xref: /linux/mm/page-writeback.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE		max(HZ/5, 1)
49 
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
55 
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
60 
61 #define RATELIMIT_CALC_SHIFT	10
62 
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105 
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 
111 /*
112  * Flag that makes the machine dump writes/reads and block dirtyings.
113  */
114 int block_dump;
115 
116 /*
117  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118  * a full sync is triggered after this time elapses without any disk activity.
119  */
120 int laptop_mode;
121 
122 EXPORT_SYMBOL(laptop_mode);
123 
124 /* End of sysctl-exported parameters */
125 
126 struct wb_domain global_wb_domain;
127 
128 /* consolidated parameters for balance_dirty_pages() and its subroutines */
129 struct dirty_throttle_control {
130 #ifdef CONFIG_CGROUP_WRITEBACK
131 	struct wb_domain	*dom;
132 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
133 #endif
134 	struct bdi_writeback	*wb;
135 	struct fprop_local_percpu *wb_completions;
136 
137 	unsigned long		avail;		/* dirtyable */
138 	unsigned long		dirty;		/* file_dirty + write + nfs */
139 	unsigned long		thresh;		/* dirty threshold */
140 	unsigned long		bg_thresh;	/* dirty background threshold */
141 
142 	unsigned long		wb_dirty;	/* per-wb counterparts */
143 	unsigned long		wb_thresh;
144 	unsigned long		wb_bg_thresh;
145 
146 	unsigned long		pos_ratio;
147 };
148 
149 /*
150  * Length of period for aging writeout fractions of bdis. This is an
151  * arbitrarily chosen number. The longer the period, the slower fractions will
152  * reflect changes in current writeout rate.
153  */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155 
156 #ifdef CONFIG_CGROUP_WRITEBACK
157 
158 #define GDTC_INIT(__wb)		.wb = (__wb),				\
159 				.dom = &global_wb_domain,		\
160 				.wb_completions = &(__wb)->completions
161 
162 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
163 
164 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
165 				.dom = mem_cgroup_wb_domain(__wb),	\
166 				.wb_completions = &(__wb)->memcg_completions, \
167 				.gdtc = __gdtc
168 
169 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 {
171 	return dtc->dom;
172 }
173 
174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 {
176 	return dtc->dom;
177 }
178 
179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 {
181 	return mdtc->gdtc;
182 }
183 
184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 {
186 	return &wb->memcg_completions;
187 }
188 
189 static void wb_min_max_ratio(struct bdi_writeback *wb,
190 			     unsigned long *minp, unsigned long *maxp)
191 {
192 	unsigned long this_bw = wb->avg_write_bandwidth;
193 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 	unsigned long long min = wb->bdi->min_ratio;
195 	unsigned long long max = wb->bdi->max_ratio;
196 
197 	/*
198 	 * @wb may already be clean by the time control reaches here and
199 	 * the total may not include its bw.
200 	 */
201 	if (this_bw < tot_bw) {
202 		if (min) {
203 			min *= this_bw;
204 			min = div64_ul(min, tot_bw);
205 		}
206 		if (max < 100) {
207 			max *= this_bw;
208 			max = div64_ul(max, tot_bw);
209 		}
210 	}
211 
212 	*minp = min;
213 	*maxp = max;
214 }
215 
216 #else	/* CONFIG_CGROUP_WRITEBACK */
217 
218 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
219 				.wb_completions = &(__wb)->completions
220 #define GDTC_INIT_NO_WB
221 #define MDTC_INIT(__wb, __gdtc)
222 
223 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 {
225 	return false;
226 }
227 
228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 {
230 	return &global_wb_domain;
231 }
232 
233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 {
235 	return NULL;
236 }
237 
238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 {
240 	return NULL;
241 }
242 
243 static void wb_min_max_ratio(struct bdi_writeback *wb,
244 			     unsigned long *minp, unsigned long *maxp)
245 {
246 	*minp = wb->bdi->min_ratio;
247 	*maxp = wb->bdi->max_ratio;
248 }
249 
250 #endif	/* CONFIG_CGROUP_WRITEBACK */
251 
252 /*
253  * In a memory zone, there is a certain amount of pages we consider
254  * available for the page cache, which is essentially the number of
255  * free and reclaimable pages, minus some zone reserves to protect
256  * lowmem and the ability to uphold the zone's watermarks without
257  * requiring writeback.
258  *
259  * This number of dirtyable pages is the base value of which the
260  * user-configurable dirty ratio is the effictive number of pages that
261  * are allowed to be actually dirtied.  Per individual zone, or
262  * globally by using the sum of dirtyable pages over all zones.
263  *
264  * Because the user is allowed to specify the dirty limit globally as
265  * absolute number of bytes, calculating the per-zone dirty limit can
266  * require translating the configured limit into a percentage of
267  * global dirtyable memory first.
268  */
269 
270 /**
271  * node_dirtyable_memory - number of dirtyable pages in a node
272  * @pgdat: the node
273  *
274  * Return: the node's number of pages potentially available for dirty
275  * page cache.  This is the base value for the per-node dirty limits.
276  */
277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278 {
279 	unsigned long nr_pages = 0;
280 	int z;
281 
282 	for (z = 0; z < MAX_NR_ZONES; z++) {
283 		struct zone *zone = pgdat->node_zones + z;
284 
285 		if (!populated_zone(zone))
286 			continue;
287 
288 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 	}
290 
291 	/*
292 	 * Pages reserved for the kernel should not be considered
293 	 * dirtyable, to prevent a situation where reclaim has to
294 	 * clean pages in order to balance the zones.
295 	 */
296 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297 
298 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300 
301 	return nr_pages;
302 }
303 
304 static unsigned long highmem_dirtyable_memory(unsigned long total)
305 {
306 #ifdef CONFIG_HIGHMEM
307 	int node;
308 	unsigned long x = 0;
309 	int i;
310 
311 	for_each_node_state(node, N_HIGH_MEMORY) {
312 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 			struct zone *z;
314 			unsigned long nr_pages;
315 
316 			if (!is_highmem_idx(i))
317 				continue;
318 
319 			z = &NODE_DATA(node)->node_zones[i];
320 			if (!populated_zone(z))
321 				continue;
322 
323 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
324 			/* watch for underflows */
325 			nr_pages -= min(nr_pages, high_wmark_pages(z));
326 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 			x += nr_pages;
329 		}
330 	}
331 
332 	/*
333 	 * Unreclaimable memory (kernel memory or anonymous memory
334 	 * without swap) can bring down the dirtyable pages below
335 	 * the zone's dirty balance reserve and the above calculation
336 	 * will underflow.  However we still want to add in nodes
337 	 * which are below threshold (negative values) to get a more
338 	 * accurate calculation but make sure that the total never
339 	 * underflows.
340 	 */
341 	if ((long)x < 0)
342 		x = 0;
343 
344 	/*
345 	 * Make sure that the number of highmem pages is never larger
346 	 * than the number of the total dirtyable memory. This can only
347 	 * occur in very strange VM situations but we want to make sure
348 	 * that this does not occur.
349 	 */
350 	return min(x, total);
351 #else
352 	return 0;
353 #endif
354 }
355 
356 /**
357  * global_dirtyable_memory - number of globally dirtyable pages
358  *
359  * Return: the global number of pages potentially available for dirty
360  * page cache.  This is the base value for the global dirty limits.
361  */
362 static unsigned long global_dirtyable_memory(void)
363 {
364 	unsigned long x;
365 
366 	x = global_zone_page_state(NR_FREE_PAGES);
367 	/*
368 	 * Pages reserved for the kernel should not be considered
369 	 * dirtyable, to prevent a situation where reclaim has to
370 	 * clean pages in order to balance the zones.
371 	 */
372 	x -= min(x, totalreserve_pages);
373 
374 	x += global_node_page_state(NR_INACTIVE_FILE);
375 	x += global_node_page_state(NR_ACTIVE_FILE);
376 
377 	if (!vm_highmem_is_dirtyable)
378 		x -= highmem_dirtyable_memory(x);
379 
380 	return x + 1;	/* Ensure that we never return 0 */
381 }
382 
383 /**
384  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385  * @dtc: dirty_throttle_control of interest
386  *
387  * Calculate @dtc->thresh and ->bg_thresh considering
388  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
389  * must ensure that @dtc->avail is set before calling this function.  The
390  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
391  * real-time tasks.
392  */
393 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
394 {
395 	const unsigned long available_memory = dtc->avail;
396 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
397 	unsigned long bytes = vm_dirty_bytes;
398 	unsigned long bg_bytes = dirty_background_bytes;
399 	/* convert ratios to per-PAGE_SIZE for higher precision */
400 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
401 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
402 	unsigned long thresh;
403 	unsigned long bg_thresh;
404 	struct task_struct *tsk;
405 
406 	/* gdtc is !NULL iff @dtc is for memcg domain */
407 	if (gdtc) {
408 		unsigned long global_avail = gdtc->avail;
409 
410 		/*
411 		 * The byte settings can't be applied directly to memcg
412 		 * domains.  Convert them to ratios by scaling against
413 		 * globally available memory.  As the ratios are in
414 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
415 		 * number of pages.
416 		 */
417 		if (bytes)
418 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
419 				    PAGE_SIZE);
420 		if (bg_bytes)
421 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
422 				       PAGE_SIZE);
423 		bytes = bg_bytes = 0;
424 	}
425 
426 	if (bytes)
427 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
428 	else
429 		thresh = (ratio * available_memory) / PAGE_SIZE;
430 
431 	if (bg_bytes)
432 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
433 	else
434 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
435 
436 	if (bg_thresh >= thresh)
437 		bg_thresh = thresh / 2;
438 	tsk = current;
439 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
440 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
441 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
442 	}
443 	dtc->thresh = thresh;
444 	dtc->bg_thresh = bg_thresh;
445 
446 	/* we should eventually report the domain in the TP */
447 	if (!gdtc)
448 		trace_global_dirty_state(bg_thresh, thresh);
449 }
450 
451 /**
452  * global_dirty_limits - background-writeback and dirty-throttling thresholds
453  * @pbackground: out parameter for bg_thresh
454  * @pdirty: out parameter for thresh
455  *
456  * Calculate bg_thresh and thresh for global_wb_domain.  See
457  * domain_dirty_limits() for details.
458  */
459 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
460 {
461 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
462 
463 	gdtc.avail = global_dirtyable_memory();
464 	domain_dirty_limits(&gdtc);
465 
466 	*pbackground = gdtc.bg_thresh;
467 	*pdirty = gdtc.thresh;
468 }
469 
470 /**
471  * node_dirty_limit - maximum number of dirty pages allowed in a node
472  * @pgdat: the node
473  *
474  * Return: the maximum number of dirty pages allowed in a node, based
475  * on the node's dirtyable memory.
