xref: /linux/mm/compaction.c (revision e91c37f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27 
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33 
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36 	count_vm_event(item);
37 }
38 
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41 	count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47 
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52 
53 #define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55 
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
67 #endif
68 
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71 	struct page *page, *next;
72 	unsigned long high_pfn = 0;
73 
74 	list_for_each_entry_safe(page, next, freelist, lru) {
75 		unsigned long pfn = page_to_pfn(page);
76 		list_del(&page->lru);
77 		__free_page(page);
78 		if (pfn > high_pfn)
79 			high_pfn = pfn;
80 	}
81 
82 	return high_pfn;
83 }
84 
85 static void split_map_pages(struct list_head *list)
86 {
87 	unsigned int i, order, nr_pages;
88 	struct page *page, *next;
89 	LIST_HEAD(tmp_list);
90 
91 	list_for_each_entry_safe(page, next, list, lru) {
92 		list_del(&page->lru);
93 
94 		order = page_private(page);
95 		nr_pages = 1 << order;
96 
97 		post_alloc_hook(page, order, __GFP_MOVABLE);
98 		if (order)
99 			split_page(page, order);
100 
101 		for (i = 0; i < nr_pages; i++) {
102 			list_add(&page->lru, &tmp_list);
103 			page++;
104 		}
105 	}
106 
107 	list_splice(&tmp_list, list);
108 }
109 
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113 	const struct movable_operations *mops;
114 
115 	VM_BUG_ON_PAGE(!PageLocked(page), page);
116 	if (!__PageMovable(page))
117 		return false;
118 
119 	mops = page_movable_ops(page);
120 	if (mops)
121 		return true;
122 
123 	return false;
124 }
125 
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128 	VM_BUG_ON_PAGE(!PageLocked(page), page);
129 	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133 
134 void __ClearPageMovable(struct page *page)
135 {
136 	VM_BUG_ON_PAGE(!PageMovable(page), page);
137 	/*
138 	 * This page still has the type of a movable page, but it's
139 	 * actually not movable any more.
140 	 */
141 	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144 
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147 
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155 	zone->compact_considered = 0;
156 	zone->compact_defer_shift++;
157 
158 	if (order < zone->compact_order_failed)
159 		zone->compact_order_failed = order;
160 
161 	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163 
164 	trace_mm_compaction_defer_compaction(zone, order);
165 }
166 
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170 	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171 
172 	if (order < zone->compact_order_failed)
173 		return false;
174 
175 	/* Avoid possible overflow */
176 	if (++zone->compact_considered >= defer_limit) {
177 		zone->compact_considered = defer_limit;
178 		return false;
179 	}
180 
181 	trace_mm_compaction_deferred(zone, order);
182 
183 	return true;
184 }
185 
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192 		bool alloc_success)
193 {
194 	if (alloc_success) {
195 		zone->compact_considered = 0;
196 		zone->compact_defer_shift = 0;
197 	}
198 	if (order >= zone->compact_order_failed)
199 		zone->compact_order_failed = order + 1;
200 
201 	trace_mm_compaction_defer_reset(zone, order);
202 }
203 
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207 	if (order < zone->compact_order_failed)
208 		return false;
209 
210 	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 		zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213 
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216 					struct page *page)
217 {
218 	if (cc->ignore_skip_hint)
219 		return true;
220 
221 	return !get_pageblock_skip(page);
222 }
223 
224 static void reset_cached_positions(struct zone *zone)
225 {
226 	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 	zone->compact_cached_free_pfn =
229 				pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231 
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
241 
242 	if (online_section_nr(start_nr))
243 		return 0;
244 
245 	while (++start_nr <= __highest_present_section_nr) {
246 		if (online_section_nr(start_nr))
247 			return section_nr_to_pfn(start_nr);
248 	}
249 
250 	return 0;
251 }
252 
253 /*
254  * If the PFN falls into an offline section, return the end PFN of the
255  * next online section in reverse. If the PFN falls into an online section
256  * or if there is no next online section in reverse, return 0.
257  */
258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259 {
260 	unsigned long start_nr = pfn_to_section_nr(start_pfn);
261 
262 	if (!start_nr || online_section_nr(start_nr))
263 		return 0;
264 
265 	while (start_nr-- > 0) {
266 		if (online_section_nr(start_nr))
267 			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268 	}
269 
270 	return 0;
271 }
272 #else
273 static unsigned long skip_offline_sections(unsigned long start_pfn)
274 {
275 	return 0;
276 }
277 
278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279 {
280 	return 0;
281 }
282 #endif
283 
284 /*
285  * Compound pages of >= pageblock_order should consistently be skipped until
286  * released. It is always pointless to compact pages of such order (if they are
287  * migratable), and the pageblocks they occupy cannot contain any free pages.
288  */
289 static bool pageblock_skip_persistent(struct page *page)
290 {
291 	if (!PageCompound(page))
292 		return false;
293 
294 	page = compound_head(page);
295 
296 	if (compound_order(page) >= pageblock_order)
297 		return true;
298 
299 	return false;
300 }
301 
302 static bool
303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304 							bool check_target)
305 {
306 	struct page *page = pfn_to_online_page(pfn);
307 	struct page *block_page;
308 	struct page *end_page;
309 	unsigned long block_pfn;
310 
311 	if (!page)
312 		return false;
313 	if (zone != page_zone(page))
314 		return false;
315 	if (pageblock_skip_persistent(page))
316 		return false;
317 
318 	/*
319 	 * If skip is already cleared do no further checking once the
320 	 * restart points have been set.
321 	 */
322 	if (check_source && check_target && !get_pageblock_skip(page))
323 		return true;
324 
325 	/*
326 	 * If clearing skip for the target scanner, do not select a
327 	 * non-movable pageblock as the starting point.
328 	 */
329 	if (!check_source && check_target &&
330 	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331 		return false;
332 
333 	/* Ensure the start of the pageblock or zone is online and valid */
334 	block_pfn = pageblock_start_pfn(pfn);
335 	block_pfn = max(block_pfn, zone->zone_start_pfn);
336 	block_page = pfn_to_online_page(block_pfn);
337 	if (block_page) {
338 		page = block_page;
339 		pfn = block_pfn;
340 	}
341 
342 	/* Ensure the end of the pageblock or zone is online and valid */
343 	block_pfn = pageblock_end_pfn(pfn) - 1;
344 	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345 	end_page = pfn_to_online_page(block_pfn);
346 	if (!end_page)
347 		return false;
348 
349 	/*
350 	 * Only clear the hint if a sample indicates there is either a
351 	 * free page or an LRU page in the block. One or other condition
352 	 * is necessary for the block to be a migration source/target.
353 	 */
354 	do {
355 		if (check_source && PageLRU(page)) {
356 			clear_pageblock_skip(page);
357 			return true;
358 		}
359 
360 		if (check_target && PageBuddy(page)) {
361 			clear_pageblock_skip(page);
362 			return true;
363 		}
364 
365 		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366 	} while (page <= end_page);
367 
368 	return false;
369 }
370 
371 /*
372  * This function is called to clear all cached information on pageblocks that
373  * should be skipped for page isolation when the migrate and free page scanner
374  * meet.
375  */
376 static void __reset_isolation_suitable(struct zone *zone)
377 {
378 	unsigned long migrate_pfn = zone->zone_start_pfn;
379 	unsigned long free_pfn = zone_end_pfn(zone) - 1;
380 	unsigned long reset_migrate = free_pfn;
381 	unsigned long reset_free = migrate_pfn;
382 	bool source_set = false;
383 	bool free_set = false;
384 
385 	/* Only flush if a full compaction finished recently */
386 	if (!zone->compact_blockskip_flush)
387 		return;
388 
389 	zone->compact_blockskip_flush = false;
390 
391 	/*
392 	 * Walk the zone and update pageblock skip information. Source looks
393 	 * for PageLRU while target looks for PageBuddy. When the scanner
394 	 * is found, both PageBuddy and PageLRU are checked as the pageblock
395 	 * is suitable as both source and target.
396 	 */
397 	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
398 					free_pfn -= pageblock_nr_pages) {
399 		cond_resched();
400 
401 		/* Update the migrate PFN */
402 		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
403 		    migrate_pfn < reset_migrate) {
404 			source_set = true;
405 			reset_migrate = migrate_pfn;
406 			zone->compact_init_migrate_pfn = reset_migrate;
407 			zone->compact_cached_migrate_pfn[0] = reset_migrate;
408 			zone->compact_cached_migrate_pfn[1] = reset_migrate;
409 		}
410 
411 		/* Update the free PFN */
412 		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
413 		    free_pfn > reset_free) {
414 			free_set = true;
415 			reset_free = free_pfn;
416 			zone->compact_init_free_pfn = reset_free;
417 			zone->compact_cached_free_pfn = reset_free;
418 		}
419 	}
420 
421 	/* Leave no distance if no suitable block was reset */
422 	if (reset_migrate >= reset_free) {
423 		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
424 		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
425 		zone->compact_cached_free_pfn = free_pfn;
426 	}
427 }
428 
429 void reset_isolation_suitable(pg_data_t *pgdat)
430 {
431 	int zoneid;
432 
433 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
434 		struct zone *zone = &pgdat->node_zones[zoneid];
435 		if (!populated_zone(zone))
436 			continue;
437 
438 		__reset_isolation_suitable(zone);
439 	}
440 }
441 
442 /*
443  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
444  * locks are not required for read/writers. Returns true if it was already set.
445  */
446 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
447 {
448 	bool skip;
449 
450 	/* Do not update if skip hint is being ignored */
451 	if (cc->ignore_skip_hint)
452 		return false;
453 
454 	skip = get_pageblock_skip(page);
455 	if (!skip && !cc->no_set_skip_hint)
456 		set_pageblock_skip(page);
457 
458 	return skip;
459 }
460 
461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462 {
463 	struct zone *zone = cc->zone;
464 
465 	/* Set for isolation rather than compaction */
466 	if (cc->no_set_skip_hint)
467 		return;
468 
469 	pfn = pageblock_end_pfn(pfn);
470 
471 	/* Update where async and sync compaction should restart */
472 	if (pfn > zone->compact_cached_migrate_pfn[0])
473 		zone->compact_cached_migrate_pfn[0] = pfn;
474 	if (cc->mode != MIGRATE_ASYNC &&
475 	    pfn > zone->compact_cached_migrate_pfn[1])
476 		zone->compact_cached_migrate_pfn[1] = pfn;
477 }
478 
479 /*
480  * If no pages were isolated then mark this pageblock to be skipped in the
481  * future. The information is later cleared by __reset_isolation_suitable().
482  */
483 static void update_pageblock_skip(struct compact_control *cc,
484 			struct page *page, unsigned long pfn)
485 {
486 	struct zone *zone = cc->zone;
487 
488 	if (cc->no_set_skip_hint)
489 		return;
490 
491 	set_pageblock_skip(page);
492 
493 	if (pfn < zone->compact_cached_free_pfn)
494 		zone->compact_cached_free_pfn = pfn;
495 }
496 #else
497 static inline bool isolation_suitable(struct compact_control *cc,
498 					struct page *page)
499 {
500 	return true;
501 }
502 
503 static inline bool pageblock_skip_persistent(struct page *page)
504 {
505 	return false;
506 }
507 
508 static inline void update_pageblock_skip(struct compact_control *cc,
509 			struct page *page, unsigned long pfn)
510 {
511 }
512 
513 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
514 {
515 }
516 
517 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
518 {
519 	return false;
520 }
521 #endif /* CONFIG_COMPACTION */
522 
523 /*
524  * Compaction requires the taking of some coarse locks that are potentially
525  * very heavily contended. For async compaction, trylock and record if the
526  * lock is contended. The lock will still be acquired but compaction will
527  * abort when the current block is finished regardless of success rate.
528  * Sync compaction acquires the lock.
529  *
530  * Always returns true which makes it easier to track lock state in callers.
531  */
532 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
533 						struct compact_control *cc)
534 	__acquires(lock)
535 {
536 	/* Track if the lock is contended in async mode */
537 	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
538 		if (spin_trylock_irqsave(lock, *flags))
539 			return true;
540 
541 		cc->contended = true;
542 	}
543 
544 	spin_lock_irqsave(lock, *flags);
545 	return true;
546 }
547 
548 /*
549  * Compaction requires the taking of some coarse locks that are potentially
550  * very heavily contended. The lock should be periodically unlocked to avoid
551  * having disabled IRQs for a long time, even when there is nobody waiting on
552  * the lock. It might also be that allowing the IRQs will result in
553  * need_resched() becoming true. If scheduling is needed, compaction schedules.
554  * Either compaction type will also abort if a fatal signal is pending.
555  * In either case if the lock was locked, it is dropped and not regained.
556  *
557  * Returns true if compaction should abort due to fatal signal pending.
558  * Returns false when compaction can continue.
