xref: /linux/mm/compaction.c (revision 84b9b44b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47 
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
67 #endif
68 
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 	struct page *page, *next;
72 	unsigned long high_pfn = 0;
73 
74 	list_for_each_entry_safe(page, next, freelist, lru) {
75 		unsigned long pfn = page_to_pfn(page);
76 		list_del(&page->lru);
77 		__free_page(page);
78 		if (pfn > high_pfn)
79 			high_pfn = pfn;
80 	}
81 
82 	return high_pfn;
83 }
84 
85 static void split_map_pages(struct list_head *list)
86 {
87 	unsigned int i, order, nr_pages;
88 	struct page *page, *next;
89 	LIST_HEAD(tmp_list);
90 
91 	list_for_each_entry_safe(page, next, list, lru) {
92 		list_del(&page->lru);
93 
94 		order = page_private(page);
95 		nr_pages = 1 << order;
96 
97 		post_alloc_hook(page, order, __GFP_MOVABLE);
98 		if (order)
99 			split_page(page, order);
100 
101 		for (i = 0; i < nr_pages; i++) {
102 			list_add(&page->lru, &tmp_list);
103 			page++;
104 		}
105 	}
106 
107 	list_splice(&tmp_list, list);
108 }
109 
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113 	const struct movable_operations *mops;
114 
115 	VM_BUG_ON_PAGE(!PageLocked(page), page);
116 	if (!__PageMovable(page))
117 		return false;
118 
119 	mops = page_movable_ops(page);
120 	if (mops)
121 		return true;
122 
123 	return false;
124 }
125 
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 	VM_BUG_ON_PAGE(!PageLocked(page), page);
129 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133 
134 void __ClearPageMovable(struct page *page)
135 {
136 	VM_BUG_ON_PAGE(!PageMovable(page), page);
137 	/*
138 	 * This page still has the type of a movable page, but it's
139 	 * actually not movable any more.
140 	 */
141 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144 
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147 
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155 	zone->compact_considered = 0;
156 	zone->compact_defer_shift++;
157 
158 	if (order < zone->compact_order_failed)
159 		zone->compact_order_failed = order;
160 
161 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163 
164 	trace_mm_compaction_defer_compaction(zone, order);
165 }
166 
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171 
172 	if (order < zone->compact_order_failed)
173 		return false;
174 
175 	/* Avoid possible overflow */
176 	if (++zone->compact_considered >= defer_limit) {
177 		zone->compact_considered = defer_limit;
178 		return false;
179 	}
180 
181 	trace_mm_compaction_deferred(zone, order);
182 
183 	return true;
184 }
185 
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192 		bool alloc_success)
193 {
194 	if (alloc_success) {
195 		zone->compact_considered = 0;
196 		zone->compact_defer_shift = 0;
197 	}
198 	if (order >= zone->compact_order_failed)
199 		zone->compact_order_failed = order + 1;
200 
201 	trace_mm_compaction_defer_reset(zone, order);
202 }
203 
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 	if (order < zone->compact_order_failed)
208 		return false;
209 
210 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213 
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216 					struct page *page)
217 {
218 	if (cc->ignore_skip_hint)
219 		return true;
220 
221 	return !get_pageblock_skip(page);
222 }
223 
224 static void reset_cached_positions(struct zone *zone)
225 {
226 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 	zone->compact_cached_free_pfn =
229 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231 
232 /*
233  * Compound pages of >= pageblock_order should consistently be skipped until
234  * released. It is always pointless to compact pages of such order (if they are
235  * migratable), and the pageblocks they occupy cannot contain any free pages.
236  */
237 static bool pageblock_skip_persistent(struct page *page)
238 {
239 	if (!PageCompound(page))
240 		return false;
241 
242 	page = compound_head(page);
243 
244 	if (compound_order(page) >= pageblock_order)
245 		return true;
246 
247 	return false;
248 }
249 
250 static bool
251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
252 							bool check_target)
253 {
254 	struct page *page = pfn_to_online_page(pfn);
255 	struct page *block_page;
256 	struct page *end_page;
257 	unsigned long block_pfn;
258 
259 	if (!page)
260 		return false;
261 	if (zone != page_zone(page))
262 		return false;
263 	if (pageblock_skip_persistent(page))
264 		return false;
265 
266 	/*
267 	 * If skip is already cleared do no further checking once the
268 	 * restart points have been set.
269 	 */
270 	if (check_source && check_target && !get_pageblock_skip(page))
271 		return true;
272 
273 	/*
274 	 * If clearing skip for the target scanner, do not select a
275 	 * non-movable pageblock as the starting point.
276 	 */
277 	if (!check_source && check_target &&
278 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
279 		return false;
280 
281 	/* Ensure the start of the pageblock or zone is online and valid */
282 	block_pfn = pageblock_start_pfn(pfn);
283 	block_pfn = max(block_pfn, zone->zone_start_pfn);
284 	block_page = pfn_to_online_page(block_pfn);
285 	if (block_page) {
286 		page = block_page;
287 		pfn = block_pfn;
288 	}
289 
290 	/* Ensure the end of the pageblock or zone is online and valid */
291 	block_pfn = pageblock_end_pfn(pfn) - 1;
292 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293 	end_page = pfn_to_online_page(block_pfn);
294 	if (!end_page)
295 		return false;
296 
297 	/*
298 	 * Only clear the hint if a sample indicates there is either a
299 	 * free page or an LRU page in the block. One or other condition
300 	 * is necessary for the block to be a migration source/target.
301 	 */
302 	do {
303 		if (check_source && PageLRU(page)) {
304 			clear_pageblock_skip(page);
305 			return true;
306 		}
307 
308 		if (check_target && PageBuddy(page)) {
309 			clear_pageblock_skip(page);
310 			return true;
311 		}
312 
313 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
314 	} while (page <= end_page);
315 
316 	return false;
317 }
318 
319 /*
320  * This function is called to clear all cached information on pageblocks that
321  * should be skipped for page isolation when the migrate and free page scanner
322  * meet.
323  */
324 static void __reset_isolation_suitable(struct zone *zone)
325 {
326 	unsigned long migrate_pfn = zone->zone_start_pfn;
327 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
328 	unsigned long reset_migrate = free_pfn;
329 	unsigned long reset_free = migrate_pfn;
330 	bool source_set = false;
331 	bool free_set = false;
332 
333 	if (!zone->compact_blockskip_flush)
334 		return;
335 
336 	zone->compact_blockskip_flush = false;
337 
338 	/*
339 	 * Walk the zone and update pageblock skip information. Source looks
340 	 * for PageLRU while target looks for PageBuddy. When the scanner
341 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
342 	 * is suitable as both source and target.
343 	 */
344 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345 					free_pfn -= pageblock_nr_pages) {
346 		cond_resched();
347 
348 		/* Update the migrate PFN */
349 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350 		    migrate_pfn < reset_migrate) {
351 			source_set = true;
352 			reset_migrate = migrate_pfn;
353 			zone->compact_init_migrate_pfn = reset_migrate;
354 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
355 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
356 		}
357 
358 		/* Update the free PFN */
359 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360 		    free_pfn > reset_free) {
361 			free_set = true;
362 			reset_free = free_pfn;
363 			zone->compact_init_free_pfn = reset_free;
364 			zone->compact_cached_free_pfn = reset_free;
365 		}
366 	}
367 
368 	/* Leave no distance if no suitable block was reset */
369 	if (reset_migrate >= reset_free) {
370 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372 		zone->compact_cached_free_pfn = free_pfn;
373 	}
374 }
375 
376 void reset_isolation_suitable(pg_data_t *pgdat)
377 {
378 	int zoneid;
379 
380 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381 		struct zone *zone = &pgdat->node_zones[zoneid];
382 		if (!populated_zone(zone))
383 			continue;
384 
385 		/* Only flush if a full compaction finished recently */
386 		if (zone->compact_blockskip_flush)
387 			__reset_isolation_suitable(zone);
388 	}
389 }
390 
391 /*
392  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393  * locks are not required for read/writers. Returns true if it was already set.
394  */
395 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
396 							unsigned long pfn)
397 {
398 	bool skip;
399 
400 	/* Do no update if skip hint is being ignored */
401 	if (cc->ignore_skip_hint)
402 		return false;
403 
404 	if (!pageblock_aligned(pfn))
405 		return false;
406 
407 	skip = get_pageblock_skip(page);
408 	if (!skip && !cc->no_set_skip_hint)
409 		set_pageblock_skip(page);
410 
411 	return skip;
412 }
413 
414 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
415 {
416 	struct zone *zone = cc->zone;
417 
418 	pfn = pageblock_end_pfn(pfn);
419 
420 	/* Set for isolation rather than compaction */
421 	if (cc->no_set_skip_hint)
422 		return;
423 
424 	if (pfn > zone->compact_cached_migrate_pfn[0])
425 		zone->compact_cached_migrate_pfn[0] = pfn;
426 	if (cc->mode != MIGRATE_ASYNC &&
427 	    pfn > zone->compact_cached_migrate_pfn[1])
428 		zone->compact_cached_migrate_pfn[1] = pfn;
429 }
430 
431 /*
432  * If no pages were isolated then mark this pageblock to be skipped in the
433  * future. The information is later cleared by __reset_isolation_suitable().
434  */
435 static void update_pageblock_skip(struct compact_control *cc,
436 			struct page *page, unsigned long pfn)
437 {
438 	struct zone *zone = cc->zone;
439 
440 	if (cc->no_set_skip_hint)
441 		return;
442 
443 	if (!page)
444 		return;
445 
446 	set_pageblock_skip(page);
447 
448 	/* Update where async and sync compaction should restart */
449 	if (pfn < zone->compact_cached_free_pfn)
450 		zone->compact_cached_free_pfn = pfn;
451 }
452 #else
453 static inline bool isolation_suitable(struct compact_control *cc,
454 					struct page *page)
455 {
456 	return true;
457 }
458 
459 static inline bool pageblock_skip_persistent(struct page *page)
460 {
461 	return false;
462 }
463 
464 static inline void update_pageblock_skip(struct compact_control *cc,
465 			struct page *page, unsigned long pfn)
466 {
467 }
468 
469 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
470 {
471 }
472 
473 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
474 							unsigned long pfn)
475 {
476 	return false;
477 }
478 #endif /* CONFIG_COMPACTION */
479 
480 /*
481  * Compaction requires the taking of some coarse locks that are potentially
482  * very heavily contended. For async compaction, trylock and record if the
483  * lock is contended. The lock will still be acquired but compaction will
484  * abort when the current block is finished regardless of success rate.
485  * Sync compaction acquires the lock.
486  *
487  * Always returns true which makes it easier to track lock state in callers.
488  */
489 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
490 						struct compact_control *cc)
491 	__acquires(lock)
492 {
493 	/* Track if the lock is contended in async mode */
494 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
495 		if (spin_trylock_irqsave(lock, *flags))
496 			return true;
497 
498 		cc->contended = true;
499 	}
500 
501 	spin_lock_irqsave(lock, *flags);
502 	return true;
503 }
504 
505 /*
506  * Compaction requires the taking of some coarse locks that are potentially
507  * very heavily contended. The lock should be periodically unlocked to avoid
508  * having disabled IRQs for a long time, even when there is nobody waiting on
509  * the lock. It might also be that allowing the IRQs will result in
510  * need_resched() becoming true. If scheduling is needed, compaction schedules.
511  * Either compaction type will also abort if a fatal signal is pending.
512  * In either case if the lock was locked, it is dropped and not regained.
513  *
514  * Returns true if compaction should abort due to fatal signal pending.
515  * Returns false when compaction can continue.
516  */
517 static bool compact_unlock_should_abort(spinlock_t *lock,
518 		unsigned long flags, bool *locked, struct compact_control *cc)
519 {
520 	if (*locked) {
521 		spin_unlock_irqrestore(lock, flags);
522 		*locked = false;
523 	}
524 
525 	if (fatal_signal_pending(current)) {
526 		cc->contended = true;
527 		return true;
528 	}
529 
530 	cond_resched();
531 
532 	return false;
533 }
534 
535 /*
536  * Isolate free pages onto a private freelist. If @strict is true, will abort
537  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
538  * (even though it may still end up isolating some pages).