476  */
477 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
478 {
479 	unsigned long node_memory = node_dirtyable_memory(pgdat);
480 	struct task_struct *tsk = current;
481 	unsigned long dirty;
482 
483 	if (vm_dirty_bytes)
484 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
485 			node_memory / global_dirtyable_memory();
486 	else
487 		dirty = vm_dirty_ratio * node_memory / 100;
488 
489 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
490 		dirty += dirty / 4;
491 
492 	return dirty;
493 }
494 
495 /**
496  * node_dirty_ok - tells whether a node is within its dirty limits
497  * @pgdat: the node to check
498  *
499  * Return: %true when the dirty pages in @pgdat are within the node's
500  * dirty limit, %false if the limit is exceeded.
501  */
502 bool node_dirty_ok(struct pglist_data *pgdat)
503 {
504 	unsigned long limit = node_dirty_limit(pgdat);
505 	unsigned long nr_pages = 0;
506 
507 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
508 	nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
509 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
510 
511 	return nr_pages <= limit;
512 }
513 
514 int dirty_background_ratio_handler(struct ctl_table *table, int write,
515 		void __user *buffer, size_t *lenp,
516 		loff_t *ppos)
517 {
518 	int ret;
519 
520 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
521 	if (ret == 0 && write)
522 		dirty_background_bytes = 0;
523 	return ret;
524 }
525 
526 int dirty_background_bytes_handler(struct ctl_table *table, int write,
527 		void __user *buffer, size_t *lenp,
528 		loff_t *ppos)
529 {
530 	int ret;
531 
532 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
533 	if (ret == 0 && write)
534 		dirty_background_ratio = 0;
535 	return ret;
536 }
537 
538 int dirty_ratio_handler(struct ctl_table *table, int write,
539 		void __user *buffer, size_t *lenp,
540 		loff_t *ppos)
541 {
542 	int old_ratio = vm_dirty_ratio;
543 	int ret;
544 
545 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
546 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
547 		writeback_set_ratelimit();
548 		vm_dirty_bytes = 0;
549 	}
550 	return ret;
551 }
552 
553 int dirty_bytes_handler(struct ctl_table *table, int write,
554 		void __user *buffer, size_t *lenp,
555 		loff_t *ppos)
556 {
557 	unsigned long old_bytes = vm_dirty_bytes;
558 	int ret;
559 
560 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
561 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
562 		writeback_set_ratelimit();
563 		vm_dirty_ratio = 0;
564 	}
565 	return ret;
566 }
567 
568 static unsigned long wp_next_time(unsigned long cur_time)
569 {
570 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
571 	/* 0 has a special meaning... */
572 	if (!cur_time)
573 		return 1;
574 	return cur_time;
575 }
576 
577 static void wb_domain_writeout_inc(struct wb_domain *dom,
578 				   struct fprop_local_percpu *completions,
579 				   unsigned int max_prop_frac)
580 {
581 	__fprop_inc_percpu_max(&dom->completions, completions,
582 			       max_prop_frac);
583 	/* First event after period switching was turned off? */
584 	if (unlikely(!dom->period_time)) {
585 		/*
586 		 * We can race with other __bdi_writeout_inc calls here but
587 		 * it does not cause any harm since the resulting time when
588 		 * timer will fire and what is in writeout_period_time will be
589 		 * roughly the same.
590 		 */
591 		dom->period_time = wp_next_time(jiffies);
592 		mod_timer(&dom->period_timer, dom->period_time);
593 	}
594 }
595 
596 /*
597  * Increment @wb's writeout completion count and the global writeout
598  * completion count. Called from test_clear_page_writeback().
599  */
600 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
601 {
602 	struct wb_domain *cgdom;
603 
604 	inc_wb_stat(wb, WB_WRITTEN);
605 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
606 			       wb->bdi->max_prop_frac);
607 
608 	cgdom = mem_cgroup_wb_domain(wb);
609 	if (cgdom)
610 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
611 				       wb->bdi->max_prop_frac);
612 }
613 
614 void wb_writeout_inc(struct bdi_writeback *wb)
615 {
616 	unsigned long flags;
617 
618 	local_irq_save(flags);
619 	__wb_writeout_inc(wb);
620 	local_irq_restore(flags);
621 }
622 EXPORT_SYMBOL_GPL(wb_writeout_inc);
623 
624 /*
625  * On idle system, we can be called long after we scheduled because we use
626  * deferred timers so count with missed periods.
627  */
628 static void writeout_period(struct timer_list *t)
629 {
630 	struct wb_domain *dom = from_timer(dom, t, period_timer);
631 	int miss_periods = (jiffies - dom->period_time) /
632 						 VM_COMPLETIONS_PERIOD_LEN;
633 
634 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
635 		dom->period_time = wp_next_time(dom->period_time +
636 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
637 		mod_timer(&dom->period_timer, dom->period_time);
638 	} else {
639 		/*
640 		 * Aging has zeroed all fractions. Stop wasting CPU on period
641 		 * updates.
642 		 */
643 		dom->period_time = 0;
644 	}
645 }
646 
647 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
648 {
649 	memset(dom, 0, sizeof(*dom));
650 
651 	spin_lock_init(&dom->lock);
652 
653 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
654 
655 	dom->dirty_limit_tstamp = jiffies;
656 
657 	return fprop_global_init(&dom->completions, gfp);
658 }
659 
660 #ifdef CONFIG_CGROUP_WRITEBACK
661 void wb_domain_exit(struct wb_domain *dom)
662 {
663 	del_timer_sync(&dom->period_timer);
664 	fprop_global_destroy(&dom->completions);
665 }
666 #endif
667 
668 /*
669  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
670  * registered backing devices, which, for obvious reasons, can not
671  * exceed 100%.
672  */
673 static unsigned int bdi_min_ratio;
674 
675 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
676 {
677 	int ret = 0;
678 
679 	spin_lock_bh(&bdi_lock);
680 	if (min_ratio > bdi->max_ratio) {
681 		ret = -EINVAL;
682 	} else {
683 		min_ratio -= bdi->min_ratio;
684 		if (bdi_min_ratio + min_ratio < 100) {
685 			bdi_min_ratio += min_ratio;
686 			bdi->min_ratio += min_ratio;
687 		} else {
688 			ret = -EINVAL;
689 		}
690 	}
691 	spin_unlock_bh(&bdi_lock);
692 
693 	return ret;
694 }
695 
696 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
697 {
698 	int ret = 0;
699 
700 	if (max_ratio > 100)
701 		return -EINVAL;
702 
703 	spin_lock_bh(&bdi_lock);
704 	if (bdi->min_ratio > max_ratio) {
705 		ret = -EINVAL;
706 	} else {
707 		bdi->max_ratio = max_ratio;
708 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
709 	}
710 	spin_unlock_bh(&bdi_lock);
711 
712 	return ret;
713 }
714 EXPORT_SYMBOL(bdi_set_max_ratio);
715 
716 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
717 					   unsigned long bg_thresh)
718 {
719 	return (thresh + bg_thresh) / 2;
720 }
721 
722 static unsigned long hard_dirty_limit(struct wb_domain *dom,
723 				      unsigned long thresh)
724 {
725 	return max(thresh, dom->dirty_limit);
726 }
727 
728 /*
729  * Memory which can be further allocated to a memcg domain is capped by
730  * system-wide clean memory excluding the amount being used in the domain.
731  */
732 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
733 			    unsigned long filepages, unsigned long headroom)
734 {
735 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
736 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
737 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
738 	unsigned long other_clean = global_clean - min(global_clean, clean);
739 
740 	mdtc->avail = filepages + min(headroom, other_clean);
741 }
742 
743 /**
744  * __wb_calc_thresh - @wb's share of dirty throttling threshold
745  * @dtc: dirty_throttle_context of interest
746  *
747  * Note that balance_dirty_pages() will only seriously take it as a hard limit
748  * when sleeping max_pause per page is not enough to keep the dirty pages under
749  * control. For example, when the device is completely stalled due to some error
750  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
751  * In the other normal situations, it acts more gently by throttling the tasks
752  * more (rather than completely block them) when the wb dirty pages go high.
753  *
754  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
755  * - starving fast devices
756  * - piling up dirty pages (that will take long time to sync) on slow devices
757  *
758  * The wb's share of dirty limit will be adapting to its throughput and
759  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
760  *
761  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
762  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
763  */
764 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
765 {
766 	struct wb_domain *dom = dtc_dom(dtc);
767 	unsigned long thresh = dtc->thresh;
768 	u64 wb_thresh;
769 	unsigned long numerator, denominator;
770 	unsigned long wb_min_ratio, wb_max_ratio;
771 
772 	/*
773 	 * Calculate this BDI's share of the thresh ratio.
774 	 */
775 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
776 			      &numerator, &denominator);
777 
778 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
779 	wb_thresh *= numerator;
780 	wb_thresh = div64_ul(wb_thresh, denominator);
781 
782 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
783 
784 	wb_thresh += (thresh * wb_min_ratio) / 100;
785 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
786 		wb_thresh = thresh * wb_max_ratio / 100;
787 
788 	return wb_thresh;
789 }
790 
791 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
792 {
793 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
794 					       .thresh = thresh };
795 	return __wb_calc_thresh(&gdtc);
796 }
797 
798 /*
799  *                           setpoint - dirty 3
800  *        f(dirty) := 1.0 + (----------------)
801  *                           limit - setpoint
802  *
803  * it's a 3rd order polynomial that subjects to
804  *
805  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
806  * (2) f(setpoint) = 1.0 => the balance point
807  * (3) f(limit)    = 0   => the hard limit
808  * (4) df/dx      <= 0	 => negative feedback control
809  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
810  *     => fast response on large errors; small oscillation near setpoint
811  */
812 static long long pos_ratio_polynom(unsigned long setpoint,
813 					  unsigned long dirty,
814 					  unsigned long limit)
815 {
816 	long long pos_ratio;
817 	long x;
818 
819 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
820 		      (limit - setpoint) | 1);
821 	pos_ratio = x;
822 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
823 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
824 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
825 
826 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
827 }
828 
829 /*
830  * Dirty position control.
831  *
832  * (o) global/bdi setpoints
833  *
834  * We want the dirty pages be balanced around the global/wb setpoints.
835  * When the number of dirty pages is higher/lower than the setpoint, the
836  * dirty position control ratio (and hence task dirty ratelimit) will be
837  * decreased/increased to bring the dirty pages back to the setpoint.
838  *
839  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
840  *
841  *     if (dirty < setpoint) scale up   pos_ratio
842  *     if (dirty > setpoint) scale down pos_ratio
843  *
844  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
845  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
846  *
847  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
848  *
849  * (o) global control line
850  *
851  *     ^ pos_ratio
852  *     |
853  *     |            |<===== global dirty control scope ======>|
854  * 2.0 .............*
855  *     |            .*
856  *     |            . *
857  *     |            .   *
858  *     |            .     *
859  *     |            .        *
860  *     |            .            *
861  * 1.0 ................................*
862  *     |            .                  .     *
863  *     |            .                  .          *
864  *     |            .                  .              *
865  *     |            .                  .                 *
866  *     |            .                  .                    *
867  *   0 +------------.------------------.----------------------*------------->
868  *           freerun^          setpoint^                 limit^   dirty pages
869  *
870  * (o) wb control line
871  *
872  *     ^ pos_ratio
873  *     |
874  *     |            *
875  *     |              *
876  *     |                *
877  *     |                  *
878  *     |                    * |<=========== span ============>|
879  * 1.0 .......................*
880  *     |                      . *
881  *     |                      .   *
882  *     |                      .     *
883  *     |                      .       *
884  *     |                      .         *
885  *     |                      .           *
886  *     |                      .             *
887  *     |                      .               *
888  *     |                      .                 *
889  *     |                      .                   *
890  *     |                      .                     *
891  * 1/4 ...............................................* * * * * * * * * * * *
892  *     |                      .                         .
