xref: /linux/mm/memory_hotplug.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory_hotplug.c
4  *
5  *  Copyright (C)
6  */
7 
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/highmem.h>
25 #include <linux/vmalloc.h>
26 #include <linux/ioport.h>
27 #include <linux/delay.h>
28 #include <linux/migrate.h>
29 #include <linux/page-isolation.h>
30 #include <linux/pfn.h>
31 #include <linux/suspend.h>
32 #include <linux/mm_inline.h>
33 #include <linux/firmware-map.h>
34 #include <linux/stop_machine.h>
35 #include <linux/hugetlb.h>
36 #include <linux/memblock.h>
37 #include <linux/compaction.h>
38 #include <linux/rmap.h>
39 
40 #include <asm/tlbflush.h>
41 
42 #include "internal.h"
43 #include "shuffle.h"
44 
45 /*
46  * online_page_callback contains pointer to current page onlining function.
47  * Initially it is generic_online_page(). If it is required it could be
48  * changed by calling set_online_page_callback() for callback registration
49  * and restore_online_page_callback() for generic callback restore.
50  */
51 
52 static void generic_online_page(struct page *page, unsigned int order);
53 
54 static online_page_callback_t online_page_callback = generic_online_page;
55 static DEFINE_MUTEX(online_page_callback_lock);
56 
57 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
58 
59 void get_online_mems(void)
60 {
61 	percpu_down_read(&mem_hotplug_lock);
62 }
63 
64 void put_online_mems(void)
65 {
66 	percpu_up_read(&mem_hotplug_lock);
67 }
68 
69 bool movable_node_enabled = false;
70 
71 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
72 bool memhp_auto_online;
73 #else
74 bool memhp_auto_online = true;
75 #endif
76 EXPORT_SYMBOL_GPL(memhp_auto_online);
77 
78 static int __init setup_memhp_default_state(char *str)
79 {
80 	if (!strcmp(str, "online"))
81 		memhp_auto_online = true;
82 	else if (!strcmp(str, "offline"))
83 		memhp_auto_online = false;
84 
85 	return 1;
86 }
87 __setup("memhp_default_state=", setup_memhp_default_state);
88 
89 void mem_hotplug_begin(void)
90 {
91 	cpus_read_lock();
92 	percpu_down_write(&mem_hotplug_lock);
93 }
94 
95 void mem_hotplug_done(void)
96 {
97 	percpu_up_write(&mem_hotplug_lock);
98 	cpus_read_unlock();
99 }
100 
101 u64 max_mem_size = U64_MAX;
102 
103 /* add this memory to iomem resource */
104 static struct resource *register_memory_resource(u64 start, u64 size)
105 {
106 	struct resource *res;
107 	unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
108 	char *resource_name = "System RAM";
109 
110 	if (start + size > max_mem_size)
111 		return ERR_PTR(-E2BIG);
112 
113 	/*
114 	 * Request ownership of the new memory range.  This might be
115 	 * a child of an existing resource that was present but
116 	 * not marked as busy.
117 	 */
118 	res = __request_region(&iomem_resource, start, size,
119 			       resource_name, flags);
120 
121 	if (!res) {
122 		pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
123 				start, start + size);
124 		return ERR_PTR(-EEXIST);
125 	}
126 	return res;
127 }
128 
129 static void release_memory_resource(struct resource *res)
130 {
131 	if (!res)
132 		return;
133 	release_resource(res);
134 	kfree(res);
135 }
136 
137 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
138 void get_page_bootmem(unsigned long info,  struct page *page,
139 		      unsigned long type)
140 {
141 	page->freelist = (void *)type;
142 	SetPagePrivate(page);
143 	set_page_private(page, info);
144 	page_ref_inc(page);
145 }
146 
147 void put_page_bootmem(struct page *page)
148 {
149 	unsigned long type;
150 
151 	type = (unsigned long) page->freelist;
152 	BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
153 	       type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
154 
155 	if (page_ref_dec_return(page) == 1) {
156 		page->freelist = NULL;
157 		ClearPagePrivate(page);
158 		set_page_private(page, 0);
159 		INIT_LIST_HEAD(&page->lru);
160 		free_reserved_page(page);
161 	}
162 }
163 
164 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
165 #ifndef CONFIG_SPARSEMEM_VMEMMAP
166 static void register_page_bootmem_info_section(unsigned long start_pfn)
167 {
168 	unsigned long mapsize, section_nr, i;
169 	struct mem_section *ms;
170 	struct page *page, *memmap;
171 	struct mem_section_usage *usage;
172 
173 	section_nr = pfn_to_section_nr(start_pfn);
174 	ms = __nr_to_section(section_nr);
175 
176 	/* Get section's memmap address */
177 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
178 
179 	/*
180 	 * Get page for the memmap's phys address
181 	 * XXX: need more consideration for sparse_vmemmap...
182 	 */
183 	page = virt_to_page(memmap);
184 	mapsize = sizeof(struct page) * PAGES_PER_SECTION;
185 	mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
186 
187 	/* remember memmap's page */
188 	for (i = 0; i < mapsize; i++, page++)
189 		get_page_bootmem(section_nr, page, SECTION_INFO);
190 
191 	usage = ms->usage;
192 	page = virt_to_page(usage);
193 
194 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
195 
196 	for (i = 0; i < mapsize; i++, page++)
197 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
198 
199 }
200 #else /* CONFIG_SPARSEMEM_VMEMMAP */
201 static void register_page_bootmem_info_section(unsigned long start_pfn)
202 {
203 	unsigned long mapsize, section_nr, i;
204 	struct mem_section *ms;
205 	struct page *page, *memmap;
206 	struct mem_section_usage *usage;
207 
208 	section_nr = pfn_to_section_nr(start_pfn);
209 	ms = __nr_to_section(section_nr);
210 
211 	memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
212 
213 	register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
214 
215 	usage = ms->usage;
216 	page = virt_to_page(usage);
217 
218 	mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
219 
220 	for (i = 0; i < mapsize; i++, page++)
221 		get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
222 }
223 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
224 
225 void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
226 {
227 	unsigned long i, pfn, end_pfn, nr_pages;
228 	int node = pgdat->node_id;
229 	struct page *page;
230 
231 	nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
232 	page = virt_to_page(pgdat);
233 
234 	for (i = 0; i < nr_pages; i++, page++)
235 		get_page_bootmem(node, page, NODE_INFO);
236 
237 	pfn = pgdat->node_start_pfn;
238 	end_pfn = pgdat_end_pfn(pgdat);
239 
240 	/* register section info */
241 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
242 		/*
243 		 * Some platforms can assign the same pfn to multiple nodes - on
244 		 * node0 as well as nodeN.  To avoid registering a pfn against
245 		 * multiple nodes we check that this pfn does not already
246 		 * reside in some other nodes.
247 		 */
248 		if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
249 			register_page_bootmem_info_section(pfn);
250 	}
251 }
252 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
253 
254 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
255 		const char *reason)
256 {
257 	/*
258 	 * Disallow all operations smaller than a sub-section and only
259 	 * allow operations smaller than a section for
260 	 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
261 	 * enforces a larger memory_block_size_bytes() granularity for
262 	 * memory that will be marked online, so this check should only
263 	 * fire for direct arch_{add,remove}_memory() users outside of
264 	 * add_memory_resource().
