xref: /linux/mm/shmem.c (revision 0be3ff0c)
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *		 2000 Transmeta Corp.
6  *		 2000-2001 Christoph Rohland
7  *		 2000-2001 SAP AG
8  *		 2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23 
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/fs_parser.h>
40 #include <linux/swapfile.h>
41 
42 static struct vfsmount *shm_mnt;
43 
44 #ifdef CONFIG_SHMEM
45 /*
46  * This virtual memory filesystem is heavily based on the ramfs. It
47  * extends ramfs by the ability to use swap and honor resource limits
48  * which makes it a completely usable filesystem.
49  */
50 
51 #include <linux/xattr.h>
52 #include <linux/exportfs.h>
53 #include <linux/posix_acl.h>
54 #include <linux/posix_acl_xattr.h>
55 #include <linux/mman.h>
56 #include <linux/string.h>
57 #include <linux/slab.h>
58 #include <linux/backing-dev.h>
59 #include <linux/shmem_fs.h>
60 #include <linux/writeback.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
80 
81 #include <linux/uaccess.h>
82 
83 #include "internal.h"
84 
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87 
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90 
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93 
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_rwsem making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100 	wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101 	pgoff_t start;		/* start of range currently being fallocated */
102 	pgoff_t next;		/* the next page offset to be fallocated */
103 	pgoff_t nr_falloced;	/* how many new pages have been fallocated */
104 	pgoff_t nr_unswapped;	/* how often writepage refused to swap out */
105 };
106 
107 struct shmem_options {
108 	unsigned long long blocks;
109 	unsigned long long inodes;
110 	struct mempolicy *mpol;
111 	kuid_t uid;
112 	kgid_t gid;
113 	umode_t mode;
114 	bool full_inums;
115 	int huge;
116 	int seen;
117 #define SHMEM_SEEN_BLOCKS 1
118 #define SHMEM_SEEN_INODES 2
119 #define SHMEM_SEEN_HUGE 4
120 #define SHMEM_SEEN_INUMS 8
121 };
122 
123 #ifdef CONFIG_TMPFS
124 static unsigned long shmem_default_max_blocks(void)
125 {
126 	return totalram_pages() / 2;
127 }
128 
129 static unsigned long shmem_default_max_inodes(void)
130 {
131 	unsigned long nr_pages = totalram_pages();
132 
133 	return min(nr_pages - totalhigh_pages(), nr_pages / 2);
134 }
135 #endif
136 
137 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
138 			     struct page **pagep, enum sgp_type sgp,
139 			     gfp_t gfp, struct vm_area_struct *vma,
140 			     vm_fault_t *fault_type);
141 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
142 		struct page **pagep, enum sgp_type sgp,
143 		gfp_t gfp, struct vm_area_struct *vma,
144 		struct vm_fault *vmf, vm_fault_t *fault_type);
145 
146 int shmem_getpage(struct inode *inode, pgoff_t index,
147 		struct page **pagep, enum sgp_type sgp)
148 {
149 	return shmem_getpage_gfp(inode, index, pagep, sgp,
150 		mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
151 }
152 
153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 	return sb->s_fs_info;
156 }
157 
158 /*
159  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160  * for shared memory and for shared anonymous (/dev/zero) mappings
161  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162  * consistent with the pre-accounting of private mappings ...
163  */
164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 	return (flags & VM_NORESERVE) ?
167 		0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169 
170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 	if (!(flags & VM_NORESERVE))
173 		vm_unacct_memory(VM_ACCT(size));
174 }
175 
176 static inline int shmem_reacct_size(unsigned long flags,
177 		loff_t oldsize, loff_t newsize)
178 {
179 	if (!(flags & VM_NORESERVE)) {
180 		if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 			return security_vm_enough_memory_mm(current->mm,
182 					VM_ACCT(newsize) - VM_ACCT(oldsize));
183 		else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 			vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 	}
186 	return 0;
187 }
188 
189 /*
190  * ... whereas tmpfs objects are accounted incrementally as
191  * pages are allocated, in order to allow large sparse files.
192  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194  */
195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 	if (!(flags & VM_NORESERVE))
198 		return 0;
199 
200 	return security_vm_enough_memory_mm(current->mm,
201 			pages * VM_ACCT(PAGE_SIZE));
202 }
203 
204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 	if (flags & VM_NORESERVE)
207 		vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209 
210 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 	struct shmem_inode_info *info = SHMEM_I(inode);
213 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 
215 	if (shmem_acct_block(info->flags, pages))
216 		return false;
217 
218 	if (sbinfo->max_blocks) {
219 		if (percpu_counter_compare(&sbinfo->used_blocks,
220 					   sbinfo->max_blocks - pages) > 0)
221 			goto unacct;
222 		percpu_counter_add(&sbinfo->used_blocks, pages);
223 	}
224 
225 	return true;
226 
227 unacct:
228 	shmem_unacct_blocks(info->flags, pages);
229 	return false;
230 }
231 
232 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
233 {
234 	struct shmem_inode_info *info = SHMEM_I(inode);
235 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
236 
237 	if (sbinfo->max_blocks)
238 		percpu_counter_sub(&sbinfo->used_blocks, pages);
239 	shmem_unacct_blocks(info->flags, pages);
240 }
241 
242 static const struct super_operations shmem_ops;
243 const struct address_space_operations shmem_aops;
244 static const struct file_operations shmem_file_operations;
245 static const struct inode_operations shmem_inode_operations;
246 static const struct inode_operations shmem_dir_inode_operations;
247 static const struct inode_operations shmem_special_inode_operations;
248 static const struct vm_operations_struct shmem_vm_ops;
249 static struct file_system_type shmem_fs_type;
250 
251 bool vma_is_shmem(struct vm_area_struct *vma)
252 {
253 	return vma->vm_ops == &shmem_vm_ops;
254 }
255 
256 static LIST_HEAD(shmem_swaplist);
257 static DEFINE_MUTEX(shmem_swaplist_mutex);
258 
259 /*
260  * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
261  * produces a novel ino for the newly allocated inode.
262  *
263  * It may also be called when making a hard link to permit the space needed by
264  * each dentry. However, in that case, no new inode number is needed since that
265  * internally draws from another pool of inode numbers (currently global
266  * get_next_ino()). This case is indicated by passing NULL as inop.
267  */
268 #define SHMEM_INO_BATCH 1024
269 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
270 {
271 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
272 	ino_t ino;
273 
274 	if (!(sb->s_flags & SB_KERNMOUNT)) {
275 		raw_spin_lock(&sbinfo->stat_lock);
276 		if (sbinfo->max_inodes) {
277 			if (!sbinfo->free_inodes) {
278 				raw_spin_unlock(&sbinfo->stat_lock);
279 				return -ENOSPC;
280 			}
281 			sbinfo->free_inodes--;
282 		}
283 		if (inop) {
284 			ino = sbinfo->next_ino++;
285 			if (unlikely(is_zero_ino(ino)))
286 				ino = sbinfo->next_ino++;
287 			if (unlikely(!sbinfo->full_inums &&
288 				     ino > UINT_MAX)) {
289 				/*
290 				 * Emulate get_next_ino uint wraparound for
291 				 * compatibility
292 				 */
293 				if (IS_ENABLED(CONFIG_64BIT))
294 					pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
295 						__func__, MINOR(sb->s_dev));
296 				sbinfo->next_ino = 1;
297 				ino = sbinfo->next_ino++;
298 			}
299 			*inop = ino;
300 		}
301 		raw_spin_unlock(&sbinfo->stat_lock);
302 	} else if (inop) {
303 		/*
304 		 * __shmem_file_setup, one of our callers, is lock-free: it
305 		 * doesn't hold stat_lock in shmem_reserve_inode since
306 		 * max_inodes is always 0, and is called from potentially
307 		 * unknown contexts. As such, use a per-cpu batched allocator
308 		 * which doesn't require the per-sb stat_lock unless we are at
309 		 * the batch boundary.
310 		 *
311 		 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
312 		 * shmem mounts are not exposed to userspace, so we don't need
313 		 * to worry about things like glibc compatibility.
314 		 */
315 		ino_t *next_ino;
316 
317 		next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
318 		ino = *next_ino;
319 		if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
320 			raw_spin_lock(&sbinfo->stat_lock);
321 			ino = sbinfo->next_ino;
322 			sbinfo->next_ino += SHMEM_INO_BATCH;
323 			raw_spin_unlock(&sbinfo->stat_lock);
324 			if (unlikely(is_zero_ino(ino)))
325 				ino++;
326 		}
327 		*inop = ino;
328 		*next_ino = ++ino;
329 		put_cpu();
330 	}
331 
332 	return 0;
333 }
334 
335 static void shmem_free_inode(struct super_block *sb)
336 {
337 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
338 	if (sbinfo->max_inodes) {
339 		raw_spin_lock(&sbinfo->stat_lock);
340 		sbinfo->free_inodes++;
341 		raw_spin_unlock(&sbinfo->stat_lock);
342 	}
343 }
344 
345 /**
346  * shmem_recalc_inode - recalculate the block usage of an inode
347  * @inode: inode to recalc
348  *
349  * We have to calculate the free blocks since the mm can drop
350  * undirtied hole pages behind our back.
351  *
352  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
353  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
354  *
355  * It has to be called with the spinlock held.
356  */
357 static void shmem_recalc_inode(struct inode *inode)
358 {
359 	struct shmem_inode_info *info = SHMEM_I(inode);
360 	long freed;
361 
362 	freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
363 	if (freed > 0) {
364 		info->alloced -= freed;
365 		inode->i_blocks -= freed * BLOCKS_PER_PAGE;
366 		shmem_inode_unacct_blocks(inode, freed);
367 	}
368 }
369 
370 bool shmem_charge(struct inode *inode, long pages)
371 {
372 	struct shmem_inode_info *info = SHMEM_I(inode);
373 	unsigned long flags;
374 
375 	if (!shmem_inode_acct_block(inode, pages))
376 		return false;
377 
378 	/* nrpages adjustment first, then shmem_recalc_inode() when balanced */
379 	inode->i_mapping->nrpages += pages;
380 
381 	spin_lock_irqsave(&info->lock, flags);
382 	info->alloced += pages;
383 	inode->i_blocks += pages * BLOCKS_PER_PAGE;
384 	shmem_recalc_inode(inode);
385 	spin_unlock_irqrestore(&info->lock, flags);
386 
387 	return true;
388 }
389 
390 void shmem_uncharge(struct inode *inode, long pages)
391 {
392 	struct shmem_inode_info *info = SHMEM_I(inode);
393 	unsigned long flags;
394 
395 	/* nrpages adjustment done by __delete_from_page_cache() or caller */
396 
397 	spin_lock_irqsave(&info->lock, flags);
398 	info->alloced -= pages;
399 	inode->i_blocks -= pages * BLOCKS_PER_PAGE;
400 	shmem_recalc_inode(inode);
401 	spin_unlock_irqrestore(&info->lock, flags);
402 
403 	shmem_inode_unacct_blocks(inode, pages);
404 }
405 
406 /*
407  * Replace item expected in xarray by a new item, while holding xa_lock.
408  */
409 static int shmem_replace_entry(struct address_space *mapping,
410 			pgoff_t index, void *expected, void *replacement)
411 {
412 	XA_STATE(xas, &mapping->i_pages, index);
413 	void *item;
414 
415 	VM_BUG_ON(!expected);
416 	VM_BUG_ON(!replacement);
417 	item = xas_load(&xas);
418 	if (item != expected)
419 		return -ENOENT;
420 	xas_store(&xas, replacement);
421 	return 0;
422 }
423 
424 /*
425  * Sometimes, before we decide whether to proceed or to fail, we must check
426  * that an entry was not already brought back from swap by a racing thread.
427  *
428  * Checking page is not enough: by the time a SwapCache page is locked, it
429  * might be reused, and again be SwapCache, using the same swap as before.
430  */
431 static bool shmem_confirm_swap(struct address_space *mapping,
432 			       pgoff_t index, swp_entry_t swap)
433 {
434 	return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
435 }
436 
437 /*
438  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
439  *
440  * SHMEM_HUGE_NEVER:
441  *	disables huge pages for the mount;
442  * SHMEM_HUGE_ALWAYS:
443  *	enables huge pages for the mount;
444  * SHMEM_HUGE_WITHIN_SIZE:
445  *	only allocate huge pages if the page will be fully within i_size,
446  *	also respect fadvise()/madvise() hints;
447  * SHMEM_HUGE_ADVISE:
448  *	only allocate huge pages if requested with fadvise()/madvise();
449  */
450 
451 #define SHMEM_HUGE_NEVER	0
452 #define SHMEM_HUGE_ALWAYS	1
453 #define SHMEM_HUGE_WITHIN_SIZE	2
454 #define SHMEM_HUGE_ADVISE	3
455 
456 /*
457  * Special values.