893  *     |                      .                           .
894  *     |                      .                             .
895  *   0 +----------------------.-------------------------------.------------->
896  *                wb_setpoint^                    x_intercept^
897  *
898  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
899  * be smoothly throttled down to normal if it starts high in situations like
900  * - start writing to a slow SD card and a fast disk at the same time. The SD
901  *   card's wb_dirty may rush to many times higher than wb_setpoint.
902  * - the wb dirty thresh drops quickly due to change of JBOD workload
903  */
904 static void wb_position_ratio(struct dirty_throttle_control *dtc)
905 {
906 	struct bdi_writeback *wb = dtc->wb;
907 	unsigned long write_bw = wb->avg_write_bandwidth;
908 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
909 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
910 	unsigned long wb_thresh = dtc->wb_thresh;
911 	unsigned long x_intercept;
912 	unsigned long setpoint;		/* dirty pages' target balance point */
913 	unsigned long wb_setpoint;
914 	unsigned long span;
915 	long long pos_ratio;		/* for scaling up/down the rate limit */
916 	long x;
917 
918 	dtc->pos_ratio = 0;
919 
920 	if (unlikely(dtc->dirty >= limit))
921 		return;
922 
923 	/*
924 	 * global setpoint
925 	 *
926 	 * See comment for pos_ratio_polynom().
927 	 */
928 	setpoint = (freerun + limit) / 2;
929 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
930 
931 	/*
932 	 * The strictlimit feature is a tool preventing mistrusted filesystems
933 	 * from growing a large number of dirty pages before throttling. For
934 	 * such filesystems balance_dirty_pages always checks wb counters
935 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
936 	 * This is especially important for fuse which sets bdi->max_ratio to
937 	 * 1% by default. Without strictlimit feature, fuse writeback may
938 	 * consume arbitrary amount of RAM because it is accounted in
939 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
940 	 *
941 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
942 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
943 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
944 	 * limits are set by default to 10% and 20% (background and throttle).
945 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
946 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
947 	 * about ~6K pages (as the average of background and throttle wb
948 	 * limits). The 3rd order polynomial will provide positive feedback if
949 	 * wb_dirty is under wb_setpoint and vice versa.
950 	 *
951 	 * Note, that we cannot use global counters in these calculations
952 	 * because we want to throttle process writing to a strictlimit wb
953 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
954 	 * in the example above).
955 	 */
956 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
957 		long long wb_pos_ratio;
958 
959 		if (dtc->wb_dirty < 8) {
960 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
961 					   2 << RATELIMIT_CALC_SHIFT);
962 			return;
963 		}
964 
965 		if (dtc->wb_dirty >= wb_thresh)
966 			return;
967 
968 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
969 						    dtc->wb_bg_thresh);
970 
971 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
972 			return;
973 
974 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
975 						 wb_thresh);
976 
977 		/*
978 		 * Typically, for strictlimit case, wb_setpoint << setpoint
979 		 * and pos_ratio >> wb_pos_ratio. In the other words global
980 		 * state ("dirty") is not limiting factor and we have to
981 		 * make decision based on wb counters. But there is an
982 		 * important case when global pos_ratio should get precedence:
983 		 * global limits are exceeded (e.g. due to activities on other
984 		 * wb's) while given strictlimit wb is below limit.
985 		 *
986 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
987 		 * but it would look too non-natural for the case of all
988 		 * activity in the system coming from a single strictlimit wb
989 		 * with bdi->max_ratio == 100%.
990 		 *
991 		 * Note that min() below somewhat changes the dynamics of the
992 		 * control system. Normally, pos_ratio value can be well over 3
993 		 * (when globally we are at freerun and wb is well below wb
994 		 * setpoint). Now the maximum pos_ratio in the same situation
995 		 * is 2. We might want to tweak this if we observe the control
996 		 * system is too slow to adapt.
997 		 */
998 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
999 		return;
1000 	}
1001 
1002 	/*
1003 	 * We have computed basic pos_ratio above based on global situation. If
1004 	 * the wb is over/under its share of dirty pages, we want to scale
1005 	 * pos_ratio further down/up. That is done by the following mechanism.
1006 	 */
1007 
1008 	/*
1009 	 * wb setpoint
1010 	 *
1011 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1012 	 *
1013 	 *                        x_intercept - wb_dirty
1014 	 *                     := --------------------------
1015 	 *                        x_intercept - wb_setpoint
1016 	 *
1017 	 * The main wb control line is a linear function that subjects to
1018 	 *
1019 	 * (1) f(wb_setpoint) = 1.0
1020 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1021 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1022 	 *
1023 	 * For single wb case, the dirty pages are observed to fluctuate
1024 	 * regularly within range
1025 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1026 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1027 	 * fluctuation range for pos_ratio.
1028 	 *
1029 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1030 	 * own size, so move the slope over accordingly and choose a slope that
1031 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1032 	 */
1033 	if (unlikely(wb_thresh > dtc->thresh))
1034 		wb_thresh = dtc->thresh;
1035 	/*
1036 	 * It's very possible that wb_thresh is close to 0 not because the
1037 	 * device is slow, but that it has remained inactive for long time.
1038 	 * Honour such devices a reasonable good (hopefully IO efficient)
1039 	 * threshold, so that the occasional writes won't be blocked and active
1040 	 * writes can rampup the threshold quickly.
1041 	 */
1042 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1043 	/*
1044 	 * scale global setpoint to wb's:
1045 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1046 	 */
1047 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1048 	wb_setpoint = setpoint * (u64)x >> 16;
1049 	/*
1050 	 * Use span=(8*write_bw) in single wb case as indicated by
1051 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1052 	 *
1053 	 *        wb_thresh                    thresh - wb_thresh
1054 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1055 	 *         thresh                           thresh
1056 	 */
1057 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1058 	x_intercept = wb_setpoint + span;
1059 
1060 	if (dtc->wb_dirty < x_intercept - span / 4) {
1061 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1062 				      (x_intercept - wb_setpoint) | 1);
1063 	} else
1064 		pos_ratio /= 4;
1065 
1066 	/*
1067 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1068 	 * It may push the desired control point of global dirty pages higher
1069 	 * than setpoint.
1070 	 */
1071 	x_intercept = wb_thresh / 2;
1072 	if (dtc->wb_dirty < x_intercept) {
1073 		if (dtc->wb_dirty > x_intercept / 8)
1074 			pos_ratio = div_u64(pos_ratio * x_intercept,
1075 					    dtc->wb_dirty);
1076 		else
1077 			pos_ratio *= 8;
1078 	}
1079 
1080 	dtc->pos_ratio = pos_ratio;
1081 }
1082 
1083 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1084 				      unsigned long elapsed,
1085 				      unsigned long written)
1086 {
1087 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1088 	unsigned long avg = wb->avg_write_bandwidth;
1089 	unsigned long old = wb->write_bandwidth;
1090 	u64 bw;
1091 
1092 	/*
1093 	 * bw = written * HZ / elapsed
1094 	 *
1095 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1096 	 * write_bandwidth = ---------------------------------------------------
1097 	 *                                          period
1098 	 *
1099 	 * @written may have decreased due to account_page_redirty().
1100 	 * Avoid underflowing @bw calculation.
1101 	 */
1102 	bw = written - min(written, wb->written_stamp);
1103 	bw *= HZ;
1104 	if (unlikely(elapsed > period)) {
1105 		bw = div64_ul(bw, elapsed);
1106 		avg = bw;
1107 		goto out;
1108 	}
1109 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1110 	bw >>= ilog2(period);
1111 
1112 	/*
1113 	 * one more level of smoothing, for filtering out sudden spikes
1114 	 */
1115 	if (avg > old && old >= (unsigned long)bw)
1116 		avg -= (avg - old) >> 3;
1117 
1118 	if (avg < old && old <= (unsigned long)bw)
1119 		avg += (old - avg) >> 3;
1120 
1121 out:
1122 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1123 	avg = max(avg, 1LU);
1124 	if (wb_has_dirty_io(wb)) {
1125 		long delta = avg - wb->avg_write_bandwidth;
1126 		WARN_ON_ONCE(atomic_long_add_return(delta,
1127 					&wb->bdi->tot_write_bandwidth) <= 0);
1128 	}
1129 	wb->write_bandwidth = bw;
1130 	wb->avg_write_bandwidth = avg;
1131 }
1132 
1133 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1134 {
1135 	struct wb_domain *dom = dtc_dom(dtc);
1136 	unsigned long thresh = dtc->thresh;
1137 	unsigned long limit = dom->dirty_limit;
1138 
1139 	/*
1140 	 * Follow up in one step.
1141 	 */
1142 	if (limit < thresh) {
1143 		limit = thresh;
1144 		goto update;
1145 	}
1146 
1147 	/*
1148 	 * Follow down slowly. Use the higher one as the target, because thresh
1149 	 * may drop below dirty. This is exactly the reason to introduce
1150 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1151 	 */
1152 	thresh = max(thresh, dtc->dirty);
1153 	if (limit > thresh) {
1154 		limit -= (limit - thresh) >> 5;
1155 		goto update;
1156 	}
1157 	return;
1158 update:
1159 	dom->dirty_limit = limit;
1160 }
1161 
1162 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1163 				    unsigned long now)
1164 {
1165 	struct wb_domain *dom = dtc_dom(dtc);
1166 
1167 	/*
1168 	 * check locklessly first to optimize away locking for the most time
1169 	 */
1170 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1171 		return;
1172 
1173 	spin_lock(&dom->lock);
1174 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1175 		update_dirty_limit(dtc);
1176 		dom->dirty_limit_tstamp = now;
1177 	}
1178 	spin_unlock(&dom->lock);
1179 }
1180 
1181 /*
1182  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1183  *
1184  * Normal wb tasks will be curbed at or below it in long term.
