xref: /linux/mm/oom_kill.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/swap.h>
30 #include <linux/timex.h>
31 #include <linux/jiffies.h>
32 #include <linux/cpuset.h>
33 #include <linux/export.h>
34 #include <linux/notifier.h>
35 #include <linux/memcontrol.h>
36 #include <linux/mempolicy.h>
37 #include <linux/security.h>
38 #include <linux/ptrace.h>
39 #include <linux/freezer.h>
40 #include <linux/ftrace.h>
41 #include <linux/ratelimit.h>
42 #include <linux/kthread.h>
43 #include <linux/init.h>
44 #include <linux/mmu_notifier.h>
45 
46 #include <asm/tlb.h>
47 #include "internal.h"
48 #include "slab.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/oom.h>
52 
53 int sysctl_panic_on_oom;
54 int sysctl_oom_kill_allocating_task;
55 int sysctl_oom_dump_tasks = 1;
56 
57 /*
58  * Serializes oom killer invocations (out_of_memory()) from all contexts to
59  * prevent from over eager oom killing (e.g. when the oom killer is invoked
60  * from different domains).
61  *
62  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
63  * and mark_oom_victim
64  */
65 DEFINE_MUTEX(oom_lock);
66 
67 #ifdef CONFIG_NUMA
68 /**
69  * has_intersects_mems_allowed() - check task eligiblity for kill
70  * @start: task struct of which task to consider
71  * @mask: nodemask passed to page allocator for mempolicy ooms
72  *
73  * Task eligibility is determined by whether or not a candidate task, @tsk,
74  * shares the same mempolicy nodes as current if it is bound by such a policy
75  * and whether or not it has the same set of allowed cpuset nodes.
76  */
77 static bool has_intersects_mems_allowed(struct task_struct *start,
78 					const nodemask_t *mask)
79 {
80 	struct task_struct *tsk;
81 	bool ret = false;
82 
83 	rcu_read_lock();
84 	for_each_thread(start, tsk) {
85 		if (mask) {
86 			/*
87 			 * If this is a mempolicy constrained oom, tsk's
88 			 * cpuset is irrelevant.  Only return true if its
89 			 * mempolicy intersects current, otherwise it may be
90 			 * needlessly killed.
91 			 */
92 			ret = mempolicy_nodemask_intersects(tsk, mask);
93 		} else {
94 			/*
95 			 * This is not a mempolicy constrained oom, so only
96 			 * check the mems of tsk's cpuset.
97 			 */
98 			ret = cpuset_mems_allowed_intersects(current, tsk);
99 		}
100 		if (ret)
101 			break;
102 	}
103 	rcu_read_unlock();
104 
105 	return ret;
106 }
107 #else
108 static bool has_intersects_mems_allowed(struct task_struct *tsk,
109 					const nodemask_t *mask)
110 {
111 	return true;
112 }
113 #endif /* CONFIG_NUMA */
114 
115 /*
116  * The process p may have detached its own ->mm while exiting or through
117  * use_mm(), but one or more of its subthreads may still have a valid
118  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
119  * task_lock() held.
120  */
121 struct task_struct *find_lock_task_mm(struct task_struct *p)
122 {
123 	struct task_struct *t;
124 
125 	rcu_read_lock();
126 
127 	for_each_thread(p, t) {
128 		task_lock(t);
129 		if (likely(t->mm))
130 			goto found;
131 		task_unlock(t);
132 	}
133 	t = NULL;
134 found:
135 	rcu_read_unlock();
136 
137 	return t;
138 }
139 
140 /*
141  * order == -1 means the oom kill is required by sysrq, otherwise only
142  * for display purposes.