539  */
540 static unsigned long isolate_freepages_block(struct compact_control *cc,
541 				unsigned long *start_pfn,
542 				unsigned long end_pfn,
543 				struct list_head *freelist,
544 				unsigned int stride,
545 				bool strict)
546 {
547 	int nr_scanned = 0, total_isolated = 0;
548 	struct page *cursor;
549 	unsigned long flags = 0;
550 	bool locked = false;
551 	unsigned long blockpfn = *start_pfn;
552 	unsigned int order;
553 
554 	/* Strict mode is for isolation, speed is secondary */
555 	if (strict)
556 		stride = 1;
557 
558 	cursor = pfn_to_page(blockpfn);
559 
560 	/* Isolate free pages. */
561 	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
562 		int isolated;
563 		struct page *page = cursor;
564 
565 		/*
566 		 * Periodically drop the lock (if held) regardless of its
567 		 * contention, to give chance to IRQs. Abort if fatal signal
568 		 * pending.
569 		 */
570 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
571 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
572 								&locked, cc))
573 			break;
574 
575 		nr_scanned++;
576 
577 		/*
578 		 * For compound pages such as THP and hugetlbfs, we can save
579 		 * potentially a lot of iterations if we skip them at once.
580 		 * The check is racy, but we can consider only valid values
581 		 * and the only danger is skipping too much.
582 		 */
583 		if (PageCompound(page)) {
584 			const unsigned int order = compound_order(page);
585 
586 			if (likely(order <= MAX_ORDER)) {
587 				blockpfn += (1UL << order) - 1;
588 				cursor += (1UL << order) - 1;
589 				nr_scanned += (1UL << order) - 1;
590 			}
591 			goto isolate_fail;
592 		}
593 
594 		if (!PageBuddy(page))
595 			goto isolate_fail;
596 
597 		/* If we already hold the lock, we can skip some rechecking. */
598 		if (!locked) {
599 			locked = compact_lock_irqsave(&cc->zone->lock,
600 								&flags, cc);
601 
602 			/* Recheck this is a buddy page under lock */
603 			if (!PageBuddy(page))
604 				goto isolate_fail;
605 		}
606 
607 		/* Found a free page, will break it into order-0 pages */
608 		order = buddy_order(page);
609 		isolated = __isolate_free_page(page, order);
610 		if (!isolated)
611 			break;
612 		set_page_private(page, order);
613 
614 		nr_scanned += isolated - 1;
615 		total_isolated += isolated;
616 		cc->nr_freepages += isolated;
617 		list_add_tail(&page->lru, freelist);
618 
619 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620 			blockpfn += isolated;
621 			break;
622 		}
623 		/* Advance to the end of split page */
624 		blockpfn += isolated - 1;
625 		cursor += isolated - 1;
626 		continue;
627 
628 isolate_fail:
629 		if (strict)
630 			break;
631 		else
632 			continue;
633 
634 	}
635 
636 	if (locked)
637 		spin_unlock_irqrestore(&cc->zone->lock, flags);
638 
639 	/*
640 	 * There is a tiny chance that we have read bogus compound_order(),
641 	 * so be careful to not go outside of the pageblock.
642 	 */
643 	if (unlikely(blockpfn > end_pfn))
644 		blockpfn = end_pfn;
645 
646 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647 					nr_scanned, total_isolated);
648 
649 	/* Record how far we have got within the block */
650 	*start_pfn = blockpfn;
651 
652 	/*
653 	 * If strict isolation is requested by CMA then check that all the
654 	 * pages requested were isolated. If there were any failures, 0 is
655 	 * returned and CMA will fail.
656 	 */
657 	if (strict && blockpfn < end_pfn)
658 		total_isolated = 0;
659 
660 	cc->total_free_scanned += nr_scanned;
661 	if (total_isolated)
662 		count_compact_events(COMPACTISOLATED, total_isolated);
663 	return total_isolated;
664 }
665 
666 /**
667  * isolate_freepages_range() - isolate free pages.
668  * @cc:        Compaction control structure.
669  * @start_pfn: The first PFN to start isolating.
670  * @end_pfn:   The one-past-last PFN.
671  *
672  * Non-free pages, invalid PFNs, or zone boundaries within the
673  * [start_pfn, end_pfn) range are considered errors, cause function to
674  * undo its actions and return zero.
675  *
676  * Otherwise, function returns one-past-the-last PFN of isolated page
677  * (which may be greater then end_pfn if end fell in a middle of
678  * a free page).
679  */
680 unsigned long
681 isolate_freepages_range(struct compact_control *cc,
682 			unsigned long start_pfn, unsigned long end_pfn)
683 {
684 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685 	LIST_HEAD(freelist);
686 
687 	pfn = start_pfn;
688 	block_start_pfn = pageblock_start_pfn(pfn);
689 	if (block_start_pfn < cc->zone->zone_start_pfn)
690 		block_start_pfn = cc->zone->zone_start_pfn;
691 	block_end_pfn = pageblock_end_pfn(pfn);
692 
693 	for (; pfn < end_pfn; pfn += isolated,
694 				block_start_pfn = block_end_pfn,
695 				block_end_pfn += pageblock_nr_pages) {
696 		/* Protect pfn from changing by isolate_freepages_block */
697 		unsigned long isolate_start_pfn = pfn;
698 
699 		block_end_pfn = min(block_end_pfn, end_pfn);
700 
701 		/*
702 		 * pfn could pass the block_end_pfn if isolated freepage
703 		 * is more than pageblock order. In this case, we adjust
704 		 * scanning range to right one.
705 		 */
706 		if (pfn >= block_end_pfn) {
707 			block_start_pfn = pageblock_start_pfn(pfn);
708 			block_end_pfn = pageblock_end_pfn(pfn);
709 			block_end_pfn = min(block_end_pfn, end_pfn);
710 		}
711 
712 		if (!pageblock_pfn_to_page(block_start_pfn,
713 					block_end_pfn, cc->zone))
714 			break;
715 
716 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717 					block_end_pfn, &freelist, 0, true);
718 
719 		/*
720 		 * In strict mode, isolate_freepages_block() returns 0 if
721 		 * there are any holes in the block (ie. invalid PFNs or
722 		 * non-free pages).
723 		 */
724 		if (!isolated)
725 			break;
726 
727 		/*
728 		 * If we managed to isolate pages, it is always (1 << n) *
729 		 * pageblock_nr_pages for some non-negative n.  (Max order
730 		 * page may span two pageblocks).
731 		 */
732 	}
733 
734 	/* __isolate_free_page() does not map the pages */
735 	split_map_pages(&freelist);
736 
737 	if (pfn < end_pfn) {
738 		/* Loop terminated early, cleanup. */
739 		release_freepages(&freelist);
740 		return 0;
741 	}
742 
743 	/* We don't use freelists for anything. */
744 	return pfn;
745 }
746 
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
749 {
750 	bool too_many;
751 
752 	unsigned long active, inactive, isolated;
753 
754 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755 			node_page_state(pgdat, NR_INACTIVE_ANON);
756 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757 			node_page_state(pgdat, NR_ACTIVE_ANON);
758 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759 			node_page_state(pgdat, NR_ISOLATED_ANON);
760 
761 	too_many = isolated > (inactive + active) / 2;
762 	if (!too_many)
763 		wake_throttle_isolated(pgdat);
764 
765 	return too_many;
766 }
767 
768 /**
769  * isolate_migratepages_block() - isolate all migrate-able pages within
770  *				  a single pageblock
771  * @cc:		Compaction control structure.
772  * @low_pfn:	The first PFN to isolate
773  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
774  * @mode:	Isolation mode to be used.
775  *
776  * Isolate all pages that can be migrated from the range specified by
777  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
778  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
779  * -ENOMEM in case we could not allocate a page, or 0.
780  * cc->migrate_pfn will contain the next pfn to scan.
781  *
782  * The pages are isolated on cc->migratepages list (not required to be empty),
783  * and cc->nr_migratepages is updated accordingly.
784  */
785 static int
786 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
787 			unsigned long end_pfn, isolate_mode_t mode)
788 {
789 	pg_data_t *pgdat = cc->zone->zone_pgdat;
790 	unsigned long nr_scanned = 0, nr_isolated = 0;
791 	struct lruvec *lruvec;
792 	unsigned long flags = 0;
793 	struct lruvec *locked = NULL;
794 	struct page *page = NULL, *valid_page = NULL;
795 	struct address_space *mapping;
796 	unsigned long start_pfn = low_pfn;
797 	bool skip_on_failure = false;
798 	unsigned long next_skip_pfn = 0;
799 	bool skip_updated = false;
800 	int ret = 0;
801 
802 	cc->migrate_pfn = low_pfn;
803 
804 	/*
805 	 * Ensure that there are not too many pages isolated from the LRU
806 	 * list by either parallel reclaimers or compaction. If there are,
807 	 * delay for some time until fewer pages are isolated
808 	 */
809 	while (unlikely(too_many_isolated(pgdat))) {
810 		/* stop isolation if there are still pages not migrated */
811 		if (cc->nr_migratepages)
812 			return -EAGAIN;
813 
814 		/* async migration should just abort */
815 		if (cc->mode == MIGRATE_ASYNC)
816 			return -EAGAIN;
817 
818 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
819 
820 		if (fatal_signal_pending(current))
821 			return -EINTR;
822 	}
823 
824 	cond_resched();
825 
826 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
827 		skip_on_failure = true;
828 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
829 	}
830 
831 	/* Time to isolate some pages for migration */
832 	for (; low_pfn < end_pfn; low_pfn++) {
833 
834 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
835 			/*
836 			 * We have isolated all migration candidates in the
837 			 * previous order-aligned block, and did not skip it due
838 			 * to failure. We should migrate the pages now and
839 			 * hopefully succeed compaction.
840 			 */
841 			if (nr_isolated)
842 				break;
843 
844 			/*
845 			 * We failed to isolate in the previous order-aligned
846 			 * block. Set the new boundary to the end of the
847 			 * current block. Note we can't simply increase
848 			 * next_skip_pfn by 1 << order, as low_pfn might have
849 			 * been incremented by a higher number due to skipping
850 			 * a compound or a high-order buddy page in the
851 			 * previous loop iteration.
852 			 */
853 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
854 		}
855 
856 		/*
857 		 * Periodically drop the lock (if held) regardless of its
858 		 * contention, to give chance to IRQs. Abort completely if
859 		 * a fatal signal is pending.
860 		 */
861 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
862 			if (locked) {
863 				unlock_page_lruvec_irqrestore(locked, flags);
864 				locked = NULL;
865 			}
866 
867 			if (fatal_signal_pending(current)) {
868 				cc->contended = true;
869 				ret = -EINTR;
870 
871 				goto fatal_pending;
872 			}
873 
874 			cond_resched();
875 		}
876 
877 		nr_scanned++;
878 
879 		page = pfn_to_page(low_pfn);
880 
881 		/*
882 		 * Check if the pageblock has already been marked skipped.
883 		 * Only the aligned PFN is checked as the caller isolates
884 		 * COMPACT_CLUSTER_MAX at a time so the second call must
885 		 * not falsely conclude that the block should be skipped.
886 		 */
887 		if (!valid_page && pageblock_aligned(low_pfn)) {
888 			if (!isolation_suitable(cc, page)) {
889 				low_pfn = end_pfn;
890 				page = NULL;
891 				goto isolate_abort;
892 			}
893 			valid_page = page;
894 		}
895 
896 		if (PageHuge(page) && cc->alloc_contig) {
897 			if (locked) {
898 				unlock_page_lruvec_irqrestore(locked, flags);
899 				locked = NULL;
900 			}
901 
902 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
903 
904 			/*
905 			 * Fail isolation in case isolate_or_dissolve_huge_page()
906 			 * reports an error. In case of -ENOMEM, abort right away.
907 			 */
908 			if (ret < 0) {
909 				 /* Do not report -EBUSY down the chain */
910 				if (ret == -EBUSY)
911 					ret = 0;
912 				low_pfn += compound_nr(page) - 1;
913 				nr_scanned += compound_nr(page) - 1;
914 				goto isolate_fail;
915 			}
916 
917 			if (PageHuge(page)) {
918 				/*
919 				 * Hugepage was successfully isolated and placed
920 				 * on the cc->migratepages list.