1185  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1186  */
1187 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1188 				      unsigned long dirtied,
1189 				      unsigned long elapsed)
1190 {
1191 	struct bdi_writeback *wb = dtc->wb;
1192 	unsigned long dirty = dtc->dirty;
1193 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1194 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1195 	unsigned long setpoint = (freerun + limit) / 2;
1196 	unsigned long write_bw = wb->avg_write_bandwidth;
1197 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1198 	unsigned long dirty_rate;
1199 	unsigned long task_ratelimit;
1200 	unsigned long balanced_dirty_ratelimit;
1201 	unsigned long step;
1202 	unsigned long x;
1203 	unsigned long shift;
1204 
1205 	/*
1206 	 * The dirty rate will match the writeout rate in long term, except
1207 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1208 	 */
1209 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1210 
1211 	/*
1212 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1213 	 */
1214 	task_ratelimit = (u64)dirty_ratelimit *
1215 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1216 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1217 
1218 	/*
1219 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1220 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1221 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1222 	 * formula will yield the balanced rate limit (write_bw / N).
1223 	 *
1224 	 * Note that the expanded form is not a pure rate feedback:
1225 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1226 	 * but also takes pos_ratio into account:
1227 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1228 	 *
1229 	 * (1) is not realistic because pos_ratio also takes part in balancing
1230 	 * the dirty rate.  Consider the state
1231 	 *	pos_ratio = 0.5						     (3)
1232 	 *	rate = 2 * (write_bw / N)				     (4)
1233 	 * If (1) is used, it will stuck in that state! Because each dd will
1234 	 * be throttled at
1235 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1236 	 * yielding
1237 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1238 	 * put (6) into (1) we get
1239 	 *	rate_(i+1) = rate_(i)					     (7)
1240 	 *
1241 	 * So we end up using (2) to always keep
1242 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1243 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1244 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1245 	 * the dirty count meet the setpoint, but also where the slope of
1246 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1247 	 */
1248 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1249 					   dirty_rate | 1);
1250 	/*
1251 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1252 	 */
1253 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1254 		balanced_dirty_ratelimit = write_bw;
1255 
1256 	/*
1257 	 * We could safely do this and return immediately:
1258 	 *
1259 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1260 	 *
1261 	 * However to get a more stable dirty_ratelimit, the below elaborated
1262 	 * code makes use of task_ratelimit to filter out singular points and
1263 	 * limit the step size.
1264 	 *
1265 	 * The below code essentially only uses the relative value of
1266 	 *
1267 	 *	task_ratelimit - dirty_ratelimit
1268 	 *	= (pos_ratio - 1) * dirty_ratelimit
1269 	 *
1270 	 * which reflects the direction and size of dirty position error.
1271 	 */
1272 
1273 	/*
1274 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1275 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1276 	 * For example, when
1277 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1278 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1279 	 * lowering dirty_ratelimit will help meet both the position and rate
1280 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1281 	 * only help meet the rate target. After all, what the users ultimately
1282 	 * feel and care are stable dirty rate and small position error.
1283 	 *
1284 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1285 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1286 	 * keeps jumping around randomly and can even leap far away at times
1287 	 * due to the small 200ms estimation period of dirty_rate (we want to
1288 	 * keep that period small to reduce time lags).
1289 	 */
1290 	step = 0;
1291 
1292 	/*
1293 	 * For strictlimit case, calculations above were based on wb counters
1294 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1295 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1296 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1297 	 * "dirty" and wb_setpoint as "setpoint".
1298 	 *
1299 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1300 	 * it's possible that wb_thresh is close to zero due to inactivity
1301 	 * of backing device.
1302 	 */
1303 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1304 		dirty = dtc->wb_dirty;
1305 		if (dtc->wb_dirty < 8)
1306 			setpoint = dtc->wb_dirty + 1;
1307 		else
1308 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1309 	}
1310 
1311 	if (dirty < setpoint) {
1312 		x = min3(wb->balanced_dirty_ratelimit,
1313 			 balanced_dirty_ratelimit, task_ratelimit);
1314 		if (dirty_ratelimit < x)
1315 			step = x - dirty_ratelimit;
1316 	} else {
1317 		x = max3(wb->balanced_dirty_ratelimit,
1318 			 balanced_dirty_ratelimit, task_ratelimit);
1319 		if (dirty_ratelimit > x)
1320 			step = dirty_ratelimit - x;
1321 	}
1322 
1323 	/*
1324 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1325 	 * rate itself is constantly fluctuating. So decrease the track speed
1326 	 * when it gets close to the target. Helps eliminate pointless tremors.
1327 	 */
1328 	shift = dirty_ratelimit / (2 * step + 1);
1329 	if (shift < BITS_PER_LONG)
1330 		step = DIV_ROUND_UP(step >> shift, 8);
1331 	else
1332 		step = 0;
1333 
1334 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1335 		dirty_ratelimit += step;
1336 	else
1337 		dirty_ratelimit -= step;
1338 
1339 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1340 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1341 
1342 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1343 }
1344 
1345 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1346 				  struct dirty_throttle_control *mdtc,
1347 				  unsigned long start_time,
1348 				  bool update_ratelimit)
1349 {
1350 	struct bdi_writeback *wb = gdtc->wb;
1351 	unsigned long now = jiffies;
1352 	unsigned long elapsed = now - wb->bw_time_stamp;
1353 	unsigned long dirtied;
1354 	unsigned long written;
1355 
1356 	lockdep_assert_held(&wb->list_lock);
1357 
1358 	/*
1359 	 * rate-limit, only update once every 200ms.
1360 	 */
1361 	if (elapsed < BANDWIDTH_INTERVAL)
1362 		return;
1363 
1364 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1365 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1366 
1367 	/*
1368 	 * Skip quiet periods when disk bandwidth is under-utilized.
1369 	 * (at least 1s idle time between two flusher runs)
1370 	 */
1371 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1372 		goto snapshot;
1373 
1374 	if (update_ratelimit) {
1375 		domain_update_bandwidth(gdtc, now);
1376 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1377 
1378 		/*
1379 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1380 		 * compiler has no way to figure that out.  Help it.
1381 		 */
1382 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1383 			domain_update_bandwidth(mdtc, now);
1384 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1385 		}
1386 	}
1387 	wb_update_write_bandwidth(wb, elapsed, written);
1388 
1389 snapshot:
1390 	wb->dirtied_stamp = dirtied;
1391 	wb->written_stamp = written;
1392 	wb->bw_time_stamp = now;
1393 }
1394 
1395 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1396 {
1397 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1398 
1399 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1400 }
1401 
1402 /*
1403  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1404  * will look to see if it needs to start dirty throttling.
1405  *
1406  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1407  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1408  * (the number of pages we may dirty without exceeding the dirty limits).
1409  */
1410 static unsigned long dirty_poll_interval(unsigned long dirty,
1411 					 unsigned long thresh)
1412 {
1413 	if (thresh > dirty)
1414 		return 1UL << (ilog2(thresh - dirty) >> 1);
1415 
1416 	return 1;
1417 }
1418 
1419 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1420 				  unsigned long wb_dirty)
1421 {
1422 	unsigned long bw = wb->avg_write_bandwidth;
1423 	unsigned long t;
1424 
1425 	/*
1426 	 * Limit pause time for small memory systems. If sleeping for too long
1427 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1428 	 * idle.
1429 	 *
1430 	 * 8 serves as the safety ratio.
1431 	 */
1432 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1433 	t++;
1434 
1435 	return min_t(unsigned long, t, MAX_PAUSE);
1436 }
1437 
1438 static long wb_min_pause(struct bdi_writeback *wb,
1439 			 long max_pause,
1440 			 unsigned long task_ratelimit,
1441 			 unsigned long dirty_ratelimit,
1442 			 int *nr_dirtied_pause)
1443 {
1444 	long hi = ilog2(wb->avg_write_bandwidth);
1445 	long lo = ilog2(wb->dirty_ratelimit);
1446 	long t;		/* target pause */
1447 	long pause;	/* estimated next pause */
1448 	int pages;	/* target nr_dirtied_pause */
1449 
1450 	/* target for 10ms pause on 1-dd case */
1451 	t = max(1, HZ / 100);
1452 
1453 	/*
1454 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1455 	 * overheads.
1456 	 *
1457 	 * (N * 10ms) on 2^N concurrent tasks.
1458 	 */
1459 	if (hi > lo)
1460 		t += (hi - lo) * (10 * HZ) / 1024;
1461 
1462 	/*
1463 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1464 	 * on the much more stable dirty_ratelimit. However the next pause time
1465 	 * will be computed based on task_ratelimit and the two rate limits may
1466 	 * depart considerably at some time. Especially if task_ratelimit goes
1467 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1468 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1469 	 * result task_ratelimit won't be executed faithfully, which could
1470 	 * eventually bring down dirty_ratelimit.
1471 	 *
1472 	 * We apply two rules to fix it up:
1473 	 * 1) try to estimate the next pause time and if necessary, use a lower
1474 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1475 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1476 	 * 2) limit the target pause time to max_pause/2, so that the normal
1477 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1478 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1479 	 */
1480 	t = min(t, 1 + max_pause / 2);
1481 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1482 
1483 	/*
1484 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1485 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1486 	 * When the 16 consecutive reads are often interrupted by some dirty
1487 	 * throttling pause during the async writes, cfq will go into idles
1488 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1489 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1490 	 */
1491 	if (pages < DIRTY_POLL_THRESH) {
1492 		t = max_pause;
1493 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1494 		if (pages > DIRTY_POLL_THRESH) {
1495 			pages = DIRTY_POLL_THRESH;
1496 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1497 		}
1498 	}
1499 
1500 	pause = HZ * pages / (task_ratelimit + 1);
1501 	if (pause > max_pause) {
1502 		t = max_pause;
1503 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1504 	}
1505 
1506 	*nr_dirtied_pause = pages;
1507 	/*
1508 	 * The minimal pause time will normally be half the target pause time.
1509 	 */
1510 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1511 }
1512 
1513 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1514 {
1515 	struct bdi_writeback *wb = dtc->wb;
1516 	unsigned long wb_reclaimable;
1517 
1518 	/*
1519 	 * wb_thresh is not treated as some limiting factor as
1520 	 * dirty_thresh, due to reasons
1521 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1522 	 * - in a system with HDD and USB key, the USB key may somehow
1523 	 *   go into state (wb_dirty >> wb_thresh) either because
1524 	 *   wb_dirty starts high, or because wb_thresh drops low.
1525 	 *   In this case we don't want to hard throttle the USB key
1526 	 *   dirtiers for 100 seconds until wb_dirty drops under
1527 	 *   wb_thresh. Instead the auxiliary wb control line in
1528 	 *   wb_position_ratio() will let the dirtier task progress
1529 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1530 	 */
1531 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1532 	dtc->wb_bg_thresh = dtc->thresh ?
1533 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1534 
1535 	/*
1536 	 * In order to avoid the stacked BDI deadlock we need
1537 	 * to ensure we accurately count the 'dirty' pages when
1538 	 * the threshold is low.
1539 	 *
1540 	 * Otherwise it would be possible to get thresh+n pages
1541 	 * reported dirty, even though there are thresh-m pages
1542 	 * actually dirty; with m+n sitting in the percpu
1543 	 * deltas.
