xref: /linux/mm/ksm.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *	Izik Eidus
11  *	Andrea Arcangeli
12  *	Chris Wright
13  *	Hugh Dickins
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41 
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44 
45 #ifdef CONFIG_NUMA
46 #define NUMA(x)		(x)
47 #define DO_NUMA(x)	do { (x); } while (0)
48 #else
49 #define NUMA(x)		(0)
50 #define DO_NUMA(x)	do { } while (0)
51 #endif
52 
53 /**
54  * DOC: Overview
55  *
56  * A few notes about the KSM scanning process,
57  * to make it easier to understand the data structures below:
58  *
59  * In order to reduce excessive scanning, KSM sorts the memory pages by their
60  * contents into a data structure that holds pointers to the pages' locations.
61  *
62  * Since the contents of the pages may change at any moment, KSM cannot just
63  * insert the pages into a normal sorted tree and expect it to find anything.
64  * Therefore KSM uses two data structures - the stable and the unstable tree.
65  *
66  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67  * by their contents.  Because each such page is write-protected, searching on
68  * this tree is fully assured to be working (except when pages are unmapped),
69  * and therefore this tree is called the stable tree.
70  *
71  * The stable tree node includes information required for reverse
72  * mapping from a KSM page to virtual addresses that map this page.
73  *
74  * In order to avoid large latencies of the rmap walks on KSM pages,
75  * KSM maintains two types of nodes in the stable tree:
76  *
77  * * the regular nodes that keep the reverse mapping structures in a
78  *   linked list
79  * * the "chains" that link nodes ("dups") that represent the same
80  *   write protected memory content, but each "dup" corresponds to a
81  *   different KSM page copy of that content
82  *
83  * Internally, the regular nodes, "dups" and "chains" are represented
84  * using the same :c:type:`struct stable_node` structure.
85  *
86  * In addition to the stable tree, KSM uses a second data structure called the
87  * unstable tree: this tree holds pointers to pages which have been found to
88  * be "unchanged for a period of time".  The unstable tree sorts these pages
89  * by their contents, but since they are not write-protected, KSM cannot rely
90  * upon the unstable tree to work correctly - the unstable tree is liable to
91  * be corrupted as its contents are modified, and so it is called unstable.
92  *
93  * KSM solves this problem by several techniques:
94  *
95  * 1) The unstable tree is flushed every time KSM completes scanning all
96  *    memory areas, and then the tree is rebuilt again from the beginning.
97  * 2) KSM will only insert into the unstable tree, pages whose hash value
98  *    has not changed since the previous scan of all memory areas.
99  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100  *    colors of the nodes and not on their contents, assuring that even when
101  *    the tree gets "corrupted" it won't get out of balance, so scanning time
102  *    remains the same (also, searching and inserting nodes in an rbtree uses
103  *    the same algorithm, so we have no overhead when we flush and rebuild).
104  * 4) KSM never flushes the stable tree, which means that even if it were to
105  *    take 10 attempts to find a page in the unstable tree, once it is found,
106  *    it is secured in the stable tree.  (When we scan a new page, we first
107  *    compare it against the stable tree, and then against the unstable tree.)
108  *
109  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110  * stable trees and multiple unstable trees: one of each for each NUMA node.
111  */
112 
113 /**
114  * struct mm_slot - ksm information per mm that is being scanned
115  * @link: link to the mm_slots hash list
116  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118  * @mm: the mm that this information is valid for
119  */
120 struct mm_slot {
121 	struct hlist_node link;
122 	struct list_head mm_list;
123 	struct rmap_item *rmap_list;
124 	struct mm_struct *mm;
125 };
126 
127 /**
128  * struct ksm_scan - cursor for scanning
129  * @mm_slot: the current mm_slot we are scanning
130  * @address: the next address inside that to be scanned
131  * @rmap_list: link to the next rmap to be scanned in the rmap_list
132  * @seqnr: count of completed full scans (needed when removing unstable node)
133  *
134  * There is only the one ksm_scan instance of this cursor structure.
135  */
136 struct ksm_scan {
137 	struct mm_slot *mm_slot;
138 	unsigned long address;
139 	struct rmap_item **rmap_list;
140 	unsigned long seqnr;
141 };
142 
143 /**
144  * struct stable_node - node of the stable rbtree
145  * @node: rb node of this ksm page in the stable tree
146  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148  * @list: linked into migrate_nodes, pending placement in the proper node tree
149  * @hlist: hlist head of rmap_items using this ksm page
150  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151  * @chain_prune_time: time of the last full garbage collection
152  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154  */
155 struct stable_node {
156 	union {
157 		struct rb_node node;	/* when node of stable tree */
158 		struct {		/* when listed for migration */
159 			struct list_head *head;
160 			struct {
161 				struct hlist_node hlist_dup;
162 				struct list_head list;
163 			};
164 		};
165 	};
166 	struct hlist_head hlist;
167 	union {
168 		unsigned long kpfn;
169 		unsigned long chain_prune_time;
170 	};
171 	/*
172 	 * STABLE_NODE_CHAIN can be any negative number in
173 	 * rmap_hlist_len negative range, but better not -1 to be able
174 	 * to reliably detect underflows.
175 	 */
176 #define STABLE_NODE_CHAIN -1024
177 	int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 	int nid;
180 #endif
181 };
182 
183 /**
184  * struct rmap_item - reverse mapping item for virtual addresses
185  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187  * @nid: NUMA node id of unstable tree in which linked (may not match page)
188  * @mm: the memory structure this rmap_item is pointing into
189  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190  * @oldchecksum: previous checksum of the page at that virtual address
191  * @node: rb node of this rmap_item in the unstable tree
192  * @head: pointer to stable_node heading this list in the stable tree
193  * @hlist: link into hlist of rmap_items hanging off that stable_node
194  */
195 struct rmap_item {
196 	struct rmap_item *rmap_list;
197 	union {
198 		struct anon_vma *anon_vma;	/* when stable */
199 #ifdef CONFIG_NUMA
200 		int nid;		/* when node of unstable tree */
201 #endif
202 	};
203 	struct mm_struct *mm;
204 	unsigned long address;		/* + low bits used for flags below */
205 	unsigned int oldchecksum;	/* when unstable */
206 	union {
207 		struct rb_node node;	/* when node of unstable tree */
208 		struct {		/* when listed from stable tree */
209 			struct stable_node *head;
210 			struct hlist_node hlist;
211 		};
212 	};
213 };
214 
215 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
217 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
218 #define KSM_FLAG_MASK	(SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
219 				/* to mask all the flags */
220 
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 
234 static struct mm_slot ksm_mm_head = {
235 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
236 };
237 static struct ksm_scan ksm_scan = {
238 	.mm_slot = &ksm_mm_head,
239 };
240 
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244 
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247 
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250 
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253 
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256 
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259 
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262 
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static int ksm_stable_node_chains_prune_millisecs = 2000;
265 
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268 
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271 
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274 
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277 
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280 
281 #ifdef CONFIG_NUMA
282 /* Zeroed when merging across nodes is not allowed */
283 static unsigned int ksm_merge_across_nodes = 1;
284 static int ksm_nr_node_ids = 1;
285 #else
286 #define ksm_merge_across_nodes	1U
287 #define ksm_nr_node_ids		1
288 #endif
289 
290 #define KSM_RUN_STOP	0
291 #define KSM_RUN_MERGE	1
292 #define KSM_RUN_UNMERGE	2
293 #define KSM_RUN_OFFLINE	4
294 static unsigned long ksm_run = KSM_RUN_STOP;
295 static void wait_while_offlining(void);
296 
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301 
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
303 		sizeof(struct __struct), __alignof__(struct __struct),\
304 		(__flags), NULL)
305 
306 static int __init ksm_slab_init(void)
307 {
308 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
309 	if (!rmap_item_cache)
310 		goto out;
311 
312 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
313 	if (!stable_node_cache)
314 		goto out_free1;
315 
316 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
317 	if (!mm_slot_cache)
318 		goto out_free2;
319 
320 	return 0;
321 
322 out_free2:
323 	kmem_cache_destroy(stable_node_cache);
324 out_free1:
325 	kmem_cache_destroy(rmap_item_cache);
326 out:
327 	return -ENOMEM;
328 }
329 
330 static void __init ksm_slab_free(void)
331 {
332 	kmem_cache_destroy(mm_slot_cache);
333 	kmem_cache_destroy(stable_node_cache);
334 	kmem_cache_destroy(rmap_item_cache);
335 	mm_slot_cache = NULL;
336 }
337 
338 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
339 {
340 	return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342 
343 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
344 {
345 	return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347 
348 static inline void stable_node_chain_add_dup(struct stable_node *dup,
349 					     struct stable_node *chain)
350 {
351 	VM_BUG_ON(is_stable_node_dup(dup));
352 	dup->head = STABLE_NODE_DUP_HEAD;
353 	VM_BUG_ON(!is_stable_node_chain(chain));
354 	hlist_add_head(&dup->hlist_dup, &chain->hlist);
355 	ksm_stable_node_dups++;
356 }
357 
358 static inline void __stable_node_dup_del(struct stable_node *dup)
359 {
360 	VM_BUG_ON(!is_stable_node_dup(dup));
361 	hlist_del(&dup->hlist_dup);
362 	ksm_stable_node_dups--;
363 }
364 
365 static inline void stable_node_dup_del(struct stable_node *dup)
366 {
367 	VM_BUG_ON(is_stable_node_chain(dup));
368 	if (is_stable_node_dup(dup))
369 		__stable_node_dup_del(dup);
370 	else
371 		rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373 	dup->head = NULL;
374 #endif
375 }
376 
377 static inline struct rmap_item *alloc_rmap_item(void)
378 {
379 	struct rmap_item *rmap_item;
380 
381 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382 						__GFP_NORETRY | __GFP_NOWARN);
383 	if (rmap_item)
384 		ksm_rmap_items++;
385 	return rmap_item;
386 }
387 
388 static inline void free_rmap_item(struct rmap_item *rmap_item)
389 {
390 	ksm_rmap_items--;
391 	rmap_item->mm = NULL;	/* debug safety */
392 	kmem_cache_free(rmap_item_cache, rmap_item);
393 }
394 
395 static inline struct stable_node *alloc_stable_node(void)
396 {
397 	/*
398 	 * The allocation can take too long with GFP_KERNEL when memory is under
399 	 * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
400 	 * grants access to memory reserves, helping to avoid this problem.
401 	 */
402 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
403 }
404 
405 static inline void free_stable_node(struct stable_node *stable_node)
406 {
407 	VM_BUG_ON(stable_node->rmap_hlist_len &&
408 		  !is_stable_node_chain(stable_node));
409 	kmem_cache_free(stable_node_cache, stable_node);
410 }
411 
412 static inline struct mm_slot *alloc_mm_slot(void)
413 {
414 	if (!mm_slot_cache)	/* initialization failed */
415 		return NULL;
416 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
417 }
418 
419 static inline void free_mm_slot(struct mm_slot *mm_slot)
420 {
421 	kmem_cache_free(mm_slot_cache, mm_slot);
422 }
423 
424 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
425 {
426 	struct mm_slot *slot;
427 
428 	hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
429 		if (slot->mm == mm)
430 			return slot;
431 
432 	return NULL;
433 }
434 
435 static void insert_to_mm_slots_hash(struct mm_struct *mm,
436 				    struct mm_slot *mm_slot)
437 {
438 	mm_slot->mm = mm;
439 	hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
440 }
441 
442 /*
443  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
444  * page tables after it has passed through ksm_exit() - which, if necessary,
445  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
446  * a special flag: they can just back out as soon as mm_users goes to zero.
447  * ksm_test_exit() is used throughout to make this test for exit: in some
448  * places for correctness, in some places just to avoid unnecessary work.
449  */
450 static inline bool ksm_test_exit(struct mm_struct *mm)
451 {
452 	return atomic_read(&mm->mm_users) == 0;
453 }
454 
455 /*
456  * We use break_ksm to break COW on a ksm page: it's a stripped down
457  *
458  *	if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
459  *		put_page(page);
460  *
461  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
462  * in case the application has unmapped and remapped mm,addr meanwhile.
463  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
464  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
465  *
466  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
467  * of the process that owns 'vma'.  We also do not want to enforce
468  * protection keys here anyway.
469  */
470 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
471 {
472 	struct page *page;
473 	vm_fault_t ret = 0;
474 
475 	do {
476 		cond_resched();
477 		page = follow_page(vma, addr,
478 				FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
479 		if (IS_ERR_OR_NULL(page))
480 			break;
481 		if (PageKsm(page))
482 			ret = handle_mm_fault(vma, addr,
483 					FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
484 		else
485 			ret = VM_FAULT_WRITE;
486 		put_page(page);
487 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488 	/*
489 	 * We must loop because handle_mm_fault() may back out if there's
490 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491 	 *
492 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 	 * COW has been broken, even if the vma does not permit VM_WRITE;
494 	 * but note that a concurrent fault might break PageKsm for us.
495 	 *
496 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 	 * backing file, which also invalidates anonymous pages: that's
498 	 * okay, that truncation will have unmapped the PageKsm for us.
499 	 *
500 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 	 * to user; and ksmd, having no mm, would never be chosen for that.
504 	 *
505 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 	 * even ksmd can fail in this way - though it's usually breaking ksm
508 	 * just to undo a merge it made a moment before, so unlikely to oom.