559  */
560 static bool compact_unlock_should_abort(spinlock_t *lock,
561 		unsigned long flags, bool *locked, struct compact_control *cc)
562 {
563 	if (*locked) {
564 		spin_unlock_irqrestore(lock, flags);
565 		*locked = false;
566 	}
567 
568 	if (fatal_signal_pending(current)) {
569 		cc->contended = true;
570 		return true;
571 	}
572 
573 	cond_resched();
574 
575 	return false;
576 }
577 
578 /*
579  * Isolate free pages onto a private freelist. If @strict is true, will abort
580  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
581  * (even though it may still end up isolating some pages).
582  */
583 static unsigned long isolate_freepages_block(struct compact_control *cc,
584 				unsigned long *start_pfn,
585 				unsigned long end_pfn,
586 				struct list_head *freelist,
587 				unsigned int stride,
588 				bool strict)
589 {
590 	int nr_scanned = 0, total_isolated = 0;
591 	struct page *page;
592 	unsigned long flags = 0;
593 	bool locked = false;
594 	unsigned long blockpfn = *start_pfn;
595 	unsigned int order;
596 
597 	/* Strict mode is for isolation, speed is secondary */
598 	if (strict)
599 		stride = 1;
600 
601 	page = pfn_to_page(blockpfn);
602 
603 	/* Isolate free pages. */
604 	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
605 		int isolated;
606 
607 		/*
608 		 * Periodically drop the lock (if held) regardless of its
609 		 * contention, to give chance to IRQs. Abort if fatal signal
610 		 * pending.
611 		 */
612 		if (!(blockpfn % COMPACT_CLUSTER_MAX)
613 		    && compact_unlock_should_abort(&cc->zone->lock, flags,
614 								&locked, cc))
615 			break;
616 
617 		nr_scanned++;
618 
619 		/*
620 		 * For compound pages such as THP and hugetlbfs, we can save
621 		 * potentially a lot of iterations if we skip them at once.
622 		 * The check is racy, but we can consider only valid values
623 		 * and the only danger is skipping too much.
624 		 */
625 		if (PageCompound(page)) {
626 			const unsigned int order = compound_order(page);
627 
628 			if (blockpfn + (1UL << order) <= end_pfn) {
629 				blockpfn += (1UL << order) - 1;
630 				page += (1UL << order) - 1;
631 				nr_scanned += (1UL << order) - 1;
632 			}
633 
634 			goto isolate_fail;
635 		}
636 
637 		if (!PageBuddy(page))
638 			goto isolate_fail;
639 
640 		/* If we already hold the lock, we can skip some rechecking. */
641 		if (!locked) {
642 			locked = compact_lock_irqsave(&cc->zone->lock,
643 								&flags, cc);
644 
645 			/* Recheck this is a buddy page under lock */
646 			if (!PageBuddy(page))
647 				goto isolate_fail;
648 		}
649 
650 		/* Found a free page, will break it into order-0 pages */
651 		order = buddy_order(page);
652 		isolated = __isolate_free_page(page, order);
653 		if (!isolated)
654 			break;
655 		set_page_private(page, order);
656 
657 		nr_scanned += isolated - 1;
658 		total_isolated += isolated;
659 		cc->nr_freepages += isolated;
660 		list_add_tail(&page->lru, freelist);
661 
662 		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663 			blockpfn += isolated;
664 			break;
665 		}
666 		/* Advance to the end of split page */
667 		blockpfn += isolated - 1;
668 		page += isolated - 1;
669 		continue;
670 
671 isolate_fail:
672 		if (strict)
673 			break;
674 
675 	}
676 
677 	if (locked)
678 		spin_unlock_irqrestore(&cc->zone->lock, flags);
679 
680 	/*
681 	 * Be careful to not go outside of the pageblock.
682 	 */
683 	if (unlikely(blockpfn > end_pfn))
684 		blockpfn = end_pfn;
685 
686 	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
687 					nr_scanned, total_isolated);
688 
689 	/* Record how far we have got within the block */
690 	*start_pfn = blockpfn;
691 
692 	/*
693 	 * If strict isolation is requested by CMA then check that all the
694 	 * pages requested were isolated. If there were any failures, 0 is
695 	 * returned and CMA will fail.
696 	 */
697 	if (strict && blockpfn < end_pfn)
698 		total_isolated = 0;
699 
700 	cc->total_free_scanned += nr_scanned;
701 	if (total_isolated)
702 		count_compact_events(COMPACTISOLATED, total_isolated);
703 	return total_isolated;
704 }
705 
706 /**
707  * isolate_freepages_range() - isolate free pages.
708  * @cc:        Compaction control structure.
709  * @start_pfn: The first PFN to start isolating.
710  * @end_pfn:   The one-past-last PFN.
711  *
712  * Non-free pages, invalid PFNs, or zone boundaries within the
713  * [start_pfn, end_pfn) range are considered errors, cause function to
714  * undo its actions and return zero.
715  *
716  * Otherwise, function returns one-past-the-last PFN of isolated page
717  * (which may be greater then end_pfn if end fell in a middle of
718  * a free page).
719  */
720 unsigned long
721 isolate_freepages_range(struct compact_control *cc,
722 			unsigned long start_pfn, unsigned long end_pfn)
723 {
724 	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
725 	LIST_HEAD(freelist);
726 
727 	pfn = start_pfn;
728 	block_start_pfn = pageblock_start_pfn(pfn);
729 	if (block_start_pfn < cc->zone->zone_start_pfn)
730 		block_start_pfn = cc->zone->zone_start_pfn;
731 	block_end_pfn = pageblock_end_pfn(pfn);
732 
733 	for (; pfn < end_pfn; pfn += isolated,
734 				block_start_pfn = block_end_pfn,
735 				block_end_pfn += pageblock_nr_pages) {
736 		/* Protect pfn from changing by isolate_freepages_block */
737 		unsigned long isolate_start_pfn = pfn;
738 
739 		/*
740 		 * pfn could pass the block_end_pfn if isolated freepage
741 		 * is more than pageblock order. In this case, we adjust
742 		 * scanning range to right one.
743 		 */
744 		if (pfn >= block_end_pfn) {
745 			block_start_pfn = pageblock_start_pfn(pfn);
746 			block_end_pfn = pageblock_end_pfn(pfn);
747 		}
748 
749 		block_end_pfn = min(block_end_pfn, end_pfn);
750 
751 		if (!pageblock_pfn_to_page(block_start_pfn,
752 					block_end_pfn, cc->zone))
753 			break;
754 
755 		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
756 					block_end_pfn, &freelist, 0, true);
757 
758 		/*
759 		 * In strict mode, isolate_freepages_block() returns 0 if
760 		 * there are any holes in the block (ie. invalid PFNs or
761 		 * non-free pages).
762 		 */
763 		if (!isolated)
764 			break;
765 
766 		/*
767 		 * If we managed to isolate pages, it is always (1 << n) *
768 		 * pageblock_nr_pages for some non-negative n.  (Max order
769 		 * page may span two pageblocks).
770 		 */
771 	}
772 
773 	/* __isolate_free_page() does not map the pages */
774 	split_map_pages(&freelist);
775 
776 	if (pfn < end_pfn) {
777 		/* Loop terminated early, cleanup. */
778 		release_freepages(&freelist);
779 		return 0;
780 	}
781 
782 	/* We don't use freelists for anything. */
783 	return pfn;
784 }
785 
786 /* Similar to reclaim, but different enough that they don't share logic */
787 static bool too_many_isolated(struct compact_control *cc)
788 {
789 	pg_data_t *pgdat = cc->zone->zone_pgdat;
790 	bool too_many;
791 
792 	unsigned long active, inactive, isolated;
793 
794 	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
795 			node_page_state(pgdat, NR_INACTIVE_ANON);
796 	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
797 			node_page_state(pgdat, NR_ACTIVE_ANON);
798 	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
799 			node_page_state(pgdat, NR_ISOLATED_ANON);
800 
801 	/*
802 	 * Allow GFP_NOFS to isolate past the limit set for regular
803 	 * compaction runs. This prevents an ABBA deadlock when other
804 	 * compactors have already isolated to the limit, but are
805 	 * blocked on filesystem locks held by the GFP_NOFS thread.
806 	 */
807 	if (cc->gfp_mask & __GFP_FS) {
808 		inactive >>= 3;
809 		active >>= 3;
810 	}
811 
812 	too_many = isolated > (inactive + active) / 2;
813 	if (!too_many)
814 		wake_throttle_isolated(pgdat);
815 
816 	return too_many;
817 }
818 
819 /**
820  * isolate_migratepages_block() - isolate all migrate-able pages within
821  *				  a single pageblock
822  * @cc:		Compaction control structure.
823  * @low_pfn:	The first PFN to isolate
824  * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
825  * @mode:	Isolation mode to be used.
826  *
827  * Isolate all pages that can be migrated from the range specified by
828  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
829  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
830  * -ENOMEM in case we could not allocate a page, or 0.
831  * cc->migrate_pfn will contain the next pfn to scan.
832  *
833  * The pages are isolated on cc->migratepages list (not required to be empty),
834  * and cc->nr_migratepages is updated accordingly.
835  */
836 static int
837 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
838 			unsigned long end_pfn, isolate_mode_t mode)
839 {
840 	pg_data_t *pgdat = cc->zone->zone_pgdat;
841 	unsigned long nr_scanned = 0, nr_isolated = 0;
842 	struct lruvec *lruvec;
843 	unsigned long flags = 0;
844 	struct lruvec *locked = NULL;
845 	struct folio *folio = NULL;
846 	struct page *page = NULL, *valid_page = NULL;
847 	struct address_space *mapping;
848 	unsigned long start_pfn = low_pfn;
849 	bool skip_on_failure = false;
850 	unsigned long next_skip_pfn = 0;
851 	bool skip_updated = false;
852 	int ret = 0;
853 
854 	cc->migrate_pfn = low_pfn;
855 
856 	/*
857 	 * Ensure that there are not too many pages isolated from the LRU
858 	 * list by either parallel reclaimers or compaction. If there are,
859 	 * delay for some time until fewer pages are isolated
860 	 */
861 	while (unlikely(too_many_isolated(cc))) {
862 		/* stop isolation if there are still pages not migrated */
863 		if (cc->nr_migratepages)
864 			return -EAGAIN;
865 
866 		/* async migration should just abort */
867 		if (cc->mode == MIGRATE_ASYNC)
868 			return -EAGAIN;
869 
870 		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
871 
872 		if (fatal_signal_pending(current))
873 			return -EINTR;
874 	}
875 
876 	cond_resched();
877 
878 	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
879 		skip_on_failure = true;
880 		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
881 	}
882 
883 	/* Time to isolate some pages for migration */
884 	for (; low_pfn < end_pfn; low_pfn++) {
885 		bool is_dirty, is_unevictable;
886 
887 		if (skip_on_failure && low_pfn >= next_skip_pfn) {
888 			/*
889 			 * We have isolated all migration candidates in the
890 			 * previous order-aligned block, and did not skip it due
891 			 * to failure. We should migrate the pages now and
892 			 * hopefully succeed compaction.
893 			 */
894 			if (nr_isolated)
895 				break;
896 
897 			/*
898 			 * We failed to isolate in the previous order-aligned
899 			 * block. Set the new boundary to the end of the
900 			 * current block. Note we can't simply increase
901 			 * next_skip_pfn by 1 << order, as low_pfn might have
902 			 * been incremented by a higher number due to skipping
903 			 * a compound or a high-order buddy page in the
904 			 * previous loop iteration.
905 			 */
906 			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907 		}
908 
909 		/*
910 		 * Periodically drop the lock (if held) regardless of its
911 		 * contention, to give chance to IRQs. Abort completely if
912 		 * a fatal signal is pending.
913 		 */
914 		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
915 			if (locked) {
916 				unlock_page_lruvec_irqrestore(locked, flags);
917 				locked = NULL;
918 			}
919 
920 			if (fatal_signal_pending(current)) {
921 				cc->contended = true;
922 				ret = -EINTR;
923 
924 				goto fatal_pending;
925 			}
926 
927 			cond_resched();
928 		}
929 
930 		nr_scanned++;
931 
932 		page = pfn_to_page(low_pfn);
933 
934 		/*
935 		 * Check if the pageblock has already been marked skipped.
936 		 * Only the first PFN is checked as the caller isolates
937 		 * COMPACT_CLUSTER_MAX at a time so the second call must
938 		 * not falsely conclude that the block should be skipped.
939 		 */
940 		if (!valid_page && (pageblock_aligned(low_pfn) ||
941 				    low_pfn == cc->zone->zone_start_pfn)) {
942 			if (!isolation_suitable(cc, page)) {
943 				low_pfn = end_pfn;
944 				folio = NULL;
945 				goto isolate_abort;
946 			}
947 			valid_page = page;
948 		}
949 
950 		if (PageHuge(page) && cc->alloc_contig) {
951 			if (locked) {
952 				unlock_page_lruvec_irqrestore(locked, flags);
953 				locked = NULL;
954 			}
955 
956 			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
957 
958 			/*
959 			 * Fail isolation in case isolate_or_dissolve_huge_page()
960 			 * reports an error. In case of -ENOMEM, abort right away.