1544 	 */
1545 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1546 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1547 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1548 	} else {
1549 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1550 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1551 	}
1552 }
1553 
1554 /*
1555  * balance_dirty_pages() must be called by processes which are generating dirty
1556  * data.  It looks at the number of dirty pages in the machine and will force
1557  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1558  * If we're over `background_thresh' then the writeback threads are woken to
1559  * perform some writeout.
1560  */
1561 static void balance_dirty_pages(struct bdi_writeback *wb,
1562 				unsigned long pages_dirtied)
1563 {
1564 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1565 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1566 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1567 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1568 						     &mdtc_stor : NULL;
1569 	struct dirty_throttle_control *sdtc;
1570 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1571 	long period;
1572 	long pause;
1573 	long max_pause;
1574 	long min_pause;
1575 	int nr_dirtied_pause;
1576 	bool dirty_exceeded = false;
1577 	unsigned long task_ratelimit;
1578 	unsigned long dirty_ratelimit;
1579 	struct backing_dev_info *bdi = wb->bdi;
1580 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1581 	unsigned long start_time = jiffies;
1582 
1583 	for (;;) {
1584 		unsigned long now = jiffies;
1585 		unsigned long dirty, thresh, bg_thresh;
1586 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1587 		unsigned long m_thresh = 0;
1588 		unsigned long m_bg_thresh = 0;
1589 
1590 		/*
1591 		 * Unstable writes are a feature of certain networked
1592 		 * filesystems (i.e. NFS) in which data may have been
1593 		 * written to the server's write cache, but has not yet
1594 		 * been flushed to permanent storage.
1595 		 */
1596 		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1597 					global_node_page_state(NR_UNSTABLE_NFS);
1598 		gdtc->avail = global_dirtyable_memory();
1599 		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1600 
1601 		domain_dirty_limits(gdtc);
1602 
1603 		if (unlikely(strictlimit)) {
1604 			wb_dirty_limits(gdtc);
1605 
1606 			dirty = gdtc->wb_dirty;
1607 			thresh = gdtc->wb_thresh;
1608 			bg_thresh = gdtc->wb_bg_thresh;
1609 		} else {
1610 			dirty = gdtc->dirty;
1611 			thresh = gdtc->thresh;
1612 			bg_thresh = gdtc->bg_thresh;
1613 		}
1614 
1615 		if (mdtc) {
1616 			unsigned long filepages, headroom, writeback;
1617 
1618 			/*
1619 			 * If @wb belongs to !root memcg, repeat the same
1620 			 * basic calculations for the memcg domain.
1621 			 */
1622 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1623 					    &mdtc->dirty, &writeback);
1624 			mdtc->dirty += writeback;
1625 			mdtc_calc_avail(mdtc, filepages, headroom);
1626 
1627 			domain_dirty_limits(mdtc);
1628 
1629 			if (unlikely(strictlimit)) {
1630 				wb_dirty_limits(mdtc);
1631 				m_dirty = mdtc->wb_dirty;
1632 				m_thresh = mdtc->wb_thresh;
1633 				m_bg_thresh = mdtc->wb_bg_thresh;
1634 			} else {
1635 				m_dirty = mdtc->dirty;
1636 				m_thresh = mdtc->thresh;
1637 				m_bg_thresh = mdtc->bg_thresh;
1638 			}
1639 		}
1640 
1641 		/*
1642 		 * Throttle it only when the background writeback cannot
1643 		 * catch-up. This avoids (excessively) small writeouts
1644 		 * when the wb limits are ramping up in case of !strictlimit.
1645 		 *
1646 		 * In strictlimit case make decision based on the wb counters
1647 		 * and limits. Small writeouts when the wb limits are ramping
1648 		 * up are the price we consciously pay for strictlimit-ing.
1649 		 *
1650 		 * If memcg domain is in effect, @dirty should be under
1651 		 * both global and memcg freerun ceilings.
1652 		 */
1653 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1654 		    (!mdtc ||
1655 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1656 			unsigned long intv = dirty_poll_interval(dirty, thresh);
1657 			unsigned long m_intv = ULONG_MAX;
1658 
1659 			current->dirty_paused_when = now;
1660 			current->nr_dirtied = 0;
1661 			if (mdtc)
1662 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1663 			current->nr_dirtied_pause = min(intv, m_intv);
1664 			break;
1665 		}
1666 
1667 		if (unlikely(!writeback_in_progress(wb)))
1668 			wb_start_background_writeback(wb);
1669 
1670 		mem_cgroup_flush_foreign(wb);
1671 
1672 		/*
1673 		 * Calculate global domain's pos_ratio and select the
1674 		 * global dtc by default.
1675 		 */
1676 		if (!strictlimit)
1677 			wb_dirty_limits(gdtc);
1678 
1679 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1680 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1681 
1682 		wb_position_ratio(gdtc);
1683 		sdtc = gdtc;
1684 
1685 		if (mdtc) {
1686 			/*
1687 			 * If memcg domain is in effect, calculate its
1688 			 * pos_ratio.  @wb should satisfy constraints from
1689 			 * both global and memcg domains.  Choose the one
1690 			 * w/ lower pos_ratio.
1691 			 */
1692 			if (!strictlimit)
1693 				wb_dirty_limits(mdtc);
1694 
1695 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1696 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1697 
1698 			wb_position_ratio(mdtc);
1699 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1700 				sdtc = mdtc;
1701 		}
1702 
1703 		if (dirty_exceeded && !wb->dirty_exceeded)
1704 			wb->dirty_exceeded = 1;
1705 
1706 		if (time_is_before_jiffies(wb->bw_time_stamp +
1707 					   BANDWIDTH_INTERVAL)) {
1708 			spin_lock(&wb->list_lock);
1709 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1710 			spin_unlock(&wb->list_lock);
1711 		}
1712 
1713 		/* throttle according to the chosen dtc */
1714 		dirty_ratelimit = wb->dirty_ratelimit;
1715 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1716 							RATELIMIT_CALC_SHIFT;
1717 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1718 		min_pause = wb_min_pause(wb, max_pause,
1719 					 task_ratelimit, dirty_ratelimit,
1720 					 &nr_dirtied_pause);
1721 
1722 		if (unlikely(task_ratelimit == 0)) {
1723 			period = max_pause;
1724 			pause = max_pause;
1725 			goto pause;
1726 		}
1727 		period = HZ * pages_dirtied / task_ratelimit;
1728 		pause = period;
1729 		if (current->dirty_paused_when)
1730 			pause -= now - current->dirty_paused_when;
1731 		/*
1732 		 * For less than 1s think time (ext3/4 may block the dirtier
1733 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1734 		 * however at much less frequency), try to compensate it in
1735 		 * future periods by updating the virtual time; otherwise just
1736 		 * do a reset, as it may be a light dirtier.
1737 		 */
1738 		if (pause < min_pause) {
1739 			trace_balance_dirty_pages(wb,
1740 						  sdtc->thresh,
1741 						  sdtc->bg_thresh,
1742 						  sdtc->dirty,
1743 						  sdtc->wb_thresh,
1744 						  sdtc->wb_dirty,
1745 						  dirty_ratelimit,
1746 						  task_ratelimit,
1747 						  pages_dirtied,
1748 						  period,
1749 						  min(pause, 0L),
1750 						  start_time);
1751 			if (pause < -HZ) {
1752 				current->dirty_paused_when = now;
1753 				current->nr_dirtied = 0;
1754 			} else if (period) {
1755 				current->dirty_paused_when += period;
1756 				current->nr_dirtied = 0;
1757 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1758 				current->nr_dirtied_pause += pages_dirtied;
1759 			break;
1760 		}
1761 		if (unlikely(pause > max_pause)) {
1762 			/* for occasional dropped task_ratelimit */
1763 			now += min(pause - max_pause, max_pause);
1764 			pause = max_pause;
1765 		}
1766 
1767 pause:
1768 		trace_balance_dirty_pages(wb,
1769 					  sdtc->thresh,
1770 					  sdtc->bg_thresh,
1771 					  sdtc->dirty,
1772 					  sdtc->wb_thresh,
1773 					  sdtc->wb_dirty,
1774 					  dirty_ratelimit,
1775 					  task_ratelimit,
1776 					  pages_dirtied,
1777 					  period,
1778 					  pause,
1779 					  start_time);
1780 		__set_current_state(TASK_KILLABLE);
1781 		wb->dirty_sleep = now;
1782 		io_schedule_timeout(pause);
1783 
1784 		current->dirty_paused_when = now + pause;
1785 		current->nr_dirtied = 0;
1786 		current->nr_dirtied_pause = nr_dirtied_pause;
1787 
1788 		/*
1789 		 * This is typically equal to (dirty < thresh) and can also
1790 		 * keep "1000+ dd on a slow USB stick" under control.
1791 		 */
1792 		if (task_ratelimit)
1793 			break;
1794 
1795 		/*
1796 		 * In the case of an unresponding NFS server and the NFS dirty
1797 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1798 		 * to go through, so that tasks on them still remain responsive.
1799 		 *
1800 		 * In theory 1 page is enough to keep the consumer-producer
1801 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1802 		 * more page. However wb_dirty has accounting errors.  So use
1803 		 * the larger and more IO friendly wb_stat_error.
1804 		 */
1805 		if (sdtc->wb_dirty <= wb_stat_error())
1806 			break;
1807 
1808 		if (fatal_signal_pending(current))
1809 			break;
1810 	}
1811 
1812 	if (!dirty_exceeded && wb->dirty_exceeded)
1813 		wb->dirty_exceeded = 0;
1814 
1815 	if (writeback_in_progress(wb))
1816 		return;
1817 
1818 	/*
1819 	 * In laptop mode, we wait until hitting the higher threshold before
1820 	 * starting background writeout, and then write out all the way down
1821 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1822 	 *
1823 	 * In normal mode, we start background writeout at the lower
1824 	 * background_thresh, to keep the amount of dirty memory low.
1825 	 */
1826 	if (laptop_mode)
1827 		return;
1828 
1829 	if (nr_reclaimable > gdtc->bg_thresh)
1830 		wb_start_background_writeback(wb);
1831 }
1832 
1833 static DEFINE_PER_CPU(int, bdp_ratelimits);
1834 
1835 /*
1836  * Normal tasks are throttled by
1837  *	loop {
1838  *		dirty tsk->nr_dirtied_pause pages;
1839  *		take a snap in balance_dirty_pages();
1840  *	}
1841  * However there is a worst case. If every task exit immediately when dirtied
1842  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1843  * called to throttle the page dirties. The solution is to save the not yet
1844  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1845  * randomly into the running tasks. This works well for the above worst case,
1846  * as the new task will pick up and accumulate the old task's leaked dirty
1847  * count and eventually get throttled.
1848  */
1849 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1850 
1851 /**
1852  * balance_dirty_pages_ratelimited - balance dirty memory state
1853  * @mapping: address_space which was dirtied
1854  *
1855  * Processes which are dirtying memory should call in here once for each page
1856  * which was newly dirtied.  The function will periodically check the system's
1857  * dirty state and will initiate writeback if needed.
