xref: /linux/lib/idr.c (revision 7a457577)
1 #include <linux/bitmap.h>
2 #include <linux/bug.h>
3 #include <linux/export.h>
4 #include <linux/idr.h>
5 #include <linux/slab.h>
6 #include <linux/spinlock.h>
7 
8 DEFINE_PER_CPU(struct ida_bitmap *, ida_bitmap);
9 static DEFINE_SPINLOCK(simple_ida_lock);
10 
11 /**
12  * idr_alloc_u32() - Allocate an ID.
13  * @idr: IDR handle.
14  * @ptr: Pointer to be associated with the new ID.
15  * @nextid: Pointer to an ID.
16  * @max: The maximum ID to allocate (inclusive).
17  * @gfp: Memory allocation flags.
18  *
19  * Allocates an unused ID in the range specified by @nextid and @max.
20  * Note that @max is inclusive whereas the @end parameter to idr_alloc()
21  * is exclusive.  The new ID is assigned to @nextid before the pointer
22  * is inserted into the IDR, so if @nextid points into the object pointed
23  * to by @ptr, a concurrent lookup will not find an uninitialised ID.
24  *
25  * The caller should provide their own locking to ensure that two
26  * concurrent modifications to the IDR are not possible.  Read-only
27  * accesses to the IDR may be done under the RCU read lock or may
28  * exclude simultaneous writers.
29  *
30  * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
31  * or -ENOSPC if no free IDs could be found.  If an error occurred,
32  * @nextid is unchanged.
33  */
34 int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
35 			unsigned long max, gfp_t gfp)
36 {
37 	struct radix_tree_iter iter;
38 	void __rcu **slot;
39 
40 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
41 		return -EINVAL;
42 	if (WARN_ON_ONCE(!(idr->idr_rt.gfp_mask & ROOT_IS_IDR)))
43 		idr->idr_rt.gfp_mask |= IDR_RT_MARKER;
44 
45 	radix_tree_iter_init(&iter, *nextid);
46 	slot = idr_get_free(&idr->idr_rt, &iter, gfp, max);
47 	if (IS_ERR(slot))
48 		return PTR_ERR(slot);
49 
50 	*nextid = iter.index;
51 	/* there is a memory barrier inside radix_tree_iter_replace() */
52 	radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
53 	radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
54 
55 	return 0;
56 }
57 EXPORT_SYMBOL_GPL(idr_alloc_u32);
58 
59 /**
60  * idr_alloc() - Allocate an ID.
61  * @idr: IDR handle.
62  * @ptr: Pointer to be associated with the new ID.
63  * @start: The minimum ID (inclusive).
64  * @end: The maximum ID (exclusive).
65  * @gfp: Memory allocation flags.
66  *
67  * Allocates an unused ID in the range specified by @start and @end.  If
68  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
69  * callers to use @start + N as @end as long as N is within integer range.
70  *
71  * The caller should provide their own locking to ensure that two
72  * concurrent modifications to the IDR are not possible.  Read-only
73  * accesses to the IDR may be done under the RCU read lock or may
74  * exclude simultaneous writers.
75  *
76  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
77  * or -ENOSPC if no free IDs could be found.
78  */
79 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
80 {
81 	u32 id = start;
82 	int ret;
83 
84 	if (WARN_ON_ONCE(start < 0))
85 		return -EINVAL;
86 
87 	ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
88 	if (ret)
89 		return ret;
90 
91 	return id;
92 }
93 EXPORT_SYMBOL_GPL(idr_alloc);
94 
95 /**
96  * idr_alloc_cyclic() - Allocate an ID cyclically.
97  * @idr: IDR handle.
98  * @ptr: Pointer to be associated with the new ID.
99  * @start: The minimum ID (inclusive).
100  * @end: The maximum ID (exclusive).
101  * @gfp: Memory allocation flags.
102  *
103  * Allocates an unused ID in the range specified by @nextid and @end.  If
104  * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
105  * callers to use @start + N as @end as long as N is within integer range.
106  * The search for an unused ID will start at the last ID allocated and will
107  * wrap around to @start if no free IDs are found before reaching @end.