961 			 */
962 			if (ret < 0) {
963 				 /* Do not report -EBUSY down the chain */
964 				if (ret == -EBUSY)
965 					ret = 0;
966 				low_pfn += compound_nr(page) - 1;
967 				nr_scanned += compound_nr(page) - 1;
968 				goto isolate_fail;
969 			}
970 
971 			if (PageHuge(page)) {
972 				/*
973 				 * Hugepage was successfully isolated and placed
974 				 * on the cc->migratepages list.
975 				 */
976 				folio = page_folio(page);
977 				low_pfn += folio_nr_pages(folio) - 1;
978 				goto isolate_success_no_list;
979 			}
980 
981 			/*
982 			 * Ok, the hugepage was dissolved. Now these pages are
983 			 * Buddy and cannot be re-allocated because they are
984 			 * isolated. Fall-through as the check below handles
985 			 * Buddy pages.
986 			 */
987 		}
988 
989 		/*
990 		 * Skip if free. We read page order here without zone lock
991 		 * which is generally unsafe, but the race window is small and
992 		 * the worst thing that can happen is that we skip some
993 		 * potential isolation targets.
994 		 */
995 		if (PageBuddy(page)) {
996 			unsigned long freepage_order = buddy_order_unsafe(page);
997 
998 			/*
999 			 * Without lock, we cannot be sure that what we got is
1000 			 * a valid page order. Consider only values in the
1001 			 * valid order range to prevent low_pfn overflow.
1002 			 */
1003 			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1004 				low_pfn += (1UL << freepage_order) - 1;
1005 				nr_scanned += (1UL << freepage_order) - 1;
1006 			}
1007 			continue;
1008 		}
1009 
1010 		/*
1011 		 * Regardless of being on LRU, compound pages such as THP and
1012 		 * hugetlbfs are not to be compacted unless we are attempting
1013 		 * an allocation much larger than the huge page size (eg CMA).
1014 		 * We can potentially save a lot of iterations if we skip them
1015 		 * at once. The check is racy, but we can consider only valid
1016 		 * values and the only danger is skipping too much.
1017 		 */
1018 		if (PageCompound(page) && !cc->alloc_contig) {
1019 			const unsigned int order = compound_order(page);
1020 
1021 			if (likely(order <= MAX_PAGE_ORDER)) {
1022 				low_pfn += (1UL << order) - 1;
1023 				nr_scanned += (1UL << order) - 1;
1024 			}
1025 			goto isolate_fail;
1026 		}
1027 
1028 		/*
1029 		 * Check may be lockless but that's ok as we recheck later.
1030 		 * It's possible to migrate LRU and non-lru movable pages.
1031 		 * Skip any other type of page
1032 		 */
1033 		if (!PageLRU(page)) {
1034 			/*
1035 			 * __PageMovable can return false positive so we need
1036 			 * to verify it under page_lock.
1037 			 */
1038 			if (unlikely(__PageMovable(page)) &&
1039 					!PageIsolated(page)) {
1040 				if (locked) {
1041 					unlock_page_lruvec_irqrestore(locked, flags);
1042 					locked = NULL;
1043 				}
1044 
1045 				if (isolate_movable_page(page, mode)) {
1046 					folio = page_folio(page);
1047 					goto isolate_success;
1048 				}
1049 			}
1050 
1051 			goto isolate_fail;
1052 		}
1053 
1054 		/*
1055 		 * Be careful not to clear PageLRU until after we're
1056 		 * sure the page is not being freed elsewhere -- the
1057 		 * page release code relies on it.
1058 		 */
1059 		folio = folio_get_nontail_page(page);
1060 		if (unlikely(!folio))
1061 			goto isolate_fail;
1062 
1063 		/*
1064 		 * Migration will fail if an anonymous page is pinned in memory,
1065 		 * so avoid taking lru_lock and isolating it unnecessarily in an
1066 		 * admittedly racy check.
1067 		 */
1068 		mapping = folio_mapping(folio);
1069 		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070 			goto isolate_fail_put;
1071 
1072 		/*
1073 		 * Only allow to migrate anonymous pages in GFP_NOFS context
1074 		 * because those do not depend on fs locks.
1075 		 */
1076 		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077 			goto isolate_fail_put;
1078 
1079 		/* Only take pages on LRU: a check now makes later tests safe */
1080 		if (!folio_test_lru(folio))
1081 			goto isolate_fail_put;
1082 
1083 		is_unevictable = folio_test_unevictable(folio);
1084 
1085 		/* Compaction might skip unevictable pages but CMA takes them */
1086 		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1087 			goto isolate_fail_put;
1088 
1089 		/*
1090 		 * To minimise LRU disruption, the caller can indicate with
1091 		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1092 		 * it will be able to migrate without blocking - clean pages
1093 		 * for the most part.  PageWriteback would require blocking.
1094 		 */
1095 		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1096 			goto isolate_fail_put;
1097 
1098 		is_dirty = folio_test_dirty(folio);
1099 
1100 		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1101 		    (mapping && is_unevictable)) {
1102 			bool migrate_dirty = true;
1103 			bool is_unmovable;
1104 
1105 			/*
1106 			 * Only folios without mappings or that have
1107 			 * a ->migrate_folio callback are possible to migrate
1108 			 * without blocking.
1109 			 *
1110 			 * Folios from unmovable mappings are not migratable.
1111 			 *
1112 			 * However, we can be racing with truncation, which can
1113 			 * free the mapping that we need to check. Truncation
1114 			 * holds the folio lock until after the folio is removed
1115 			 * from the page so holding it ourselves is sufficient.
1116 			 *
1117 			 * To avoid locking the folio just to check unmovable,
1118 			 * assume every unmovable folio is also unevictable,
1119 			 * which is a cheaper test.  If our assumption goes
1120 			 * wrong, it's not a correctness bug, just potentially
1121 			 * wasted cycles.
1122 			 */
1123 			if (!folio_trylock(folio))
1124 				goto isolate_fail_put;
1125 
1126 			mapping = folio_mapping(folio);
1127 			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1128 				migrate_dirty = !mapping ||
1129 						mapping->a_ops->migrate_folio;
1130 			}
1131 			is_unmovable = mapping && mapping_unmovable(mapping);
1132 			folio_unlock(folio);
1133 			if (!migrate_dirty || is_unmovable)
1134 				goto isolate_fail_put;
1135 		}
1136 
1137 		/* Try isolate the folio */
1138 		if (!folio_test_clear_lru(folio))
1139 			goto isolate_fail_put;
1140 
1141 		lruvec = folio_lruvec(folio);
1142 
1143 		/* If we already hold the lock, we can skip some rechecking */
1144 		if (lruvec != locked) {
1145 			if (locked)
1146 				unlock_page_lruvec_irqrestore(locked, flags);
1147 
1148 			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1149 			locked = lruvec;
1150 
1151 			lruvec_memcg_debug(lruvec, folio);
1152 
1153 			/*
1154 			 * Try get exclusive access under lock. If marked for
1155 			 * skip, the scan is aborted unless the current context
1156 			 * is a rescan to reach the end of the pageblock.
1157 			 */
1158 			if (!skip_updated && valid_page) {
1159 				skip_updated = true;
1160 				if (test_and_set_skip(cc, valid_page) &&
1161 				    !cc->finish_pageblock) {
1162 					low_pfn = end_pfn;
1163 					goto isolate_abort;
1164 				}
1165 			}
1166 
1167 			/*
1168 			 * folio become large since the non-locked check,
1169 			 * and it's on LRU.
1170 			 */
1171 			if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1172 				low_pfn += folio_nr_pages(folio) - 1;
1173 				nr_scanned += folio_nr_pages(folio) - 1;
1174 				folio_set_lru(folio);
1175 				goto isolate_fail_put;
1176 			}
1177 		}
1178 
1179 		/* The folio is taken off the LRU */
1180 		if (folio_test_large(folio))
1181 			low_pfn += folio_nr_pages(folio) - 1;
1182 
1183 		/* Successfully isolated */
1184 		lruvec_del_folio(lruvec, folio);
1185 		node_stat_mod_folio(folio,
1186 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1187 				folio_nr_pages(folio));
1188 
1189 isolate_success:
1190 		list_add(&folio->lru, &cc->migratepages);
1191 isolate_success_no_list:
1192 		cc->nr_migratepages += folio_nr_pages(folio);
1193 		nr_isolated += folio_nr_pages(folio);
1194 		nr_scanned += folio_nr_pages(folio) - 1;
1195 
1196 		/*
1197 		 * Avoid isolating too much unless this block is being
1198 		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1199 		 * or a lock is contended. For contention, isolate quickly to
1200 		 * potentially remove one source of contention.
1201 		 */
1202 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1203 		    !cc->finish_pageblock && !cc->contended) {
1204 			++low_pfn;
1205 			break;
1206 		}
1207 
1208 		continue;
1209 
1210 isolate_fail_put:
1211 		/* Avoid potential deadlock in freeing page under lru_lock */
1212 		if (locked) {
1213 			unlock_page_lruvec_irqrestore(locked, flags);
1214 			locked = NULL;
1215 		}
1216 		folio_put(folio);
1217 
1218 isolate_fail:
1219 		if (!skip_on_failure && ret != -ENOMEM)
1220 			continue;
1221 
1222 		/*
1223 		 * We have isolated some pages, but then failed. Release them
1224 		 * instead of migrating, as we cannot form the cc->order buddy
1225 		 * page anyway.
1226 		 */
1227 		if (nr_isolated) {
1228 			if (locked) {
1229 				unlock_page_lruvec_irqrestore(locked, flags);
1230 				locked = NULL;
1231 			}
1232 			putback_movable_pages(&cc->migratepages);
1233 			cc->nr_migratepages = 0;
1234 			nr_isolated = 0;
1235 		}
1236 
1237 		if (low_pfn < next_skip_pfn) {
1238 			low_pfn = next_skip_pfn - 1;
1239 			/*
1240 			 * The check near the loop beginning would have updated
1241 			 * next_skip_pfn too, but this is a bit simpler.
1242 			 */
1243 			next_skip_pfn += 1UL << cc->order;
1244 		}
1245 
1246 		if (ret == -ENOMEM)
1247 			break;
1248 	}
1249 
1250 	/*
1251 	 * The PageBuddy() check could have potentially brought us outside
1252 	 * the range to be scanned.
1253 	 */
1254 	if (unlikely(low_pfn > end_pfn))
1255 		low_pfn = end_pfn;
1256 
1257 	folio = NULL;
1258 
1259 isolate_abort:
1260 	if (locked)
1261 		unlock_page_lruvec_irqrestore(locked, flags);
1262 	if (folio) {
1263 		folio_set_lru(folio);
1264 		folio_put(folio);
1265 	}
1266 
1267 	/*
1268 	 * Update the cached scanner pfn once the pageblock has been scanned.
1269 	 * Pages will either be migrated in which case there is no point
1270 	 * scanning in the near future or migration failed in which case the
1271 	 * failure reason may persist. The block is marked for skipping if
1272 	 * there were no pages isolated in the block or if the block is
1273 	 * rescanned twice in a row.
1274 	 */
1275 	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1276 		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1277 			set_pageblock_skip(valid_page);
1278 		update_cached_migrate(cc, low_pfn);
1279 	}
1280 
1281 	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1282 						nr_scanned, nr_isolated);
1283 
1284 fatal_pending:
1285 	cc->total_migrate_scanned += nr_scanned;
1286 	if (nr_isolated)
1287 		count_compact_events(COMPACTISOLATED, nr_isolated);
1288 
1289 	cc->migrate_pfn = low_pfn;
1290 
1291 	return ret;
1292 }
1293 
1294 /**
1295  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1296  * @cc:        Compaction control structure.
1297  * @start_pfn: The first PFN to start isolating.
1298  * @end_pfn:   The one-past-last PFN.
1299  *
1300  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1301  * in case we could not allocate a page, or 0.
