xref: /linux/mm/gup.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
14 
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
21 #include <linux/shmem_fs.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 struct follow_page_context {
29 	struct dev_pagemap *pgmap;
30 	unsigned int page_mask;
31 };
32 
33 static inline void sanity_check_pinned_pages(struct page **pages,
34 					     unsigned long npages)
35 {
36 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
37 		return;
38 
39 	/*
40 	 * We only pin anonymous pages if they are exclusive. Once pinned, we
41 	 * can no longer turn them possibly shared and PageAnonExclusive() will
42 	 * stick around until the page is freed.
43 	 *
44 	 * We'd like to verify that our pinned anonymous pages are still mapped
45 	 * exclusively. The issue with anon THP is that we don't know how
46 	 * they are/were mapped when pinning them. However, for anon
47 	 * THP we can assume that either the given page (PTE-mapped THP) or
48 	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
49 	 * neither is the case, there is certainly something wrong.
50 	 */
51 	for (; npages; npages--, pages++) {
52 		struct page *page = *pages;
53 		struct folio *folio = page_folio(page);
54 
55 		if (is_zero_page(page) ||
56 		    !folio_test_anon(folio))
57 			continue;
58 		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
59 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
60 		else
61 			/* Either a PTE-mapped or a PMD-mapped THP. */
62 			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
63 				       !PageAnonExclusive(page), page);
64 	}
65 }
66 
67 /*
68  * Return the folio with ref appropriately incremented,
69  * or NULL if that failed.
70  */
71 static inline struct folio *try_get_folio(struct page *page, int refs)
72 {
73 	struct folio *folio;
74 
75 retry:
76 	folio = page_folio(page);
77 	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
78 		return NULL;
79 	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
80 		return NULL;
81 
82 	/*
83 	 * At this point we have a stable reference to the folio; but it
84 	 * could be that between calling page_folio() and the refcount
85 	 * increment, the folio was split, in which case we'd end up
86 	 * holding a reference on a folio that has nothing to do with the page
87 	 * we were given anymore.
88 	 * So now that the folio is stable, recheck that the page still
89 	 * belongs to this folio.
90 	 */
91 	if (unlikely(page_folio(page) != folio)) {
92 		if (!put_devmap_managed_page_refs(&folio->page, refs))
93 			folio_put_refs(folio, refs);
94 		goto retry;
95 	}
96 
97 	return folio;
98 }
99 
100 /**
101  * try_grab_folio() - Attempt to get or pin a folio.
102  * @page:  pointer to page to be grabbed
103  * @refs:  the value to (effectively) add to the folio's refcount
104  * @flags: gup flags: these are the FOLL_* flag values.
105  *
106  * "grab" names in this file mean, "look at flags to decide whether to use
107  * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
108  *
109  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110  * same time. (That's true throughout the get_user_pages*() and
111  * pin_user_pages*() APIs.) Cases:
112  *
113  *    FOLL_GET: folio's refcount will be incremented by @refs.
114  *
115  *    FOLL_PIN on large folios: folio's refcount will be incremented by
116  *    @refs, and its pincount will be incremented by @refs.
117  *
118  *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
119  *    @refs * GUP_PIN_COUNTING_BIAS.
120  *
121  * Return: The folio containing @page (with refcount appropriately
122  * incremented) for success, or NULL upon failure. If neither FOLL_GET
123  * nor FOLL_PIN was set, that's considered failure, and furthermore,
124  * a likely bug in the caller, so a warning is also emitted.
125  */
126 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
127 {
128 	struct folio *folio;
129 
130 	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
131 		return NULL;
132 
133 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
134 		return NULL;
135 
136 	if (flags & FOLL_GET)
137 		return try_get_folio(page, refs);
138 
139 	/* FOLL_PIN is set */
140 
141 	/*
142 	 * Don't take a pin on the zero page - it's not going anywhere
143 	 * and it is used in a *lot* of places.
144 	 */
145 	if (is_zero_page(page))
146 		return page_folio(page);
147 
148 	folio = try_get_folio(page, refs);
149 	if (!folio)
150 		return NULL;
151 
152 	/*
153 	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
154 	 * right zone, so fail and let the caller fall back to the slow
155 	 * path.
156 	 */
157 	if (unlikely((flags & FOLL_LONGTERM) &&
158 		     !folio_is_longterm_pinnable(folio))) {
159 		if (!put_devmap_managed_page_refs(&folio->page, refs))
160 			folio_put_refs(folio, refs);
161 		return NULL;
162 	}
163 
164 	/*
165 	 * When pinning a large folio, use an exact count to track it.
166 	 *
167 	 * However, be sure to *also* increment the normal folio
168 	 * refcount field at least once, so that the folio really
169 	 * is pinned.  That's why the refcount from the earlier
170 	 * try_get_folio() is left intact.
171 	 */
172 	if (folio_test_large(folio))
173 		atomic_add(refs, &folio->_pincount);
174 	else
175 		folio_ref_add(folio,
176 				refs * (GUP_PIN_COUNTING_BIAS - 1));
177 	/*
178 	 * Adjust the pincount before re-checking the PTE for changes.
179 	 * This is essentially a smp_mb() and is paired with a memory
180 	 * barrier in folio_try_share_anon_rmap_*().
181 	 */
182 	smp_mb__after_atomic();
183 
184 	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
185 
186 	return folio;
187 }
188 
189 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
190 {
191 	if (flags & FOLL_PIN) {
192 		if (is_zero_folio(folio))
193 			return;
194 		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
195 		if (folio_test_large(folio))
196 			atomic_sub(refs, &folio->_pincount);
197 		else
198 			refs *= GUP_PIN_COUNTING_BIAS;
199 	}
200 
201 	if (!put_devmap_managed_page_refs(&folio->page, refs))
202 		folio_put_refs(folio, refs);
203 }
204 
205 /**
206  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
207  * @page:    pointer to page to be grabbed
208  * @flags:   gup flags: these are the FOLL_* flag values.
209  *
210  * This might not do anything at all, depending on the flags argument.
211  *
212  * "grab" names in this file mean, "look at flags to decide whether to use
213  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
214  *
215  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
216  * time. Cases: please see the try_grab_folio() documentation, with
217  * "refs=1".
218  *
219  * Return: 0 for success, or if no action was required (if neither FOLL_PIN
220  * nor FOLL_GET was set, nothing is done). A negative error code for failure:
221  *
222  *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
223  *			be grabbed.
224  */
225 int __must_check try_grab_page(struct page *page, unsigned int flags)
226 {
227 	struct folio *folio = page_folio(page);
228 
229 	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
230 		return -ENOMEM;
231 
232 	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
233 		return -EREMOTEIO;
234 
235 	if (flags & FOLL_GET)
236 		folio_ref_inc(folio);
237 	else if (flags & FOLL_PIN) {
238 		/*
239 		 * Don't take a pin on the zero page - it's not going anywhere
240 		 * and it is used in a *lot* of places.
241 		 */
242 		if (is_zero_page(page))
243 			return 0;
244 
245 		/*
246 		 * Similar to try_grab_folio(): be sure to *also*
247 		 * increment the normal page refcount field at least once,
248 		 * so that the page really is pinned.
249 		 */
250 		if (folio_test_large(folio)) {
251 			folio_ref_add(folio, 1);
252 			atomic_add(1, &folio->_pincount);
253 		} else {
254 			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
255 		}
256 
257 		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
258 	}
259 
260 	return 0;
261 }
262 
263 /**
264  * unpin_user_page() - release a dma-pinned page
265  * @page:            pointer to page to be released
266  *
267  * Pages that were pinned via pin_user_pages*() must be released via either
268  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
269  * that such pages can be separately tracked and uniquely handled. In
270  * particular, interactions with RDMA and filesystems need special handling.
271  */
272 void unpin_user_page(struct page *page)
273 {
274 	sanity_check_pinned_pages(&page, 1);
275 	gup_put_folio(page_folio(page), 1, FOLL_PIN);
276 }
277 EXPORT_SYMBOL(unpin_user_page);
278 
279 /**
280  * folio_add_pin - Try to get an additional pin on a pinned folio
281  * @folio: The folio to be pinned
282  *
283  * Get an additional pin on a folio we already have a pin on.  Makes no change
284  * if the folio is a zero_page.
285  */
286 void folio_add_pin(struct folio *folio)
287 {
288 	if (is_zero_folio(folio))
289 		return;
290 
291 	/*
292 	 * Similar to try_grab_folio(): be sure to *also* increment the normal
293 	 * page refcount field at least once, so that the page really is
294 	 * pinned.
295 	 */
296 	if (folio_test_large(folio)) {
297 		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
298 		folio_ref_inc(folio);
299 		atomic_inc(&folio->_pincount);
300 	} else {
301 		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
302 		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
303 	}
304 }
305 
306 static inline struct folio *gup_folio_range_next(struct page *start,
307 		unsigned long npages, unsigned long i, unsigned int *ntails)
308 {
309 	struct page *next = nth_page(start, i);
310 	struct folio *folio = page_folio(next);
311 	unsigned int nr = 1;
312 
313 	if (folio_test_large(folio))
314 		nr = min_t(unsigned int, npages - i,
315 			   folio_nr_pages(folio) - folio_page_idx(folio, next));
316 
317 	*ntails = nr;
318 	return folio;
319 }
320 
321 static inline struct folio *gup_folio_next(struct page **list,
322 		unsigned long npages, unsigned long i, unsigned int *ntails)
323 {
324 	struct folio *folio = page_folio(list[i]);
325 	unsigned int nr;
326 
327 	for (nr = i + 1; nr < npages; nr++) {
328 		if (page_folio(list[nr]) != folio)
329 			break;
330 	}
331 
332 	*ntails = nr - i;
333 	return folio;
334 }
335 
336 /**
337  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
338  * @pages:  array of pages to be maybe marked dirty, and definitely released.
339  * @npages: number of pages in the @pages array.
340  * @make_dirty: whether to mark the pages dirty
341  *
342  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
343  * variants called on that page.
344  *
345  * For each page in the @pages array, make that page (or its head page, if a
346  * compound page) dirty, if @make_dirty is true, and if the page was previously
347  * listed as clean. In any case, releases all pages using unpin_user_page(),
348  * possibly via unpin_user_pages(), for the non-dirty case.
349  *
350  * Please see the unpin_user_page() documentation for details.
351  *
352  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
353  * required, then the caller should a) verify that this is really correct,
354  * because _lock() is usually required, and b) hand code it:
355  * set_page_dirty_lock(), unpin_user_page().
356  *
357  */
358 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
359 				 bool make_dirty)
360 {
361 	unsigned long i;
362 	struct folio *folio;
363 	unsigned int nr;
364 
365 	if (!make_dirty) {
366 		unpin_user_pages(pages, npages);
367 		return;
368 	}
369 
370 	sanity_check_pinned_pages(pages, npages);
371 	for (i = 0; i < npages; i += nr) {
372 		folio = gup_folio_next(pages, npages, i, &nr);
373 		/*
374 		 * Checking PageDirty at this point may race with
375 		 * clear_page_dirty_for_io(), but that's OK. Two key
376 		 * cases:
377 		 *
378 		 * 1) This code sees the page as already dirty, so it
379 		 * skips the call to set_page_dirty(). That could happen
380 		 * because clear_page_dirty_for_io() called
381 		 * page_mkclean(), followed by set_page_dirty().
382 		 * However, now the page is going to get written back,
383 		 * which meets the original intention of setting it
384 		 * dirty, so all is well: clear_page_dirty_for_io() goes
385 		 * on to call TestClearPageDirty(), and write the page
386 		 * back.
387 		 *
388 		 * 2) This code sees the page as clean, so it calls
389 		 * set_page_dirty(). The page stays dirty, despite being
390 		 * written back, so it gets written back again in the
391 		 * next writeback cycle. This is harmless.
392 		 */
393 		if (!folio_test_dirty(folio)) {
394 			folio_lock(folio);
395 			folio_mark_dirty(folio);
396 			folio_unlock(folio);
397 		}
398 		gup_put_folio(folio, nr, FOLL_PIN);
399 	}
400 }
401 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
402 
403 /**
404  * unpin_user_page_range_dirty_lock() - release and optionally dirty
405  * gup-pinned page range
406  *
407  * @page:  the starting page of a range maybe marked dirty, and definitely released.
408  * @npages: number of consecutive pages to release.
409  * @make_dirty: whether to mark the pages dirty
410  *
411  * "gup-pinned page range" refers to a range of pages that has had one of the
412  * pin_user_pages() variants called on that page.
413  *
414  * For the page ranges defined by [page .. page+npages], make that range (or
415  * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
416  * page range was previously listed as clean.
417  *
418  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
419  * required, then the caller should a) verify that this is really correct,
420  * because _lock() is usually required, and b) hand code it:
421  * set_page_dirty_lock(), unpin_user_page().
422  *
423  */
424 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
425 				      bool make_dirty)
426 {
427 	unsigned long i;
428 	struct folio *folio;
429 	unsigned int nr;
430 
431 	for (i = 0; i < npages; i += nr) {
432 		folio = gup_folio_range_next(page, npages, i, &nr);
433 		if (make_dirty && !folio_test_dirty(folio)) {
434 			folio_lock(folio);
435 			folio_mark_dirty(folio);
436 			folio_unlock(folio);
437 		}
438 		gup_put_folio(folio, nr, FOLL_PIN);
439 	}
440 }
441 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
442 
443 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
444 {
445 	unsigned long i;
446 	struct folio *folio;
447 	unsigned int nr;
448 
449 	/*
450 	 * Don't perform any sanity checks because we might have raced with
451 	 * fork() and some anonymous pages might now actually be shared --
452 	 * which is why we're unpinning after all.