108  *
109  * The caller should provide their own locking to ensure that two
110  * concurrent modifications to the IDR are not possible.  Read-only
111  * accesses to the IDR may be done under the RCU read lock or may
112  * exclude simultaneous writers.
113  *
114  * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
115  * or -ENOSPC if no free IDs could be found.
116  */
117 int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
118 {
119 	u32 id = idr->idr_next;
120 	int err, max = end > 0 ? end - 1 : INT_MAX;
121 
122 	if ((int)id < start)
123 		id = start;
124 
125 	err = idr_alloc_u32(idr, ptr, &id, max, gfp);
126 	if ((err == -ENOSPC) && (id > start)) {
127 		id = start;
128 		err = idr_alloc_u32(idr, ptr, &id, max, gfp);
129 	}
130 	if (err)
131 		return err;
132 
133 	idr->idr_next = id + 1;
134 	return id;
135 }
136 EXPORT_SYMBOL(idr_alloc_cyclic);
137 
138 /**
139  * idr_for_each() - Iterate through all stored pointers.
140  * @idr: IDR handle.
141  * @fn: Function to be called for each pointer.
142  * @data: Data passed to callback function.
143  *
144  * The callback function will be called for each entry in @idr, passing
145  * the ID, the entry and @data.
146  *
147  * If @fn returns anything other than %0, the iteration stops and that
148  * value is returned from this function.
149  *
150  * idr_for_each() can be called concurrently with idr_alloc() and
151  * idr_remove() if protected by RCU.  Newly added entries may not be
152  * seen and deleted entries may be seen, but adding and removing entries
153  * will not cause other entries to be skipped, nor spurious ones to be seen.
154  */
155 int idr_for_each(const struct idr *idr,
156 		int (*fn)(int id, void *p, void *data), void *data)
157 {
158 	struct radix_tree_iter iter;
159 	void __rcu **slot;
160 
161 	radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
162 		int ret = fn(iter.index, rcu_dereference_raw(*slot), data);
163 		if (ret)
164 			return ret;
165 	}
166 
167 	return 0;
168 }
169 EXPORT_SYMBOL(idr_for_each);
170 
171 /**
172  * idr_get_next() - Find next populated entry.
173  * @idr: IDR handle.
174  * @nextid: Pointer to an ID.
175  *
176  * Returns the next populated entry in the tree with an ID greater than
177  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
178  * to the ID of the found value.  To use in a loop, the value pointed to by
179  * nextid must be incremented by the user.
180  */
181 void *idr_get_next(struct idr *idr, int *nextid)
182 {
183 	struct radix_tree_iter iter;
184 	void __rcu **slot;
185 
186 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
187 	if (!slot)
188 		return NULL;
189 
190 	*nextid = iter.index;
191 	return rcu_dereference_raw(*slot);
192 }
193 EXPORT_SYMBOL(idr_get_next);
194 
195 /**
196  * idr_get_next_ul() - Find next populated entry.
197  * @idr: IDR handle.
198  * @nextid: Pointer to an ID.
199  *
200  * Returns the next populated entry in the tree with an ID greater than
201  * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
202  * to the ID of the found value.  To use in a loop, the value pointed to by
203  * nextid must be incremented by the user.
204  */
205 void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
206 {
207 	struct radix_tree_iter iter;
208 	void __rcu **slot;
209 
210 	slot = radix_tree_iter_find(&idr->idr_rt, &iter, *nextid);
211 	if (!slot)
212 		return NULL;
213 
214 	*nextid = iter.index;
215 	return rcu_dereference_raw(*slot);
216 }
217 EXPORT_SYMBOL(idr_get_next_ul);
218 
219 /**
220  * idr_replace() - replace pointer for given ID.
221  * @idr: IDR handle.
222  * @ptr: New pointer to associate with the ID.
223  * @id: ID to change.
224  *
225  * Replace the pointer registered with an ID and return the old value.
226  * This function can be called under the RCU read lock concurrently with
227  * idr_alloc() and idr_remove() (as long as the ID being removed is not
228  * the one being replaced!).
229  *
230  * Returns: the old value on success.  %-ENOENT indicates that @id was not
231  * found.  %-EINVAL indicates that @ptr was not valid.