143  */
144 static inline bool is_sysrq_oom(struct oom_control *oc)
145 {
146 	return oc->order == -1;
147 }
148 
149 static inline bool is_memcg_oom(struct oom_control *oc)
150 {
151 	return oc->memcg != NULL;
152 }
153 
154 /* return true if the task is not adequate as candidate victim task. */
155 static bool oom_unkillable_task(struct task_struct *p,
156 		struct mem_cgroup *memcg, const nodemask_t *nodemask)
157 {
158 	if (is_global_init(p))
159 		return true;
160 	if (p->flags & PF_KTHREAD)
161 		return true;
162 
163 	/* When mem_cgroup_out_of_memory() and p is not member of the group */
164 	if (memcg && !task_in_mem_cgroup(p, memcg))
165 		return true;
166 
167 	/* p may not have freeable memory in nodemask */
168 	if (!has_intersects_mems_allowed(p, nodemask))
169 		return true;
170 
171 	return false;
172 }
173 
174 /*
175  * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
176  * than all user memory (LRU pages)
177  */
178 static bool is_dump_unreclaim_slabs(void)
179 {
180 	unsigned long nr_lru;
181 
182 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183 		 global_node_page_state(NR_INACTIVE_ANON) +
184 		 global_node_page_state(NR_ACTIVE_FILE) +
185 		 global_node_page_state(NR_INACTIVE_FILE) +
186 		 global_node_page_state(NR_ISOLATED_ANON) +
187 		 global_node_page_state(NR_ISOLATED_FILE) +
188 		 global_node_page_state(NR_UNEVICTABLE);
189 
190 	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
191 }
192 
193 /**
194  * oom_badness - heuristic function to determine which candidate task to kill
195  * @p: task struct of which task we should calculate
196  * @totalpages: total present RAM allowed for page allocation
197  * @memcg: task's memory controller, if constrained
198  * @nodemask: nodemask passed to page allocator for mempolicy ooms
199  *
200  * The heuristic for determining which task to kill is made to be as simple and
201  * predictable as possible.  The goal is to return the highest value for the
202  * task consuming the most memory to avoid subsequent oom failures.
203  */
204 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
205 			  const nodemask_t *nodemask, unsigned long totalpages)
206 {
207 	long points;
208 	long adj;
209 
210 	if (oom_unkillable_task(p, memcg, nodemask))
211 		return 0;
212 
213 	p = find_lock_task_mm(p);
214 	if (!p)
215 		return 0;
216 
217 	/*
218 	 * Do not even consider tasks which are explicitly marked oom
219 	 * unkillable or have been already oom reaped or the are in
220 	 * the middle of vfork
221 	 */
222 	adj = (long)p->signal->oom_score_adj;
223 	if (adj == OOM_SCORE_ADJ_MIN ||
224 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
225 			in_vfork(p)) {
226 		task_unlock(p);
227 		return 0;
228 	}
229 
230 	/*
231 	 * The baseline for the badness score is the proportion of RAM that each
232 	 * task's rss, pagetable and swap space use.
233 	 */
234 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
235 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
236 	task_unlock(p);
237 
238 	/* Normalize to oom_score_adj units */
239 	adj *= totalpages / 1000;
240 	points += adj;
241 
242 	/*
243 	 * Never return 0 for an eligible task regardless of the root bonus and
244 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
245 	 */
246 	return points > 0 ? points : 1;
247 }
248 
249 static const char * const oom_constraint_text[] = {
250 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
251 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
252 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
253 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
254 };
255 
256 /*
257  * Determine the type of allocation constraint.
258  */
259 static enum oom_constraint constrained_alloc(struct oom_control *oc)
260 {
261 	struct zone *zone;
262 	struct zoneref *z;
263 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
264 	bool cpuset_limited = false;
265 	int nid;
266 
267 	if (is_memcg_oom(oc)) {
268 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
269 		return CONSTRAINT_MEMCG;
270 	}
271 
272 	/* Default to all available memory */
273 	oc->totalpages = totalram_pages() + total_swap_pages;
274 
275 	if (!IS_ENABLED(CONFIG_NUMA))
276 		return CONSTRAINT_NONE;
277 
278 	if (!oc->zonelist)
279 		return CONSTRAINT_NONE;
280 	/*
281 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
282 	 * to kill current.We have to random task kill in this case.
283 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
284 	 */
285 	if (oc->gfp_mask & __GFP_THISNODE)
286 		return CONSTRAINT_NONE;
287 
288 	/*
289 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
290 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
291 	 * is enforced in get_page_from_freelist().