453 	 */
454 	for (i = 0; i < npages; i += nr) {
455 		folio = gup_folio_next(pages, npages, i, &nr);
456 		gup_put_folio(folio, nr, FOLL_PIN);
457 	}
458 }
459 
460 /**
461  * unpin_user_pages() - release an array of gup-pinned pages.
462  * @pages:  array of pages to be marked dirty and released.
463  * @npages: number of pages in the @pages array.
464  *
465  * For each page in the @pages array, release the page using unpin_user_page().
466  *
467  * Please see the unpin_user_page() documentation for details.
468  */
469 void unpin_user_pages(struct page **pages, unsigned long npages)
470 {
471 	unsigned long i;
472 	struct folio *folio;
473 	unsigned int nr;
474 
475 	/*
476 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
477 	 * leaving them pinned), but probably not. More likely, gup/pup returned
478 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
479 	 */
480 	if (WARN_ON(IS_ERR_VALUE(npages)))
481 		return;
482 
483 	sanity_check_pinned_pages(pages, npages);
484 	for (i = 0; i < npages; i += nr) {
485 		folio = gup_folio_next(pages, npages, i, &nr);
486 		gup_put_folio(folio, nr, FOLL_PIN);
487 	}
488 }
489 EXPORT_SYMBOL(unpin_user_pages);
490 
491 /*
492  * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
493  * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
494  * cache bouncing on large SMP machines for concurrent pinned gups.
495  */
496 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
497 {
498 	if (!test_bit(MMF_HAS_PINNED, mm_flags))
499 		set_bit(MMF_HAS_PINNED, mm_flags);
500 }
501 
502 #ifdef CONFIG_MMU
503 static struct page *no_page_table(struct vm_area_struct *vma,
504 		unsigned int flags)
505 {
506 	/*
507 	 * When core dumping an enormous anonymous area that nobody
508 	 * has touched so far, we don't want to allocate unnecessary pages or
509 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
510 	 * then get_dump_page() will return NULL to leave a hole in the dump.
511 	 * But we can only make this optimization where a hole would surely
512 	 * be zero-filled if handle_mm_fault() actually did handle it.
513 	 */
514 	if ((flags & FOLL_DUMP) &&
515 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
516 		return ERR_PTR(-EFAULT);
517 	return NULL;
518 }
519 
520 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
521 		pte_t *pte, unsigned int flags)
522 {
523 	if (flags & FOLL_TOUCH) {
524 		pte_t orig_entry = ptep_get(pte);
525 		pte_t entry = orig_entry;
526 
527 		if (flags & FOLL_WRITE)
528 			entry = pte_mkdirty(entry);
529 		entry = pte_mkyoung(entry);
530 
531 		if (!pte_same(orig_entry, entry)) {
532 			set_pte_at(vma->vm_mm, address, pte, entry);
533 			update_mmu_cache(vma, address, pte);
534 		}
535 	}
536 
537 	/* Proper page table entry exists, but no corresponding struct page */
538 	return -EEXIST;
539 }
540 
541 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
542 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
543 					struct vm_area_struct *vma,
544 					unsigned int flags)
545 {
546 	/* If the pte is writable, we can write to the page. */
547 	if (pte_write(pte))
548 		return true;
549 
550 	/* Maybe FOLL_FORCE is set to override it? */
551 	if (!(flags & FOLL_FORCE))
552 		return false;
553 
554 	/* But FOLL_FORCE has no effect on shared mappings */
555 	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
556 		return false;
557 
558 	/* ... or read-only private ones */
559 	if (!(vma->vm_flags & VM_MAYWRITE))
560 		return false;
561 
562 	/* ... or already writable ones that just need to take a write fault */
563 	if (vma->vm_flags & VM_WRITE)
564 		return false;
565 
566 	/*
567 	 * See can_change_pte_writable(): we broke COW and could map the page
568 	 * writable if we have an exclusive anonymous page ...
569 	 */
570 	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
571 		return false;
572 
573 	/* ... and a write-fault isn't required for other reasons. */
574 	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
575 		return false;
576 	return !userfaultfd_pte_wp(vma, pte);
577 }
578 
579 static struct page *follow_page_pte(struct vm_area_struct *vma,
580 		unsigned long address, pmd_t *pmd, unsigned int flags,
581 		struct dev_pagemap **pgmap)
582 {
583 	struct mm_struct *mm = vma->vm_mm;
584 	struct page *page;
585 	spinlock_t *ptl;
586 	pte_t *ptep, pte;
587 	int ret;
588 
589 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
590 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
591 			 (FOLL_PIN | FOLL_GET)))
592 		return ERR_PTR(-EINVAL);
593 
594 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
595 	if (!ptep)
596 		return no_page_table(vma, flags);
597 	pte = ptep_get(ptep);
598 	if (!pte_present(pte))
599 		goto no_page;
600 	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
601 		goto no_page;
602 
603 	page = vm_normal_page(vma, address, pte);
604 
605 	/*
606 	 * We only care about anon pages in can_follow_write_pte() and don't
607 	 * have to worry about pte_devmap() because they are never anon.
608 	 */
609 	if ((flags & FOLL_WRITE) &&
610 	    !can_follow_write_pte(pte, page, vma, flags)) {
611 		page = NULL;
612 		goto out;
613 	}
614 
615 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
616 		/*
617 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
618 		 * case since they are only valid while holding the pgmap
619 		 * reference.
620 		 */
621 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
622 		if (*pgmap)
623 			page = pte_page(pte);
624 		else
625 			goto no_page;
626 	} else if (unlikely(!page)) {
627 		if (flags & FOLL_DUMP) {
628 			/* Avoid special (like zero) pages in core dumps */
629 			page = ERR_PTR(-EFAULT);
630 			goto out;
631 		}
632 
633 		if (is_zero_pfn(pte_pfn(pte))) {
634 			page = pte_page(pte);
635 		} else {
636 			ret = follow_pfn_pte(vma, address, ptep, flags);
637 			page = ERR_PTR(ret);
638 			goto out;
639 		}
640 	}
641 
642 	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
643 		page = ERR_PTR(-EMLINK);
644 		goto out;
645 	}
646 
647 	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
648 		       !PageAnonExclusive(page), page);
649 
650 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
651 	ret = try_grab_page(page, flags);
652 	if (unlikely(ret)) {
653 		page = ERR_PTR(ret);
654 		goto out;
655 	}
656 
657 	/*
658 	 * We need to make the page accessible if and only if we are going
659 	 * to access its content (the FOLL_PIN case).  Please see
660 	 * Documentation/core-api/pin_user_pages.rst for details.
661 	 */
662 	if (flags & FOLL_PIN) {
663 		ret = arch_make_page_accessible(page);
664 		if (ret) {
665 			unpin_user_page(page);
666 			page = ERR_PTR(ret);
667 			goto out;
668 		}
669 	}
670 	if (flags & FOLL_TOUCH) {
671 		if ((flags & FOLL_WRITE) &&
672 		    !pte_dirty(pte) && !PageDirty(page))
673 			set_page_dirty(page);
674 		/*
675 		 * pte_mkyoung() would be more correct here, but atomic care
676 		 * is needed to avoid losing the dirty bit: it is easier to use
677 		 * mark_page_accessed().
678 		 */
679 		mark_page_accessed(page);
680 	}
681 out:
682 	pte_unmap_unlock(ptep, ptl);
683 	return page;
684 no_page:
685 	pte_unmap_unlock(ptep, ptl);
686 	if (!pte_none(pte))
687 		return NULL;
688 	return no_page_table(vma, flags);
689 }
690 
691 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
692 				    unsigned long address, pud_t *pudp,
693 				    unsigned int flags,
694 				    struct follow_page_context *ctx)
695 {
696 	pmd_t *pmd, pmdval;
697 	spinlock_t *ptl;
698 	struct page *page;
699 	struct mm_struct *mm = vma->vm_mm;
700 
701 	pmd = pmd_offset(pudp, address);
702 	pmdval = pmdp_get_lockless(pmd);
703 	if (pmd_none(pmdval))
704 		return no_page_table(vma, flags);
705 	if (!pmd_present(pmdval))
706 		return no_page_table(vma, flags);
707 	if (pmd_devmap(pmdval)) {
708 		ptl = pmd_lock(mm, pmd);
709 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
710 		spin_unlock(ptl);
711 		if (page)
712 			return page;
713 		return no_page_table(vma, flags);
714 	}
715 	if (likely(!pmd_trans_huge(pmdval)))
716 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
717 
718 	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
719 		return no_page_table(vma, flags);
720 
721 	ptl = pmd_lock(mm, pmd);
722 	if (unlikely(!pmd_present(*pmd))) {
723 		spin_unlock(ptl);
724 		return no_page_table(vma, flags);
725 	}
726 	if (unlikely(!pmd_trans_huge(*pmd))) {
727 		spin_unlock(ptl);
728 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
729 	}
730 	if (flags & FOLL_SPLIT_PMD) {
731 		spin_unlock(ptl);
732 		split_huge_pmd(vma, pmd, address);
733 		/* If pmd was left empty, stuff a page table in there quickly */
734 		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
735 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
736 	}
737 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
738 	spin_unlock(ptl);
739 	ctx->page_mask = HPAGE_PMD_NR - 1;
740 	return page;
741 }
742 
743 static struct page *follow_pud_mask(struct vm_area_struct *vma,
744 				    unsigned long address, p4d_t *p4dp,
745 				    unsigned int flags,
746 				    struct follow_page_context *ctx)
747 {
748 	pud_t *pud;
749 	spinlock_t *ptl;
750 	struct page *page;
751 	struct mm_struct *mm = vma->vm_mm;
752 
753 	pud = pud_offset(p4dp, address);
754 	if (pud_none(*pud))
755 		return no_page_table(vma, flags);
756 	if (pud_devmap(*pud)) {
757 		ptl = pud_lock(mm, pud);
758 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
759 		spin_unlock(ptl);
760 		if (page)
761 			return page;
762 		return no_page_table(vma, flags);
763 	}
764 	if (unlikely(pud_bad(*pud)))
765 		return no_page_table(vma, flags);
766 
767 	return follow_pmd_mask(vma, address, pud, flags, ctx);
768 }
769 
770 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
771 				    unsigned long address, pgd_t *pgdp,
772 				    unsigned int flags,
773 				    struct follow_page_context *ctx)
774 {
775 	p4d_t *p4d;
776 
777 	p4d = p4d_offset(pgdp, address);
778 	if (p4d_none(*p4d))
779 		return no_page_table(vma, flags);
780 	BUILD_BUG_ON(p4d_huge(*p4d));
781 	if (unlikely(p4d_bad(*p4d)))
782 		return no_page_table(vma, flags);
783 
784 	return follow_pud_mask(vma, address, p4d, flags, ctx);
785 }
786 
787 /**
788  * follow_page_mask - look up a page descriptor from a user-virtual address
789  * @vma: vm_area_struct mapping @address
790  * @address: virtual address to look up
791  * @flags: flags modifying lookup behaviour
792  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
793  *       pointer to output page_mask
794  *
795  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
796  *
797  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
798  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
799  *
800  * When getting an anonymous page and the caller has to trigger unsharing
801  * of a shared anonymous page first, -EMLINK is returned. The caller should
802  * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
803  * relevant with FOLL_PIN and !FOLL_WRITE.
804  *
805  * On output, the @ctx->page_mask is set according to the size of the page.
806  *
807  * Return: the mapped (struct page *), %NULL if no mapping exists, or
808  * an error pointer if there is a mapping to something not represented
809  * by a page descriptor (see also vm_normal_page()).
810  */
811 static struct page *follow_page_mask(struct vm_area_struct *vma,
812 			      unsigned long address, unsigned int flags,
813 			      struct follow_page_context *ctx)
814 {
815 	pgd_t *pgd;
816 	struct mm_struct *mm = vma->vm_mm;
817 
818 	ctx->page_mask = 0;
819 
820 	/*
821 	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
822 	 * special hugetlb page table walking code.  This eliminates the
823 	 * need to check for hugetlb entries in the general walking code.
824 	 */
825 	if (is_vm_hugetlb_page(vma))
826 		return hugetlb_follow_page_mask(vma, address, flags,
827 						&ctx->page_mask);
828 
829 	pgd = pgd_offset(mm, address);
830 
831 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
832 		return no_page_table(vma, flags);
833 
834 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
835 }
836 
837 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
838 			 unsigned int foll_flags)
839 {
840 	struct follow_page_context ctx = { NULL };
841 	struct page *page;
842 
843 	if (vma_is_secretmem(vma))
844 		return NULL;
845 
846 	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
847 		return NULL;
848 
849 	/*
850 	 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
851 	 * to fail on PROT_NONE-mapped pages.