921 				 */
922 				low_pfn += compound_nr(page) - 1;
923 				goto isolate_success_no_list;
924 			}
925 
926 			/*
927 			 * Ok, the hugepage was dissolved. Now these pages are
928 			 * Buddy and cannot be re-allocated because they are
929 			 * isolated. Fall-through as the check below handles
930 			 * Buddy pages.
931 			 */
932 		}
933 
934 		/*
935 		 * Skip if free. We read page order here without zone lock
936 		 * which is generally unsafe, but the race window is small and
937 		 * the worst thing that can happen is that we skip some
938 		 * potential isolation targets.
939 		 */
940 		if (PageBuddy(page)) {
941 			unsigned long freepage_order = buddy_order_unsafe(page);
942 
943 			/*
944 			 * Without lock, we cannot be sure that what we got is
945 			 * a valid page order. Consider only values in the
946 			 * valid order range to prevent low_pfn overflow.
947 			 */
948 			if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
949 				low_pfn += (1UL << freepage_order) - 1;
950 				nr_scanned += (1UL << freepage_order) - 1;
951 			}
952 			continue;
953 		}
954 
955 		/*
956 		 * Regardless of being on LRU, compound pages such as THP and
957 		 * hugetlbfs are not to be compacted unless we are attempting
958 		 * an allocation much larger than the huge page size (eg CMA).
959 		 * We can potentially save a lot of iterations if we skip them
960 		 * at once. The check is racy, but we can consider only valid
961 		 * values and the only danger is skipping too much.
962 		 */
963 		if (PageCompound(page) && !cc->alloc_contig) {
964 			const unsigned int order = compound_order(page);
965 
966 			if (likely(order <= MAX_ORDER)) {
967 				low_pfn += (1UL << order) - 1;
968 				nr_scanned += (1UL << order) - 1;
969 			}
970 			goto isolate_fail;
971 		}
972 
973 		/*
974 		 * Check may be lockless but that's ok as we recheck later.
975 		 * It's possible to migrate LRU and non-lru movable pages.
976 		 * Skip any other type of page
977 		 */
978 		if (!PageLRU(page)) {
979 			/*
980 			 * __PageMovable can return false positive so we need
981 			 * to verify it under page_lock.
982 			 */
983 			if (unlikely(__PageMovable(page)) &&
984 					!PageIsolated(page)) {
985 				if (locked) {
986 					unlock_page_lruvec_irqrestore(locked, flags);
987 					locked = NULL;
988 				}
989 
990 				if (isolate_movable_page(page, mode))
991 					goto isolate_success;
992 			}
993 
994 			goto isolate_fail;
995 		}
996 
997 		/*
998 		 * Be careful not to clear PageLRU until after we're
999 		 * sure the page is not being freed elsewhere -- the
1000 		 * page release code relies on it.
1001 		 */
1002 		if (unlikely(!get_page_unless_zero(page)))
1003 			goto isolate_fail;
1004 
1005 		/*
1006 		 * Migration will fail if an anonymous page is pinned in memory,
1007 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1008 		 * admittedly racy check.
1009 		 */
1010 		mapping = page_mapping(page);
1011 		if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1012 			goto isolate_fail_put;
1013 
1014 		/*
1015 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1016 		 * because those do not depend on fs locks.
1017 		 */
1018 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1019 			goto isolate_fail_put;
1020 
1021 		/* Only take pages on LRU: a check now makes later tests safe */
1022 		if (!PageLRU(page))
1023 			goto isolate_fail_put;
1024 
1025 		/* Compaction might skip unevictable pages but CMA takes them */
1026 		if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1027 			goto isolate_fail_put;
1028 
1029 		/*
1030 		 * To minimise LRU disruption, the caller can indicate with
1031 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1032 		 * it will be able to migrate without blocking - clean pages
1033 		 * for the most part.  PageWriteback would require blocking.
1034 		 */
1035 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1036 			goto isolate_fail_put;
1037 
1038 		if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1039 			bool migrate_dirty;
1040 
1041 			/*
1042 			 * Only pages without mappings or that have a
1043 			 * ->migrate_folio callback are possible to migrate
1044 			 * without blocking. However, we can be racing with
1045 			 * truncation so it's necessary to lock the page
1046 			 * to stabilise the mapping as truncation holds
1047 			 * the page lock until after the page is removed
1048 			 * from the page cache.
1049 			 */
1050 			if (!trylock_page(page))
1051 				goto isolate_fail_put;
1052 
1053 			mapping = page_mapping(page);
1054 			migrate_dirty = !mapping ||
1055 					mapping->a_ops->migrate_folio;
1056 			unlock_page(page);
1057 			if (!migrate_dirty)
1058 				goto isolate_fail_put;
1059 		}
1060 
1061 		/* Try isolate the page */
1062 		if (!TestClearPageLRU(page))
1063 			goto isolate_fail_put;
1064 
1065 		lruvec = folio_lruvec(page_folio(page));
1066 
1067 		/* If we already hold the lock, we can skip some rechecking */
1068 		if (lruvec != locked) {
1069 			if (locked)
1070 				unlock_page_lruvec_irqrestore(locked, flags);
1071 
1072 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1073 			locked = lruvec;
1074 
1075 			lruvec_memcg_debug(lruvec, page_folio(page));
1076 
1077 			/* Try get exclusive access under lock */
1078 			if (!skip_updated) {
1079 				skip_updated = true;
1080 				if (test_and_set_skip(cc, page, low_pfn))
1081 					goto isolate_abort;
1082 			}
1083 
1084 			/*
1085 			 * Page become compound since the non-locked check,
1086 			 * and it's on LRU. It can only be a THP so the order
1087 			 * is safe to read and it's 0 for tail pages.
1088 			 */
1089 			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1090 				low_pfn += compound_nr(page) - 1;
1091 				nr_scanned += compound_nr(page) - 1;
1092 				SetPageLRU(page);
1093 				goto isolate_fail_put;
1094 			}
1095 		}
1096 
1097 		/* The whole page is taken off the LRU; skip the tail pages. */
1098 		if (PageCompound(page))
1099 			low_pfn += compound_nr(page) - 1;
1100 
1101 		/* Successfully isolated */
1102 		del_page_from_lru_list(page, lruvec);
1103 		mod_node_page_state(page_pgdat(page),
1104 				NR_ISOLATED_ANON + page_is_file_lru(page),
1105 				thp_nr_pages(page));
1106 
1107 isolate_success:
1108 		list_add(&page->lru, &cc->migratepages);
1109 isolate_success_no_list:
1110 		cc->nr_migratepages += compound_nr(page);
1111 		nr_isolated += compound_nr(page);
1112 		nr_scanned += compound_nr(page) - 1;
1113 
1114 		/*
1115 		 * Avoid isolating too much unless this block is being
1116 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1117 		 * or a lock is contended. For contention, isolate quickly to
1118 		 * potentially remove one source of contention.
1119 		 */
1120 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1121 		    !cc->finish_pageblock && !cc->contended) {
1122 			++low_pfn;
1123 			break;
1124 		}
1125 
1126 		continue;
1127 
1128 isolate_fail_put:
1129 		/* Avoid potential deadlock in freeing page under lru_lock */
1130 		if (locked) {
1131 			unlock_page_lruvec_irqrestore(locked, flags);
1132 			locked = NULL;
1133 		}
1134 		put_page(page);
1135 
1136 isolate_fail:
1137 		if (!skip_on_failure && ret != -ENOMEM)
1138 			continue;
1139 
1140 		/*
1141 		 * We have isolated some pages, but then failed. Release them
1142 		 * instead of migrating, as we cannot form the cc->order buddy
1143 		 * page anyway.
1144 		 */
1145 		if (nr_isolated) {
1146 			if (locked) {
1147 				unlock_page_lruvec_irqrestore(locked, flags);
1148 				locked = NULL;
1149 			}
1150 			putback_movable_pages(&cc->migratepages);
1151 			cc->nr_migratepages = 0;
1152 			nr_isolated = 0;
1153 		}
1154 
1155 		if (low_pfn < next_skip_pfn) {
1156 			low_pfn = next_skip_pfn - 1;
1157 			/*
1158 			 * The check near the loop beginning would have updated
1159 			 * next_skip_pfn too, but this is a bit simpler.
1160 			 */
1161 			next_skip_pfn += 1UL << cc->order;
1162 		}
1163 
1164 		if (ret == -ENOMEM)
1165 			break;
1166 	}
1167 
1168 	/*
1169 	 * The PageBuddy() check could have potentially brought us outside
1170 	 * the range to be scanned.
1171 	 */
1172 	if (unlikely(low_pfn > end_pfn))
1173 		low_pfn = end_pfn;
1174 
1175 	page = NULL;
1176 
1177 isolate_abort:
1178 	if (locked)
1179 		unlock_page_lruvec_irqrestore(locked, flags);
1180 	if (page) {
1181 		SetPageLRU(page);
1182 		put_page(page);
1183 	}
1184 
1185 	/*
1186 	 * Update the cached scanner pfn once the pageblock has been scanned.
1187 	 * Pages will either be migrated in which case there is no point
1188 	 * scanning in the near future or migration failed in which case the
1189 	 * failure reason may persist. The block is marked for skipping if
1190 	 * there were no pages isolated in the block or if the block is
1191 	 * rescanned twice in a row.
1192 	 */
1193 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1194 		if (valid_page && !skip_updated)
1195 			set_pageblock_skip(valid_page);
1196 		update_cached_migrate(cc, low_pfn);
1197 	}
1198 
1199 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1200 						nr_scanned, nr_isolated);
1201 
1202 fatal_pending:
1203 	cc->total_migrate_scanned += nr_scanned;
1204 	if (nr_isolated)
1205 		count_compact_events(COMPACTISOLATED, nr_isolated);
1206 
1207 	cc->migrate_pfn = low_pfn;
1208 
1209 	return ret;
1210 }
1211 
1212 /**
1213  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1214  * @cc:        Compaction control structure.
1215  * @start_pfn: The first PFN to start isolating.
1216  * @end_pfn:   The one-past-last PFN.
1217  *
1218  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1219  * in case we could not allocate a page, or 0.
1220  */
1221 int
1222 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1223 							unsigned long end_pfn)
1224 {
1225 	unsigned long pfn, block_start_pfn, block_end_pfn;
1226 	int ret = 0;
1227 
1228 	/* Scan block by block. First and last block may be incomplete */
1229 	pfn = start_pfn;
1230 	block_start_pfn = pageblock_start_pfn(pfn);
1231 	if (block_start_pfn < cc->zone->zone_start_pfn)
1232 		block_start_pfn = cc->zone->zone_start_pfn;
1233 	block_end_pfn = pageblock_end_pfn(pfn);
1234 
1235 	for (; pfn < end_pfn; pfn = block_end_pfn,
1236 				block_start_pfn = block_end_pfn,
1237 				block_end_pfn += pageblock_nr_pages) {
1238 
1239 		block_end_pfn = min(block_end_pfn, end_pfn);
1240 
1241 		if (!pageblock_pfn_to_page(block_start_pfn,
1242 					block_end_pfn, cc->zone))
1243 			continue;
1244 
1245 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1246 						 ISOLATE_UNEVICTABLE);
1247 
1248 		if (ret)
1249 			break;
1250 
1251 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1252 			break;
1253 	}
1254 
1255 	return ret;
1256 }
1257 
1258 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1259 #ifdef CONFIG_COMPACTION
1260 
1261 static bool suitable_migration_source(struct compact_control *cc,
1262 							struct page *page)
1263 {
1264 	int block_mt;
1265 
1266 	if (pageblock_skip_persistent(page))
1267 		return false;
1268 
1269 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1270 		return true;
1271 
1272 	block_mt = get_pageblock_migratetype(page);
1273 
1274 	if (cc->migratetype == MIGRATE_MOVABLE)
1275 		return is_migrate_movable(block_mt);
1276 	else
1277 		return block_mt == cc->migratetype;
1278 }
1279 
1280 /* Returns true if the page is within a block suitable for migration to */
1281 static bool suitable_migration_target(struct compact_control *cc,
1282 							struct page *page)
1283 {
1284 	/* If the page is a large free page, then disallow migration */
1285 	if (PageBuddy(page)) {
1286 		/*
1287 		 * We are checking page_order without zone->lock taken. But
1288 		 * the only small danger is that we skip a potentially suitable
1289 		 * pageblock, so it's not worth to check order for valid range.