265 	 */
266 	unsigned long min_align;
267 
268 	if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
269 		min_align = PAGES_PER_SUBSECTION;
270 	else
271 		min_align = PAGES_PER_SECTION;
272 	if (!IS_ALIGNED(pfn, min_align)
273 			|| !IS_ALIGNED(nr_pages, min_align)) {
274 		WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
275 				reason, pfn, pfn + nr_pages - 1);
276 		return -EINVAL;
277 	}
278 	return 0;
279 }
280 
281 /*
282  * Reasonably generic function for adding memory.  It is
283  * expected that archs that support memory hotplug will
284  * call this function after deciding the zone to which to
285  * add the new pages.
286  */
287 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
288 		struct mhp_restrictions *restrictions)
289 {
290 	int err;
291 	unsigned long nr, start_sec, end_sec;
292 	struct vmem_altmap *altmap = restrictions->altmap;
293 
294 	if (altmap) {
295 		/*
296 		 * Validate altmap is within bounds of the total request
297 		 */
298 		if (altmap->base_pfn != pfn
299 				|| vmem_altmap_offset(altmap) > nr_pages) {
300 			pr_warn_once("memory add fail, invalid altmap\n");
301 			return -EINVAL;
302 		}
303 		altmap->alloc = 0;
304 	}
305 
306 	err = check_pfn_span(pfn, nr_pages, "add");
307 	if (err)
308 		return err;
309 
310 	start_sec = pfn_to_section_nr(pfn);
311 	end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
312 	for (nr = start_sec; nr <= end_sec; nr++) {
313 		unsigned long pfns;
314 
315 		pfns = min(nr_pages, PAGES_PER_SECTION
316 				- (pfn & ~PAGE_SECTION_MASK));
317 		err = sparse_add_section(nid, pfn, pfns, altmap);
318 		if (err)
319 			break;
320 		pfn += pfns;
321 		nr_pages -= pfns;
322 		cond_resched();
323 	}
324 	vmemmap_populate_print_last();
325 	return err;
326 }
327 
328 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
329 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
330 				     unsigned long start_pfn,
331 				     unsigned long end_pfn)
332 {
333 	for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
334 		if (unlikely(!pfn_valid(start_pfn)))
335 			continue;
336 
337 		if (unlikely(pfn_to_nid(start_pfn) != nid))
338 			continue;
339 
340 		if (zone && zone != page_zone(pfn_to_page(start_pfn)))
341 			continue;
342 
343 		return start_pfn;
344 	}
345 
346 	return 0;
347 }
348 
349 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
350 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
351 				    unsigned long start_pfn,
352 				    unsigned long end_pfn)
353 {
354 	unsigned long pfn;
355 
356 	/* pfn is the end pfn of a memory section. */
357 	pfn = end_pfn - 1;
358 	for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
359 		if (unlikely(!pfn_valid(pfn)))
360 			continue;
361 
362 		if (unlikely(pfn_to_nid(pfn) != nid))
363 			continue;
364 
365 		if (zone && zone != page_zone(pfn_to_page(pfn)))
366 			continue;
367 
368 		return pfn;
369 	}
370 
371 	return 0;
372 }
373 
374 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
375 			     unsigned long end_pfn)
376 {
377 	unsigned long zone_start_pfn = zone->zone_start_pfn;
378 	unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
379 	unsigned long zone_end_pfn = z;
380 	unsigned long pfn;
381 	int nid = zone_to_nid(zone);
382 
383 	zone_span_writelock(zone);
384 	if (zone_start_pfn == start_pfn) {
385 		/*
386 		 * If the section is smallest section in the zone, it need
387 		 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
388 		 * In this case, we find second smallest valid mem_section
389 		 * for shrinking zone.
390 		 */
391 		pfn = find_smallest_section_pfn(nid, zone, end_pfn,
392 						zone_end_pfn);
393 		if (pfn) {
394 			zone->zone_start_pfn = pfn;
395 			zone->spanned_pages = zone_end_pfn - pfn;
396 		}
397 	} else if (zone_end_pfn == end_pfn) {
398 		/*
399 		 * If the section is biggest section in the zone, it need
400 		 * shrink zone->spanned_pages.
401 		 * In this case, we find second biggest valid mem_section for
402 		 * shrinking zone.
403 		 */
404 		pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
405 					       start_pfn);
406 		if (pfn)
407 			zone->spanned_pages = pfn - zone_start_pfn + 1;
408 	}
409 
410 	/*
411 	 * The section is not biggest or smallest mem_section in the zone, it
412 	 * only creates a hole in the zone. So in this case, we need not
413 	 * change the zone. But perhaps, the zone has only hole data. Thus
414 	 * it check the zone has only hole or not.
415 	 */
416 	pfn = zone_start_pfn;
417 	for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) {
418 		if (unlikely(!pfn_valid(pfn)))
419 			continue;
420 
421 		if (page_zone(pfn_to_page(pfn)) != zone)
422 			continue;
423 
424 		/* Skip range to be removed */
425 		if (pfn >= start_pfn && pfn < end_pfn)
426 			continue;
427 
428 		/* If we find valid section, we have nothing to do */
429 		zone_span_writeunlock(zone);
430 		return;
431 	}
432 
433 	/* The zone has no valid section */
434 	zone->zone_start_pfn = 0;
435 	zone->spanned_pages = 0;
436 	zone_span_writeunlock(zone);
437 }
438 
439 static void update_pgdat_span(struct pglist_data *pgdat)
440 {
441 	unsigned long node_start_pfn = 0, node_end_pfn = 0;
442 	struct zone *zone;
443 
444 	for (zone = pgdat->node_zones;
445 	     zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
446 		unsigned long zone_end_pfn = zone->zone_start_pfn +
447 					     zone->spanned_pages;
448 
449 		/* No need to lock the zones, they can't change. */
450 		if (zone_end_pfn > node_end_pfn)
451 			node_end_pfn = zone_end_pfn;
452 		if (zone->zone_start_pfn < node_start_pfn)
453 			node_start_pfn = zone->zone_start_pfn;
454 	}
455 
456 	pgdat->node_start_pfn = node_start_pfn;
457 	pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
458 }
459 
460 static void __remove_zone(struct zone *zone, unsigned long start_pfn,
461 		unsigned long nr_pages)
462 {
463 	struct pglist_data *pgdat = zone->zone_pgdat;
464 	unsigned long flags;
465 
466 	pgdat_resize_lock(zone->zone_pgdat, &flags);
467 	shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
468 	update_pgdat_span(pgdat);
469 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
470 }
471 
472 static void __remove_section(struct zone *zone, unsigned long pfn,
473 		unsigned long nr_pages, unsigned long map_offset,
474 		struct vmem_altmap *altmap)
475 {
476 	struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn));
477 
478 	if (WARN_ON_ONCE(!valid_section(ms)))
479 		return;
480 
481 	__remove_zone(zone, pfn, nr_pages);
482 	sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
483 }
484 
485 /**
486  * __remove_pages() - remove sections of pages from a zone
487  * @zone: zone from which pages need to be removed
488  * @pfn: starting pageframe (must be aligned to start of a section)
489  * @nr_pages: number of pages to remove (must be multiple of section size)
490  * @altmap: alternative device page map or %NULL if default memmap is used
491  *
492  * Generic helper function to remove section mappings and sysfs entries
493  * for the section of the memory we are removing. Caller needs to make
494  * sure that pages are marked reserved and zones are adjust properly by
495  * calling offline_pages().