852 	 */
853 	page = follow_page_mask(vma, address, foll_flags, &ctx);
854 	if (ctx.pgmap)
855 		put_dev_pagemap(ctx.pgmap);
856 	return page;
857 }
858 
859 static int get_gate_page(struct mm_struct *mm, unsigned long address,
860 		unsigned int gup_flags, struct vm_area_struct **vma,
861 		struct page **page)
862 {
863 	pgd_t *pgd;
864 	p4d_t *p4d;
865 	pud_t *pud;
866 	pmd_t *pmd;
867 	pte_t *pte;
868 	pte_t entry;
869 	int ret = -EFAULT;
870 
871 	/* user gate pages are read-only */
872 	if (gup_flags & FOLL_WRITE)
873 		return -EFAULT;
874 	if (address > TASK_SIZE)
875 		pgd = pgd_offset_k(address);
876 	else
877 		pgd = pgd_offset_gate(mm, address);
878 	if (pgd_none(*pgd))
879 		return -EFAULT;
880 	p4d = p4d_offset(pgd, address);
881 	if (p4d_none(*p4d))
882 		return -EFAULT;
883 	pud = pud_offset(p4d, address);
884 	if (pud_none(*pud))
885 		return -EFAULT;
886 	pmd = pmd_offset(pud, address);
887 	if (!pmd_present(*pmd))
888 		return -EFAULT;
889 	pte = pte_offset_map(pmd, address);
890 	if (!pte)
891 		return -EFAULT;
892 	entry = ptep_get(pte);
893 	if (pte_none(entry))
894 		goto unmap;
895 	*vma = get_gate_vma(mm);
896 	if (!page)
897 		goto out;
898 	*page = vm_normal_page(*vma, address, entry);
899 	if (!*page) {
900 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
901 			goto unmap;
902 		*page = pte_page(entry);
903 	}
904 	ret = try_grab_page(*page, gup_flags);
905 	if (unlikely(ret))
906 		goto unmap;
907 out:
908 	ret = 0;
909 unmap:
910 	pte_unmap(pte);
911 	return ret;
912 }
913 
914 /*
915  * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
916  * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
917  * to 0 and -EBUSY returned.
918  */
919 static int faultin_page(struct vm_area_struct *vma,
920 		unsigned long address, unsigned int *flags, bool unshare,
921 		int *locked)
922 {
923 	unsigned int fault_flags = 0;
924 	vm_fault_t ret;
925 
926 	if (*flags & FOLL_NOFAULT)
927 		return -EFAULT;
928 	if (*flags & FOLL_WRITE)
929 		fault_flags |= FAULT_FLAG_WRITE;
930 	if (*flags & FOLL_REMOTE)
931 		fault_flags |= FAULT_FLAG_REMOTE;
932 	if (*flags & FOLL_UNLOCKABLE) {
933 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
934 		/*
935 		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
936 		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
937 		 * That's because some callers may not be prepared to
938 		 * handle early exits caused by non-fatal signals.
939 		 */
940 		if (*flags & FOLL_INTERRUPTIBLE)
941 			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
942 	}
943 	if (*flags & FOLL_NOWAIT)
944 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
945 	if (*flags & FOLL_TRIED) {
946 		/*
947 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
948 		 * can co-exist
949 		 */
950 		fault_flags |= FAULT_FLAG_TRIED;
951 	}
952 	if (unshare) {
953 		fault_flags |= FAULT_FLAG_UNSHARE;
954 		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
955 		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
956 	}
957 
958 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
959 
960 	if (ret & VM_FAULT_COMPLETED) {
961 		/*
962 		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
963 		 * mmap lock in the page fault handler. Sanity check this.
964 		 */
965 		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
966 		*locked = 0;
967 
968 		/*
969 		 * We should do the same as VM_FAULT_RETRY, but let's not
970 		 * return -EBUSY since that's not reflecting the reality of
971 		 * what has happened - we've just fully completed a page
972 		 * fault, with the mmap lock released.  Use -EAGAIN to show
973 		 * that we want to take the mmap lock _again_.
974 		 */
975 		return -EAGAIN;
976 	}
977 
978 	if (ret & VM_FAULT_ERROR) {
979 		int err = vm_fault_to_errno(ret, *flags);
980 
981 		if (err)
982 			return err;
983 		BUG();
984 	}
985 
986 	if (ret & VM_FAULT_RETRY) {
987 		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
988 			*locked = 0;
989 		return -EBUSY;
990 	}
991 
992 	return 0;
993 }
994 
995 /*
996  * Writing to file-backed mappings which require folio dirty tracking using GUP
997  * is a fundamentally broken operation, as kernel write access to GUP mappings
998  * do not adhere to the semantics expected by a file system.
999  *
1000  * Consider the following scenario:-
1001  *
1002  * 1. A folio is written to via GUP which write-faults the memory, notifying
1003  *    the file system and dirtying the folio.
1004  * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1005  *    the PTE being marked read-only.
1006  * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1007  *    direct mapping.
1008  * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1009  *    (though it does not have to).
1010  *
1011  * This results in both data being written to a folio without writenotify, and
1012  * the folio being dirtied unexpectedly (if the caller decides to do so).
1013  */
1014 static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1015 					  unsigned long gup_flags)
1016 {
1017 	/*
1018 	 * If we aren't pinning then no problematic write can occur. A long term
1019 	 * pin is the most egregious case so this is the case we disallow.
1020 	 */
1021 	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1022 	    (FOLL_PIN | FOLL_LONGTERM))
1023 		return true;
1024 
1025 	/*
1026 	 * If the VMA does not require dirty tracking then no problematic write
1027 	 * can occur either.
1028 	 */
1029 	return !vma_needs_dirty_tracking(vma);
1030 }
1031 
1032 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1033 {
1034 	vm_flags_t vm_flags = vma->vm_flags;
1035 	int write = (gup_flags & FOLL_WRITE);
1036 	int foreign = (gup_flags & FOLL_REMOTE);
1037 	bool vma_anon = vma_is_anonymous(vma);
1038 
1039 	if (vm_flags & (VM_IO | VM_PFNMAP))
1040 		return -EFAULT;
1041 
1042 	if ((gup_flags & FOLL_ANON) && !vma_anon)
1043 		return -EFAULT;
1044 
1045 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1046 		return -EOPNOTSUPP;
1047 
1048 	if (vma_is_secretmem(vma))
1049 		return -EFAULT;
1050 
1051 	if (write) {
1052 		if (!vma_anon &&
1053 		    !writable_file_mapping_allowed(vma, gup_flags))
1054 			return -EFAULT;
1055 
1056 		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1057 			if (!(gup_flags & FOLL_FORCE))
1058 				return -EFAULT;
1059 			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1060 			if (is_vm_hugetlb_page(vma))
1061 				return -EFAULT;
1062 			/*
1063 			 * We used to let the write,force case do COW in a
1064 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1065 			 * set a breakpoint in a read-only mapping of an
1066 			 * executable, without corrupting the file (yet only
1067 			 * when that file had been opened for writing!).
1068 			 * Anon pages in shared mappings are surprising: now
1069 			 * just reject it.
1070 			 */
1071 			if (!is_cow_mapping(vm_flags))
1072 				return -EFAULT;
1073 		}
1074 	} else if (!(vm_flags & VM_READ)) {
1075 		if (!(gup_flags & FOLL_FORCE))
1076 			return -EFAULT;
1077 		/*
1078 		 * Is there actually any vma we can reach here which does not
1079 		 * have VM_MAYREAD set?
1080 		 */
1081 		if (!(vm_flags & VM_MAYREAD))
1082 			return -EFAULT;
1083 	}
1084 	/*
1085 	 * gups are always data accesses, not instruction
1086 	 * fetches, so execute=false here
1087 	 */
1088 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1089 		return -EFAULT;
1090 	return 0;
1091 }
1092 
1093 /*
1094  * This is "vma_lookup()", but with a warning if we would have
1095  * historically expanded the stack in the GUP code.
1096  */
1097 static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1098 	 unsigned long addr)
1099 {
1100 #ifdef CONFIG_STACK_GROWSUP
1101 	return vma_lookup(mm, addr);
1102 #else
1103 	static volatile unsigned long next_warn;
1104 	struct vm_area_struct *vma;
1105 	unsigned long now, next;
1106 
1107 	vma = find_vma(mm, addr);
1108 	if (!vma || (addr >= vma->vm_start))
1109 		return vma;
1110 
1111 	/* Only warn for half-way relevant accesses */
1112 	if (!(vma->vm_flags & VM_GROWSDOWN))
1113 		return NULL;
1114 	if (vma->vm_start - addr > 65536)
1115 		return NULL;
1116 
1117 	/* Let's not warn more than once an hour.. */
1118 	now = jiffies; next = next_warn;
1119 	if (next && time_before(now, next))
1120 		return NULL;
1121 	next_warn = now + 60*60*HZ;
1122 
1123 	/* Let people know things may have changed. */
1124 	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1125 		current->comm, task_pid_nr(current),
1126 		vma->vm_start, vma->vm_end, addr);
1127 	dump_stack();
1128 	return NULL;
1129 #endif
1130 }
1131 
1132 /**
1133  * __get_user_pages() - pin user pages in memory
1134  * @mm:		mm_struct of target mm
1135  * @start:	starting user address
1136  * @nr_pages:	number of pages from start to pin
1137  * @gup_flags:	flags modifying pin behaviour
1138  * @pages:	array that receives pointers to the pages pinned.
1139  *		Should be at least nr_pages long. Or NULL, if caller
1140  *		only intends to ensure the pages are faulted in.
1141  * @locked:     whether we're still with the mmap_lock held
1142  *
1143  * Returns either number of pages pinned (which may be less than the
1144  * number requested), or an error. Details about the return value:
1145  *
1146  * -- If nr_pages is 0, returns 0.
1147  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1148  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1149  *    pages pinned. Again, this may be less than nr_pages.
1150  * -- 0 return value is possible when the fault would need to be retried.
1151  *
1152  * The caller is responsible for releasing returned @pages, via put_page().
1153  *
1154  * Must be called with mmap_lock held.  It may be released.  See below.
1155  *
1156  * __get_user_pages walks a process's page tables and takes a reference to
1157  * each struct page that each user address corresponds to at a given
1158  * instant. That is, it takes the page that would be accessed if a user
1159  * thread accesses the given user virtual address at that instant.
1160  *
1161  * This does not guarantee that the page exists in the user mappings when
1162  * __get_user_pages returns, and there may even be a completely different
1163  * page there in some cases (eg. if mmapped pagecache has been invalidated
1164  * and subsequently re-faulted). However it does guarantee that the page
1165  * won't be freed completely. And mostly callers simply care that the page
1166  * contains data that was valid *at some point in time*. Typically, an IO
1167  * or similar operation cannot guarantee anything stronger anyway because
1168  * locks can't be held over the syscall boundary.
1169  *
1170  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1171  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1172  * appropriate) must be called after the page is finished with, and
1173  * before put_page is called.
1174  *
1175  * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1176  * be released. If this happens *@locked will be set to 0 on return.
1177  *
1178  * A caller using such a combination of @gup_flags must therefore hold the
1179  * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1180  * it must be held for either reading or writing and will not be released.
1181  *
1182  * In most cases, get_user_pages or get_user_pages_fast should be used
1183  * instead of __get_user_pages. __get_user_pages should be used only if
1184  * you need some special @gup_flags.
1185  */
1186 static long __get_user_pages(struct mm_struct *mm,
1187 		unsigned long start, unsigned long nr_pages,
1188 		unsigned int gup_flags, struct page **pages,
1189 		int *locked)
1190 {
1191 	long ret = 0, i = 0;
1192 	struct vm_area_struct *vma = NULL;
1193 	struct follow_page_context ctx = { NULL };
1194 
1195 	if (!nr_pages)
1196 		return 0;
1197 
1198 	start = untagged_addr_remote(mm, start);
1199 
1200 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1201 
1202 	do {
1203 		struct page *page;
1204 		unsigned int foll_flags = gup_flags;
1205 		unsigned int page_increm;
1206 
1207 		/* first iteration or cross vma bound */
1208 		if (!vma || start >= vma->vm_end) {
1209 			vma = gup_vma_lookup(mm, start);
1210 			if (!vma && in_gate_area(mm, start)) {
1211 				ret = get_gate_page(mm, start & PAGE_MASK,
1212 						gup_flags, &vma,
1213 						pages ? &page : NULL);
1214 				if (ret)
1215 					goto out;
1216 				ctx.page_mask = 0;
1217 				goto next_page;
1218 			}
1219 
1220 			if (!vma) {
1221 				ret = -EFAULT;
1222 				goto out;
1223 			}
1224 			ret = check_vma_flags(vma, gup_flags);
1225 			if (ret)
1226 				goto out;
1227 		}
1228 retry:
1229 		/*
1230 		 * If we have a pending SIGKILL, don't keep faulting pages and
1231 		 * potentially allocating memory.
1232 		 */
1233 		if (fatal_signal_pending(current)) {
1234 			ret = -EINTR;
1235 			goto out;
1236 		}
1237 		cond_resched();
1238 
1239 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1240 		if (!page || PTR_ERR(page) == -EMLINK) {
1241 			ret = faultin_page(vma, start, &foll_flags,
1242 					   PTR_ERR(page) == -EMLINK, locked);
1243 			switch (ret) {
1244 			case 0:
1245 				goto retry;
1246 			case -EBUSY:
1247 			case -EAGAIN:
1248 				ret = 0;
1249 				fallthrough;
1250 			case -EFAULT:
1251 			case -ENOMEM:
1252 			case -EHWPOISON:
1253 				goto out;
1254 			}
1255 			BUG();
1256 		} else if (PTR_ERR(page) == -EEXIST) {
1257 			/*
1258 			 * Proper page table entry exists, but no corresponding
1259 			 * struct page. If the caller expects **pages to be
1260 			 * filled in, bail out now, because that can't be done
1261 			 * for this page.
1262 			 */
1263 			if (pages) {
1264 				ret = PTR_ERR(page);
1265 				goto out;
1266 			}
1267 		} else if (IS_ERR(page)) {
1268 			ret = PTR_ERR(page);
1269 			goto out;
1270 		}
1271 next_page:
1272 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1273 		if (page_increm > nr_pages)
1274 			page_increm = nr_pages;
1275 
1276 		if (pages) {
1277 			struct page *subpage;
1278 			unsigned int j;
1279 
1280 			/*
1281 			 * This must be a large folio (and doesn't need to
1282 			 * be the whole folio; it can be part of it), do
1283 			 * the refcount work for all the subpages too.