458  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
459  *
460  * SHMEM_HUGE_DENY:
461  *	disables huge on shm_mnt and all mounts, for emergency use;
462  * SHMEM_HUGE_FORCE:
463  *	enables huge on shm_mnt and all mounts, w/o needing option, for testing;
464  *
465  */
466 #define SHMEM_HUGE_DENY		(-1)
467 #define SHMEM_HUGE_FORCE	(-2)
468 
469 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
470 /* ifdef here to avoid bloating shmem.o when not necessary */
471 
472 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
473 
474 bool shmem_is_huge(struct vm_area_struct *vma,
475 		   struct inode *inode, pgoff_t index)
476 {
477 	loff_t i_size;
478 
479 	if (!S_ISREG(inode->i_mode))
480 		return false;
481 	if (shmem_huge == SHMEM_HUGE_DENY)
482 		return false;
483 	if (vma && ((vma->vm_flags & VM_NOHUGEPAGE) ||
484 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags)))
485 		return false;
486 	if (shmem_huge == SHMEM_HUGE_FORCE)
487 		return true;
488 
489 	switch (SHMEM_SB(inode->i_sb)->huge) {
490 	case SHMEM_HUGE_ALWAYS:
491 		return true;
492 	case SHMEM_HUGE_WITHIN_SIZE:
493 		index = round_up(index + 1, HPAGE_PMD_NR);
494 		i_size = round_up(i_size_read(inode), PAGE_SIZE);
495 		if (i_size >> PAGE_SHIFT >= index)
496 			return true;
497 		fallthrough;
498 	case SHMEM_HUGE_ADVISE:
499 		if (vma && (vma->vm_flags & VM_HUGEPAGE))
500 			return true;
501 		fallthrough;
502 	default:
503 		return false;
504 	}
505 }
506 
507 #if defined(CONFIG_SYSFS)
508 static int shmem_parse_huge(const char *str)
509 {
510 	if (!strcmp(str, "never"))
511 		return SHMEM_HUGE_NEVER;
512 	if (!strcmp(str, "always"))
513 		return SHMEM_HUGE_ALWAYS;
514 	if (!strcmp(str, "within_size"))
515 		return SHMEM_HUGE_WITHIN_SIZE;
516 	if (!strcmp(str, "advise"))
517 		return SHMEM_HUGE_ADVISE;
518 	if (!strcmp(str, "deny"))
519 		return SHMEM_HUGE_DENY;
520 	if (!strcmp(str, "force"))
521 		return SHMEM_HUGE_FORCE;
522 	return -EINVAL;
523 }
524 #endif
525 
526 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
527 static const char *shmem_format_huge(int huge)
528 {
529 	switch (huge) {
530 	case SHMEM_HUGE_NEVER:
531 		return "never";
532 	case SHMEM_HUGE_ALWAYS:
533 		return "always";
534 	case SHMEM_HUGE_WITHIN_SIZE:
535 		return "within_size";
536 	case SHMEM_HUGE_ADVISE:
537 		return "advise";
538 	case SHMEM_HUGE_DENY:
539 		return "deny";
540 	case SHMEM_HUGE_FORCE:
541 		return "force";
542 	default:
543 		VM_BUG_ON(1);
544 		return "bad_val";
545 	}
546 }
547 #endif
548 
549 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
550 		struct shrink_control *sc, unsigned long nr_to_split)
551 {
552 	LIST_HEAD(list), *pos, *next;
553 	LIST_HEAD(to_remove);
554 	struct inode *inode;
555 	struct shmem_inode_info *info;
556 	struct page *page;
557 	unsigned long batch = sc ? sc->nr_to_scan : 128;
558 	int split = 0;
559 
560 	if (list_empty(&sbinfo->shrinklist))
561 		return SHRINK_STOP;
562 
563 	spin_lock(&sbinfo->shrinklist_lock);
564 	list_for_each_safe(pos, next, &sbinfo->shrinklist) {
565 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
566 
567 		/* pin the inode */
568 		inode = igrab(&info->vfs_inode);
569 
570 		/* inode is about to be evicted */
571 		if (!inode) {
572 			list_del_init(&info->shrinklist);
573 			goto next;
574 		}
575 
576 		/* Check if there's anything to gain */
577 		if (round_up(inode->i_size, PAGE_SIZE) ==
578 				round_up(inode->i_size, HPAGE_PMD_SIZE)) {
579 			list_move(&info->shrinklist, &to_remove);
580 			goto next;
581 		}
582 
583 		list_move(&info->shrinklist, &list);
584 next:
585 		sbinfo->shrinklist_len--;
586 		if (!--batch)
587 			break;
588 	}
589 	spin_unlock(&sbinfo->shrinklist_lock);
590 
591 	list_for_each_safe(pos, next, &to_remove) {
592 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
593 		inode = &info->vfs_inode;
594 		list_del_init(&info->shrinklist);
595 		iput(inode);
596 	}
597 
598 	list_for_each_safe(pos, next, &list) {
599 		int ret;
600 
601 		info = list_entry(pos, struct shmem_inode_info, shrinklist);
602 		inode = &info->vfs_inode;
603 
604 		if (nr_to_split && split >= nr_to_split)
605 			goto move_back;
606 
607 		page = find_get_page(inode->i_mapping,
608 				(inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
609 		if (!page)
610 			goto drop;
611 
612 		/* No huge page at the end of the file: nothing to split */
613 		if (!PageTransHuge(page)) {
614 			put_page(page);
615 			goto drop;
616 		}
617 
618 		/*
619 		 * Move the inode on the list back to shrinklist if we failed
620 		 * to lock the page at this time.
621 		 *
622 		 * Waiting for the lock may lead to deadlock in the
623 		 * reclaim path.
624 		 */
625 		if (!trylock_page(page)) {
626 			put_page(page);
627 			goto move_back;
628 		}
629 
630 		ret = split_huge_page(page);
631 		unlock_page(page);
632 		put_page(page);
633 
634 		/* If split failed move the inode on the list back to shrinklist */
635 		if (ret)
636 			goto move_back;
637 
638 		split++;
639 drop:
640 		list_del_init(&info->shrinklist);
641 		goto put;
642 move_back:
643 		/*
644 		 * Make sure the inode is either on the global list or deleted
645 		 * from any local list before iput() since it could be deleted
646 		 * in another thread once we put the inode (then the local list
647 		 * is corrupted).
648 		 */
649 		spin_lock(&sbinfo->shrinklist_lock);
650 		list_move(&info->shrinklist, &sbinfo->shrinklist);
651 		sbinfo->shrinklist_len++;
652 		spin_unlock(&sbinfo->shrinklist_lock);
653 put:
654 		iput(inode);
655 	}
656 
657 	return split;
658 }
659 
660 static long shmem_unused_huge_scan(struct super_block *sb,
661 		struct shrink_control *sc)
662 {
663 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
664 
665 	if (!READ_ONCE(sbinfo->shrinklist_len))
666 		return SHRINK_STOP;
667 
668 	return shmem_unused_huge_shrink(sbinfo, sc, 0);
669 }
670 
671 static long shmem_unused_huge_count(struct super_block *sb,
672 		struct shrink_control *sc)
673 {
674 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
675 	return READ_ONCE(sbinfo->shrinklist_len);
676 }
677 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
678 
679 #define shmem_huge SHMEM_HUGE_DENY
680 
681 bool shmem_is_huge(struct vm_area_struct *vma,
682 		   struct inode *inode, pgoff_t index)
683 {
684 	return false;
685 }
686 
687 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
688 		struct shrink_control *sc, unsigned long nr_to_split)
689 {
690 	return 0;
691 }
692 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
693 
694 /*
695  * Like add_to_page_cache_locked, but error if expected item has gone.
696  */
697 static int shmem_add_to_page_cache(struct page *page,
698 				   struct address_space *mapping,
699 				   pgoff_t index, void *expected, gfp_t gfp,
700 				   struct mm_struct *charge_mm)
701 {
702 	XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
703 	unsigned long nr = compound_nr(page);
704 	int error;
705 
706 	VM_BUG_ON_PAGE(PageTail(page), page);
707 	VM_BUG_ON_PAGE(index != round_down(index, nr), page);
708 	VM_BUG_ON_PAGE(!PageLocked(page), page);
709 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
710 	VM_BUG_ON(expected && PageTransHuge(page));
711 
712 	page_ref_add(page, nr);
713 	page->mapping = mapping;
714 	page->index = index;
715 
716 	if (!PageSwapCache(page)) {
717 		error = mem_cgroup_charge(page_folio(page), charge_mm, gfp);
718 		if (error) {
719 			if (PageTransHuge(page)) {
720 				count_vm_event(THP_FILE_FALLBACK);
721 				count_vm_event(THP_FILE_FALLBACK_CHARGE);
722 			}
723 			goto error;
724 		}
725 	}
726 	cgroup_throttle_swaprate(page, gfp);
727 
728 	do {
729 		xas_lock_irq(&xas);
730 		if (expected != xas_find_conflict(&xas)) {
731 			xas_set_err(&xas, -EEXIST);
732 			goto unlock;
733 		}
734 		if (expected && xas_find_conflict(&xas)) {
735 			xas_set_err(&xas, -EEXIST);
736 			goto unlock;
737 		}
738 		xas_store(&xas, page);
739 		if (xas_error(&xas))
740 			goto unlock;
741 		if (PageTransHuge(page)) {
742 			count_vm_event(THP_FILE_ALLOC);
743 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, nr);
744 		}
745 		mapping->nrpages += nr;
746 		__mod_lruvec_page_state(page, NR_FILE_PAGES, nr);
747 		__mod_lruvec_page_state(page, NR_SHMEM, nr);
748 unlock:
749 		xas_unlock_irq(&xas);
750 	} while (xas_nomem(&xas, gfp));
751 
752 	if (xas_error(&xas)) {
753 		error = xas_error(&xas);
754 		goto error;
755 	}
756 
757 	return 0;
758 error:
759 	page->mapping = NULL;
760 	page_ref_sub(page, nr);
761 	return error;
762 }
763 
764 /*
765  * Like delete_from_page_cache, but substitutes swap for page.
766  */
767 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
768 {
769 	struct address_space *mapping = page->mapping;
770 	int error;
771 
772 	VM_BUG_ON_PAGE(PageCompound(page), page);
773 
774 	xa_lock_irq(&mapping->i_pages);
775 	error = shmem_replace_entry(mapping, page->index, page, radswap);
776 	page->mapping = NULL;
777 	mapping->nrpages--;
778 	__dec_lruvec_page_state(page, NR_FILE_PAGES);
779 	__dec_lruvec_page_state(page, NR_SHMEM);
780 	xa_unlock_irq(&mapping->i_pages);
781 	put_page(page);
782 	BUG_ON(error);
783 }
784 
785 /*
786  * Remove swap entry from page cache, free the swap and its page cache.
787  */
788 static int shmem_free_swap(struct address_space *mapping,
789 			   pgoff_t index, void *radswap)
790 {
791 	void *old;
792 
793 	old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
794 	if (old != radswap)
795 		return -ENOENT;
796 	free_swap_and_cache(radix_to_swp_entry(radswap));
797 	return 0;
798 }
799 
800 /*
801  * Determine (in bytes) how many of the shmem object's pages mapped by the
802  * given offsets are swapped out.
803  *
804  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
805  * as long as the inode doesn't go away and racy results are not a problem.
806  */
807 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
808 						pgoff_t start, pgoff_t end)
809 {
810 	XA_STATE(xas, &mapping->i_pages, start);
811 	struct page *page;
812 	unsigned long swapped = 0;
813 
814 	rcu_read_lock();
815 	xas_for_each(&xas, page, end - 1) {
816 		if (xas_retry(&xas, page))
817 			continue;
818 		if (xa_is_value(page))
819 			swapped++;
820 
821 		if (need_resched()) {
822 			xas_pause(&xas);
823 			cond_resched_rcu();
824 		}
825 	}
826 
827 	rcu_read_unlock();
828 
829 	return swapped << PAGE_SHIFT;
830 }
831 
832 /*
833  * Determine (in bytes) how many of the shmem object's pages mapped by the
834  * given vma is swapped out.
835  *
836  * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
837  * as long as the inode doesn't go away and racy results are not a problem.
838  */
839 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
840 {
841 	struct inode *inode = file_inode(vma->vm_file);
842 	struct shmem_inode_info *info = SHMEM_I(inode);
843 	struct address_space *mapping = inode->i_mapping;
844 	unsigned long swapped;
845 
846 	/* Be careful as we don't hold info->lock */
847 	swapped = READ_ONCE(info->swapped);
848 
849 	/*
850 	 * The easier cases are when the shmem object has nothing in swap, or
851 	 * the vma maps it whole. Then we can simply use the stats that we
852 	 * already track.
853 	 */
854 	if (!swapped)
855 		return 0;
856 
857 	if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
858 		return swapped << PAGE_SHIFT;
859 
860 	/* Here comes the more involved part */
861 	return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
862 					vma->vm_pgoff + vma_pages(vma));
863 }
864 
865 /*
866  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
867  */
868 void shmem_unlock_mapping(struct address_space *mapping)
869 {
870 	struct pagevec pvec;
871 	pgoff_t index = 0;
872 
873 	pagevec_init(&pvec);
874 	/*
875 	 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
876 	 */
877 	while (!mapping_unevictable(mapping)) {
878 		if (!pagevec_lookup(&pvec, mapping, &index))
879 			break;
880 		check_move_unevictable_pages(&pvec);
881 		pagevec_release(&pvec);
882 		cond_resched();
883 	}
884 }
885 
886 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
887 {
888 	struct folio *folio;
889 	struct page *page;
890 
891 	/*
892 	 * At first avoid shmem_getpage(,,,SGP_READ): that fails
893 	 * beyond i_size, and reports fallocated pages as holes.
894 	 */
895 	folio = __filemap_get_folio(inode->i_mapping, index,
896 					FGP_ENTRY | FGP_LOCK, 0);
897 	if (!xa_is_value(folio))
898 		return folio;
899 	/*
900 	 * But read a page back from swap if any of it is within i_size
901 	 * (although in some cases this is just a waste of time).
902 	 */
903 	page = NULL;
904 	shmem_getpage(inode, index, &page, SGP_READ);
905 	return page ? page_folio(page) : NULL;
906 }
907 
908 /*
909  * Remove range of pages and swap entries from page cache, and free them.