496  */
497 void __remove_pages(struct zone *zone, unsigned long pfn,
498 		    unsigned long nr_pages, struct vmem_altmap *altmap)
499 {
500 	unsigned long map_offset = 0;
501 	unsigned long nr, start_sec, end_sec;
502 
503 	map_offset = vmem_altmap_offset(altmap);
504 
505 	clear_zone_contiguous(zone);
506 
507 	if (check_pfn_span(pfn, nr_pages, "remove"))
508 		return;
509 
510 	start_sec = pfn_to_section_nr(pfn);
511 	end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
512 	for (nr = start_sec; nr <= end_sec; nr++) {
513 		unsigned long pfns;
514 
515 		cond_resched();
516 		pfns = min(nr_pages, PAGES_PER_SECTION
517 				- (pfn & ~PAGE_SECTION_MASK));
518 		__remove_section(zone, pfn, pfns, map_offset, altmap);
519 		pfn += pfns;
520 		nr_pages -= pfns;
521 		map_offset = 0;
522 	}
523 
524 	set_zone_contiguous(zone);
525 }
526 
527 int set_online_page_callback(online_page_callback_t callback)
528 {
529 	int rc = -EINVAL;
530 
531 	get_online_mems();
532 	mutex_lock(&online_page_callback_lock);
533 
534 	if (online_page_callback == generic_online_page) {
535 		online_page_callback = callback;
536 		rc = 0;
537 	}
538 
539 	mutex_unlock(&online_page_callback_lock);
540 	put_online_mems();
541 
542 	return rc;
543 }
544 EXPORT_SYMBOL_GPL(set_online_page_callback);
545 
546 int restore_online_page_callback(online_page_callback_t callback)
547 {
548 	int rc = -EINVAL;
549 
550 	get_online_mems();
551 	mutex_lock(&online_page_callback_lock);
552 
553 	if (online_page_callback == callback) {
554 		online_page_callback = generic_online_page;
555 		rc = 0;
556 	}
557 
558 	mutex_unlock(&online_page_callback_lock);
559 	put_online_mems();
560 
561 	return rc;
562 }
563 EXPORT_SYMBOL_GPL(restore_online_page_callback);
564 
565 void __online_page_set_limits(struct page *page)
566 {
567 }
568 EXPORT_SYMBOL_GPL(__online_page_set_limits);
569 
570 void __online_page_increment_counters(struct page *page)
571 {
572 	adjust_managed_page_count(page, 1);
573 }
574 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
575 
576 void __online_page_free(struct page *page)
577 {
578 	__free_reserved_page(page);
579 }
580 EXPORT_SYMBOL_GPL(__online_page_free);
581 
582 static void generic_online_page(struct page *page, unsigned int order)
583 {
584 	kernel_map_pages(page, 1 << order, 1);
585 	__free_pages_core(page, order);
586 	totalram_pages_add(1UL << order);
587 #ifdef CONFIG_HIGHMEM
588 	if (PageHighMem(page))
589 		totalhigh_pages_add(1UL << order);
590 #endif
591 }
592 
593 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
594 			void *arg)
595 {
596 	const unsigned long end_pfn = start_pfn + nr_pages;
597 	unsigned long pfn;
598 	int order;
599 
600 	/*
601 	 * Online the pages. The callback might decide to keep some pages
602 	 * PG_reserved (to add them to the buddy later), but we still account
603 	 * them as being online/belonging to this zone ("present").
604 	 */
605 	for (pfn = start_pfn; pfn < end_pfn; pfn += 1ul << order) {
606 		order = min(MAX_ORDER - 1, get_order(PFN_PHYS(end_pfn - pfn)));
607 		/* __free_pages_core() wants pfns to be aligned to the order */
608 		if (WARN_ON_ONCE(!IS_ALIGNED(pfn, 1ul << order)))
609 			order = 0;
610 		(*online_page_callback)(pfn_to_page(pfn), order);
611 	}
612 
613 	/* mark all involved sections as online */
614 	online_mem_sections(start_pfn, end_pfn);
615 
616 	*(unsigned long *)arg += nr_pages;
617 	return 0;
618 }
619 
620 /* check which state of node_states will be changed when online memory */
621 static void node_states_check_changes_online(unsigned long nr_pages,
622 	struct zone *zone, struct memory_notify *arg)
623 {
624 	int nid = zone_to_nid(zone);
625 
626 	arg->status_change_nid = NUMA_NO_NODE;
627 	arg->status_change_nid_normal = NUMA_NO_NODE;
628 	arg->status_change_nid_high = NUMA_NO_NODE;
629 
630 	if (!node_state(nid, N_MEMORY))
631 		arg->status_change_nid = nid;
632 	if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
633 		arg->status_change_nid_normal = nid;
634 #ifdef CONFIG_HIGHMEM
635 	if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
636 		arg->status_change_nid_high = nid;
637 #endif
638 }
639 
640 static void node_states_set_node(int node, struct memory_notify *arg)
641 {
642 	if (arg->status_change_nid_normal >= 0)
643 		node_set_state(node, N_NORMAL_MEMORY);
644 
645 	if (arg->status_change_nid_high >= 0)
646 		node_set_state(node, N_HIGH_MEMORY);
647 
648 	if (arg->status_change_nid >= 0)
649 		node_set_state(node, N_MEMORY);
650 }
651 
652 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
653 		unsigned long nr_pages)
654 {
655 	unsigned long old_end_pfn = zone_end_pfn(zone);
656 
657 	if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
658 		zone->zone_start_pfn = start_pfn;
659 
660 	zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
661 }
662 
663 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
664                                      unsigned long nr_pages)
665 {
666 	unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
667 
668 	if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
669 		pgdat->node_start_pfn = start_pfn;
670 
671 	pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
672 
673 }
674 /*
675  * Associate the pfn range with the given zone, initializing the memmaps
676  * and resizing the pgdat/zone data to span the added pages. After this
677  * call, all affected pages are PG_reserved.
678  */
679 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
680 		unsigned long nr_pages, struct vmem_altmap *altmap)
681 {
682 	struct pglist_data *pgdat = zone->zone_pgdat;
683 	int nid = pgdat->node_id;
684 	unsigned long flags;
685 
686 	clear_zone_contiguous(zone);
687 
688 	/* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
689 	pgdat_resize_lock(pgdat, &flags);
690 	zone_span_writelock(zone);
691 	if (zone_is_empty(zone))
692 		init_currently_empty_zone(zone, start_pfn, nr_pages);
693 	resize_zone_range(zone, start_pfn, nr_pages);
694 	zone_span_writeunlock(zone);
695 	resize_pgdat_range(pgdat, start_pfn, nr_pages);
696 	pgdat_resize_unlock(pgdat, &flags);
697 
698 	/*
699 	 * TODO now we have a visible range of pages which are not associated
700 	 * with their zone properly. Not nice but set_pfnblock_flags_mask
701 	 * expects the zone spans the pfn range. All the pages in the range
702 	 * are reserved so nobody should be touching them so we should be safe
703 	 */
704 	memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
705 			MEMMAP_HOTPLUG, altmap);
706 
707 	set_zone_contiguous(zone);
708 }
709 
710 /*
711  * Returns a default kernel memory zone for the given pfn range.