509 	 *
510 	 * That's a pity: we might therefore have more kernel pages allocated
511 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 	 * will retry to break_cow on each pass, so should recover the page
513 	 * in due course.  The important thing is to not let VM_MERGEABLE
514 	 * be cleared while any such pages might remain in the area.
515 	 */
516 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518 
519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520 		unsigned long addr)
521 {
522 	struct vm_area_struct *vma;
523 	if (ksm_test_exit(mm))
524 		return NULL;
525 	vma = find_vma(mm, addr);
526 	if (!vma || vma->vm_start > addr)
527 		return NULL;
528 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
529 		return NULL;
530 	return vma;
531 }
532 
533 static void break_cow(struct rmap_item *rmap_item)
534 {
535 	struct mm_struct *mm = rmap_item->mm;
536 	unsigned long addr = rmap_item->address;
537 	struct vm_area_struct *vma;
538 
539 	/*
540 	 * It is not an accident that whenever we want to break COW
541 	 * to undo, we also need to drop a reference to the anon_vma.
542 	 */
543 	put_anon_vma(rmap_item->anon_vma);
544 
545 	down_read(&mm->mmap_sem);
546 	vma = find_mergeable_vma(mm, addr);
547 	if (vma)
548 		break_ksm(vma, addr);
549 	up_read(&mm->mmap_sem);
550 }
551 
552 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
553 {
554 	struct mm_struct *mm = rmap_item->mm;
555 	unsigned long addr = rmap_item->address;
556 	struct vm_area_struct *vma;
557 	struct page *page;
558 
559 	down_read(&mm->mmap_sem);
560 	vma = find_mergeable_vma(mm, addr);
561 	if (!vma)
562 		goto out;
563 
564 	page = follow_page(vma, addr, FOLL_GET);
565 	if (IS_ERR_OR_NULL(page))
566 		goto out;
567 	if (PageAnon(page)) {
568 		flush_anon_page(vma, page, addr);
569 		flush_dcache_page(page);
570 	} else {
571 		put_page(page);
572 out:
573 		page = NULL;
574 	}
575 	up_read(&mm->mmap_sem);
576 	return page;
577 }
578 
579 /*
580  * This helper is used for getting right index into array of tree roots.
581  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
582  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
583  * every node has its own stable and unstable tree.
584  */
585 static inline int get_kpfn_nid(unsigned long kpfn)
586 {
587 	return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
588 }
589 
590 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
591 						   struct rb_root *root)
592 {
593 	struct stable_node *chain = alloc_stable_node();
594 	VM_BUG_ON(is_stable_node_chain(dup));
595 	if (likely(chain)) {
596 		INIT_HLIST_HEAD(&chain->hlist);
597 		chain->chain_prune_time = jiffies;
598 		chain->rmap_hlist_len = STABLE_NODE_CHAIN;
599 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
600 		chain->nid = NUMA_NO_NODE; /* debug */
601 #endif
602 		ksm_stable_node_chains++;
603 
604 		/*
605 		 * Put the stable node chain in the first dimension of
606 		 * the stable tree and at the same time remove the old
607 		 * stable node.
608 		 */
609 		rb_replace_node(&dup->node, &chain->node, root);
610 
611 		/*
612 		 * Move the old stable node to the second dimension
613 		 * queued in the hlist_dup. The invariant is that all
614 		 * dup stable_nodes in the chain->hlist point to pages
615 		 * that are wrprotected and have the exact same
616 		 * content.
617 		 */
618 		stable_node_chain_add_dup(dup, chain);
619 	}
620 	return chain;
621 }
622 
623 static inline void free_stable_node_chain(struct stable_node *chain,
624 					  struct rb_root *root)
625 {
626 	rb_erase(&chain->node, root);
627 	free_stable_node(chain);
628 	ksm_stable_node_chains--;
629 }
630 
631 static void remove_node_from_stable_tree(struct stable_node *stable_node)
632 {
633 	struct rmap_item *rmap_item;
634 
635 	/* check it's not STABLE_NODE_CHAIN or negative */
636 	BUG_ON(stable_node->rmap_hlist_len < 0);
637 
638 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
639 		if (rmap_item->hlist.next)
640 			ksm_pages_sharing--;
641 		else
642 			ksm_pages_shared--;
643 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644 		stable_node->rmap_hlist_len--;
645 		put_anon_vma(rmap_item->anon_vma);
646 		rmap_item->address &= PAGE_MASK;
647 		cond_resched();
648 	}
649 
650 	/*
651 	 * We need the second aligned pointer of the migrate_nodes
652 	 * list_head to stay clear from the rb_parent_color union
653 	 * (aligned and different than any node) and also different
654 	 * from &migrate_nodes. This will verify that future list.h changes
655 	 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
656 	 */
657 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
658 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659 	BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
660 #endif
661 
662 	if (stable_node->head == &migrate_nodes)
663 		list_del(&stable_node->list);
664 	else
665 		stable_node_dup_del(stable_node);
666 	free_stable_node(stable_node);
667 }
668 
669 enum get_ksm_page_flags {
670 	GET_KSM_PAGE_NOLOCK,
671 	GET_KSM_PAGE_LOCK,
672 	GET_KSM_PAGE_TRYLOCK
673 };
674 
675 /*
676  * get_ksm_page: checks if the page indicated by the stable node
677  * is still its ksm page, despite having held no reference to it.
678  * In which case we can trust the content of the page, and it
679  * returns the gotten page; but if the page has now been zapped,
680  * remove the stale node from the stable tree and return NULL.
681  * But beware, the stable node's page might be being migrated.
682  *
683  * You would expect the stable_node to hold a reference to the ksm page.
684  * But if it increments the page's count, swapping out has to wait for
685  * ksmd to come around again before it can free the page, which may take
686  * seconds or even minutes: much too unresponsive.  So instead we use a
687  * "keyhole reference": access to the ksm page from the stable node peeps
688  * out through its keyhole to see if that page still holds the right key,
689  * pointing back to this stable node.  This relies on freeing a PageAnon
690  * page to reset its page->mapping to NULL, and relies on no other use of
691  * a page to put something that might look like our key in page->mapping.
692  * is on its way to being freed; but it is an anomaly to bear in mind.
693  */
694 static struct page *get_ksm_page(struct stable_node *stable_node,
695 				 enum get_ksm_page_flags flags)
696 {
697 	struct page *page;
698 	void *expected_mapping;
699 	unsigned long kpfn;
700 
701 	expected_mapping = (void *)((unsigned long)stable_node |
702 					PAGE_MAPPING_KSM);
703 again:
704 	kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
705 	page = pfn_to_page(kpfn);
706 	if (READ_ONCE(page->mapping) != expected_mapping)
707 		goto stale;
708 
709 	/*
710 	 * We cannot do anything with the page while its refcount is 0.
711 	 * Usually 0 means free, or tail of a higher-order page: in which
712 	 * case this node is no longer referenced, and should be freed;
713 	 * however, it might mean that the page is under page_ref_freeze().
714 	 * The __remove_mapping() case is easy, again the node is now stale;
715 	 * the same is in reuse_ksm_page() case; but if page is swapcache
716 	 * in migrate_page_move_mapping(), it might still be our page,
717 	 * in which case it's essential to keep the node.
718 	 */
719 	while (!get_page_unless_zero(page)) {
720 		/*
721 		 * Another check for page->mapping != expected_mapping would
722 		 * work here too.  We have chosen the !PageSwapCache test to
723 		 * optimize the common case, when the page is or is about to
724 		 * be freed: PageSwapCache is cleared (under spin_lock_irq)
725 		 * in the ref_freeze section of __remove_mapping(); but Anon
726 		 * page->mapping reset to NULL later, in free_pages_prepare().
727 		 */
728 		if (!PageSwapCache(page))
729 			goto stale;
730 		cpu_relax();
731 	}
732 
733 	if (READ_ONCE(page->mapping) != expected_mapping) {
734 		put_page(page);
735 		goto stale;
736 	}
737 
738 	if (flags == GET_KSM_PAGE_TRYLOCK) {
739 		if (!trylock_page(page)) {
740 			put_page(page);
741 			return ERR_PTR(-EBUSY);
742 		}
743 	} else if (flags == GET_KSM_PAGE_LOCK)
744 		lock_page(page);
745 
746 	if (flags != GET_KSM_PAGE_NOLOCK) {
747 		if (READ_ONCE(page->mapping) != expected_mapping) {
748 			unlock_page(page);
749 			put_page(page);
750 			goto stale;
751 		}
752 	}
753 	return page;
754 
755 stale:
756 	/*
757 	 * We come here from above when page->mapping or !PageSwapCache
758 	 * suggests that the node is stale; but it might be under migration.
759 	 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
760 	 * before checking whether node->kpfn has been changed.
761 	 */
762 	smp_rmb();
763 	if (READ_ONCE(stable_node->kpfn) != kpfn)
764 		goto again;
765 	remove_node_from_stable_tree(stable_node);
766 	return NULL;
767 }
768 
769 /*
770  * Removing rmap_item from stable or unstable tree.
771  * This function will clean the information from the stable/unstable tree.
772  */
773 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
774 {
775 	if (rmap_item->address & STABLE_FLAG) {
776 		struct stable_node *stable_node;
777 		struct page *page;
778 
779 		stable_node = rmap_item->head;
780 		page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
781 		if (!page)
782 			goto out;
783 
784 		hlist_del(&rmap_item->hlist);
785 		unlock_page(page);
786 		put_page(page);
787 
788 		if (!hlist_empty(&stable_node->hlist))
789 			ksm_pages_sharing--;
790 		else
791 			ksm_pages_shared--;
792 		VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
793 		stable_node->rmap_hlist_len--;
794 
795 		put_anon_vma(rmap_item->anon_vma);
796 		rmap_item->address &= PAGE_MASK;
797 
798 	} else if (rmap_item->address & UNSTABLE_FLAG) {
799 		unsigned char age;
800 		/*
801 		 * Usually ksmd can and must skip the rb_erase, because
802 		 * root_unstable_tree was already reset to RB_ROOT.
803 		 * But be careful when an mm is exiting: do the rb_erase
804 		 * if this rmap_item was inserted by this scan, rather
805 		 * than left over from before.
806 		 */
807 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
808 		BUG_ON(age > 1);
809 		if (!age)
810 			rb_erase(&rmap_item->node,
811 				 root_unstable_tree + NUMA(rmap_item->nid));
812 		ksm_pages_unshared--;
813 		rmap_item->address &= PAGE_MASK;
814 	}
815 out:
816 	cond_resched();		/* we're called from many long loops */
817 }
818 
819 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
820 				       struct rmap_item **rmap_list)
821 {
822 	while (*rmap_list) {
823 		struct rmap_item *rmap_item = *rmap_list;
824 		*rmap_list = rmap_item->rmap_list;
825 		remove_rmap_item_from_tree(rmap_item);
826 		free_rmap_item(rmap_item);
827 	}
828 }
829 
830 /*
831  * Though it's very tempting to unmerge rmap_items from stable tree rather
832  * than check every pte of a given vma, the locking doesn't quite work for
833  * that - an rmap_item is assigned to the stable tree after inserting ksm
834  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
835  * rmap_items from parent to child at fork time (so as not to waste time
836  * if exit comes before the next scan reaches it).
837  *
838  * Similarly, although we'd like to remove rmap_items (so updating counts
839  * and freeing memory) when unmerging an area, it's easier to leave that
840  * to the next pass of ksmd - consider, for example, how ksmd might be
841  * in cmp_and_merge_page on one of the rmap_items we would be removing.
842  */
843 static int unmerge_ksm_pages(struct vm_area_struct *vma,
844 			     unsigned long start, unsigned long end)
845 {
846 	unsigned long addr;
847 	int err = 0;
848 
849 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
850 		if (ksm_test_exit(vma->vm_mm))
851 			break;
852 		if (signal_pending(current))
853 			err = -ERESTARTSYS;
854 		else
855 			err = break_ksm(vma, addr);
856 	}
857 	return err;
858 }
859 
860 static inline struct stable_node *page_stable_node(struct page *page)
861 {
862 	return PageKsm(page) ? page_rmapping(page) : NULL;
863 }
864 
865 static inline void set_page_stable_node(struct page *page,
866 					struct stable_node *stable_node)
867 {
868 	page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
869 }
870 
871 #ifdef CONFIG_SYSFS
872 /*
873  * Only called through the sysfs control interface:
874  */
875 static int remove_stable_node(struct stable_node *stable_node)
876 {
877 	struct page *page;
878 	int err;
879 
880 	page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
881 	if (!page) {
882 		/*
883 		 * get_ksm_page did remove_node_from_stable_tree itself.
884 		 */
885 		return 0;
886 	}
887 
888 	/*
889 	 * Page could be still mapped if this races with __mmput() running in
890 	 * between ksm_exit() and exit_mmap(). Just refuse to let
891 	 * merge_across_nodes/max_page_sharing be switched.
892 	 */
893 	err = -EBUSY;
894 	if (!page_mapped(page)) {
895 		/*
896 		 * The stable node did not yet appear stale to get_ksm_page(),
897 		 * since that allows for an unmapped ksm page to be recognized
898 		 * right up until it is freed; but the node is safe to remove.
899 		 * This page might be in a pagevec waiting to be freed,
900 		 * or it might be PageSwapCache (perhaps under writeback),
901 		 * or it might have been removed from swapcache a moment ago.