1302  */
1303 int
1304 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1305 							unsigned long end_pfn)
1306 {
1307 	unsigned long pfn, block_start_pfn, block_end_pfn;
1308 	int ret = 0;
1309 
1310 	/* Scan block by block. First and last block may be incomplete */
1311 	pfn = start_pfn;
1312 	block_start_pfn = pageblock_start_pfn(pfn);
1313 	if (block_start_pfn < cc->zone->zone_start_pfn)
1314 		block_start_pfn = cc->zone->zone_start_pfn;
1315 	block_end_pfn = pageblock_end_pfn(pfn);
1316 
1317 	for (; pfn < end_pfn; pfn = block_end_pfn,
1318 				block_start_pfn = block_end_pfn,
1319 				block_end_pfn += pageblock_nr_pages) {
1320 
1321 		block_end_pfn = min(block_end_pfn, end_pfn);
1322 
1323 		if (!pageblock_pfn_to_page(block_start_pfn,
1324 					block_end_pfn, cc->zone))
1325 			continue;
1326 
1327 		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1328 						 ISOLATE_UNEVICTABLE);
1329 
1330 		if (ret)
1331 			break;
1332 
1333 		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1334 			break;
1335 	}
1336 
1337 	return ret;
1338 }
1339 
1340 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1341 #ifdef CONFIG_COMPACTION
1342 
1343 static bool suitable_migration_source(struct compact_control *cc,
1344 							struct page *page)
1345 {
1346 	int block_mt;
1347 
1348 	if (pageblock_skip_persistent(page))
1349 		return false;
1350 
1351 	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1352 		return true;
1353 
1354 	block_mt = get_pageblock_migratetype(page);
1355 
1356 	if (cc->migratetype == MIGRATE_MOVABLE)
1357 		return is_migrate_movable(block_mt);
1358 	else
1359 		return block_mt == cc->migratetype;
1360 }
1361 
1362 /* Returns true if the page is within a block suitable for migration to */
1363 static bool suitable_migration_target(struct compact_control *cc,
1364 							struct page *page)
1365 {
1366 	/* If the page is a large free page, then disallow migration */
1367 	if (PageBuddy(page)) {
1368 		/*
1369 		 * We are checking page_order without zone->lock taken. But
1370 		 * the only small danger is that we skip a potentially suitable
1371 		 * pageblock, so it's not worth to check order for valid range.
1372 		 */
1373 		if (buddy_order_unsafe(page) >= pageblock_order)
1374 			return false;
1375 	}
1376 
1377 	if (cc->ignore_block_suitable)
1378 		return true;
1379 
1380 	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1381 	if (is_migrate_movable(get_pageblock_migratetype(page)))
1382 		return true;
1383 
1384 	/* Otherwise skip the block */
1385 	return false;
1386 }
1387 
1388 static inline unsigned int
1389 freelist_scan_limit(struct compact_control *cc)
1390 {
1391 	unsigned short shift = BITS_PER_LONG - 1;
1392 
1393 	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1394 }
1395 
1396 /*
1397  * Test whether the free scanner has reached the same or lower pageblock than
1398  * the migration scanner, and compaction should thus terminate.
1399  */
1400 static inline bool compact_scanners_met(struct compact_control *cc)
1401 {
1402 	return (cc->free_pfn >> pageblock_order)
1403 		<= (cc->migrate_pfn >> pageblock_order);
1404 }
1405 
1406 /*
1407  * Used when scanning for a suitable migration target which scans freelists
1408  * in reverse. Reorders the list such as the unscanned pages are scanned
1409  * first on the next iteration of the free scanner
1410  */
1411 static void
1412 move_freelist_head(struct list_head *freelist, struct page *freepage)
1413 {
1414 	LIST_HEAD(sublist);
1415 
1416 	if (!list_is_first(&freepage->buddy_list, freelist)) {
1417 		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1418 		list_splice_tail(&sublist, freelist);
1419 	}
1420 }
1421 
1422 /*
1423  * Similar to move_freelist_head except used by the migration scanner
1424  * when scanning forward. It's possible for these list operations to
1425  * move against each other if they search the free list exactly in
1426  * lockstep.
1427  */
1428 static void
1429 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1430 {
1431 	LIST_HEAD(sublist);
1432 
1433 	if (!list_is_last(&freepage->buddy_list, freelist)) {
1434 		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1435 		list_splice_tail(&sublist, freelist);
1436 	}
1437 }
1438 
1439 static void
1440 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1441 {
1442 	unsigned long start_pfn, end_pfn;
1443 	struct page *page;
1444 
1445 	/* Do not search around if there are enough pages already */
1446 	if (cc->nr_freepages >= cc->nr_migratepages)
1447 		return;
1448 
1449 	/* Minimise scanning during async compaction */
1450 	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1451 		return;
1452 
1453 	/* Pageblock boundaries */
1454 	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1455 	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1456 
1457 	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1458 	if (!page)
1459 		return;
1460 
1461 	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1462 
1463 	/* Skip this pageblock in the future as it's full or nearly full */
1464 	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1465 		set_pageblock_skip(page);
1466 }
1467 
1468 /* Search orders in round-robin fashion */
1469 static int next_search_order(struct compact_control *cc, int order)
1470 {
1471 	order--;
1472 	if (order < 0)
1473 		order = cc->order - 1;
1474 
1475 	/* Search wrapped around? */
1476 	if (order == cc->search_order) {
1477 		cc->search_order--;
1478 		if (cc->search_order < 0)
1479 			cc->search_order = cc->order - 1;
1480 		return -1;
1481 	}
1482 
1483 	return order;
1484 }
1485 
1486 static void fast_isolate_freepages(struct compact_control *cc)
1487 {
1488 	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1489 	unsigned int nr_scanned = 0, total_isolated = 0;
1490 	unsigned long low_pfn, min_pfn, highest = 0;
1491 	unsigned long nr_isolated = 0;
1492 	unsigned long distance;
1493 	struct page *page = NULL;
1494 	bool scan_start = false;
1495 	int order;
1496 
1497 	/* Full compaction passes in a negative order */
1498 	if (cc->order <= 0)
1499 		return;
1500 
1501 	/*
1502 	 * If starting the scan, use a deeper search and use the highest
1503 	 * PFN found if a suitable one is not found.
1504 	 */
1505 	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1506 		limit = pageblock_nr_pages >> 1;
1507 		scan_start = true;
1508 	}
1509 
1510 	/*
1511 	 * Preferred point is in the top quarter of the scan space but take
1512 	 * a pfn from the top half if the search is problematic.
1513 	 */
1514 	distance = (cc->free_pfn - cc->migrate_pfn);
1515 	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1516 	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1517 
1518 	if (WARN_ON_ONCE(min_pfn > low_pfn))
1519 		low_pfn = min_pfn;
1520 
1521 	/*
1522 	 * Search starts from the last successful isolation order or the next
1523 	 * order to search after a previous failure
1524 	 */
1525 	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1526 
1527 	for (order = cc->search_order;
1528 	     !page && order >= 0;
1529 	     order = next_search_order(cc, order)) {
1530 		struct free_area *area = &cc->zone->free_area[order];
1531 		struct list_head *freelist;
1532 		struct page *freepage;
1533 		unsigned long flags;
1534 		unsigned int order_scanned = 0;
1535 		unsigned long high_pfn = 0;
1536 
1537 		if (!area->nr_free)
1538 			continue;
1539 
1540 		spin_lock_irqsave(&cc->zone->lock, flags);
1541 		freelist = &area->free_list[MIGRATE_MOVABLE];
1542 		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1543 			unsigned long pfn;
1544 
1545 			order_scanned++;
1546 			nr_scanned++;
1547 			pfn = page_to_pfn(freepage);
1548 
1549 			if (pfn >= highest)
1550 				highest = max(pageblock_start_pfn(pfn),
1551 					      cc->zone->zone_start_pfn);
1552 
1553 			if (pfn >= low_pfn) {
1554 				cc->fast_search_fail = 0;
1555 				cc->search_order = order;
1556 				page = freepage;
1557 				break;
1558 			}
1559 
1560 			if (pfn >= min_pfn && pfn > high_pfn) {
1561 				high_pfn = pfn;
1562 
1563 				/* Shorten the scan if a candidate is found */
1564 				limit >>= 1;
1565 			}
1566 
1567 			if (order_scanned >= limit)
1568 				break;
1569 		}
1570 
1571 		/* Use a maximum candidate pfn if a preferred one was not found */
1572 		if (!page && high_pfn) {
1573 			page = pfn_to_page(high_pfn);
1574 
1575 			/* Update freepage for the list reorder below */
1576 			freepage = page;
1577 		}
1578 
1579 		/* Reorder to so a future search skips recent pages */
1580 		move_freelist_head(freelist, freepage);
1581 
1582 		/* Isolate the page if available */
1583 		if (page) {
1584 			if (__isolate_free_page(page, order)) {
1585 				set_page_private(page, order);
1586 				nr_isolated = 1 << order;
1587 				nr_scanned += nr_isolated - 1;
1588 				total_isolated += nr_isolated;
1589 				cc->nr_freepages += nr_isolated;
1590 				list_add_tail(&page->lru, &cc->freepages);
1591 				count_compact_events(COMPACTISOLATED, nr_isolated);
1592 			} else {
1593 				/* If isolation fails, abort the search */
1594 				order = cc->search_order + 1;
1595 				page = NULL;
1596 			}
1597 		}
1598 
1599 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1600 
1601 		/* Skip fast search if enough freepages isolated */
1602 		if (cc->nr_freepages >= cc->nr_migratepages)
1603 			break;
1604 
1605 		/*
1606 		 * Smaller scan on next order so the total scan is related
1607 		 * to freelist_scan_limit.
1608 		 */
1609 		if (order_scanned >= limit)
1610 			limit = max(1U, limit >> 1);
1611 	}
1612 
1613 	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1614 						   nr_scanned, total_isolated);
1615 
1616 	if (!page) {
1617 		cc->fast_search_fail++;
1618 		if (scan_start) {
1619 			/*
1620 			 * Use the highest PFN found above min. If one was
1621 			 * not found, be pessimistic for direct compaction
1622 			 * and use the min mark.
1623 			 */
1624 			if (highest >= min_pfn) {
1625 				page = pfn_to_page(highest);
1626 				cc->free_pfn = highest;
1627 			} else {
1628 				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1629 					page = pageblock_pfn_to_page(min_pfn,
1630 						min(pageblock_end_pfn(min_pfn),
1631 						    zone_end_pfn(cc->zone)),
1632 						cc->zone);
1633 					if (page && !suitable_migration_target(cc, page))
1634 						page = NULL;
1635 
1636 					cc->free_pfn = min_pfn;
1637 				}
1638 			}
1639 		}
1640 	}
1641 
1642 	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1643 		highest -= pageblock_nr_pages;
1644 		cc->zone->compact_cached_free_pfn = highest;
1645 	}
1646 
1647 	cc->total_free_scanned += nr_scanned;
1648 	if (!page)
1649 		return;
1650 
1651 	low_pfn = page_to_pfn(page);
1652 	fast_isolate_around(cc, low_pfn);
1653 }
1654 
1655 /*
1656  * Based on information in the current compact_control, find blocks
1657  * suitable for isolating free pages from and then isolate them.
1658  */
1659 static void isolate_freepages(struct compact_control *cc)
1660 {
1661 	struct zone *zone = cc->zone;
1662 	struct page *page;
1663 	unsigned long block_start_pfn;	/* start of current pageblock */
1664 	unsigned long isolate_start_pfn; /* exact pfn we start at */
1665 	unsigned long block_end_pfn;	/* end of current pageblock */
1666 	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1667 	struct list_head *freelist = &cc->freepages;
1668 	unsigned int stride;
1669 
1670 	/* Try a small search of the free lists for a candidate */
1671 	fast_isolate_freepages(cc);
1672 	if (cc->nr_freepages)
1673 		goto splitmap;
1674 
1675 	/*
1676 	 * Initialise the free scanner. The starting point is where we last
1677 	 * successfully isolated from, zone-cached value, or the end of the
1678 	 * zone when isolating for the first time. For looping we also need
1679 	 * this pfn aligned down to the pageblock boundary, because we do
1680 	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1681 	 * For ending point, take care when isolating in last pageblock of a
1682 	 * zone which ends in the middle of a pageblock.
1683 	 * The low boundary is the end of the pageblock the migration scanner
1684 	 * is using.
1685 	 */
1686 	isolate_start_pfn = cc->free_pfn;
1687 	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1688 	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1689 						zone_end_pfn(zone));
1690 	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1691 	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1692 
1693 	/*
1694 	 * Isolate free pages until enough are available to migrate the
1695 	 * pages on cc->migratepages. We stop searching if the migrate
1696 	 * and free page scanners meet or enough free pages are isolated.
1697 	 */
1698 	for (; block_start_pfn >= low_pfn;
1699 				block_end_pfn = block_start_pfn,
1700 				block_start_pfn -= pageblock_nr_pages,
1701 				isolate_start_pfn = block_start_pfn) {
1702 		unsigned long nr_isolated;
1703 
1704 		/*
1705 		 * This can iterate a massively long zone without finding any
1706 		 * suitable migration targets, so periodically check resched.