232  */
233 void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
234 {
235 	struct radix_tree_node *node;
236 	void __rcu **slot = NULL;
237 	void *entry;
238 
239 	if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr)))
240 		return ERR_PTR(-EINVAL);
241 
242 	entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
243 	if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
244 		return ERR_PTR(-ENOENT);
245 
246 	__radix_tree_replace(&idr->idr_rt, node, slot, ptr, NULL);
247 
248 	return entry;
249 }
250 EXPORT_SYMBOL(idr_replace);
251 
252 /**
253  * DOC: IDA description
254  *
255  * The IDA is an ID allocator which does not provide the ability to
256  * associate an ID with a pointer.  As such, it only needs to store one
257  * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
258  * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
259  * then initialise it using ida_init()).  To allocate a new ID, call
260  * ida_simple_get().  To free an ID, call ida_simple_remove().
261  *
262  * If you have more complex locking requirements, use a loop around
263  * ida_pre_get() and ida_get_new() to allocate a new ID.  Then use
264  * ida_remove() to free an ID.  You must make sure that ida_get_new() and
265  * ida_remove() cannot be called at the same time as each other for the
266  * same IDA.
267  *
268  * You can also use ida_get_new_above() if you need an ID to be allocated
269  * above a particular number.  ida_destroy() can be used to dispose of an
270  * IDA without needing to free the individual IDs in it.  You can use
271  * ida_is_empty() to find out whether the IDA has any IDs currently allocated.
272  *
273  * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
274  * limitation, it should be quite straightforward to raise the maximum.
275  */
276 
277 /*
278  * Developer's notes:
279  *
280  * The IDA uses the functionality provided by the IDR & radix tree to store
281  * bitmaps in each entry.  The IDR_FREE tag means there is at least one bit
282  * free, unlike the IDR where it means at least one entry is free.
283  *
284  * I considered telling the radix tree that each slot is an order-10 node
285  * and storing the bit numbers in the radix tree, but the radix tree can't
286  * allow a single multiorder entry at index 0, which would significantly
287  * increase memory consumption for the IDA.  So instead we divide the index
288  * by the number of bits in the leaf bitmap before doing a radix tree lookup.
289  *
290  * As an optimisation, if there are only a few low bits set in any given
291  * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
292  * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
293  * directly in the entry.  By being really tricksy, we could store
294  * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
295  * for 0-3 allocated IDs.
296  *
297  * We allow the radix tree 'exceptional' count to get out of date.  Nothing
298  * in the IDA nor the radix tree code checks it.  If it becomes important
299  * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
300  * calls to radix_tree_iter_replace() which will correct the exceptional
301  * count.
302  *
303  * The IDA always requires a lock to alloc/free.  If we add a 'test_bit'
304  * equivalent, it will still need locking.  Going to RCU lookup would require
305  * using RCU to free bitmaps, and that's not trivial without embedding an
306  * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
307  * bitmap, which is excessive.
308  */
309 
310 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
311 
312 /**
313  * ida_get_new_above - allocate new ID above or equal to a start id
314  * @ida: ida handle
315  * @start: id to start search at
316  * @id: pointer to the allocated handle
317  *
318  * Allocate new ID above or equal to @start.  It should be called
319  * with any required locks to ensure that concurrent calls to
320  * ida_get_new_above() / ida_get_new() / ida_remove() are not allowed.
321  * Consider using ida_simple_get() if you do not have complex locking
322  * requirements.
323  *
324  * If memory is required, it will return %-EAGAIN, you should unlock
325  * and go back to the ida_pre_get() call.  If the ida is full, it will
326  * return %-ENOSPC.  On success, it will return 0.
327  *
328  * @id returns a value in the range @start ... %0x7fffffff.