902 		 */
903 		set_page_stable_node(page, NULL);
904 		remove_node_from_stable_tree(stable_node);
905 		err = 0;
906 	}
907 
908 	unlock_page(page);
909 	put_page(page);
910 	return err;
911 }
912 
913 static int remove_stable_node_chain(struct stable_node *stable_node,
914 				    struct rb_root *root)
915 {
916 	struct stable_node *dup;
917 	struct hlist_node *hlist_safe;
918 
919 	if (!is_stable_node_chain(stable_node)) {
920 		VM_BUG_ON(is_stable_node_dup(stable_node));
921 		if (remove_stable_node(stable_node))
922 			return true;
923 		else
924 			return false;
925 	}
926 
927 	hlist_for_each_entry_safe(dup, hlist_safe,
928 				  &stable_node->hlist, hlist_dup) {
929 		VM_BUG_ON(!is_stable_node_dup(dup));
930 		if (remove_stable_node(dup))
931 			return true;
932 	}
933 	BUG_ON(!hlist_empty(&stable_node->hlist));
934 	free_stable_node_chain(stable_node, root);
935 	return false;
936 }
937 
938 static int remove_all_stable_nodes(void)
939 {
940 	struct stable_node *stable_node, *next;
941 	int nid;
942 	int err = 0;
943 
944 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
945 		while (root_stable_tree[nid].rb_node) {
946 			stable_node = rb_entry(root_stable_tree[nid].rb_node,
947 						struct stable_node, node);
948 			if (remove_stable_node_chain(stable_node,
949 						     root_stable_tree + nid)) {
950 				err = -EBUSY;
951 				break;	/* proceed to next nid */
952 			}
953 			cond_resched();
954 		}
955 	}
956 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
957 		if (remove_stable_node(stable_node))
958 			err = -EBUSY;
959 		cond_resched();
960 	}
961 	return err;
962 }
963 
964 static int unmerge_and_remove_all_rmap_items(void)
965 {
966 	struct mm_slot *mm_slot;
967 	struct mm_struct *mm;
968 	struct vm_area_struct *vma;
969 	int err = 0;
970 
971 	spin_lock(&ksm_mmlist_lock);
972 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
973 						struct mm_slot, mm_list);
974 	spin_unlock(&ksm_mmlist_lock);
975 
976 	for (mm_slot = ksm_scan.mm_slot;
977 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
978 		mm = mm_slot->mm;
979 		down_read(&mm->mmap_sem);
980 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
981 			if (ksm_test_exit(mm))
982 				break;
983 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
984 				continue;
985 			err = unmerge_ksm_pages(vma,
986 						vma->vm_start, vma->vm_end);
987 			if (err)
988 				goto error;
989 		}
990 
991 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
992 		up_read(&mm->mmap_sem);
993 
994 		spin_lock(&ksm_mmlist_lock);
995 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
996 						struct mm_slot, mm_list);
997 		if (ksm_test_exit(mm)) {
998 			hash_del(&mm_slot->link);
999 			list_del(&mm_slot->mm_list);
1000 			spin_unlock(&ksm_mmlist_lock);
1001 
1002 			free_mm_slot(mm_slot);
1003 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1004 			mmdrop(mm);
1005 		} else
1006 			spin_unlock(&ksm_mmlist_lock);
1007 	}
1008 
1009 	/* Clean up stable nodes, but don't worry if some are still busy */
1010 	remove_all_stable_nodes();
1011 	ksm_scan.seqnr = 0;
1012 	return 0;
1013 
1014 error:
1015 	up_read(&mm->mmap_sem);
1016 	spin_lock(&ksm_mmlist_lock);
1017 	ksm_scan.mm_slot = &ksm_mm_head;
1018 	spin_unlock(&ksm_mmlist_lock);
1019 	return err;
1020 }
1021 #endif /* CONFIG_SYSFS */
1022 
1023 static u32 calc_checksum(struct page *page)
1024 {
1025 	u32 checksum;
1026 	void *addr = kmap_atomic(page);
1027 	checksum = xxhash(addr, PAGE_SIZE, 0);
1028 	kunmap_atomic(addr);
1029 	return checksum;
1030 }
1031 
1032 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1033 			      pte_t *orig_pte)
1034 {
1035 	struct mm_struct *mm = vma->vm_mm;
1036 	struct page_vma_mapped_walk pvmw = {
1037 		.page = page,
1038 		.vma = vma,
1039 	};
1040 	int swapped;
1041 	int err = -EFAULT;
1042 	struct mmu_notifier_range range;
1043 
1044 	pvmw.address = page_address_in_vma(page, vma);
1045 	if (pvmw.address == -EFAULT)
1046 		goto out;
1047 
1048 	BUG_ON(PageTransCompound(page));
1049 
1050 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1051 				pvmw.address,
1052 				pvmw.address + PAGE_SIZE);
1053 	mmu_notifier_invalidate_range_start(&range);
1054 
1055 	if (!page_vma_mapped_walk(&pvmw))
1056 		goto out_mn;
1057 	if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1058 		goto out_unlock;
1059 
1060 	if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1061 	    (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1062 						mm_tlb_flush_pending(mm)) {
1063 		pte_t entry;
1064 
1065 		swapped = PageSwapCache(page);
1066 		flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1067 		/*
1068 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1069 		 * take any lock, therefore the check that we are going to make
1070 		 * with the pagecount against the mapcount is racey and
1071 		 * O_DIRECT can happen right after the check.
1072 		 * So we clear the pte and flush the tlb before the check
1073 		 * this assure us that no O_DIRECT can happen after the check
1074 		 * or in the middle of the check.
1075 		 *
1076 		 * No need to notify as we are downgrading page table to read
1077 		 * only not changing it to point to a new page.
1078 		 *
1079 		 * See Documentation/vm/mmu_notifier.rst
1080 		 */
1081 		entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1082 		/*
1083 		 * Check that no O_DIRECT or similar I/O is in progress on the
1084 		 * page
1085 		 */
1086 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1087 			set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1088 			goto out_unlock;
1089 		}
1090 		if (pte_dirty(entry))
1091 			set_page_dirty(page);
1092 
1093 		if (pte_protnone(entry))
1094 			entry = pte_mkclean(pte_clear_savedwrite(entry));
1095 		else
1096 			entry = pte_mkclean(pte_wrprotect(entry));
1097 		set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1098 	}
1099 	*orig_pte = *pvmw.pte;
1100 	err = 0;
1101 
1102 out_unlock:
1103 	page_vma_mapped_walk_done(&pvmw);
1104 out_mn:
1105 	mmu_notifier_invalidate_range_end(&range);
1106 out:
1107 	return err;
1108 }
1109 
1110 /**
1111  * replace_page - replace page in vma by new ksm page
1112  * @vma:      vma that holds the pte pointing to page
1113  * @page:     the page we are replacing by kpage
1114  * @kpage:    the ksm page we replace page by
1115  * @orig_pte: the original value of the pte
1116  *
1117  * Returns 0 on success, -EFAULT on failure.
1118  */
1119 static int replace_page(struct vm_area_struct *vma, struct page *page,
1120 			struct page *kpage, pte_t orig_pte)
1121 {
1122 	struct mm_struct *mm = vma->vm_mm;
1123 	pmd_t *pmd;
1124 	pte_t *ptep;
1125 	pte_t newpte;
1126 	spinlock_t *ptl;
1127 	unsigned long addr;
1128 	int err = -EFAULT;
1129 	struct mmu_notifier_range range;
1130 
1131 	addr = page_address_in_vma(page, vma);
1132 	if (addr == -EFAULT)
1133 		goto out;
1134 
1135 	pmd = mm_find_pmd(mm, addr);
1136 	if (!pmd)
1137 		goto out;
1138 
1139 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1140 				addr + PAGE_SIZE);
1141 	mmu_notifier_invalidate_range_start(&range);
1142 
1143 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1144 	if (!pte_same(*ptep, orig_pte)) {
1145 		pte_unmap_unlock(ptep, ptl);
1146 		goto out_mn;
1147 	}
1148 
1149 	/*
1150 	 * No need to check ksm_use_zero_pages here: we can only have a
1151 	 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1152 	 */
1153 	if (!is_zero_pfn(page_to_pfn(kpage))) {
1154 		get_page(kpage);
1155 		page_add_anon_rmap(kpage, vma, addr, false);
1156 		newpte = mk_pte(kpage, vma->vm_page_prot);
1157 	} else {
1158 		newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1159 					       vma->vm_page_prot));
1160 		/*
1161 		 * We're replacing an anonymous page with a zero page, which is
1162 		 * not anonymous. We need to do proper accounting otherwise we
1163 		 * will get wrong values in /proc, and a BUG message in dmesg
1164 		 * when tearing down the mm.
1165 		 */
1166 		dec_mm_counter(mm, MM_ANONPAGES);
1167 	}
1168 
1169 	flush_cache_page(vma, addr, pte_pfn(*ptep));
1170 	/*
1171 	 * No need to notify as we are replacing a read only page with another
1172 	 * read only page with the same content.
1173 	 *
1174 	 * See Documentation/vm/mmu_notifier.rst
1175 	 */
1176 	ptep_clear_flush(vma, addr, ptep);
1177 	set_pte_at_notify(mm, addr, ptep, newpte);
1178 
1179 	page_remove_rmap(page, false);
1180 	if (!page_mapped(page))
1181 		try_to_free_swap(page);
1182 	put_page(page);
1183 
1184 	pte_unmap_unlock(ptep, ptl);
1185 	err = 0;
1186 out_mn:
1187 	mmu_notifier_invalidate_range_end(&range);
1188 out:
1189 	return err;
1190 }
1191 
1192 /*
1193  * try_to_merge_one_page - take two pages and merge them into one
1194  * @vma: the vma that holds the pte pointing to page
1195  * @page: the PageAnon page that we want to replace with kpage
1196  * @kpage: the PageKsm page that we want to map instead of page,
1197  *         or NULL the first time when we want to use page as kpage.
1198  *
1199  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1200  */
1201 static int try_to_merge_one_page(struct vm_area_struct *vma,
1202 				 struct page *page, struct page *kpage)
1203 {
1204 	pte_t orig_pte = __pte(0);
1205 	int err = -EFAULT;
1206 
1207 	if (page == kpage)			/* ksm page forked */
1208 		return 0;
1209 
1210 	if (!PageAnon(page))
1211 		goto out;
1212 
1213 	/*
1214 	 * We need the page lock to read a stable PageSwapCache in
1215 	 * write_protect_page().  We use trylock_page() instead of
1216 	 * lock_page() because we don't want to wait here - we
1217 	 * prefer to continue scanning and merging different pages,
1218 	 * then come back to this page when it is unlocked.
1219 	 */
1220 	if (!trylock_page(page))
1221 		goto out;
1222 
1223 	if (PageTransCompound(page)) {
1224 		if (split_huge_page(page))
1225 			goto out_unlock;
1226 	}
1227 
1228 	/*
1229 	 * If this anonymous page is mapped only here, its pte may need
1230 	 * to be write-protected.  If it's mapped elsewhere, all of its
1231 	 * ptes are necessarily already write-protected.  But in either
1232 	 * case, we need to lock and check page_count is not raised.
1233 	 */
1234 	if (write_protect_page(vma, page, &orig_pte) == 0) {
1235 		if (!kpage) {
1236 			/*
1237 			 * While we hold page lock, upgrade page from
1238 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1239 			 * stable_tree_insert() will update stable_node.
1240 			 */
1241 			set_page_stable_node(page, NULL);
1242 			mark_page_accessed(page);
1243 			/*
1244 			 * Page reclaim just frees a clean page with no dirty
1245 			 * ptes: make sure that the ksm page would be swapped.
1246 			 */
1247 			if (!PageDirty(page))
1248 				SetPageDirty(page);
1249 			err = 0;
1250 		} else if (pages_identical(page, kpage))
1251 			err = replace_page(vma, page, kpage, orig_pte);
1252 	}
1253 
1254 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1255 		munlock_vma_page(page);
1256 		if (!PageMlocked(kpage)) {
1257 			unlock_page(page);
1258 			lock_page(kpage);
1259 			mlock_vma_page(kpage);
1260 			page = kpage;		/* for final unlock */
1261 		}
1262 	}
1263 
1264 out_unlock:
1265 	unlock_page(page);
1266 out:
1267 	return err;
1268 }
1269 
1270 /*
1271  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1272  * but no new kernel page is allocated: kpage must already be a ksm page.
1273  *
1274  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1275  */
1276 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1277 				      struct page *page, struct page *kpage)
1278 {
1279 	struct mm_struct *mm = rmap_item->mm;
1280 	struct vm_area_struct *vma;
1281 	int err = -EFAULT;
1282 
1283 	down_read(&mm->mmap_sem);
1284 	vma = find_mergeable_vma(mm, rmap_item->address);
1285 	if (!vma)
1286 		goto out;
1287 
1288 	err = try_to_merge_one_page(vma, page, kpage);
1289 	if (err)
1290 		goto out;
1291 
1292 	/* Unstable nid is in union with stable anon_vma: remove first */
1293 	remove_rmap_item_from_tree(rmap_item);
1294 
1295 	/* Must get reference to anon_vma while still holding mmap_sem */
1296 	rmap_item->anon_vma = vma->anon_vma;
1297 	get_anon_vma(vma->anon_vma);
1298 out:
1299 	up_read(&mm->mmap_sem);
1300 	return err;
1301 }
1302 
1303 /*
1304  * try_to_merge_two_pages - take two identical pages and prepare them
1305  * to be merged into one page.
1306  *
1307  * This function returns the kpage if we successfully merged two identical
1308  * pages into one ksm page, NULL otherwise.