712  * If no kernel zone covers this pfn range it will automatically go
713  * to the ZONE_NORMAL.
714  */
715 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
716 		unsigned long nr_pages)
717 {
718 	struct pglist_data *pgdat = NODE_DATA(nid);
719 	int zid;
720 
721 	for (zid = 0; zid <= ZONE_NORMAL; zid++) {
722 		struct zone *zone = &pgdat->node_zones[zid];
723 
724 		if (zone_intersects(zone, start_pfn, nr_pages))
725 			return zone;
726 	}
727 
728 	return &pgdat->node_zones[ZONE_NORMAL];
729 }
730 
731 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
732 		unsigned long nr_pages)
733 {
734 	struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
735 			nr_pages);
736 	struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
737 	bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
738 	bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
739 
740 	/*
741 	 * We inherit the existing zone in a simple case where zones do not
742 	 * overlap in the given range
743 	 */
744 	if (in_kernel ^ in_movable)
745 		return (in_kernel) ? kernel_zone : movable_zone;
746 
747 	/*
748 	 * If the range doesn't belong to any zone or two zones overlap in the
749 	 * given range then we use movable zone only if movable_node is
750 	 * enabled because we always online to a kernel zone by default.
751 	 */
752 	return movable_node_enabled ? movable_zone : kernel_zone;
753 }
754 
755 struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
756 		unsigned long nr_pages)
757 {
758 	if (online_type == MMOP_ONLINE_KERNEL)
759 		return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
760 
761 	if (online_type == MMOP_ONLINE_MOVABLE)
762 		return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
763 
764 	return default_zone_for_pfn(nid, start_pfn, nr_pages);
765 }
766 
767 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
768 {
769 	unsigned long flags;
770 	unsigned long onlined_pages = 0;
771 	struct zone *zone;
772 	int need_zonelists_rebuild = 0;
773 	int nid;
774 	int ret;
775 	struct memory_notify arg;
776 	struct memory_block *mem;
777 
778 	mem_hotplug_begin();
779 
780 	/*
781 	 * We can't use pfn_to_nid() because nid might be stored in struct page
782 	 * which is not yet initialized. Instead, we find nid from memory block.
783 	 */
784 	mem = find_memory_block(__pfn_to_section(pfn));
785 	nid = mem->nid;
786 	put_device(&mem->dev);
787 
788 	/* associate pfn range with the zone */
789 	zone = zone_for_pfn_range(online_type, nid, pfn, nr_pages);
790 	move_pfn_range_to_zone(zone, pfn, nr_pages, NULL);
791 
792 	arg.start_pfn = pfn;
793 	arg.nr_pages = nr_pages;
794 	node_states_check_changes_online(nr_pages, zone, &arg);
795 
796 	ret = memory_notify(MEM_GOING_ONLINE, &arg);
797 	ret = notifier_to_errno(ret);
798 	if (ret)
799 		goto failed_addition;
800 
801 	/*
802 	 * If this zone is not populated, then it is not in zonelist.
803 	 * This means the page allocator ignores this zone.
804 	 * So, zonelist must be updated after online.
805 	 */
806 	if (!populated_zone(zone)) {
807 		need_zonelists_rebuild = 1;
808 		setup_zone_pageset(zone);
809 	}
810 
811 	ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
812 		online_pages_range);
813 	if (ret) {
814 		/* not a single memory resource was applicable */
815 		if (need_zonelists_rebuild)
816 			zone_pcp_reset(zone);
817 		goto failed_addition;
818 	}
819 
820 	zone->present_pages += onlined_pages;
821 
822 	pgdat_resize_lock(zone->zone_pgdat, &flags);
823 	zone->zone_pgdat->node_present_pages += onlined_pages;
824 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
825 
826 	shuffle_zone(zone);
827 
828 	node_states_set_node(nid, &arg);
829 	if (need_zonelists_rebuild)
830 		build_all_zonelists(NULL);
831 	else
832 		zone_pcp_update(zone);
833 
834 	init_per_zone_wmark_min();
835 
836 	kswapd_run(nid);
837 	kcompactd_run(nid);
838 
839 	vm_total_pages = nr_free_pagecache_pages();
840 
841 	writeback_set_ratelimit();
842 
843 	memory_notify(MEM_ONLINE, &arg);
844 	mem_hotplug_done();
845 	return 0;
846 
847 failed_addition:
848 	pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
849 		 (unsigned long long) pfn << PAGE_SHIFT,
850 		 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
851 	memory_notify(MEM_CANCEL_ONLINE, &arg);
852 	mem_hotplug_done();
853 	return ret;
854 }
855 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
856 
857 static void reset_node_present_pages(pg_data_t *pgdat)
858 {
859 	struct zone *z;
860 
861 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
862 		z->present_pages = 0;
863 
864 	pgdat->node_present_pages = 0;
865 }
866 
867 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
868 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
869 {
870 	struct pglist_data *pgdat;
871 	unsigned long start_pfn = PFN_DOWN(start);
872 
873 	pgdat = NODE_DATA(nid);
874 	if (!pgdat) {
875 		pgdat = arch_alloc_nodedata(nid);
876 		if (!pgdat)
877 			return NULL;
878 
879 		pgdat->per_cpu_nodestats =
880 			alloc_percpu(struct per_cpu_nodestat);
881 		arch_refresh_nodedata(nid, pgdat);
882 	} else {
883 		int cpu;
884 		/*
885 		 * Reset the nr_zones, order and classzone_idx before reuse.
886 		 * Note that kswapd will init kswapd_classzone_idx properly
887 		 * when it starts in the near future.
888 		 */
889 		pgdat->nr_zones = 0;
890 		pgdat->kswapd_order = 0;
891 		pgdat->kswapd_classzone_idx = 0;
892 		for_each_online_cpu(cpu) {
893 			struct per_cpu_nodestat *p;
894 
895 			p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
896 			memset(p, 0, sizeof(*p));
897 		}
898 	}
899 
900 	/* we can use NODE_DATA(nid) from here */
901 
902 	pgdat->node_id = nid;
903 	pgdat->node_start_pfn = start_pfn;
904 
905 	/* init node's zones as empty zones, we don't have any present pages.*/
906 	free_area_init_core_hotplug(nid);
907 
908 	/*
909 	 * The node we allocated has no zone fallback lists. For avoiding
910 	 * to access not-initialized zonelist, build here.
911 	 */
912 	build_all_zonelists(pgdat);
913 
914 	/*
915 	 * When memory is hot-added, all the memory is in offline state. So
916 	 * clear all zones' present_pages because they will be updated in
917 	 * online_pages() and offline_pages().