1284 			 *
1285 			 * NOTE: here the page may not be the head page
1286 			 * e.g. when start addr is not thp-size aligned.
1287 			 * try_grab_folio() should have taken care of tail
1288 			 * pages.
1289 			 */
1290 			if (page_increm > 1) {
1291 				struct folio *folio;
1292 
1293 				/*
1294 				 * Since we already hold refcount on the
1295 				 * large folio, this should never fail.
1296 				 */
1297 				folio = try_grab_folio(page, page_increm - 1,
1298 						       foll_flags);
1299 				if (WARN_ON_ONCE(!folio)) {
1300 					/*
1301 					 * Release the 1st page ref if the
1302 					 * folio is problematic, fail hard.
1303 					 */
1304 					gup_put_folio(page_folio(page), 1,
1305 						      foll_flags);
1306 					ret = -EFAULT;
1307 					goto out;
1308 				}
1309 			}
1310 
1311 			for (j = 0; j < page_increm; j++) {
1312 				subpage = nth_page(page, j);
1313 				pages[i + j] = subpage;
1314 				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1315 				flush_dcache_page(subpage);
1316 			}
1317 		}
1318 
1319 		i += page_increm;
1320 		start += page_increm * PAGE_SIZE;
1321 		nr_pages -= page_increm;
1322 	} while (nr_pages);
1323 out:
1324 	if (ctx.pgmap)
1325 		put_dev_pagemap(ctx.pgmap);
1326 	return i ? i : ret;
1327 }
1328 
1329 static bool vma_permits_fault(struct vm_area_struct *vma,
1330 			      unsigned int fault_flags)
1331 {
1332 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1333 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1334 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1335 
1336 	if (!(vm_flags & vma->vm_flags))
1337 		return false;
1338 
1339 	/*
1340 	 * The architecture might have a hardware protection
1341 	 * mechanism other than read/write that can deny access.
1342 	 *
1343 	 * gup always represents data access, not instruction
1344 	 * fetches, so execute=false here:
1345 	 */
1346 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1347 		return false;
1348 
1349 	return true;
1350 }
1351 
1352 /**
1353  * fixup_user_fault() - manually resolve a user page fault
1354  * @mm:		mm_struct of target mm
1355  * @address:	user address
1356  * @fault_flags:flags to pass down to handle_mm_fault()
1357  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1358  *		does not allow retry. If NULL, the caller must guarantee
1359  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1360  *
1361  * This is meant to be called in the specific scenario where for locking reasons
1362  * we try to access user memory in atomic context (within a pagefault_disable()
1363  * section), this returns -EFAULT, and we want to resolve the user fault before
1364  * trying again.
1365  *
1366  * Typically this is meant to be used by the futex code.
1367  *
1368  * The main difference with get_user_pages() is that this function will
1369  * unconditionally call handle_mm_fault() which will in turn perform all the
1370  * necessary SW fixup of the dirty and young bits in the PTE, while
1371  * get_user_pages() only guarantees to update these in the struct page.
1372  *
1373  * This is important for some architectures where those bits also gate the
1374  * access permission to the page because they are maintained in software.  On
1375  * such architectures, gup() will not be enough to make a subsequent access
1376  * succeed.
1377  *
1378  * This function will not return with an unlocked mmap_lock. So it has not the
1379  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1380  */
1381 int fixup_user_fault(struct mm_struct *mm,
1382 		     unsigned long address, unsigned int fault_flags,
1383 		     bool *unlocked)
1384 {
1385 	struct vm_area_struct *vma;
1386 	vm_fault_t ret;
1387 
1388 	address = untagged_addr_remote(mm, address);
1389 
1390 	if (unlocked)
1391 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1392 
1393 retry:
1394 	vma = gup_vma_lookup(mm, address);
1395 	if (!vma)
1396 		return -EFAULT;
1397 
1398 	if (!vma_permits_fault(vma, fault_flags))
1399 		return -EFAULT;
1400 
1401 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1402 	    fatal_signal_pending(current))
1403 		return -EINTR;
1404 
1405 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1406 
1407 	if (ret & VM_FAULT_COMPLETED) {
1408 		/*
1409 		 * NOTE: it's a pity that we need to retake the lock here
1410 		 * to pair with the unlock() in the callers. Ideally we
1411 		 * could tell the callers so they do not need to unlock.
1412 		 */
1413 		mmap_read_lock(mm);
1414 		*unlocked = true;
1415 		return 0;
1416 	}
1417 
1418 	if (ret & VM_FAULT_ERROR) {
1419 		int err = vm_fault_to_errno(ret, 0);
1420 
1421 		if (err)
1422 			return err;
1423 		BUG();
1424 	}
1425 
1426 	if (ret & VM_FAULT_RETRY) {
1427 		mmap_read_lock(mm);
1428 		*unlocked = true;
1429 		fault_flags |= FAULT_FLAG_TRIED;
1430 		goto retry;
1431 	}
1432 
1433 	return 0;
1434 }
1435 EXPORT_SYMBOL_GPL(fixup_user_fault);
1436 
1437 /*
1438  * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1439  * specified, it'll also respond to generic signals.  The caller of GUP
1440  * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1441  */
1442 static bool gup_signal_pending(unsigned int flags)
1443 {
1444 	if (fatal_signal_pending(current))
1445 		return true;
1446 
1447 	if (!(flags & FOLL_INTERRUPTIBLE))
1448 		return false;
1449 
1450 	return signal_pending(current);
1451 }
1452 
1453 /*
1454  * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1455  * the caller. This function may drop the mmap_lock. If it does so, then it will
1456  * set (*locked = 0).
1457  *
1458  * (*locked == 0) means that the caller expects this function to acquire and
1459  * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1460  * the function returns, even though it may have changed temporarily during
1461  * function execution.
1462  *
1463  * Please note that this function, unlike __get_user_pages(), will not return 0
1464  * for nr_pages > 0, unless FOLL_NOWAIT is used.
1465  */
1466 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1467 						unsigned long start,
1468 						unsigned long nr_pages,
1469 						struct page **pages,
1470 						int *locked,
1471 						unsigned int flags)
1472 {
1473 	long ret, pages_done;
1474 	bool must_unlock = false;
1475 
1476 	if (!nr_pages)
1477 		return 0;
1478 
1479 	/*
1480 	 * The internal caller expects GUP to manage the lock internally and the
1481 	 * lock must be released when this returns.
1482 	 */
1483 	if (!*locked) {
1484 		if (mmap_read_lock_killable(mm))
1485 			return -EAGAIN;
1486 		must_unlock = true;
1487 		*locked = 1;
1488 	}
1489 	else
1490 		mmap_assert_locked(mm);
1491 
1492 	if (flags & FOLL_PIN)
1493 		mm_set_has_pinned_flag(&mm->flags);
1494 
1495 	/*
1496 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1497 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1498 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1499 	 * for FOLL_GET, not for the newer FOLL_PIN.
1500 	 *
1501 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1502 	 * that here, as any failures will be obvious enough.
1503 	 */
1504 	if (pages && !(flags & FOLL_PIN))
1505 		flags |= FOLL_GET;
1506 
1507 	pages_done = 0;
1508 	for (;;) {
1509 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1510 				       locked);
1511 		if (!(flags & FOLL_UNLOCKABLE)) {
1512 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1513 			pages_done = ret;
1514 			break;
1515 		}
1516 
1517 		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1518 		if (!*locked) {
1519 			BUG_ON(ret < 0);
1520 			BUG_ON(ret >= nr_pages);
1521 		}
1522 
1523 		if (ret > 0) {
1524 			nr_pages -= ret;
1525 			pages_done += ret;
1526 			if (!nr_pages)
1527 				break;
1528 		}
1529 		if (*locked) {
1530 			/*
1531 			 * VM_FAULT_RETRY didn't trigger or it was a
1532 			 * FOLL_NOWAIT.
1533 			 */
1534 			if (!pages_done)
1535 				pages_done = ret;
1536 			break;
1537 		}
1538 		/*
1539 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1540 		 * For the prefault case (!pages) we only update counts.
1541 		 */
1542 		if (likely(pages))
1543 			pages += ret;
1544 		start += ret << PAGE_SHIFT;
1545 
1546 		/* The lock was temporarily dropped, so we must unlock later */
1547 		must_unlock = true;
1548 
1549 retry:
1550 		/*
1551 		 * Repeat on the address that fired VM_FAULT_RETRY
1552 		 * with both FAULT_FLAG_ALLOW_RETRY and
1553 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1554 		 * by fatal signals of even common signals, depending on
1555 		 * the caller's request. So we need to check it before we
1556 		 * start trying again otherwise it can loop forever.
1557 		 */
1558 		if (gup_signal_pending(flags)) {
1559 			if (!pages_done)
1560 				pages_done = -EINTR;
1561 			break;
1562 		}
1563 
1564 		ret = mmap_read_lock_killable(mm);
1565 		if (ret) {
1566 			BUG_ON(ret > 0);
1567 			if (!pages_done)
1568 				pages_done = ret;
1569 			break;
1570 		}
1571 
1572 		*locked = 1;
1573 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1574 				       pages, locked);
1575 		if (!*locked) {
1576 			/* Continue to retry until we succeeded */
1577 			BUG_ON(ret != 0);
1578 			goto retry;
1579 		}
1580 		if (ret != 1) {
1581 			BUG_ON(ret > 1);
1582 			if (!pages_done)
1583 				pages_done = ret;
1584 			break;
1585 		}
1586 		nr_pages--;
1587 		pages_done++;
1588 		if (!nr_pages)
1589 			break;
1590 		if (likely(pages))
1591 			pages++;
1592 		start += PAGE_SIZE;
1593 	}
1594 	if (must_unlock && *locked) {
1595 		/*
1596 		 * We either temporarily dropped the lock, or the caller
1597 		 * requested that we both acquire and drop the lock. Either way,
1598 		 * we must now unlock, and notify the caller of that state.
1599 		 */
1600 		mmap_read_unlock(mm);
1601 		*locked = 0;
1602 	}
1603 
1604 	/*
1605 	 * Failing to pin anything implies something has gone wrong (except when
1606 	 * FOLL_NOWAIT is specified).
1607 	 */
1608 	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1609 		return -EFAULT;
1610 
1611 	return pages_done;
1612 }
1613 
1614 /**
1615  * populate_vma_page_range() -  populate a range of pages in the vma.
1616  * @vma:   target vma
1617  * @start: start address
1618  * @end:   end address
1619  * @locked: whether the mmap_lock is still held
1620  *
1621  * This takes care of mlocking the pages too if VM_LOCKED is set.
1622  *
1623  * Return either number of pages pinned in the vma, or a negative error
1624  * code on error.
1625  *
1626  * vma->vm_mm->mmap_lock must be held.
1627  *
1628  * If @locked is NULL, it may be held for read or write and will
1629  * be unperturbed.
1630  *
1631  * If @locked is non-NULL, it must held for read only and may be
1632  * released.  If it's released, *@locked will be set to 0.
1633  */
1634 long populate_vma_page_range(struct vm_area_struct *vma,
1635 		unsigned long start, unsigned long end, int *locked)
1636 {
1637 	struct mm_struct *mm = vma->vm_mm;
1638 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1639 	int local_locked = 1;
1640 	int gup_flags;
1641 	long ret;
1642 
1643 	VM_BUG_ON(!PAGE_ALIGNED(start));
1644 	VM_BUG_ON(!PAGE_ALIGNED(end));
1645 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1646 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1647 	mmap_assert_locked(mm);
1648 
1649 	/*
1650 	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1651 	 * faultin_page() to break COW, so it has no work to do here.
1652 	 */
1653 	if (vma->vm_flags & VM_LOCKONFAULT)
1654 		return nr_pages;
1655 
1656 	gup_flags = FOLL_TOUCH;
1657 	/*
1658 	 * We want to touch writable mappings with a write fault in order
1659 	 * to break COW, except for shared mappings because these don't COW
1660 	 * and we would not want to dirty them for nothing.
1661 	 */
1662 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1663 		gup_flags |= FOLL_WRITE;
1664 
1665 	/*
1666 	 * We want mlock to succeed for regions that have any permissions
1667 	 * other than PROT_NONE.
1668 	 */
1669 	if (vma_is_accessible(vma))
1670 		gup_flags |= FOLL_FORCE;
1671 
1672 	if (locked)
1673 		gup_flags |= FOLL_UNLOCKABLE;
1674 
1675 	/*
1676 	 * We made sure addr is within a VMA, so the following will
1677 	 * not result in a stack expansion that recurses back here.
1678 	 */
1679 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1680 			       NULL, locked ? locked : &local_locked);
1681 	lru_add_drain();
1682 	return ret;
1683 }
1684 
1685 /*
1686  * faultin_vma_page_range() - populate (prefault) page tables inside the
1687  *			      given VMA range readable/writable
1688  *
1689  * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1690  *
1691  * @vma: target vma
1692  * @start: start address
1693  * @end: end address
1694  * @write: whether to prefault readable or writable
1695  * @locked: whether the mmap_lock is still held
1696  *
1697  * Returns either number of processed pages in the vma, or a negative error
1698  * code on error (see __get_user_pages()).
1699  *
1700  * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1701  * covered by the VMA. If it's released, *@locked will be set to 0.