292 	 */
293 	if (oc->nodemask &&
294 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
295 		oc->totalpages = total_swap_pages;
296 		for_each_node_mask(nid, *oc->nodemask)
297 			oc->totalpages += node_spanned_pages(nid);
298 		return CONSTRAINT_MEMORY_POLICY;
299 	}
300 
301 	/* Check this allocation failure is caused by cpuset's wall function */
302 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
303 			high_zoneidx, oc->nodemask)
304 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
305 			cpuset_limited = true;
306 
307 	if (cpuset_limited) {
308 		oc->totalpages = total_swap_pages;
309 		for_each_node_mask(nid, cpuset_current_mems_allowed)
310 			oc->totalpages += node_spanned_pages(nid);
311 		return CONSTRAINT_CPUSET;
312 	}
313 	return CONSTRAINT_NONE;
314 }
315 
316 static int oom_evaluate_task(struct task_struct *task, void *arg)
317 {
318 	struct oom_control *oc = arg;
319 	unsigned long points;
320 
321 	if (oom_unkillable_task(task, NULL, oc->nodemask))
322 		goto next;
323 
324 	/*
325 	 * This task already has access to memory reserves and is being killed.
326 	 * Don't allow any other task to have access to the reserves unless
327 	 * the task has MMF_OOM_SKIP because chances that it would release
328 	 * any memory is quite low.
329 	 */
330 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
331 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
332 			goto next;
333 		goto abort;
334 	}
335 
336 	/*
337 	 * If task is allocating a lot of memory and has been marked to be
338 	 * killed first if it triggers an oom, then select it.
339 	 */
340 	if (oom_task_origin(task)) {
341 		points = ULONG_MAX;
342 		goto select;
343 	}
344 
345 	points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
346 	if (!points || points < oc->chosen_points)
347 		goto next;
348 
349 	/* Prefer thread group leaders for display purposes */
350 	if (points == oc->chosen_points && thread_group_leader(oc->chosen))
351 		goto next;
352 select:
353 	if (oc->chosen)
354 		put_task_struct(oc->chosen);
355 	get_task_struct(task);
356 	oc->chosen = task;
357 	oc->chosen_points = points;
358 next:
359 	return 0;
360 abort:
361 	if (oc->chosen)
362 		put_task_struct(oc->chosen);
363 	oc->chosen = (void *)-1UL;
364 	return 1;
365 }
366 
367 /*
368  * Simple selection loop. We choose the process with the highest number of
369  * 'points'. In case scan was aborted, oc->chosen is set to -1.
370  */
371 static void select_bad_process(struct oom_control *oc)
372 {
373 	if (is_memcg_oom(oc))
374 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
375 	else {
376 		struct task_struct *p;
377 
378 		rcu_read_lock();
379 		for_each_process(p)
380 			if (oom_evaluate_task(p, oc))
381 				break;
382 		rcu_read_unlock();
383 	}
384 
385 	oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
386 }
387 
388 /**
389  * dump_tasks - dump current memory state of all system tasks
390  * @memcg: current's memory controller, if constrained
391  * @nodemask: nodemask passed to page allocator for mempolicy ooms
392  *
393  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
394  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
395  * are not shown.
396  * State information includes task's pid, uid, tgid, vm size, rss,
397  * pgtables_bytes, swapents, oom_score_adj value, and name.
398  */
399 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
400 {
401 	struct task_struct *p;
402 	struct task_struct *task;
403 
404 	pr_info("Tasks state (memory values in pages):\n");
405 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
406 	rcu_read_lock();
407 	for_each_process(p) {
408 		if (oom_unkillable_task(p, memcg, nodemask))
409 			continue;
410 
411 		task = find_lock_task_mm(p);
412 		if (!task) {
413 			/*
414 			 * This is a kthread or all of p's threads have already
415 			 * detached their mm's.  There's no need to report
416 			 * them; they can't be oom killed anyway.