918 	 */
919 	reset_node_managed_pages(pgdat);
920 	reset_node_present_pages(pgdat);
921 
922 	return pgdat;
923 }
924 
925 static void rollback_node_hotadd(int nid)
926 {
927 	pg_data_t *pgdat = NODE_DATA(nid);
928 
929 	arch_refresh_nodedata(nid, NULL);
930 	free_percpu(pgdat->per_cpu_nodestats);
931 	arch_free_nodedata(pgdat);
932 }
933 
934 
935 /**
936  * try_online_node - online a node if offlined
937  * @nid: the node ID
938  * @start: start addr of the node
939  * @set_node_online: Whether we want to online the node
940  * called by cpu_up() to online a node without onlined memory.
941  *
942  * Returns:
943  * 1 -> a new node has been allocated
944  * 0 -> the node is already online
945  * -ENOMEM -> the node could not be allocated
946  */
947 static int __try_online_node(int nid, u64 start, bool set_node_online)
948 {
949 	pg_data_t *pgdat;
950 	int ret = 1;
951 
952 	if (node_online(nid))
953 		return 0;
954 
955 	pgdat = hotadd_new_pgdat(nid, start);
956 	if (!pgdat) {
957 		pr_err("Cannot online node %d due to NULL pgdat\n", nid);
958 		ret = -ENOMEM;
959 		goto out;
960 	}
961 
962 	if (set_node_online) {
963 		node_set_online(nid);
964 		ret = register_one_node(nid);
965 		BUG_ON(ret);
966 	}
967 out:
968 	return ret;
969 }
970 
971 /*
972  * Users of this function always want to online/register the node
973  */
974 int try_online_node(int nid)
975 {
976 	int ret;
977 
978 	mem_hotplug_begin();
979 	ret =  __try_online_node(nid, 0, true);
980 	mem_hotplug_done();
981 	return ret;
982 }
983 
984 static int check_hotplug_memory_range(u64 start, u64 size)
985 {
986 	/* memory range must be block size aligned */
987 	if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
988 	    !IS_ALIGNED(size, memory_block_size_bytes())) {
989 		pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
990 		       memory_block_size_bytes(), start, size);
991 		return -EINVAL;
992 	}
993 
994 	return 0;
995 }
996 
997 static int online_memory_block(struct memory_block *mem, void *arg)
998 {
999 	return device_online(&mem->dev);
1000 }
1001 
1002 /*
1003  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1004  * and online/offline operations (triggered e.g. by sysfs).
1005  *
1006  * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1007  */
1008 int __ref add_memory_resource(int nid, struct resource *res)
1009 {
1010 	struct mhp_restrictions restrictions = {};
1011 	u64 start, size;
1012 	bool new_node = false;
1013 	int ret;
1014 
1015 	start = res->start;
1016 	size = resource_size(res);
1017 
1018 	ret = check_hotplug_memory_range(start, size);
1019 	if (ret)
1020 		return ret;
1021 
1022 	mem_hotplug_begin();
1023 
1024 	/*
1025 	 * Add new range to memblock so that when hotadd_new_pgdat() is called
1026 	 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1027 	 * this new range and calculate total pages correctly.  The range will
1028 	 * be removed at hot-remove time.
1029 	 */
1030 	memblock_add_node(start, size, nid);
1031 
1032 	ret = __try_online_node(nid, start, false);
1033 	if (ret < 0)
1034 		goto error;
1035 	new_node = ret;
1036 
1037 	/* call arch's memory hotadd */
1038 	ret = arch_add_memory(nid, start, size, &restrictions);
1039 	if (ret < 0)
1040 		goto error;
1041 
1042 	/* create memory block devices after memory was added */
1043 	ret = create_memory_block_devices(start, size);
1044 	if (ret) {
1045 		arch_remove_memory(nid, start, size, NULL);
1046 		goto error;
1047 	}
1048 
1049 	if (new_node) {
1050 		/* If sysfs file of new node can't be created, cpu on the node
1051 		 * can't be hot-added. There is no rollback way now.
1052 		 * So, check by BUG_ON() to catch it reluctantly..
1053 		 * We online node here. We can't roll back from here.
1054 		 */
1055 		node_set_online(nid);
1056 		ret = __register_one_node(nid);
1057 		BUG_ON(ret);
1058 	}
1059 
1060 	/* link memory sections under this node.*/
1061 	ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1062 	BUG_ON(ret);
1063 
1064 	/* create new memmap entry */
1065 	firmware_map_add_hotplug(start, start + size, "System RAM");
1066 
1067 	/* device_online() will take the lock when calling online_pages() */
1068 	mem_hotplug_done();
1069 
1070 	/* online pages if requested */
1071 	if (memhp_auto_online)
1072 		walk_memory_blocks(start, size, NULL, online_memory_block);
1073 
1074 	return ret;
1075 error:
1076 	/* rollback pgdat allocation and others */
1077 	if (new_node)
1078 		rollback_node_hotadd(nid);
1079 	memblock_remove(start, size);
1080 	mem_hotplug_done();
1081 	return ret;
1082 }
1083 
1084 /* requires device_hotplug_lock, see add_memory_resource() */
1085 int __ref __add_memory(int nid, u64 start, u64 size)
1086 {
1087 	struct resource *res;
1088 	int ret;
1089 
1090 	res = register_memory_resource(start, size);
1091 	if (IS_ERR(res))
1092 		return PTR_ERR(res);
1093 
1094 	ret = add_memory_resource(nid, res);
1095 	if (ret < 0)
1096 		release_memory_resource(res);
1097 	return ret;
1098 }
1099 
1100 int add_memory(int nid, u64 start, u64 size)
1101 {
1102 	int rc;
1103 
1104 	lock_device_hotplug();
1105 	rc = __add_memory(nid, start, size);
1106 	unlock_device_hotplug();
1107 
1108 	return rc;
1109 }
1110 EXPORT_SYMBOL_GPL(add_memory);
1111 
1112 #ifdef CONFIG_MEMORY_HOTREMOVE
1113 /*
1114  * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1115  * set and the size of the free page is given by page_order(). Using this,
1116  * the function determines if the pageblock contains only free pages.
1117  * Due to buddy contraints, a free page at least the size of a pageblock will
1118  * be located at the start of the pageblock
1119  */
1120 static inline int pageblock_free(struct page *page)
1121 {
1122 	return PageBuddy(page) && page_order(page) >= pageblock_order;
1123 }
1124 
1125 /* Return the pfn of the start of the next active pageblock after a given pfn */
1126 static unsigned long next_active_pageblock(unsigned long pfn)
1127 {
1128 	struct page *page = pfn_to_page(pfn);
1129 
1130 	/* Ensure the starting page is pageblock-aligned */
1131 	BUG_ON(pfn & (pageblock_nr_pages - 1));
1132 
1133 	/* If the entire pageblock is free, move to the end of free page */
1134 	if (pageblock_free(page)) {
1135 		int order;
1136 		/* be careful. we don't have locks, page_order can be changed.*/
1137 		order = page_order(page);
1138 		if ((order < MAX_ORDER) && (order >= pageblock_order))
1139 			return pfn + (1 << order);
1140 	}
1141 
1142 	return pfn + pageblock_nr_pages;
1143 }
1144 
1145 static bool is_pageblock_removable_nolock(unsigned long pfn)
1146 {
1147 	struct page *page = pfn_to_page(pfn);
1148 	struct zone *zone;
1149 
1150 	/*
1151 	 * We have to be careful here because we are iterating over memory
1152 	 * sections which are not zone aware so we might end up outside of
1153 	 * the zone but still within the section.