910  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
911  */
912 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
913 								 bool unfalloc)
914 {
915 	struct address_space *mapping = inode->i_mapping;
916 	struct shmem_inode_info *info = SHMEM_I(inode);
917 	pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
918 	pgoff_t end = (lend + 1) >> PAGE_SHIFT;
919 	struct folio_batch fbatch;
920 	pgoff_t indices[PAGEVEC_SIZE];
921 	struct folio *folio;
922 	bool same_folio;
923 	long nr_swaps_freed = 0;
924 	pgoff_t index;
925 	int i;
926 
927 	if (lend == -1)
928 		end = -1;	/* unsigned, so actually very big */
929 
930 	if (info->fallocend > start && info->fallocend <= end && !unfalloc)
931 		info->fallocend = start;
932 
933 	folio_batch_init(&fbatch);
934 	index = start;
935 	while (index < end && find_lock_entries(mapping, index, end - 1,
936 			&fbatch, indices)) {
937 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
938 			folio = fbatch.folios[i];
939 
940 			index = indices[i];
941 
942 			if (xa_is_value(folio)) {
943 				if (unfalloc)
944 					continue;
945 				nr_swaps_freed += !shmem_free_swap(mapping,
946 								index, folio);
947 				continue;
948 			}
949 			index += folio_nr_pages(folio) - 1;
950 
951 			if (!unfalloc || !folio_test_uptodate(folio))
952 				truncate_inode_folio(mapping, folio);
953 			folio_unlock(folio);
954 		}
955 		folio_batch_remove_exceptionals(&fbatch);
956 		folio_batch_release(&fbatch);
957 		cond_resched();
958 		index++;
959 	}
960 
961 	same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
962 	folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
963 	if (folio) {
964 		same_folio = lend < folio_pos(folio) + folio_size(folio);
965 		folio_mark_dirty(folio);
966 		if (!truncate_inode_partial_folio(folio, lstart, lend)) {
967 			start = folio->index + folio_nr_pages(folio);
968 			if (same_folio)
969 				end = folio->index;
970 		}
971 		folio_unlock(folio);
972 		folio_put(folio);
973 		folio = NULL;
974 	}
975 
976 	if (!same_folio)
977 		folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
978 	if (folio) {
979 		folio_mark_dirty(folio);
980 		if (!truncate_inode_partial_folio(folio, lstart, lend))
981 			end = folio->index;
982 		folio_unlock(folio);
983 		folio_put(folio);
984 	}
985 
986 	index = start;
987 	while (index < end) {
988 		cond_resched();
989 
990 		if (!find_get_entries(mapping, index, end - 1, &fbatch,
991 				indices)) {
992 			/* If all gone or hole-punch or unfalloc, we're done */
993 			if (index == start || end != -1)
994 				break;
995 			/* But if truncating, restart to make sure all gone */
996 			index = start;
997 			continue;
998 		}
999 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
1000 			folio = fbatch.folios[i];
1001 
1002 			index = indices[i];
1003 			if (xa_is_value(folio)) {
1004 				if (unfalloc)
1005 					continue;
1006 				if (shmem_free_swap(mapping, index, folio)) {
1007 					/* Swap was replaced by page: retry */
1008 					index--;
1009 					break;
1010 				}
1011 				nr_swaps_freed++;
1012 				continue;
1013 			}
1014 
1015 			folio_lock(folio);
1016 
1017 			if (!unfalloc || !folio_test_uptodate(folio)) {
1018 				if (folio_mapping(folio) != mapping) {
1019 					/* Page was replaced by swap: retry */
1020 					folio_unlock(folio);
1021 					index--;
1022 					break;
1023 				}
1024 				VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1025 						folio);
1026 				truncate_inode_folio(mapping, folio);
1027 			}
1028 			index = folio->index + folio_nr_pages(folio) - 1;
1029 			folio_unlock(folio);
1030 		}
1031 		folio_batch_remove_exceptionals(&fbatch);
1032 		folio_batch_release(&fbatch);
1033 		index++;
1034 	}
1035 
1036 	spin_lock_irq(&info->lock);
1037 	info->swapped -= nr_swaps_freed;
1038 	shmem_recalc_inode(inode);
1039 	spin_unlock_irq(&info->lock);
1040 }
1041 
1042 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1043 {
1044 	shmem_undo_range(inode, lstart, lend, false);
1045 	inode->i_ctime = inode->i_mtime = current_time(inode);
1046 }
1047 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1048 
1049 static int shmem_getattr(struct user_namespace *mnt_userns,
1050 			 const struct path *path, struct kstat *stat,
1051 			 u32 request_mask, unsigned int query_flags)
1052 {
1053 	struct inode *inode = path->dentry->d_inode;
1054 	struct shmem_inode_info *info = SHMEM_I(inode);
1055 
1056 	if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1057 		spin_lock_irq(&info->lock);
1058 		shmem_recalc_inode(inode);
1059 		spin_unlock_irq(&info->lock);
1060 	}
1061 	generic_fillattr(&init_user_ns, inode, stat);
1062 
1063 	if (shmem_is_huge(NULL, inode, 0))
1064 		stat->blksize = HPAGE_PMD_SIZE;
1065 
1066 	if (request_mask & STATX_BTIME) {
1067 		stat->result_mask |= STATX_BTIME;
1068 		stat->btime.tv_sec = info->i_crtime.tv_sec;
1069 		stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1070 	}
1071 
1072 	return 0;
1073 }
1074 
1075 static int shmem_setattr(struct user_namespace *mnt_userns,
1076 			 struct dentry *dentry, struct iattr *attr)
1077 {
1078 	struct inode *inode = d_inode(dentry);
1079 	struct shmem_inode_info *info = SHMEM_I(inode);
1080 	int error;
1081 
1082 	error = setattr_prepare(&init_user_ns, dentry, attr);
1083 	if (error)
1084 		return error;
1085 
1086 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1087 		loff_t oldsize = inode->i_size;
1088 		loff_t newsize = attr->ia_size;
1089 
1090 		/* protected by i_rwsem */
1091 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1092 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1093 			return -EPERM;
1094 
1095 		if (newsize != oldsize) {
1096 			error = shmem_reacct_size(SHMEM_I(inode)->flags,
1097 					oldsize, newsize);
1098 			if (error)
1099 				return error;
1100 			i_size_write(inode, newsize);
1101 			inode->i_ctime = inode->i_mtime = current_time(inode);
1102 		}
1103 		if (newsize <= oldsize) {
1104 			loff_t holebegin = round_up(newsize, PAGE_SIZE);
1105 			if (oldsize > holebegin)
1106 				unmap_mapping_range(inode->i_mapping,
1107 							holebegin, 0, 1);
1108 			if (info->alloced)
1109 				shmem_truncate_range(inode,
1110 							newsize, (loff_t)-1);
1111 			/* unmap again to remove racily COWed private pages */
1112 			if (oldsize > holebegin)
1113 				unmap_mapping_range(inode->i_mapping,
1114 							holebegin, 0, 1);
1115 		}
1116 	}
1117 
1118 	setattr_copy(&init_user_ns, inode, attr);
1119 	if (attr->ia_valid & ATTR_MODE)
1120 		error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1121 	return error;
1122 }
1123 
1124 static void shmem_evict_inode(struct inode *inode)
1125 {
1126 	struct shmem_inode_info *info = SHMEM_I(inode);
1127 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1128 
1129 	if (shmem_mapping(inode->i_mapping)) {
1130 		shmem_unacct_size(info->flags, inode->i_size);
1131 		inode->i_size = 0;
1132 		mapping_set_exiting(inode->i_mapping);
1133 		shmem_truncate_range(inode, 0, (loff_t)-1);
1134 		if (!list_empty(&info->shrinklist)) {
1135 			spin_lock(&sbinfo->shrinklist_lock);
1136 			if (!list_empty(&info->shrinklist)) {
1137 				list_del_init(&info->shrinklist);
1138 				sbinfo->shrinklist_len--;
1139 			}
1140 			spin_unlock(&sbinfo->shrinklist_lock);
1141 		}
1142 		while (!list_empty(&info->swaplist)) {
1143 			/* Wait while shmem_unuse() is scanning this inode... */
1144 			wait_var_event(&info->stop_eviction,
1145 				       !atomic_read(&info->stop_eviction));
1146 			mutex_lock(&shmem_swaplist_mutex);
1147 			/* ...but beware of the race if we peeked too early */
1148 			if (!atomic_read(&info->stop_eviction))
1149 				list_del_init(&info->swaplist);
1150 			mutex_unlock(&shmem_swaplist_mutex);
1151 		}
1152 	}
1153 
1154 	simple_xattrs_free(&info->xattrs);
1155 	WARN_ON(inode->i_blocks);
1156 	shmem_free_inode(inode->i_sb);
1157 	clear_inode(inode);
1158 }
1159 
1160 static int shmem_find_swap_entries(struct address_space *mapping,
1161 				   pgoff_t start, unsigned int nr_entries,
1162 				   struct page **entries, pgoff_t *indices,
1163 				   unsigned int type)
1164 {
1165 	XA_STATE(xas, &mapping->i_pages, start);
1166 	struct page *page;
1167 	swp_entry_t entry;
1168 	unsigned int ret = 0;
1169 
1170 	if (!nr_entries)
1171 		return 0;
1172 
1173 	rcu_read_lock();
1174 	xas_for_each(&xas, page, ULONG_MAX) {
1175 		if (xas_retry(&xas, page))
1176 			continue;
1177 
1178 		if (!xa_is_value(page))
1179 			continue;
1180 
1181 		entry = radix_to_swp_entry(page);
1182 		if (swp_type(entry) != type)
1183 			continue;
1184 
1185 		indices[ret] = xas.xa_index;
1186 		entries[ret] = page;
1187 
1188 		if (need_resched()) {
1189 			xas_pause(&xas);
1190 			cond_resched_rcu();
1191 		}
1192 		if (++ret == nr_entries)
1193 			break;
1194 	}
1195 	rcu_read_unlock();
1196 
1197 	return ret;
1198 }
1199 
1200 /*
1201  * Move the swapped pages for an inode to page cache. Returns the count
1202  * of pages swapped in, or the error in case of failure.
1203  */
1204 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1205 				    pgoff_t *indices)
1206 {
1207 	int i = 0;
1208 	int ret = 0;
1209 	int error = 0;
1210 	struct address_space *mapping = inode->i_mapping;
1211 
1212 	for (i = 0; i < pvec.nr; i++) {
1213 		struct page *page = pvec.pages[i];
1214 
1215 		if (!xa_is_value(page))
1216 			continue;
1217 		error = shmem_swapin_page(inode, indices[i],
1218 					  &page, SGP_CACHE,
1219 					  mapping_gfp_mask(mapping),
1220 					  NULL, NULL);
1221 		if (error == 0) {
1222 			unlock_page(page);
1223 			put_page(page);
1224 			ret++;
1225 		}
1226 		if (error == -ENOMEM)
1227 			break;
1228 		error = 0;
1229 	}
1230 	return error ? error : ret;
1231 }
1232 
1233 /*
1234  * If swap found in inode, free it and move page from swapcache to filecache.
1235  */
1236 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1237 {
1238 	struct address_space *mapping = inode->i_mapping;
1239 	pgoff_t start = 0;
1240 	struct pagevec pvec;
1241 	pgoff_t indices[PAGEVEC_SIZE];
1242 	int ret = 0;
1243 
1244 	pagevec_init(&pvec);
1245 	do {
1246 		unsigned int nr_entries = PAGEVEC_SIZE;
1247 
1248 		pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1249 						  pvec.pages, indices, type);
1250 		if (pvec.nr == 0) {
1251 			ret = 0;
1252 			break;
1253 		}
1254 
1255 		ret = shmem_unuse_swap_entries(inode, pvec, indices);
1256 		if (ret < 0)
1257 			break;
1258 
1259 		start = indices[pvec.nr - 1];
1260 	} while (true);
1261 
1262 	return ret;
1263 }
1264 
1265 /*
1266  * Read all the shared memory data that resides in the swap
1267  * device 'type' back into memory, so the swap device can be
1268  * unused.
1269  */
1270 int shmem_unuse(unsigned int type)
1271 {
1272 	struct shmem_inode_info *info, *next;
1273 	int error = 0;
1274 
1275 	if (list_empty(&shmem_swaplist))
1276 		return 0;
1277 
1278 	mutex_lock(&shmem_swaplist_mutex);
1279 	list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1280 		if (!info->swapped) {
1281 			list_del_init(&info->swaplist);
1282 			continue;
1283 		}
1284 		/*
1285 		 * Drop the swaplist mutex while searching the inode for swap;
1286 		 * but before doing so, make sure shmem_evict_inode() will not
1287 		 * remove placeholder inode from swaplist, nor let it be freed
1288 		 * (igrab() would protect from unlink, but not from unmount).
1289 		 */
1290 		atomic_inc(&info->stop_eviction);
1291 		mutex_unlock(&shmem_swaplist_mutex);
1292 
1293 		error = shmem_unuse_inode(&info->vfs_inode, type);
1294 		cond_resched();
1295 
1296 		mutex_lock(&shmem_swaplist_mutex);
1297 		next = list_next_entry(info, swaplist);
1298 		if (!info->swapped)
1299 			list_del_init(&info->swaplist);
1300 		if (atomic_dec_and_test(&info->stop_eviction))
1301 			wake_up_var(&info->stop_eviction);
1302 		if (error)
1303 			break;
1304 	}
1305 	mutex_unlock(&shmem_swaplist_mutex);
1306 
1307 	return error;
1308 }
1309 
1310 /*
1311  * Move the page from the page cache to the swap cache.
1312  */
1313 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1314 {
1315 	struct shmem_inode_info *info;
1316 	struct address_space *mapping;
1317 	struct inode *inode;
1318 	swp_entry_t swap;
1319 	pgoff_t index;
1320 
1321 	/*
1322 	 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1323 	 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1324 	 * and its shmem_writeback() needs them to be split when swapping.
1325 	 */
1326 	if (PageTransCompound(page)) {
1327 		/* Ensure the subpages are still dirty */
1328 		SetPageDirty(page);
1329 		if (split_huge_page(page) < 0)
1330 			goto redirty;
1331 		ClearPageDirty(page);
1332 	}
1333 
1334 	BUG_ON(!PageLocked(page));
1335 	mapping = page->mapping;
1336 	index = page->index;
1337 	inode = mapping->host;
1338 	info = SHMEM_I(inode);
1339 	if (info->flags & VM_LOCKED)
1340 		goto redirty;
1341 	if (!total_swap_pages)
1342 		goto redirty;
1343 
1344 	/*
1345 	 * Our capabilities prevent regular writeback or sync from ever calling
1346 	 * shmem_writepage; but a stacking filesystem might use ->writepage of
1347 	 * its underlying filesystem, in which case tmpfs should write out to
1348 	 * swap only in response to memory pressure, and not for the writeback
1349 	 * threads or sync.
1350 	 */
1351 	if (!wbc->for_reclaim) {
1352 		WARN_ON_ONCE(1);	/* Still happens? Tell us about it! */
1353 		goto redirty;
1354 	}
1355 
1356 	/*
1357 	 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1358 	 * value into swapfile.c, the only way we can correctly account for a
1359 	 * fallocated page arriving here is now to initialize it and write it.
1360 	 *
1361 	 * That's okay for a page already fallocated earlier, but if we have
1362 	 * not yet completed the fallocation, then (a) we want to keep track
1363 	 * of this page in case we have to undo it, and (b) it may not be a
1364 	 * good idea to continue anyway, once we're pushing into swap.  So
1365 	 * reactivate the page, and let shmem_fallocate() quit when too many.
