xref: /linux/mm/migrate_device.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Device Memory Migration functionality.
4  *
5  * Originally written by Jérôme Glisse.
6  */
7 #include <linux/export.h>
8 #include <linux/memremap.h>
9 #include <linux/migrate.h>
10 #include <linux/mm_inline.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/oom.h>
13 #include <linux/pagewalk.h>
14 #include <linux/rmap.h>
15 #include <linux/swapops.h>
16 #include <asm/tlbflush.h>
17 #include "internal.h"
18 
19 static int migrate_vma_collect_skip(unsigned long start,
20 				    unsigned long end,
21 				    struct mm_walk *walk)
22 {
23 	struct migrate_vma *migrate = walk->private;
24 	unsigned long addr;
25 
26 	for (addr = start; addr < end; addr += PAGE_SIZE) {
27 		migrate->dst[migrate->npages] = 0;
28 		migrate->src[migrate->npages++] = 0;
29 	}
30 
31 	return 0;
32 }
33 
34 static int migrate_vma_collect_hole(unsigned long start,
35 				    unsigned long end,
36 				    __always_unused int depth,
37 				    struct mm_walk *walk)
38 {
39 	struct migrate_vma *migrate = walk->private;
40 	unsigned long addr;
41 
42 	/* Only allow populating anonymous memory. */
43 	if (!vma_is_anonymous(walk->vma))
44 		return migrate_vma_collect_skip(start, end, walk);
45 
46 	for (addr = start; addr < end; addr += PAGE_SIZE) {
47 		migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
48 		migrate->dst[migrate->npages] = 0;
49 		migrate->npages++;
50 		migrate->cpages++;
51 	}
52 
53 	return 0;
54 }
55 
56 static int migrate_vma_collect_pmd(pmd_t *pmdp,
57 				   unsigned long start,
58 				   unsigned long end,
59 				   struct mm_walk *walk)
60 {
61 	struct migrate_vma *migrate = walk->private;
62 	struct vm_area_struct *vma = walk->vma;
63 	struct mm_struct *mm = vma->vm_mm;
64 	unsigned long addr = start, unmapped = 0;
65 	spinlock_t *ptl;
66 	pte_t *ptep;
67 
68 again:
69 	if (pmd_none(*pmdp))
70 		return migrate_vma_collect_hole(start, end, -1, walk);
71 
72 	if (pmd_trans_huge(*pmdp)) {
73 		struct page *page;
74 
75 		ptl = pmd_lock(mm, pmdp);
76 		if (unlikely(!pmd_trans_huge(*pmdp))) {
77 			spin_unlock(ptl);
78 			goto again;
79 		}
80 
81 		page = pmd_page(*pmdp);
82 		if (is_huge_zero_page(page)) {
83 			spin_unlock(ptl);
84 			split_huge_pmd(vma, pmdp, addr);
85 			if (pmd_trans_unstable(pmdp))
86 				return migrate_vma_collect_skip(start, end,
87 								walk);
88 		} else {
89 			int ret;
90 
91 			get_page(page);
92 			spin_unlock(ptl);
93 			if (unlikely(!trylock_page(page)))
94 				return migrate_vma_collect_skip(start, end,
95 								walk);
96 			ret = split_huge_page(page);
97 			unlock_page(page);
98 			put_page(page);
99 			if (ret)
100 				return migrate_vma_collect_skip(start, end,
101 								walk);
102 			if (pmd_none(*pmdp))
103 				return migrate_vma_collect_hole(start, end, -1,
104 								walk);
105 		}
106 	}
107 
108 	if (unlikely(pmd_bad(*pmdp)))
109 		return migrate_vma_collect_skip(start, end, walk);
110 
111 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
112 	arch_enter_lazy_mmu_mode();
113 
114 	for (; addr < end; addr += PAGE_SIZE, ptep++) {
115 		unsigned long mpfn = 0, pfn;
116 		struct page *page;
117 		swp_entry_t entry;
118 		pte_t pte;
119 
120 		pte = *ptep;
121 
122 		if (pte_none(pte)) {
123 			if (vma_is_anonymous(vma)) {
124 				mpfn = MIGRATE_PFN_MIGRATE;
125 				migrate->cpages++;
126 			}
127 			goto next;
128 		}
129 
130 		if (!pte_present(pte)) {
131 			/*
132 			 * Only care about unaddressable device page special
133 			 * page table entry. Other special swap entries are not
134 			 * migratable, and we ignore regular swapped page.