1707 		 */
1708 		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1709 			cond_resched();
1710 
1711 		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1712 									zone);
1713 		if (!page) {
1714 			unsigned long next_pfn;
1715 
1716 			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1717 			if (next_pfn)
1718 				block_start_pfn = max(next_pfn, low_pfn);
1719 
1720 			continue;
1721 		}
1722 
1723 		/* Check the block is suitable for migration */
1724 		if (!suitable_migration_target(cc, page))
1725 			continue;
1726 
1727 		/* If isolation recently failed, do not retry */
1728 		if (!isolation_suitable(cc, page))
1729 			continue;
1730 
1731 		/* Found a block suitable for isolating free pages from. */
1732 		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1733 					block_end_pfn, freelist, stride, false);
1734 
1735 		/* Update the skip hint if the full pageblock was scanned */
1736 		if (isolate_start_pfn == block_end_pfn)
1737 			update_pageblock_skip(cc, page, block_start_pfn -
1738 					      pageblock_nr_pages);
1739 
1740 		/* Are enough freepages isolated? */
1741 		if (cc->nr_freepages >= cc->nr_migratepages) {
1742 			if (isolate_start_pfn >= block_end_pfn) {
1743 				/*
1744 				 * Restart at previous pageblock if more
1745 				 * freepages can be isolated next time.
1746 				 */
1747 				isolate_start_pfn =
1748 					block_start_pfn - pageblock_nr_pages;
1749 			}
1750 			break;
1751 		} else if (isolate_start_pfn < block_end_pfn) {
1752 			/*
1753 			 * If isolation failed early, do not continue
1754 			 * needlessly.
1755 			 */
1756 			break;
1757 		}
1758 
1759 		/* Adjust stride depending on isolation */
1760 		if (nr_isolated) {
1761 			stride = 1;
1762 			continue;
1763 		}
1764 		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1765 	}
1766 
1767 	/*
1768 	 * Record where the free scanner will restart next time. Either we
1769 	 * broke from the loop and set isolate_start_pfn based on the last
1770 	 * call to isolate_freepages_block(), or we met the migration scanner
1771 	 * and the loop terminated due to isolate_start_pfn < low_pfn
1772 	 */
1773 	cc->free_pfn = isolate_start_pfn;
1774 
1775 splitmap:
1776 	/* __isolate_free_page() does not map the pages */
1777 	split_map_pages(freelist);
1778 }
1779 
1780 /*
1781  * This is a migrate-callback that "allocates" freepages by taking pages
1782  * from the isolated freelists in the block we are migrating to.
1783  */
1784 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1785 {
1786 	struct compact_control *cc = (struct compact_control *)data;
1787 	struct folio *dst;
1788 
1789 	if (list_empty(&cc->freepages)) {
1790 		isolate_freepages(cc);
1791 
1792 		if (list_empty(&cc->freepages))
1793 			return NULL;
1794 	}
1795 
1796 	dst = list_entry(cc->freepages.next, struct folio, lru);
1797 	list_del(&dst->lru);
1798 	cc->nr_freepages--;
1799 
1800 	return dst;
1801 }
1802 
1803 /*
1804  * This is a migrate-callback that "frees" freepages back to the isolated
1805  * freelist.  All pages on the freelist are from the same zone, so there is no
1806  * special handling needed for NUMA.
1807  */
1808 static void compaction_free(struct folio *dst, unsigned long data)
1809 {
1810 	struct compact_control *cc = (struct compact_control *)data;
1811 
1812 	list_add(&dst->lru, &cc->freepages);
1813 	cc->nr_freepages++;
1814 }
1815 
1816 /* possible outcome of isolate_migratepages */
1817 typedef enum {
1818 	ISOLATE_ABORT,		/* Abort compaction now */
1819 	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1820 	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1821 } isolate_migrate_t;
1822 
1823 /*
1824  * Allow userspace to control policy on scanning the unevictable LRU for
1825  * compactable pages.
1826  */
1827 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1828 /*
1829  * Tunable for proactive compaction. It determines how
1830  * aggressively the kernel should compact memory in the
1831  * background. It takes values in the range [0, 100].
1832  */
1833 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1834 static int sysctl_extfrag_threshold = 500;
1835 static int __read_mostly sysctl_compact_memory;
1836 
1837 static inline void
1838 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1839 {
1840 	if (cc->fast_start_pfn == ULONG_MAX)
1841 		return;
1842 
1843 	if (!cc->fast_start_pfn)
1844 		cc->fast_start_pfn = pfn;
1845 
1846 	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1847 }
1848 
1849 static inline unsigned long
1850 reinit_migrate_pfn(struct compact_control *cc)
1851 {
1852 	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1853 		return cc->migrate_pfn;
1854 
1855 	cc->migrate_pfn = cc->fast_start_pfn;
1856 	cc->fast_start_pfn = ULONG_MAX;
1857 
1858 	return cc->migrate_pfn;
1859 }
1860 
1861 /*
1862  * Briefly search the free lists for a migration source that already has
1863  * some free pages to reduce the number of pages that need migration
1864  * before a pageblock is free.
1865  */
1866 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1867 {
1868 	unsigned int limit = freelist_scan_limit(cc);
1869 	unsigned int nr_scanned = 0;
1870 	unsigned long distance;
1871 	unsigned long pfn = cc->migrate_pfn;
1872 	unsigned long high_pfn;
1873 	int order;
1874 	bool found_block = false;
1875 
1876 	/* Skip hints are relied on to avoid repeats on the fast search */
1877 	if (cc->ignore_skip_hint)
1878 		return pfn;
1879 
1880 	/*
1881 	 * If the pageblock should be finished then do not select a different
1882 	 * pageblock.
1883 	 */
1884 	if (cc->finish_pageblock)
1885 		return pfn;
1886 
1887 	/*
1888 	 * If the migrate_pfn is not at the start of a zone or the start
1889 	 * of a pageblock then assume this is a continuation of a previous
1890 	 * scan restarted due to COMPACT_CLUSTER_MAX.
1891 	 */
1892 	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1893 		return pfn;
1894 
1895 	/*
1896 	 * For smaller orders, just linearly scan as the number of pages
1897 	 * to migrate should be relatively small and does not necessarily
1898 	 * justify freeing up a large block for a small allocation.
1899 	 */
1900 	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1901 		return pfn;
1902 
1903 	/*
1904 	 * Only allow kcompactd and direct requests for movable pages to
1905 	 * quickly clear out a MOVABLE pageblock for allocation. This
1906 	 * reduces the risk that a large movable pageblock is freed for
1907 	 * an unmovable/reclaimable small allocation.
1908 	 */
1909 	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1910 		return pfn;
1911 
1912 	/*
1913 	 * When starting the migration scanner, pick any pageblock within the
1914 	 * first half of the search space. Otherwise try and pick a pageblock
1915 	 * within the first eighth to reduce the chances that a migration
1916 	 * target later becomes a source.
1917 	 */
1918 	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1919 	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1920 		distance >>= 2;
1921 	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1922 
1923 	for (order = cc->order - 1;
1924 	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1925 	     order--) {
1926 		struct free_area *area = &cc->zone->free_area[order];
1927 		struct list_head *freelist;
1928 		unsigned long flags;
1929 		struct page *freepage;
1930 
1931 		if (!area->nr_free)
1932 			continue;
1933 
1934 		spin_lock_irqsave(&cc->zone->lock, flags);
1935 		freelist = &area->free_list[MIGRATE_MOVABLE];
1936 		list_for_each_entry(freepage, freelist, buddy_list) {
1937 			unsigned long free_pfn;
1938 
1939 			if (nr_scanned++ >= limit) {
1940 				move_freelist_tail(freelist, freepage);
1941 				break;
1942 			}
1943 
1944 			free_pfn = page_to_pfn(freepage);
1945 			if (free_pfn < high_pfn) {
1946 				/*
1947 				 * Avoid if skipped recently. Ideally it would
1948 				 * move to the tail but even safe iteration of
1949 				 * the list assumes an entry is deleted, not
1950 				 * reordered.
1951 				 */
1952 				if (get_pageblock_skip(freepage))
1953 					continue;
1954 
1955 				/* Reorder to so a future search skips recent pages */
1956 				move_freelist_tail(freelist, freepage);
1957 
1958 				update_fast_start_pfn(cc, free_pfn);
1959 				pfn = pageblock_start_pfn(free_pfn);
1960 				if (pfn < cc->zone->zone_start_pfn)
1961 					pfn = cc->zone->zone_start_pfn;
1962 				cc->fast_search_fail = 0;
1963 				found_block = true;
1964 				break;
1965 			}
1966 		}
1967 		spin_unlock_irqrestore(&cc->zone->lock, flags);
1968 	}
1969 
1970 	cc->total_migrate_scanned += nr_scanned;
1971 
1972 	/*
1973 	 * If fast scanning failed then use a cached entry for a page block
1974 	 * that had free pages as the basis for starting a linear scan.
1975 	 */
1976 	if (!found_block) {
1977 		cc->fast_search_fail++;
1978 		pfn = reinit_migrate_pfn(cc);
1979 	}
1980 	return pfn;
1981 }
1982 
1983 /*
1984  * Isolate all pages that can be migrated from the first suitable block,
1985  * starting at the block pointed to by the migrate scanner pfn within
1986  * compact_control.
1987  */
1988 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1989 {
1990 	unsigned long block_start_pfn;
1991 	unsigned long block_end_pfn;
1992 	unsigned long low_pfn;
1993 	struct page *page;
1994 	const isolate_mode_t isolate_mode =
1995 		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1996 		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1997 	bool fast_find_block;
1998 
1999 	/*
2000 	 * Start at where we last stopped, or beginning of the zone as
2001 	 * initialized by compact_zone(). The first failure will use
2002 	 * the lowest PFN as the starting point for linear scanning.
2003 	 */
2004 	low_pfn = fast_find_migrateblock(cc);
2005 	block_start_pfn = pageblock_start_pfn(low_pfn);
2006 	if (block_start_pfn < cc->zone->zone_start_pfn)
2007 		block_start_pfn = cc->zone->zone_start_pfn;
2008 
2009 	/*
2010 	 * fast_find_migrateblock() has already ensured the pageblock is not
2011 	 * set with a skipped flag, so to avoid the isolation_suitable check
2012 	 * below again, check whether the fast search was successful.
2013 	 */
2014 	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2015 
2016 	/* Only scan within a pageblock boundary */
2017 	block_end_pfn = pageblock_end_pfn(low_pfn);
2018 
2019 	/*
2020 	 * Iterate over whole pageblocks until we find the first suitable.
2021 	 * Do not cross the free scanner.
2022 	 */
2023 	for (; block_end_pfn <= cc->free_pfn;
2024 			fast_find_block = false,
2025 			cc->migrate_pfn = low_pfn = block_end_pfn,
2026 			block_start_pfn = block_end_pfn,
2027 			block_end_pfn += pageblock_nr_pages) {
2028 
2029 		/*
2030 		 * This can potentially iterate a massively long zone with
2031 		 * many pageblocks unsuitable, so periodically check if we
2032 		 * need to schedule.
2033 		 */
2034 		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2035 			cond_resched();
2036 
2037 		page = pageblock_pfn_to_page(block_start_pfn,
2038 						block_end_pfn, cc->zone);
2039 		if (!page) {
2040 			unsigned long next_pfn;
2041 
2042 			next_pfn = skip_offline_sections(block_start_pfn);
2043 			if (next_pfn)
2044 				block_end_pfn = min(next_pfn, cc->free_pfn);
2045 			continue;
2046 		}
2047 
2048 		/*
2049 		 * If isolation recently failed, do not retry. Only check the
2050 		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2051 		 * to be visited multiple times. Assume skip was checked
2052 		 * before making it "skip" so other compaction instances do
2053 		 * not scan the same block.
2054 		 */
2055 		if ((pageblock_aligned(low_pfn) ||
2056 		     low_pfn == cc->zone->zone_start_pfn) &&
2057 		    !fast_find_block && !isolation_suitable(cc, page))
2058 			continue;
2059 
2060 		/*
2061 		 * For async direct compaction, only scan the pageblocks of the
2062 		 * same migratetype without huge pages. Async direct compaction
2063 		 * is optimistic to see if the minimum amount of work satisfies
2064 		 * the allocation. The cached PFN is updated as it's possible
2065 		 * that all remaining blocks between source and target are
2066 		 * unsuitable and the compaction scanners fail to meet.
2067 		 */
2068 		if (!suitable_migration_source(cc, page)) {
2069 			update_cached_migrate(cc, block_end_pfn);
2070 			continue;
2071 		}
2072 
2073 		/* Perform the isolation */
2074 		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2075 						isolate_mode))
2076 			return ISOLATE_ABORT;
2077 
2078 		/*
2079 		 * Either we isolated something and proceed with migration. Or
2080 		 * we failed and compact_zone should decide if we should
2081 		 * continue or not.
2082 		 */
2083 		break;
2084 	}
2085 
2086 	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2087 }
2088 
2089 /*
2090  * order == -1 is expected when compacting proactively via
2091  * 1. /proc/sys/vm/compact_memory
2092  * 2. /sys/devices/system/node/nodex/compact
2093  * 3. /proc/sys/vm/compaction_proactiveness
2094  */
2095 static inline bool is_via_compact_memory(int order)
2096 {
2097 	return order == -1;
2098 }
2099 
2100 /*
2101  * Determine whether kswapd is (or recently was!) running on this node.
2102  *
2103  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2104  * zero it.