1290 		 */
1291 		if (buddy_order_unsafe(page) >= pageblock_order)
1292 			return false;
1293 	}
1294 
1295 	if (cc->ignore_block_suitable)
1296 		return true;
1297 
1298 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1299 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1300 		return true;
1301 
1302 	/* Otherwise skip the block */
1303 	return false;
1304 }
1305 
1306 static inline unsigned int
1307 freelist_scan_limit(struct compact_control *cc)
1308 {
1309 	unsigned short shift = BITS_PER_LONG - 1;
1310 
1311 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1312 }
1313 
1314 /*
1315  * Test whether the free scanner has reached the same or lower pageblock than
1316  * the migration scanner, and compaction should thus terminate.
1317  */
1318 static inline bool compact_scanners_met(struct compact_control *cc)
1319 {
1320 	return (cc->free_pfn >> pageblock_order)
1321 		<= (cc->migrate_pfn >> pageblock_order);
1322 }
1323 
1324 /*
1325  * Used when scanning for a suitable migration target which scans freelists
1326  * in reverse. Reorders the list such as the unscanned pages are scanned
1327  * first on the next iteration of the free scanner
1328  */
1329 static void
1330 move_freelist_head(struct list_head *freelist, struct page *freepage)
1331 {
1332 	LIST_HEAD(sublist);
1333 
1334 	if (!list_is_last(freelist, &freepage->lru)) {
1335 		list_cut_before(&sublist, freelist, &freepage->lru);
1336 		list_splice_tail(&sublist, freelist);
1337 	}
1338 }
1339 
1340 /*
1341  * Similar to move_freelist_head except used by the migration scanner
1342  * when scanning forward. It's possible for these list operations to
1343  * move against each other if they search the free list exactly in
1344  * lockstep.
1345  */
1346 static void
1347 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1348 {
1349 	LIST_HEAD(sublist);
1350 
1351 	if (!list_is_first(freelist, &freepage->lru)) {
1352 		list_cut_position(&sublist, freelist, &freepage->lru);
1353 		list_splice_tail(&sublist, freelist);
1354 	}
1355 }
1356 
1357 static void
1358 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1359 {
1360 	unsigned long start_pfn, end_pfn;
1361 	struct page *page;
1362 
1363 	/* Do not search around if there are enough pages already */
1364 	if (cc->nr_freepages >= cc->nr_migratepages)
1365 		return;
1366 
1367 	/* Minimise scanning during async compaction */
1368 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1369 		return;
1370 
1371 	/* Pageblock boundaries */
1372 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1373 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1374 
1375 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1376 	if (!page)
1377 		return;
1378 
1379 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1380 
1381 	/* Skip this pageblock in the future as it's full or nearly full */
1382 	if (cc->nr_freepages < cc->nr_migratepages)
1383 		set_pageblock_skip(page);
1384 
1385 	return;
1386 }
1387 
1388 /* Search orders in round-robin fashion */
1389 static int next_search_order(struct compact_control *cc, int order)
1390 {
1391 	order--;
1392 	if (order < 0)
1393 		order = cc->order - 1;
1394 
1395 	/* Search wrapped around? */
1396 	if (order == cc->search_order) {
1397 		cc->search_order--;
1398 		if (cc->search_order < 0)
1399 			cc->search_order = cc->order - 1;
1400 		return -1;
1401 	}
1402 
1403 	return order;
1404 }
1405 
1406 static unsigned long
1407 fast_isolate_freepages(struct compact_control *cc)
1408 {
1409 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1410 	unsigned int nr_scanned = 0;
1411 	unsigned long low_pfn, min_pfn, highest = 0;
1412 	unsigned long nr_isolated = 0;
1413 	unsigned long distance;
1414 	struct page *page = NULL;
1415 	bool scan_start = false;
1416 	int order;
1417 
1418 	/* Full compaction passes in a negative order */
1419 	if (cc->order <= 0)
1420 		return cc->free_pfn;
1421 
1422 	/*
1423 	 * If starting the scan, use a deeper search and use the highest
1424 	 * PFN found if a suitable one is not found.
1425 	 */
1426 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1427 		limit = pageblock_nr_pages >> 1;
1428 		scan_start = true;
1429 	}
1430 
1431 	/*
1432 	 * Preferred point is in the top quarter of the scan space but take
1433 	 * a pfn from the top half if the search is problematic.
1434 	 */
1435 	distance = (cc->free_pfn - cc->migrate_pfn);
1436 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1437 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1438 
1439 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1440 		low_pfn = min_pfn;
1441 
1442 	/*
1443 	 * Search starts from the last successful isolation order or the next
1444 	 * order to search after a previous failure
1445 	 */
1446 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1447 
1448 	for (order = cc->search_order;
1449 	     !page && order >= 0;
1450 	     order = next_search_order(cc, order)) {
1451 		struct free_area *area = &cc->zone->free_area[order];
1452 		struct list_head *freelist;
1453 		struct page *freepage;
1454 		unsigned long flags;
1455 		unsigned int order_scanned = 0;
1456 		unsigned long high_pfn = 0;
1457 
1458 		if (!area->nr_free)
1459 			continue;
1460 
1461 		spin_lock_irqsave(&cc->zone->lock, flags);
1462 		freelist = &area->free_list[MIGRATE_MOVABLE];
1463 		list_for_each_entry_reverse(freepage, freelist, lru) {
1464 			unsigned long pfn;
1465 
1466 			order_scanned++;
1467 			nr_scanned++;
1468 			pfn = page_to_pfn(freepage);
1469 
1470 			if (pfn >= highest)
1471 				highest = max(pageblock_start_pfn(pfn),
1472 					      cc->zone->zone_start_pfn);
1473 
1474 			if (pfn >= low_pfn) {
1475 				cc->fast_search_fail = 0;
1476 				cc->search_order = order;
1477 				page = freepage;
1478 				break;
1479 			}
1480 
1481 			if (pfn >= min_pfn && pfn > high_pfn) {
1482 				high_pfn = pfn;
1483 
1484 				/* Shorten the scan if a candidate is found */
1485 				limit >>= 1;
1486 			}
1487 
1488 			if (order_scanned >= limit)
1489 				break;
1490 		}
1491 
1492 		/* Use a minimum pfn if a preferred one was not found */
1493 		if (!page && high_pfn) {
1494 			page = pfn_to_page(high_pfn);
1495 
1496 			/* Update freepage for the list reorder below */
1497 			freepage = page;
1498 		}
1499 
1500 		/* Reorder to so a future search skips recent pages */
1501 		move_freelist_head(freelist, freepage);
1502 
1503 		/* Isolate the page if available */
1504 		if (page) {
1505 			if (__isolate_free_page(page, order)) {
1506 				set_page_private(page, order);
1507 				nr_isolated = 1 << order;
1508 				nr_scanned += nr_isolated - 1;
1509 				cc->nr_freepages += nr_isolated;
1510 				list_add_tail(&page->lru, &cc->freepages);
1511 				count_compact_events(COMPACTISOLATED, nr_isolated);
1512 			} else {
1513 				/* If isolation fails, abort the search */
1514 				order = cc->search_order + 1;
1515 				page = NULL;
1516 			}
1517 		}
1518 
1519 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1520 
1521 		/*
1522 		 * Smaller scan on next order so the total scan is related
1523 		 * to freelist_scan_limit.
1524 		 */
1525 		if (order_scanned >= limit)
1526 			limit = max(1U, limit >> 1);
1527 	}
1528 
1529 	if (!page) {
1530 		cc->fast_search_fail++;
1531 		if (scan_start) {
1532 			/*
1533 			 * Use the highest PFN found above min. If one was
1534 			 * not found, be pessimistic for direct compaction
1535 			 * and use the min mark.
1536 			 */
1537 			if (highest >= min_pfn) {
1538 				page = pfn_to_page(highest);
1539 				cc->free_pfn = highest;
1540 			} else {
1541 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1542 					page = pageblock_pfn_to_page(min_pfn,
1543 						min(pageblock_end_pfn(min_pfn),
1544 						    zone_end_pfn(cc->zone)),
1545 						cc->zone);
1546 					cc->free_pfn = min_pfn;
1547 				}
1548 			}
1549 		}
1550 	}
1551 
1552 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1553 		highest -= pageblock_nr_pages;
1554 		cc->zone->compact_cached_free_pfn = highest;
1555 	}
1556 
1557 	cc->total_free_scanned += nr_scanned;
1558 	if (!page)
1559 		return cc->free_pfn;
1560 
1561 	low_pfn = page_to_pfn(page);
1562 	fast_isolate_around(cc, low_pfn);
1563 	return low_pfn;
1564 }
1565 
1566 /*
1567  * Based on information in the current compact_control, find blocks
1568  * suitable for isolating free pages from and then isolate them.
1569  */
1570 static void isolate_freepages(struct compact_control *cc)
1571 {
1572 	struct zone *zone = cc->zone;
1573 	struct page *page;
1574 	unsigned long block_start_pfn;	/* start of current pageblock */
1575 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1576 	unsigned long block_end_pfn;	/* end of current pageblock */
1577 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1578 	struct list_head *freelist = &cc->freepages;
1579 	unsigned int stride;
1580 
1581 	/* Try a small search of the free lists for a candidate */
1582 	fast_isolate_freepages(cc);
1583 	if (cc->nr_freepages)
1584 		goto splitmap;
1585 
1586 	/*
1587 	 * Initialise the free scanner. The starting point is where we last
1588 	 * successfully isolated from, zone-cached value, or the end of the
1589 	 * zone when isolating for the first time. For looping we also need
1590 	 * this pfn aligned down to the pageblock boundary, because we do
1591 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1592 	 * For ending point, take care when isolating in last pageblock of a
1593 	 * zone which ends in the middle of a pageblock.
1594 	 * The low boundary is the end of the pageblock the migration scanner
1595 	 * is using.
1596 	 */
1597 	isolate_start_pfn = cc->free_pfn;
1598 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1599 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1600 						zone_end_pfn(zone));
1601 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1602 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1603 
1604 	/*
1605 	 * Isolate free pages until enough are available to migrate the
1606 	 * pages on cc->migratepages. We stop searching if the migrate
1607 	 * and free page scanners meet or enough free pages are isolated.
1608 	 */
1609 	for (; block_start_pfn >= low_pfn;
1610 				block_end_pfn = block_start_pfn,
1611 				block_start_pfn -= pageblock_nr_pages,
1612 				isolate_start_pfn = block_start_pfn) {
1613 		unsigned long nr_isolated;
1614 
1615 		/*
1616 		 * This can iterate a massively long zone without finding any
1617 		 * suitable migration targets, so periodically check resched.
1618 		 */
1619 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1620 			cond_resched();
1621 
1622 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1623 									zone);
1624 		if (!page)
1625 			continue;
1626 
1627 		/* Check the block is suitable for migration */
1628 		if (!suitable_migration_target(cc, page))
1629 			continue;
1630 
1631 		/* If isolation recently failed, do not retry */
1632 		if (!isolation_suitable(cc, page))
1633 			continue;
1634 
1635 		/* Found a block suitable for isolating free pages from. */
1636 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1637 					block_end_pfn, freelist, stride, false);
1638 
1639 		/* Update the skip hint if the full pageblock was scanned */
1640 		if (isolate_start_pfn == block_end_pfn)
1641 			update_pageblock_skip(cc, page, block_start_pfn);
1642 
1643 		/* Are enough freepages isolated? */
1644 		if (cc->nr_freepages >= cc->nr_migratepages) {
1645 			if (isolate_start_pfn >= block_end_pfn) {
1646 				/*
1647 				 * Restart at previous pageblock if more
1648 				 * freepages can be isolated next time.