1366 	 */
1367 	if (!PageUptodate(page)) {
1368 		if (inode->i_private) {
1369 			struct shmem_falloc *shmem_falloc;
1370 			spin_lock(&inode->i_lock);
1371 			shmem_falloc = inode->i_private;
1372 			if (shmem_falloc &&
1373 			    !shmem_falloc->waitq &&
1374 			    index >= shmem_falloc->start &&
1375 			    index < shmem_falloc->next)
1376 				shmem_falloc->nr_unswapped++;
1377 			else
1378 				shmem_falloc = NULL;
1379 			spin_unlock(&inode->i_lock);
1380 			if (shmem_falloc)
1381 				goto redirty;
1382 		}
1383 		clear_highpage(page);
1384 		flush_dcache_page(page);
1385 		SetPageUptodate(page);
1386 	}
1387 
1388 	swap = get_swap_page(page);
1389 	if (!swap.val)
1390 		goto redirty;
1391 
1392 	/*
1393 	 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1394 	 * if it's not already there.  Do it now before the page is
1395 	 * moved to swap cache, when its pagelock no longer protects
1396 	 * the inode from eviction.  But don't unlock the mutex until
1397 	 * we've incremented swapped, because shmem_unuse_inode() will
1398 	 * prune a !swapped inode from the swaplist under this mutex.
1399 	 */
1400 	mutex_lock(&shmem_swaplist_mutex);
1401 	if (list_empty(&info->swaplist))
1402 		list_add(&info->swaplist, &shmem_swaplist);
1403 
1404 	if (add_to_swap_cache(page, swap,
1405 			__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1406 			NULL) == 0) {
1407 		spin_lock_irq(&info->lock);
1408 		shmem_recalc_inode(inode);
1409 		info->swapped++;
1410 		spin_unlock_irq(&info->lock);
1411 
1412 		swap_shmem_alloc(swap);
1413 		shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1414 
1415 		mutex_unlock(&shmem_swaplist_mutex);
1416 		BUG_ON(page_mapped(page));
1417 		swap_writepage(page, wbc);
1418 		return 0;
1419 	}
1420 
1421 	mutex_unlock(&shmem_swaplist_mutex);
1422 	put_swap_page(page, swap);
1423 redirty:
1424 	set_page_dirty(page);
1425 	if (wbc->for_reclaim)
1426 		return AOP_WRITEPAGE_ACTIVATE;	/* Return with page locked */
1427 	unlock_page(page);
1428 	return 0;
1429 }
1430 
1431 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1432 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1433 {
1434 	char buffer[64];
1435 
1436 	if (!mpol || mpol->mode == MPOL_DEFAULT)
1437 		return;		/* show nothing */
1438 
1439 	mpol_to_str(buffer, sizeof(buffer), mpol);
1440 
1441 	seq_printf(seq, ",mpol=%s", buffer);
1442 }
1443 
1444 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1445 {
1446 	struct mempolicy *mpol = NULL;
1447 	if (sbinfo->mpol) {
1448 		raw_spin_lock(&sbinfo->stat_lock);	/* prevent replace/use races */
1449 		mpol = sbinfo->mpol;
1450 		mpol_get(mpol);
1451 		raw_spin_unlock(&sbinfo->stat_lock);
1452 	}
1453 	return mpol;
1454 }
1455 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1456 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1457 {
1458 }
1459 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1460 {
1461 	return NULL;
1462 }
1463 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1464 #ifndef CONFIG_NUMA
1465 #define vm_policy vm_private_data
1466 #endif
1467 
1468 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1469 		struct shmem_inode_info *info, pgoff_t index)
1470 {
1471 	/* Create a pseudo vma that just contains the policy */
1472 	vma_init(vma, NULL);
1473 	/* Bias interleave by inode number to distribute better across nodes */
1474 	vma->vm_pgoff = index + info->vfs_inode.i_ino;
1475 	vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1476 }
1477 
1478 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1479 {
1480 	/* Drop reference taken by mpol_shared_policy_lookup() */
1481 	mpol_cond_put(vma->vm_policy);
1482 }
1483 
1484 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1485 			struct shmem_inode_info *info, pgoff_t index)
1486 {
1487 	struct vm_area_struct pvma;
1488 	struct page *page;
1489 	struct vm_fault vmf = {
1490 		.vma = &pvma,
1491 	};
1492 
1493 	shmem_pseudo_vma_init(&pvma, info, index);
1494 	page = swap_cluster_readahead(swap, gfp, &vmf);
1495 	shmem_pseudo_vma_destroy(&pvma);
1496 
1497 	return page;
1498 }
1499 
1500 /*
1501  * Make sure huge_gfp is always more limited than limit_gfp.
1502  * Some of the flags set permissions, while others set limitations.
1503  */
1504 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1505 {
1506 	gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1507 	gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1508 	gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1509 	gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1510 
1511 	/* Allow allocations only from the originally specified zones. */
1512 	result |= zoneflags;
1513 
1514 	/*
1515 	 * Minimize the result gfp by taking the union with the deny flags,
1516 	 * and the intersection of the allow flags.
1517 	 */
1518 	result |= (limit_gfp & denyflags);
1519 	result |= (huge_gfp & limit_gfp) & allowflags;
1520 
1521 	return result;
1522 }
1523 
1524 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1525 		struct shmem_inode_info *info, pgoff_t index)
1526 {
1527 	struct vm_area_struct pvma;
1528 	struct address_space *mapping = info->vfs_inode.i_mapping;
1529 	pgoff_t hindex;
1530 	struct page *page;
1531 
1532 	hindex = round_down(index, HPAGE_PMD_NR);
1533 	if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1534 								XA_PRESENT))
1535 		return NULL;
1536 
1537 	shmem_pseudo_vma_init(&pvma, info, hindex);
1538 	page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1539 	shmem_pseudo_vma_destroy(&pvma);
1540 	if (page)
1541 		prep_transhuge_page(page);
1542 	else
1543 		count_vm_event(THP_FILE_FALLBACK);
1544 	return page;
1545 }
1546 
1547 static struct page *shmem_alloc_page(gfp_t gfp,
1548 			struct shmem_inode_info *info, pgoff_t index)
1549 {
1550 	struct vm_area_struct pvma;
1551 	struct page *page;
1552 
1553 	shmem_pseudo_vma_init(&pvma, info, index);
1554 	page = alloc_page_vma(gfp, &pvma, 0);
1555 	shmem_pseudo_vma_destroy(&pvma);
1556 
1557 	return page;
1558 }
1559 
1560 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1561 		struct inode *inode,
1562 		pgoff_t index, bool huge)
1563 {
1564 	struct shmem_inode_info *info = SHMEM_I(inode);
1565 	struct page *page;
1566 	int nr;
1567 	int err = -ENOSPC;
1568 
1569 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1570 		huge = false;
1571 	nr = huge ? HPAGE_PMD_NR : 1;
1572 
1573 	if (!shmem_inode_acct_block(inode, nr))
1574 		goto failed;
1575 
1576 	if (huge)
1577 		page = shmem_alloc_hugepage(gfp, info, index);
1578 	else
1579 		page = shmem_alloc_page(gfp, info, index);
1580 	if (page) {
1581 		__SetPageLocked(page);
1582 		__SetPageSwapBacked(page);
1583 		return page;
1584 	}
1585 
1586 	err = -ENOMEM;
1587 	shmem_inode_unacct_blocks(inode, nr);
1588 failed:
1589 	return ERR_PTR(err);
1590 }
1591 
1592 /*
1593  * When a page is moved from swapcache to shmem filecache (either by the
1594  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1595  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1596  * ignorance of the mapping it belongs to.  If that mapping has special
1597  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1598  * we may need to copy to a suitable page before moving to filecache.
1599  *
1600  * In a future release, this may well be extended to respect cpuset and
1601  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1602  * but for now it is a simple matter of zone.
1603  */
1604 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1605 {
1606 	return page_zonenum(page) > gfp_zone(gfp);
1607 }
1608 
1609 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1610 				struct shmem_inode_info *info, pgoff_t index)
1611 {
1612 	struct page *oldpage, *newpage;
1613 	struct folio *old, *new;
1614 	struct address_space *swap_mapping;
1615 	swp_entry_t entry;
1616 	pgoff_t swap_index;
1617 	int error;
1618 
1619 	oldpage = *pagep;
1620 	entry.val = page_private(oldpage);
1621 	swap_index = swp_offset(entry);
1622 	swap_mapping = page_mapping(oldpage);
1623 
1624 	/*
1625 	 * We have arrived here because our zones are constrained, so don't
1626 	 * limit chance of success by further cpuset and node constraints.
1627 	 */
1628 	gfp &= ~GFP_CONSTRAINT_MASK;
1629 	newpage = shmem_alloc_page(gfp, info, index);
1630 	if (!newpage)
1631 		return -ENOMEM;
1632 
1633 	get_page(newpage);
1634 	copy_highpage(newpage, oldpage);
1635 	flush_dcache_page(newpage);
1636 
1637 	__SetPageLocked(newpage);
1638 	__SetPageSwapBacked(newpage);
1639 	SetPageUptodate(newpage);
1640 	set_page_private(newpage, entry.val);
1641 	SetPageSwapCache(newpage);
1642 
1643 	/*
1644 	 * Our caller will very soon move newpage out of swapcache, but it's
1645 	 * a nice clean interface for us to replace oldpage by newpage there.
1646 	 */
1647 	xa_lock_irq(&swap_mapping->i_pages);
1648 	error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1649 	if (!error) {
1650 		old = page_folio(oldpage);
1651 		new = page_folio(newpage);
1652 		mem_cgroup_migrate(old, new);
1653 		__inc_lruvec_page_state(newpage, NR_FILE_PAGES);
1654 		__dec_lruvec_page_state(oldpage, NR_FILE_PAGES);
1655 	}
1656 	xa_unlock_irq(&swap_mapping->i_pages);
1657 
1658 	if (unlikely(error)) {
1659 		/*
1660 		 * Is this possible?  I think not, now that our callers check
1661 		 * both PageSwapCache and page_private after getting page lock;
1662 		 * but be defensive.  Reverse old to newpage for clear and free.
1663 		 */
1664 		oldpage = newpage;
1665 	} else {
1666 		lru_cache_add(newpage);
1667 		*pagep = newpage;
1668 	}
1669 
1670 	ClearPageSwapCache(oldpage);
1671 	set_page_private(oldpage, 0);
1672 
1673 	unlock_page(oldpage);
1674 	put_page(oldpage);
1675 	put_page(oldpage);
1676 	return error;
1677 }
1678 
1679 /*
1680  * Swap in the page pointed to by *pagep.
1681  * Caller has to make sure that *pagep contains a valid swapped page.
1682  * Returns 0 and the page in pagep if success. On failure, returns the
1683  * error code and NULL in *pagep.
1684  */
1685 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1686 			     struct page **pagep, enum sgp_type sgp,
1687 			     gfp_t gfp, struct vm_area_struct *vma,
1688 			     vm_fault_t *fault_type)
1689 {
1690 	struct address_space *mapping = inode->i_mapping;
1691 	struct shmem_inode_info *info = SHMEM_I(inode);
1692 	struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1693 	struct page *page;
1694 	swp_entry_t swap;
1695 	int error;
1696 
1697 	VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1698 	swap = radix_to_swp_entry(*pagep);
1699 	*pagep = NULL;
1700 
1701 	/* Look it up and read it in.. */
1702 	page = lookup_swap_cache(swap, NULL, 0);
1703 	if (!page) {
1704 		/* Or update major stats only when swapin succeeds?? */
1705 		if (fault_type) {
1706 			*fault_type |= VM_FAULT_MAJOR;
1707 			count_vm_event(PGMAJFAULT);
1708 			count_memcg_event_mm(charge_mm, PGMAJFAULT);
1709 		}
1710 		/* Here we actually start the io */
1711 		page = shmem_swapin(swap, gfp, info, index);
1712 		if (!page) {
1713 			error = -ENOMEM;
1714 			goto failed;
1715 		}
1716 	}
1717 
1718 	/* We have to do this with page locked to prevent races */
1719 	lock_page(page);
1720 	if (!PageSwapCache(page) || page_private(page) != swap.val ||
1721 	    !shmem_confirm_swap(mapping, index, swap)) {
1722 		error = -EEXIST;
1723 		goto unlock;
1724 	}
1725 	if (!PageUptodate(page)) {
1726 		error = -EIO;
1727 		goto failed;
1728 	}
1729 	wait_on_page_writeback(page);
1730 
1731 	/*
1732 	 * Some architectures may have to restore extra metadata to the
1733 	 * physical page after reading from swap.
1734 	 */
1735 	arch_swap_restore(swap, page);
1736 
1737 	if (shmem_should_replace_page(page, gfp)) {
1738 		error = shmem_replace_page(&page, gfp, info, index);
1739 		if (error)
1740 			goto failed;
1741 	}
1742 
1743 	error = shmem_add_to_page_cache(page, mapping, index,
1744 					swp_to_radix_entry(swap), gfp,
1745 					charge_mm);
1746 	if (error)
1747 		goto failed;
1748 
1749 	spin_lock_irq(&info->lock);
1750 	info->swapped--;
1751 	shmem_recalc_inode(inode);
1752 	spin_unlock_irq(&info->lock);
1753 
1754 	if (sgp == SGP_WRITE)
1755 		mark_page_accessed(page);
1756 
1757 	delete_from_swap_cache(page);
1758 	set_page_dirty(page);
1759 	swap_free(swap);
1760 
1761 	*pagep = page;
1762 	return 0;
1763 failed:
1764 	if (!shmem_confirm_swap(mapping, index, swap))
1765 		error = -EEXIST;
1766 unlock:
1767 	if (page) {
1768 		unlock_page(page);
1769 		put_page(page);
1770 	}
1771 
1772 	return error;
1773 }
1774 
1775 /*
1776  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1777  *
1778  * If we allocate a new one we do not mark it dirty. That's up to the
1779  * vm. If we swap it in we mark it dirty since we also free the swap
1780  * entry since a page cannot live in both the swap and page cache.
1781  *
1782  * vma, vmf, and fault_type are only supplied by shmem_fault:
1783  * otherwise they are NULL.