2105  */
2106 static bool kswapd_is_running(pg_data_t *pgdat)
2107 {
2108 	bool running;
2109 
2110 	pgdat_kswapd_lock(pgdat);
2111 	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2112 	pgdat_kswapd_unlock(pgdat);
2113 
2114 	return running;
2115 }
2116 
2117 /*
2118  * A zone's fragmentation score is the external fragmentation wrt to the
2119  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2120  */
2121 static unsigned int fragmentation_score_zone(struct zone *zone)
2122 {
2123 	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2124 }
2125 
2126 /*
2127  * A weighted zone's fragmentation score is the external fragmentation
2128  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2129  * returns a value in the range [0, 100].
2130  *
2131  * The scaling factor ensures that proactive compaction focuses on larger
2132  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2133  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2134  * and thus never exceeds the high threshold for proactive compaction.
2135  */
2136 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2137 {
2138 	unsigned long score;
2139 
2140 	score = zone->present_pages * fragmentation_score_zone(zone);
2141 	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2142 }
2143 
2144 /*
2145  * The per-node proactive (background) compaction process is started by its
2146  * corresponding kcompactd thread when the node's fragmentation score
2147  * exceeds the high threshold. The compaction process remains active till
2148  * the node's score falls below the low threshold, or one of the back-off
2149  * conditions is met.
2150  */
2151 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2152 {
2153 	unsigned int score = 0;
2154 	int zoneid;
2155 
2156 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2157 		struct zone *zone;
2158 
2159 		zone = &pgdat->node_zones[zoneid];
2160 		if (!populated_zone(zone))
2161 			continue;
2162 		score += fragmentation_score_zone_weighted(zone);
2163 	}
2164 
2165 	return score;
2166 }
2167 
2168 static unsigned int fragmentation_score_wmark(bool low)
2169 {
2170 	unsigned int wmark_low;
2171 
2172 	/*
2173 	 * Cap the low watermark to avoid excessive compaction
2174 	 * activity in case a user sets the proactiveness tunable
2175 	 * close to 100 (maximum).
2176 	 */
2177 	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2178 	return low ? wmark_low : min(wmark_low + 10, 100U);
2179 }
2180 
2181 static bool should_proactive_compact_node(pg_data_t *pgdat)
2182 {
2183 	int wmark_high;
2184 
2185 	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2186 		return false;
2187 
2188 	wmark_high = fragmentation_score_wmark(false);
2189 	return fragmentation_score_node(pgdat) > wmark_high;
2190 }
2191 
2192 static enum compact_result __compact_finished(struct compact_control *cc)
2193 {
2194 	unsigned int order;
2195 	const int migratetype = cc->migratetype;
2196 	int ret;
2197 
2198 	/* Compaction run completes if the migrate and free scanner meet */
2199 	if (compact_scanners_met(cc)) {
2200 		/* Let the next compaction start anew. */
2201 		reset_cached_positions(cc->zone);
2202 
2203 		/*
2204 		 * Mark that the PG_migrate_skip information should be cleared
2205 		 * by kswapd when it goes to sleep. kcompactd does not set the
2206 		 * flag itself as the decision to be clear should be directly
2207 		 * based on an allocation request.
2208 		 */
2209 		if (cc->direct_compaction)
2210 			cc->zone->compact_blockskip_flush = true;
2211 
2212 		if (cc->whole_zone)
2213 			return COMPACT_COMPLETE;
2214 		else
2215 			return COMPACT_PARTIAL_SKIPPED;
2216 	}
2217 
2218 	if (cc->proactive_compaction) {
2219 		int score, wmark_low;
2220 		pg_data_t *pgdat;
2221 
2222 		pgdat = cc->zone->zone_pgdat;
2223 		if (kswapd_is_running(pgdat))
2224 			return COMPACT_PARTIAL_SKIPPED;
2225 
2226 		score = fragmentation_score_zone(cc->zone);
2227 		wmark_low = fragmentation_score_wmark(true);
2228 
2229 		if (score > wmark_low)
2230 			ret = COMPACT_CONTINUE;
2231 		else
2232 			ret = COMPACT_SUCCESS;
2233 
2234 		goto out;
2235 	}
2236 
2237 	if (is_via_compact_memory(cc->order))
2238 		return COMPACT_CONTINUE;
2239 
2240 	/*
2241 	 * Always finish scanning a pageblock to reduce the possibility of
2242 	 * fallbacks in the future. This is particularly important when
2243 	 * migration source is unmovable/reclaimable but it's not worth
2244 	 * special casing.
2245 	 */
2246 	if (!pageblock_aligned(cc->migrate_pfn))
2247 		return COMPACT_CONTINUE;
2248 
2249 	/* Direct compactor: Is a suitable page free? */
2250 	ret = COMPACT_NO_SUITABLE_PAGE;
2251 	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2252 		struct free_area *area = &cc->zone->free_area[order];
2253 		bool can_steal;
2254 
2255 		/* Job done if page is free of the right migratetype */
2256 		if (!free_area_empty(area, migratetype))
2257 			return COMPACT_SUCCESS;
2258 
2259 #ifdef CONFIG_CMA
2260 		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2261 		if (migratetype == MIGRATE_MOVABLE &&
2262 			!free_area_empty(area, MIGRATE_CMA))
2263 			return COMPACT_SUCCESS;
2264 #endif
2265 		/*
2266 		 * Job done if allocation would steal freepages from
2267 		 * other migratetype buddy lists.
2268 		 */
2269 		if (find_suitable_fallback(area, order, migratetype,
2270 						true, &can_steal) != -1)
2271 			/*
2272 			 * Movable pages are OK in any pageblock. If we are
2273 			 * stealing for a non-movable allocation, make sure
2274 			 * we finish compacting the current pageblock first
2275 			 * (which is assured by the above migrate_pfn align
2276 			 * check) so it is as free as possible and we won't
2277 			 * have to steal another one soon.
2278 			 */
2279 			return COMPACT_SUCCESS;
2280 	}
2281 
2282 out:
2283 	if (cc->contended || fatal_signal_pending(current))
2284 		ret = COMPACT_CONTENDED;
2285 
2286 	return ret;
2287 }
2288 
2289 static enum compact_result compact_finished(struct compact_control *cc)
2290 {
2291 	int ret;
2292 
2293 	ret = __compact_finished(cc);
2294 	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2295 	if (ret == COMPACT_NO_SUITABLE_PAGE)
2296 		ret = COMPACT_CONTINUE;
2297 
2298 	return ret;
2299 }
2300 
2301 static bool __compaction_suitable(struct zone *zone, int order,
2302 				  int highest_zoneidx,
2303 				  unsigned long wmark_target)
2304 {
2305 	unsigned long watermark;
2306 	/*
2307 	 * Watermarks for order-0 must be met for compaction to be able to
2308 	 * isolate free pages for migration targets. This means that the
2309 	 * watermark and alloc_flags have to match, or be more pessimistic than
2310 	 * the check in __isolate_free_page(). We don't use the direct
2311 	 * compactor's alloc_flags, as they are not relevant for freepage
2312 	 * isolation. We however do use the direct compactor's highest_zoneidx
2313 	 * to skip over zones where lowmem reserves would prevent allocation
2314 	 * even if compaction succeeds.
2315 	 * For costly orders, we require low watermark instead of min for
2316 	 * compaction to proceed to increase its chances.
2317 	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2318 	 * suitable migration targets
2319 	 */
2320 	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2321 				low_wmark_pages(zone) : min_wmark_pages(zone);
2322 	watermark += compact_gap(order);
2323 	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2324 				   ALLOC_CMA, wmark_target);
2325 }
2326 
2327 /*
2328  * compaction_suitable: Is this suitable to run compaction on this zone now?
2329  */
2330 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2331 {
2332 	enum compact_result compact_result;
2333 	bool suitable;
2334 
2335 	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2336 					 zone_page_state(zone, NR_FREE_PAGES));
2337 	/*
2338 	 * fragmentation index determines if allocation failures are due to
2339 	 * low memory or external fragmentation
2340 	 *
2341 	 * index of -1000 would imply allocations might succeed depending on
2342 	 * watermarks, but we already failed the high-order watermark check
2343 	 * index towards 0 implies failure is due to lack of memory
2344 	 * index towards 1000 implies failure is due to fragmentation
2345 	 *
2346 	 * Only compact if a failure would be due to fragmentation. Also
2347 	 * ignore fragindex for non-costly orders where the alternative to
2348 	 * a successful reclaim/compaction is OOM. Fragindex and the
2349 	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2350 	 * excessive compaction for costly orders, but it should not be at the
2351 	 * expense of system stability.
2352 	 */
2353 	if (suitable) {
2354 		compact_result = COMPACT_CONTINUE;
2355 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2356 			int fragindex = fragmentation_index(zone, order);
2357 
2358 			if (fragindex >= 0 &&
2359 			    fragindex <= sysctl_extfrag_threshold) {
2360 				suitable = false;
2361 				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2362 			}
2363 		}
2364 	} else {
2365 		compact_result = COMPACT_SKIPPED;
2366 	}
2367 
2368 	trace_mm_compaction_suitable(zone, order, compact_result);
2369 
2370 	return suitable;
2371 }
2372 
2373 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2374 		int alloc_flags)
2375 {
2376 	struct zone *zone;
2377 	struct zoneref *z;
2378 
2379 	/*
2380 	 * Make sure at least one zone would pass __compaction_suitable if we continue
2381 	 * retrying the reclaim.
2382 	 */
2383 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2384 				ac->highest_zoneidx, ac->nodemask) {
2385 		unsigned long available;
2386 
2387 		/*
2388 		 * Do not consider all the reclaimable memory because we do not
2389 		 * want to trash just for a single high order allocation which
2390 		 * is even not guaranteed to appear even if __compaction_suitable
2391 		 * is happy about the watermark check.
2392 		 */
2393 		available = zone_reclaimable_pages(zone) / order;
2394 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2395 		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2396 					  available))
2397 			return true;
2398 	}
2399 
2400 	return false;
2401 }
2402 
2403 /*
2404  * Should we do compaction for target allocation order.
2405  * Return COMPACT_SUCCESS if allocation for target order can be already
2406  * satisfied
2407  * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2408  * Return COMPACT_CONTINUE if compaction for target order should be ran
2409  */
2410 static enum compact_result
2411 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2412 				 int highest_zoneidx, unsigned int alloc_flags)
2413 {
2414 	unsigned long watermark;
2415 
2416 	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2417 	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2418 			      alloc_flags))
2419 		return COMPACT_SUCCESS;
2420 
2421 	if (!compaction_suitable(zone, order, highest_zoneidx))
2422 		return COMPACT_SKIPPED;
2423 
2424 	return COMPACT_CONTINUE;
2425 }
2426 
2427 static enum compact_result
2428 compact_zone(struct compact_control *cc, struct capture_control *capc)
2429 {
2430 	enum compact_result ret;
2431 	unsigned long start_pfn = cc->zone->zone_start_pfn;
2432 	unsigned long end_pfn = zone_end_pfn(cc->zone);
2433 	unsigned long last_migrated_pfn;
2434 	const bool sync = cc->mode != MIGRATE_ASYNC;
2435 	bool update_cached;
2436 	unsigned int nr_succeeded = 0;
2437 
2438 	/*
2439 	 * These counters track activities during zone compaction.  Initialize
2440 	 * them before compacting a new zone.
2441 	 */
2442 	cc->total_migrate_scanned = 0;
2443 	cc->total_free_scanned = 0;
2444 	cc->nr_migratepages = 0;
2445 	cc->nr_freepages = 0;
2446 	INIT_LIST_HEAD(&cc->freepages);
2447 	INIT_LIST_HEAD(&cc->migratepages);
2448 
2449 	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2450 
2451 	if (!is_via_compact_memory(cc->order)) {
2452 		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2453 						       cc->highest_zoneidx,
2454 						       cc->alloc_flags);
2455 		if (ret != COMPACT_CONTINUE)
2456 			return ret;
2457 	}
2458 
2459 	/*
2460 	 * Clear pageblock skip if there were failures recently and compaction
2461 	 * is about to be retried after being deferred.
2462 	 */
2463 	if (compaction_restarting(cc->zone, cc->order))
2464 		__reset_isolation_suitable(cc->zone);
2465 
2466 	/*
2467 	 * Setup to move all movable pages to the end of the zone. Used cached
2468 	 * information on where the scanners should start (unless we explicitly
2469 	 * want to compact the whole zone), but check that it is initialised
2470 	 * by ensuring the values are within zone boundaries.
2471 	 */
2472 	cc->fast_start_pfn = 0;
2473 	if (cc->whole_zone) {
2474 		cc->migrate_pfn = start_pfn;
2475 		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2476 	} else {
2477 		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2478 		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2479 		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2480 			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2481 			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2482 		}
2483 		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2484 			cc->migrate_pfn = start_pfn;
2485 			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2486 			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2487 		}
2488 
2489 		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2490 			cc->whole_zone = true;
2491 	}
2492 
2493 	last_migrated_pfn = 0;
2494 
2495 	/*
2496 	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2497 	 * the basis that some migrations will fail in ASYNC mode. However,
2498 	 * if the cached PFNs match and pageblocks are skipped due to having
2499 	 * no isolation candidates, then the sync state does not matter.