1702  */
1703 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1704 			    unsigned long end, bool write, int *locked)
1705 {
1706 	struct mm_struct *mm = vma->vm_mm;
1707 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1708 	int gup_flags;
1709 	long ret;
1710 
1711 	VM_BUG_ON(!PAGE_ALIGNED(start));
1712 	VM_BUG_ON(!PAGE_ALIGNED(end));
1713 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1714 	VM_BUG_ON_VMA(end > vma->vm_end, vma);
1715 	mmap_assert_locked(mm);
1716 
1717 	/*
1718 	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1719 	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1720 	 *	       difference with !FOLL_FORCE, because the page is writable
1721 	 *	       in the page table.
1722 	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1723 	 *		  a poisoned page.
1724 	 * !FOLL_FORCE: Require proper access permissions.
1725 	 */
1726 	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE;
1727 	if (write)
1728 		gup_flags |= FOLL_WRITE;
1729 
1730 	/*
1731 	 * We want to report -EINVAL instead of -EFAULT for any permission
1732 	 * problems or incompatible mappings.
1733 	 */
1734 	if (check_vma_flags(vma, gup_flags))
1735 		return -EINVAL;
1736 
1737 	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1738 			       NULL, locked);
1739 	lru_add_drain();
1740 	return ret;
1741 }
1742 
1743 /*
1744  * __mm_populate - populate and/or mlock pages within a range of address space.
1745  *
1746  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1747  * flags. VMAs must be already marked with the desired vm_flags, and
1748  * mmap_lock must not be held.
1749  */
1750 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1751 {
1752 	struct mm_struct *mm = current->mm;
1753 	unsigned long end, nstart, nend;
1754 	struct vm_area_struct *vma = NULL;
1755 	int locked = 0;
1756 	long ret = 0;
1757 
1758 	end = start + len;
1759 
1760 	for (nstart = start; nstart < end; nstart = nend) {
1761 		/*
1762 		 * We want to fault in pages for [nstart; end) address range.
1763 		 * Find first corresponding VMA.
1764 		 */
1765 		if (!locked) {
1766 			locked = 1;
1767 			mmap_read_lock(mm);
1768 			vma = find_vma_intersection(mm, nstart, end);
1769 		} else if (nstart >= vma->vm_end)
1770 			vma = find_vma_intersection(mm, vma->vm_end, end);
1771 
1772 		if (!vma)
1773 			break;
1774 		/*
1775 		 * Set [nstart; nend) to intersection of desired address
1776 		 * range with the first VMA. Also, skip undesirable VMA types.
1777 		 */
1778 		nend = min(end, vma->vm_end);
1779 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1780 			continue;
1781 		if (nstart < vma->vm_start)
1782 			nstart = vma->vm_start;
1783 		/*
1784 		 * Now fault in a range of pages. populate_vma_page_range()
1785 		 * double checks the vma flags, so that it won't mlock pages
1786 		 * if the vma was already munlocked.
1787 		 */
1788 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1789 		if (ret < 0) {
1790 			if (ignore_errors) {
1791 				ret = 0;
1792 				continue;	/* continue at next VMA */
1793 			}
1794 			break;
1795 		}
1796 		nend = nstart + ret * PAGE_SIZE;
1797 		ret = 0;
1798 	}
1799 	if (locked)
1800 		mmap_read_unlock(mm);
1801 	return ret;	/* 0 or negative error code */
1802 }
1803 #else /* CONFIG_MMU */
1804 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1805 		unsigned long nr_pages, struct page **pages,
1806 		int *locked, unsigned int foll_flags)
1807 {
1808 	struct vm_area_struct *vma;
1809 	bool must_unlock = false;
1810 	unsigned long vm_flags;
1811 	long i;
1812 
1813 	if (!nr_pages)
1814 		return 0;
1815 
1816 	/*
1817 	 * The internal caller expects GUP to manage the lock internally and the
1818 	 * lock must be released when this returns.
1819 	 */
1820 	if (!*locked) {
1821 		if (mmap_read_lock_killable(mm))
1822 			return -EAGAIN;
1823 		must_unlock = true;
1824 		*locked = 1;
1825 	}
1826 
1827 	/* calculate required read or write permissions.
1828 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1829 	 */
1830 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1831 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1832 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1833 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1834 
1835 	for (i = 0; i < nr_pages; i++) {
1836 		vma = find_vma(mm, start);
1837 		if (!vma)
1838 			break;
1839 
1840 		/* protect what we can, including chardevs */
1841 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1842 		    !(vm_flags & vma->vm_flags))
1843 			break;
1844 
1845 		if (pages) {
1846 			pages[i] = virt_to_page((void *)start);
1847 			if (pages[i])
1848 				get_page(pages[i]);
1849 		}
1850 
1851 		start = (start + PAGE_SIZE) & PAGE_MASK;
1852 	}
1853 
1854 	if (must_unlock && *locked) {
1855 		mmap_read_unlock(mm);
1856 		*locked = 0;
1857 	}
1858 
1859 	return i ? : -EFAULT;
1860 }
1861 #endif /* !CONFIG_MMU */
1862 
1863 /**
1864  * fault_in_writeable - fault in userspace address range for writing
1865  * @uaddr: start of address range
1866  * @size: size of address range
1867  *
1868  * Returns the number of bytes not faulted in (like copy_to_user() and
1869  * copy_from_user()).
1870  */
1871 size_t fault_in_writeable(char __user *uaddr, size_t size)
1872 {
1873 	char __user *start = uaddr, *end;
1874 
1875 	if (unlikely(size == 0))
1876 		return 0;
1877 	if (!user_write_access_begin(uaddr, size))
1878 		return size;
1879 	if (!PAGE_ALIGNED(uaddr)) {
1880 		unsafe_put_user(0, uaddr, out);
1881 		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1882 	}
1883 	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1884 	if (unlikely(end < start))
1885 		end = NULL;
1886 	while (uaddr != end) {
1887 		unsafe_put_user(0, uaddr, out);
1888 		uaddr += PAGE_SIZE;
1889 	}
1890 
1891 out:
1892 	user_write_access_end();
1893 	if (size > uaddr - start)
1894 		return size - (uaddr - start);
1895 	return 0;
1896 }
1897 EXPORT_SYMBOL(fault_in_writeable);
1898 
1899 /**
1900  * fault_in_subpage_writeable - fault in an address range for writing
1901  * @uaddr: start of address range
1902  * @size: size of address range
1903  *
1904  * Fault in a user address range for writing while checking for permissions at
1905  * sub-page granularity (e.g. arm64 MTE). This function should be used when
1906  * the caller cannot guarantee forward progress of a copy_to_user() loop.
1907  *
1908  * Returns the number of bytes not faulted in (like copy_to_user() and
1909  * copy_from_user()).
1910  */
1911 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1912 {
1913 	size_t faulted_in;
1914 
1915 	/*
1916 	 * Attempt faulting in at page granularity first for page table
1917 	 * permission checking. The arch-specific probe_subpage_writeable()
1918 	 * functions may not check for this.
1919 	 */
1920 	faulted_in = size - fault_in_writeable(uaddr, size);
1921 	if (faulted_in)
1922 		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1923 
1924 	return size - faulted_in;
1925 }
1926 EXPORT_SYMBOL(fault_in_subpage_writeable);
1927 
1928 /*
1929  * fault_in_safe_writeable - fault in an address range for writing
1930  * @uaddr: start of address range
1931  * @size: length of address range
1932  *
1933  * Faults in an address range for writing.  This is primarily useful when we
1934  * already know that some or all of the pages in the address range aren't in
1935  * memory.
1936  *
1937  * Unlike fault_in_writeable(), this function is non-destructive.
1938  *
1939  * Note that we don't pin or otherwise hold the pages referenced that we fault
1940  * in.  There's no guarantee that they'll stay in memory for any duration of
1941  * time.
1942  *
1943  * Returns the number of bytes not faulted in, like copy_to_user() and
1944  * copy_from_user().
1945  */
1946 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1947 {
1948 	unsigned long start = (unsigned long)uaddr, end;
1949 	struct mm_struct *mm = current->mm;
1950 	bool unlocked = false;
1951 
1952 	if (unlikely(size == 0))
1953 		return 0;
1954 	end = PAGE_ALIGN(start + size);
1955 	if (end < start)
1956 		end = 0;
1957 
1958 	mmap_read_lock(mm);
1959 	do {
1960 		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1961 			break;
1962 		start = (start + PAGE_SIZE) & PAGE_MASK;
1963 	} while (start != end);
1964 	mmap_read_unlock(mm);
1965 
1966 	if (size > (unsigned long)uaddr - start)
1967 		return size - ((unsigned long)uaddr - start);
1968 	return 0;
1969 }
1970 EXPORT_SYMBOL(fault_in_safe_writeable);
1971 
1972 /**
1973  * fault_in_readable - fault in userspace address range for reading
1974  * @uaddr: start of user address range
1975  * @size: size of user address range
1976  *
1977  * Returns the number of bytes not faulted in (like copy_to_user() and
1978  * copy_from_user()).
1979  */
1980 size_t fault_in_readable(const char __user *uaddr, size_t size)
1981 {
1982 	const char __user *start = uaddr, *end;
1983 	volatile char c;
1984 
1985 	if (unlikely(size == 0))
1986 		return 0;
1987 	if (!user_read_access_begin(uaddr, size))
1988 		return size;
1989 	if (!PAGE_ALIGNED(uaddr)) {
1990 		unsafe_get_user(c, uaddr, out);
1991 		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1992 	}
1993 	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1994 	if (unlikely(end < start))
1995 		end = NULL;
1996 	while (uaddr != end) {
1997 		unsafe_get_user(c, uaddr, out);
1998 		uaddr += PAGE_SIZE;
1999 	}
2000 
2001 out:
2002 	user_read_access_end();
2003 	(void)c;
2004 	if (size > uaddr - start)
2005 		return size - (uaddr - start);
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(fault_in_readable);
2009 
2010 /**
2011  * get_dump_page() - pin user page in memory while writing it to core dump
2012  * @addr: user address
2013  *
2014  * Returns struct page pointer of user page pinned for dump,
2015  * to be freed afterwards by put_page().
2016  *
2017  * Returns NULL on any kind of failure - a hole must then be inserted into
2018  * the corefile, to preserve alignment with its headers; and also returns
2019  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2020  * allowing a hole to be left in the corefile to save disk space.
2021  *
2022  * Called without mmap_lock (takes and releases the mmap_lock by itself).
2023  */
2024 #ifdef CONFIG_ELF_CORE
2025 struct page *get_dump_page(unsigned long addr)
2026 {
2027 	struct page *page;
2028 	int locked = 0;
2029 	int ret;
2030 
2031 	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2032 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2033 	return (ret == 1) ? page : NULL;
2034 }
2035 #endif /* CONFIG_ELF_CORE */
2036 
2037 #ifdef CONFIG_MIGRATION
2038 /*
2039  * Returns the number of collected pages. Return value is always >= 0.
2040  */
2041 static unsigned long collect_longterm_unpinnable_pages(
2042 					struct list_head *movable_page_list,
2043 					unsigned long nr_pages,
2044 					struct page **pages)
2045 {
2046 	unsigned long i, collected = 0;
2047 	struct folio *prev_folio = NULL;
2048 	bool drain_allow = true;
2049 
2050 	for (i = 0; i < nr_pages; i++) {
2051 		struct folio *folio = page_folio(pages[i]);
2052 
2053 		if (folio == prev_folio)
2054 			continue;
2055 		prev_folio = folio;
2056 
2057 		if (folio_is_longterm_pinnable(folio))
2058 			continue;
2059 
2060 		collected++;
2061 
2062 		if (folio_is_device_coherent(folio))
2063 			continue;
2064 
2065 		if (folio_test_hugetlb(folio)) {
2066 			isolate_hugetlb(folio, movable_page_list);
2067 			continue;
2068 		}
2069 
2070 		if (!folio_test_lru(folio) && drain_allow) {
2071 			lru_add_drain_all();
2072 			drain_allow = false;
2073 		}
2074 
2075 		if (!folio_isolate_lru(folio))
2076 			continue;
2077 
2078 		list_add_tail(&folio->lru, movable_page_list);
2079 		node_stat_mod_folio(folio,
2080 				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2081 				    folio_nr_pages(folio));
2082 	}
2083 
2084 	return collected;
2085 }
2086 
2087 /*
2088  * Unpins all pages and migrates device coherent pages and movable_page_list.
2089  * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2090  * (or partial success).
2091  */
2092 static int migrate_longterm_unpinnable_pages(
2093 					struct list_head *movable_page_list,
2094 					unsigned long nr_pages,
2095 					struct page **pages)
2096 {
2097 	int ret;
2098 	unsigned long i;
2099 
2100 	for (i = 0; i < nr_pages; i++) {
2101 		struct folio *folio = page_folio(pages[i]);
2102 
2103 		if (folio_is_device_coherent(folio)) {
2104 			/*
2105 			 * Migration will fail if the page is pinned, so convert
2106 			 * the pin on the source page to a normal reference.
2107 			 */
2108 			pages[i] = NULL;
2109 			folio_get(folio);
2110 			gup_put_folio(folio, 1, FOLL_PIN);
2111 
2112 			if (migrate_device_coherent_page(&folio->page)) {
2113 				ret = -EBUSY;
2114 				goto err;
2115 			}
2116 
2117 			continue;
2118 		}
2119 
2120 		/*
2121 		 * We can't migrate pages with unexpected references, so drop
2122 		 * the reference obtained by __get_user_pages_locked().
2123 		 * Migrating pages have been added to movable_page_list after
2124 		 * calling folio_isolate_lru() which takes a reference so the
2125 		 * page won't be freed if it's migrating.