1154 	 * We have to take care about the node as well. If the node is offline
1155 	 * its NODE_DATA will be NULL - see page_zone.
1156 	 */
1157 	if (!node_online(page_to_nid(page)))
1158 		return false;
1159 
1160 	zone = page_zone(page);
1161 	pfn = page_to_pfn(page);
1162 	if (!zone_spans_pfn(zone, pfn))
1163 		return false;
1164 
1165 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1166 }
1167 
1168 /* Checks if this range of memory is likely to be hot-removable. */
1169 bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1170 {
1171 	unsigned long end_pfn, pfn;
1172 
1173 	end_pfn = min(start_pfn + nr_pages,
1174 			zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1175 
1176 	/* Check the starting page of each pageblock within the range */
1177 	for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1178 		if (!is_pageblock_removable_nolock(pfn))
1179 			return false;
1180 		cond_resched();
1181 	}
1182 
1183 	/* All pageblocks in the memory block are likely to be hot-removable */
1184 	return true;
1185 }
1186 
1187 /*
1188  * Confirm all pages in a range [start, end) belong to the same zone.
1189  * When true, return its valid [start, end).
1190  */
1191 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1192 			 unsigned long *valid_start, unsigned long *valid_end)
1193 {
1194 	unsigned long pfn, sec_end_pfn;
1195 	unsigned long start, end;
1196 	struct zone *zone = NULL;
1197 	struct page *page;
1198 	int i;
1199 	for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1200 	     pfn < end_pfn;
1201 	     pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1202 		/* Make sure the memory section is present first */
1203 		if (!present_section_nr(pfn_to_section_nr(pfn)))
1204 			continue;
1205 		for (; pfn < sec_end_pfn && pfn < end_pfn;
1206 		     pfn += MAX_ORDER_NR_PAGES) {
1207 			i = 0;
1208 			/* This is just a CONFIG_HOLES_IN_ZONE check.*/
1209 			while ((i < MAX_ORDER_NR_PAGES) &&
1210 				!pfn_valid_within(pfn + i))
1211 				i++;
1212 			if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1213 				continue;
1214 			/* Check if we got outside of the zone */
1215 			if (zone && !zone_spans_pfn(zone, pfn + i))
1216 				return 0;
1217 			page = pfn_to_page(pfn + i);
1218 			if (zone && page_zone(page) != zone)
1219 				return 0;
1220 			if (!zone)
1221 				start = pfn + i;
1222 			zone = page_zone(page);
1223 			end = pfn + MAX_ORDER_NR_PAGES;
1224 		}
1225 	}
1226 
1227 	if (zone) {
1228 		*valid_start = start;
1229 		*valid_end = min(end, end_pfn);
1230 		return 1;
1231 	} else {
1232 		return 0;
1233 	}
1234 }
1235 
1236 /*
1237  * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1238  * non-lru movable pages and hugepages). We scan pfn because it's much
1239  * easier than scanning over linked list. This function returns the pfn
1240  * of the first found movable page if it's found, otherwise 0.
1241  */
1242 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1243 {
1244 	unsigned long pfn;
1245 
1246 	for (pfn = start; pfn < end; pfn++) {
1247 		struct page *page, *head;
1248 		unsigned long skip;
1249 
1250 		if (!pfn_valid(pfn))
1251 			continue;
1252 		page = pfn_to_page(pfn);
1253 		if (PageLRU(page))
1254 			return pfn;
1255 		if (__PageMovable(page))
1256 			return pfn;
1257 
1258 		if (!PageHuge(page))
1259 			continue;
1260 		head = compound_head(page);
1261 		if (page_huge_active(head))
1262 			return pfn;
1263 		skip = compound_nr(head) - (page - head);
1264 		pfn += skip - 1;
1265 	}
1266 	return 0;
1267 }
1268 
1269 static struct page *new_node_page(struct page *page, unsigned long private)
1270 {
1271 	int nid = page_to_nid(page);
1272 	nodemask_t nmask = node_states[N_MEMORY];
1273 
1274 	/*
1275 	 * try to allocate from a different node but reuse this node if there
1276 	 * are no other online nodes to be used (e.g. we are offlining a part
1277 	 * of the only existing node)
1278 	 */
1279 	node_clear(nid, nmask);
1280 	if (nodes_empty(nmask))
1281 		node_set(nid, nmask);
1282 
1283 	return new_page_nodemask(page, nid, &nmask);
1284 }
1285 
1286 static int
1287 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1288 {
1289 	unsigned long pfn;
1290 	struct page *page;
1291 	int ret = 0;
1292 	LIST_HEAD(source);
1293 
1294 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1295 		if (!pfn_valid(pfn))
1296 			continue;
1297 		page = pfn_to_page(pfn);
1298 
1299 		if (PageHuge(page)) {
1300 			struct page *head = compound_head(page);
1301 			pfn = page_to_pfn(head) + compound_nr(head) - 1;
1302 			isolate_huge_page(head, &source);
1303 			continue;
1304 		} else if (PageTransHuge(page))
1305 			pfn = page_to_pfn(compound_head(page))
1306 				+ hpage_nr_pages(page) - 1;
1307 
1308 		/*
1309 		 * HWPoison pages have elevated reference counts so the migration would
1310 		 * fail on them. It also doesn't make any sense to migrate them in the
1311 		 * first place. Still try to unmap such a page in case it is still mapped
1312 		 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1313 		 * the unmap as the catch all safety net).
1314 		 */
1315 		if (PageHWPoison(page)) {
1316 			if (WARN_ON(PageLRU(page)))
1317 				isolate_lru_page(page);
1318 			if (page_mapped(page))
1319 				try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1320 			continue;
1321 		}
1322 
1323 		if (!get_page_unless_zero(page))
1324 			continue;
1325 		/*
1326 		 * We can skip free pages. And we can deal with pages on
1327 		 * LRU and non-lru movable pages.
1328 		 */
1329 		if (PageLRU(page))
1330 			ret = isolate_lru_page(page);
1331 		else
1332 			ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1333 		if (!ret) { /* Success */
1334 			list_add_tail(&page->lru, &source);
1335 			if (!__PageMovable(page))
1336 				inc_node_page_state(page, NR_ISOLATED_ANON +
1337 						    page_is_file_cache(page));
1338 
1339 		} else {
1340 			pr_warn("failed to isolate pfn %lx\n", pfn);
1341 			dump_page(page, "isolation failed");
1342 		}
1343 		put_page(page);
1344 	}
1345 	if (!list_empty(&source)) {
1346 		/* Allocate a new page from the nearest neighbor node */
1347 		ret = migrate_pages(&source, new_node_page, NULL, 0,
1348 					MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1349 		if (ret) {
1350 			list_for_each_entry(page, &source, lru) {
1351 				pr_warn("migrating pfn %lx failed ret:%d ",
1352 				       page_to_pfn(page), ret);
1353 				dump_page(page, "migration failure");
1354 			}
1355 			putback_movable_pages(&source);
1356 		}
1357 	}
1358 
1359 	return ret;
1360 }
1361 
1362 /*
1363  * remove from free_area[] and mark all as Reserved.