2500 	 * Until a pageblock with isolation candidates is found, keep the
2501 	 * cached PFNs in sync to avoid revisiting the same blocks.
2502 	 */
2503 	update_cached = !sync &&
2504 		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2505 
2506 	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2507 
2508 	/* lru_add_drain_all could be expensive with involving other CPUs */
2509 	lru_add_drain();
2510 
2511 	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2512 		int err;
2513 		unsigned long iteration_start_pfn = cc->migrate_pfn;
2514 
2515 		/*
2516 		 * Avoid multiple rescans of the same pageblock which can
2517 		 * happen if a page cannot be isolated (dirty/writeback in
2518 		 * async mode) or if the migrated pages are being allocated
2519 		 * before the pageblock is cleared.  The first rescan will
2520 		 * capture the entire pageblock for migration. If it fails,
2521 		 * it'll be marked skip and scanning will proceed as normal.
2522 		 */
2523 		cc->finish_pageblock = false;
2524 		if (pageblock_start_pfn(last_migrated_pfn) ==
2525 		    pageblock_start_pfn(iteration_start_pfn)) {
2526 			cc->finish_pageblock = true;
2527 		}
2528 
2529 rescan:
2530 		switch (isolate_migratepages(cc)) {
2531 		case ISOLATE_ABORT:
2532 			ret = COMPACT_CONTENDED;
2533 			putback_movable_pages(&cc->migratepages);
2534 			cc->nr_migratepages = 0;
2535 			goto out;
2536 		case ISOLATE_NONE:
2537 			if (update_cached) {
2538 				cc->zone->compact_cached_migrate_pfn[1] =
2539 					cc->zone->compact_cached_migrate_pfn[0];
2540 			}
2541 
2542 			/*
2543 			 * We haven't isolated and migrated anything, but
2544 			 * there might still be unflushed migrations from
2545 			 * previous cc->order aligned block.
2546 			 */
2547 			goto check_drain;
2548 		case ISOLATE_SUCCESS:
2549 			update_cached = false;
2550 			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2551 				pageblock_start_pfn(cc->migrate_pfn - 1));
2552 		}
2553 
2554 		err = migrate_pages(&cc->migratepages, compaction_alloc,
2555 				compaction_free, (unsigned long)cc, cc->mode,
2556 				MR_COMPACTION, &nr_succeeded);
2557 
2558 		trace_mm_compaction_migratepages(cc, nr_succeeded);
2559 
2560 		/* All pages were either migrated or will be released */
2561 		cc->nr_migratepages = 0;
2562 		if (err) {
2563 			putback_movable_pages(&cc->migratepages);
2564 			/*
2565 			 * migrate_pages() may return -ENOMEM when scanners meet
2566 			 * and we want compact_finished() to detect it
2567 			 */
2568 			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2569 				ret = COMPACT_CONTENDED;
2570 				goto out;
2571 			}
2572 			/*
2573 			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2574 			 * within the pageblock_order-aligned block and
2575 			 * fast_find_migrateblock may be used then scan the
2576 			 * remainder of the pageblock. This will mark the
2577 			 * pageblock "skip" to avoid rescanning in the near
2578 			 * future. This will isolate more pages than necessary
2579 			 * for the request but avoid loops due to
2580 			 * fast_find_migrateblock revisiting blocks that were
2581 			 * recently partially scanned.
2582 			 */
2583 			if (!pageblock_aligned(cc->migrate_pfn) &&
2584 			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2585 			    (cc->mode < MIGRATE_SYNC)) {
2586 				cc->finish_pageblock = true;
2587 
2588 				/*
2589 				 * Draining pcplists does not help THP if
2590 				 * any page failed to migrate. Even after
2591 				 * drain, the pageblock will not be free.
2592 				 */
2593 				if (cc->order == COMPACTION_HPAGE_ORDER)
2594 					last_migrated_pfn = 0;
2595 
2596 				goto rescan;
2597 			}
2598 		}
2599 
2600 		/* Stop if a page has been captured */
2601 		if (capc && capc->page) {
2602 			ret = COMPACT_SUCCESS;
2603 			break;
2604 		}
2605 
2606 check_drain:
2607 		/*
2608 		 * Has the migration scanner moved away from the previous
2609 		 * cc->order aligned block where we migrated from? If yes,
2610 		 * flush the pages that were freed, so that they can merge and
2611 		 * compact_finished() can detect immediately if allocation
2612 		 * would succeed.
2613 		 */
2614 		if (cc->order > 0 && last_migrated_pfn) {
2615 			unsigned long current_block_start =
2616 				block_start_pfn(cc->migrate_pfn, cc->order);
2617 
2618 			if (last_migrated_pfn < current_block_start) {
2619 				lru_add_drain_cpu_zone(cc->zone);
2620 				/* No more flushing until we migrate again */
2621 				last_migrated_pfn = 0;
2622 			}
2623 		}
2624 	}
2625 
2626 out:
2627 	/*
2628 	 * Release free pages and update where the free scanner should restart,
2629 	 * so we don't leave any returned pages behind in the next attempt.
2630 	 */
2631 	if (cc->nr_freepages > 0) {
2632 		unsigned long free_pfn = release_freepages(&cc->freepages);
2633 
2634 		cc->nr_freepages = 0;
2635 		VM_BUG_ON(free_pfn == 0);
2636 		/* The cached pfn is always the first in a pageblock */
2637 		free_pfn = pageblock_start_pfn(free_pfn);
2638 		/*
2639 		 * Only go back, not forward. The cached pfn might have been
2640 		 * already reset to zone end in compact_finished()
2641 		 */
2642 		if (free_pfn > cc->zone->compact_cached_free_pfn)
2643 			cc->zone->compact_cached_free_pfn = free_pfn;
2644 	}
2645 
2646 	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2647 	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2648 
2649 	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2650 
2651 	VM_BUG_ON(!list_empty(&cc->freepages));
2652 	VM_BUG_ON(!list_empty(&cc->migratepages));
2653 
2654 	return ret;
2655 }
2656 
2657 static enum compact_result compact_zone_order(struct zone *zone, int order,
2658 		gfp_t gfp_mask, enum compact_priority prio,
2659 		unsigned int alloc_flags, int highest_zoneidx,
2660 		struct page **capture)
2661 {
2662 	enum compact_result ret;
2663 	struct compact_control cc = {
2664 		.order = order,
2665 		.search_order = order,
2666 		.gfp_mask = gfp_mask,
2667 		.zone = zone,
2668 		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2669 					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2670 		.alloc_flags = alloc_flags,
2671 		.highest_zoneidx = highest_zoneidx,
2672 		.direct_compaction = true,
2673 		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2674 		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2675 		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2676 	};
2677 	struct capture_control capc = {
2678 		.cc = &cc,
2679 		.page = NULL,
2680 	};
2681 
2682 	/*
2683 	 * Make sure the structs are really initialized before we expose the
2684 	 * capture control, in case we are interrupted and the interrupt handler
2685 	 * frees a page.
2686 	 */
2687 	barrier();
2688 	WRITE_ONCE(current->capture_control, &capc);
2689 
2690 	ret = compact_zone(&cc, &capc);
2691 
2692 	/*
2693 	 * Make sure we hide capture control first before we read the captured
2694 	 * page pointer, otherwise an interrupt could free and capture a page
2695 	 * and we would leak it.
2696 	 */
2697 	WRITE_ONCE(current->capture_control, NULL);
2698 	*capture = READ_ONCE(capc.page);
2699 	/*
2700 	 * Technically, it is also possible that compaction is skipped but
2701 	 * the page is still captured out of luck(IRQ came and freed the page).
2702 	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2703 	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2704 	 */
2705 	if (*capture)
2706 		ret = COMPACT_SUCCESS;
2707 
2708 	return ret;
2709 }
2710 
2711 /**
2712  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2713  * @gfp_mask: The GFP mask of the current allocation
2714  * @order: The order of the current allocation
2715  * @alloc_flags: The allocation flags of the current allocation
2716  * @ac: The context of current allocation
2717  * @prio: Determines how hard direct compaction should try to succeed
2718  * @capture: Pointer to free page created by compaction will be stored here
2719  *
2720  * This is the main entry point for direct page compaction.
2721  */
2722 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2723 		unsigned int alloc_flags, const struct alloc_context *ac,
2724 		enum compact_priority prio, struct page **capture)
2725 {
2726 	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2727 	struct zoneref *z;
2728 	struct zone *zone;
2729 	enum compact_result rc = COMPACT_SKIPPED;
2730 
2731 	/*
2732 	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2733 	 * tricky context because the migration might require IO
2734 	 */
2735 	if (!may_perform_io)
2736 		return COMPACT_SKIPPED;
2737 
2738 	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2739 
2740 	/* Compact each zone in the list */
2741 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2742 					ac->highest_zoneidx, ac->nodemask) {
2743 		enum compact_result status;
2744 
2745 		if (prio > MIN_COMPACT_PRIORITY
2746 					&& compaction_deferred(zone, order)) {
2747 			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2748 			continue;
2749 		}
2750 
2751 		status = compact_zone_order(zone, order, gfp_mask, prio,
2752 				alloc_flags, ac->highest_zoneidx, capture);
2753 		rc = max(status, rc);
2754 
2755 		/* The allocation should succeed, stop compacting */
2756 		if (status == COMPACT_SUCCESS) {
2757 			/*
2758 			 * We think the allocation will succeed in this zone,
2759 			 * but it is not certain, hence the false. The caller
2760 			 * will repeat this with true if allocation indeed
2761 			 * succeeds in this zone.
2762 			 */
2763 			compaction_defer_reset(zone, order, false);
2764 
2765 			break;
2766 		}
2767 
2768 		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2769 					status == COMPACT_PARTIAL_SKIPPED))
2770 			/*
2771 			 * We think that allocation won't succeed in this zone
2772 			 * so we defer compaction there. If it ends up
2773 			 * succeeding after all, it will be reset.
2774 			 */
2775 			defer_compaction(zone, order);
2776 
2777 		/*
2778 		 * We might have stopped compacting due to need_resched() in
2779 		 * async compaction, or due to a fatal signal detected. In that
2780 		 * case do not try further zones
2781 		 */
2782 		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2783 					|| fatal_signal_pending(current))
2784 			break;
2785 	}
2786 
2787 	return rc;
2788 }
2789 
2790 /*
2791  * Compact all zones within a node till each zone's fragmentation score
2792  * reaches within proactive compaction thresholds (as determined by the
2793  * proactiveness tunable).
2794  *
2795  * It is possible that the function returns before reaching score targets
2796  * due to various back-off conditions, such as, contention on per-node or
2797  * per-zone locks.