1649 				 */
1650 				isolate_start_pfn =
1651 					block_start_pfn - pageblock_nr_pages;
1652 			}
1653 			break;
1654 		} else if (isolate_start_pfn < block_end_pfn) {
1655 			/*
1656 			 * If isolation failed early, do not continue
1657 			 * needlessly.
1658 			 */
1659 			break;
1660 		}
1661 
1662 		/* Adjust stride depending on isolation */
1663 		if (nr_isolated) {
1664 			stride = 1;
1665 			continue;
1666 		}
1667 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1668 	}
1669 
1670 	/*
1671 	 * Record where the free scanner will restart next time. Either we
1672 	 * broke from the loop and set isolate_start_pfn based on the last
1673 	 * call to isolate_freepages_block(), or we met the migration scanner
1674 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1675 	 */
1676 	cc->free_pfn = isolate_start_pfn;
1677 
1678 splitmap:
1679 	/* __isolate_free_page() does not map the pages */
1680 	split_map_pages(freelist);
1681 }
1682 
1683 /*
1684  * This is a migrate-callback that "allocates" freepages by taking pages
1685  * from the isolated freelists in the block we are migrating to.
1686  */
1687 static struct page *compaction_alloc(struct page *migratepage,
1688 					unsigned long data)
1689 {
1690 	struct compact_control *cc = (struct compact_control *)data;
1691 	struct page *freepage;
1692 
1693 	if (list_empty(&cc->freepages)) {
1694 		isolate_freepages(cc);
1695 
1696 		if (list_empty(&cc->freepages))
1697 			return NULL;
1698 	}
1699 
1700 	freepage = list_entry(cc->freepages.next, struct page, lru);
1701 	list_del(&freepage->lru);
1702 	cc->nr_freepages--;
1703 
1704 	return freepage;
1705 }
1706 
1707 /*
1708  * This is a migrate-callback that "frees" freepages back to the isolated
1709  * freelist.  All pages on the freelist are from the same zone, so there is no
1710  * special handling needed for NUMA.
1711  */
1712 static void compaction_free(struct page *page, unsigned long data)
1713 {
1714 	struct compact_control *cc = (struct compact_control *)data;
1715 
1716 	list_add(&page->lru, &cc->freepages);
1717 	cc->nr_freepages++;
1718 }
1719 
1720 /* possible outcome of isolate_migratepages */
1721 typedef enum {
1722 	ISOLATE_ABORT,		/* Abort compaction now */
1723 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1724 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1725 } isolate_migrate_t;
1726 
1727 /*
1728  * Allow userspace to control policy on scanning the unevictable LRU for
1729  * compactable pages.
1730  */
1731 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1732 /*
1733  * Tunable for proactive compaction. It determines how
1734  * aggressively the kernel should compact memory in the
1735  * background. It takes values in the range [0, 100].
1736  */
1737 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1738 static int sysctl_extfrag_threshold = 500;
1739 
1740 static inline void
1741 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1742 {
1743 	if (cc->fast_start_pfn == ULONG_MAX)
1744 		return;
1745 
1746 	if (!cc->fast_start_pfn)
1747 		cc->fast_start_pfn = pfn;
1748 
1749 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1750 }
1751 
1752 static inline unsigned long
1753 reinit_migrate_pfn(struct compact_control *cc)
1754 {
1755 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1756 		return cc->migrate_pfn;
1757 
1758 	cc->migrate_pfn = cc->fast_start_pfn;
1759 	cc->fast_start_pfn = ULONG_MAX;
1760 
1761 	return cc->migrate_pfn;
1762 }
1763 
1764 /*
1765  * Briefly search the free lists for a migration source that already has
1766  * some free pages to reduce the number of pages that need migration
1767  * before a pageblock is free.
1768  */
1769 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1770 {
1771 	unsigned int limit = freelist_scan_limit(cc);
1772 	unsigned int nr_scanned = 0;
1773 	unsigned long distance;
1774 	unsigned long pfn = cc->migrate_pfn;
1775 	unsigned long high_pfn;
1776 	int order;
1777 	bool found_block = false;
1778 
1779 	/* Skip hints are relied on to avoid repeats on the fast search */
1780 	if (cc->ignore_skip_hint)
1781 		return pfn;
1782 
1783 	/*
1784 	 * If the pageblock should be finished then do not select a different
1785 	 * pageblock.
1786 	 */
1787 	if (cc->finish_pageblock)
1788 		return pfn;
1789 
1790 	/*
1791 	 * If the migrate_pfn is not at the start of a zone or the start
1792 	 * of a pageblock then assume this is a continuation of a previous
1793 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1794 	 */
1795 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1796 		return pfn;
1797 
1798 	/*
1799 	 * For smaller orders, just linearly scan as the number of pages
1800 	 * to migrate should be relatively small and does not necessarily
1801 	 * justify freeing up a large block for a small allocation.
1802 	 */
1803 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1804 		return pfn;
1805 
1806 	/*
1807 	 * Only allow kcompactd and direct requests for movable pages to
1808 	 * quickly clear out a MOVABLE pageblock for allocation. This
1809 	 * reduces the risk that a large movable pageblock is freed for
1810 	 * an unmovable/reclaimable small allocation.
1811 	 */
1812 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1813 		return pfn;
1814 
1815 	/*
1816 	 * When starting the migration scanner, pick any pageblock within the
1817 	 * first half of the search space. Otherwise try and pick a pageblock
1818 	 * within the first eighth to reduce the chances that a migration
1819 	 * target later becomes a source.
1820 	 */
1821 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1822 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1823 		distance >>= 2;
1824 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1825 
1826 	for (order = cc->order - 1;
1827 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1828 	     order--) {
1829 		struct free_area *area = &cc->zone->free_area[order];
1830 		struct list_head *freelist;
1831 		unsigned long flags;
1832 		struct page *freepage;
1833 
1834 		if (!area->nr_free)
1835 			continue;
1836 
1837 		spin_lock_irqsave(&cc->zone->lock, flags);
1838 		freelist = &area->free_list[MIGRATE_MOVABLE];
1839 		list_for_each_entry(freepage, freelist, lru) {
1840 			unsigned long free_pfn;
1841 
1842 			if (nr_scanned++ >= limit) {
1843 				move_freelist_tail(freelist, freepage);
1844 				break;
1845 			}
1846 
1847 			free_pfn = page_to_pfn(freepage);
1848 			if (free_pfn < high_pfn) {
1849 				/*
1850 				 * Avoid if skipped recently. Ideally it would
1851 				 * move to the tail but even safe iteration of
1852 				 * the list assumes an entry is deleted, not
1853 				 * reordered.
1854 				 */
1855 				if (get_pageblock_skip(freepage))
1856 					continue;
1857 
1858 				/* Reorder to so a future search skips recent pages */
1859 				move_freelist_tail(freelist, freepage);
1860 
1861 				update_fast_start_pfn(cc, free_pfn);
1862 				pfn = pageblock_start_pfn(free_pfn);
1863 				if (pfn < cc->zone->zone_start_pfn)
1864 					pfn = cc->zone->zone_start_pfn;
1865 				cc->fast_search_fail = 0;
1866 				found_block = true;
1867 				set_pageblock_skip(freepage);
1868 				break;
1869 			}
1870 		}
1871 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1872 	}
1873 
1874 	cc->total_migrate_scanned += nr_scanned;
1875 
1876 	/*
1877 	 * If fast scanning failed then use a cached entry for a page block
1878 	 * that had free pages as the basis for starting a linear scan.
1879 	 */
1880 	if (!found_block) {
1881 		cc->fast_search_fail++;
1882 		pfn = reinit_migrate_pfn(cc);
1883 	}
1884 	return pfn;
1885 }
1886 
1887 /*
1888  * Isolate all pages that can be migrated from the first suitable block,
1889  * starting at the block pointed to by the migrate scanner pfn within
1890  * compact_control.
1891  */
1892 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1893 {
1894 	unsigned long block_start_pfn;
1895 	unsigned long block_end_pfn;
1896 	unsigned long low_pfn;
1897 	struct page *page;
1898 	const isolate_mode_t isolate_mode =
1899 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1900 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1901 	bool fast_find_block;
1902 
1903 	/*
1904 	 * Start at where we last stopped, or beginning of the zone as
1905 	 * initialized by compact_zone(). The first failure will use
1906 	 * the lowest PFN as the starting point for linear scanning.
1907 	 */
1908 	low_pfn = fast_find_migrateblock(cc);
1909 	block_start_pfn = pageblock_start_pfn(low_pfn);
1910 	if (block_start_pfn < cc->zone->zone_start_pfn)
1911 		block_start_pfn = cc->zone->zone_start_pfn;
1912 
1913 	/*
1914 	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1915 	 * the isolation_suitable check below, check whether the fast
1916 	 * search was successful.
1917 	 */
1918 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1919 
1920 	/* Only scan within a pageblock boundary */
1921 	block_end_pfn = pageblock_end_pfn(low_pfn);
1922 
1923 	/*
1924 	 * Iterate over whole pageblocks until we find the first suitable.
1925 	 * Do not cross the free scanner.
1926 	 */
1927 	for (; block_end_pfn <= cc->free_pfn;
1928 			fast_find_block = false,
1929 			cc->migrate_pfn = low_pfn = block_end_pfn,
1930 			block_start_pfn = block_end_pfn,
1931 			block_end_pfn += pageblock_nr_pages) {
1932 
1933 		/*
1934 		 * This can potentially iterate a massively long zone with
1935 		 * many pageblocks unsuitable, so periodically check if we
1936 		 * need to schedule.
1937 		 */
1938 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1939 			cond_resched();
1940 
1941 		page = pageblock_pfn_to_page(block_start_pfn,
1942 						block_end_pfn, cc->zone);
1943 		if (!page)
1944 			continue;
1945 
1946 		/*
1947 		 * If isolation recently failed, do not retry. Only check the
1948 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1949 		 * to be visited multiple times. Assume skip was checked
1950 		 * before making it "skip" so other compaction instances do
1951 		 * not scan the same block.
1952 		 */
1953 		if (pageblock_aligned(low_pfn) &&
1954 		    !fast_find_block && !isolation_suitable(cc, page))
1955 			continue;
1956 
1957 		/*
1958 		 * For async direct compaction, only scan the pageblocks of the
1959 		 * same migratetype without huge pages. Async direct compaction
1960 		 * is optimistic to see if the minimum amount of work satisfies
1961 		 * the allocation. The cached PFN is updated as it's possible
1962 		 * that all remaining blocks between source and target are
1963 		 * unsuitable and the compaction scanners fail to meet.
1964 		 */
1965 		if (!suitable_migration_source(cc, page)) {
1966 			update_cached_migrate(cc, block_end_pfn);
1967 			continue;
1968 		}
1969 
1970 		/* Perform the isolation */
1971 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1972 						isolate_mode))
1973 			return ISOLATE_ABORT;
1974 
1975 		/*
1976 		 * Either we isolated something and proceed with migration. Or
1977 		 * we failed and compact_zone should decide if we should
1978 		 * continue or not.
1979 		 */
1980 		break;
1981 	}
1982 
1983 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1984 }
1985 
1986 /*
1987  * order == -1 is expected when compacting via
1988  * /proc/sys/vm/compact_memory
1989  */
1990 static inline bool is_via_compact_memory(int order)
1991 {
1992 	return order == -1;
1993 }
1994 
1995 /*
1996  * Determine whether kswapd is (or recently was!) running on this node.
1997  *
1998  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1999  * zero it.
2000  */
2001 static bool kswapd_is_running(pg_data_t *pgdat)
2002 {
2003 	bool running;
2004 
2005 	pgdat_kswapd_lock(pgdat);
2006 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2007 	pgdat_kswapd_unlock(pgdat);
2008 
2009 	return running;
2010 }
2011 
2012 /*
2013  * A zone's fragmentation score is the external fragmentation wrt to the
2014  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2015  */
2016 static unsigned int fragmentation_score_zone(struct zone *zone)
2017 {
2018 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2019 }
2020 
2021 /*
2022  * A weighted zone's fragmentation score is the external fragmentation
2023  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2024  * returns a value in the range [0, 100].