1309  *
1310  * Note that this function upgrades page to ksm page: if one of the pages
1311  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1312  */
1313 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1314 					   struct page *page,
1315 					   struct rmap_item *tree_rmap_item,
1316 					   struct page *tree_page)
1317 {
1318 	int err;
1319 
1320 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1321 	if (!err) {
1322 		err = try_to_merge_with_ksm_page(tree_rmap_item,
1323 							tree_page, page);
1324 		/*
1325 		 * If that fails, we have a ksm page with only one pte
1326 		 * pointing to it: so break it.
1327 		 */
1328 		if (err)
1329 			break_cow(rmap_item);
1330 	}
1331 	return err ? NULL : page;
1332 }
1333 
1334 static __always_inline
1335 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1336 {
1337 	VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1338 	/*
1339 	 * Check that at least one mapping still exists, otherwise
1340 	 * there's no much point to merge and share with this
1341 	 * stable_node, as the underlying tree_page of the other
1342 	 * sharer is going to be freed soon.
1343 	 */
1344 	return stable_node->rmap_hlist_len &&
1345 		stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1346 }
1347 
1348 static __always_inline
1349 bool is_page_sharing_candidate(struct stable_node *stable_node)
1350 {
1351 	return __is_page_sharing_candidate(stable_node, 0);
1352 }
1353 
1354 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1355 				    struct stable_node **_stable_node,
1356 				    struct rb_root *root,
1357 				    bool prune_stale_stable_nodes)
1358 {
1359 	struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1360 	struct hlist_node *hlist_safe;
1361 	struct page *_tree_page, *tree_page = NULL;
1362 	int nr = 0;
1363 	int found_rmap_hlist_len;
1364 
1365 	if (!prune_stale_stable_nodes ||
1366 	    time_before(jiffies, stable_node->chain_prune_time +
1367 			msecs_to_jiffies(
1368 				ksm_stable_node_chains_prune_millisecs)))
1369 		prune_stale_stable_nodes = false;
1370 	else
1371 		stable_node->chain_prune_time = jiffies;
1372 
1373 	hlist_for_each_entry_safe(dup, hlist_safe,
1374 				  &stable_node->hlist, hlist_dup) {
1375 		cond_resched();
1376 		/*
1377 		 * We must walk all stable_node_dup to prune the stale
1378 		 * stable nodes during lookup.
1379 		 *
1380 		 * get_ksm_page can drop the nodes from the
1381 		 * stable_node->hlist if they point to freed pages
1382 		 * (that's why we do a _safe walk). The "dup"
1383 		 * stable_node parameter itself will be freed from
1384 		 * under us if it returns NULL.
1385 		 */
1386 		_tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1387 		if (!_tree_page)
1388 			continue;
1389 		nr += 1;
1390 		if (is_page_sharing_candidate(dup)) {
1391 			if (!found ||
1392 			    dup->rmap_hlist_len > found_rmap_hlist_len) {
1393 				if (found)
1394 					put_page(tree_page);
1395 				found = dup;
1396 				found_rmap_hlist_len = found->rmap_hlist_len;
1397 				tree_page = _tree_page;
1398 
1399 				/* skip put_page for found dup */
1400 				if (!prune_stale_stable_nodes)
1401 					break;
1402 				continue;
1403 			}
1404 		}
1405 		put_page(_tree_page);
1406 	}
1407 
1408 	if (found) {
1409 		/*
1410 		 * nr is counting all dups in the chain only if
1411 		 * prune_stale_stable_nodes is true, otherwise we may
1412 		 * break the loop at nr == 1 even if there are
1413 		 * multiple entries.
1414 		 */
1415 		if (prune_stale_stable_nodes && nr == 1) {
1416 			/*
1417 			 * If there's not just one entry it would
1418 			 * corrupt memory, better BUG_ON. In KSM
1419 			 * context with no lock held it's not even
1420 			 * fatal.
1421 			 */
1422 			BUG_ON(stable_node->hlist.first->next);
1423 
1424 			/*
1425 			 * There's just one entry and it is below the
1426 			 * deduplication limit so drop the chain.
1427 			 */
1428 			rb_replace_node(&stable_node->node, &found->node,
1429 					root);
1430 			free_stable_node(stable_node);
1431 			ksm_stable_node_chains--;
1432 			ksm_stable_node_dups--;
1433 			/*
1434 			 * NOTE: the caller depends on the stable_node
1435 			 * to be equal to stable_node_dup if the chain
1436 			 * was collapsed.
1437 			 */
1438 			*_stable_node = found;
1439 			/*
1440 			 * Just for robustneess as stable_node is
1441 			 * otherwise left as a stable pointer, the
1442 			 * compiler shall optimize it away at build
1443 			 * time.
1444 			 */
1445 			stable_node = NULL;
1446 		} else if (stable_node->hlist.first != &found->hlist_dup &&
1447 			   __is_page_sharing_candidate(found, 1)) {
1448 			/*
1449 			 * If the found stable_node dup can accept one
1450 			 * more future merge (in addition to the one
1451 			 * that is underway) and is not at the head of
1452 			 * the chain, put it there so next search will
1453 			 * be quicker in the !prune_stale_stable_nodes
1454 			 * case.
1455 			 *
1456 			 * NOTE: it would be inaccurate to use nr > 1
1457 			 * instead of checking the hlist.first pointer
1458 			 * directly, because in the
1459 			 * prune_stale_stable_nodes case "nr" isn't
1460 			 * the position of the found dup in the chain,
1461 			 * but the total number of dups in the chain.
1462 			 */
1463 			hlist_del(&found->hlist_dup);
1464 			hlist_add_head(&found->hlist_dup,
1465 				       &stable_node->hlist);
1466 		}
1467 	}
1468 
1469 	*_stable_node_dup = found;
1470 	return tree_page;
1471 }
1472 
1473 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1474 					       struct rb_root *root)
1475 {
1476 	if (!is_stable_node_chain(stable_node))
1477 		return stable_node;
1478 	if (hlist_empty(&stable_node->hlist)) {
1479 		free_stable_node_chain(stable_node, root);
1480 		return NULL;
1481 	}
1482 	return hlist_entry(stable_node->hlist.first,
1483 			   typeof(*stable_node), hlist_dup);
1484 }
1485 
1486 /*
1487  * Like for get_ksm_page, this function can free the *_stable_node and
1488  * *_stable_node_dup if the returned tree_page is NULL.
1489  *
1490  * It can also free and overwrite *_stable_node with the found
1491  * stable_node_dup if the chain is collapsed (in which case
1492  * *_stable_node will be equal to *_stable_node_dup like if the chain
1493  * never existed). It's up to the caller to verify tree_page is not
1494  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1495  *
1496  * *_stable_node_dup is really a second output parameter of this
1497  * function and will be overwritten in all cases, the caller doesn't
1498  * need to initialize it.
1499  */
1500 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1501 					struct stable_node **_stable_node,
1502 					struct rb_root *root,
1503 					bool prune_stale_stable_nodes)
1504 {
1505 	struct stable_node *stable_node = *_stable_node;
1506 	if (!is_stable_node_chain(stable_node)) {
1507 		if (is_page_sharing_candidate(stable_node)) {
1508 			*_stable_node_dup = stable_node;
1509 			return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1510 		}
1511 		/*
1512 		 * _stable_node_dup set to NULL means the stable_node
1513 		 * reached the ksm_max_page_sharing limit.
1514 		 */
1515 		*_stable_node_dup = NULL;
1516 		return NULL;
1517 	}
1518 	return stable_node_dup(_stable_node_dup, _stable_node, root,
1519 			       prune_stale_stable_nodes);
1520 }
1521 
1522 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1523 						struct stable_node **s_n,
1524 						struct rb_root *root)
1525 {
1526 	return __stable_node_chain(s_n_d, s_n, root, true);
1527 }
1528 
1529 static __always_inline struct page *chain(struct stable_node **s_n_d,
1530 					  struct stable_node *s_n,
1531 					  struct rb_root *root)
1532 {
1533 	struct stable_node *old_stable_node = s_n;
1534 	struct page *tree_page;
1535 
1536 	tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1537 	/* not pruning dups so s_n cannot have changed */
1538 	VM_BUG_ON(s_n != old_stable_node);
1539 	return tree_page;
1540 }
1541 
1542 /*
1543  * stable_tree_search - search for page inside the stable tree
1544  *
1545  * This function checks if there is a page inside the stable tree
1546  * with identical content to the page that we are scanning right now.
1547  *
1548  * This function returns the stable tree node of identical content if found,
1549  * NULL otherwise.
1550  */
1551 static struct page *stable_tree_search(struct page *page)
1552 {
1553 	int nid;
1554 	struct rb_root *root;
1555 	struct rb_node **new;
1556 	struct rb_node *parent;
1557 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1558 	struct stable_node *page_node;
1559 
1560 	page_node = page_stable_node(page);
1561 	if (page_node && page_node->head != &migrate_nodes) {
1562 		/* ksm page forked */
1563 		get_page(page);
1564 		return page;
1565 	}
1566 
1567 	nid = get_kpfn_nid(page_to_pfn(page));
1568 	root = root_stable_tree + nid;
1569 again:
1570 	new = &root->rb_node;
1571 	parent = NULL;
1572 
1573 	while (*new) {
1574 		struct page *tree_page;
1575 		int ret;
1576 
1577 		cond_resched();
1578 		stable_node = rb_entry(*new, struct stable_node, node);
1579 		stable_node_any = NULL;
1580 		tree_page = chain_prune(&stable_node_dup, &stable_node,	root);
1581 		/*
1582 		 * NOTE: stable_node may have been freed by
1583 		 * chain_prune() if the returned stable_node_dup is
1584 		 * not NULL. stable_node_dup may have been inserted in
1585 		 * the rbtree instead as a regular stable_node (in
1586 		 * order to collapse the stable_node chain if a single
1587 		 * stable_node dup was found in it). In such case the
1588 		 * stable_node is overwritten by the calleee to point
1589 		 * to the stable_node_dup that was collapsed in the
1590 		 * stable rbtree and stable_node will be equal to
1591 		 * stable_node_dup like if the chain never existed.
1592 		 */
1593 		if (!stable_node_dup) {
1594 			/*
1595 			 * Either all stable_node dups were full in
1596 			 * this stable_node chain, or this chain was
1597 			 * empty and should be rb_erased.
1598 			 */
1599 			stable_node_any = stable_node_dup_any(stable_node,
1600 							      root);
1601 			if (!stable_node_any) {
1602 				/* rb_erase just run */
1603 				goto again;
1604 			}
1605 			/*
1606 			 * Take any of the stable_node dups page of
1607 			 * this stable_node chain to let the tree walk
1608 			 * continue. All KSM pages belonging to the
1609 			 * stable_node dups in a stable_node chain
1610 			 * have the same content and they're
1611 			 * wrprotected at all times. Any will work
1612 			 * fine to continue the walk.
1613 			 */
1614 			tree_page = get_ksm_page(stable_node_any,
1615 						 GET_KSM_PAGE_NOLOCK);
1616 		}
1617 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1618 		if (!tree_page) {
1619 			/*
1620 			 * If we walked over a stale stable_node,
1621 			 * get_ksm_page() will call rb_erase() and it
1622 			 * may rebalance the tree from under us. So
1623 			 * restart the search from scratch. Returning
1624 			 * NULL would be safe too, but we'd generate
1625 			 * false negative insertions just because some
1626 			 * stable_node was stale.
1627 			 */
1628 			goto again;
1629 		}
1630 
1631 		ret = memcmp_pages(page, tree_page);
1632 		put_page(tree_page);
1633 
1634 		parent = *new;
1635 		if (ret < 0)
1636 			new = &parent->rb_left;
1637 		else if (ret > 0)
1638 			new = &parent->rb_right;
1639 		else {
1640 			if (page_node) {
1641 				VM_BUG_ON(page_node->head != &migrate_nodes);
1642 				/*
1643 				 * Test if the migrated page should be merged
1644 				 * into a stable node dup. If the mapcount is
1645 				 * 1 we can migrate it with another KSM page
1646 				 * without adding it to the chain.
1647 				 */
1648 				if (page_mapcount(page) > 1)
1649 					goto chain_append;
1650 			}
1651 
1652 			if (!stable_node_dup) {
1653 				/*
1654 				 * If the stable_node is a chain and
1655 				 * we got a payload match in memcmp
1656 				 * but we cannot merge the scanned
1657 				 * page in any of the existing
1658 				 * stable_node dups because they're
1659 				 * all full, we need to wait the
1660 				 * scanned page to find itself a match
1661 				 * in the unstable tree to create a
1662 				 * brand new KSM page to add later to
1663 				 * the dups of this stable_node.
1664 				 */
1665 				return NULL;
1666 			}
1667 
1668 			/*
1669 			 * Lock and unlock the stable_node's page (which
1670 			 * might already have been migrated) so that page
1671 			 * migration is sure to notice its raised count.
1672 			 * It would be more elegant to return stable_node
1673 			 * than kpage, but that involves more changes.
1674 			 */
1675 			tree_page = get_ksm_page(stable_node_dup,
1676 						 GET_KSM_PAGE_TRYLOCK);
1677 
1678 			if (PTR_ERR(tree_page) == -EBUSY)
1679 				return ERR_PTR(-EBUSY);
1680 
1681 			if (unlikely(!tree_page))
1682 				/*
1683 				 * The tree may have been rebalanced,
1684 				 * so re-evaluate parent and new.