417 			 */
418 			continue;
419 		}
420 
421 		pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
422 			task->pid, from_kuid(&init_user_ns, task_uid(task)),
423 			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
424 			mm_pgtables_bytes(task->mm),
425 			get_mm_counter(task->mm, MM_SWAPENTS),
426 			task->signal->oom_score_adj, task->comm);
427 		task_unlock(task);
428 	}
429 	rcu_read_unlock();
430 }
431 
432 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
433 {
434 	/* one line summary of the oom killer context. */
435 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
436 			oom_constraint_text[oc->constraint],
437 			nodemask_pr_args(oc->nodemask));
438 	cpuset_print_current_mems_allowed();
439 	mem_cgroup_print_oom_context(oc->memcg, victim);
440 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
441 		from_kuid(&init_user_ns, task_uid(victim)));
442 }
443 
444 static void dump_header(struct oom_control *oc, struct task_struct *p)
445 {
446 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
447 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
448 			current->signal->oom_score_adj);
449 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
450 		pr_warn("COMPACTION is disabled!!!\n");
451 
452 	dump_stack();
453 	if (is_memcg_oom(oc))
454 		mem_cgroup_print_oom_meminfo(oc->memcg);
455 	else {
456 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
457 		if (is_dump_unreclaim_slabs())
458 			dump_unreclaimable_slab();
459 	}
460 	if (sysctl_oom_dump_tasks)
461 		dump_tasks(oc->memcg, oc->nodemask);
462 	if (p)
463 		dump_oom_summary(oc, p);
464 }
465 
466 /*
467  * Number of OOM victims in flight
468  */
469 static atomic_t oom_victims = ATOMIC_INIT(0);
470 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
471 
472 static bool oom_killer_disabled __read_mostly;
473 
474 #define K(x) ((x) << (PAGE_SHIFT-10))
475 
476 /*
477  * task->mm can be NULL if the task is the exited group leader.  So to
478  * determine whether the task is using a particular mm, we examine all the
479  * task's threads: if one of those is using this mm then this task was also
480  * using it.
481  */
482 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
483 {
484 	struct task_struct *t;
485 
486 	for_each_thread(p, t) {
487 		struct mm_struct *t_mm = READ_ONCE(t->mm);
488 		if (t_mm)
489 			return t_mm == mm;
490 	}
491 	return false;
492 }
493 
494 #ifdef CONFIG_MMU
495 /*
496  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
497  * victim (if that is possible) to help the OOM killer to move on.
498  */
499 static struct task_struct *oom_reaper_th;
500 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
501 static struct task_struct *oom_reaper_list;
502 static DEFINE_SPINLOCK(oom_reaper_lock);
503 
504 bool __oom_reap_task_mm(struct mm_struct *mm)
505 {
506 	struct vm_area_struct *vma;
507 	bool ret = true;
508 
509 	/*
510 	 * Tell all users of get_user/copy_from_user etc... that the content
511 	 * is no longer stable. No barriers really needed because unmapping
512 	 * should imply barriers already and the reader would hit a page fault
513 	 * if it stumbled over a reaped memory.
514 	 */
515 	set_bit(MMF_UNSTABLE, &mm->flags);
516 
517 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
518 		if (!can_madv_dontneed_vma(vma))
519 			continue;
520 
521 		/*
522 		 * Only anonymous pages have a good chance to be dropped
523 		 * without additional steps which we cannot afford as we
524 		 * are OOM already.
525 		 *
526 		 * We do not even care about fs backed pages because all
527 		 * which are reclaimable have already been reclaimed and
528 		 * we do not want to block exit_mmap by keeping mm ref
529 		 * count elevated without a good reason.
530 		 */
531 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
532 			struct mmu_notifier_range range;
533 			struct mmu_gather tlb;
534 
535 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
536 						vma, mm, vma->vm_start,
537 						vma->vm_end);
538 			tlb_gather_mmu(&tlb, mm, range.start, range.end);
539 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
540 				tlb_finish_mmu(&tlb, range.start, range.end);
541 				ret = false;
542 				continue;
543 			}
544 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
545 			mmu_notifier_invalidate_range_end(&range);
546 			tlb_finish_mmu(&tlb, range.start, range.end);
547 		}
548 	}
549 
550 	return ret;
551 }
552 
553 /*
554  * Reaps the address space of the give task.
555  *
556  * Returns true on success and false if none or part of the address space
557  * has been reclaimed and the caller should retry later.
558  */
559 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
560 {
561 	bool ret = true;
562 
563 	if (!down_read_trylock(&mm->mmap_sem)) {
564 		trace_skip_task_reaping(tsk->pid);
565 		return false;
566 	}
567 
568 	/*
569 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
570 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
571 	 * under mmap_sem for reading because it serializes against the
572 	 * down_write();up_write() cycle in exit_mmap().