2025  *
2026  * The scaling factor ensures that proactive compaction focuses on larger
2027  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2028  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2029  * and thus never exceeds the high threshold for proactive compaction.
2030  */
2031 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2032 {
2033 	unsigned long score;
2034 
2035 	score = zone->present_pages * fragmentation_score_zone(zone);
2036 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2037 }
2038 
2039 /*
2040  * The per-node proactive (background) compaction process is started by its
2041  * corresponding kcompactd thread when the node's fragmentation score
2042  * exceeds the high threshold. The compaction process remains active till
2043  * the node's score falls below the low threshold, or one of the back-off
2044  * conditions is met.
2045  */
2046 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2047 {
2048 	unsigned int score = 0;
2049 	int zoneid;
2050 
2051 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2052 		struct zone *zone;
2053 
2054 		zone = &pgdat->node_zones[zoneid];
2055 		if (!populated_zone(zone))
2056 			continue;
2057 		score += fragmentation_score_zone_weighted(zone);
2058 	}
2059 
2060 	return score;
2061 }
2062 
2063 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2064 {
2065 	unsigned int wmark_low;
2066 
2067 	/*
2068 	 * Cap the low watermark to avoid excessive compaction
2069 	 * activity in case a user sets the proactiveness tunable
2070 	 * close to 100 (maximum).
2071 	 */
2072 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2073 	return low ? wmark_low : min(wmark_low + 10, 100U);
2074 }
2075 
2076 static bool should_proactive_compact_node(pg_data_t *pgdat)
2077 {
2078 	int wmark_high;
2079 
2080 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2081 		return false;
2082 
2083 	wmark_high = fragmentation_score_wmark(pgdat, false);
2084 	return fragmentation_score_node(pgdat) > wmark_high;
2085 }
2086 
2087 static enum compact_result __compact_finished(struct compact_control *cc)
2088 {
2089 	unsigned int order;
2090 	const int migratetype = cc->migratetype;
2091 	int ret;
2092 
2093 	/* Compaction run completes if the migrate and free scanner meet */
2094 	if (compact_scanners_met(cc)) {
2095 		/* Let the next compaction start anew. */
2096 		reset_cached_positions(cc->zone);
2097 
2098 		/*
2099 		 * Mark that the PG_migrate_skip information should be cleared
2100 		 * by kswapd when it goes to sleep. kcompactd does not set the
2101 		 * flag itself as the decision to be clear should be directly
2102 		 * based on an allocation request.
2103 		 */
2104 		if (cc->direct_compaction)
2105 			cc->zone->compact_blockskip_flush = true;
2106 
2107 		if (cc->whole_zone)
2108 			return COMPACT_COMPLETE;
2109 		else
2110 			return COMPACT_PARTIAL_SKIPPED;
2111 	}
2112 
2113 	if (cc->proactive_compaction) {
2114 		int score, wmark_low;
2115 		pg_data_t *pgdat;
2116 
2117 		pgdat = cc->zone->zone_pgdat;
2118 		if (kswapd_is_running(pgdat))
2119 			return COMPACT_PARTIAL_SKIPPED;
2120 
2121 		score = fragmentation_score_zone(cc->zone);
2122 		wmark_low = fragmentation_score_wmark(pgdat, true);
2123 
2124 		if (score > wmark_low)
2125 			ret = COMPACT_CONTINUE;
2126 		else
2127 			ret = COMPACT_SUCCESS;
2128 
2129 		goto out;
2130 	}
2131 
2132 	if (is_via_compact_memory(cc->order))
2133 		return COMPACT_CONTINUE;
2134 
2135 	/*
2136 	 * Always finish scanning a pageblock to reduce the possibility of
2137 	 * fallbacks in the future. This is particularly important when
2138 	 * migration source is unmovable/reclaimable but it's not worth
2139 	 * special casing.
2140 	 */
2141 	if (!pageblock_aligned(cc->migrate_pfn))
2142 		return COMPACT_CONTINUE;
2143 
2144 	/* Direct compactor: Is a suitable page free? */
2145 	ret = COMPACT_NO_SUITABLE_PAGE;
2146 	for (order = cc->order; order <= MAX_ORDER; order++) {
2147 		struct free_area *area = &cc->zone->free_area[order];
2148 		bool can_steal;
2149 
2150 		/* Job done if page is free of the right migratetype */
2151 		if (!free_area_empty(area, migratetype))
2152 			return COMPACT_SUCCESS;
2153 
2154 #ifdef CONFIG_CMA
2155 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2156 		if (migratetype == MIGRATE_MOVABLE &&
2157 			!free_area_empty(area, MIGRATE_CMA))
2158 			return COMPACT_SUCCESS;
2159 #endif
2160 		/*
2161 		 * Job done if allocation would steal freepages from
2162 		 * other migratetype buddy lists.
2163 		 */
2164 		if (find_suitable_fallback(area, order, migratetype,
2165 						true, &can_steal) != -1)
2166 			/*
2167 			 * Movable pages are OK in any pageblock. If we are
2168 			 * stealing for a non-movable allocation, make sure
2169 			 * we finish compacting the current pageblock first
2170 			 * (which is assured by the above migrate_pfn align
2171 			 * check) so it is as free as possible and we won't
2172 			 * have to steal another one soon.
2173 			 */
2174 			return COMPACT_SUCCESS;
2175 	}
2176 
2177 out:
2178 	if (cc->contended || fatal_signal_pending(current))
2179 		ret = COMPACT_CONTENDED;
2180 
2181 	return ret;
2182 }
2183 
2184 static enum compact_result compact_finished(struct compact_control *cc)
2185 {
2186 	int ret;
2187 
2188 	ret = __compact_finished(cc);
2189 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2190 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2191 		ret = COMPACT_CONTINUE;
2192 
2193 	return ret;
2194 }
2195 
2196 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2197 					unsigned int alloc_flags,
2198 					int highest_zoneidx,
2199 					unsigned long wmark_target)
2200 {
2201 	unsigned long watermark;
2202 
2203 	if (is_via_compact_memory(order))
2204 		return COMPACT_CONTINUE;
2205 
2206 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2207 	/*
2208 	 * If watermarks for high-order allocation are already met, there
2209 	 * should be no need for compaction at all.
2210 	 */
2211 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2212 								alloc_flags))
2213 		return COMPACT_SUCCESS;
2214 
2215 	/*
2216 	 * Watermarks for order-0 must be met for compaction to be able to
2217 	 * isolate free pages for migration targets. This means that the
2218 	 * watermark and alloc_flags have to match, or be more pessimistic than
2219 	 * the check in __isolate_free_page(). We don't use the direct
2220 	 * compactor's alloc_flags, as they are not relevant for freepage
2221 	 * isolation. We however do use the direct compactor's highest_zoneidx
2222 	 * to skip over zones where lowmem reserves would prevent allocation
2223 	 * even if compaction succeeds.
2224 	 * For costly orders, we require low watermark instead of min for
2225 	 * compaction to proceed to increase its chances.
2226 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2227 	 * suitable migration targets
2228 	 */
2229 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2230 				low_wmark_pages(zone) : min_wmark_pages(zone);
2231 	watermark += compact_gap(order);
2232 	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2233 						ALLOC_CMA, wmark_target))
2234 		return COMPACT_SKIPPED;
2235 
2236 	return COMPACT_CONTINUE;
2237 }
2238 
2239 /*
2240  * compaction_suitable: Is this suitable to run compaction on this zone now?
2241  * Returns
2242  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2243  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2244  *   COMPACT_CONTINUE - If compaction should run now
2245  */
2246 enum compact_result compaction_suitable(struct zone *zone, int order,
2247 					unsigned int alloc_flags,
2248 					int highest_zoneidx)
2249 {
2250 	enum compact_result ret;
2251 	int fragindex;
2252 
2253 	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2254 				    zone_page_state(zone, NR_FREE_PAGES));
2255 	/*
2256 	 * fragmentation index determines if allocation failures are due to
2257 	 * low memory or external fragmentation
2258 	 *
2259 	 * index of -1000 would imply allocations might succeed depending on
2260 	 * watermarks, but we already failed the high-order watermark check
2261 	 * index towards 0 implies failure is due to lack of memory
2262 	 * index towards 1000 implies failure is due to fragmentation
2263 	 *
2264 	 * Only compact if a failure would be due to fragmentation. Also
2265 	 * ignore fragindex for non-costly orders where the alternative to
2266 	 * a successful reclaim/compaction is OOM. Fragindex and the
2267 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2268 	 * excessive compaction for costly orders, but it should not be at the
2269 	 * expense of system stability.
2270 	 */
2271 	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2272 		fragindex = fragmentation_index(zone, order);
2273 		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2274 			ret = COMPACT_NOT_SUITABLE_ZONE;
2275 	}
2276 
2277 	trace_mm_compaction_suitable(zone, order, ret);
2278 	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2279 		ret = COMPACT_SKIPPED;
2280 
2281 	return ret;
2282 }
2283 
2284 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2285 		int alloc_flags)
2286 {
2287 	struct zone *zone;
2288 	struct zoneref *z;
2289 
2290 	/*
2291 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2292 	 * retrying the reclaim.
2293 	 */
2294 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2295 				ac->highest_zoneidx, ac->nodemask) {
2296 		unsigned long available;
2297 		enum compact_result compact_result;
2298 
2299 		/*
2300 		 * Do not consider all the reclaimable memory because we do not
2301 		 * want to trash just for a single high order allocation which
2302 		 * is even not guaranteed to appear even if __compaction_suitable
2303 		 * is happy about the watermark check.
2304 		 */
2305 		available = zone_reclaimable_pages(zone) / order;
2306 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2307 		compact_result = __compaction_suitable(zone, order, alloc_flags,
2308 				ac->highest_zoneidx, available);
2309 		if (compact_result == COMPACT_CONTINUE)
2310 			return true;
2311 	}
2312 
2313 	return false;
2314 }
2315 
2316 static enum compact_result
2317 compact_zone(struct compact_control *cc, struct capture_control *capc)
2318 {
2319 	enum compact_result ret;
2320 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2321 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2322 	unsigned long last_migrated_pfn;
2323 	const bool sync = cc->mode != MIGRATE_ASYNC;
2324 	bool update_cached;
2325 	unsigned int nr_succeeded = 0;
2326 
2327 	/*
2328 	 * These counters track activities during zone compaction.  Initialize
2329 	 * them before compacting a new zone.
2330 	 */
2331 	cc->total_migrate_scanned = 0;
2332 	cc->total_free_scanned = 0;
2333 	cc->nr_migratepages = 0;
2334 	cc->nr_freepages = 0;
2335 	INIT_LIST_HEAD(&cc->freepages);
2336 	INIT_LIST_HEAD(&cc->migratepages);
2337 
2338 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2339 	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2340 							cc->highest_zoneidx);
2341 	/* Compaction is likely to fail */
2342 	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2343 		return ret;
2344 
2345 	/*
2346 	 * Clear pageblock skip if there were failures recently and compaction
2347 	 * is about to be retried after being deferred.
2348 	 */
2349 	if (compaction_restarting(cc->zone, cc->order))
2350 		__reset_isolation_suitable(cc->zone);
2351 
2352 	/*
2353 	 * Setup to move all movable pages to the end of the zone. Used cached
2354 	 * information on where the scanners should start (unless we explicitly
2355 	 * want to compact the whole zone), but check that it is initialised
2356 	 * by ensuring the values are within zone boundaries.
2357 	 */
2358 	cc->fast_start_pfn = 0;
2359 	if (cc->whole_zone) {
2360 		cc->migrate_pfn = start_pfn;
2361 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2362 	} else {
2363 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2364 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2365 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2366 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2367 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2368 		}
2369 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2370 			cc->migrate_pfn = start_pfn;
2371 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2372 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2373 		}
2374 
2375 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2376 			cc->whole_zone = true;
2377 	}
2378 
2379 	last_migrated_pfn = 0;
2380 
2381 	/*
2382 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2383 	 * the basis that some migrations will fail in ASYNC mode. However,
2384 	 * if the cached PFNs match and pageblocks are skipped due to having
2385 	 * no isolation candidates, then the sync state does not matter.