1858  *
1859  * On really big machines, get_writeback_state is expensive, so try to avoid
1860  * calling it too often (ratelimiting).  But once we're over the dirty memory
1861  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1862  * from overshooting the limit by (ratelimit_pages) each.
1863  */
1864 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1865 {
1866 	struct inode *inode = mapping->host;
1867 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1868 	struct bdi_writeback *wb = NULL;
1869 	int ratelimit;
1870 	int *p;
1871 
1872 	if (!bdi_cap_account_dirty(bdi))
1873 		return;
1874 
1875 	if (inode_cgwb_enabled(inode))
1876 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1877 	if (!wb)
1878 		wb = &bdi->wb;
1879 
1880 	ratelimit = current->nr_dirtied_pause;
1881 	if (wb->dirty_exceeded)
1882 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1883 
1884 	preempt_disable();
1885 	/*
1886 	 * This prevents one CPU to accumulate too many dirtied pages without
1887 	 * calling into balance_dirty_pages(), which can happen when there are
1888 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1889 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1890 	 */
1891 	p =  this_cpu_ptr(&bdp_ratelimits);
1892 	if (unlikely(current->nr_dirtied >= ratelimit))
1893 		*p = 0;
1894 	else if (unlikely(*p >= ratelimit_pages)) {
1895 		*p = 0;
1896 		ratelimit = 0;
1897 	}
1898 	/*
1899 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1900 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1901 	 * the dirty throttling and livelock other long-run dirtiers.
1902 	 */
1903 	p = this_cpu_ptr(&dirty_throttle_leaks);
1904 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1905 		unsigned long nr_pages_dirtied;
1906 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1907 		*p -= nr_pages_dirtied;
1908 		current->nr_dirtied += nr_pages_dirtied;
1909 	}
1910 	preempt_enable();
1911 
1912 	if (unlikely(current->nr_dirtied >= ratelimit))
1913 		balance_dirty_pages(wb, current->nr_dirtied);
1914 
1915 	wb_put(wb);
1916 }
1917 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1918 
1919 /**
1920  * wb_over_bg_thresh - does @wb need to be written back?
1921  * @wb: bdi_writeback of interest
1922  *
1923  * Determines whether background writeback should keep writing @wb or it's
1924  * clean enough.
1925  *
1926  * Return: %true if writeback should continue.
1927  */
1928 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1929 {
1930 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1931 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1932 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1933 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1934 						     &mdtc_stor : NULL;
1935 
1936 	/*
1937 	 * Similar to balance_dirty_pages() but ignores pages being written
1938 	 * as we're trying to decide whether to put more under writeback.
1939 	 */
1940 	gdtc->avail = global_dirtyable_memory();
1941 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1942 		      global_node_page_state(NR_UNSTABLE_NFS);
1943 	domain_dirty_limits(gdtc);
1944 
1945 	if (gdtc->dirty > gdtc->bg_thresh)
1946 		return true;
1947 
1948 	if (wb_stat(wb, WB_RECLAIMABLE) >
1949 	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1950 		return true;
1951 
1952 	if (mdtc) {
1953 		unsigned long filepages, headroom, writeback;
1954 
1955 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1956 				    &writeback);
1957 		mdtc_calc_avail(mdtc, filepages, headroom);
1958 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1959 
1960 		if (mdtc->dirty > mdtc->bg_thresh)
1961 			return true;
1962 
1963 		if (wb_stat(wb, WB_RECLAIMABLE) >
1964 		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1965 			return true;
1966 	}
1967 
1968 	return false;
1969 }
1970 
1971 /*
1972  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1973  */
1974 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1975 	void __user *buffer, size_t *length, loff_t *ppos)
1976 {
1977 	unsigned int old_interval = dirty_writeback_interval;
1978 	int ret;
1979 
1980 	ret = proc_dointvec(table, write, buffer, length, ppos);
1981 
1982 	/*
1983 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1984 	 * and a different non-zero value will wakeup the writeback threads.
1985 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1986 	 * iterate over all bdis and wbs.
1987 	 * The reason we do this is to make the change take effect immediately.
1988 	 */
1989 	if (!ret && write && dirty_writeback_interval &&
1990 		dirty_writeback_interval != old_interval)
1991 		wakeup_flusher_threads(WB_REASON_PERIODIC);
1992 
1993 	return ret;
1994 }
1995 
1996 #ifdef CONFIG_BLOCK
1997 void laptop_mode_timer_fn(struct timer_list *t)
1998 {
1999 	struct backing_dev_info *backing_dev_info =
2000 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2001 
2002 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2003 }
2004 
2005 /*
2006  * We've spun up the disk and we're in laptop mode: schedule writeback
2007  * of all dirty data a few seconds from now.  If the flush is already scheduled
2008  * then push it back - the user is still using the disk.
2009  */
2010 void laptop_io_completion(struct backing_dev_info *info)
2011 {
2012 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2013 }
2014 
2015 /*
2016  * We're in laptop mode and we've just synced. The sync's writes will have
2017  * caused another writeback to be scheduled by laptop_io_completion.
2018  * Nothing needs to be written back anymore, so we unschedule the writeback.
2019  */
2020 void laptop_sync_completion(void)
2021 {
2022 	struct backing_dev_info *bdi;
2023 
2024 	rcu_read_lock();
2025 
2026 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2027 		del_timer(&bdi->laptop_mode_wb_timer);
2028 
2029 	rcu_read_unlock();
2030 }
2031 #endif
2032 
2033 /*
2034  * If ratelimit_pages is too high then we can get into dirty-data overload
2035  * if a large number of processes all perform writes at the same time.
2036  * If it is too low then SMP machines will call the (expensive)
2037  * get_writeback_state too often.
2038  *
2039  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2040  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2041  * thresholds.
2042  */
2043 
2044 void writeback_set_ratelimit(void)
2045 {
2046 	struct wb_domain *dom = &global_wb_domain;
2047 	unsigned long background_thresh;
2048 	unsigned long dirty_thresh;
2049 
2050 	global_dirty_limits(&background_thresh, &dirty_thresh);
2051 	dom->dirty_limit = dirty_thresh;
2052 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2053 	if (ratelimit_pages < 16)
2054 		ratelimit_pages = 16;
2055 }
2056 
2057 static int page_writeback_cpu_online(unsigned int cpu)
2058 {
2059 	writeback_set_ratelimit();
2060 	return 0;
2061 }
2062 
2063 /*
2064  * Called early on to tune the page writeback dirty limits.
2065  *
2066  * We used to scale dirty pages according to how total memory
2067  * related to pages that could be allocated for buffers (by
2068  * comparing nr_free_buffer_pages() to vm_total_pages.
2069  *
2070  * However, that was when we used "dirty_ratio" to scale with
2071  * all memory, and we don't do that any more. "dirty_ratio"
2072  * is now applied to total non-HIGHPAGE memory (by subtracting
2073  * totalhigh_pages from vm_total_pages), and as such we can't
2074  * get into the old insane situation any more where we had
2075  * large amounts of dirty pages compared to a small amount of
2076  * non-HIGHMEM memory.
2077  *
2078  * But we might still want to scale the dirty_ratio by how
2079  * much memory the box has..
2080  */
2081 void __init page_writeback_init(void)
2082 {
2083 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2084 
2085 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2086 			  page_writeback_cpu_online, NULL);
2087 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2088 			  page_writeback_cpu_online);
2089 }
2090 
2091 /**
2092  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2093  * @mapping: address space structure to write
2094  * @start: starting page index
2095  * @end: ending page index (inclusive)
2096  *
2097  * This function scans the page range from @start to @end (inclusive) and tags
2098  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2099  * that write_cache_pages (or whoever calls this function) will then use
2100  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2101  * used to avoid livelocking of writeback by a process steadily creating new
2102  * dirty pages in the file (thus it is important for this function to be quick
2103  * so that it can tag pages faster than a dirtying process can create them).
2104  */
2105 void tag_pages_for_writeback(struct address_space *mapping,
2106 			     pgoff_t start, pgoff_t end)
2107 {
2108 	XA_STATE(xas, &mapping->i_pages, start);
2109 	unsigned int tagged = 0;
2110 	void *page;
2111 
2112 	xas_lock_irq(&xas);
2113 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2114 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2115 		if (++tagged % XA_CHECK_SCHED)
2116 			continue;
2117 
2118 		xas_pause(&xas);
2119 		xas_unlock_irq(&xas);
2120 		cond_resched();
2121 		xas_lock_irq(&xas);
2122 	}
2123 	xas_unlock_irq(&xas);
2124 }
2125 EXPORT_SYMBOL(tag_pages_for_writeback);
2126 
2127 /**
2128  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2129  * @mapping: address space structure to write
2130  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2131  * @writepage: function called for each page
2132  * @data: data passed to writepage function
2133  *
2134  * If a page is already under I/O, write_cache_pages() skips it, even
2135  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2136  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2137  * and msync() need to guarantee that all the data which was dirty at the time
2138  * the call was made get new I/O started against them.  If wbc->sync_mode is
2139  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2140  * existing IO to complete.
2141  *
2142  * To avoid livelocks (when other process dirties new pages), we first tag
2143  * pages which should be written back with TOWRITE tag and only then start
2144  * writing them. For data-integrity sync we have to be careful so that we do
2145  * not miss some pages (e.g., because some other process has cleared TOWRITE
2146  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2147  * by the process clearing the DIRTY tag (and submitting the page for IO).
2148  *
2149  * To avoid deadlocks between range_cyclic writeback and callers that hold
2150  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2151  * we do not loop back to the start of the file. Doing so causes a page
2152  * lock/page writeback access order inversion - we should only ever lock
2153  * multiple pages in ascending page->index order, and looping back to the start
2154  * of the file violates that rule and causes deadlocks.
2155  *
2156  * Return: %0 on success, negative error code otherwise
2157  */
2158 int write_cache_pages(struct address_space *mapping,
2159 		      struct writeback_control *wbc, writepage_t writepage,
2160 		      void *data)
2161 {
2162 	int ret = 0;
2163 	int done = 0;
2164 	int error;
2165 	struct pagevec pvec;
2166 	int nr_pages;
2167 	pgoff_t uninitialized_var(writeback_index);
2168 	pgoff_t index;
2169 	pgoff_t end;		/* Inclusive */
2170 	pgoff_t done_index;
2171 	int range_whole = 0;
2172 	xa_mark_t tag;
2173 
2174 	pagevec_init(&pvec);
2175 	if (wbc->range_cyclic) {
2176 		writeback_index = mapping->writeback_index; /* prev offset */
2177 		index = writeback_index;
2178 		end = -1;
2179 	} else {
2180 		index = wbc->range_start >> PAGE_SHIFT;
2181 		end = wbc->range_end >> PAGE_SHIFT;
2182 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2183 			range_whole = 1;
2184 	}
2185 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2186 		tag = PAGECACHE_TAG_TOWRITE;
2187 	else
2188 		tag = PAGECACHE_TAG_DIRTY;
2189 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2190 		tag_pages_for_writeback(mapping, index, end);
2191 	done_index = index;
2192 	while (!done && (index <= end)) {
2193 		int i;
2194 
2195 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2196 				tag);
2197 		if (nr_pages == 0)
2198 			break;
2199 
2200 		for (i = 0; i < nr_pages; i++) {
2201 			struct page *page = pvec.pages[i];
2202 
2203 			done_index = page->index;
2204 
2205 			lock_page(page);
2206 
2207 			/*
2208 			 * Page truncated or invalidated. We can freely skip it
2209 			 * then, even for data integrity operations: the page
2210 			 * has disappeared concurrently, so there could be no
2211 			 * real expectation of this data interity operation
2212 			 * even if there is now a new, dirty page at the same
2213 			 * pagecache address.