573 	 */
574 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
575 		trace_skip_task_reaping(tsk->pid);
576 		goto out_unlock;
577 	}
578 
579 	trace_start_task_reaping(tsk->pid);
580 
581 	/* failed to reap part of the address space. Try again later */
582 	ret = __oom_reap_task_mm(mm);
583 	if (!ret)
584 		goto out_finish;
585 
586 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
587 			task_pid_nr(tsk), tsk->comm,
588 			K(get_mm_counter(mm, MM_ANONPAGES)),
589 			K(get_mm_counter(mm, MM_FILEPAGES)),
590 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
591 out_finish:
592 	trace_finish_task_reaping(tsk->pid);
593 out_unlock:
594 	up_read(&mm->mmap_sem);
595 
596 	return ret;
597 }
598 
599 #define MAX_OOM_REAP_RETRIES 10
600 static void oom_reap_task(struct task_struct *tsk)
601 {
602 	int attempts = 0;
603 	struct mm_struct *mm = tsk->signal->oom_mm;
604 
605 	/* Retry the down_read_trylock(mmap_sem) a few times */
606 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
607 		schedule_timeout_idle(HZ/10);
608 
609 	if (attempts <= MAX_OOM_REAP_RETRIES ||
610 	    test_bit(MMF_OOM_SKIP, &mm->flags))
611 		goto done;
612 
613 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
614 		task_pid_nr(tsk), tsk->comm);
615 	debug_show_all_locks();
616 
617 done:
618 	tsk->oom_reaper_list = NULL;
619 
620 	/*
621 	 * Hide this mm from OOM killer because it has been either reaped or
622 	 * somebody can't call up_write(mmap_sem).
623 	 */
624 	set_bit(MMF_OOM_SKIP, &mm->flags);
625 
626 	/* Drop a reference taken by wake_oom_reaper */
627 	put_task_struct(tsk);
628 }
629 
630 static int oom_reaper(void *unused)
631 {
632 	while (true) {
633 		struct task_struct *tsk = NULL;
634 
635 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
636 		spin_lock(&oom_reaper_lock);
637 		if (oom_reaper_list != NULL) {
638 			tsk = oom_reaper_list;
639 			oom_reaper_list = tsk->oom_reaper_list;
640 		}
641 		spin_unlock(&oom_reaper_lock);
642 
643 		if (tsk)
644 			oom_reap_task(tsk);
645 	}
646 
647 	return 0;
648 }
649 
650 static void wake_oom_reaper(struct task_struct *tsk)
651 {
652 	/* mm is already queued? */
653 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
654 		return;
655 
656 	get_task_struct(tsk);
657 
658 	spin_lock(&oom_reaper_lock);
659 	tsk->oom_reaper_list = oom_reaper_list;
660 	oom_reaper_list = tsk;
661 	spin_unlock(&oom_reaper_lock);
662 	trace_wake_reaper(tsk->pid);
663 	wake_up(&oom_reaper_wait);
664 }
665 
666 static int __init oom_init(void)
667 {
668 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
669 	return 0;
670 }
671 subsys_initcall(oom_init)
672 #else
673 static inline void wake_oom_reaper(struct task_struct *tsk)
674 {
675 }
676 #endif /* CONFIG_MMU */
677 
678 /**
679  * mark_oom_victim - mark the given task as OOM victim
680  * @tsk: task to mark
681  *
682  * Has to be called with oom_lock held and never after
683  * oom has been disabled already.
684  *
685  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
686  * under task_lock or operate on the current).
687  */
688 static void mark_oom_victim(struct task_struct *tsk)
689 {
690 	struct mm_struct *mm = tsk->mm;
691 
692 	WARN_ON(oom_killer_disabled);
693 	/* OOM killer might race with memcg OOM */
694 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
695 		return;
696 
697 	/* oom_mm is bound to the signal struct life time. */
698 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
699 		mmgrab(tsk->signal->oom_mm);
700 		set_bit(MMF_OOM_VICTIM, &mm->flags);
701 	}
702 
703 	/*
704 	 * Make sure that the task is woken up from uninterruptible sleep
705 	 * if it is frozen because OOM killer wouldn't be able to free
706 	 * any memory and livelock. freezing_slow_path will tell the freezer
707 	 * that TIF_MEMDIE tasks should be ignored.