135 			 */
136 			entry = pte_to_swp_entry(pte);
137 			if (!is_device_private_entry(entry))
138 				goto next;
139 
140 			page = pfn_swap_entry_to_page(entry);
141 			if (!(migrate->flags &
142 				MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
143 			    page->pgmap->owner != migrate->pgmap_owner)
144 				goto next;
145 
146 			mpfn = migrate_pfn(page_to_pfn(page)) |
147 					MIGRATE_PFN_MIGRATE;
148 			if (is_writable_device_private_entry(entry))
149 				mpfn |= MIGRATE_PFN_WRITE;
150 		} else {
151 			if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
152 				goto next;
153 			pfn = pte_pfn(pte);
154 			if (is_zero_pfn(pfn)) {
155 				mpfn = MIGRATE_PFN_MIGRATE;
156 				migrate->cpages++;
157 				goto next;
158 			}
159 			page = vm_normal_page(migrate->vma, addr, pte);
160 			mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
161 			mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
162 		}
163 
164 		/* FIXME support THP */
165 		if (!page || !page->mapping || PageTransCompound(page)) {
166 			mpfn = 0;
167 			goto next;
168 		}
169 
170 		/*
171 		 * By getting a reference on the page we pin it and that blocks
172 		 * any kind of migration. Side effect is that it "freezes" the
173 		 * pte.
174 		 *
175 		 * We drop this reference after isolating the page from the lru
176 		 * for non device page (device page are not on the lru and thus
177 		 * can't be dropped from it).
178 		 */
179 		get_page(page);
180 
181 		/*
182 		 * Optimize for the common case where page is only mapped once
183 		 * in one process. If we can lock the page, then we can safely
184 		 * set up a special migration page table entry now.
185 		 */
186 		if (trylock_page(page)) {
187 			pte_t swp_pte;
188 
189 			migrate->cpages++;
190 			ptep_get_and_clear(mm, addr, ptep);
191 
192 			/* Setup special migration page table entry */
193 			if (mpfn & MIGRATE_PFN_WRITE)
194 				entry = make_writable_migration_entry(
195 							page_to_pfn(page));
196 			else
197 				entry = make_readable_migration_entry(
198 							page_to_pfn(page));
199 			swp_pte = swp_entry_to_pte(entry);
200 			if (pte_present(pte)) {
201 				if (pte_soft_dirty(pte))
202 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
203 				if (pte_uffd_wp(pte))
204 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
205 			} else {
206 				if (pte_swp_soft_dirty(pte))
207 					swp_pte = pte_swp_mksoft_dirty(swp_pte);
208 				if (pte_swp_uffd_wp(pte))
209 					swp_pte = pte_swp_mkuffd_wp(swp_pte);
210 			}
211 			set_pte_at(mm, addr, ptep, swp_pte);
212 
213 			/*
214 			 * This is like regular unmap: we remove the rmap and
215 			 * drop page refcount. Page won't be freed, as we took
216 			 * a reference just above.
217 			 */
218 			page_remove_rmap(page, vma, false);
219 			put_page(page);
220 
221 			if (pte_present(pte))
222 				unmapped++;
223 		} else {
224 			put_page(page);
225 			mpfn = 0;
226 		}
227 
228 next:
229 		migrate->dst[migrate->npages] = 0;
230 		migrate->src[migrate->npages++] = mpfn;
231 	}
232 	arch_leave_lazy_mmu_mode();
233 	pte_unmap_unlock(ptep - 1, ptl);
234 
235 	/* Only flush the TLB if we actually modified any entries */
236 	if (unmapped)
237 		flush_tlb_range(walk->vma, start, end);
238 
239 	return 0;
240 }
241 
242 static const struct mm_walk_ops migrate_vma_walk_ops = {
243 	.pmd_entry		= migrate_vma_collect_pmd,
244 	.pte_hole		= migrate_vma_collect_hole,
245 };
246 
247 /*
248  * migrate_vma_collect() - collect pages over a range of virtual addresses
249  * @migrate: migrate struct containing all migration information
250  *
251  * This will walk the CPU page table. For each virtual address backed by a
252  * valid page, it updates the src array and takes a reference on the page, in
253  * order to pin the page until we lock it and unmap it.