329  */
330 int ida_get_new_above(struct ida *ida, int start, int *id)
331 {
332 	struct radix_tree_root *root = &ida->ida_rt;
333 	void __rcu **slot;
334 	struct radix_tree_iter iter;
335 	struct ida_bitmap *bitmap;
336 	unsigned long index;
337 	unsigned bit, ebit;
338 	int new;
339 
340 	index = start / IDA_BITMAP_BITS;
341 	bit = start % IDA_BITMAP_BITS;
342 	ebit = bit + RADIX_TREE_EXCEPTIONAL_SHIFT;
343 
344 	slot = radix_tree_iter_init(&iter, index);
345 	for (;;) {
346 		if (slot)
347 			slot = radix_tree_next_slot(slot, &iter,
348 						RADIX_TREE_ITER_TAGGED);
349 		if (!slot) {
350 			slot = idr_get_free(root, &iter, GFP_NOWAIT, IDA_MAX);
351 			if (IS_ERR(slot)) {
352 				if (slot == ERR_PTR(-ENOMEM))
353 					return -EAGAIN;
354 				return PTR_ERR(slot);
355 			}
356 		}
357 		if (iter.index > index) {
358 			bit = 0;
359 			ebit = RADIX_TREE_EXCEPTIONAL_SHIFT;
360 		}
361 		new = iter.index * IDA_BITMAP_BITS;
362 		bitmap = rcu_dereference_raw(*slot);
363 		if (radix_tree_exception(bitmap)) {
364 			unsigned long tmp = (unsigned long)bitmap;
365 			ebit = find_next_zero_bit(&tmp, BITS_PER_LONG, ebit);
366 			if (ebit < BITS_PER_LONG) {
367 				tmp |= 1UL << ebit;
368 				rcu_assign_pointer(*slot, (void *)tmp);
369 				*id = new + ebit - RADIX_TREE_EXCEPTIONAL_SHIFT;
370 				return 0;
371 			}
372 			bitmap = this_cpu_xchg(ida_bitmap, NULL);
373 			if (!bitmap)
374 				return -EAGAIN;
375 			memset(bitmap, 0, sizeof(*bitmap));
376 			bitmap->bitmap[0] = tmp >> RADIX_TREE_EXCEPTIONAL_SHIFT;
377 			rcu_assign_pointer(*slot, bitmap);
378 		}
379 
380 		if (bitmap) {
381 			bit = find_next_zero_bit(bitmap->bitmap,
382 							IDA_BITMAP_BITS, bit);
383 			new += bit;
384 			if (new < 0)
385 				return -ENOSPC;
386 			if (bit == IDA_BITMAP_BITS)
387 				continue;
388 
389 			__set_bit(bit, bitmap->bitmap);
390 			if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
391 				radix_tree_iter_tag_clear(root, &iter,
392 								IDR_FREE);
393 		} else {
394 			new += bit;
395 			if (new < 0)
396 				return -ENOSPC;
397 			if (ebit < BITS_PER_LONG) {
398 				bitmap = (void *)((1UL << ebit) |
399 						RADIX_TREE_EXCEPTIONAL_ENTRY);
400 				radix_tree_iter_replace(root, &iter, slot,
401 						bitmap);
402 				*id = new;
403 				return 0;
404 			}
405 			bitmap = this_cpu_xchg(ida_bitmap, NULL);
406 			if (!bitmap)
407 				return -EAGAIN;
408 			memset(bitmap, 0, sizeof(*bitmap));
409 			__set_bit(bit, bitmap->bitmap);
410 			radix_tree_iter_replace(root, &iter, slot, bitmap);
411 		}
412 
413 		*id = new;
414 		return 0;
415 	}
416 }
417 EXPORT_SYMBOL(ida_get_new_above);
418 
419 /**
420  * ida_remove - Free the given ID
421  * @ida: ida handle
422  * @id: ID to free
423  *
424  * This function should not be called at the same time as ida_get_new_above().