2214 			 */
2215 			if (unlikely(page->mapping != mapping)) {
2216 continue_unlock:
2217 				unlock_page(page);
2218 				continue;
2219 			}
2220 
2221 			if (!PageDirty(page)) {
2222 				/* someone wrote it for us */
2223 				goto continue_unlock;
2224 			}
2225 
2226 			if (PageWriteback(page)) {
2227 				if (wbc->sync_mode != WB_SYNC_NONE)
2228 					wait_on_page_writeback(page);
2229 				else
2230 					goto continue_unlock;
2231 			}
2232 
2233 			BUG_ON(PageWriteback(page));
2234 			if (!clear_page_dirty_for_io(page))
2235 				goto continue_unlock;
2236 
2237 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2238 			error = (*writepage)(page, wbc, data);
2239 			if (unlikely(error)) {
2240 				/*
2241 				 * Handle errors according to the type of
2242 				 * writeback. There's no need to continue for
2243 				 * background writeback. Just push done_index
2244 				 * past this page so media errors won't choke
2245 				 * writeout for the entire file. For integrity
2246 				 * writeback, we must process the entire dirty
2247 				 * set regardless of errors because the fs may
2248 				 * still have state to clear for each page. In
2249 				 * that case we continue processing and return
2250 				 * the first error.
2251 				 */
2252 				if (error == AOP_WRITEPAGE_ACTIVATE) {
2253 					unlock_page(page);
2254 					error = 0;
2255 				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2256 					ret = error;
2257 					done_index = page->index + 1;
2258 					done = 1;
2259 					break;
2260 				}
2261 				if (!ret)
2262 					ret = error;
2263 			}
2264 
2265 			/*
2266 			 * We stop writing back only if we are not doing
2267 			 * integrity sync. In case of integrity sync we have to
2268 			 * keep going until we have written all the pages
2269 			 * we tagged for writeback prior to entering this loop.
2270 			 */
2271 			if (--wbc->nr_to_write <= 0 &&
2272 			    wbc->sync_mode == WB_SYNC_NONE) {
2273 				done = 1;
2274 				break;
2275 			}
2276 		}
2277 		pagevec_release(&pvec);
2278 		cond_resched();
2279 	}
2280 
2281 	/*
2282 	 * If we hit the last page and there is more work to be done: wrap
2283 	 * back the index back to the start of the file for the next
2284 	 * time we are called.
2285 	 */
2286 	if (wbc->range_cyclic && !done)
2287 		done_index = 0;
2288 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2289 		mapping->writeback_index = done_index;
2290 
2291 	return ret;
2292 }
2293 EXPORT_SYMBOL(write_cache_pages);
2294 
2295 /*
2296  * Function used by generic_writepages to call the real writepage
2297  * function and set the mapping flags on error
2298  */
2299 static int __writepage(struct page *page, struct writeback_control *wbc,
2300 		       void *data)
2301 {
2302 	struct address_space *mapping = data;
2303 	int ret = mapping->a_ops->writepage(page, wbc);
2304 	mapping_set_error(mapping, ret);
2305 	return ret;
2306 }
2307 
2308 /**
2309  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2310  * @mapping: address space structure to write
2311  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2312  *
2313  * This is a library function, which implements the writepages()
2314  * address_space_operation.
2315  *
2316  * Return: %0 on success, negative error code otherwise
2317  */
2318 int generic_writepages(struct address_space *mapping,
2319 		       struct writeback_control *wbc)
2320 {
2321 	struct blk_plug plug;
2322 	int ret;
2323 
2324 	/* deal with chardevs and other special file */
2325 	if (!mapping->a_ops->writepage)
2326 		return 0;
2327 
2328 	blk_start_plug(&plug);
2329 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2330 	blk_finish_plug(&plug);
2331 	return ret;
2332 }
2333 
2334 EXPORT_SYMBOL(generic_writepages);
2335 
2336 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2337 {
2338 	int ret;
2339 
2340 	if (wbc->nr_to_write <= 0)
2341 		return 0;
2342 	while (1) {
2343 		if (mapping->a_ops->writepages)
2344 			ret = mapping->a_ops->writepages(mapping, wbc);
2345 		else
2346 			ret = generic_writepages(mapping, wbc);
2347 		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2348 			break;
2349 		cond_resched();
2350 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2351 	}
2352 	return ret;
2353 }
2354 
2355 /**
2356  * write_one_page - write out a single page and wait on I/O
2357  * @page: the page to write
2358  *
2359  * The page must be locked by the caller and will be unlocked upon return.
2360  *
2361  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2362  * function returns.
2363  *
2364  * Return: %0 on success, negative error code otherwise
2365  */
2366 int write_one_page(struct page *page)
2367 {
2368 	struct address_space *mapping = page->mapping;
2369 	int ret = 0;
2370 	struct writeback_control wbc = {
2371 		.sync_mode = WB_SYNC_ALL,
2372 		.nr_to_write = 1,
2373 	};
2374 
2375 	BUG_ON(!PageLocked(page));
2376 
2377 	wait_on_page_writeback(page);
2378 
2379 	if (clear_page_dirty_for_io(page)) {
2380 		get_page(page);
2381 		ret = mapping->a_ops->writepage(page, &wbc);
2382 		if (ret == 0)
2383 			wait_on_page_writeback(page);
2384 		put_page(page);
2385 	} else {
2386 		unlock_page(page);
2387 	}
2388 
2389 	if (!ret)
2390 		ret = filemap_check_errors(mapping);
2391 	return ret;
2392 }
2393 EXPORT_SYMBOL(write_one_page);
2394 
2395 /*
2396  * For address_spaces which do not use buffers nor write back.
2397  */
2398 int __set_page_dirty_no_writeback(struct page *page)
2399 {
2400 	if (!PageDirty(page))
2401 		return !TestSetPageDirty(page);
2402 	return 0;
2403 }
2404 
2405 /*
2406  * Helper function for set_page_dirty family.
2407  *
2408  * Caller must hold lock_page_memcg().
2409  *
2410  * NOTE: This relies on being atomic wrt interrupts.
2411  */
2412 void account_page_dirtied(struct page *page, struct address_space *mapping)
2413 {
2414 	struct inode *inode = mapping->host;
2415 
2416 	trace_writeback_dirty_page(page, mapping);
2417 
2418 	if (mapping_cap_account_dirty(mapping)) {
2419 		struct bdi_writeback *wb;
2420 
2421 		inode_attach_wb(inode, page);
2422 		wb = inode_to_wb(inode);
2423 
2424 		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2425 		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2426 		__inc_node_page_state(page, NR_DIRTIED);
2427 		inc_wb_stat(wb, WB_RECLAIMABLE);
2428 		inc_wb_stat(wb, WB_DIRTIED);
2429 		task_io_account_write(PAGE_SIZE);
2430 		current->nr_dirtied++;
2431 		this_cpu_inc(bdp_ratelimits);
2432 
2433 		mem_cgroup_track_foreign_dirty(page, wb);
2434 	}
2435 }
2436 
2437 /*
2438  * Helper function for deaccounting dirty page without writeback.
2439  *
2440  * Caller must hold lock_page_memcg().
2441  */
2442 void account_page_cleaned(struct page *page, struct address_space *mapping,
2443 			  struct bdi_writeback *wb)
2444 {
2445 	if (mapping_cap_account_dirty(mapping)) {
2446 		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2447 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2448 		dec_wb_stat(wb, WB_RECLAIMABLE);
2449 		task_io_account_cancelled_write(PAGE_SIZE);
2450 	}
2451 }
2452 
2453 /*
2454  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2455  * the xarray.
2456  *
2457  * This is also used when a single buffer is being dirtied: we want to set the
2458  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2459  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2460  *
2461  * The caller must ensure this doesn't race with truncation.  Most will simply
2462  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2463  * the pte lock held, which also locks out truncation.
2464  */
2465 int __set_page_dirty_nobuffers(struct page *page)
2466 {
2467 	lock_page_memcg(page);
2468 	if (!TestSetPageDirty(page)) {
2469 		struct address_space *mapping = page_mapping(page);
2470 		unsigned long flags;
2471 
2472 		if (!mapping) {
2473 			unlock_page_memcg(page);
2474 			return 1;
2475 		}
2476 
2477 		xa_lock_irqsave(&mapping->i_pages, flags);
2478 		BUG_ON(page_mapping(page) != mapping);
2479 		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2480 		account_page_dirtied(page, mapping);
2481 		__xa_set_mark(&mapping->i_pages, page_index(page),
2482 				   PAGECACHE_TAG_DIRTY);
2483 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2484 		unlock_page_memcg(page);
2485 
2486 		if (mapping->host) {
2487 			/* !PageAnon && !swapper_space */
2488 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2489 		}
2490 		return 1;
2491 	}
2492 	unlock_page_memcg(page);
2493 	return 0;
2494 }
2495 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2496 
2497 /*
2498  * Call this whenever redirtying a page, to de-account the dirty counters
2499  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2500  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2501  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2502  * control.
2503  */
2504 void account_page_redirty(struct page *page)
2505 {
2506 	struct address_space *mapping = page->mapping;
2507 
2508 	if (mapping && mapping_cap_account_dirty(mapping)) {
2509 		struct inode *inode = mapping->host;
2510 		struct bdi_writeback *wb;
2511 		struct wb_lock_cookie cookie = {};
2512 
2513 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2514 		current->nr_dirtied--;
2515 		dec_node_page_state(page, NR_DIRTIED);
2516 		dec_wb_stat(wb, WB_DIRTIED);
2517 		unlocked_inode_to_wb_end(inode, &cookie);
2518 	}
2519 }
2520 EXPORT_SYMBOL(account_page_redirty);
2521 
2522 /*
2523  * When a writepage implementation decides that it doesn't want to write this
2524  * page for some reason, it should redirty the locked page via
2525  * redirty_page_for_writepage() and it should then unlock the page and return 0
2526  */
2527 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2528 {
2529 	int ret;
2530 
2531 	wbc->pages_skipped++;
2532 	ret = __set_page_dirty_nobuffers(page);
2533 	account_page_redirty(page);
2534 	return ret;
2535 }
2536 EXPORT_SYMBOL(redirty_page_for_writepage);
2537 
2538 /*
2539  * Dirty a page.