254  */
255 static void migrate_vma_collect(struct migrate_vma *migrate)
256 {
257 	struct mmu_notifier_range range;
258 
259 	/*
260 	 * Note that the pgmap_owner is passed to the mmu notifier callback so
261 	 * that the registered device driver can skip invalidating device
262 	 * private page mappings that won't be migrated.
263 	 */
264 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
265 		migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
266 		migrate->pgmap_owner);
267 	mmu_notifier_invalidate_range_start(&range);
268 
269 	walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
270 			&migrate_vma_walk_ops, migrate);
271 
272 	mmu_notifier_invalidate_range_end(&range);
273 	migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
274 }
275 
276 /*
277  * migrate_vma_check_page() - check if page is pinned or not
278  * @page: struct page to check
279  *
280  * Pinned pages cannot be migrated. This is the same test as in
281  * folio_migrate_mapping(), except that here we allow migration of a
282  * ZONE_DEVICE page.
283  */
284 static bool migrate_vma_check_page(struct page *page)
285 {
286 	/*
287 	 * One extra ref because caller holds an extra reference, either from
288 	 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
289 	 * a device page.
290 	 */
291 	int extra = 1;
292 
293 	/*
294 	 * FIXME support THP (transparent huge page), it is bit more complex to
295 	 * check them than regular pages, because they can be mapped with a pmd
296 	 * or with a pte (split pte mapping).
297 	 */
298 	if (PageCompound(page))
299 		return false;
300 
301 	/* Page from ZONE_DEVICE have one extra reference */
302 	if (is_zone_device_page(page))
303 		extra++;
304 
305 	/* For file back page */
306 	if (page_mapping(page))
307 		extra += 1 + page_has_private(page);
308 
309 	if ((page_count(page) - extra) > page_mapcount(page))
310 		return false;
311 
312 	return true;
313 }
314 
315 /*
316  * migrate_vma_unmap() - replace page mapping with special migration pte entry
317  * @migrate: migrate struct containing all migration information
318  *
319  * Isolate pages from the LRU and replace mappings (CPU page table pte) with a
320  * special migration pte entry and check if it has been pinned. Pinned pages are
321  * restored because we cannot migrate them.
322  *
323  * This is the last step before we call the device driver callback to allocate
324  * destination memory and copy contents of original page over to new page.
325  */
326 static void migrate_vma_unmap(struct migrate_vma *migrate)
327 {
328 	const unsigned long npages = migrate->npages;
329 	unsigned long i, restore = 0;
330 	bool allow_drain = true;
331 
332 	lru_add_drain();
333 
334 	for (i = 0; i < npages; i++) {
335 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
336 		struct folio *folio;
337 
338 		if (!page)
339 			continue;
340 
341 		/* ZONE_DEVICE pages are not on LRU */
342 		if (!is_zone_device_page(page)) {
343 			if (!PageLRU(page) && allow_drain) {
344 				/* Drain CPU's pagevec */
345 				lru_add_drain_all();
346 				allow_drain = false;
347 			}
348 
349 			if (isolate_lru_page(page)) {
350 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
351 				migrate->cpages--;
352 				restore++;
353 				continue;
354 			}
355 
356 			/* Drop the reference we took in collect */
357 			put_page(page);
358 		}
359 
360 		folio = page_folio(page);
361 		if (folio_mapped(folio))
362 			try_to_migrate(folio, 0);
363 
364 		if (page_mapped(page) || !migrate_vma_check_page(page)) {
365 			if (!is_zone_device_page(page)) {
366 				get_page(page);
367 				putback_lru_page(page);
368 			}
369 
370 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
371 			migrate->cpages--;
372 			restore++;
373 			continue;
374 		}
375 	}
376 
377 	for (i = 0; i < npages && restore; i++) {
378 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
379 		struct folio *folio;
380 
381 		if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
382 			continue;
383 
384 		folio = page_folio(page);
385 		remove_migration_ptes(folio, folio, false);
386 
387 		migrate->src[i] = 0;
388 		folio_unlock(folio);
389 		folio_put(folio);
390 		restore--;
391 	}
392 }
393 
394 /**
395  * migrate_vma_setup() - prepare to migrate a range of memory
396  * @args: contains the vma, start, and pfns arrays for the migration
397  *
398  * Returns: negative errno on failures, 0 when 0 or more pages were migrated
399  * without an error.