708 	 */
709 	__thaw_task(tsk);
710 	atomic_inc(&oom_victims);
711 	trace_mark_victim(tsk->pid);
712 }
713 
714 /**
715  * exit_oom_victim - note the exit of an OOM victim
716  */
717 void exit_oom_victim(void)
718 {
719 	clear_thread_flag(TIF_MEMDIE);
720 
721 	if (!atomic_dec_return(&oom_victims))
722 		wake_up_all(&oom_victims_wait);
723 }
724 
725 /**
726  * oom_killer_enable - enable OOM killer
727  */
728 void oom_killer_enable(void)
729 {
730 	oom_killer_disabled = false;
731 	pr_info("OOM killer enabled.\n");
732 }
733 
734 /**
735  * oom_killer_disable - disable OOM killer
736  * @timeout: maximum timeout to wait for oom victims in jiffies
737  *
738  * Forces all page allocations to fail rather than trigger OOM killer.
739  * Will block and wait until all OOM victims are killed or the given
740  * timeout expires.
741  *
742  * The function cannot be called when there are runnable user tasks because
743  * the userspace would see unexpected allocation failures as a result. Any
744  * new usage of this function should be consulted with MM people.
745  *
746  * Returns true if successful and false if the OOM killer cannot be
747  * disabled.
748  */
749 bool oom_killer_disable(signed long timeout)
750 {
751 	signed long ret;
752 
753 	/*
754 	 * Make sure to not race with an ongoing OOM killer. Check that the
755 	 * current is not killed (possibly due to sharing the victim's memory).
756 	 */
757 	if (mutex_lock_killable(&oom_lock))
758 		return false;
759 	oom_killer_disabled = true;
760 	mutex_unlock(&oom_lock);
761 
762 	ret = wait_event_interruptible_timeout(oom_victims_wait,
763 			!atomic_read(&oom_victims), timeout);
764 	if (ret <= 0) {
765 		oom_killer_enable();
766 		return false;
767 	}
768 	pr_info("OOM killer disabled.\n");
769 
770 	return true;
771 }
772 
773 static inline bool __task_will_free_mem(struct task_struct *task)
774 {
775 	struct signal_struct *sig = task->signal;
776 
777 	/*
778 	 * A coredumping process may sleep for an extended period in exit_mm(),
779 	 * so the oom killer cannot assume that the process will promptly exit
780 	 * and release memory.
781 	 */
782 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
783 		return false;
784 
785 	if (sig->flags & SIGNAL_GROUP_EXIT)
786 		return true;
787 
788 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
789 		return true;
790 
791 	return false;
792 }
793 
794 /*
795  * Checks whether the given task is dying or exiting and likely to
796  * release its address space. This means that all threads and processes
797  * sharing the same mm have to be killed or exiting.
798  * Caller has to make sure that task->mm is stable (hold task_lock or
799  * it operates on the current).
800  */
801 static bool task_will_free_mem(struct task_struct *task)
802 {
803 	struct mm_struct *mm = task->mm;
804 	struct task_struct *p;
805 	bool ret = true;
806 
807 	/*
808 	 * Skip tasks without mm because it might have passed its exit_mm and
809 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
810 	 * on that for now. We can consider find_lock_task_mm in future.
811 	 */
812 	if (!mm)
813 		return false;
814 
815 	if (!__task_will_free_mem(task))
816 		return false;
817 
818 	/*
819 	 * This task has already been drained by the oom reaper so there are
820 	 * only small chances it will free some more
821 	 */
822 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
823 		return false;
824 
825 	if (atomic_read(&mm->mm_users) <= 1)
826 		return true;
827 
828 	/*
829 	 * Make sure that all tasks which share the mm with the given tasks
830 	 * are dying as well to make sure that a) nobody pins its mm and
831 	 * b) the task is also reapable by the oom reaper.
832 	 */
833 	rcu_read_lock();
834 	for_each_process(p) {
835 		if (!process_shares_mm(p, mm))
836 			continue;
837 		if (same_thread_group(task, p))
838 			continue;
839 		ret = __task_will_free_mem(p);
840 		if (!ret)
841 			break;
842 	}
843 	rcu_read_unlock();
844 
845 	return ret;
846 }
847 
848 static void __oom_kill_process(struct task_struct *victim, const char *message)
849 {
850 	struct task_struct *p;
851 	struct mm_struct *mm;
852 	bool can_oom_reap = true;
853 
854 	p = find_lock_task_mm(victim);
855 	if (!p) {
856 		put_task_struct(victim);
857 		return;
858 	} else if (victim != p) {
859 		get_task_struct(p);
860 		put_task_struct(victim);
861 		victim = p;
862 	}
863 
864 	/* Get a reference to safely compare mm after task_unlock(victim) */
865 	mm = victim->mm;
866 	mmgrab(mm);
867 
868 	/* Raise event before sending signal: task reaper must see this */
869 	count_vm_event(OOM_KILL);
870 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
871 
872 	/*
873 	 * We should send SIGKILL before granting access to memory reserves
874 	 * in order to prevent the OOM victim from depleting the memory
875 	 * reserves from the user space under its control.