2540  *
2541  * For pages with a mapping this should be done under the page lock
2542  * for the benefit of asynchronous memory errors who prefer a consistent
2543  * dirty state. This rule can be broken in some special cases,
2544  * but should be better not to.
2545  *
2546  * If the mapping doesn't provide a set_page_dirty a_op, then
2547  * just fall through and assume that it wants buffer_heads.
2548  */
2549 int set_page_dirty(struct page *page)
2550 {
2551 	struct address_space *mapping = page_mapping(page);
2552 
2553 	page = compound_head(page);
2554 	if (likely(mapping)) {
2555 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2556 		/*
2557 		 * readahead/lru_deactivate_page could remain
2558 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2559 		 * About readahead, if the page is written, the flags would be
2560 		 * reset. So no problem.
2561 		 * About lru_deactivate_page, if the page is redirty, the flag
2562 		 * will be reset. So no problem. but if the page is used by readahead
2563 		 * it will confuse readahead and make it restart the size rampup
2564 		 * process. But it's a trivial problem.
2565 		 */
2566 		if (PageReclaim(page))
2567 			ClearPageReclaim(page);
2568 #ifdef CONFIG_BLOCK
2569 		if (!spd)
2570 			spd = __set_page_dirty_buffers;
2571 #endif
2572 		return (*spd)(page);
2573 	}
2574 	if (!PageDirty(page)) {
2575 		if (!TestSetPageDirty(page))
2576 			return 1;
2577 	}
2578 	return 0;
2579 }
2580 EXPORT_SYMBOL(set_page_dirty);
2581 
2582 /*
2583  * set_page_dirty() is racy if the caller has no reference against
2584  * page->mapping->host, and if the page is unlocked.  This is because another
2585  * CPU could truncate the page off the mapping and then free the mapping.
2586  *
2587  * Usually, the page _is_ locked, or the caller is a user-space process which
2588  * holds a reference on the inode by having an open file.
2589  *
2590  * In other cases, the page should be locked before running set_page_dirty().
2591  */
2592 int set_page_dirty_lock(struct page *page)
2593 {
2594 	int ret;
2595 
2596 	lock_page(page);
2597 	ret = set_page_dirty(page);
2598 	unlock_page(page);
2599 	return ret;
2600 }
2601 EXPORT_SYMBOL(set_page_dirty_lock);
2602 
2603 /*
2604  * This cancels just the dirty bit on the kernel page itself, it does NOT
2605  * actually remove dirty bits on any mmap's that may be around. It also
2606  * leaves the page tagged dirty, so any sync activity will still find it on
2607  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2608  * look at the dirty bits in the VM.
2609  *
2610  * Doing this should *normally* only ever be done when a page is truncated,
2611  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2612  * this when it notices that somebody has cleaned out all the buffers on a
2613  * page without actually doing it through the VM. Can you say "ext3 is
2614  * horribly ugly"? Thought you could.
2615  */
2616 void __cancel_dirty_page(struct page *page)
2617 {
2618 	struct address_space *mapping = page_mapping(page);
2619 
2620 	if (mapping_cap_account_dirty(mapping)) {
2621 		struct inode *inode = mapping->host;
2622 		struct bdi_writeback *wb;
2623 		struct wb_lock_cookie cookie = {};
2624 
2625 		lock_page_memcg(page);
2626 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2627 
2628 		if (TestClearPageDirty(page))
2629 			account_page_cleaned(page, mapping, wb);
2630 
2631 		unlocked_inode_to_wb_end(inode, &cookie);
2632 		unlock_page_memcg(page);
2633 	} else {
2634 		ClearPageDirty(page);
2635 	}
2636 }
2637 EXPORT_SYMBOL(__cancel_dirty_page);
2638 
2639 /*
2640  * Clear a page's dirty flag, while caring for dirty memory accounting.
2641  * Returns true if the page was previously dirty.
2642  *
2643  * This is for preparing to put the page under writeout.  We leave the page
2644  * tagged as dirty in the xarray so that a concurrent write-for-sync
2645  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2646  * implementation will run either set_page_writeback() or set_page_dirty(),
2647  * at which stage we bring the page's dirty flag and xarray dirty tag
2648  * back into sync.
2649  *
2650  * This incoherency between the page's dirty flag and xarray tag is
2651  * unfortunate, but it only exists while the page is locked.
2652  */
2653 int clear_page_dirty_for_io(struct page *page)
2654 {
2655 	struct address_space *mapping = page_mapping(page);
2656 	int ret = 0;
2657 
2658 	BUG_ON(!PageLocked(page));
2659 
2660 	if (mapping && mapping_cap_account_dirty(mapping)) {
2661 		struct inode *inode = mapping->host;
2662 		struct bdi_writeback *wb;
2663 		struct wb_lock_cookie cookie = {};
2664 
2665 		/*
2666 		 * Yes, Virginia, this is indeed insane.
2667 		 *
2668 		 * We use this sequence to make sure that
2669 		 *  (a) we account for dirty stats properly
2670 		 *  (b) we tell the low-level filesystem to
2671 		 *      mark the whole page dirty if it was
2672 		 *      dirty in a pagetable. Only to then
2673 		 *  (c) clean the page again and return 1 to
2674 		 *      cause the writeback.
2675 		 *
2676 		 * This way we avoid all nasty races with the
2677 		 * dirty bit in multiple places and clearing
2678 		 * them concurrently from different threads.
2679 		 *
2680 		 * Note! Normally the "set_page_dirty(page)"
2681 		 * has no effect on the actual dirty bit - since
2682 		 * that will already usually be set. But we
2683 		 * need the side effects, and it can help us
2684 		 * avoid races.
2685 		 *
2686 		 * We basically use the page "master dirty bit"
2687 		 * as a serialization point for all the different
2688 		 * threads doing their things.
2689 		 */
2690 		if (page_mkclean(page))
2691 			set_page_dirty(page);
2692 		/*
2693 		 * We carefully synchronise fault handlers against
2694 		 * installing a dirty pte and marking the page dirty
2695 		 * at this point.  We do this by having them hold the
2696 		 * page lock while dirtying the page, and pages are
2697 		 * always locked coming in here, so we get the desired
2698 		 * exclusion.
2699 		 */
2700 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2701 		if (TestClearPageDirty(page)) {
2702 			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2703 			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2704 			dec_wb_stat(wb, WB_RECLAIMABLE);
2705 			ret = 1;
2706 		}
2707 		unlocked_inode_to_wb_end(inode, &cookie);
2708 		return ret;
2709 	}
2710 	return TestClearPageDirty(page);
2711 }
2712 EXPORT_SYMBOL(clear_page_dirty_for_io);
2713 
2714 int test_clear_page_writeback(struct page *page)
2715 {
2716 	struct address_space *mapping = page_mapping(page);
2717 	struct mem_cgroup *memcg;
2718 	struct lruvec *lruvec;
2719 	int ret;
2720 
2721 	memcg = lock_page_memcg(page);
2722 	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2723 	if (mapping && mapping_use_writeback_tags(mapping)) {
2724 		struct inode *inode = mapping->host;
2725 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2726 		unsigned long flags;
2727 
2728 		xa_lock_irqsave(&mapping->i_pages, flags);
2729 		ret = TestClearPageWriteback(page);
2730 		if (ret) {
2731 			__xa_clear_mark(&mapping->i_pages, page_index(page),
2732 						PAGECACHE_TAG_WRITEBACK);
2733 			if (bdi_cap_account_writeback(bdi)) {
2734 				struct bdi_writeback *wb = inode_to_wb(inode);
2735 
2736 				dec_wb_stat(wb, WB_WRITEBACK);
2737 				__wb_writeout_inc(wb);
2738 			}
2739 		}
2740 
2741 		if (mapping->host && !mapping_tagged(mapping,
2742 						     PAGECACHE_TAG_WRITEBACK))
2743 			sb_clear_inode_writeback(mapping->host);
2744 
2745 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2746 	} else {
2747 		ret = TestClearPageWriteback(page);
2748 	}
2749 	/*
2750 	 * NOTE: Page might be free now! Writeback doesn't hold a page
2751 	 * reference on its own, it relies on truncation to wait for
2752 	 * the clearing of PG_writeback. The below can only access
2753 	 * page state that is static across allocation cycles.
2754 	 */
2755 	if (ret) {
2756 		dec_lruvec_state(lruvec, NR_WRITEBACK);
2757 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2758 		inc_node_page_state(page, NR_WRITTEN);
2759 	}
2760 	__unlock_page_memcg(memcg);
2761 	return ret;
2762 }
2763 
2764 int __test_set_page_writeback(struct page *page, bool keep_write)
2765 {
2766 	struct address_space *mapping = page_mapping(page);
2767 	int ret;
2768 
2769 	lock_page_memcg(page);
2770 	if (mapping && mapping_use_writeback_tags(mapping)) {
2771 		XA_STATE(xas, &mapping->i_pages, page_index(page));
2772 		struct inode *inode = mapping->host;
2773 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2774 		unsigned long flags;
2775 
2776 		xas_lock_irqsave(&xas, flags);
2777 		xas_load(&xas);
2778 		ret = TestSetPageWriteback(page);
2779 		if (!ret) {
2780 			bool on_wblist;
2781 
2782 			on_wblist = mapping_tagged(mapping,
2783 						   PAGECACHE_TAG_WRITEBACK);
2784 
2785 			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2786 			if (bdi_cap_account_writeback(bdi))
2787 				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2788 
2789 			/*
2790 			 * We can come through here when swapping anonymous
2791 			 * pages, so we don't necessarily have an inode to track
2792 			 * for sync.
2793 			 */
2794 			if (mapping->host && !on_wblist)
2795 				sb_mark_inode_writeback(mapping->host);
2796 		}
2797 		if (!PageDirty(page))
2798 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2799 		if (!keep_write)
2800 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2801 		xas_unlock_irqrestore(&xas, flags);
2802 	} else {
2803 		ret = TestSetPageWriteback(page);
2804 	}
2805 	if (!ret) {
2806 		inc_lruvec_page_state(page, NR_WRITEBACK);
2807 		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2808 	}
2809 	unlock_page_memcg(page);
2810 	return ret;
2811 
2812 }
2813 EXPORT_SYMBOL(__test_set_page_writeback);
2814 
2815 /*
2816  * Wait for a page to complete writeback
2817  */
2818 void wait_on_page_writeback(struct page *page)
2819 {
2820 	if (PageWriteback(page)) {
2821 		trace_wait_on_page_writeback(page, page_mapping(page));
2822 		wait_on_page_bit(page, PG_writeback);
2823 	}
2824 }
2825 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2826 
2827 /**
2828  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2829  * @page:	The page to wait on.
2830  *
2831  * This function determines if the given page is related to a backing device
2832  * that requires page contents to be held stable during writeback.  If so, then
2833  * it will wait for any pending writeback to complete.
2834  */
2835 void wait_for_stable_page(struct page *page)
2836 {
2837 	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2838 		wait_on_page_writeback(page);
2839 }
2840 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2841