1685 				 */
1686 				goto again;
1687 			unlock_page(tree_page);
1688 
1689 			if (get_kpfn_nid(stable_node_dup->kpfn) !=
1690 			    NUMA(stable_node_dup->nid)) {
1691 				put_page(tree_page);
1692 				goto replace;
1693 			}
1694 			return tree_page;
1695 		}
1696 	}
1697 
1698 	if (!page_node)
1699 		return NULL;
1700 
1701 	list_del(&page_node->list);
1702 	DO_NUMA(page_node->nid = nid);
1703 	rb_link_node(&page_node->node, parent, new);
1704 	rb_insert_color(&page_node->node, root);
1705 out:
1706 	if (is_page_sharing_candidate(page_node)) {
1707 		get_page(page);
1708 		return page;
1709 	} else
1710 		return NULL;
1711 
1712 replace:
1713 	/*
1714 	 * If stable_node was a chain and chain_prune collapsed it,
1715 	 * stable_node has been updated to be the new regular
1716 	 * stable_node. A collapse of the chain is indistinguishable
1717 	 * from the case there was no chain in the stable
1718 	 * rbtree. Otherwise stable_node is the chain and
1719 	 * stable_node_dup is the dup to replace.
1720 	 */
1721 	if (stable_node_dup == stable_node) {
1722 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1723 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1724 		/* there is no chain */
1725 		if (page_node) {
1726 			VM_BUG_ON(page_node->head != &migrate_nodes);
1727 			list_del(&page_node->list);
1728 			DO_NUMA(page_node->nid = nid);
1729 			rb_replace_node(&stable_node_dup->node,
1730 					&page_node->node,
1731 					root);
1732 			if (is_page_sharing_candidate(page_node))
1733 				get_page(page);
1734 			else
1735 				page = NULL;
1736 		} else {
1737 			rb_erase(&stable_node_dup->node, root);
1738 			page = NULL;
1739 		}
1740 	} else {
1741 		VM_BUG_ON(!is_stable_node_chain(stable_node));
1742 		__stable_node_dup_del(stable_node_dup);
1743 		if (page_node) {
1744 			VM_BUG_ON(page_node->head != &migrate_nodes);
1745 			list_del(&page_node->list);
1746 			DO_NUMA(page_node->nid = nid);
1747 			stable_node_chain_add_dup(page_node, stable_node);
1748 			if (is_page_sharing_candidate(page_node))
1749 				get_page(page);
1750 			else
1751 				page = NULL;
1752 		} else {
1753 			page = NULL;
1754 		}
1755 	}
1756 	stable_node_dup->head = &migrate_nodes;
1757 	list_add(&stable_node_dup->list, stable_node_dup->head);
1758 	return page;
1759 
1760 chain_append:
1761 	/* stable_node_dup could be null if it reached the limit */
1762 	if (!stable_node_dup)
1763 		stable_node_dup = stable_node_any;
1764 	/*
1765 	 * If stable_node was a chain and chain_prune collapsed it,
1766 	 * stable_node has been updated to be the new regular
1767 	 * stable_node. A collapse of the chain is indistinguishable
1768 	 * from the case there was no chain in the stable
1769 	 * rbtree. Otherwise stable_node is the chain and
1770 	 * stable_node_dup is the dup to replace.
1771 	 */
1772 	if (stable_node_dup == stable_node) {
1773 		VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1774 		VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1775 		/* chain is missing so create it */
1776 		stable_node = alloc_stable_node_chain(stable_node_dup,
1777 						      root);
1778 		if (!stable_node)
1779 			return NULL;
1780 	}
1781 	/*
1782 	 * Add this stable_node dup that was
1783 	 * migrated to the stable_node chain
1784 	 * of the current nid for this page
1785 	 * content.
1786 	 */
1787 	VM_BUG_ON(!is_stable_node_chain(stable_node));
1788 	VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1789 	VM_BUG_ON(page_node->head != &migrate_nodes);
1790 	list_del(&page_node->list);
1791 	DO_NUMA(page_node->nid = nid);
1792 	stable_node_chain_add_dup(page_node, stable_node);
1793 	goto out;
1794 }
1795 
1796 /*
1797  * stable_tree_insert - insert stable tree node pointing to new ksm page
1798  * into the stable tree.
1799  *
1800  * This function returns the stable tree node just allocated on success,
1801  * NULL otherwise.
1802  */
1803 static struct stable_node *stable_tree_insert(struct page *kpage)
1804 {
1805 	int nid;
1806 	unsigned long kpfn;
1807 	struct rb_root *root;
1808 	struct rb_node **new;
1809 	struct rb_node *parent;
1810 	struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1811 	bool need_chain = false;
1812 
1813 	kpfn = page_to_pfn(kpage);
1814 	nid = get_kpfn_nid(kpfn);
1815 	root = root_stable_tree + nid;
1816 again:
1817 	parent = NULL;
1818 	new = &root->rb_node;
1819 
1820 	while (*new) {
1821 		struct page *tree_page;
1822 		int ret;
1823 
1824 		cond_resched();
1825 		stable_node = rb_entry(*new, struct stable_node, node);
1826 		stable_node_any = NULL;
1827 		tree_page = chain(&stable_node_dup, stable_node, root);
1828 		if (!stable_node_dup) {
1829 			/*
1830 			 * Either all stable_node dups were full in
1831 			 * this stable_node chain, or this chain was
1832 			 * empty and should be rb_erased.
1833 			 */
1834 			stable_node_any = stable_node_dup_any(stable_node,
1835 							      root);
1836 			if (!stable_node_any) {
1837 				/* rb_erase just run */
1838 				goto again;
1839 			}
1840 			/*
1841 			 * Take any of the stable_node dups page of
1842 			 * this stable_node chain to let the tree walk
1843 			 * continue. All KSM pages belonging to the
1844 			 * stable_node dups in a stable_node chain
1845 			 * have the same content and they're
1846 			 * wrprotected at all times. Any will work
1847 			 * fine to continue the walk.
1848 			 */
1849 			tree_page = get_ksm_page(stable_node_any,
1850 						 GET_KSM_PAGE_NOLOCK);
1851 		}
1852 		VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1853 		if (!tree_page) {
1854 			/*
1855 			 * If we walked over a stale stable_node,
1856 			 * get_ksm_page() will call rb_erase() and it
1857 			 * may rebalance the tree from under us. So
1858 			 * restart the search from scratch. Returning
1859 			 * NULL would be safe too, but we'd generate
1860 			 * false negative insertions just because some
1861 			 * stable_node was stale.
1862 			 */
1863 			goto again;
1864 		}
1865 
1866 		ret = memcmp_pages(kpage, tree_page);
1867 		put_page(tree_page);
1868 
1869 		parent = *new;
1870 		if (ret < 0)
1871 			new = &parent->rb_left;
1872 		else if (ret > 0)
1873 			new = &parent->rb_right;
1874 		else {
1875 			need_chain = true;
1876 			break;
1877 		}
1878 	}
1879 
1880 	stable_node_dup = alloc_stable_node();
1881 	if (!stable_node_dup)
1882 		return NULL;
1883 
1884 	INIT_HLIST_HEAD(&stable_node_dup->hlist);
1885 	stable_node_dup->kpfn = kpfn;
1886 	set_page_stable_node(kpage, stable_node_dup);
1887 	stable_node_dup->rmap_hlist_len = 0;
1888 	DO_NUMA(stable_node_dup->nid = nid);
1889 	if (!need_chain) {
1890 		rb_link_node(&stable_node_dup->node, parent, new);
1891 		rb_insert_color(&stable_node_dup->node, root);
1892 	} else {
1893 		if (!is_stable_node_chain(stable_node)) {
1894 			struct stable_node *orig = stable_node;
1895 			/* chain is missing so create it */
1896 			stable_node = alloc_stable_node_chain(orig, root);
1897 			if (!stable_node) {
1898 				free_stable_node(stable_node_dup);
1899 				return NULL;
1900 			}
1901 		}
1902 		stable_node_chain_add_dup(stable_node_dup, stable_node);
1903 	}
1904 
1905 	return stable_node_dup;
1906 }
1907 
1908 /*
1909  * unstable_tree_search_insert - search for identical page,
1910  * else insert rmap_item into the unstable tree.
1911  *
1912  * This function searches for a page in the unstable tree identical to the
1913  * page currently being scanned; and if no identical page is found in the
1914  * tree, we insert rmap_item as a new object into the unstable tree.
1915  *
1916  * This function returns pointer to rmap_item found to be identical
1917  * to the currently scanned page, NULL otherwise.
1918  *
1919  * This function does both searching and inserting, because they share
1920  * the same walking algorithm in an rbtree.
1921  */
1922 static
1923 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1924 					      struct page *page,
1925 					      struct page **tree_pagep)
1926 {
1927 	struct rb_node **new;
1928 	struct rb_root *root;
1929 	struct rb_node *parent = NULL;
1930 	int nid;
1931 
1932 	nid = get_kpfn_nid(page_to_pfn(page));
1933 	root = root_unstable_tree + nid;
1934 	new = &root->rb_node;
1935 
1936 	while (*new) {
1937 		struct rmap_item *tree_rmap_item;
1938 		struct page *tree_page;
1939 		int ret;
1940 
1941 		cond_resched();
1942 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1943 		tree_page = get_mergeable_page(tree_rmap_item);
1944 		if (!tree_page)
1945 			return NULL;
1946 
1947 		/*
1948 		 * Don't substitute a ksm page for a forked page.
1949 		 */
1950 		if (page == tree_page) {
1951 			put_page(tree_page);
1952 			return NULL;
1953 		}
1954 
1955 		ret = memcmp_pages(page, tree_page);
1956 
1957 		parent = *new;
1958 		if (ret < 0) {
1959 			put_page(tree_page);
1960 			new = &parent->rb_left;
1961 		} else if (ret > 0) {
1962 			put_page(tree_page);
1963 			new = &parent->rb_right;
1964 		} else if (!ksm_merge_across_nodes &&
1965 			   page_to_nid(tree_page) != nid) {
1966 			/*
1967 			 * If tree_page has been migrated to another NUMA node,
1968 			 * it will be flushed out and put in the right unstable
1969 			 * tree next time: only merge with it when across_nodes.
1970 			 */
1971 			put_page(tree_page);
1972 			return NULL;
1973 		} else {
1974 			*tree_pagep = tree_page;
1975 			return tree_rmap_item;
1976 		}
1977 	}
1978 
1979 	rmap_item->address |= UNSTABLE_FLAG;
1980 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1981 	DO_NUMA(rmap_item->nid = nid);
1982 	rb_link_node(&rmap_item->node, parent, new);
1983 	rb_insert_color(&rmap_item->node, root);
1984 
1985 	ksm_pages_unshared++;
1986 	return NULL;
1987 }
1988 
1989 /*
1990  * stable_tree_append - add another rmap_item to the linked list of
1991  * rmap_items hanging off a given node of the stable tree, all sharing
1992  * the same ksm page.
1993  */
1994 static void stable_tree_append(struct rmap_item *rmap_item,
1995 			       struct stable_node *stable_node,
1996 			       bool max_page_sharing_bypass)
1997 {
1998 	/*
1999 	 * rmap won't find this mapping if we don't insert the
2000 	 * rmap_item in the right stable_node
2001 	 * duplicate. page_migration could break later if rmap breaks,
2002 	 * so we can as well crash here. We really need to check for
2003 	 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2004 	 * for other negative values as an undeflow if detected here
2005 	 * for the first time (and not when decreasing rmap_hlist_len)
2006 	 * would be sign of memory corruption in the stable_node.
2007 	 */
2008 	BUG_ON(stable_node->rmap_hlist_len < 0);
2009 
2010 	stable_node->rmap_hlist_len++;
2011 	if (!max_page_sharing_bypass)
2012 		/* possibly non fatal but unexpected overflow, only warn */
2013 		WARN_ON_ONCE(stable_node->rmap_hlist_len >
2014 			     ksm_max_page_sharing);
2015 
2016 	rmap_item->head = stable_node;
2017 	rmap_item->address |= STABLE_FLAG;
2018 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2019 
2020 	if (rmap_item->hlist.next)
2021 		ksm_pages_sharing++;
2022 	else
2023 		ksm_pages_shared++;
2024 }
2025 
2026 /*
2027  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2028  * if not, compare checksum to previous and if it's the same, see if page can
2029  * be inserted into the unstable tree, or merged with a page already there and
2030  * both transferred to the stable tree.
2031  *
2032  * @page: the page that we are searching identical page to.
2033  * @rmap_item: the reverse mapping into the virtual address of this page
2034  */
2035 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2036 {
2037 	struct mm_struct *mm = rmap_item->mm;
2038 	struct rmap_item *tree_rmap_item;
2039 	struct page *tree_page = NULL;
2040 	struct stable_node *stable_node;
2041 	struct page *kpage;
2042 	unsigned int checksum;
2043 	int err;
2044 	bool max_page_sharing_bypass = false;
2045 
2046 	stable_node = page_stable_node(page);
2047 	if (stable_node) {
2048 		if (stable_node->head != &migrate_nodes &&
2049 		    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2050 		    NUMA(stable_node->nid)) {
2051 			stable_node_dup_del(stable_node);
2052 			stable_node->head = &migrate_nodes;
2053 			list_add(&stable_node->list, stable_node->head);
2054 		}
2055 		if (stable_node->head != &migrate_nodes &&
2056 		    rmap_item->head == stable_node)
2057 			return;
2058 		/*
2059 		 * If it's a KSM fork, allow it to go over the sharing limit
2060 		 * without warnings.