876 	 */
877 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
878 	mark_oom_victim(victim);
879 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
880 		message, task_pid_nr(victim), victim->comm,
881 		K(victim->mm->total_vm),
882 		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
883 		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
884 		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
885 	task_unlock(victim);
886 
887 	/*
888 	 * Kill all user processes sharing victim->mm in other thread groups, if
889 	 * any.  They don't get access to memory reserves, though, to avoid
890 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
891 	 * oom killed thread cannot exit because it requires the semaphore and
892 	 * its contended by another thread trying to allocate memory itself.
893 	 * That thread will now get access to memory reserves since it has a
894 	 * pending fatal signal.
895 	 */
896 	rcu_read_lock();
897 	for_each_process(p) {
898 		if (!process_shares_mm(p, mm))
899 			continue;
900 		if (same_thread_group(p, victim))
901 			continue;
902 		if (is_global_init(p)) {
903 			can_oom_reap = false;
904 			set_bit(MMF_OOM_SKIP, &mm->flags);
905 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
906 					task_pid_nr(victim), victim->comm,
907 					task_pid_nr(p), p->comm);
908 			continue;
909 		}
910 		/*
911 		 * No use_mm() user needs to read from the userspace so we are
912 		 * ok to reap it.
913 		 */
914 		if (unlikely(p->flags & PF_KTHREAD))
915 			continue;
916 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
917 	}
918 	rcu_read_unlock();
919 
920 	if (can_oom_reap)
921 		wake_oom_reaper(victim);
922 
923 	mmdrop(mm);
924 	put_task_struct(victim);
925 }
926 #undef K
927 
928 /*
929  * Kill provided task unless it's secured by setting
930  * oom_score_adj to OOM_SCORE_ADJ_MIN.
931  */
932 static int oom_kill_memcg_member(struct task_struct *task, void *message)
933 {
934 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
935 	    !is_global_init(task)) {
936 		get_task_struct(task);
937 		__oom_kill_process(task, message);
938 	}
939 	return 0;
940 }
941 
942 static void oom_kill_process(struct oom_control *oc, const char *message)
943 {
944 	struct task_struct *victim = oc->chosen;
945 	struct mem_cgroup *oom_group;
946 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
947 					      DEFAULT_RATELIMIT_BURST);
948 
949 	/*
950 	 * If the task is already exiting, don't alarm the sysadmin or kill
951 	 * its children or threads, just give it access to memory reserves
952 	 * so it can die quickly
953 	 */
954 	task_lock(victim);
955 	if (task_will_free_mem(victim)) {
956 		mark_oom_victim(victim);
957 		wake_oom_reaper(victim);
958 		task_unlock(victim);
959 		put_task_struct(victim);
960 		return;
961 	}
962 	task_unlock(victim);
963 
964 	if (__ratelimit(&oom_rs))
965 		dump_header(oc, victim);
966 
967 	/*
968 	 * Do we need to kill the entire memory cgroup?
969 	 * Or even one of the ancestor memory cgroups?
970 	 * Check this out before killing the victim task.
971 	 */
972 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
973 
974 	__oom_kill_process(victim, message);
975 
976 	/*
977 	 * If necessary, kill all tasks in the selected memory cgroup.
978 	 */
979 	if (oom_group) {
980 		mem_cgroup_print_oom_group(oom_group);
981 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
982 				      (void*)message);
983 		mem_cgroup_put(oom_group);
984 	}
985 }
986 
987 /*
988  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
989  */
990 static void check_panic_on_oom(struct oom_control *oc,
991 			       enum oom_constraint constraint)
992 {
993 	if (likely(!sysctl_panic_on_oom))
994 		return;
995 	if (sysctl_panic_on_oom != 2) {
996 		/*
997 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
998 		 * does not panic for cpuset, mempolicy, or memcg allocation
999 		 * failures.