425  */
426 void ida_remove(struct ida *ida, int id)
427 {
428 	unsigned long index = id / IDA_BITMAP_BITS;
429 	unsigned offset = id % IDA_BITMAP_BITS;
430 	struct ida_bitmap *bitmap;
431 	unsigned long *btmp;
432 	struct radix_tree_iter iter;
433 	void __rcu **slot;
434 
435 	slot = radix_tree_iter_lookup(&ida->ida_rt, &iter, index);
436 	if (!slot)
437 		goto err;
438 
439 	bitmap = rcu_dereference_raw(*slot);
440 	if (radix_tree_exception(bitmap)) {
441 		btmp = (unsigned long *)slot;
442 		offset += RADIX_TREE_EXCEPTIONAL_SHIFT;
443 		if (offset >= BITS_PER_LONG)
444 			goto err;
445 	} else {
446 		btmp = bitmap->bitmap;
447 	}
448 	if (!test_bit(offset, btmp))
449 		goto err;
450 
451 	__clear_bit(offset, btmp);
452 	radix_tree_iter_tag_set(&ida->ida_rt, &iter, IDR_FREE);
453 	if (radix_tree_exception(bitmap)) {
454 		if (rcu_dereference_raw(*slot) ==
455 					(void *)RADIX_TREE_EXCEPTIONAL_ENTRY)
456 			radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
457 	} else if (bitmap_empty(btmp, IDA_BITMAP_BITS)) {
458 		kfree(bitmap);
459 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
460 	}
461 	return;
462  err:
463 	WARN(1, "ida_remove called for id=%d which is not allocated.\n", id);
464 }
465 EXPORT_SYMBOL(ida_remove);
466 
467 /**
468  * ida_destroy - Free the contents of an ida
469  * @ida: ida handle
470  *
471  * Calling this function releases all resources associated with an IDA.  When
472  * this call returns, the IDA is empty and can be reused or freed.  The caller
473  * should not allow ida_remove() or ida_get_new_above() to be called at the
474  * same time.
475  */
476 void ida_destroy(struct ida *ida)
477 {
478 	struct radix_tree_iter iter;
479 	void __rcu **slot;
480 
481 	radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) {
482 		struct ida_bitmap *bitmap = rcu_dereference_raw(*slot);
483 		if (!radix_tree_exception(bitmap))
484 			kfree(bitmap);
485 		radix_tree_iter_delete(&ida->ida_rt, &iter, slot);
486 	}
487 }
488 EXPORT_SYMBOL(ida_destroy);
489 
490 /**
491  * ida_simple_get - get a new id.
492  * @ida: the (initialized) ida.
493  * @start: the minimum id (inclusive, < 0x8000000)
494  * @end: the maximum id (exclusive, < 0x8000000 or 0)
495  * @gfp_mask: memory allocation flags
496  *
497  * Allocates an id in the range start <= id < end, or returns -ENOSPC.
498  * On memory allocation failure, returns -ENOMEM.
499  *
500  * Compared to ida_get_new_above() this function does its own locking, and
501  * should be used unless there are special requirements.
502  *
503  * Use ida_simple_remove() to get rid of an id.
504  */
505 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
506 		   gfp_t gfp_mask)
507 {
508 	int ret, id;
509 	unsigned int max;
510 	unsigned long flags;
511 
512 	BUG_ON((int)start < 0);
513 	BUG_ON((int)end < 0);
514 
515 	if (end == 0)
516 		max = 0x80000000;
517 	else {
518 		BUG_ON(end < start);
519 		max = end - 1;
520 	}
521 
522 again:
523 	if (!ida_pre_get(ida, gfp_mask))
524 		return -ENOMEM;
525 
526 	spin_lock_irqsave(&simple_ida_lock, flags);
527 	ret = ida_get_new_above(ida, start, &id);
528 	if (!ret) {
529 		if (id > max) {
530 			ida_remove(ida, id);
531 			ret = -ENOSPC;
532 		} else {
533 			ret = id;
534 		}
535 	}
536 	spin_unlock_irqrestore(&simple_ida_lock, flags);
537 
538 	if (unlikely(ret == -EAGAIN))
539 		goto again;
540 
541 	return ret;
542 }
543 EXPORT_SYMBOL(ida_simple_get);
544 
545 /**
546  * ida_simple_remove - remove an allocated id.
547  * @ida: the (initialized) ida.
548  * @id: the id returned by ida_simple_get.
549  *
550  * Use to release an id allocated with ida_simple_get().
551  *
552  * Compared to ida_remove() this function does its own locking, and should be
553  * used unless there are special requirements.
554  */
555 void ida_simple_remove(struct ida *ida, unsigned int id)
556 {
557 	unsigned long flags;
558 
559 	BUG_ON((int)id < 0);
560 	spin_lock_irqsave(&simple_ida_lock, flags);
561 	ida_remove(ida, id);
562 	spin_unlock_irqrestore(&simple_ida_lock, flags);
563 }
564 EXPORT_SYMBOL(ida_simple_remove);
565