1784  */
1785 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1786 	struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1787 	struct vm_area_struct *vma, struct vm_fault *vmf,
1788 			vm_fault_t *fault_type)
1789 {
1790 	struct address_space *mapping = inode->i_mapping;
1791 	struct shmem_inode_info *info = SHMEM_I(inode);
1792 	struct shmem_sb_info *sbinfo;
1793 	struct mm_struct *charge_mm;
1794 	struct page *page;
1795 	pgoff_t hindex = index;
1796 	gfp_t huge_gfp;
1797 	int error;
1798 	int once = 0;
1799 	int alloced = 0;
1800 
1801 	if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1802 		return -EFBIG;
1803 repeat:
1804 	if (sgp <= SGP_CACHE &&
1805 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1806 		return -EINVAL;
1807 	}
1808 
1809 	sbinfo = SHMEM_SB(inode->i_sb);
1810 	charge_mm = vma ? vma->vm_mm : NULL;
1811 
1812 	page = pagecache_get_page(mapping, index,
1813 					FGP_ENTRY | FGP_HEAD | FGP_LOCK, 0);
1814 
1815 	if (page && vma && userfaultfd_minor(vma)) {
1816 		if (!xa_is_value(page)) {
1817 			unlock_page(page);
1818 			put_page(page);
1819 		}
1820 		*fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1821 		return 0;
1822 	}
1823 
1824 	if (xa_is_value(page)) {
1825 		error = shmem_swapin_page(inode, index, &page,
1826 					  sgp, gfp, vma, fault_type);
1827 		if (error == -EEXIST)
1828 			goto repeat;
1829 
1830 		*pagep = page;
1831 		return error;
1832 	}
1833 
1834 	if (page) {
1835 		hindex = page->index;
1836 		if (sgp == SGP_WRITE)
1837 			mark_page_accessed(page);
1838 		if (PageUptodate(page))
1839 			goto out;
1840 		/* fallocated page */
1841 		if (sgp != SGP_READ)
1842 			goto clear;
1843 		unlock_page(page);
1844 		put_page(page);
1845 	}
1846 
1847 	/*
1848 	 * SGP_READ: succeed on hole, with NULL page, letting caller zero.
1849 	 * SGP_NOALLOC: fail on hole, with NULL page, letting caller fail.
1850 	 */
1851 	*pagep = NULL;
1852 	if (sgp == SGP_READ)
1853 		return 0;
1854 	if (sgp == SGP_NOALLOC)
1855 		return -ENOENT;
1856 
1857 	/*
1858 	 * Fast cache lookup and swap lookup did not find it: allocate.
1859 	 */
1860 
1861 	if (vma && userfaultfd_missing(vma)) {
1862 		*fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1863 		return 0;
1864 	}
1865 
1866 	if (!shmem_is_huge(vma, inode, index))
1867 		goto alloc_nohuge;
1868 
1869 	huge_gfp = vma_thp_gfp_mask(vma);
1870 	huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1871 	page = shmem_alloc_and_acct_page(huge_gfp, inode, index, true);
1872 	if (IS_ERR(page)) {
1873 alloc_nohuge:
1874 		page = shmem_alloc_and_acct_page(gfp, inode,
1875 						 index, false);
1876 	}
1877 	if (IS_ERR(page)) {
1878 		int retry = 5;
1879 
1880 		error = PTR_ERR(page);
1881 		page = NULL;
1882 		if (error != -ENOSPC)
1883 			goto unlock;
1884 		/*
1885 		 * Try to reclaim some space by splitting a huge page
1886 		 * beyond i_size on the filesystem.
1887 		 */
1888 		while (retry--) {
1889 			int ret;
1890 
1891 			ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1892 			if (ret == SHRINK_STOP)
1893 				break;
1894 			if (ret)
1895 				goto alloc_nohuge;
1896 		}
1897 		goto unlock;
1898 	}
1899 
1900 	if (PageTransHuge(page))
1901 		hindex = round_down(index, HPAGE_PMD_NR);
1902 	else
1903 		hindex = index;
1904 
1905 	if (sgp == SGP_WRITE)
1906 		__SetPageReferenced(page);
1907 
1908 	error = shmem_add_to_page_cache(page, mapping, hindex,
1909 					NULL, gfp & GFP_RECLAIM_MASK,
1910 					charge_mm);
1911 	if (error)
1912 		goto unacct;
1913 	lru_cache_add(page);
1914 
1915 	spin_lock_irq(&info->lock);
1916 	info->alloced += compound_nr(page);
1917 	inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1918 	shmem_recalc_inode(inode);
1919 	spin_unlock_irq(&info->lock);
1920 	alloced = true;
1921 
1922 	if (PageTransHuge(page) &&
1923 	    DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1924 			hindex + HPAGE_PMD_NR - 1) {
1925 		/*
1926 		 * Part of the huge page is beyond i_size: subject
1927 		 * to shrink under memory pressure.
1928 		 */
1929 		spin_lock(&sbinfo->shrinklist_lock);
1930 		/*
1931 		 * _careful to defend against unlocked access to
1932 		 * ->shrink_list in shmem_unused_huge_shrink()
1933 		 */
1934 		if (list_empty_careful(&info->shrinklist)) {
1935 			list_add_tail(&info->shrinklist,
1936 				      &sbinfo->shrinklist);
1937 			sbinfo->shrinklist_len++;
1938 		}
1939 		spin_unlock(&sbinfo->shrinklist_lock);
1940 	}
1941 
1942 	/*
1943 	 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1944 	 */
1945 	if (sgp == SGP_FALLOC)
1946 		sgp = SGP_WRITE;
1947 clear:
1948 	/*
1949 	 * Let SGP_WRITE caller clear ends if write does not fill page;
1950 	 * but SGP_FALLOC on a page fallocated earlier must initialize
1951 	 * it now, lest undo on failure cancel our earlier guarantee.
1952 	 */
1953 	if (sgp != SGP_WRITE && !PageUptodate(page)) {
1954 		int i;
1955 
1956 		for (i = 0; i < compound_nr(page); i++) {
1957 			clear_highpage(page + i);
1958 			flush_dcache_page(page + i);
1959 		}
1960 		SetPageUptodate(page);
1961 	}
1962 
1963 	/* Perhaps the file has been truncated since we checked */
1964 	if (sgp <= SGP_CACHE &&
1965 	    ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1966 		if (alloced) {
1967 			ClearPageDirty(page);
1968 			delete_from_page_cache(page);
1969 			spin_lock_irq(&info->lock);
1970 			shmem_recalc_inode(inode);
1971 			spin_unlock_irq(&info->lock);
1972 		}
1973 		error = -EINVAL;
1974 		goto unlock;
1975 	}
1976 out:
1977 	*pagep = page + index - hindex;
1978 	return 0;
1979 
1980 	/*
1981 	 * Error recovery.
1982 	 */
1983 unacct:
1984 	shmem_inode_unacct_blocks(inode, compound_nr(page));
1985 
1986 	if (PageTransHuge(page)) {
1987 		unlock_page(page);
1988 		put_page(page);
1989 		goto alloc_nohuge;
1990 	}
1991 unlock:
1992 	if (page) {
1993 		unlock_page(page);
1994 		put_page(page);
1995 	}
1996 	if (error == -ENOSPC && !once++) {
1997 		spin_lock_irq(&info->lock);
1998 		shmem_recalc_inode(inode);
1999 		spin_unlock_irq(&info->lock);
2000 		goto repeat;
2001 	}
2002 	if (error == -EEXIST)
2003 		goto repeat;
2004 	return error;
2005 }
2006 
2007 /*
2008  * This is like autoremove_wake_function, but it removes the wait queue
2009  * entry unconditionally - even if something else had already woken the
2010  * target.
2011  */
2012 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2013 {
2014 	int ret = default_wake_function(wait, mode, sync, key);
2015 	list_del_init(&wait->entry);
2016 	return ret;
2017 }
2018 
2019 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2020 {
2021 	struct vm_area_struct *vma = vmf->vma;
2022 	struct inode *inode = file_inode(vma->vm_file);
2023 	gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2024 	int err;
2025 	vm_fault_t ret = VM_FAULT_LOCKED;
2026 
2027 	/*
2028 	 * Trinity finds that probing a hole which tmpfs is punching can
2029 	 * prevent the hole-punch from ever completing: which in turn
2030 	 * locks writers out with its hold on i_rwsem.  So refrain from
2031 	 * faulting pages into the hole while it's being punched.  Although
2032 	 * shmem_undo_range() does remove the additions, it may be unable to
2033 	 * keep up, as each new page needs its own unmap_mapping_range() call,
2034 	 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2035 	 *
2036 	 * It does not matter if we sometimes reach this check just before the
2037 	 * hole-punch begins, so that one fault then races with the punch:
2038 	 * we just need to make racing faults a rare case.
2039 	 *
2040 	 * The implementation below would be much simpler if we just used a
2041 	 * standard mutex or completion: but we cannot take i_rwsem in fault,
2042 	 * and bloating every shmem inode for this unlikely case would be sad.
2043 	 */
2044 	if (unlikely(inode->i_private)) {
2045 		struct shmem_falloc *shmem_falloc;
2046 
2047 		spin_lock(&inode->i_lock);
2048 		shmem_falloc = inode->i_private;
2049 		if (shmem_falloc &&
2050 		    shmem_falloc->waitq &&
2051 		    vmf->pgoff >= shmem_falloc->start &&
2052 		    vmf->pgoff < shmem_falloc->next) {
2053 			struct file *fpin;
2054 			wait_queue_head_t *shmem_falloc_waitq;
2055 			DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2056 
2057 			ret = VM_FAULT_NOPAGE;
2058 			fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2059 			if (fpin)
2060 				ret = VM_FAULT_RETRY;
2061 
2062 			shmem_falloc_waitq = shmem_falloc->waitq;
2063 			prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2064 					TASK_UNINTERRUPTIBLE);
2065 			spin_unlock(&inode->i_lock);
2066 			schedule();
2067 
2068 			/*
2069 			 * shmem_falloc_waitq points into the shmem_fallocate()
2070 			 * stack of the hole-punching task: shmem_falloc_waitq
2071 			 * is usually invalid by the time we reach here, but
2072 			 * finish_wait() does not dereference it in that case;
2073 			 * though i_lock needed lest racing with wake_up_all().
2074 			 */
2075 			spin_lock(&inode->i_lock);
2076 			finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2077 			spin_unlock(&inode->i_lock);
2078 
2079 			if (fpin)
2080 				fput(fpin);
2081 			return ret;
2082 		}
2083 		spin_unlock(&inode->i_lock);
2084 	}
2085 
2086 	err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, SGP_CACHE,
2087 				  gfp, vma, vmf, &ret);
2088 	if (err)
2089 		return vmf_error(err);
2090 	return ret;
2091 }
2092 
2093 unsigned long shmem_get_unmapped_area(struct file *file,
2094 				      unsigned long uaddr, unsigned long len,
2095 				      unsigned long pgoff, unsigned long flags)
2096 {
2097 	unsigned long (*get_area)(struct file *,
2098 		unsigned long, unsigned long, unsigned long, unsigned long);
2099 	unsigned long addr;
2100 	unsigned long offset;
2101 	unsigned long inflated_len;
2102 	unsigned long inflated_addr;
2103 	unsigned long inflated_offset;
2104 
2105 	if (len > TASK_SIZE)
2106 		return -ENOMEM;
2107 
2108 	get_area = current->mm->get_unmapped_area;
2109 	addr = get_area(file, uaddr, len, pgoff, flags);
2110 
2111 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2112 		return addr;
2113 	if (IS_ERR_VALUE(addr))
2114 		return addr;
2115 	if (addr & ~PAGE_MASK)
2116 		return addr;
2117 	if (addr > TASK_SIZE - len)
2118 		return addr;
2119 
2120 	if (shmem_huge == SHMEM_HUGE_DENY)
2121 		return addr;
2122 	if (len < HPAGE_PMD_SIZE)
2123 		return addr;
2124 	if (flags & MAP_FIXED)
2125 		return addr;
2126 	/*
2127 	 * Our priority is to support MAP_SHARED mapped hugely;
2128 	 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2129 	 * But if caller specified an address hint and we allocated area there
2130 	 * successfully, respect that as before.
2131 	 */
2132 	if (uaddr == addr)
2133 		return addr;
2134 
2135 	if (shmem_huge != SHMEM_HUGE_FORCE) {
2136 		struct super_block *sb;
2137 
2138 		if (file) {
2139 			VM_BUG_ON(file->f_op != &shmem_file_operations);
2140 			sb = file_inode(file)->i_sb;
2141 		} else {
2142 			/*
2143 			 * Called directly from mm/mmap.c, or drivers/char/mem.c
2144 			 * for "/dev/zero", to create a shared anonymous object.
2145 			 */
2146 			if (IS_ERR(shm_mnt))
2147 				return addr;
2148 			sb = shm_mnt->mnt_sb;
2149 		}
2150 		if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2151 			return addr;
2152 	}
2153 
2154 	offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2155 	if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2156 		return addr;
2157 	if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2158 		return addr;
2159 
2160 	inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2161 	if (inflated_len > TASK_SIZE)
2162 		return addr;
2163 	if (inflated_len < len)
2164 		return addr;
2165 
2166 	inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2167 	if (IS_ERR_VALUE(inflated_addr))
2168 		return addr;
2169 	if (inflated_addr & ~PAGE_MASK)
2170 		return addr;
2171 
2172 	inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2173 	inflated_addr += offset - inflated_offset;
2174 	if (inflated_offset > offset)
2175 		inflated_addr += HPAGE_PMD_SIZE;
2176 
2177 	if (inflated_addr > TASK_SIZE - len)
2178 		return addr;
2179 	return inflated_addr;
2180 }
2181 
2182 #ifdef CONFIG_NUMA
2183 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2184 {
2185 	struct inode *inode = file_inode(vma->vm_file);
2186 	return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2187 }
2188 
2189 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2190 					  unsigned long addr)
2191 {
2192 	struct inode *inode = file_inode(vma->vm_file);
2193 	pgoff_t index;
2194 
2195 	index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2196 	return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2197 }
2198 #endif
2199 
2200 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2201 {
2202 	struct inode *inode = file_inode(file);
2203 	struct shmem_inode_info *info = SHMEM_I(inode);
2204 	int retval = -ENOMEM;
2205 
2206 	/*
2207 	 * What serializes the accesses to info->flags?