2061 		 */
2062 		if (!is_page_sharing_candidate(stable_node))
2063 			max_page_sharing_bypass = true;
2064 	}
2065 
2066 	/* We first start with searching the page inside the stable tree */
2067 	kpage = stable_tree_search(page);
2068 	if (kpage == page && rmap_item->head == stable_node) {
2069 		put_page(kpage);
2070 		return;
2071 	}
2072 
2073 	remove_rmap_item_from_tree(rmap_item);
2074 
2075 	if (kpage) {
2076 		if (PTR_ERR(kpage) == -EBUSY)
2077 			return;
2078 
2079 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2080 		if (!err) {
2081 			/*
2082 			 * The page was successfully merged:
2083 			 * add its rmap_item to the stable tree.
2084 			 */
2085 			lock_page(kpage);
2086 			stable_tree_append(rmap_item, page_stable_node(kpage),
2087 					   max_page_sharing_bypass);
2088 			unlock_page(kpage);
2089 		}
2090 		put_page(kpage);
2091 		return;
2092 	}
2093 
2094 	/*
2095 	 * If the hash value of the page has changed from the last time
2096 	 * we calculated it, this page is changing frequently: therefore we
2097 	 * don't want to insert it in the unstable tree, and we don't want
2098 	 * to waste our time searching for something identical to it there.
2099 	 */
2100 	checksum = calc_checksum(page);
2101 	if (rmap_item->oldchecksum != checksum) {
2102 		rmap_item->oldchecksum = checksum;
2103 		return;
2104 	}
2105 
2106 	/*
2107 	 * Same checksum as an empty page. We attempt to merge it with the
2108 	 * appropriate zero page if the user enabled this via sysfs.
2109 	 */
2110 	if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2111 		struct vm_area_struct *vma;
2112 
2113 		down_read(&mm->mmap_sem);
2114 		vma = find_mergeable_vma(mm, rmap_item->address);
2115 		err = try_to_merge_one_page(vma, page,
2116 					    ZERO_PAGE(rmap_item->address));
2117 		up_read(&mm->mmap_sem);
2118 		/*
2119 		 * In case of failure, the page was not really empty, so we
2120 		 * need to continue. Otherwise we're done.
2121 		 */
2122 		if (!err)
2123 			return;
2124 	}
2125 	tree_rmap_item =
2126 		unstable_tree_search_insert(rmap_item, page, &tree_page);
2127 	if (tree_rmap_item) {
2128 		bool split;
2129 
2130 		kpage = try_to_merge_two_pages(rmap_item, page,
2131 						tree_rmap_item, tree_page);
2132 		/*
2133 		 * If both pages we tried to merge belong to the same compound
2134 		 * page, then we actually ended up increasing the reference
2135 		 * count of the same compound page twice, and split_huge_page
2136 		 * failed.
2137 		 * Here we set a flag if that happened, and we use it later to
2138 		 * try split_huge_page again. Since we call put_page right
2139 		 * afterwards, the reference count will be correct and
2140 		 * split_huge_page should succeed.
2141 		 */
2142 		split = PageTransCompound(page)
2143 			&& compound_head(page) == compound_head(tree_page);
2144 		put_page(tree_page);
2145 		if (kpage) {
2146 			/*
2147 			 * The pages were successfully merged: insert new
2148 			 * node in the stable tree and add both rmap_items.
2149 			 */
2150 			lock_page(kpage);
2151 			stable_node = stable_tree_insert(kpage);
2152 			if (stable_node) {
2153 				stable_tree_append(tree_rmap_item, stable_node,
2154 						   false);
2155 				stable_tree_append(rmap_item, stable_node,
2156 						   false);
2157 			}
2158 			unlock_page(kpage);
2159 
2160 			/*
2161 			 * If we fail to insert the page into the stable tree,
2162 			 * we will have 2 virtual addresses that are pointing
2163 			 * to a ksm page left outside the stable tree,
2164 			 * in which case we need to break_cow on both.
2165 			 */
2166 			if (!stable_node) {
2167 				break_cow(tree_rmap_item);
2168 				break_cow(rmap_item);
2169 			}
2170 		} else if (split) {
2171 			/*
2172 			 * We are here if we tried to merge two pages and
2173 			 * failed because they both belonged to the same
2174 			 * compound page. We will split the page now, but no
2175 			 * merging will take place.
2176 			 * We do not want to add the cost of a full lock; if
2177 			 * the page is locked, it is better to skip it and
2178 			 * perhaps try again later.
2179 			 */
2180 			if (!trylock_page(page))
2181 				return;
2182 			split_huge_page(page);
2183 			unlock_page(page);
2184 		}
2185 	}
2186 }
2187 
2188 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2189 					    struct rmap_item **rmap_list,
2190 					    unsigned long addr)
2191 {
2192 	struct rmap_item *rmap_item;
2193 
2194 	while (*rmap_list) {
2195 		rmap_item = *rmap_list;
2196 		if ((rmap_item->address & PAGE_MASK) == addr)
2197 			return rmap_item;
2198 		if (rmap_item->address > addr)
2199 			break;
2200 		*rmap_list = rmap_item->rmap_list;
2201 		remove_rmap_item_from_tree(rmap_item);
2202 		free_rmap_item(rmap_item);
2203 	}
2204 
2205 	rmap_item = alloc_rmap_item();
2206 	if (rmap_item) {
2207 		/* It has already been zeroed */
2208 		rmap_item->mm = mm_slot->mm;
2209 		rmap_item->address = addr;
2210 		rmap_item->rmap_list = *rmap_list;
2211 		*rmap_list = rmap_item;
2212 	}
2213 	return rmap_item;
2214 }
2215 
2216 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2217 {
2218 	struct mm_struct *mm;
2219 	struct mm_slot *slot;
2220 	struct vm_area_struct *vma;
2221 	struct rmap_item *rmap_item;
2222 	int nid;
2223 
2224 	if (list_empty(&ksm_mm_head.mm_list))
2225 		return NULL;
2226 
2227 	slot = ksm_scan.mm_slot;
2228 	if (slot == &ksm_mm_head) {
2229 		/*
2230 		 * A number of pages can hang around indefinitely on per-cpu
2231 		 * pagevecs, raised page count preventing write_protect_page
2232 		 * from merging them.  Though it doesn't really matter much,
2233 		 * it is puzzling to see some stuck in pages_volatile until
2234 		 * other activity jostles them out, and they also prevented
2235 		 * LTP's KSM test from succeeding deterministically; so drain
2236 		 * them here (here rather than on entry to ksm_do_scan(),
2237 		 * so we don't IPI too often when pages_to_scan is set low).
2238 		 */
2239 		lru_add_drain_all();
2240 
2241 		/*
2242 		 * Whereas stale stable_nodes on the stable_tree itself
2243 		 * get pruned in the regular course of stable_tree_search(),
2244 		 * those moved out to the migrate_nodes list can accumulate:
2245 		 * so prune them once before each full scan.
2246 		 */
2247 		if (!ksm_merge_across_nodes) {
2248 			struct stable_node *stable_node, *next;
2249 			struct page *page;
2250 
2251 			list_for_each_entry_safe(stable_node, next,
2252 						 &migrate_nodes, list) {
2253 				page = get_ksm_page(stable_node,
2254 						    GET_KSM_PAGE_NOLOCK);
2255 				if (page)
2256 					put_page(page);
2257 				cond_resched();
2258 			}
2259 		}
2260 
2261 		for (nid = 0; nid < ksm_nr_node_ids; nid++)
2262 			root_unstable_tree[nid] = RB_ROOT;
2263 
2264 		spin_lock(&ksm_mmlist_lock);
2265 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2266 		ksm_scan.mm_slot = slot;
2267 		spin_unlock(&ksm_mmlist_lock);
2268 		/*
2269 		 * Although we tested list_empty() above, a racing __ksm_exit
2270 		 * of the last mm on the list may have removed it since then.
2271 		 */
2272 		if (slot == &ksm_mm_head)
2273 			return NULL;
2274 next_mm:
2275 		ksm_scan.address = 0;
2276 		ksm_scan.rmap_list = &slot->rmap_list;
2277 	}
2278 
2279 	mm = slot->mm;
2280 	down_read(&mm->mmap_sem);
2281 	if (ksm_test_exit(mm))
2282 		vma = NULL;
2283 	else
2284 		vma = find_vma(mm, ksm_scan.address);
2285 
2286 	for (; vma; vma = vma->vm_next) {
2287 		if (!(vma->vm_flags & VM_MERGEABLE))
2288 			continue;
2289 		if (ksm_scan.address < vma->vm_start)
2290 			ksm_scan.address = vma->vm_start;
2291 		if (!vma->anon_vma)
2292 			ksm_scan.address = vma->vm_end;
2293 
2294 		while (ksm_scan.address < vma->vm_end) {
2295 			if (ksm_test_exit(mm))
2296 				break;
2297 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
2298 			if (IS_ERR_OR_NULL(*page)) {
2299 				ksm_scan.address += PAGE_SIZE;
2300 				cond_resched();
2301 				continue;
2302 			}
2303 			if (PageAnon(*page)) {
2304 				flush_anon_page(vma, *page, ksm_scan.address);
2305 				flush_dcache_page(*page);
2306 				rmap_item = get_next_rmap_item(slot,
2307 					ksm_scan.rmap_list, ksm_scan.address);
2308 				if (rmap_item) {
2309 					ksm_scan.rmap_list =
2310 							&rmap_item->rmap_list;
2311 					ksm_scan.address += PAGE_SIZE;
2312 				} else
2313 					put_page(*page);
2314 				up_read(&mm->mmap_sem);
2315 				return rmap_item;
2316 			}
2317 			put_page(*page);
2318 			ksm_scan.address += PAGE_SIZE;
2319 			cond_resched();
2320 		}
2321 	}
2322 
2323 	if (ksm_test_exit(mm)) {
2324 		ksm_scan.address = 0;
2325 		ksm_scan.rmap_list = &slot->rmap_list;
2326 	}
2327 	/*
2328 	 * Nuke all the rmap_items that are above this current rmap:
2329 	 * because there were no VM_MERGEABLE vmas with such addresses.
2330 	 */
2331 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2332 
2333 	spin_lock(&ksm_mmlist_lock);
2334 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2335 						struct mm_slot, mm_list);
2336 	if (ksm_scan.address == 0) {
2337 		/*
2338 		 * We've completed a full scan of all vmas, holding mmap_sem
2339 		 * throughout, and found no VM_MERGEABLE: so do the same as
2340 		 * __ksm_exit does to remove this mm from all our lists now.
2341 		 * This applies either when cleaning up after __ksm_exit
2342 		 * (but beware: we can reach here even before __ksm_exit),
2343 		 * or when all VM_MERGEABLE areas have been unmapped (and
2344 		 * mmap_sem then protects against race with MADV_MERGEABLE).
2345 		 */
2346 		hash_del(&slot->link);
2347 		list_del(&slot->mm_list);
2348 		spin_unlock(&ksm_mmlist_lock);
2349 
2350 		free_mm_slot(slot);
2351 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2352 		up_read(&mm->mmap_sem);
2353 		mmdrop(mm);
2354 	} else {
2355 		up_read(&mm->mmap_sem);
2356 		/*
2357 		 * up_read(&mm->mmap_sem) first because after
2358 		 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2359 		 * already have been freed under us by __ksm_exit()
2360 		 * because the "mm_slot" is still hashed and
2361 		 * ksm_scan.mm_slot doesn't point to it anymore.
2362 		 */
2363 		spin_unlock(&ksm_mmlist_lock);
2364 	}
2365 
2366 	/* Repeat until we've completed scanning the whole list */
2367 	slot = ksm_scan.mm_slot;
2368 	if (slot != &ksm_mm_head)
2369 		goto next_mm;
2370 
2371 	ksm_scan.seqnr++;
2372 	return NULL;
2373 }
2374 
2375 /**
2376  * ksm_do_scan  - the ksm scanner main worker function.
2377  * @scan_npages:  number of pages we want to scan before we return.
2378  */
2379 static void ksm_do_scan(unsigned int scan_npages)
2380 {
2381 	struct rmap_item *rmap_item;
2382 	struct page *uninitialized_var(page);
2383 
2384 	while (scan_npages-- && likely(!freezing(current))) {
2385 		cond_resched();
2386 		rmap_item = scan_get_next_rmap_item(&page);
2387 		if (!rmap_item)
2388 			return;
2389 		cmp_and_merge_page(page, rmap_item);
2390 		put_page(page);
2391 	}
2392 }
2393 
2394 static int ksmd_should_run(void)
2395 {
2396 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2397 }
2398 
2399 static int ksm_scan_thread(void *nothing)
2400 {
2401 	unsigned int sleep_ms;
2402 
2403 	set_freezable();
2404 	set_user_nice(current, 5);
2405 
2406 	while (!kthread_should_stop()) {
2407 		mutex_lock(&ksm_thread_mutex);
2408 		wait_while_offlining();
2409 		if (ksmd_should_run())
2410 			ksm_do_scan(ksm_thread_pages_to_scan);
2411 		mutex_unlock(&ksm_thread_mutex);
2412 
2413 		try_to_freeze();
2414 
2415 		if (ksmd_should_run()) {
2416 			sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2417 			wait_event_interruptible_timeout(ksm_iter_wait,
2418 				sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2419 				msecs_to_jiffies(sleep_ms));
2420 		} else {
2421 			wait_event_freezable(ksm_thread_wait,
2422 				ksmd_should_run() || kthread_should_stop());
2423 		}
2424 	}
2425 	return 0;
2426 }
2427 
2428 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2429 		unsigned long end, int advice, unsigned long *vm_flags)
2430 {
2431 	struct mm_struct *mm = vma->vm_mm;
2432 	int err;
2433 
2434 	switch (advice) {
2435 	case MADV_MERGEABLE:
2436 		/*
2437 		 * Be somewhat over-protective for now!