1364  */
1365 static int
1366 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1367 			void *data)
1368 {
1369 	unsigned long *offlined_pages = (unsigned long *)data;
1370 
1371 	*offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1372 	return 0;
1373 }
1374 
1375 /*
1376  * Check all pages in range, recoreded as memory resource, are isolated.
1377  */
1378 static int
1379 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1380 			void *data)
1381 {
1382 	return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1383 }
1384 
1385 static int __init cmdline_parse_movable_node(char *p)
1386 {
1387 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1388 	movable_node_enabled = true;
1389 #else
1390 	pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1391 #endif
1392 	return 0;
1393 }
1394 early_param("movable_node", cmdline_parse_movable_node);
1395 
1396 /* check which state of node_states will be changed when offline memory */
1397 static void node_states_check_changes_offline(unsigned long nr_pages,
1398 		struct zone *zone, struct memory_notify *arg)
1399 {
1400 	struct pglist_data *pgdat = zone->zone_pgdat;
1401 	unsigned long present_pages = 0;
1402 	enum zone_type zt;
1403 
1404 	arg->status_change_nid = NUMA_NO_NODE;
1405 	arg->status_change_nid_normal = NUMA_NO_NODE;
1406 	arg->status_change_nid_high = NUMA_NO_NODE;
1407 
1408 	/*
1409 	 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1410 	 * If the memory to be offline is within the range
1411 	 * [0..ZONE_NORMAL], and it is the last present memory there,
1412 	 * the zones in that range will become empty after the offlining,
1413 	 * thus we can determine that we need to clear the node from
1414 	 * node_states[N_NORMAL_MEMORY].
1415 	 */
1416 	for (zt = 0; zt <= ZONE_NORMAL; zt++)
1417 		present_pages += pgdat->node_zones[zt].present_pages;
1418 	if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1419 		arg->status_change_nid_normal = zone_to_nid(zone);
1420 
1421 #ifdef CONFIG_HIGHMEM
1422 	/*
1423 	 * node_states[N_HIGH_MEMORY] contains nodes which
1424 	 * have normal memory or high memory.
1425 	 * Here we add the present_pages belonging to ZONE_HIGHMEM.
1426 	 * If the zone is within the range of [0..ZONE_HIGHMEM), and
1427 	 * we determine that the zones in that range become empty,
1428 	 * we need to clear the node for N_HIGH_MEMORY.
1429 	 */
1430 	present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1431 	if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1432 		arg->status_change_nid_high = zone_to_nid(zone);
1433 #endif
1434 
1435 	/*
1436 	 * We have accounted the pages from [0..ZONE_NORMAL), and
1437 	 * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1438 	 * as well.
1439 	 * Here we count the possible pages from ZONE_MOVABLE.
1440 	 * If after having accounted all the pages, we see that the nr_pages
1441 	 * to be offlined is over or equal to the accounted pages,
1442 	 * we know that the node will become empty, and so, we can clear
1443 	 * it for N_MEMORY as well.
1444 	 */
1445 	present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1446 
1447 	if (nr_pages >= present_pages)
1448 		arg->status_change_nid = zone_to_nid(zone);
1449 }
1450 
1451 static void node_states_clear_node(int node, struct memory_notify *arg)
1452 {
1453 	if (arg->status_change_nid_normal >= 0)
1454 		node_clear_state(node, N_NORMAL_MEMORY);
1455 
1456 	if (arg->status_change_nid_high >= 0)
1457 		node_clear_state(node, N_HIGH_MEMORY);
1458 
1459 	if (arg->status_change_nid >= 0)
1460 		node_clear_state(node, N_MEMORY);
1461 }
1462 
1463 static int __ref __offline_pages(unsigned long start_pfn,
1464 		  unsigned long end_pfn)
1465 {
1466 	unsigned long pfn, nr_pages;
1467 	unsigned long offlined_pages = 0;
1468 	int ret, node, nr_isolate_pageblock;
1469 	unsigned long flags;
1470 	unsigned long valid_start, valid_end;
1471 	struct zone *zone;
1472 	struct memory_notify arg;
1473 	char *reason;
1474 
1475 	mem_hotplug_begin();
1476 
1477 	/* This makes hotplug much easier...and readable.
1478 	   we assume this for now. .*/
1479 	if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1480 				  &valid_end)) {
1481 		ret = -EINVAL;
1482 		reason = "multizone range";
1483 		goto failed_removal;
1484 	}
1485 
1486 	zone = page_zone(pfn_to_page(valid_start));
1487 	node = zone_to_nid(zone);
1488 	nr_pages = end_pfn - start_pfn;
1489 
1490 	/* set above range as isolated */
1491 	ret = start_isolate_page_range(start_pfn, end_pfn,
1492 				       MIGRATE_MOVABLE,
1493 				       SKIP_HWPOISON | REPORT_FAILURE);
1494 	if (ret < 0) {
1495 		reason = "failure to isolate range";
1496 		goto failed_removal;
1497 	}
1498 	nr_isolate_pageblock = ret;
1499 
1500 	arg.start_pfn = start_pfn;
1501 	arg.nr_pages = nr_pages;
1502 	node_states_check_changes_offline(nr_pages, zone, &arg);
1503 
1504 	ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1505 	ret = notifier_to_errno(ret);
1506 	if (ret) {
1507 		reason = "notifier failure";
1508 		goto failed_removal_isolated;
1509 	}
1510 
1511 	do {
1512 		for (pfn = start_pfn; pfn;) {
1513 			if (signal_pending(current)) {
1514 				ret = -EINTR;
1515 				reason = "signal backoff";
1516 				goto failed_removal_isolated;
1517 			}
1518 
1519 			cond_resched();
1520 			lru_add_drain_all();
1521 
1522 			pfn = scan_movable_pages(pfn, end_pfn);
1523 			if (pfn) {
1524 				/*
1525 				 * TODO: fatal migration failures should bail
1526 				 * out
1527 				 */
1528 				do_migrate_range(pfn, end_pfn);
1529 			}
1530 		}
1531 
1532 		/*
1533 		 * Dissolve free hugepages in the memory block before doing
1534 		 * offlining actually in order to make hugetlbfs's object
1535 		 * counting consistent.
1536 		 */
1537 		ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1538 		if (ret) {
1539 			reason = "failure to dissolve huge pages";
1540 			goto failed_removal_isolated;
1541 		}
1542 		/* check again */
1543 		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1544 					    NULL, check_pages_isolated_cb);
1545 	} while (ret);
1546 
1547 	/* Ok, all of our target is isolated.