2208 	 * ipc_lock_object() when called from shmctl_do_lock(),
2209 	 * no serialization needed when called from shm_destroy().
2210 	 */
2211 	if (lock && !(info->flags & VM_LOCKED)) {
2212 		if (!user_shm_lock(inode->i_size, ucounts))
2213 			goto out_nomem;
2214 		info->flags |= VM_LOCKED;
2215 		mapping_set_unevictable(file->f_mapping);
2216 	}
2217 	if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2218 		user_shm_unlock(inode->i_size, ucounts);
2219 		info->flags &= ~VM_LOCKED;
2220 		mapping_clear_unevictable(file->f_mapping);
2221 	}
2222 	retval = 0;
2223 
2224 out_nomem:
2225 	return retval;
2226 }
2227 
2228 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2229 {
2230 	struct shmem_inode_info *info = SHMEM_I(file_inode(file));
2231 	int ret;
2232 
2233 	ret = seal_check_future_write(info->seals, vma);
2234 	if (ret)
2235 		return ret;
2236 
2237 	/* arm64 - allow memory tagging on RAM-based files */
2238 	vma->vm_flags |= VM_MTE_ALLOWED;
2239 
2240 	file_accessed(file);
2241 	vma->vm_ops = &shmem_vm_ops;
2242 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
2243 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2244 			(vma->vm_end & HPAGE_PMD_MASK)) {
2245 		khugepaged_enter(vma, vma->vm_flags);
2246 	}
2247 	return 0;
2248 }
2249 
2250 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2251 				     umode_t mode, dev_t dev, unsigned long flags)
2252 {
2253 	struct inode *inode;
2254 	struct shmem_inode_info *info;
2255 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2256 	ino_t ino;
2257 
2258 	if (shmem_reserve_inode(sb, &ino))
2259 		return NULL;
2260 
2261 	inode = new_inode(sb);
2262 	if (inode) {
2263 		inode->i_ino = ino;
2264 		inode_init_owner(&init_user_ns, inode, dir, mode);
2265 		inode->i_blocks = 0;
2266 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2267 		inode->i_generation = prandom_u32();
2268 		info = SHMEM_I(inode);
2269 		memset(info, 0, (char *)inode - (char *)info);
2270 		spin_lock_init(&info->lock);
2271 		atomic_set(&info->stop_eviction, 0);
2272 		info->seals = F_SEAL_SEAL;
2273 		info->flags = flags & VM_NORESERVE;
2274 		info->i_crtime = inode->i_mtime;
2275 		INIT_LIST_HEAD(&info->shrinklist);
2276 		INIT_LIST_HEAD(&info->swaplist);
2277 		simple_xattrs_init(&info->xattrs);
2278 		cache_no_acl(inode);
2279 		mapping_set_large_folios(inode->i_mapping);
2280 
2281 		switch (mode & S_IFMT) {
2282 		default:
2283 			inode->i_op = &shmem_special_inode_operations;
2284 			init_special_inode(inode, mode, dev);
2285 			break;
2286 		case S_IFREG:
2287 			inode->i_mapping->a_ops = &shmem_aops;
2288 			inode->i_op = &shmem_inode_operations;
2289 			inode->i_fop = &shmem_file_operations;
2290 			mpol_shared_policy_init(&info->policy,
2291 						 shmem_get_sbmpol(sbinfo));
2292 			break;
2293 		case S_IFDIR:
2294 			inc_nlink(inode);
2295 			/* Some things misbehave if size == 0 on a directory */
2296 			inode->i_size = 2 * BOGO_DIRENT_SIZE;
2297 			inode->i_op = &shmem_dir_inode_operations;
2298 			inode->i_fop = &simple_dir_operations;
2299 			break;
2300 		case S_IFLNK:
2301 			/*
2302 			 * Must not load anything in the rbtree,
2303 			 * mpol_free_shared_policy will not be called.
2304 			 */
2305 			mpol_shared_policy_init(&info->policy, NULL);
2306 			break;
2307 		}
2308 
2309 		lockdep_annotate_inode_mutex_key(inode);
2310 	} else
2311 		shmem_free_inode(sb);
2312 	return inode;
2313 }
2314 
2315 #ifdef CONFIG_USERFAULTFD
2316 int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2317 			   pmd_t *dst_pmd,
2318 			   struct vm_area_struct *dst_vma,
2319 			   unsigned long dst_addr,
2320 			   unsigned long src_addr,
2321 			   bool zeropage,
2322 			   struct page **pagep)
2323 {
2324 	struct inode *inode = file_inode(dst_vma->vm_file);
2325 	struct shmem_inode_info *info = SHMEM_I(inode);
2326 	struct address_space *mapping = inode->i_mapping;
2327 	gfp_t gfp = mapping_gfp_mask(mapping);
2328 	pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2329 	void *page_kaddr;
2330 	struct page *page;
2331 	int ret;
2332 	pgoff_t max_off;
2333 
2334 	if (!shmem_inode_acct_block(inode, 1)) {
2335 		/*
2336 		 * We may have got a page, returned -ENOENT triggering a retry,
2337 		 * and now we find ourselves with -ENOMEM. Release the page, to
2338 		 * avoid a BUG_ON in our caller.
2339 		 */
2340 		if (unlikely(*pagep)) {
2341 			put_page(*pagep);
2342 			*pagep = NULL;
2343 		}
2344 		return -ENOMEM;
2345 	}
2346 
2347 	if (!*pagep) {
2348 		ret = -ENOMEM;
2349 		page = shmem_alloc_page(gfp, info, pgoff);
2350 		if (!page)
2351 			goto out_unacct_blocks;
2352 
2353 		if (!zeropage) {	/* COPY */
2354 			page_kaddr = kmap_atomic(page);
2355 			ret = copy_from_user(page_kaddr,
2356 					     (const void __user *)src_addr,
2357 					     PAGE_SIZE);
2358 			kunmap_atomic(page_kaddr);
2359 
2360 			/* fallback to copy_from_user outside mmap_lock */
2361 			if (unlikely(ret)) {
2362 				*pagep = page;
2363 				ret = -ENOENT;
2364 				/* don't free the page */
2365 				goto out_unacct_blocks;
2366 			}
2367 
2368 			flush_dcache_page(page);
2369 		} else {		/* ZEROPAGE */
2370 			clear_user_highpage(page, dst_addr);
2371 		}
2372 	} else {
2373 		page = *pagep;
2374 		*pagep = NULL;
2375 	}
2376 
2377 	VM_BUG_ON(PageLocked(page));
2378 	VM_BUG_ON(PageSwapBacked(page));
2379 	__SetPageLocked(page);
2380 	__SetPageSwapBacked(page);
2381 	__SetPageUptodate(page);
2382 
2383 	ret = -EFAULT;
2384 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2385 	if (unlikely(pgoff >= max_off))
2386 		goto out_release;
2387 
2388 	ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2389 				      gfp & GFP_RECLAIM_MASK, dst_mm);
2390 	if (ret)
2391 		goto out_release;
2392 
2393 	ret = mfill_atomic_install_pte(dst_mm, dst_pmd, dst_vma, dst_addr,
2394 				       page, true, false);
2395 	if (ret)
2396 		goto out_delete_from_cache;
2397 
2398 	spin_lock_irq(&info->lock);
2399 	info->alloced++;
2400 	inode->i_blocks += BLOCKS_PER_PAGE;
2401 	shmem_recalc_inode(inode);
2402 	spin_unlock_irq(&info->lock);
2403 
2404 	unlock_page(page);
2405 	return 0;
2406 out_delete_from_cache:
2407 	delete_from_page_cache(page);
2408 out_release:
2409 	unlock_page(page);
2410 	put_page(page);
2411 out_unacct_blocks:
2412 	shmem_inode_unacct_blocks(inode, 1);
2413 	return ret;
2414 }
2415 #endif /* CONFIG_USERFAULTFD */
2416 
2417 #ifdef CONFIG_TMPFS
2418 static const struct inode_operations shmem_symlink_inode_operations;
2419 static const struct inode_operations shmem_short_symlink_operations;
2420 
2421 #ifdef CONFIG_TMPFS_XATTR
2422 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2423 #else
2424 #define shmem_initxattrs NULL
2425 #endif
2426 
2427 static int
2428 shmem_write_begin(struct file *file, struct address_space *mapping,
2429 			loff_t pos, unsigned len, unsigned flags,
2430 			struct page **pagep, void **fsdata)
2431 {
2432 	struct inode *inode = mapping->host;
2433 	struct shmem_inode_info *info = SHMEM_I(inode);
2434 	pgoff_t index = pos >> PAGE_SHIFT;
2435 	int ret = 0;
2436 
2437 	/* i_rwsem is held by caller */
2438 	if (unlikely(info->seals & (F_SEAL_GROW |
2439 				   F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2440 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2441 			return -EPERM;
2442 		if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2443 			return -EPERM;
2444 	}
2445 
2446 	ret = shmem_getpage(inode, index, pagep, SGP_WRITE);
2447 
2448 	if (ret)
2449 		return ret;
2450 
2451 	if (PageHWPoison(*pagep)) {
2452 		unlock_page(*pagep);
2453 		put_page(*pagep);
2454 		*pagep = NULL;
2455 		return -EIO;
2456 	}
2457 
2458 	return 0;
2459 }
2460 
2461 static int
2462 shmem_write_end(struct file *file, struct address_space *mapping,
2463 			loff_t pos, unsigned len, unsigned copied,
2464 			struct page *page, void *fsdata)
2465 {
2466 	struct inode *inode = mapping->host;
2467 
2468 	if (pos + copied > inode->i_size)
2469 		i_size_write(inode, pos + copied);
2470 
2471 	if (!PageUptodate(page)) {
2472 		struct page *head = compound_head(page);
2473 		if (PageTransCompound(page)) {
2474 			int i;
2475 
2476 			for (i = 0; i < HPAGE_PMD_NR; i++) {
2477 				if (head + i == page)
2478 					continue;
2479 				clear_highpage(head + i);
2480 				flush_dcache_page(head + i);
2481 			}
2482 		}
2483 		if (copied < PAGE_SIZE) {
2484 			unsigned from = pos & (PAGE_SIZE - 1);
2485 			zero_user_segments(page, 0, from,
2486 					from + copied, PAGE_SIZE);
2487 		}
2488 		SetPageUptodate(head);
2489 	}
2490 	set_page_dirty(page);
2491 	unlock_page(page);
2492 	put_page(page);
2493 
2494 	return copied;
2495 }
2496 
2497 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2498 {
2499 	struct file *file = iocb->ki_filp;
2500 	struct inode *inode = file_inode(file);
2501 	struct address_space *mapping = inode->i_mapping;
2502 	pgoff_t index;
2503 	unsigned long offset;
2504 	int error = 0;
2505 	ssize_t retval = 0;
2506 	loff_t *ppos = &iocb->ki_pos;
2507 
2508 	index = *ppos >> PAGE_SHIFT;
2509 	offset = *ppos & ~PAGE_MASK;
2510 
2511 	for (;;) {
2512 		struct page *page = NULL;
2513 		pgoff_t end_index;
2514 		unsigned long nr, ret;
2515 		loff_t i_size = i_size_read(inode);
2516 
2517 		end_index = i_size >> PAGE_SHIFT;
2518 		if (index > end_index)
2519 			break;
2520 		if (index == end_index) {
2521 			nr = i_size & ~PAGE_MASK;
2522 			if (nr <= offset)
2523 				break;
2524 		}
2525 
2526 		error = shmem_getpage(inode, index, &page, SGP_READ);
2527 		if (error) {
2528 			if (error == -EINVAL)
2529 				error = 0;
2530 			break;
2531 		}
2532 		if (page) {
2533 			unlock_page(page);
2534 
2535 			if (PageHWPoison(page)) {
2536 				put_page(page);
2537 				error = -EIO;
2538 				break;
2539 			}
2540 		}
2541 
2542 		/*
2543 		 * We must evaluate after, since reads (unlike writes)
2544 		 * are called without i_rwsem protection against truncate
2545 		 */
2546 		nr = PAGE_SIZE;
2547 		i_size = i_size_read(inode);
2548 		end_index = i_size >> PAGE_SHIFT;
2549 		if (index == end_index) {
2550 			nr = i_size & ~PAGE_MASK;
2551 			if (nr <= offset) {
2552 				if (page)
2553 					put_page(page);
2554 				break;
2555 			}
2556 		}
2557 		nr -= offset;
2558 
2559 		if (page) {
2560 			/*
2561 			 * If users can be writing to this page using arbitrary
2562 			 * virtual addresses, take care about potential aliasing
2563 			 * before reading the page on the kernel side.
2564 			 */
2565 			if (mapping_writably_mapped(mapping))
2566 				flush_dcache_page(page);
2567 			/*
2568 			 * Mark the page accessed if we read the beginning.
2569 			 */
2570 			if (!offset)
2571 				mark_page_accessed(page);
2572 			/*
2573 			 * Ok, we have the page, and it's up-to-date, so
2574 			 * now we can copy it to user space...
2575 			 */
2576 			ret = copy_page_to_iter(page, offset, nr, to);
2577 			put_page(page);
2578 
2579 		} else if (iter_is_iovec(to)) {
2580 			/*
2581 			 * Copy to user tends to be so well optimized, but
2582 			 * clear_user() not so much, that it is noticeably
2583 			 * faster to copy the zero page instead of clearing.
2584 			 */
2585 			ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2586 		} else {
2587 			/*
2588 			 * But submitting the same page twice in a row to
2589 			 * splice() - or others? - can result in confusion:
2590 			 * so don't attempt that optimization on pipes etc.