400  *
401  * Prepare to migrate a range of memory virtual address range by collecting all
402  * the pages backing each virtual address in the range, saving them inside the
403  * src array.  Then lock those pages and unmap them. Once the pages are locked
404  * and unmapped, check whether each page is pinned or not.  Pages that aren't
405  * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
406  * corresponding src array entry.  Then restores any pages that are pinned, by
407  * remapping and unlocking those pages.
408  *
409  * The caller should then allocate destination memory and copy source memory to
410  * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
411  * flag set).  Once these are allocated and copied, the caller must update each
412  * corresponding entry in the dst array with the pfn value of the destination
413  * page and with MIGRATE_PFN_VALID. Destination pages must be locked via
414  * lock_page().
415  *
416  * Note that the caller does not have to migrate all the pages that are marked
417  * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
418  * device memory to system memory.  If the caller cannot migrate a device page
419  * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
420  * consequences for the userspace process, so it must be avoided if at all
421  * possible.
422  *
423  * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
424  * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
425  * allowing the caller to allocate device memory for those unbacked virtual
426  * addresses.  For this the caller simply has to allocate device memory and
427  * properly set the destination entry like for regular migration.  Note that
428  * this can still fail, and thus inside the device driver you must check if the
429  * migration was successful for those entries after calling migrate_vma_pages(),
430  * just like for regular migration.
431  *
432  * After that, the callers must call migrate_vma_pages() to go over each entry
433  * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
434  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
435  * then migrate_vma_pages() to migrate struct page information from the source
436  * struct page to the destination struct page.  If it fails to migrate the
437  * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
438  * src array.
439  *
440  * At this point all successfully migrated pages have an entry in the src
441  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
442  * array entry with MIGRATE_PFN_VALID flag set.
443  *
444  * Once migrate_vma_pages() returns the caller may inspect which pages were
445  * successfully migrated, and which were not.  Successfully migrated pages will
446  * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
447  *
448  * It is safe to update device page table after migrate_vma_pages() because
449  * both destination and source page are still locked, and the mmap_lock is held
450  * in read mode (hence no one can unmap the range being migrated).
451  *
452  * Once the caller is done cleaning up things and updating its page table (if it
453  * chose to do so, this is not an obligation) it finally calls
454  * migrate_vma_finalize() to update the CPU page table to point to new pages
455  * for successfully migrated pages or otherwise restore the CPU page table to
456  * point to the original source pages.
457  */
458 int migrate_vma_setup(struct migrate_vma *args)
459 {
460 	long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
461 
462 	args->start &= PAGE_MASK;
463 	args->end &= PAGE_MASK;
464 	if (!args->vma || is_vm_hugetlb_page(args->vma) ||
465 	    (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
466 		return -EINVAL;
467 	if (nr_pages <= 0)
468 		return -EINVAL;
469 	if (args->start < args->vma->vm_start ||
470 	    args->start >= args->vma->vm_end)
471 		return -EINVAL;
472 	if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
473 		return -EINVAL;
474 	if (!args->src || !args->dst)
475 		return -EINVAL;
476 
477 	memset(args->src, 0, sizeof(*args->src) * nr_pages);
478 	args->cpages = 0;
479 	args->npages = 0;
480 
481 	migrate_vma_collect(args);
482 
483 	if (args->cpages)
484 		migrate_vma_unmap(args);
485 
486 	/*
487 	 * At this point pages are locked and unmapped, and thus they have
488 	 * stable content and can safely be copied to destination memory that
489 	 * is allocated by the drivers.
490 	 */
491 	return 0;
492 
493 }
494 EXPORT_SYMBOL(migrate_vma_setup);
495 
496 /*
497  * This code closely matches the code in:
498  *   __handle_mm_fault()
499  *     handle_pte_fault()
500  *       do_anonymous_page()
501  * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
502  * private page.