2126 		 */
2127 		unpin_user_page(pages[i]);
2128 		pages[i] = NULL;
2129 	}
2130 
2131 	if (!list_empty(movable_page_list)) {
2132 		struct migration_target_control mtc = {
2133 			.nid = NUMA_NO_NODE,
2134 			.gfp_mask = GFP_USER | __GFP_NOWARN,
2135 		};
2136 
2137 		if (migrate_pages(movable_page_list, alloc_migration_target,
2138 				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2139 				  MR_LONGTERM_PIN, NULL)) {
2140 			ret = -ENOMEM;
2141 			goto err;
2142 		}
2143 	}
2144 
2145 	putback_movable_pages(movable_page_list);
2146 
2147 	return -EAGAIN;
2148 
2149 err:
2150 	for (i = 0; i < nr_pages; i++)
2151 		if (pages[i])
2152 			unpin_user_page(pages[i]);
2153 	putback_movable_pages(movable_page_list);
2154 
2155 	return ret;
2156 }
2157 
2158 /*
2159  * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2160  * pages in the range are required to be pinned via FOLL_PIN, before calling
2161  * this routine.
2162  *
2163  * If any pages in the range are not allowed to be pinned, then this routine
2164  * will migrate those pages away, unpin all the pages in the range and return
2165  * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2166  * call this routine again.
2167  *
2168  * If an error other than -EAGAIN occurs, this indicates a migration failure.
2169  * The caller should give up, and propagate the error back up the call stack.
2170  *
2171  * If everything is OK and all pages in the range are allowed to be pinned, then
2172  * this routine leaves all pages pinned and returns zero for success.
2173  */
2174 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2175 					    struct page **pages)
2176 {
2177 	unsigned long collected;
2178 	LIST_HEAD(movable_page_list);
2179 
2180 	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2181 						nr_pages, pages);
2182 	if (!collected)
2183 		return 0;
2184 
2185 	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2186 						pages);
2187 }
2188 #else
2189 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2190 					    struct page **pages)
2191 {
2192 	return 0;
2193 }
2194 #endif /* CONFIG_MIGRATION */
2195 
2196 /*
2197  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2198  * allows us to process the FOLL_LONGTERM flag.
2199  */
2200 static long __gup_longterm_locked(struct mm_struct *mm,
2201 				  unsigned long start,
2202 				  unsigned long nr_pages,
2203 				  struct page **pages,
2204 				  int *locked,
2205 				  unsigned int gup_flags)
2206 {
2207 	unsigned int flags;
2208 	long rc, nr_pinned_pages;
2209 
2210 	if (!(gup_flags & FOLL_LONGTERM))
2211 		return __get_user_pages_locked(mm, start, nr_pages, pages,
2212 					       locked, gup_flags);
2213 
2214 	flags = memalloc_pin_save();
2215 	do {
2216 		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2217 							  pages, locked,
2218 							  gup_flags);
2219 		if (nr_pinned_pages <= 0) {
2220 			rc = nr_pinned_pages;
2221 			break;
2222 		}
2223 
2224 		/* FOLL_LONGTERM implies FOLL_PIN */
2225 		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2226 	} while (rc == -EAGAIN);
2227 	memalloc_pin_restore(flags);
2228 	return rc ? rc : nr_pinned_pages;
2229 }
2230 
2231 /*
2232  * Check that the given flags are valid for the exported gup/pup interface, and
2233  * update them with the required flags that the caller must have set.
2234  */
2235 static bool is_valid_gup_args(struct page **pages, int *locked,
2236 			      unsigned int *gup_flags_p, unsigned int to_set)
2237 {
2238 	unsigned int gup_flags = *gup_flags_p;
2239 
2240 	/*
2241 	 * These flags not allowed to be specified externally to the gup
2242 	 * interfaces:
2243 	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2244 	 * - FOLL_REMOTE is internal only and used on follow_page()
2245 	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2246 	 */
2247 	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2248 		return false;
2249 
2250 	gup_flags |= to_set;
2251 	if (locked) {
2252 		/* At the external interface locked must be set */
2253 		if (WARN_ON_ONCE(*locked != 1))
2254 			return false;
2255 
2256 		gup_flags |= FOLL_UNLOCKABLE;
2257 	}
2258 
2259 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2260 	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2261 			 (FOLL_PIN | FOLL_GET)))
2262 		return false;
2263 
2264 	/* LONGTERM can only be specified when pinning */
2265 	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2266 		return false;
2267 
2268 	/* Pages input must be given if using GET/PIN */
2269 	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2270 		return false;
2271 
2272 	/* We want to allow the pgmap to be hot-unplugged at all times */
2273 	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2274 			 (gup_flags & FOLL_PCI_P2PDMA)))
2275 		return false;
2276 
2277 	*gup_flags_p = gup_flags;
2278 	return true;
2279 }
2280 
2281 #ifdef CONFIG_MMU
2282 /**
2283  * get_user_pages_remote() - pin user pages in memory
2284  * @mm:		mm_struct of target mm
2285  * @start:	starting user address
2286  * @nr_pages:	number of pages from start to pin
2287  * @gup_flags:	flags modifying lookup behaviour
2288  * @pages:	array that receives pointers to the pages pinned.
2289  *		Should be at least nr_pages long. Or NULL, if caller
2290  *		only intends to ensure the pages are faulted in.
2291  * @locked:	pointer to lock flag indicating whether lock is held and
2292  *		subsequently whether VM_FAULT_RETRY functionality can be
2293  *		utilised. Lock must initially be held.
2294  *
2295  * Returns either number of pages pinned (which may be less than the
2296  * number requested), or an error. Details about the return value:
2297  *
2298  * -- If nr_pages is 0, returns 0.
2299  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2300  * -- If nr_pages is >0, and some pages were pinned, returns the number of
2301  *    pages pinned. Again, this may be less than nr_pages.
2302  *
2303  * The caller is responsible for releasing returned @pages, via put_page().
2304  *
2305  * Must be called with mmap_lock held for read or write.
2306  *
2307  * get_user_pages_remote walks a process's page tables and takes a reference
2308  * to each struct page that each user address corresponds to at a given
2309  * instant. That is, it takes the page that would be accessed if a user
2310  * thread accesses the given user virtual address at that instant.
2311  *
2312  * This does not guarantee that the page exists in the user mappings when
2313  * get_user_pages_remote returns, and there may even be a completely different
2314  * page there in some cases (eg. if mmapped pagecache has been invalidated
2315  * and subsequently re-faulted). However it does guarantee that the page
2316  * won't be freed completely. And mostly callers simply care that the page
2317  * contains data that was valid *at some point in time*. Typically, an IO
2318  * or similar operation cannot guarantee anything stronger anyway because
2319  * locks can't be held over the syscall boundary.
2320  *
2321  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2322  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2323  * be called after the page is finished with, and before put_page is called.
2324  *
2325  * get_user_pages_remote is typically used for fewer-copy IO operations,
2326  * to get a handle on the memory by some means other than accesses
2327  * via the user virtual addresses. The pages may be submitted for
2328  * DMA to devices or accessed via their kernel linear mapping (via the
2329  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2330  *
2331  * See also get_user_pages_fast, for performance critical applications.
2332  *
2333  * get_user_pages_remote should be phased out in favor of
2334  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2335  * should use get_user_pages_remote because it cannot pass
2336  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2337  */
2338 long get_user_pages_remote(struct mm_struct *mm,
2339 		unsigned long start, unsigned long nr_pages,
2340 		unsigned int gup_flags, struct page **pages,
2341 		int *locked)
2342 {
2343 	int local_locked = 1;
2344 
2345 	if (!is_valid_gup_args(pages, locked, &gup_flags,
2346 			       FOLL_TOUCH | FOLL_REMOTE))
2347 		return -EINVAL;
2348 
2349 	return __get_user_pages_locked(mm, start, nr_pages, pages,
2350 				       locked ? locked : &local_locked,
2351 				       gup_flags);
2352 }
2353 EXPORT_SYMBOL(get_user_pages_remote);
2354 
2355 #else /* CONFIG_MMU */
2356 long get_user_pages_remote(struct mm_struct *mm,
2357 			   unsigned long start, unsigned long nr_pages,
2358 			   unsigned int gup_flags, struct page **pages,
2359 			   int *locked)
2360 {
2361 	return 0;
2362 }
2363 #endif /* !CONFIG_MMU */
2364 
2365 /**
2366  * get_user_pages() - pin user pages in memory
2367  * @start:      starting user address
2368  * @nr_pages:   number of pages from start to pin
2369  * @gup_flags:  flags modifying lookup behaviour
2370  * @pages:      array that receives pointers to the pages pinned.
2371  *              Should be at least nr_pages long. Or NULL, if caller
2372  *              only intends to ensure the pages are faulted in.
2373  *
2374  * This is the same as get_user_pages_remote(), just with a less-flexible
2375  * calling convention where we assume that the mm being operated on belongs to
2376  * the current task, and doesn't allow passing of a locked parameter.  We also
2377  * obviously don't pass FOLL_REMOTE in here.
2378  */
2379 long get_user_pages(unsigned long start, unsigned long nr_pages,
2380 		    unsigned int gup_flags, struct page **pages)
2381 {
2382 	int locked = 1;
2383 
2384 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
2385 		return -EINVAL;
2386 
2387 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2388 				       &locked, gup_flags);
2389 }
2390 EXPORT_SYMBOL(get_user_pages);
2391 
2392 /*
2393  * get_user_pages_unlocked() is suitable to replace the form:
2394  *
2395  *      mmap_read_lock(mm);
2396  *      get_user_pages(mm, ..., pages, NULL);
2397  *      mmap_read_unlock(mm);
2398  *
2399  *  with:
2400  *
2401  *      get_user_pages_unlocked(mm, ..., pages);
2402  *
2403  * It is functionally equivalent to get_user_pages_fast so
2404  * get_user_pages_fast should be used instead if specific gup_flags
2405  * (e.g. FOLL_FORCE) are not required.
2406  */
2407 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2408 			     struct page **pages, unsigned int gup_flags)
2409 {
2410 	int locked = 0;
2411 
2412 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2413 			       FOLL_TOUCH | FOLL_UNLOCKABLE))
2414 		return -EINVAL;
2415 
2416 	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2417 				       &locked, gup_flags);
2418 }
2419 EXPORT_SYMBOL(get_user_pages_unlocked);
2420 
2421 /*
2422  * Fast GUP
2423  *
2424  * get_user_pages_fast attempts to pin user pages by walking the page
2425  * tables directly and avoids taking locks. Thus the walker needs to be
2426  * protected from page table pages being freed from under it, and should
2427  * block any THP splits.
2428  *
2429  * One way to achieve this is to have the walker disable interrupts, and
2430  * rely on IPIs from the TLB flushing code blocking before the page table
2431  * pages are freed. This is unsuitable for architectures that do not need
2432  * to broadcast an IPI when invalidating TLBs.
2433  *
2434  * Another way to achieve this is to batch up page table containing pages
2435  * belonging to more than one mm_user, then rcu_sched a callback to free those
2436  * pages. Disabling interrupts will allow the fast_gup walker to both block
2437  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2438  * (which is a relatively rare event). The code below adopts this strategy.
2439  *
2440  * Before activating this code, please be aware that the following assumptions
2441  * are currently made:
2442  *
2443  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2444  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2445  *
2446  *  *) ptes can be read atomically by the architecture.
2447  *
2448  *  *) access_ok is sufficient to validate userspace address ranges.
2449  *
2450  * The last two assumptions can be relaxed by the addition of helper functions.
2451  *
2452  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2453  */
2454 #ifdef CONFIG_HAVE_FAST_GUP
2455 
2456 /*
2457  * Used in the GUP-fast path to determine whether a pin is permitted for a
2458  * specific folio.
2459  *
2460  * This call assumes the caller has pinned the folio, that the lowest page table
2461  * level still points to this folio, and that interrupts have been disabled.
2462  *
2463  * Writing to pinned file-backed dirty tracked folios is inherently problematic
2464  * (see comment describing the writable_file_mapping_allowed() function). We
2465  * therefore try to avoid the most egregious case of a long-term mapping doing
2466  * so.
2467  *
2468  * This function cannot be as thorough as that one as the VMA is not available
2469  * in the fast path, so instead we whitelist known good cases and if in doubt,
2470  * fall back to the slow path.
2471  */
2472 static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2473 {
2474 	struct address_space *mapping;
2475 	unsigned long mapping_flags;
2476 
2477 	/*
2478 	 * If we aren't pinning then no problematic write can occur. A long term
2479 	 * pin is the most egregious case so this is the one we disallow.
2480 	 */
2481 	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2482 	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2483 		return true;
2484 
2485 	/* The folio is pinned, so we can safely access folio fields. */
2486 
2487 	if (WARN_ON_ONCE(folio_test_slab(folio)))
2488 		return false;
2489 
2490 	/* hugetlb mappings do not require dirty-tracking. */
2491 	if (folio_test_hugetlb(folio))
2492 		return true;
2493 
2494 	/*
2495 	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2496 	 * cannot proceed, which means no actions performed under RCU can
2497 	 * proceed either.
2498 	 *
2499 	 * inodes and thus their mappings are freed under RCU, which means the
2500 	 * mapping cannot be freed beneath us and thus we can safely dereference
2501 	 * it.
2502 	 */
2503 	lockdep_assert_irqs_disabled();
2504 
2505 	/*
2506 	 * However, there may be operations which _alter_ the mapping, so ensure
2507 	 * we read it once and only once.