2438 		 */
2439 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2440 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2441 				 VM_HUGETLB | VM_MIXEDMAP))
2442 			return 0;		/* just ignore the advice */
2443 
2444 		if (vma_is_dax(vma))
2445 			return 0;
2446 
2447 #ifdef VM_SAO
2448 		if (*vm_flags & VM_SAO)
2449 			return 0;
2450 #endif
2451 #ifdef VM_SPARC_ADI
2452 		if (*vm_flags & VM_SPARC_ADI)
2453 			return 0;
2454 #endif
2455 
2456 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2457 			err = __ksm_enter(mm);
2458 			if (err)
2459 				return err;
2460 		}
2461 
2462 		*vm_flags |= VM_MERGEABLE;
2463 		break;
2464 
2465 	case MADV_UNMERGEABLE:
2466 		if (!(*vm_flags & VM_MERGEABLE))
2467 			return 0;		/* just ignore the advice */
2468 
2469 		if (vma->anon_vma) {
2470 			err = unmerge_ksm_pages(vma, start, end);
2471 			if (err)
2472 				return err;
2473 		}
2474 
2475 		*vm_flags &= ~VM_MERGEABLE;
2476 		break;
2477 	}
2478 
2479 	return 0;
2480 }
2481 EXPORT_SYMBOL_GPL(ksm_madvise);
2482 
2483 int __ksm_enter(struct mm_struct *mm)
2484 {
2485 	struct mm_slot *mm_slot;
2486 	int needs_wakeup;
2487 
2488 	mm_slot = alloc_mm_slot();
2489 	if (!mm_slot)
2490 		return -ENOMEM;
2491 
2492 	/* Check ksm_run too?  Would need tighter locking */
2493 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2494 
2495 	spin_lock(&ksm_mmlist_lock);
2496 	insert_to_mm_slots_hash(mm, mm_slot);
2497 	/*
2498 	 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2499 	 * insert just behind the scanning cursor, to let the area settle
2500 	 * down a little; when fork is followed by immediate exec, we don't
2501 	 * want ksmd to waste time setting up and tearing down an rmap_list.
2502 	 *
2503 	 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2504 	 * scanning cursor, otherwise KSM pages in newly forked mms will be
2505 	 * missed: then we might as well insert at the end of the list.
2506 	 */
2507 	if (ksm_run & KSM_RUN_UNMERGE)
2508 		list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2509 	else
2510 		list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2511 	spin_unlock(&ksm_mmlist_lock);
2512 
2513 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
2514 	mmgrab(mm);
2515 
2516 	if (needs_wakeup)
2517 		wake_up_interruptible(&ksm_thread_wait);
2518 
2519 	return 0;
2520 }
2521 
2522 void __ksm_exit(struct mm_struct *mm)
2523 {
2524 	struct mm_slot *mm_slot;
2525 	int easy_to_free = 0;
2526 
2527 	/*
2528 	 * This process is exiting: if it's straightforward (as is the
2529 	 * case when ksmd was never running), free mm_slot immediately.
2530 	 * But if it's at the cursor or has rmap_items linked to it, use
2531 	 * mmap_sem to synchronize with any break_cows before pagetables
2532 	 * are freed, and leave the mm_slot on the list for ksmd to free.
2533 	 * Beware: ksm may already have noticed it exiting and freed the slot.
2534 	 */
2535 
2536 	spin_lock(&ksm_mmlist_lock);
2537 	mm_slot = get_mm_slot(mm);
2538 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2539 		if (!mm_slot->rmap_list) {
2540 			hash_del(&mm_slot->link);
2541 			list_del(&mm_slot->mm_list);
2542 			easy_to_free = 1;
2543 		} else {
2544 			list_move(&mm_slot->mm_list,
2545 				  &ksm_scan.mm_slot->mm_list);
2546 		}
2547 	}
2548 	spin_unlock(&ksm_mmlist_lock);
2549 
2550 	if (easy_to_free) {
2551 		free_mm_slot(mm_slot);
2552 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2553 		mmdrop(mm);
2554 	} else if (mm_slot) {
2555 		down_write(&mm->mmap_sem);
2556 		up_write(&mm->mmap_sem);
2557 	}
2558 }
2559 
2560 struct page *ksm_might_need_to_copy(struct page *page,
2561 			struct vm_area_struct *vma, unsigned long address)
2562 {
2563 	struct anon_vma *anon_vma = page_anon_vma(page);
2564 	struct page *new_page;
2565 
2566 	if (PageKsm(page)) {
2567 		if (page_stable_node(page) &&
2568 		    !(ksm_run & KSM_RUN_UNMERGE))
2569 			return page;	/* no need to copy it */
2570 	} else if (!anon_vma) {
2571 		return page;		/* no need to copy it */
2572 	} else if (anon_vma->root == vma->anon_vma->root &&
2573 		 page->index == linear_page_index(vma, address)) {
2574 		return page;		/* still no need to copy it */
2575 	}
2576 	if (!PageUptodate(page))
2577 		return page;		/* let do_swap_page report the error */
2578 
2579 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2580 	if (new_page) {
2581 		copy_user_highpage(new_page, page, address, vma);
2582 
2583 		SetPageDirty(new_page);
2584 		__SetPageUptodate(new_page);
2585 		__SetPageLocked(new_page);
2586 	}
2587 
2588 	return new_page;
2589 }
2590 
2591 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2592 {
2593 	struct stable_node *stable_node;
2594 	struct rmap_item *rmap_item;
2595 	int search_new_forks = 0;
2596 
2597 	VM_BUG_ON_PAGE(!PageKsm(page), page);
2598 
2599 	/*
2600 	 * Rely on the page lock to protect against concurrent modifications
2601 	 * to that page's node of the stable tree.
2602 	 */
2603 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2604 
2605 	stable_node = page_stable_node(page);
2606 	if (!stable_node)
2607 		return;
2608 again:
2609 	hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2610 		struct anon_vma *anon_vma = rmap_item->anon_vma;
2611 		struct anon_vma_chain *vmac;
2612 		struct vm_area_struct *vma;
2613 
2614 		cond_resched();
2615 		anon_vma_lock_read(anon_vma);
2616 		anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2617 					       0, ULONG_MAX) {
2618 			unsigned long addr;
2619 
2620 			cond_resched();
2621 			vma = vmac->vma;
2622 
2623 			/* Ignore the stable/unstable/sqnr flags */
2624 			addr = rmap_item->address & ~KSM_FLAG_MASK;
2625 
2626 			if (addr < vma->vm_start || addr >= vma->vm_end)
2627 				continue;
2628 			/*
2629 			 * Initially we examine only the vma which covers this
2630 			 * rmap_item; but later, if there is still work to do,
2631 			 * we examine covering vmas in other mms: in case they
2632 			 * were forked from the original since ksmd passed.
2633 			 */
2634 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2635 				continue;
2636 
2637 			if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2638 				continue;
2639 
2640 			if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2641 				anon_vma_unlock_read(anon_vma);
2642 				return;
2643 			}
2644 			if (rwc->done && rwc->done(page)) {
2645 				anon_vma_unlock_read(anon_vma);
2646 				return;
2647 			}
2648 		}
2649 		anon_vma_unlock_read(anon_vma);
2650 	}
2651 	if (!search_new_forks++)
2652 		goto again;
2653 }
2654 
2655 bool reuse_ksm_page(struct page *page,
2656 		    struct vm_area_struct *vma,
2657 		    unsigned long address)
2658 {
2659 #ifdef CONFIG_DEBUG_VM
2660 	if (WARN_ON(is_zero_pfn(page_to_pfn(page))) ||
2661 			WARN_ON(!page_mapped(page)) ||
2662 			WARN_ON(!PageLocked(page))) {
2663 		dump_page(page, "reuse_ksm_page");
2664 		return false;
2665 	}
2666 #endif
2667 
2668 	if (PageSwapCache(page) || !page_stable_node(page))
2669 		return false;
2670 	/* Prohibit parallel get_ksm_page() */
2671 	if (!page_ref_freeze(page, 1))
2672 		return false;
2673 
2674 	page_move_anon_rmap(page, vma);
2675 	page->index = linear_page_index(vma, address);
2676 	page_ref_unfreeze(page, 1);
2677 
2678 	return true;
2679 }
2680 #ifdef CONFIG_MIGRATION
2681 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2682 {
2683 	struct stable_node *stable_node;
2684 
2685 	VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2686 	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2687 	VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2688 
2689 	stable_node = page_stable_node(newpage);
2690 	if (stable_node) {
2691 		VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2692 		stable_node->kpfn = page_to_pfn(newpage);
2693 		/*
2694 		 * newpage->mapping was set in advance; now we need smp_wmb()
2695 		 * to make sure that the new stable_node->kpfn is visible
2696 		 * to get_ksm_page() before it can see that oldpage->mapping
2697 		 * has gone stale (or that PageSwapCache has been cleared).
2698 		 */
2699 		smp_wmb();
2700 		set_page_stable_node(oldpage, NULL);
2701 	}
2702 }
2703 #endif /* CONFIG_MIGRATION */
2704 
2705 #ifdef CONFIG_MEMORY_HOTREMOVE
2706 static void wait_while_offlining(void)
2707 {
2708 	while (ksm_run & KSM_RUN_OFFLINE) {
2709 		mutex_unlock(&ksm_thread_mutex);
2710 		wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2711 			    TASK_UNINTERRUPTIBLE);
2712 		mutex_lock(&ksm_thread_mutex);
2713 	}
2714 }
2715 
2716 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2717 					 unsigned long start_pfn,
2718 					 unsigned long end_pfn)
2719 {
2720 	if (stable_node->kpfn >= start_pfn &&
2721 	    stable_node->kpfn < end_pfn) {
2722 		/*
2723 		 * Don't get_ksm_page, page has already gone:
2724 		 * which is why we keep kpfn instead of page*
2725 		 */
2726 		remove_node_from_stable_tree(stable_node);
2727 		return true;
2728 	}
2729 	return false;
2730 }
2731 
2732 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2733 					   unsigned long start_pfn,
2734 					   unsigned long end_pfn,
2735 					   struct rb_root *root)
2736 {
2737 	struct stable_node *dup;
2738 	struct hlist_node *hlist_safe;
2739 
2740 	if (!is_stable_node_chain(stable_node)) {
2741 		VM_BUG_ON(is_stable_node_dup(stable_node));
2742 		return stable_node_dup_remove_range(stable_node, start_pfn,
2743 						    end_pfn);
2744 	}
2745 
2746 	hlist_for_each_entry_safe(dup, hlist_safe,
2747 				  &stable_node->hlist, hlist_dup) {
2748 		VM_BUG_ON(!is_stable_node_dup(dup));
2749 		stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2750 	}
2751 	if (hlist_empty(&stable_node->hlist)) {
2752 		free_stable_node_chain(stable_node, root);
2753 		return true; /* notify caller that tree was rebalanced */
2754 	} else
2755 		return false;
2756 }
2757 
2758 static void ksm_check_stable_tree(unsigned long start_pfn,
2759 				  unsigned long end_pfn)
2760 {
2761 	struct stable_node *stable_node, *next;
2762 	struct rb_node *node;
2763 	int nid;
2764 
2765 	for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2766 		node = rb_first(root_stable_tree + nid);
2767 		while (node) {
2768 			stable_node = rb_entry(node, struct stable_node, node);
2769 			if (stable_node_chain_remove_range(stable_node,
2770 							   start_pfn, end_pfn,
2771 							   root_stable_tree +
2772 							   nid))
2773 				node = rb_first(root_stable_tree + nid);
2774 			else
2775 				node = rb_next(node);
2776 			cond_resched();
2777 		}
2778 	}
2779 	list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2780 		if (stable_node->kpfn >= start_pfn &&
2781 		    stable_node->kpfn < end_pfn)
2782 			remove_node_from_stable_tree(stable_node);
2783 		cond_resched();
2784 	}
2785 }
2786 
2787 static int ksm_memory_callback(struct notifier_block *self,
2788 			       unsigned long action, void *arg)
2789 {
2790 	struct memory_notify *mn = arg;
2791 
2792 	switch (action) {
2793 	case MEM_GOING_OFFLINE:
2794 		/*
2795 		 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2796 		 * and remove_all_stable_nodes() while memory is going offline:
2797 		 * it is unsafe for them to touch the stable tree at this time.
2798 		 * But unmerge_ksm_pages(), rmap lookups and other entry points
2799 		 * which do not need the ksm_thread_mutex are all safe.
2800 		 */
2801 		mutex_lock(&ksm_thread_mutex);
2802 		ksm_run |= KSM_RUN_OFFLINE;
2803 		mutex_unlock(&ksm_thread_mutex);
2804 		break;
2805 
2806 	case MEM_OFFLINE:
2807 		/*
2808 		 * Most of the work is done by page migration; but there might
2809 		 * be a few stable_nodes left over, still pointing to struct
2810 		 * pages which have been offlined: prune those from the tree,
2811 		 * otherwise get_ksm_page() might later try to access a
2812 		 * non-existent struct page.