2386 	 * Until a pageblock with isolation candidates is found, keep the
2387 	 * cached PFNs in sync to avoid revisiting the same blocks.
2388 	 */
2389 	update_cached = !sync &&
2390 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2391 
2392 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2393 
2394 	/* lru_add_drain_all could be expensive with involving other CPUs */
2395 	lru_add_drain();
2396 
2397 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2398 		int err;
2399 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2400 
2401 		/*
2402 		 * Avoid multiple rescans of the same pageblock which can
2403 		 * happen if a page cannot be isolated (dirty/writeback in
2404 		 * async mode) or if the migrated pages are being allocated
2405 		 * before the pageblock is cleared.  The first rescan will
2406 		 * capture the entire pageblock for migration. If it fails,
2407 		 * it'll be marked skip and scanning will proceed as normal.
2408 		 */
2409 		cc->finish_pageblock = false;
2410 		if (pageblock_start_pfn(last_migrated_pfn) ==
2411 		    pageblock_start_pfn(iteration_start_pfn)) {
2412 			cc->finish_pageblock = true;
2413 		}
2414 
2415 rescan:
2416 		switch (isolate_migratepages(cc)) {
2417 		case ISOLATE_ABORT:
2418 			ret = COMPACT_CONTENDED;
2419 			putback_movable_pages(&cc->migratepages);
2420 			cc->nr_migratepages = 0;
2421 			goto out;
2422 		case ISOLATE_NONE:
2423 			if (update_cached) {
2424 				cc->zone->compact_cached_migrate_pfn[1] =
2425 					cc->zone->compact_cached_migrate_pfn[0];
2426 			}
2427 
2428 			/*
2429 			 * We haven't isolated and migrated anything, but
2430 			 * there might still be unflushed migrations from
2431 			 * previous cc->order aligned block.
2432 			 */
2433 			goto check_drain;
2434 		case ISOLATE_SUCCESS:
2435 			update_cached = false;
2436 			last_migrated_pfn = iteration_start_pfn;
2437 		}
2438 
2439 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2440 				compaction_free, (unsigned long)cc, cc->mode,
2441 				MR_COMPACTION, &nr_succeeded);
2442 
2443 		trace_mm_compaction_migratepages(cc, nr_succeeded);
2444 
2445 		/* All pages were either migrated or will be released */
2446 		cc->nr_migratepages = 0;
2447 		if (err) {
2448 			putback_movable_pages(&cc->migratepages);
2449 			/*
2450 			 * migrate_pages() may return -ENOMEM when scanners meet
2451 			 * and we want compact_finished() to detect it
2452 			 */
2453 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2454 				ret = COMPACT_CONTENDED;
2455 				goto out;
2456 			}
2457 			/*
2458 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2459 			 * within the current order-aligned block, scan the
2460 			 * remainder of the pageblock. This will mark the
2461 			 * pageblock "skip" to avoid rescanning in the near
2462 			 * future. This will isolate more pages than necessary
2463 			 * for the request but avoid loops due to
2464 			 * fast_find_migrateblock revisiting blocks that were
2465 			 * recently partially scanned.
2466 			 */
2467 			if (cc->direct_compaction && !cc->finish_pageblock &&
2468 						(cc->mode < MIGRATE_SYNC)) {
2469 				cc->finish_pageblock = true;
2470 
2471 				/*
2472 				 * Draining pcplists does not help THP if
2473 				 * any page failed to migrate. Even after
2474 				 * drain, the pageblock will not be free.
2475 				 */
2476 				if (cc->order == COMPACTION_HPAGE_ORDER)
2477 					last_migrated_pfn = 0;
2478 
2479 				goto rescan;
2480 			}
2481 		}
2482 
2483 		/* Stop if a page has been captured */
2484 		if (capc && capc->page) {
2485 			ret = COMPACT_SUCCESS;
2486 			break;
2487 		}
2488 
2489 check_drain:
2490 		/*
2491 		 * Has the migration scanner moved away from the previous
2492 		 * cc->order aligned block where we migrated from? If yes,
2493 		 * flush the pages that were freed, so that they can merge and
2494 		 * compact_finished() can detect immediately if allocation
2495 		 * would succeed.
2496 		 */
2497 		if (cc->order > 0 && last_migrated_pfn) {
2498 			unsigned long current_block_start =
2499 				block_start_pfn(cc->migrate_pfn, cc->order);
2500 
2501 			if (last_migrated_pfn < current_block_start) {
2502 				lru_add_drain_cpu_zone(cc->zone);
2503 				/* No more flushing until we migrate again */
2504 				last_migrated_pfn = 0;
2505 			}
2506 		}
2507 	}
2508 
2509 out:
2510 	/*
2511 	 * Release free pages and update where the free scanner should restart,
2512 	 * so we don't leave any returned pages behind in the next attempt.
2513 	 */
2514 	if (cc->nr_freepages > 0) {
2515 		unsigned long free_pfn = release_freepages(&cc->freepages);
2516 
2517 		cc->nr_freepages = 0;
2518 		VM_BUG_ON(free_pfn == 0);
2519 		/* The cached pfn is always the first in a pageblock */
2520 		free_pfn = pageblock_start_pfn(free_pfn);
2521 		/*
2522 		 * Only go back, not forward. The cached pfn might have been
2523 		 * already reset to zone end in compact_finished()
2524 		 */
2525 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2526 			cc->zone->compact_cached_free_pfn = free_pfn;
2527 	}
2528 
2529 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2530 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2531 
2532 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2533 
2534 	VM_BUG_ON(!list_empty(&cc->freepages));
2535 	VM_BUG_ON(!list_empty(&cc->migratepages));
2536 
2537 	return ret;
2538 }
2539 
2540 static enum compact_result compact_zone_order(struct zone *zone, int order,
2541 		gfp_t gfp_mask, enum compact_priority prio,
2542 		unsigned int alloc_flags, int highest_zoneidx,
2543 		struct page **capture)
2544 {
2545 	enum compact_result ret;
2546 	struct compact_control cc = {
2547 		.order = order,
2548 		.search_order = order,
2549 		.gfp_mask = gfp_mask,
2550 		.zone = zone,
2551 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2552 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2553 		.alloc_flags = alloc_flags,
2554 		.highest_zoneidx = highest_zoneidx,
2555 		.direct_compaction = true,
2556 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2557 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2558 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2559 	};
2560 	struct capture_control capc = {
2561 		.cc = &cc,
2562 		.page = NULL,
2563 	};
2564 
2565 	/*
2566 	 * Make sure the structs are really initialized before we expose the
2567 	 * capture control, in case we are interrupted and the interrupt handler
2568 	 * frees a page.
2569 	 */
2570 	barrier();
2571 	WRITE_ONCE(current->capture_control, &capc);
2572 
2573 	ret = compact_zone(&cc, &capc);
2574 
2575 	/*
2576 	 * Make sure we hide capture control first before we read the captured
2577 	 * page pointer, otherwise an interrupt could free and capture a page
2578 	 * and we would leak it.
2579 	 */
2580 	WRITE_ONCE(current->capture_control, NULL);
2581 	*capture = READ_ONCE(capc.page);
2582 	/*
2583 	 * Technically, it is also possible that compaction is skipped but
2584 	 * the page is still captured out of luck(IRQ came and freed the page).
2585 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2586 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2587 	 */
2588 	if (*capture)
2589 		ret = COMPACT_SUCCESS;
2590 
2591 	return ret;
2592 }
2593 
2594 /**
2595  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2596  * @gfp_mask: The GFP mask of the current allocation
2597  * @order: The order of the current allocation
2598  * @alloc_flags: The allocation flags of the current allocation
2599  * @ac: The context of current allocation
2600  * @prio: Determines how hard direct compaction should try to succeed
2601  * @capture: Pointer to free page created by compaction will be stored here
2602  *
2603  * This is the main entry point for direct page compaction.
2604  */
2605 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2606 		unsigned int alloc_flags, const struct alloc_context *ac,
2607 		enum compact_priority prio, struct page **capture)
2608 {
2609 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2610 	struct zoneref *z;
2611 	struct zone *zone;
2612 	enum compact_result rc = COMPACT_SKIPPED;
2613 
2614 	/*
2615 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2616 	 * tricky context because the migration might require IO
2617 	 */
2618 	if (!may_perform_io)
2619 		return COMPACT_SKIPPED;
2620 
2621 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2622 
2623 	/* Compact each zone in the list */
2624 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2625 					ac->highest_zoneidx, ac->nodemask) {
2626 		enum compact_result status;
2627 
2628 		if (prio > MIN_COMPACT_PRIORITY
2629 					&& compaction_deferred(zone, order)) {
2630 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2631 			continue;
2632 		}
2633 
2634 		status = compact_zone_order(zone, order, gfp_mask, prio,
2635 				alloc_flags, ac->highest_zoneidx, capture);
2636 		rc = max(status, rc);
2637 
2638 		/* The allocation should succeed, stop compacting */
2639 		if (status == COMPACT_SUCCESS) {
2640 			/*
2641 			 * We think the allocation will succeed in this zone,
2642 			 * but it is not certain, hence the false. The caller
2643 			 * will repeat this with true if allocation indeed
2644 			 * succeeds in this zone.
2645 			 */
2646 			compaction_defer_reset(zone, order, false);
2647 
2648 			break;
2649 		}
2650 
2651 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2652 					status == COMPACT_PARTIAL_SKIPPED))
2653 			/*
2654 			 * We think that allocation won't succeed in this zone
2655 			 * so we defer compaction there. If it ends up
2656 			 * succeeding after all, it will be reset.
2657 			 */
2658 			defer_compaction(zone, order);
2659 
2660 		/*
2661 		 * We might have stopped compacting due to need_resched() in
2662 		 * async compaction, or due to a fatal signal detected. In that
2663 		 * case do not try further zones
2664 		 */
2665 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2666 					|| fatal_signal_pending(current))
2667 			break;
2668 	}
2669 
2670 	return rc;
2671 }
2672 
2673 /*
2674  * Compact all zones within a node till each zone's fragmentation score
2675  * reaches within proactive compaction thresholds (as determined by the
2676  * proactiveness tunable).
2677  *
2678  * It is possible that the function returns before reaching score targets
2679  * due to various back-off conditions, such as, contention on per-node or
2680  * per-zone locks.