503  */
504 static void migrate_vma_insert_page(struct migrate_vma *migrate,
505 				    unsigned long addr,
506 				    struct page *page,
507 				    unsigned long *src)
508 {
509 	struct vm_area_struct *vma = migrate->vma;
510 	struct mm_struct *mm = vma->vm_mm;
511 	bool flush = false;
512 	spinlock_t *ptl;
513 	pte_t entry;
514 	pgd_t *pgdp;
515 	p4d_t *p4dp;
516 	pud_t *pudp;
517 	pmd_t *pmdp;
518 	pte_t *ptep;
519 
520 	/* Only allow populating anonymous memory */
521 	if (!vma_is_anonymous(vma))
522 		goto abort;
523 
524 	pgdp = pgd_offset(mm, addr);
525 	p4dp = p4d_alloc(mm, pgdp, addr);
526 	if (!p4dp)
527 		goto abort;
528 	pudp = pud_alloc(mm, p4dp, addr);
529 	if (!pudp)
530 		goto abort;
531 	pmdp = pmd_alloc(mm, pudp, addr);
532 	if (!pmdp)
533 		goto abort;
534 
535 	if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
536 		goto abort;
537 
538 	/*
539 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
540 	 * pte_offset_map() on pmds where a huge pmd might be created
541 	 * from a different thread.
542 	 *
543 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
544 	 * parallel threads are excluded by other means.
545 	 *
546 	 * Here we only have mmap_read_lock(mm).
547 	 */
548 	if (pte_alloc(mm, pmdp))
549 		goto abort;
550 
551 	/* See the comment in pte_alloc_one_map() */
552 	if (unlikely(pmd_trans_unstable(pmdp)))
553 		goto abort;
554 
555 	if (unlikely(anon_vma_prepare(vma)))
556 		goto abort;
557 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
558 		goto abort;
559 
560 	/*
561 	 * The memory barrier inside __SetPageUptodate makes sure that
562 	 * preceding stores to the page contents become visible before
563 	 * the set_pte_at() write.
564 	 */
565 	__SetPageUptodate(page);
566 
567 	if (is_device_private_page(page)) {
568 		swp_entry_t swp_entry;
569 
570 		if (vma->vm_flags & VM_WRITE)
571 			swp_entry = make_writable_device_private_entry(
572 						page_to_pfn(page));
573 		else
574 			swp_entry = make_readable_device_private_entry(
575 						page_to_pfn(page));
576 		entry = swp_entry_to_pte(swp_entry);
577 	} else {
578 		/*
579 		 * For now we only support migrating to un-addressable device
580 		 * memory.
581 		 */
582 		if (is_zone_device_page(page)) {
583 			pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
584 			goto abort;
585 		}
586 		entry = mk_pte(page, vma->vm_page_prot);
587 		if (vma->vm_flags & VM_WRITE)
588 			entry = pte_mkwrite(pte_mkdirty(entry));
589 	}
590 
591 	ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
592 
593 	if (check_stable_address_space(mm))
594 		goto unlock_abort;
595 
596 	if (pte_present(*ptep)) {
597 		unsigned long pfn = pte_pfn(*ptep);
598 
599 		if (!is_zero_pfn(pfn))
600 			goto unlock_abort;
601 		flush = true;
602 	} else if (!pte_none(*ptep))
603 		goto unlock_abort;
604 
605 	/*
606 	 * Check for userfaultfd but do not deliver the fault. Instead,
607 	 * just back off.
608 	 */
609 	if (userfaultfd_missing(vma))
610 		goto unlock_abort;
611 
612 	inc_mm_counter(mm, MM_ANONPAGES);
613 	page_add_new_anon_rmap(page, vma, addr, false);
614 	if (!is_zone_device_page(page))
615 		lru_cache_add_inactive_or_unevictable(page, vma);
616 	get_page(page);
617 
618 	if (flush) {
619 		flush_cache_page(vma, addr, pte_pfn(*ptep));
620 		ptep_clear_flush_notify(vma, addr, ptep);
621 		set_pte_at_notify(mm, addr, ptep, entry);
622 		update_mmu_cache(vma, addr, ptep);
623 	} else {
624 		/* No need to invalidate - it was non-present before */
625 		set_pte_at(mm, addr, ptep, entry);
626 		update_mmu_cache(vma, addr, ptep);
627 	}
628 
629 	pte_unmap_unlock(ptep, ptl);
630 	*src = MIGRATE_PFN_MIGRATE;
631 	return;
632 
633 unlock_abort:
634 	pte_unmap_unlock(ptep, ptl);
635 abort:
636 	*src &= ~MIGRATE_PFN_MIGRATE;
637 }
638 
639 /**
640  * migrate_vma_pages() - migrate meta-data from src page to dst page
641  * @migrate: migrate struct containing all migration information
642  *
643  * This migrates struct page meta-data from source struct page to destination
644  * struct page. This effectively finishes the migration from source page to the
645  * destination page.