2798  */
2799 static void proactive_compact_node(pg_data_t *pgdat)
2800 {
2801 	int zoneid;
2802 	struct zone *zone;
2803 	struct compact_control cc = {
2804 		.order = -1,
2805 		.mode = MIGRATE_SYNC_LIGHT,
2806 		.ignore_skip_hint = true,
2807 		.whole_zone = true,
2808 		.gfp_mask = GFP_KERNEL,
2809 		.proactive_compaction = true,
2810 	};
2811 
2812 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2813 		zone = &pgdat->node_zones[zoneid];
2814 		if (!populated_zone(zone))
2815 			continue;
2816 
2817 		cc.zone = zone;
2818 
2819 		compact_zone(&cc, NULL);
2820 
2821 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2822 				     cc.total_migrate_scanned);
2823 		count_compact_events(KCOMPACTD_FREE_SCANNED,
2824 				     cc.total_free_scanned);
2825 	}
2826 }
2827 
2828 /* Compact all zones within a node */
2829 static void compact_node(int nid)
2830 {
2831 	pg_data_t *pgdat = NODE_DATA(nid);
2832 	int zoneid;
2833 	struct zone *zone;
2834 	struct compact_control cc = {
2835 		.order = -1,
2836 		.mode = MIGRATE_SYNC,
2837 		.ignore_skip_hint = true,
2838 		.whole_zone = true,
2839 		.gfp_mask = GFP_KERNEL,
2840 	};
2841 
2842 
2843 	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2844 
2845 		zone = &pgdat->node_zones[zoneid];
2846 		if (!populated_zone(zone))
2847 			continue;
2848 
2849 		cc.zone = zone;
2850 
2851 		compact_zone(&cc, NULL);
2852 	}
2853 }
2854 
2855 /* Compact all nodes in the system */
2856 static void compact_nodes(void)
2857 {
2858 	int nid;
2859 
2860 	/* Flush pending updates to the LRU lists */
2861 	lru_add_drain_all();
2862 
2863 	for_each_online_node(nid)
2864 		compact_node(nid);
2865 }
2866 
2867 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2868 		void *buffer, size_t *length, loff_t *ppos)
2869 {
2870 	int rc, nid;
2871 
2872 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2873 	if (rc)
2874 		return rc;
2875 
2876 	if (write && sysctl_compaction_proactiveness) {
2877 		for_each_online_node(nid) {
2878 			pg_data_t *pgdat = NODE_DATA(nid);
2879 
2880 			if (pgdat->proactive_compact_trigger)
2881 				continue;
2882 
2883 			pgdat->proactive_compact_trigger = true;
2884 			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2885 							     pgdat->nr_zones - 1);
2886 			wake_up_interruptible(&pgdat->kcompactd_wait);
2887 		}
2888 	}
2889 
2890 	return 0;
2891 }
2892 
2893 /*
2894  * This is the entry point for compacting all nodes via
2895  * /proc/sys/vm/compact_memory
2896  */
2897 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2898 			void *buffer, size_t *length, loff_t *ppos)
2899 {
2900 	int ret;
2901 
2902 	ret = proc_dointvec(table, write, buffer, length, ppos);
2903 	if (ret)
2904 		return ret;
2905 
2906 	if (sysctl_compact_memory != 1)
2907 		return -EINVAL;
2908 
2909 	if (write)
2910 		compact_nodes();
2911 
2912 	return 0;
2913 }
2914 
2915 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2916 static ssize_t compact_store(struct device *dev,
2917 			     struct device_attribute *attr,
2918 			     const char *buf, size_t count)
2919 {
2920 	int nid = dev->id;
2921 
2922 	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2923 		/* Flush pending updates to the LRU lists */
2924 		lru_add_drain_all();
2925 
2926 		compact_node(nid);
2927 	}
2928 
2929 	return count;
2930 }
2931 static DEVICE_ATTR_WO(compact);
2932 
2933 int compaction_register_node(struct node *node)
2934 {
2935 	return device_create_file(&node->dev, &dev_attr_compact);
2936 }
2937 
2938 void compaction_unregister_node(struct node *node)
2939 {
2940 	device_remove_file(&node->dev, &dev_attr_compact);
2941 }
2942 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2943 
2944 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2945 {
2946 	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2947 		pgdat->proactive_compact_trigger;
2948 }
2949 
2950 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2951 {
2952 	int zoneid;
2953 	struct zone *zone;
2954 	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2955 	enum compact_result ret;
2956 
2957 	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2958 		zone = &pgdat->node_zones[zoneid];
2959 
2960 		if (!populated_zone(zone))
2961 			continue;
2962 
2963 		ret = compaction_suit_allocation_order(zone,
2964 				pgdat->kcompactd_max_order,
2965 				highest_zoneidx, ALLOC_WMARK_MIN);
2966 		if (ret == COMPACT_CONTINUE)
2967 			return true;
2968 	}
2969 
2970 	return false;
2971 }
2972 
2973 static void kcompactd_do_work(pg_data_t *pgdat)
2974 {
2975 	/*
2976 	 * With no special task, compact all zones so that a page of requested
2977 	 * order is allocatable.
2978 	 */
2979 	int zoneid;
2980 	struct zone *zone;
2981 	struct compact_control cc = {
2982 		.order = pgdat->kcompactd_max_order,
2983 		.search_order = pgdat->kcompactd_max_order,
2984 		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2985 		.mode = MIGRATE_SYNC_LIGHT,
2986 		.ignore_skip_hint = false,
2987 		.gfp_mask = GFP_KERNEL,
2988 	};
2989 	enum compact_result ret;
2990 
2991 	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2992 							cc.highest_zoneidx);
2993 	count_compact_event(KCOMPACTD_WAKE);
2994 
2995 	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2996 		int status;
2997 
2998 		zone = &pgdat->node_zones[zoneid];
2999 		if (!populated_zone(zone))
3000 			continue;
3001 
3002 		if (compaction_deferred(zone, cc.order))
3003 			continue;
3004 
3005 		ret = compaction_suit_allocation_order(zone,
3006 				cc.order, zoneid, ALLOC_WMARK_MIN);
3007 		if (ret != COMPACT_CONTINUE)
3008 			continue;
3009 
3010 		if (kthread_should_stop())
3011 			return;
3012 
3013 		cc.zone = zone;
3014 		status = compact_zone(&cc, NULL);
3015 
3016 		if (status == COMPACT_SUCCESS) {
3017 			compaction_defer_reset(zone, cc.order, false);
3018 		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3019 			/*
3020 			 * Buddy pages may become stranded on pcps that could
3021 			 * otherwise coalesce on the zone's free area for
3022 			 * order >= cc.order.  This is ratelimited by the
3023 			 * upcoming deferral.
3024 			 */
3025 			drain_all_pages(zone);
3026 
3027 			/*
3028 			 * We use sync migration mode here, so we defer like
3029 			 * sync direct compaction does.
3030 			 */
3031 			defer_compaction(zone, cc.order);
3032 		}
3033 
3034 		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3035 				     cc.total_migrate_scanned);
3036 		count_compact_events(KCOMPACTD_FREE_SCANNED,
3037 				     cc.total_free_scanned);
3038 	}
3039 
3040 	/*
3041 	 * Regardless of success, we are done until woken up next. But remember
3042 	 * the requested order/highest_zoneidx in case it was higher/tighter
3043 	 * than our current ones
3044 	 */
3045 	if (pgdat->kcompactd_max_order <= cc.order)
3046 		pgdat->kcompactd_max_order = 0;
3047 	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3048 		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3049 }
3050 
3051 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3052 {
3053 	if (!order)
3054 		return;
3055 
3056 	if (pgdat->kcompactd_max_order < order)
3057 		pgdat->kcompactd_max_order = order;
3058 
3059 	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3060 		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3061 
3062 	/*
3063 	 * Pairs with implicit barrier in wait_event_freezable()
3064 	 * such that wakeups are not missed.
3065 	 */
3066 	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3067 		return;
3068 
3069 	if (!kcompactd_node_suitable(pgdat))
3070 		return;
3071 
3072 	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3073 							highest_zoneidx);
3074 	wake_up_interruptible(&pgdat->kcompactd_wait);
3075 }
3076 
3077 /*
3078  * The background compaction daemon, started as a kernel thread
3079  * from the init process.
3080  */
3081 static int kcompactd(void *p)
3082 {
3083 	pg_data_t *pgdat = (pg_data_t *)p;
3084 	struct task_struct *tsk = current;
3085 	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3086 	long timeout = default_timeout;
3087 
3088 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3089 
3090 	if (!cpumask_empty(cpumask))
3091 		set_cpus_allowed_ptr(tsk, cpumask);
3092 
3093 	set_freezable();
3094 
3095 	pgdat->kcompactd_max_order = 0;
3096 	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3097 
3098 	while (!kthread_should_stop()) {
3099 		unsigned long pflags;
3100 
3101 		/*
3102 		 * Avoid the unnecessary wakeup for proactive compaction
3103 		 * when it is disabled.
3104 		 */
3105 		if (!sysctl_compaction_proactiveness)
3106 			timeout = MAX_SCHEDULE_TIMEOUT;
3107 		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3108 		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3109 			kcompactd_work_requested(pgdat), timeout) &&
3110 			!pgdat->proactive_compact_trigger) {
3111 
3112 			psi_memstall_enter(&pflags);
3113 			kcompactd_do_work(pgdat);
3114 			psi_memstall_leave(&pflags);
3115 			/*
3116 			 * Reset the timeout value. The defer timeout from
3117 			 * proactive compaction is lost here but that is fine
3118 			 * as the condition of the zone changing substantionally
3119 			 * then carrying on with the previous defer interval is
3120 			 * not useful.
3121 			 */
3122 			timeout = default_timeout;
3123 			continue;
3124 		}
3125 
3126 		/*
3127 		 * Start the proactive work with default timeout. Based
3128 		 * on the fragmentation score, this timeout is updated.
3129 		 */
3130 		timeout = default_timeout;
3131 		if (should_proactive_compact_node(pgdat)) {
3132 			unsigned int prev_score, score;
3133 
3134 			prev_score = fragmentation_score_node(pgdat);
3135 			proactive_compact_node(pgdat);
3136 			score = fragmentation_score_node(pgdat);
3137 			/*
3138 			 * Defer proactive compaction if the fragmentation
3139 			 * score did not go down i.e. no progress made.
3140 			 */
3141 			if (unlikely(score >= prev_score))
3142 				timeout =
3143 				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3144 		}
3145 		if (unlikely(pgdat->proactive_compact_trigger))
3146 			pgdat->proactive_compact_trigger = false;
3147 	}
3148 
3149 	return 0;
3150 }
3151 
3152 /*
3153  * This kcompactd start function will be called by init and node-hot-add.
3154  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3155  */
3156 void __meminit kcompactd_run(int nid)
3157 {
3158 	pg_data_t *pgdat = NODE_DATA(nid);
3159 
3160 	if (pgdat->kcompactd)
3161 		return;
3162 
3163 	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3164 	if (IS_ERR(pgdat->kcompactd)) {
3165 		pr_err("Failed to start kcompactd on node %d\n", nid);
3166 		pgdat->kcompactd = NULL;
3167 	}
3168 }
3169 
3170 /*
3171  * Called by memory hotplug when all memory in a node is offlined. Caller must
3172  * be holding mem_hotplug_begin/done().
3173  */
3174 void __meminit kcompactd_stop(int nid)
3175 {
3176 	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3177 
3178 	if (kcompactd) {
3179 		kthread_stop(kcompactd);
3180 		NODE_DATA(nid)->kcompactd = NULL;
3181 	}
3182 }
3183 
3184 /*
3185  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3186  * not required for correctness. So if the last cpu in a node goes
3187  * away, we get changed to run anywhere: as the first one comes back,
3188  * restore their cpu bindings.
3189  */
3190 static int kcompactd_cpu_online(unsigned int cpu)
3191 {
3192 	int nid;
3193 
3194 	for_each_node_state(nid, N_MEMORY) {
3195 		pg_data_t *pgdat = NODE_DATA(nid);
3196 		const struct cpumask *mask;
3197 
3198 		mask = cpumask_of_node(pgdat->node_id);
3199 
3200 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3201 			/* One of our CPUs online: restore mask */
3202 			if (pgdat->kcompactd)
3203 				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3204 	}
3205 	return 0;
3206 }
3207 
3208 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3209 		int write, void *buffer, size_t *lenp, loff_t *ppos)
3210 {
3211 	int ret, old;
3212 
3213 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3214 		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3215 
3216 	old = *(int *)table->data;
3217 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3218 	if (ret)
3219 		return ret;
3220 	if (old != *(int *)table->data)
3221 		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3222 			     table->procname, current->comm,
3223 			     task_pid_nr(current));
3224 	return ret;
3225 }
3226 
3227 static struct ctl_table vm_compaction[] = {
3228 	{
3229 		.procname	= "compact_memory",
3230 		.data		= &sysctl_compact_memory,
3231 		.maxlen		= sizeof(int),
3232 		.mode		= 0200,
3233 		.proc_handler	= sysctl_compaction_handler,
3234 	},
3235 	{
3236 		.procname	= "compaction_proactiveness",
3237 		.data		= &sysctl_compaction_proactiveness,
3238 		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3239 		.mode		= 0644,
3240 		.proc_handler	= compaction_proactiveness_sysctl_handler,
3241 		.extra1		= SYSCTL_ZERO,
3242 		.extra2		= SYSCTL_ONE_HUNDRED,
3243 	},
3244 	{
3245 		.procname	= "extfrag_threshold",
3246 		.data		= &sysctl_extfrag_threshold,
3247 		.maxlen		= sizeof(int),
3248 		.mode		= 0644,
3249 		.proc_handler	= proc_dointvec_minmax,
3250 		.extra1		= SYSCTL_ZERO,
3251 		.extra2		= SYSCTL_ONE_THOUSAND,
3252 	},
3253 	{
3254 		.procname	= "compact_unevictable_allowed",
3255 		.data		= &sysctl_compact_unevictable_allowed,
3256 		.maxlen		= sizeof(int),
3257 		.mode		= 0644,
3258 		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3259 		.extra1		= SYSCTL_ZERO,
3260 		.extra2		= SYSCTL_ONE,
3261 	},
3262 	{ }
3263 };
3264 
3265 static int __init kcompactd_init(void)
3266 {
3267 	int nid;
3268 	int ret;
3269 
3270 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3271 					"mm/compaction:online",
3272 					kcompactd_cpu_online, NULL);
3273 	if (ret < 0) {
3274 		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3275 		return ret;
3276 	}
3277 
3278 	for_each_node_state(nid, N_MEMORY)
3279 		kcompactd_run(nid);
3280 	register_sysctl_init("vm", vm_compaction);
3281 	return 0;
3282 }
3283 subsys_initcall(kcompactd_init)
3284 
3285 #endif /* CONFIG_COMPACTION */
3286