130 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2131 	DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2132 #undef FILTER
2133 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2134 	       "(e == 1 || f == 1) && (g == 1 || h == 1)"
2135 	DATA_REC(NO,  0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2136 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2137 	DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2138 	DATA_REC(NO,  1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2139 #undef FILTER
2140 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2141 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2142 	DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2143 	DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2144 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2145 #undef FILTER
2146 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2147 	       "(e == 1 && f == 1) || (g == 1 && h == 1)"
2148 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2149 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 1, ""),
2150 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2151 #undef FILTER
2152 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2153 	       "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2154 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2155 	DATA_REC(NO,  0, 0, 0, 0, 0, 0, 0, 0, ""),
2156 	DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2157 #undef FILTER
2158 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2159 	       "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2160 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2161 	DATA_REC(NO,  0, 1, 0, 1, 0, 1, 0, 1, ""),
2162 	DATA_REC(NO,  1, 0, 1, 0, 1, 0, 1, 0, ""),
2163 #undef FILTER
2164 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2165 	       "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2166 	DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2167 	DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2168 	DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2169 };
2170 
2171 #undef DATA_REC
2172 #undef FILTER
2173 #undef YES
2174 #undef NO
2175 
2176 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2177 
2178 static int test_pred_visited;
2179 
2180 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2181 {
2182 	struct ftrace_event_field *field = pred->field;
2183 
2184 	test_pred_visited = 1;
2185 	printk(KERN_INFO "\npred visited %s\n", field->name);
2186 	return 1;
2187 }
2188 
2189 static void update_pred_fn(struct event_filter *filter, char *fields)
2190 {
2191 	struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2192 						lockdep_is_held(&event_mutex));
2193 	int i;
2194 
2195 	for (i = 0; prog[i].pred; i++) {
2196 		struct filter_pred *pred = prog[i].pred;
2197 		struct ftrace_event_field *field = pred->field;
2198 
2199 		WARN_ON_ONCE(!pred->fn);
2200 
2201 		if (!field) {
2202 			WARN_ONCE(1, "all leafs should have field defined %d", i);
2203 			continue;
2204 		}
2205 
2206 		if (!strchr(fields, *field->name))
2207 			continue;
2208 
2209 		pred->fn = test_pred_visited_fn;
2210 	}
2211 }
2212 
2213 static __init int ftrace_test_event_filter(void)
2214 {
2215 	int i;
2216 
2217 	printk(KERN_INFO "Testing ftrace filter: ");
2218 
2219 	for (i = 0; i < DATA_CNT; i++) {
2220 		struct event_filter *filter = NULL;
2221 		struct test_filter_data_t *d = &test_filter_data[i];
2222 		int err;
2223 
2224 		err = create_filter(NULL, &event_ftrace_test_filter,
2225 				    d->filter, false, &filter);
2226 		if (err) {
2227 			printk(KERN_INFO
2228 			       "Failed to get filter for '%s', err %d\n",
2229 			       d->filter, err);
2230 			__free_filter(filter);
2231 			break;
2232 		}
2233 
2234 		/* Needed to dereference filter->prog */
2235 		mutex_lock(&event_mutex);
2236 		/*
2237 		 * The preemption disabling is not really needed for self
2238 		 * tests, but the rcu dereference will complain without it.
2239 		 */
2240 		preempt_disable();
2241 		if (*d->not_visited)
2242 			update_pred_fn(filter, d->not_visited);
2243 
2244 		test_pred_visited = 0;
2245 		err = filter_match_preds(filter, &d->rec);
2246 		preempt_enable();
2247 
2248 		mutex_unlock(&event_mutex);
2249 
2250 		__free_filter(filter);
2251 
2252 		if (test_pred_visited) {
2253 			printk(KERN_INFO
2254 			       "Failed, unwanted pred visited for filter %s\n",
2255 			       d->filter);
2256 			break;
2257 		}
2258 
2259 		if (err != d->match) {
2260 			printk(KERN_INFO
2261 			       "Failed to match filter '%s', expected %d\n",
2262 			       d->filter, d->match);
2263 			break;
2264 		}
2265 	}
2266 
2267 	if (i == DATA_CNT)
2268 		printk(KERN_CONT "OK\n");
2269 
2270 	return 0;
2271 }
2272 
2273 late_initcall(ftrace_test_event_filter);
2274 
2275 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2276