1000 		 */
1001 		if (constraint != CONSTRAINT_NONE)
1002 			return;
1003 	}
1004 	/* Do not panic for oom kills triggered by sysrq */
1005 	if (is_sysrq_oom(oc))
1006 		return;
1007 	dump_header(oc, NULL);
1008 	panic("Out of memory: %s panic_on_oom is enabled\n",
1009 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1010 }
1011 
1012 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1013 
1014 int register_oom_notifier(struct notifier_block *nb)
1015 {
1016 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1017 }
1018 EXPORT_SYMBOL_GPL(register_oom_notifier);
1019 
1020 int unregister_oom_notifier(struct notifier_block *nb)
1021 {
1022 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1023 }
1024 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1025 
1026 /**
1027  * out_of_memory - kill the "best" process when we run out of memory
1028  * @oc: pointer to struct oom_control
1029  *
1030  * If we run out of memory, we have the choice between either
1031  * killing a random task (bad), letting the system crash (worse)
1032  * OR try to be smart about which process to kill. Note that we
1033  * don't have to be perfect here, we just have to be good.
1034  */
1035 bool out_of_memory(struct oom_control *oc)
1036 {
1037 	unsigned long freed = 0;
1038 	enum oom_constraint constraint = CONSTRAINT_NONE;
1039 
1040 	if (oom_killer_disabled)
1041 		return false;
1042 
1043 	if (!is_memcg_oom(oc)) {
1044 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1045 		if (freed > 0)
1046 			/* Got some memory back in the last second. */
1047 			return true;
1048 	}
1049 
1050 	/*
1051 	 * If current has a pending SIGKILL or is exiting, then automatically
1052 	 * select it.  The goal is to allow it to allocate so that it may
1053 	 * quickly exit and free its memory.
1054 	 */
1055 	if (task_will_free_mem(current)) {
1056 		mark_oom_victim(current);
1057 		wake_oom_reaper(current);
1058 		return true;
1059 	}
1060 
1061 	/*
1062 	 * The OOM killer does not compensate for IO-less reclaim.
1063 	 * pagefault_out_of_memory lost its gfp context so we have to
1064 	 * make sure exclude 0 mask - all other users should have at least
1065 	 * ___GFP_DIRECT_RECLAIM to get here.
1066 	 */
1067 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
1068 		return true;
1069 
1070 	/*
1071 	 * Check if there were limitations on the allocation (only relevant for
1072 	 * NUMA and memcg) that may require different handling.
1073 	 */
1074 	constraint = constrained_alloc(oc);
1075 	if (constraint != CONSTRAINT_MEMORY_POLICY)
1076 		oc->nodemask = NULL;
1077 	check_panic_on_oom(oc, constraint);
1078 
1079 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1080 	    current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
1081 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1082 		get_task_struct(current);
1083 		oc->chosen = current;
1084 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1085 		return true;
1086 	}
1087 
1088 	select_bad_process(oc);
1089 	/* Found nothing?!?! */
1090 	if (!oc->chosen) {
1091 		dump_header(oc, NULL);
1092 		pr_warn("Out of memory and no killable processes...\n");
1093 		/*
1094 		 * If we got here due to an actual allocation at the
1095 		 * system level, we cannot survive this and will enter
1096 		 * an endless loop in the allocator. Bail out now.
1097 		 */
1098 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1099 			panic("System is deadlocked on memory\n");
1100 	}
1101 	if (oc->chosen && oc->chosen != (void *)-1UL)
1102 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1103 				 "Memory cgroup out of memory");
1104 	return !!oc->chosen;
1105 }
1106 
1107 /*
1108  * The pagefault handler calls here because it is out of memory, so kill a
1109  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1110  * killing is already in progress so do nothing.
1111  */
1112 void pagefault_out_of_memory(void)
1113 {
1114 	struct oom_control oc = {
1115 		.zonelist = NULL,
1116 		.nodemask = NULL,
1117 		.memcg = NULL,
1118 		.gfp_mask = 0,
1119 		.order = 0,
1120 	};
1121 
1122 	if (mem_cgroup_oom_synchronize(true))
1123 		return;
1124 
1125 	if (!mutex_trylock(&oom_lock))
1126 		return;
1127 	out_of_memory(&oc);
1128 	mutex_unlock(&oom_lock);
1129 }
1130