2681  */
2682 static void proactive_compact_node(pg_data_t *pgdat)
2683 {
2684 	int zoneid;
2685 	struct zone *zone;
2686 	struct compact_control cc = {
2687 		.order = -1,
2688 		.mode = MIGRATE_SYNC_LIGHT,
2689 		.ignore_skip_hint = true,
2690 		.whole_zone = true,
2691 		.gfp_mask = GFP_KERNEL,
2692 		.proactive_compaction = true,
2693 	};
2694 
2695 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2696 		zone = &pgdat->node_zones[zoneid];
2697 		if (!populated_zone(zone))
2698 			continue;
2699 
2700 		cc.zone = zone;
2701 
2702 		compact_zone(&cc, NULL);
2703 
2704 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2705 				     cc.total_migrate_scanned);
2706 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2707 				     cc.total_free_scanned);
2708 	}
2709 }
2710 
2711 /* Compact all zones within a node */
2712 static void compact_node(int nid)
2713 {
2714 	pg_data_t *pgdat = NODE_DATA(nid);
2715 	int zoneid;
2716 	struct zone *zone;
2717 	struct compact_control cc = {
2718 		.order = -1,
2719 		.mode = MIGRATE_SYNC,
2720 		.ignore_skip_hint = true,
2721 		.whole_zone = true,
2722 		.gfp_mask = GFP_KERNEL,
2723 	};
2724 
2725 
2726 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2727 
2728 		zone = &pgdat->node_zones[zoneid];
2729 		if (!populated_zone(zone))
2730 			continue;
2731 
2732 		cc.zone = zone;
2733 
2734 		compact_zone(&cc, NULL);
2735 	}
2736 }
2737 
2738 /* Compact all nodes in the system */
2739 static void compact_nodes(void)
2740 {
2741 	int nid;
2742 
2743 	/* Flush pending updates to the LRU lists */
2744 	lru_add_drain_all();
2745 
2746 	for_each_online_node(nid)
2747 		compact_node(nid);
2748 }
2749 
2750 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2751 		void *buffer, size_t *length, loff_t *ppos)
2752 {
2753 	int rc, nid;
2754 
2755 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2756 	if (rc)
2757 		return rc;
2758 
2759 	if (write && sysctl_compaction_proactiveness) {
2760 		for_each_online_node(nid) {
2761 			pg_data_t *pgdat = NODE_DATA(nid);
2762 
2763 			if (pgdat->proactive_compact_trigger)
2764 				continue;
2765 
2766 			pgdat->proactive_compact_trigger = true;
2767 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2768 							     pgdat->nr_zones - 1);
2769 			wake_up_interruptible(&pgdat->kcompactd_wait);
2770 		}
2771 	}
2772 
2773 	return 0;
2774 }
2775 
2776 /*
2777  * This is the entry point for compacting all nodes via
2778  * /proc/sys/vm/compact_memory
2779  */
2780 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2781 			void *buffer, size_t *length, loff_t *ppos)
2782 {
2783 	if (write)
2784 		compact_nodes();
2785 
2786 	return 0;
2787 }
2788 
2789 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2790 static ssize_t compact_store(struct device *dev,
2791 			     struct device_attribute *attr,
2792 			     const char *buf, size_t count)
2793 {
2794 	int nid = dev->id;
2795 
2796 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2797 		/* Flush pending updates to the LRU lists */
2798 		lru_add_drain_all();
2799 
2800 		compact_node(nid);
2801 	}
2802 
2803 	return count;
2804 }
2805 static DEVICE_ATTR_WO(compact);
2806 
2807 int compaction_register_node(struct node *node)
2808 {
2809 	return device_create_file(&node->dev, &dev_attr_compact);
2810 }
2811 
2812 void compaction_unregister_node(struct node *node)
2813 {
2814 	return device_remove_file(&node->dev, &dev_attr_compact);
2815 }
2816 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2817 
2818 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2819 {
2820 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2821 		pgdat->proactive_compact_trigger;
2822 }
2823 
2824 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2825 {
2826 	int zoneid;
2827 	struct zone *zone;
2828 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2829 
2830 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2831 		zone = &pgdat->node_zones[zoneid];
2832 
2833 		if (!populated_zone(zone))
2834 			continue;
2835 
2836 		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2837 					highest_zoneidx) == COMPACT_CONTINUE)
2838 			return true;
2839 	}
2840 
2841 	return false;
2842 }
2843 
2844 static void kcompactd_do_work(pg_data_t *pgdat)
2845 {
2846 	/*
2847 	 * With no special task, compact all zones so that a page of requested
2848 	 * order is allocatable.
2849 	 */
2850 	int zoneid;
2851 	struct zone *zone;
2852 	struct compact_control cc = {
2853 		.order = pgdat->kcompactd_max_order,
2854 		.search_order = pgdat->kcompactd_max_order,
2855 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2856 		.mode = MIGRATE_SYNC_LIGHT,
2857 		.ignore_skip_hint = false,
2858 		.gfp_mask = GFP_KERNEL,
2859 	};
2860 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2861 							cc.highest_zoneidx);
2862 	count_compact_event(KCOMPACTD_WAKE);
2863 
2864 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2865 		int status;
2866 
2867 		zone = &pgdat->node_zones[zoneid];
2868 		if (!populated_zone(zone))
2869 			continue;
2870 
2871 		if (compaction_deferred(zone, cc.order))
2872 			continue;
2873 
2874 		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2875 							COMPACT_CONTINUE)
2876 			continue;
2877 
2878 		if (kthread_should_stop())
2879 			return;
2880 
2881 		cc.zone = zone;
2882 		status = compact_zone(&cc, NULL);
2883 
2884 		if (status == COMPACT_SUCCESS) {
2885 			compaction_defer_reset(zone, cc.order, false);
2886 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2887 			/*
2888 			 * Buddy pages may become stranded on pcps that could
2889 			 * otherwise coalesce on the zone's free area for
2890 			 * order >= cc.order.  This is ratelimited by the
2891 			 * upcoming deferral.
2892 			 */
2893 			drain_all_pages(zone);
2894 
2895 			/*
2896 			 * We use sync migration mode here, so we defer like
2897 			 * sync direct compaction does.
2898 			 */
2899 			defer_compaction(zone, cc.order);
2900 		}
2901 
2902 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2903 				     cc.total_migrate_scanned);
2904 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2905 				     cc.total_free_scanned);
2906 	}
2907 
2908 	/*
2909 	 * Regardless of success, we are done until woken up next. But remember
2910 	 * the requested order/highest_zoneidx in case it was higher/tighter
2911 	 * than our current ones
2912 	 */
2913 	if (pgdat->kcompactd_max_order <= cc.order)
2914 		pgdat->kcompactd_max_order = 0;
2915 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2916 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2917 }
2918 
2919 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2920 {
2921 	if (!order)
2922 		return;
2923 
2924 	if (pgdat->kcompactd_max_order < order)
2925 		pgdat->kcompactd_max_order = order;
2926 
2927 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2928 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2929 
2930 	/*
2931 	 * Pairs with implicit barrier in wait_event_freezable()
2932 	 * such that wakeups are not missed.
2933 	 */
2934 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2935 		return;
2936 
2937 	if (!kcompactd_node_suitable(pgdat))
2938 		return;
2939 
2940 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2941 							highest_zoneidx);
2942 	wake_up_interruptible(&pgdat->kcompactd_wait);
2943 }
2944 
2945 /*
2946  * The background compaction daemon, started as a kernel thread
2947  * from the init process.
2948  */
2949 static int kcompactd(void *p)
2950 {
2951 	pg_data_t *pgdat = (pg_data_t *)p;
2952 	struct task_struct *tsk = current;
2953 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2954 	long timeout = default_timeout;
2955 
2956 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2957 
2958 	if (!cpumask_empty(cpumask))
2959 		set_cpus_allowed_ptr(tsk, cpumask);
2960 
2961 	set_freezable();
2962 
2963 	pgdat->kcompactd_max_order = 0;
2964 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2965 
2966 	while (!kthread_should_stop()) {
2967 		unsigned long pflags;
2968 
2969 		/*
2970 		 * Avoid the unnecessary wakeup for proactive compaction
2971 		 * when it is disabled.
2972 		 */
2973 		if (!sysctl_compaction_proactiveness)
2974 			timeout = MAX_SCHEDULE_TIMEOUT;
2975 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2976 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2977 			kcompactd_work_requested(pgdat), timeout) &&
2978 			!pgdat->proactive_compact_trigger) {
2979 
2980 			psi_memstall_enter(&pflags);
2981 			kcompactd_do_work(pgdat);
2982 			psi_memstall_leave(&pflags);
2983 			/*
2984 			 * Reset the timeout value. The defer timeout from
2985 			 * proactive compaction is lost here but that is fine
2986 			 * as the condition of the zone changing substantionally
2987 			 * then carrying on with the previous defer interval is
2988 			 * not useful.
2989 			 */
2990 			timeout = default_timeout;
2991 			continue;
2992 		}
2993 
2994 		/*
2995 		 * Start the proactive work with default timeout. Based
2996 		 * on the fragmentation score, this timeout is updated.
2997 		 */
2998 		timeout = default_timeout;
2999 		if (should_proactive_compact_node(pgdat)) {
3000 			unsigned int prev_score, score;
3001 
3002 			prev_score = fragmentation_score_node(pgdat);
3003 			proactive_compact_node(pgdat);
3004 			score = fragmentation_score_node(pgdat);
3005 			/*
3006 			 * Defer proactive compaction if the fragmentation
3007 			 * score did not go down i.e. no progress made.
3008 			 */
3009 			if (unlikely(score >= prev_score))
3010 				timeout =
3011 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3012 		}
3013 		if (unlikely(pgdat->proactive_compact_trigger))
3014 			pgdat->proactive_compact_trigger = false;
3015 	}
3016 
3017 	return 0;
3018 }
3019 
3020 /*
3021  * This kcompactd start function will be called by init and node-hot-add.
3022  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3023  */
3024 void kcompactd_run(int nid)
3025 {
3026 	pg_data_t *pgdat = NODE_DATA(nid);
3027 
3028 	if (pgdat->kcompactd)
3029 		return;
3030 
3031 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3032 	if (IS_ERR(pgdat->kcompactd)) {
3033 		pr_err("Failed to start kcompactd on node %d\n", nid);
3034 		pgdat->kcompactd = NULL;
3035 	}
3036 }
3037 
3038 /*
3039  * Called by memory hotplug when all memory in a node is offlined. Caller must
3040  * be holding mem_hotplug_begin/done().
3041  */
3042 void kcompactd_stop(int nid)
3043 {
3044 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3045 
3046 	if (kcompactd) {
3047 		kthread_stop(kcompactd);
3048 		NODE_DATA(nid)->kcompactd = NULL;
3049 	}
3050 }
3051 
3052 /*
3053  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3054  * not required for correctness. So if the last cpu in a node goes
3055  * away, we get changed to run anywhere: as the first one comes back,
3056  * restore their cpu bindings.
3057  */
3058 static int kcompactd_cpu_online(unsigned int cpu)
3059 {
3060 	int nid;
3061 
3062 	for_each_node_state(nid, N_MEMORY) {
3063 		pg_data_t *pgdat = NODE_DATA(nid);
3064 		const struct cpumask *mask;
3065 
3066 		mask = cpumask_of_node(pgdat->node_id);
3067 
3068 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3069 			/* One of our CPUs online: restore mask */
3070 			if (pgdat->kcompactd)
3071 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3072 	}
3073 	return 0;
3074 }
3075 
3076 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3077 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3078 {
3079 	int ret, old;
3080 
3081 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3082 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3083 
3084 	old = *(int *)table->data;
3085 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3086 	if (ret)
3087 		return ret;
3088 	if (old != *(int *)table->data)
3089 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3090 			     table->procname, current->comm,
3091 			     task_pid_nr(current));
3092 	return ret;
3093 }
3094 
3095 static struct ctl_table vm_compaction[] = {
3096 	{
3097 		.procname	= "compact_memory",
3098 		.data		= NULL,
3099 		.maxlen		= sizeof(int),
3100 		.mode		= 0200,
3101 		.proc_handler	= sysctl_compaction_handler,
3102 	},
3103 	{
3104 		.procname	= "compaction_proactiveness",
3105 		.data		= &sysctl_compaction_proactiveness,
3106 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3107 		.mode		= 0644,
3108 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3109 		.extra1		= SYSCTL_ZERO,
3110 		.extra2		= SYSCTL_ONE_HUNDRED,
3111 	},
3112 	{
3113 		.procname	= "extfrag_threshold",
3114 		.data		= &sysctl_extfrag_threshold,
3115 		.maxlen		= sizeof(int),
3116 		.mode		= 0644,
3117 		.proc_handler	= proc_dointvec_minmax,
3118 		.extra1		= SYSCTL_ZERO,
3119 		.extra2		= SYSCTL_ONE_THOUSAND,
3120 	},
3121 	{
3122 		.procname	= "compact_unevictable_allowed",
3123 		.data		= &sysctl_compact_unevictable_allowed,
3124 		.maxlen		= sizeof(int),
3125 		.mode		= 0644,
3126 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3127 		.extra1		= SYSCTL_ZERO,
3128 		.extra2		= SYSCTL_ONE,
3129 	},
3130 	{ }
3131 };
3132 
3133 static int __init kcompactd_init(void)
3134 {
3135 	int nid;
3136 	int ret;
3137 
3138 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3139 					"mm/compaction:online",
3140 					kcompactd_cpu_online, NULL);
3141 	if (ret < 0) {
3142 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3143 		return ret;
3144 	}
3145 
3146 	for_each_node_state(nid, N_MEMORY)
3147 		kcompactd_run(nid);
3148 	register_sysctl_init("vm", vm_compaction);
3149 	return 0;
3150 }
3151 subsys_initcall(kcompactd_init)
3152 
3153 #endif /* CONFIG_COMPACTION */
3154