2508 	 */
2509 	mapping = READ_ONCE(folio->mapping);
2510 
2511 	/*
2512 	 * The mapping may have been truncated, in any case we cannot determine
2513 	 * if this mapping is safe - fall back to slow path to determine how to
2514 	 * proceed.
2515 	 */
2516 	if (!mapping)
2517 		return false;
2518 
2519 	/* Anonymous folios pose no problem. */
2520 	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2521 	if (mapping_flags)
2522 		return mapping_flags & PAGE_MAPPING_ANON;
2523 
2524 	/*
2525 	 * At this point, we know the mapping is non-null and points to an
2526 	 * address_space object. The only remaining whitelisted file system is
2527 	 * shmem.
2528 	 */
2529 	return shmem_mapping(mapping);
2530 }
2531 
2532 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2533 					    unsigned int flags,
2534 					    struct page **pages)
2535 {
2536 	while ((*nr) - nr_start) {
2537 		struct page *page = pages[--(*nr)];
2538 
2539 		ClearPageReferenced(page);
2540 		if (flags & FOLL_PIN)
2541 			unpin_user_page(page);
2542 		else
2543 			put_page(page);
2544 	}
2545 }
2546 
2547 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2548 /*
2549  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2550  * operations.
2551  *
2552  * To pin the page, fast-gup needs to do below in order:
2553  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2554  *
2555  * For the rest of pgtable operations where pgtable updates can be racy
2556  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2557  * is pinned.
2558  *
2559  * Above will work for all pte-level operations, including THP split.
2560  *
2561  * For THP collapse, it's a bit more complicated because fast-gup may be
2562  * walking a pgtable page that is being freed (pte is still valid but pmd
2563  * can be cleared already).  To avoid race in such condition, we need to
2564  * also check pmd here to make sure pmd doesn't change (corresponds to
2565  * pmdp_collapse_flush() in the THP collapse code path).
2566  */
2567 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2568 			 unsigned long end, unsigned int flags,
2569 			 struct page **pages, int *nr)
2570 {
2571 	struct dev_pagemap *pgmap = NULL;
2572 	int nr_start = *nr, ret = 0;
2573 	pte_t *ptep, *ptem;
2574 
2575 	ptem = ptep = pte_offset_map(&pmd, addr);
2576 	if (!ptep)
2577 		return 0;
2578 	do {
2579 		pte_t pte = ptep_get_lockless(ptep);
2580 		struct page *page;
2581 		struct folio *folio;
2582 
2583 		/*
2584 		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2585 		 * pte_access_permitted() better should reject these pages
2586 		 * either way: otherwise, GUP-fast might succeed in
2587 		 * cases where ordinary GUP would fail due to VMA access
2588 		 * permissions.
2589 		 */
2590 		if (pte_protnone(pte))
2591 			goto pte_unmap;
2592 
2593 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2594 			goto pte_unmap;
2595 
2596 		if (pte_devmap(pte)) {
2597 			if (unlikely(flags & FOLL_LONGTERM))
2598 				goto pte_unmap;
2599 
2600 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2601 			if (unlikely(!pgmap)) {
2602 				undo_dev_pagemap(nr, nr_start, flags, pages);
2603 				goto pte_unmap;
2604 			}
2605 		} else if (pte_special(pte))
2606 			goto pte_unmap;
2607 
2608 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2609 		page = pte_page(pte);
2610 
2611 		folio = try_grab_folio(page, 1, flags);
2612 		if (!folio)
2613 			goto pte_unmap;
2614 
2615 		if (unlikely(folio_is_secretmem(folio))) {
2616 			gup_put_folio(folio, 1, flags);
2617 			goto pte_unmap;
2618 		}
2619 
2620 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2621 		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2622 			gup_put_folio(folio, 1, flags);
2623 			goto pte_unmap;
2624 		}
2625 
2626 		if (!folio_fast_pin_allowed(folio, flags)) {
2627 			gup_put_folio(folio, 1, flags);
2628 			goto pte_unmap;
2629 		}
2630 
2631 		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2632 			gup_put_folio(folio, 1, flags);
2633 			goto pte_unmap;
2634 		}
2635 
2636 		/*
2637 		 * We need to make the page accessible if and only if we are
2638 		 * going to access its content (the FOLL_PIN case).  Please
2639 		 * see Documentation/core-api/pin_user_pages.rst for
2640 		 * details.
2641 		 */
2642 		if (flags & FOLL_PIN) {
2643 			ret = arch_make_page_accessible(page);
2644 			if (ret) {
2645 				gup_put_folio(folio, 1, flags);
2646 				goto pte_unmap;
2647 			}
2648 		}
2649 		folio_set_referenced(folio);
2650 		pages[*nr] = page;
2651 		(*nr)++;
2652 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2653 
2654 	ret = 1;
2655 
2656 pte_unmap:
2657 	if (pgmap)
2658 		put_dev_pagemap(pgmap);
2659 	pte_unmap(ptem);
2660 	return ret;
2661 }
2662 #else
2663 
2664 /*
2665  * If we can't determine whether or not a pte is special, then fail immediately
2666  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2667  * to be special.
2668  *
2669  * For a futex to be placed on a THP tail page, get_futex_key requires a
2670  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2671  * useful to have gup_huge_pmd even if we can't operate on ptes.
2672  */
2673 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2674 			 unsigned long end, unsigned int flags,
2675 			 struct page **pages, int *nr)
2676 {
2677 	return 0;
2678 }
2679 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2680 
2681 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2682 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2683 			     unsigned long end, unsigned int flags,
2684 			     struct page **pages, int *nr)
2685 {
2686 	int nr_start = *nr;
2687 	struct dev_pagemap *pgmap = NULL;
2688 
2689 	do {
2690 		struct page *page = pfn_to_page(pfn);
2691 
2692 		pgmap = get_dev_pagemap(pfn, pgmap);
2693 		if (unlikely(!pgmap)) {
2694 			undo_dev_pagemap(nr, nr_start, flags, pages);
2695 			break;
2696 		}
2697 
2698 		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2699 			undo_dev_pagemap(nr, nr_start, flags, pages);
2700 			break;
2701 		}
2702 
2703 		SetPageReferenced(page);
2704 		pages[*nr] = page;
2705 		if (unlikely(try_grab_page(page, flags))) {
2706 			undo_dev_pagemap(nr, nr_start, flags, pages);
2707 			break;
2708 		}
2709 		(*nr)++;
2710 		pfn++;
2711 	} while (addr += PAGE_SIZE, addr != end);
2712 
2713 	put_dev_pagemap(pgmap);
2714 	return addr == end;
2715 }
2716 
2717 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2718 				 unsigned long end, unsigned int flags,
2719 				 struct page **pages, int *nr)
2720 {
2721 	unsigned long fault_pfn;
2722 	int nr_start = *nr;
2723 
2724 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2725 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2726 		return 0;
2727 
2728 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2729 		undo_dev_pagemap(nr, nr_start, flags, pages);
2730 		return 0;
2731 	}
2732 	return 1;
2733 }
2734 
2735 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2736 				 unsigned long end, unsigned int flags,
2737 				 struct page **pages, int *nr)
2738 {
2739 	unsigned long fault_pfn;
2740 	int nr_start = *nr;
2741 
2742 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2743 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2744 		return 0;
2745 
2746 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2747 		undo_dev_pagemap(nr, nr_start, flags, pages);
2748 		return 0;
2749 	}
2750 	return 1;
2751 }
2752 #else
2753 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2754 				 unsigned long end, unsigned int flags,
2755 				 struct page **pages, int *nr)
2756 {
2757 	BUILD_BUG();
2758 	return 0;
2759 }
2760 
2761 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2762 				 unsigned long end, unsigned int flags,
2763 				 struct page **pages, int *nr)
2764 {
2765 	BUILD_BUG();
2766 	return 0;
2767 }
2768 #endif
2769 
2770 static int record_subpages(struct page *page, unsigned long addr,
2771 			   unsigned long end, struct page **pages)
2772 {
2773 	int nr;
2774 
2775 	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2776 		pages[nr] = nth_page(page, nr);
2777 
2778 	return nr;
2779 }
2780 
2781 #ifdef CONFIG_ARCH_HAS_HUGEPD
2782 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2783 				      unsigned long sz)
2784 {
2785 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2786 	return (__boundary - 1 < end - 1) ? __boundary : end;
2787 }
2788 
2789 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2790 		       unsigned long end, unsigned int flags,
2791 		       struct page **pages, int *nr)
2792 {
2793 	unsigned long pte_end;
2794 	struct page *page;
2795 	struct folio *folio;
2796 	pte_t pte;
2797 	int refs;
2798 
2799 	pte_end = (addr + sz) & ~(sz-1);
2800 	if (pte_end < end)
2801 		end = pte_end;
2802 
2803 	pte = huge_ptep_get(ptep);
2804 
2805 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2806 		return 0;
2807 
2808 	/* hugepages are never "special" */
2809 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2810 
2811 	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2812 	refs = record_subpages(page, addr, end, pages + *nr);
2813 
2814 	folio = try_grab_folio(page, refs, flags);
2815 	if (!folio)
2816 		return 0;
2817 
2818 	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2819 		gup_put_folio(folio, refs, flags);
2820 		return 0;
2821 	}
2822 
2823 	if (!folio_fast_pin_allowed(folio, flags)) {
2824 		gup_put_folio(folio, refs, flags);
2825 		return 0;
2826 	}
2827 
2828 	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2829 		gup_put_folio(folio, refs, flags);
2830 		return 0;
2831 	}
2832 
2833 	*nr += refs;
2834 	folio_set_referenced(folio);
2835 	return 1;
2836 }
2837 
2838 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2839 		unsigned int pdshift, unsigned long end, unsigned int flags,
2840 		struct page **pages, int *nr)
2841 {
2842 	pte_t *ptep;
2843 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2844 	unsigned long next;
2845 
2846 	ptep = hugepte_offset(hugepd, addr, pdshift);
2847 	do {
2848 		next = hugepte_addr_end(addr, end, sz);
2849 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2850 			return 0;
2851 	} while (ptep++, addr = next, addr != end);
2852 
2853 	return 1;
2854 }
2855 #else
2856 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2857 		unsigned int pdshift, unsigned long end, unsigned int flags,
2858 		struct page **pages, int *nr)
2859 {
2860 	return 0;
2861 }
2862 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2863 
2864 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2865 			unsigned long end, unsigned int flags,
2866 			struct page **pages, int *nr)
2867 {
2868 	struct page *page;
2869 	struct folio *folio;
2870 	int refs;
2871 
2872 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2873 		return 0;
2874 
2875 	if (pmd_devmap(orig)) {
2876 		if (unlikely(flags & FOLL_LONGTERM))
2877 			return 0;
2878 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2879 					     pages, nr);
2880 	}
2881 
2882 	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2883 	refs = record_subpages(page, addr, end, pages + *nr);
2884 
2885 	folio = try_grab_folio(page, refs, flags);
2886 	if (!folio)
2887 		return 0;
2888 
2889 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2890 		gup_put_folio(folio, refs, flags);
2891 		return 0;
2892 	}
2893 
2894 	if (!folio_fast_pin_allowed(folio, flags)) {
2895 		gup_put_folio(folio, refs, flags);
2896 		return 0;
2897 	}
2898 	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2899 		gup_put_folio(folio, refs, flags);
2900 		return 0;
2901 	}
2902 
2903 	*nr += refs;
2904 	folio_set_referenced(folio);
2905 	return 1;
2906 }
2907 
2908 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2909 			unsigned long end, unsigned int flags,
2910 			struct page **pages, int *nr)
2911 {
2912 	struct page *page;
2913 	struct folio *folio;
2914 	int refs;
2915 
2916 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2917 		return 0;
2918 
2919 	if (pud_devmap(orig)) {
2920 		if (unlikely(flags & FOLL_LONGTERM))
2921 			return 0;
2922 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2923 					     pages, nr);
2924 	}
2925 
2926 	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2927 	refs = record_subpages(page, addr, end, pages + *nr);
2928 
2929 	folio = try_grab_folio(page, refs, flags);
2930 	if (!folio)
2931 		return 0;
2932 
2933 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2934 		gup_put_folio(folio, refs, flags);
2935 		return 0;
2936 	}
2937 
2938 	if (!folio_fast_pin_allowed(folio, flags)) {
2939 		gup_put_folio(folio, refs, flags);
2940 		return 0;
2941 	}
2942 
2943 	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2944 		gup_put_folio(folio, refs, flags);
2945 		return 0;
2946 	}
2947 
2948 	*nr += refs;
2949 	folio_set_referenced(folio);
2950 	return 1;
2951 }
2952 
2953 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2954 			unsigned long end, unsigned int flags,
2955 			struct page **pages, int *nr)
2956 {
2957 	int refs;
2958 	struct page *page;
2959 	struct folio *folio;
2960 
2961 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2962 		return 0;
2963 
2964 	BUILD_BUG_ON(pgd_devmap(orig));
2965 
2966 	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2967 	refs = record_subpages(page, addr, end, pages + *nr);
2968 
2969 	folio = try_grab_folio(page, refs, flags);
2970 	if (!folio)
2971 		return 0;
2972 
2973 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2974 		gup_put_folio(folio, refs, flags);
2975 		return 0;
2976 	}
2977 
2978 	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2979 		gup_put_folio(folio, refs, flags);
2980 		return 0;
2981 	}
2982 
2983 	if (!folio_fast_pin_allowed(folio, flags)) {
2984 		gup_put_folio(folio, refs, flags);
2985 		return 0;
2986 	}
2987 
2988 	*nr += refs;
2989 	folio_set_referenced(folio);
2990 	return 1;
2991 }
2992 
2993 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2994 		unsigned int flags, struct page **pages, int *nr)
2995 {
2996 	unsigned long next;
2997 	pmd_t *pmdp;
2998 
2999 	pmdp = pmd_offset_lockless(pudp, pud, addr);
3000 	do {
3001 		pmd_t pmd = pmdp_get_lockless(pmdp);
3002 
3003 		next = pmd_addr_end(addr, end);
3004 		if (!pmd_present(pmd))
3005 			return 0;
3006 
3007 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
3008 			     pmd_devmap(pmd))) {