2591 			 */
2592 			ret = iov_iter_zero(nr, to);
2593 		}
2594 
2595 		retval += ret;
2596 		offset += ret;
2597 		index += offset >> PAGE_SHIFT;
2598 		offset &= ~PAGE_MASK;
2599 
2600 		if (!iov_iter_count(to))
2601 			break;
2602 		if (ret < nr) {
2603 			error = -EFAULT;
2604 			break;
2605 		}
2606 		cond_resched();
2607 	}
2608 
2609 	*ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2610 	file_accessed(file);
2611 	return retval ? retval : error;
2612 }
2613 
2614 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2615 {
2616 	struct address_space *mapping = file->f_mapping;
2617 	struct inode *inode = mapping->host;
2618 
2619 	if (whence != SEEK_DATA && whence != SEEK_HOLE)
2620 		return generic_file_llseek_size(file, offset, whence,
2621 					MAX_LFS_FILESIZE, i_size_read(inode));
2622 	if (offset < 0)
2623 		return -ENXIO;
2624 
2625 	inode_lock(inode);
2626 	/* We're holding i_rwsem so we can access i_size directly */
2627 	offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2628 	if (offset >= 0)
2629 		offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2630 	inode_unlock(inode);
2631 	return offset;
2632 }
2633 
2634 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2635 							 loff_t len)
2636 {
2637 	struct inode *inode = file_inode(file);
2638 	struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2639 	struct shmem_inode_info *info = SHMEM_I(inode);
2640 	struct shmem_falloc shmem_falloc;
2641 	pgoff_t start, index, end, undo_fallocend;
2642 	int error;
2643 
2644 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2645 		return -EOPNOTSUPP;
2646 
2647 	inode_lock(inode);
2648 
2649 	if (mode & FALLOC_FL_PUNCH_HOLE) {
2650 		struct address_space *mapping = file->f_mapping;
2651 		loff_t unmap_start = round_up(offset, PAGE_SIZE);
2652 		loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2653 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2654 
2655 		/* protected by i_rwsem */
2656 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2657 			error = -EPERM;
2658 			goto out;
2659 		}
2660 
2661 		shmem_falloc.waitq = &shmem_falloc_waitq;
2662 		shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2663 		shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2664 		spin_lock(&inode->i_lock);
2665 		inode->i_private = &shmem_falloc;
2666 		spin_unlock(&inode->i_lock);
2667 
2668 		if ((u64)unmap_end > (u64)unmap_start)
2669 			unmap_mapping_range(mapping, unmap_start,
2670 					    1 + unmap_end - unmap_start, 0);
2671 		shmem_truncate_range(inode, offset, offset + len - 1);
2672 		/* No need to unmap again: hole-punching leaves COWed pages */
2673 
2674 		spin_lock(&inode->i_lock);
2675 		inode->i_private = NULL;
2676 		wake_up_all(&shmem_falloc_waitq);
2677 		WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2678 		spin_unlock(&inode->i_lock);
2679 		error = 0;
2680 		goto out;
2681 	}
2682 
2683 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2684 	error = inode_newsize_ok(inode, offset + len);
2685 	if (error)
2686 		goto out;
2687 
2688 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2689 		error = -EPERM;
2690 		goto out;
2691 	}
2692 
2693 	start = offset >> PAGE_SHIFT;
2694 	end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2695 	/* Try to avoid a swapstorm if len is impossible to satisfy */
2696 	if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2697 		error = -ENOSPC;
2698 		goto out;
2699 	}
2700 
2701 	shmem_falloc.waitq = NULL;
2702 	shmem_falloc.start = start;
2703 	shmem_falloc.next  = start;
2704 	shmem_falloc.nr_falloced = 0;
2705 	shmem_falloc.nr_unswapped = 0;
2706 	spin_lock(&inode->i_lock);
2707 	inode->i_private = &shmem_falloc;
2708 	spin_unlock(&inode->i_lock);
2709 
2710 	/*
2711 	 * info->fallocend is only relevant when huge pages might be
2712 	 * involved: to prevent split_huge_page() freeing fallocated
2713 	 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2714 	 */
2715 	undo_fallocend = info->fallocend;
2716 	if (info->fallocend < end)
2717 		info->fallocend = end;
2718 
2719 	for (index = start; index < end; ) {
2720 		struct page *page;
2721 
2722 		/*
2723 		 * Good, the fallocate(2) manpage permits EINTR: we may have
2724 		 * been interrupted because we are using up too much memory.
2725 		 */
2726 		if (signal_pending(current))
2727 			error = -EINTR;
2728 		else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2729 			error = -ENOMEM;
2730 		else
2731 			error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2732 		if (error) {
2733 			info->fallocend = undo_fallocend;
2734 			/* Remove the !PageUptodate pages we added */
2735 			if (index > start) {
2736 				shmem_undo_range(inode,
2737 				    (loff_t)start << PAGE_SHIFT,
2738 				    ((loff_t)index << PAGE_SHIFT) - 1, true);
2739 			}
2740 			goto undone;
2741 		}
2742 
2743 		index++;
2744 		/*
2745 		 * Here is a more important optimization than it appears:
2746 		 * a second SGP_FALLOC on the same huge page will clear it,
2747 		 * making it PageUptodate and un-undoable if we fail later.
2748 		 */
2749 		if (PageTransCompound(page)) {
2750 			index = round_up(index, HPAGE_PMD_NR);
2751 			/* Beware 32-bit wraparound */
2752 			if (!index)
2753 				index--;
2754 		}
2755 
2756 		/*
2757 		 * Inform shmem_writepage() how far we have reached.
2758 		 * No need for lock or barrier: we have the page lock.
2759 		 */
2760 		if (!PageUptodate(page))
2761 			shmem_falloc.nr_falloced += index - shmem_falloc.next;
2762 		shmem_falloc.next = index;
2763 
2764 		/*
2765 		 * If !PageUptodate, leave it that way so that freeable pages
2766 		 * can be recognized if we need to rollback on error later.
2767 		 * But set_page_dirty so that memory pressure will swap rather
2768 		 * than free the pages we are allocating (and SGP_CACHE pages
2769 		 * might still be clean: we now need to mark those dirty too).
2770 		 */
2771 		set_page_dirty(page);
2772 		unlock_page(page);
2773 		put_page(page);
2774 		cond_resched();
2775 	}
2776 
2777 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2778 		i_size_write(inode, offset + len);
2779 	inode->i_ctime = current_time(inode);
2780 undone:
2781 	spin_lock(&inode->i_lock);
2782 	inode->i_private = NULL;
2783 	spin_unlock(&inode->i_lock);
2784 out:
2785 	inode_unlock(inode);
2786 	return error;
2787 }
2788 
2789 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2790 {
2791 	struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2792 
2793 	buf->f_type = TMPFS_MAGIC;
2794 	buf->f_bsize = PAGE_SIZE;
2795 	buf->f_namelen = NAME_MAX;
2796 	if (sbinfo->max_blocks) {
2797 		buf->f_blocks = sbinfo->max_blocks;
2798 		buf->f_bavail =
2799 		buf->f_bfree  = sbinfo->max_blocks -
2800 				percpu_counter_sum(&sbinfo->used_blocks);
2801 	}
2802 	if (sbinfo->max_inodes) {
2803 		buf->f_files = sbinfo->max_inodes;
2804 		buf->f_ffree = sbinfo->free_inodes;
2805 	}
2806 	/* else leave those fields 0 like simple_statfs */
2807 
2808 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2809 
2810 	return 0;
2811 }
2812 
2813 /*
2814  * File creation. Allocate an inode, and we're done..
2815  */
2816 static int
2817 shmem_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2818 	    struct dentry *dentry, umode_t mode, dev_t dev)
2819 {
2820 	struct inode *inode;
2821 	int error = -ENOSPC;
2822 
2823 	inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2824 	if (inode) {
2825 		error = simple_acl_create(dir, inode);
2826 		if (error)
2827 			goto out_iput;
2828 		error = security_inode_init_security(inode, dir,
2829 						     &dentry->d_name,
2830 						     shmem_initxattrs, NULL);
2831 		if (error && error != -EOPNOTSUPP)
2832 			goto out_iput;
2833 
2834 		error = 0;
2835 		dir->i_size += BOGO_DIRENT_SIZE;
2836 		dir->i_ctime = dir->i_mtime = current_time(dir);
2837 		d_instantiate(dentry, inode);
2838 		dget(dentry); /* Extra count - pin the dentry in core */
2839 	}
2840 	return error;
2841 out_iput:
2842 	iput(inode);
2843 	return error;
2844 }
2845 
2846 static int
2847 shmem_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
2848 	      struct dentry *dentry, umode_t mode)
2849 {
2850 	struct inode *inode;
2851 	int error = -ENOSPC;
2852 
2853 	inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2854 	if (inode) {
2855 		error = security_inode_init_security(inode, dir,
2856 						     NULL,
2857 						     shmem_initxattrs, NULL);
2858 		if (error && error != -EOPNOTSUPP)
2859 			goto out_iput;
2860 		error = simple_acl_create(dir, inode);
2861 		if (error)
2862 			goto out_iput;
2863 		d_tmpfile(dentry, inode);
2864 	}
2865 	return error;
2866 out_iput:
2867 	iput(inode);
2868 	return error;
2869 }
2870 
2871 static int shmem_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2872 		       struct dentry *dentry, umode_t mode)
2873 {
2874 	int error;
2875 
2876 	if ((error = shmem_mknod(&init_user_ns, dir, dentry,
2877 				 mode | S_IFDIR, 0)))
2878 		return error;
2879 	inc_nlink(dir);
2880 	return 0;
2881 }
2882 
2883 static int shmem_create(struct user_namespace *mnt_userns, struct inode *dir,
2884 			struct dentry *dentry, umode_t mode, bool excl)
2885 {
2886 	return shmem_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
2887 }
2888 
2889 /*
2890  * Link a file..
2891  */
2892 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2893 {
2894 	struct inode *inode = d_inode(old_dentry);
2895 	int ret = 0;
2896 
2897 	/*
2898 	 * No ordinary (disk based) filesystem counts links as inodes;
2899 	 * but each new link needs a new dentry, pinning lowmem, and
2900 	 * tmpfs dentries cannot be pruned until they are unlinked.
2901 	 * But if an O_TMPFILE file is linked into the tmpfs, the
2902 	 * first link must skip that, to get the accounting right.
2903 	 */
2904 	if (inode->i_nlink) {
2905 		ret = shmem_reserve_inode(inode->i_sb, NULL);
2906 		if (ret)
2907 			goto out;
2908 	}
2909 
2910 	dir->i_size += BOGO_DIRENT_SIZE;
2911 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2912 	inc_nlink(inode);
2913 	ihold(inode);	/* New dentry reference */
2914 	dget(dentry);		/* Extra pinning count for the created dentry */
2915 	d_instantiate(dentry, inode);
2916 out:
2917 	return ret;
2918 }
2919 
2920 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2921 {
2922 	struct inode *inode = d_inode(dentry);
2923 
2924 	if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2925 		shmem_free_inode(inode->i_sb);
2926 
2927 	dir->i_size -= BOGO_DIRENT_SIZE;
2928 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2929 	drop_nlink(inode);
2930 	dput(dentry);	/* Undo the count from "create" - this does all the work */
2931 	return 0;
2932 }
2933 
2934 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2935 {
2936 	if (!simple_empty(dentry))
2937 		return -ENOTEMPTY;
2938 
2939 	drop_nlink(d_inode(dentry));
2940 	drop_nlink(dir);
2941 	return shmem_unlink(dir, dentry);
2942 }
2943 
2944 static int shmem_whiteout(struct user_namespace *mnt_userns,
2945 			  struct inode *old_dir, struct dentry *old_dentry)
2946 {
2947 	struct dentry *whiteout;
2948 	int error;
2949 
2950 	whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2951 	if (!whiteout)
2952 		return -ENOMEM;
2953 
2954 	error = shmem_mknod(&init_user_ns, old_dir, whiteout,
2955 			    S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2956 	dput(whiteout);
2957 	if (error)
2958 		return error;
2959 
2960 	/*
2961 	 * Cheat and hash the whiteout while the old dentry is still in
2962 	 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2963 	 *
2964 	 * d_lookup() will consistently find one of them at this point,
2965 	 * not sure which one, but that isn't even important.
2966 	 */
2967 	d_rehash(whiteout);
2968 	return 0;
2969 }
2970 
2971 /*
2972  * The VFS layer already does all the dentry stuff for rename,
2973  * we just have to decrement the usage count for the target if
2974  * it exists so that the VFS layer correctly free's it when it
2975  * gets overwritten.