646  */
647 void migrate_vma_pages(struct migrate_vma *migrate)
648 {
649 	const unsigned long npages = migrate->npages;
650 	const unsigned long start = migrate->start;
651 	struct mmu_notifier_range range;
652 	unsigned long addr, i;
653 	bool notified = false;
654 
655 	for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
656 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
657 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
658 		struct address_space *mapping;
659 		int r;
660 
661 		if (!newpage) {
662 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
663 			continue;
664 		}
665 
666 		if (!page) {
667 			if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
668 				continue;
669 			if (!notified) {
670 				notified = true;
671 
672 				mmu_notifier_range_init_owner(&range,
673 					MMU_NOTIFY_MIGRATE, 0, migrate->vma,
674 					migrate->vma->vm_mm, addr, migrate->end,
675 					migrate->pgmap_owner);
676 				mmu_notifier_invalidate_range_start(&range);
677 			}
678 			migrate_vma_insert_page(migrate, addr, newpage,
679 						&migrate->src[i]);
680 			continue;
681 		}
682 
683 		mapping = page_mapping(page);
684 
685 		if (is_device_private_page(newpage)) {
686 			/*
687 			 * For now only support private anonymous when migrating
688 			 * to un-addressable device memory.
689 			 */
690 			if (mapping) {
691 				migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
692 				continue;
693 			}
694 		} else if (is_zone_device_page(newpage)) {
695 			/*
696 			 * Other types of ZONE_DEVICE page are not supported.
697 			 */
698 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
699 			continue;
700 		}
701 
702 		r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
703 		if (r != MIGRATEPAGE_SUCCESS)
704 			migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
705 	}
706 
707 	/*
708 	 * No need to double call mmu_notifier->invalidate_range() callback as
709 	 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
710 	 * did already call it.
711 	 */
712 	if (notified)
713 		mmu_notifier_invalidate_range_only_end(&range);
714 }
715 EXPORT_SYMBOL(migrate_vma_pages);
716 
717 /**
718  * migrate_vma_finalize() - restore CPU page table entry
719  * @migrate: migrate struct containing all migration information
720  *
721  * This replaces the special migration pte entry with either a mapping to the
722  * new page if migration was successful for that page, or to the original page
723  * otherwise.
724  *
725  * This also unlocks the pages and puts them back on the lru, or drops the extra
726  * refcount, for device pages.
727  */
728 void migrate_vma_finalize(struct migrate_vma *migrate)
729 {
730 	const unsigned long npages = migrate->npages;
731 	unsigned long i;
732 
733 	for (i = 0; i < npages; i++) {
734 		struct folio *dst, *src;
735 		struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
736 		struct page *page = migrate_pfn_to_page(migrate->src[i]);
737 
738 		if (!page) {
739 			if (newpage) {
740 				unlock_page(newpage);
741 				put_page(newpage);
742 			}
743 			continue;
744 		}
745 
746 		if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
747 			if (newpage) {
748 				unlock_page(newpage);
749 				put_page(newpage);
750 			}
751 			newpage = page;
752 		}
753 
754 		src = page_folio(page);
755 		dst = page_folio(newpage);
756 		remove_migration_ptes(src, dst, false);
757 		folio_unlock(src);
758 
759 		if (is_zone_device_page(page))
760 			put_page(page);
761 		else
762 			putback_lru_page(page);
763 
764 		if (newpage != page) {
765 			unlock_page(newpage);
766 			if (is_zone_device_page(newpage))
767 				put_page(newpage);
768 			else
769 				putback_lru_page(newpage);
770 		}
771 	}
772 }
773 EXPORT_SYMBOL(migrate_vma_finalize);
774