3009 			/* See gup_pte_range() */
3010 			if (pmd_protnone(pmd))
3011 				return 0;
3012 
3013 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
3014 				pages, nr))
3015 				return 0;
3016 
3017 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3018 			/*
3019 			 * architecture have different format for hugetlbfs
3020 			 * pmd format and THP pmd format
3021 			 */
3022 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
3023 					 PMD_SHIFT, next, flags, pages, nr))
3024 				return 0;
3025 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
3026 			return 0;
3027 	} while (pmdp++, addr = next, addr != end);
3028 
3029 	return 1;
3030 }
3031 
3032 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
3033 			 unsigned int flags, struct page **pages, int *nr)
3034 {
3035 	unsigned long next;
3036 	pud_t *pudp;
3037 
3038 	pudp = pud_offset_lockless(p4dp, p4d, addr);
3039 	do {
3040 		pud_t pud = READ_ONCE(*pudp);
3041 
3042 		next = pud_addr_end(addr, end);
3043 		if (unlikely(!pud_present(pud)))
3044 			return 0;
3045 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3046 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
3047 					  pages, nr))
3048 				return 0;
3049 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3050 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3051 					 PUD_SHIFT, next, flags, pages, nr))
3052 				return 0;
3053 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3054 			return 0;
3055 	} while (pudp++, addr = next, addr != end);
3056 
3057 	return 1;
3058 }
3059 
3060 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3061 			 unsigned int flags, struct page **pages, int *nr)
3062 {
3063 	unsigned long next;
3064 	p4d_t *p4dp;
3065 
3066 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3067 	do {
3068 		p4d_t p4d = READ_ONCE(*p4dp);
3069 
3070 		next = p4d_addr_end(addr, end);
3071 		if (p4d_none(p4d))
3072 			return 0;
3073 		BUILD_BUG_ON(p4d_huge(p4d));
3074 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3075 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3076 					 P4D_SHIFT, next, flags, pages, nr))
3077 				return 0;
3078 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3079 			return 0;
3080 	} while (p4dp++, addr = next, addr != end);
3081 
3082 	return 1;
3083 }
3084 
3085 static void gup_pgd_range(unsigned long addr, unsigned long end,
3086 		unsigned int flags, struct page **pages, int *nr)
3087 {
3088 	unsigned long next;
3089 	pgd_t *pgdp;
3090 
3091 	pgdp = pgd_offset(current->mm, addr);
3092 	do {
3093 		pgd_t pgd = READ_ONCE(*pgdp);
3094 
3095 		next = pgd_addr_end(addr, end);
3096 		if (pgd_none(pgd))
3097 			return;
3098 		if (unlikely(pgd_huge(pgd))) {
3099 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3100 					  pages, nr))
3101 				return;
3102 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3103 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3104 					 PGDIR_SHIFT, next, flags, pages, nr))
3105 				return;
3106 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3107 			return;
3108 	} while (pgdp++, addr = next, addr != end);
3109 }
3110 #else
3111 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3112 		unsigned int flags, struct page **pages, int *nr)
3113 {
3114 }
3115 #endif /* CONFIG_HAVE_FAST_GUP */
3116 
3117 #ifndef gup_fast_permitted
3118 /*
3119  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3120  * we need to fall back to the slow version:
3121  */
3122 static bool gup_fast_permitted(unsigned long start, unsigned long end)
3123 {
3124 	return true;
3125 }
3126 #endif
3127 
3128 static unsigned long lockless_pages_from_mm(unsigned long start,
3129 					    unsigned long end,
3130 					    unsigned int gup_flags,
3131 					    struct page **pages)
3132 {
3133 	unsigned long flags;
3134 	int nr_pinned = 0;
3135 	unsigned seq;
3136 
3137 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3138 	    !gup_fast_permitted(start, end))
3139 		return 0;
3140 
3141 	if (gup_flags & FOLL_PIN) {
3142 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3143 		if (seq & 1)
3144 			return 0;
3145 	}
3146 
3147 	/*
3148 	 * Disable interrupts. The nested form is used, in order to allow full,
3149 	 * general purpose use of this routine.
3150 	 *
3151 	 * With interrupts disabled, we block page table pages from being freed
3152 	 * from under us. See struct mmu_table_batch comments in
3153 	 * include/asm-generic/tlb.h for more details.
3154 	 *
3155 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3156 	 * that come from THPs splitting.
3157 	 */
3158 	local_irq_save(flags);
3159 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3160 	local_irq_restore(flags);
3161 
3162 	/*
3163 	 * When pinning pages for DMA there could be a concurrent write protect
3164 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3165 	 */
3166 	if (gup_flags & FOLL_PIN) {
3167 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3168 			unpin_user_pages_lockless(pages, nr_pinned);
3169 			return 0;
3170 		} else {
3171 			sanity_check_pinned_pages(pages, nr_pinned);
3172 		}
3173 	}
3174 	return nr_pinned;
3175 }
3176 
3177 static int internal_get_user_pages_fast(unsigned long start,
3178 					unsigned long nr_pages,
3179 					unsigned int gup_flags,
3180 					struct page **pages)
3181 {
3182 	unsigned long len, end;
3183 	unsigned long nr_pinned;
3184 	int locked = 0;
3185 	int ret;
3186 
3187 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3188 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3189 				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3190 				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3191 		return -EINVAL;
3192 
3193 	if (gup_flags & FOLL_PIN)
3194 		mm_set_has_pinned_flag(&current->mm->flags);
3195 
3196 	if (!(gup_flags & FOLL_FAST_ONLY))
3197 		might_lock_read(&current->mm->mmap_lock);
3198 
3199 	start = untagged_addr(start) & PAGE_MASK;
3200 	len = nr_pages << PAGE_SHIFT;
3201 	if (check_add_overflow(start, len, &end))
3202 		return -EOVERFLOW;
3203 	if (end > TASK_SIZE_MAX)
3204 		return -EFAULT;
3205 	if (unlikely(!access_ok((void __user *)start, len)))
3206 		return -EFAULT;
3207 
3208 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3209 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3210 		return nr_pinned;
3211 
3212 	/* Slow path: try to get the remaining pages with get_user_pages */
3213 	start += nr_pinned << PAGE_SHIFT;
3214 	pages += nr_pinned;
3215 	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3216 				    pages, &locked,
3217 				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3218 	if (ret < 0) {
3219 		/*
3220 		 * The caller has to unpin the pages we already pinned so
3221 		 * returning -errno is not an option
3222 		 */
3223 		if (nr_pinned)
3224 			return nr_pinned;
3225 		return ret;
3226 	}
3227 	return ret + nr_pinned;
3228 }
3229 
3230 /**
3231  * get_user_pages_fast_only() - pin user pages in memory
3232  * @start:      starting user address
3233  * @nr_pages:   number of pages from start to pin
3234  * @gup_flags:  flags modifying pin behaviour
3235  * @pages:      array that receives pointers to the pages pinned.
3236  *              Should be at least nr_pages long.
3237  *
3238  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3239  * the regular GUP.
3240  *
3241  * If the architecture does not support this function, simply return with no
3242  * pages pinned.
3243  *
3244  * Careful, careful! COW breaking can go either way, so a non-write
3245  * access can get ambiguous page results. If you call this function without
3246  * 'write' set, you'd better be sure that you're ok with that ambiguity.
3247  */
3248 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3249 			     unsigned int gup_flags, struct page **pages)
3250 {
3251 	/*
3252 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3253 	 * because gup fast is always a "pin with a +1 page refcount" request.
3254 	 *
3255 	 * FOLL_FAST_ONLY is required in order to match the API description of
3256 	 * this routine: no fall back to regular ("slow") GUP.
3257 	 */
3258 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3259 			       FOLL_GET | FOLL_FAST_ONLY))
3260 		return -EINVAL;
3261 
3262 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3263 }
3264 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3265 
3266 /**
3267  * get_user_pages_fast() - pin user pages in memory
3268  * @start:      starting user address
3269  * @nr_pages:   number of pages from start to pin
3270  * @gup_flags:  flags modifying pin behaviour
3271  * @pages:      array that receives pointers to the pages pinned.
3272  *              Should be at least nr_pages long.
3273  *
3274  * Attempt to pin user pages in memory without taking mm->mmap_lock.
3275  * If not successful, it will fall back to taking the lock and
3276  * calling get_user_pages().
3277  *
3278  * Returns number of pages pinned. This may be fewer than the number requested.
3279  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3280  * -errno.
3281  */
3282 int get_user_pages_fast(unsigned long start, int nr_pages,
3283 			unsigned int gup_flags, struct page **pages)
3284 {
3285 	/*
3286 	 * The caller may or may not have explicitly set FOLL_GET; either way is
3287 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3288 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3289 	 * request.
3290 	 */
3291 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3292 		return -EINVAL;
3293 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3294 }
3295 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3296 
3297 /**
3298  * pin_user_pages_fast() - pin user pages in memory without taking locks
3299  *
3300  * @start:      starting user address
3301  * @nr_pages:   number of pages from start to pin
3302  * @gup_flags:  flags modifying pin behaviour
3303  * @pages:      array that receives pointers to the pages pinned.
3304  *              Should be at least nr_pages long.
3305  *
3306  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3307  * get_user_pages_fast() for documentation on the function arguments, because
3308  * the arguments here are identical.
3309  *
3310  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3311  * see Documentation/core-api/pin_user_pages.rst for further details.
3312  *
3313  * Note that if a zero_page is amongst the returned pages, it will not have
3314  * pins in it and unpin_user_page() will not remove pins from it.
3315  */
3316 int pin_user_pages_fast(unsigned long start, int nr_pages,
3317 			unsigned int gup_flags, struct page **pages)
3318 {
3319 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3320 		return -EINVAL;
3321 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3322 }
3323 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3324 
3325 /**
3326  * pin_user_pages_remote() - pin pages of a remote process
3327  *
3328  * @mm:		mm_struct of target mm
3329  * @start:	starting user address
3330  * @nr_pages:	number of pages from start to pin
3331  * @gup_flags:	flags modifying lookup behaviour
3332  * @pages:	array that receives pointers to the pages pinned.
3333  *		Should be at least nr_pages long.
3334  * @locked:	pointer to lock flag indicating whether lock is held and
3335  *		subsequently whether VM_FAULT_RETRY functionality can be
3336  *		utilised. Lock must initially be held.
3337  *
3338  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3339  * get_user_pages_remote() for documentation on the function arguments, because
3340  * the arguments here are identical.
3341  *
3342  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3343  * see Documentation/core-api/pin_user_pages.rst for details.
3344  *
3345  * Note that if a zero_page is amongst the returned pages, it will not have
3346  * pins in it and unpin_user_page*() will not remove pins from it.
3347  */
3348 long pin_user_pages_remote(struct mm_struct *mm,
3349 			   unsigned long start, unsigned long nr_pages,
3350 			   unsigned int gup_flags, struct page **pages,
3351 			   int *locked)
3352 {
3353 	int local_locked = 1;
3354 
3355 	if (!is_valid_gup_args(pages, locked, &gup_flags,
3356 			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3357 		return 0;
3358 	return __gup_longterm_locked(mm, start, nr_pages, pages,
3359 				     locked ? locked : &local_locked,
3360 				     gup_flags);
3361 }
3362 EXPORT_SYMBOL(pin_user_pages_remote);
3363 
3364 /**
3365  * pin_user_pages() - pin user pages in memory for use by other devices
3366  *
3367  * @start:	starting user address
3368  * @nr_pages:	number of pages from start to pin
3369  * @gup_flags:	flags modifying lookup behaviour
3370  * @pages:	array that receives pointers to the pages pinned.
3371  *		Should be at least nr_pages long.
3372  *
3373  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3374  * FOLL_PIN is set.
3375  *
3376  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3377  * see Documentation/core-api/pin_user_pages.rst for details.
3378  *
3379  * Note that if a zero_page is amongst the returned pages, it will not have
3380  * pins in it and unpin_user_page*() will not remove pins from it.
3381  */
3382 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3383 		    unsigned int gup_flags, struct page **pages)
3384 {
3385 	int locked = 1;
3386 
3387 	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3388 		return 0;
3389 	return __gup_longterm_locked(current->mm, start, nr_pages,
3390 				     pages, &locked, gup_flags);
3391 }
3392 EXPORT_SYMBOL(pin_user_pages);
3393 
3394 /*
3395  * pin_user_pages_unlocked() is the FOLL_PIN variant of
3396  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3397  * FOLL_PIN and rejects FOLL_GET.
3398  *
3399  * Note that if a zero_page is amongst the returned pages, it will not have
3400  * pins in it and unpin_user_page*() will not remove pins from it.
3401  */
3402 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3403 			     struct page **pages, unsigned int gup_flags)
3404 {
3405 	int locked = 0;
3406 
3407 	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3408 			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3409 		return 0;
3410 
3411 	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3412 				     &locked, gup_flags);
3413 }
3414 EXPORT_SYMBOL(pin_user_pages_unlocked);
3415