2813 		 */
2814 		ksm_check_stable_tree(mn->start_pfn,
2815 				      mn->start_pfn + mn->nr_pages);
2816 		/* fallthrough */
2817 
2818 	case MEM_CANCEL_OFFLINE:
2819 		mutex_lock(&ksm_thread_mutex);
2820 		ksm_run &= ~KSM_RUN_OFFLINE;
2821 		mutex_unlock(&ksm_thread_mutex);
2822 
2823 		smp_mb();	/* wake_up_bit advises this */
2824 		wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2825 		break;
2826 	}
2827 	return NOTIFY_OK;
2828 }
2829 #else
2830 static void wait_while_offlining(void)
2831 {
2832 }
2833 #endif /* CONFIG_MEMORY_HOTREMOVE */
2834 
2835 #ifdef CONFIG_SYSFS
2836 /*
2837  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2838  */
2839 
2840 #define KSM_ATTR_RO(_name) \
2841 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2842 #define KSM_ATTR(_name) \
2843 	static struct kobj_attribute _name##_attr = \
2844 		__ATTR(_name, 0644, _name##_show, _name##_store)
2845 
2846 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2847 				    struct kobj_attribute *attr, char *buf)
2848 {
2849 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2850 }
2851 
2852 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2853 				     struct kobj_attribute *attr,
2854 				     const char *buf, size_t count)
2855 {
2856 	unsigned long msecs;
2857 	int err;
2858 
2859 	err = kstrtoul(buf, 10, &msecs);
2860 	if (err || msecs > UINT_MAX)
2861 		return -EINVAL;
2862 
2863 	ksm_thread_sleep_millisecs = msecs;
2864 	wake_up_interruptible(&ksm_iter_wait);
2865 
2866 	return count;
2867 }
2868 KSM_ATTR(sleep_millisecs);
2869 
2870 static ssize_t pages_to_scan_show(struct kobject *kobj,
2871 				  struct kobj_attribute *attr, char *buf)
2872 {
2873 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2874 }
2875 
2876 static ssize_t pages_to_scan_store(struct kobject *kobj,
2877 				   struct kobj_attribute *attr,
2878 				   const char *buf, size_t count)
2879 {
2880 	int err;
2881 	unsigned long nr_pages;
2882 
2883 	err = kstrtoul(buf, 10, &nr_pages);
2884 	if (err || nr_pages > UINT_MAX)
2885 		return -EINVAL;
2886 
2887 	ksm_thread_pages_to_scan = nr_pages;
2888 
2889 	return count;
2890 }
2891 KSM_ATTR(pages_to_scan);
2892 
2893 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2894 			char *buf)
2895 {
2896 	return sprintf(buf, "%lu\n", ksm_run);
2897 }
2898 
2899 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2900 			 const char *buf, size_t count)
2901 {
2902 	int err;
2903 	unsigned long flags;
2904 
2905 	err = kstrtoul(buf, 10, &flags);
2906 	if (err || flags > UINT_MAX)
2907 		return -EINVAL;
2908 	if (flags > KSM_RUN_UNMERGE)
2909 		return -EINVAL;
2910 
2911 	/*
2912 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2913 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2914 	 * breaking COW to free the pages_shared (but leaves mm_slots
2915 	 * on the list for when ksmd may be set running again).
2916 	 */
2917 
2918 	mutex_lock(&ksm_thread_mutex);
2919 	wait_while_offlining();
2920 	if (ksm_run != flags) {
2921 		ksm_run = flags;
2922 		if (flags & KSM_RUN_UNMERGE) {
2923 			set_current_oom_origin();
2924 			err = unmerge_and_remove_all_rmap_items();
2925 			clear_current_oom_origin();
2926 			if (err) {
2927 				ksm_run = KSM_RUN_STOP;
2928 				count = err;
2929 			}
2930 		}
2931 	}
2932 	mutex_unlock(&ksm_thread_mutex);
2933 
2934 	if (flags & KSM_RUN_MERGE)
2935 		wake_up_interruptible(&ksm_thread_wait);
2936 
2937 	return count;
2938 }
2939 KSM_ATTR(run);
2940 
2941 #ifdef CONFIG_NUMA
2942 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2943 				struct kobj_attribute *attr, char *buf)
2944 {
2945 	return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2946 }
2947 
2948 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2949 				   struct kobj_attribute *attr,
2950 				   const char *buf, size_t count)
2951 {
2952 	int err;
2953 	unsigned long knob;
2954 
2955 	err = kstrtoul(buf, 10, &knob);
2956 	if (err)
2957 		return err;
2958 	if (knob > 1)
2959 		return -EINVAL;
2960 
2961 	mutex_lock(&ksm_thread_mutex);
2962 	wait_while_offlining();
2963 	if (ksm_merge_across_nodes != knob) {
2964 		if (ksm_pages_shared || remove_all_stable_nodes())
2965 			err = -EBUSY;
2966 		else if (root_stable_tree == one_stable_tree) {
2967 			struct rb_root *buf;
2968 			/*
2969 			 * This is the first time that we switch away from the
2970 			 * default of merging across nodes: must now allocate
2971 			 * a buffer to hold as many roots as may be needed.
2972 			 * Allocate stable and unstable together:
2973 			 * MAXSMP NODES_SHIFT 10 will use 16kB.
2974 			 */
2975 			buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2976 				      GFP_KERNEL);
2977 			/* Let us assume that RB_ROOT is NULL is zero */
2978 			if (!buf)
2979 				err = -ENOMEM;
2980 			else {
2981 				root_stable_tree = buf;
2982 				root_unstable_tree = buf + nr_node_ids;
2983 				/* Stable tree is empty but not the unstable */
2984 				root_unstable_tree[0] = one_unstable_tree[0];
2985 			}
2986 		}
2987 		if (!err) {
2988 			ksm_merge_across_nodes = knob;
2989 			ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2990 		}
2991 	}
2992 	mutex_unlock(&ksm_thread_mutex);
2993 
2994 	return err ? err : count;
2995 }
2996 KSM_ATTR(merge_across_nodes);
2997 #endif
2998 
2999 static ssize_t use_zero_pages_show(struct kobject *kobj,
3000 				struct kobj_attribute *attr, char *buf)
3001 {
3002 	return sprintf(buf, "%u\n", ksm_use_zero_pages);
3003 }
3004 static ssize_t use_zero_pages_store(struct kobject *kobj,
3005 				   struct kobj_attribute *attr,
3006 				   const char *buf, size_t count)
3007 {
3008 	int err;
3009 	bool value;
3010 
3011 	err = kstrtobool(buf, &value);
3012 	if (err)
3013 		return -EINVAL;
3014 
3015 	ksm_use_zero_pages = value;
3016 
3017 	return count;
3018 }
3019 KSM_ATTR(use_zero_pages);
3020 
3021 static ssize_t max_page_sharing_show(struct kobject *kobj,
3022 				     struct kobj_attribute *attr, char *buf)
3023 {
3024 	return sprintf(buf, "%u\n", ksm_max_page_sharing);
3025 }
3026 
3027 static ssize_t max_page_sharing_store(struct kobject *kobj,
3028 				      struct kobj_attribute *attr,
3029 				      const char *buf, size_t count)
3030 {
3031 	int err;
3032 	int knob;
3033 
3034 	err = kstrtoint(buf, 10, &knob);
3035 	if (err)
3036 		return err;
3037 	/*
3038 	 * When a KSM page is created it is shared by 2 mappings. This
3039 	 * being a signed comparison, it implicitly verifies it's not
3040 	 * negative.
3041 	 */
3042 	if (knob < 2)
3043 		return -EINVAL;
3044 
3045 	if (READ_ONCE(ksm_max_page_sharing) == knob)
3046 		return count;
3047 
3048 	mutex_lock(&ksm_thread_mutex);
3049 	wait_while_offlining();
3050 	if (ksm_max_page_sharing != knob) {
3051 		if (ksm_pages_shared || remove_all_stable_nodes())
3052 			err = -EBUSY;
3053 		else
3054 			ksm_max_page_sharing = knob;
3055 	}
3056 	mutex_unlock(&ksm_thread_mutex);
3057 
3058 	return err ? err : count;
3059 }
3060 KSM_ATTR(max_page_sharing);
3061 
3062 static ssize_t pages_shared_show(struct kobject *kobj,
3063 				 struct kobj_attribute *attr, char *buf)
3064 {
3065 	return sprintf(buf, "%lu\n", ksm_pages_shared);
3066 }
3067 KSM_ATTR_RO(pages_shared);
3068 
3069 static ssize_t pages_sharing_show(struct kobject *kobj,
3070 				  struct kobj_attribute *attr, char *buf)
3071 {
3072 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
3073 }
3074 KSM_ATTR_RO(pages_sharing);
3075 
3076 static ssize_t pages_unshared_show(struct kobject *kobj,
3077 				   struct kobj_attribute *attr, char *buf)
3078 {
3079 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
3080 }
3081 KSM_ATTR_RO(pages_unshared);
3082 
3083 static ssize_t pages_volatile_show(struct kobject *kobj,
3084 				   struct kobj_attribute *attr, char *buf)
3085 {
3086 	long ksm_pages_volatile;
3087 
3088 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3089 				- ksm_pages_sharing - ksm_pages_unshared;
3090 	/*
3091 	 * It was not worth any locking to calculate that statistic,
3092 	 * but it might therefore sometimes be negative: conceal that.
3093 	 */
3094 	if (ksm_pages_volatile < 0)
3095 		ksm_pages_volatile = 0;
3096 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
3097 }
3098 KSM_ATTR_RO(pages_volatile);
3099 
3100 static ssize_t stable_node_dups_show(struct kobject *kobj,
3101 				     struct kobj_attribute *attr, char *buf)
3102 {
3103 	return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3104 }
3105 KSM_ATTR_RO(stable_node_dups);
3106 
3107 static ssize_t stable_node_chains_show(struct kobject *kobj,
3108 				       struct kobj_attribute *attr, char *buf)
3109 {
3110 	return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3111 }
3112 KSM_ATTR_RO(stable_node_chains);
3113 
3114 static ssize_t
3115 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3116 					struct kobj_attribute *attr,
3117 					char *buf)
3118 {
3119 	return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3120 }
3121 
3122 static ssize_t
3123 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3124 					 struct kobj_attribute *attr,
3125 					 const char *buf, size_t count)
3126 {
3127 	unsigned long msecs;
3128 	int err;
3129 
3130 	err = kstrtoul(buf, 10, &msecs);
3131 	if (err || msecs > UINT_MAX)
3132 		return -EINVAL;
3133 
3134 	ksm_stable_node_chains_prune_millisecs = msecs;
3135 
3136 	return count;
3137 }
3138 KSM_ATTR(stable_node_chains_prune_millisecs);
3139 
3140 static ssize_t full_scans_show(struct kobject *kobj,
3141 			       struct kobj_attribute *attr, char *buf)
3142 {
3143 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3144 }
3145 KSM_ATTR_RO(full_scans);
3146 
3147 static struct attribute *ksm_attrs[] = {
3148 	&sleep_millisecs_attr.attr,
3149 	&pages_to_scan_attr.attr,
3150 	&run_attr.attr,
3151 	&pages_shared_attr.attr,
3152 	&pages_sharing_attr.attr,
3153 	&pages_unshared_attr.attr,
3154 	&pages_volatile_attr.attr,
3155 	&full_scans_attr.attr,
3156 #ifdef CONFIG_NUMA
3157 	&merge_across_nodes_attr.attr,
3158 #endif
3159 	&max_page_sharing_attr.attr,
3160 	&stable_node_chains_attr.attr,
3161 	&stable_node_dups_attr.attr,
3162 	&stable_node_chains_prune_millisecs_attr.attr,
3163 	&use_zero_pages_attr.attr,
3164 	NULL,
3165 };
3166 
3167 static const struct attribute_group ksm_attr_group = {
3168 	.attrs = ksm_attrs,
3169 	.name = "ksm",
3170 };
3171 #endif /* CONFIG_SYSFS */
3172 
3173 static int __init ksm_init(void)
3174 {
3175 	struct task_struct *ksm_thread;
3176 	int err;
3177 
3178 	/* The correct value depends on page size and endianness */
3179 	zero_checksum = calc_checksum(ZERO_PAGE(0));
3180 	/* Default to false for backwards compatibility */
3181 	ksm_use_zero_pages = false;
3182 
3183 	err = ksm_slab_init();
3184 	if (err)
3185 		goto out;
3186 
3187 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3188 	if (IS_ERR(ksm_thread)) {
3189 		pr_err("ksm: creating kthread failed\n");
3190 		err = PTR_ERR(ksm_thread);
3191 		goto out_free;
3192 	}
3193 
3194 #ifdef CONFIG_SYSFS
3195 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3196 	if (err) {
3197 		pr_err("ksm: register sysfs failed\n");
3198 		kthread_stop(ksm_thread);
3199 		goto out_free;
3200 	}
3201 #else
3202 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
3203 
3204 #endif /* CONFIG_SYSFS */
3205 
3206 #ifdef CONFIG_MEMORY_HOTREMOVE
3207 	/* There is no significance to this priority 100 */
3208 	hotplug_memory_notifier(ksm_memory_callback, 100);
3209 #endif
3210 	return 0;
3211 
3212 out_free:
3213 	ksm_slab_free();
3214 out:
3215 	return err;
3216 }
3217 subsys_initcall(ksm_init);
3218