1548 	   We cannot do rollback at this point. */
1549 	walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1550 			      &offlined_pages, offline_isolated_pages_cb);
1551 	pr_info("Offlined Pages %ld\n", offlined_pages);
1552 	/*
1553 	 * Onlining will reset pagetype flags and makes migrate type
1554 	 * MOVABLE, so just need to decrease the number of isolated
1555 	 * pageblocks zone counter here.
1556 	 */
1557 	spin_lock_irqsave(&zone->lock, flags);
1558 	zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1559 	spin_unlock_irqrestore(&zone->lock, flags);
1560 
1561 	/* removal success */
1562 	adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1563 	zone->present_pages -= offlined_pages;
1564 
1565 	pgdat_resize_lock(zone->zone_pgdat, &flags);
1566 	zone->zone_pgdat->node_present_pages -= offlined_pages;
1567 	pgdat_resize_unlock(zone->zone_pgdat, &flags);
1568 
1569 	init_per_zone_wmark_min();
1570 
1571 	if (!populated_zone(zone)) {
1572 		zone_pcp_reset(zone);
1573 		build_all_zonelists(NULL);
1574 	} else
1575 		zone_pcp_update(zone);
1576 
1577 	node_states_clear_node(node, &arg);
1578 	if (arg.status_change_nid >= 0) {
1579 		kswapd_stop(node);
1580 		kcompactd_stop(node);
1581 	}
1582 
1583 	vm_total_pages = nr_free_pagecache_pages();
1584 	writeback_set_ratelimit();
1585 
1586 	memory_notify(MEM_OFFLINE, &arg);
1587 	mem_hotplug_done();
1588 	return 0;
1589 
1590 failed_removal_isolated:
1591 	undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1592 	memory_notify(MEM_CANCEL_OFFLINE, &arg);
1593 failed_removal:
1594 	pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1595 		 (unsigned long long) start_pfn << PAGE_SHIFT,
1596 		 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1597 		 reason);
1598 	/* pushback to free area */
1599 	mem_hotplug_done();
1600 	return ret;
1601 }
1602 
1603 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1604 {
1605 	return __offline_pages(start_pfn, start_pfn + nr_pages);
1606 }
1607 
1608 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1609 {
1610 	int ret = !is_memblock_offlined(mem);
1611 
1612 	if (unlikely(ret)) {
1613 		phys_addr_t beginpa, endpa;
1614 
1615 		beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1616 		endpa = beginpa + memory_block_size_bytes() - 1;
1617 		pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1618 			&beginpa, &endpa);
1619 
1620 		return -EBUSY;
1621 	}
1622 	return 0;
1623 }
1624 
1625 static int check_cpu_on_node(pg_data_t *pgdat)
1626 {
1627 	int cpu;
1628 
1629 	for_each_present_cpu(cpu) {
1630 		if (cpu_to_node(cpu) == pgdat->node_id)
1631 			/*
1632 			 * the cpu on this node isn't removed, and we can't
1633 			 * offline this node.
1634 			 */
1635 			return -EBUSY;
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 /**
1642  * try_offline_node
1643  * @nid: the node ID
1644  *
1645  * Offline a node if all memory sections and cpus of the node are removed.
1646  *
1647  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1648  * and online/offline operations before this call.
1649  */
1650 void try_offline_node(int nid)
1651 {
1652 	pg_data_t *pgdat = NODE_DATA(nid);
1653 	unsigned long start_pfn = pgdat->node_start_pfn;
1654 	unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1655 	unsigned long pfn;
1656 
1657 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1658 		unsigned long section_nr = pfn_to_section_nr(pfn);
1659 
1660 		if (!present_section_nr(section_nr))
1661 			continue;
1662 
1663 		if (pfn_to_nid(pfn) != nid)
1664 			continue;
1665 
1666 		/*
1667 		 * some memory sections of this node are not removed, and we
1668 		 * can't offline node now.
1669 		 */
1670 		return;
1671 	}
1672 
1673 	if (check_cpu_on_node(pgdat))
1674 		return;
1675 
1676 	/*
1677 	 * all memory/cpu of this node are removed, we can offline this
1678 	 * node now.
1679 	 */
1680 	node_set_offline(nid);
1681 	unregister_one_node(nid);
1682 }
1683 EXPORT_SYMBOL(try_offline_node);
1684 
1685 static void __release_memory_resource(resource_size_t start,
1686 				      resource_size_t size)
1687 {
1688 	int ret;
1689 
1690 	/*
1691 	 * When removing memory in the same granularity as it was added,
1692 	 * this function never fails. It might only fail if resources
1693 	 * have to be adjusted or split. We'll ignore the error, as
1694 	 * removing of memory cannot fail.
1695 	 */
1696 	ret = release_mem_region_adjustable(&iomem_resource, start, size);
1697 	if (ret) {
1698 		resource_size_t endres = start + size - 1;
1699 
1700 		pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1701 			&start, &endres, ret);
1702 	}
1703 }
1704 
1705 static int __ref try_remove_memory(int nid, u64 start, u64 size)
1706 {
1707 	int rc = 0;
1708 
1709 	BUG_ON(check_hotplug_memory_range(start, size));
1710 
1711 	mem_hotplug_begin();
1712 
1713 	/*
1714 	 * All memory blocks must be offlined before removing memory.  Check
1715 	 * whether all memory blocks in question are offline and return error
1716 	 * if this is not the case.
1717 	 */
1718 	rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1719 	if (rc)
1720 		goto done;
1721 
1722 	/* remove memmap entry */
1723 	firmware_map_remove(start, start + size, "System RAM");
1724 	memblock_free(start, size);
1725 	memblock_remove(start, size);
1726 
1727 	/* remove memory block devices before removing memory */
1728 	remove_memory_block_devices(start, size);
1729 
1730 	arch_remove_memory(nid, start, size, NULL);
1731 	__release_memory_resource(start, size);
1732 
1733 	try_offline_node(nid);
1734 
1735 done:
1736 	mem_hotplug_done();
1737 	return rc;
1738 }
1739 
1740 /**
1741  * remove_memory
1742  * @nid: the node ID
1743  * @start: physical address of the region to remove
1744  * @size: size of the region to remove
1745  *
1746  * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1747  * and online/offline operations before this call, as required by
1748  * try_offline_node().
1749  */
1750 void __remove_memory(int nid, u64 start, u64 size)
1751 {
1752 
1753 	/*
1754 	 * trigger BUG() if some memory is not offlined prior to calling this
1755 	 * function
1756 	 */
1757 	if (try_remove_memory(nid, start, size))
1758 		BUG();
1759 }
1760 
1761 /*
1762  * Remove memory if every memory block is offline, otherwise return -EBUSY is
1763  * some memory is not offline
1764  */
1765 int remove_memory(int nid, u64 start, u64 size)
1766 {
1767 	int rc;
1768 
1769 	lock_device_hotplug();
1770 	rc  = try_remove_memory(nid, start, size);
1771 	unlock_device_hotplug();
1772 
1773 	return rc;
1774 }
1775 EXPORT_SYMBOL_GPL(remove_memory);
1776 #endif /* CONFIG_MEMORY_HOTREMOVE */
1777