2976  */
2977 static int shmem_rename2(struct user_namespace *mnt_userns,
2978 			 struct inode *old_dir, struct dentry *old_dentry,
2979 			 struct inode *new_dir, struct dentry *new_dentry,
2980 			 unsigned int flags)
2981 {
2982 	struct inode *inode = d_inode(old_dentry);
2983 	int they_are_dirs = S_ISDIR(inode->i_mode);
2984 
2985 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2986 		return -EINVAL;
2987 
2988 	if (flags & RENAME_EXCHANGE)
2989 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
2990 
2991 	if (!simple_empty(new_dentry))
2992 		return -ENOTEMPTY;
2993 
2994 	if (flags & RENAME_WHITEOUT) {
2995 		int error;
2996 
2997 		error = shmem_whiteout(&init_user_ns, old_dir, old_dentry);
2998 		if (error)
2999 			return error;
3000 	}
3001 
3002 	if (d_really_is_positive(new_dentry)) {
3003 		(void) shmem_unlink(new_dir, new_dentry);
3004 		if (they_are_dirs) {
3005 			drop_nlink(d_inode(new_dentry));
3006 			drop_nlink(old_dir);
3007 		}
3008 	} else if (they_are_dirs) {
3009 		drop_nlink(old_dir);
3010 		inc_nlink(new_dir);
3011 	}
3012 
3013 	old_dir->i_size -= BOGO_DIRENT_SIZE;
3014 	new_dir->i_size += BOGO_DIRENT_SIZE;
3015 	old_dir->i_ctime = old_dir->i_mtime =
3016 	new_dir->i_ctime = new_dir->i_mtime =
3017 	inode->i_ctime = current_time(old_dir);
3018 	return 0;
3019 }
3020 
3021 static int shmem_symlink(struct user_namespace *mnt_userns, struct inode *dir,
3022 			 struct dentry *dentry, const char *symname)
3023 {
3024 	int error;
3025 	int len;
3026 	struct inode *inode;
3027 	struct page *page;
3028 
3029 	len = strlen(symname) + 1;
3030 	if (len > PAGE_SIZE)
3031 		return -ENAMETOOLONG;
3032 
3033 	inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3034 				VM_NORESERVE);
3035 	if (!inode)
3036 		return -ENOSPC;
3037 
3038 	error = security_inode_init_security(inode, dir, &dentry->d_name,
3039 					     shmem_initxattrs, NULL);
3040 	if (error && error != -EOPNOTSUPP) {
3041 		iput(inode);
3042 		return error;
3043 	}
3044 
3045 	inode->i_size = len-1;
3046 	if (len <= SHORT_SYMLINK_LEN) {
3047 		inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3048 		if (!inode->i_link) {
3049 			iput(inode);
3050 			return -ENOMEM;
3051 		}
3052 		inode->i_op = &shmem_short_symlink_operations;
3053 	} else {
3054 		inode_nohighmem(inode);
3055 		error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3056 		if (error) {
3057 			iput(inode);
3058 			return error;
3059 		}
3060 		inode->i_mapping->a_ops = &shmem_aops;
3061 		inode->i_op = &shmem_symlink_inode_operations;
3062 		memcpy(page_address(page), symname, len);
3063 		SetPageUptodate(page);
3064 		set_page_dirty(page);
3065 		unlock_page(page);
3066 		put_page(page);
3067 	}
3068 	dir->i_size += BOGO_DIRENT_SIZE;
3069 	dir->i_ctime = dir->i_mtime = current_time(dir);
3070 	d_instantiate(dentry, inode);
3071 	dget(dentry);
3072 	return 0;
3073 }
3074 
3075 static void shmem_put_link(void *arg)
3076 {
3077 	mark_page_accessed(arg);
3078 	put_page(arg);
3079 }
3080 
3081 static const char *shmem_get_link(struct dentry *dentry,
3082 				  struct inode *inode,
3083 				  struct delayed_call *done)
3084 {
3085 	struct page *page = NULL;
3086 	int error;
3087 	if (!dentry) {
3088 		page = find_get_page(inode->i_mapping, 0);
3089 		if (!page)
3090 			return ERR_PTR(-ECHILD);
3091 		if (PageHWPoison(page) ||
3092 		    !PageUptodate(page)) {
3093 			put_page(page);
3094 			return ERR_PTR(-ECHILD);
3095 		}
3096 	} else {
3097 		error = shmem_getpage(inode, 0, &page, SGP_READ);
3098 		if (error)
3099 			return ERR_PTR(error);
3100 		if (!page)
3101 			return ERR_PTR(-ECHILD);
3102 		if (PageHWPoison(page)) {
3103 			unlock_page(page);
3104 			put_page(page);
3105 			return ERR_PTR(-ECHILD);
3106 		}
3107 		unlock_page(page);
3108 	}
3109 	set_delayed_call(done, shmem_put_link, page);
3110 	return page_address(page);
3111 }
3112 
3113 #ifdef CONFIG_TMPFS_XATTR
3114 /*
3115  * Superblocks without xattr inode operations may get some security.* xattr
3116  * support from the LSM "for free". As soon as we have any other xattrs
3117  * like ACLs, we also need to implement the security.* handlers at
3118  * filesystem level, though.
3119  */
3120 
3121 /*
3122  * Callback for security_inode_init_security() for acquiring xattrs.
3123  */
3124 static int shmem_initxattrs(struct inode *inode,
3125 			    const struct xattr *xattr_array,
3126 			    void *fs_info)
3127 {
3128 	struct shmem_inode_info *info = SHMEM_I(inode);
3129 	const struct xattr *xattr;
3130 	struct simple_xattr *new_xattr;
3131 	size_t len;
3132 
3133 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3134 		new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3135 		if (!new_xattr)
3136 			return -ENOMEM;
3137 
3138 		len = strlen(xattr->name) + 1;
3139 		new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3140 					  GFP_KERNEL);
3141 		if (!new_xattr->name) {
3142 			kvfree(new_xattr);
3143 			return -ENOMEM;
3144 		}
3145 
3146 		memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3147 		       XATTR_SECURITY_PREFIX_LEN);
3148 		memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3149 		       xattr->name, len);
3150 
3151 		simple_xattr_list_add(&info->xattrs, new_xattr);
3152 	}
3153 
3154 	return 0;
3155 }
3156 
3157 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3158 				   struct dentry *unused, struct inode *inode,
3159 				   const char *name, void *buffer, size_t size)
3160 {
3161 	struct shmem_inode_info *info = SHMEM_I(inode);
3162 
3163 	name = xattr_full_name(handler, name);
3164 	return simple_xattr_get(&info->xattrs, name, buffer, size);
3165 }
3166 
3167 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3168 				   struct user_namespace *mnt_userns,
3169 				   struct dentry *unused, struct inode *inode,
3170 				   const char *name, const void *value,
3171 				   size_t size, int flags)
3172 {
3173 	struct shmem_inode_info *info = SHMEM_I(inode);
3174 
3175 	name = xattr_full_name(handler, name);
3176 	return simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3177 }
3178 
3179 static const struct xattr_handler shmem_security_xattr_handler = {
3180 	.prefix = XATTR_SECURITY_PREFIX,
3181 	.get = shmem_xattr_handler_get,
3182 	.set = shmem_xattr_handler_set,
3183 };
3184 
3185 static const struct xattr_handler shmem_trusted_xattr_handler = {
3186 	.prefix = XATTR_TRUSTED_PREFIX,
3187 	.get = shmem_xattr_handler_get,
3188 	.set = shmem_xattr_handler_set,
3189 };
3190 
3191 static const struct xattr_handler *shmem_xattr_handlers[] = {
3192 #ifdef CONFIG_TMPFS_POSIX_ACL
3193 	&posix_acl_access_xattr_handler,
3194 	&posix_acl_default_xattr_handler,
3195 #endif
3196 	&shmem_security_xattr_handler,
3197 	&shmem_trusted_xattr_handler,
3198 	NULL
3199 };
3200 
3201 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3202 {
3203 	struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3204 	return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3205 }
3206 #endif /* CONFIG_TMPFS_XATTR */
3207 
3208 static const struct inode_operations shmem_short_symlink_operations = {
3209 	.getattr	= shmem_getattr,
3210 	.get_link	= simple_get_link,
3211 #ifdef CONFIG_TMPFS_XATTR
3212 	.listxattr	= shmem_listxattr,
3213 #endif
3214 };
3215 
3216 static const struct inode_operations shmem_symlink_inode_operations = {
3217 	.getattr	= shmem_getattr,
3218 	.get_link	= shmem_get_link,
3219 #ifdef CONFIG_TMPFS_XATTR
3220 	.listxattr	= shmem_listxattr,
3221 #endif
3222 };
3223 
3224 static struct dentry *shmem_get_parent(struct dentry *child)
3225 {
3226 	return ERR_PTR(-ESTALE);
3227 }
3228 
3229 static int shmem_match(struct inode *ino, void *vfh)
3230 {
3231 	__u32 *fh = vfh;
3232 	__u64 inum = fh[2];
3233 	inum = (inum << 32) | fh[1];
3234 	return ino->i_ino == inum && fh[0] == ino->i_generation;
3235 }
3236 
3237 /* Find any alias of inode, but prefer a hashed alias */
3238 static struct dentry *shmem_find_alias(struct inode *inode)
3239 {
3240 	struct dentry *alias = d_find_alias(inode);
3241 
3242 	return alias ?: d_find_any_alias(inode);
3243 }
3244 
3245 
3246 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3247 		struct fid *fid, int fh_len, int fh_type)
3248 {
3249 	struct inode *inode;
3250 	struct dentry *dentry = NULL;
3251 	u64 inum;
3252 
3253 	if (fh_len < 3)
3254 		return NULL;
3255 
3256 	inum = fid->raw[2];
3257 	inum = (inum << 32) | fid->raw[1];
3258 
3259 	inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3260 			shmem_match, fid->raw);
3261 	if (inode) {
3262 		dentry = shmem_find_alias(inode);
3263 		iput(inode);
3264 	}
3265 
3266 	return dentry;
3267 }
3268 
3269 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3270 				struct inode *parent)
3271 {
3272 	if (*len < 3) {
3273 		*len = 3;
3274 		return FILEID_INVALID;
3275 	}
3276 
3277 	if (inode_unhashed(inode)) {
3278 		/* Unfortunately insert_inode_hash is not idempotent,
3279 		 * so as we hash inodes here rather than at creation
3280 		 * time, we need a lock to ensure we only try
3281 		 * to do it once
3282 		 */
3283 		static DEFINE_SPINLOCK(lock);
3284 		spin_lock(&lock);
3285 		if (inode_unhashed(inode))
3286 			__insert_inode_hash(inode,
3287 					    inode->i_ino + inode->i_generation);
3288 		spin_unlock(&lock);
3289 	}
3290 
3291 	fh[0] = inode->i_generation;
3292 	fh[1] = inode->i_ino;
3293 	fh[2] = ((__u64)inode->i_ino) >> 32;
3294 
3295 	*len = 3;
3296 	return 1;
3297 }
3298 
3299 static const struct export_operations shmem_export_ops = {
3300 	.get_parent     = shmem_get_parent,
3301 	.encode_fh      = shmem_encode_fh,
3302 	.fh_to_dentry	= shmem_fh_to_dentry,
3303 };
3304 
3305 enum shmem_param {
3306 	Opt_gid,
3307 	Opt_huge,
3308 	Opt_mode,
3309 	Opt_mpol,
3310 	Opt_nr_blocks,
3311 	Opt_nr_inodes,
3312 	Opt_size,
3313 	Opt_uid,
3314 	Opt_inode32,
3315 	Opt_inode64,
3316 };
3317 
3318 static const struct constant_table shmem_param_enums_huge[] = {
3319 	{"never",	SHMEM_HUGE_NEVER },
3320 	{"always",	SHMEM_HUGE_ALWAYS },
3321 	{"within_size",	SHMEM_HUGE_WITHIN_SIZE },
3322 	{"advise",	SHMEM_HUGE_ADVISE },
3323 	{}
3324 };
3325 
3326 const struct fs_parameter_spec shmem_fs_parameters[] = {
3327 	fsparam_u32   ("gid",		Opt_gid),
3328 	fsparam_enum  ("huge",		Opt_huge,  shmem_param_enums_huge),
3329 	fsparam_u32oct("mode",		Opt_mode),
3330 	fsparam_string("mpol",		Opt_mpol),
3331 	fsparam_string("nr_blocks",	Opt_nr_blocks),
3332 	fsparam_string("nr_inodes",	Opt_nr_inodes),
3333 	fsparam_string("size",		Opt_size),
3334 	fsparam_u32   ("uid",		Opt_uid),
3335 	fsparam_flag  ("inode32",	Opt_inode32),
3336 	fsparam_flag  ("inode64",	Opt_inode64),
3337 	{}
3338 };
3339 
3340 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3341 {
3342 	struct shmem_options *ctx = fc->fs_private;
3343 	struct fs_parse_result result;
3344 	unsigned long long size;
3345 	char *rest;
3346 	int opt;
3347 
3348 	opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3349 	if (opt < 0)
3350 		return opt;
3351 
3352 	switch (opt) {
3353 	case Opt_size:
3354 		size = memparse(param->string, &rest);
3355 		if (*rest == '%') {
3356 			size <<= PAGE_SHIFT;
3357 			size *= totalram_pages();
3358 			do_div(size, 100);
3359 			rest++;
3360 		}
3361 		if (*rest)
3362 			goto bad_value;
3363 		ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3364 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3365 		break;
3366 	case Opt_nr_blocks:
3367 		ctx->blocks = memparse(param->string, &rest);
3368 		if (*rest)
3369 			goto bad_value;
3370 		ctx->seen |= SHMEM_SEEN_BLOCKS;
3371 		break;
3372 	case Opt_nr_inodes:
3373 		ctx->inodes = memparse(param->string, &rest);
3374 		if (*rest)
3375 			goto bad_value;
3376 		ctx->seen |= SHMEM_SEEN_INODES;
3377 		break;
3378 	case Opt_mode:
3379 		ctx->mode = result.uint_32 & 07777;
3380 		break;
3381 	case Opt_uid:
3382 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3383 		if (!uid_valid(ctx->uid))
3384 			goto bad_value;
3385 		break;
3386 	case Opt_gid:
3387 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3388 		if (!gid_valid(ctx->gid))
3389 			goto bad_value;
3390 		break;
3391 	case Opt_huge:
3392 		ctx->huge = result.uint_32;
3393 		if (ctx->huge != SHMEM_HUGE_NEVER &&
3394 		    !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3395 		      has_transparent_hugepage()))
3396 			goto unsupported_parameter;
3397 		ctx->seen |= SHMEM_SEEN_HUGE;
3398 		break;
3399 	case Opt_mpol:
3400 		if (IS_ENABLED(CONFIG_NUMA)) {
3401 			mpol_put(ctx->mpol);
3402 			ctx->mpol = NULL;
3403 			if (mpol_parse_str(param->string, &ctx->mpol))
3404 				goto bad_value;
3405 			break;
3406 		}
3407 		goto unsupported_parameter;
3408 	case Opt_inode32:
3409 		ctx->full_inums = false;
3410 		ctx->seen |= SHMEM_SEEN_INUMS;
3411 		break;
3412 	case Opt_inode64:
3413 		if (sizeof(ino_t) < 8) {
3414 			return invalfc(fc,
3415 				       "Cannot use inode64 with <64bit inums in kernel\n");
3416 		}
3417 		ctx->full_inums = true;
3418 		ctx->seen |= SHMEM_SEEN_INUMS;
3419 		break;
3420 	}
3421 	return 0;
3422 
3423 unsupported_parameter:
3424 	return invalfc(fc, "Unsupported parameter '%s'", param->key);
3425 bad_value:
3426 	return invalfc(fc, "Bad value for '%s'", param->key);
3427 }
3428 
3429 static int shmem_parse_options(struct fs_context *fc, void *data)
3430 {
3431 	char *options = data;
3432 
3433 	if (options) {
3434 		int err = security_sb_eat_lsm_opts(options, &fc->security);
3435 		if (err)
3436 			return err;
3437 	}
3438 
3439 	while (options != NULL) {
3440 		char *this_char = options;
3441 		for (;;) {
3442 			/*
3443 			 * NUL-terminate this option: unfortunately,
3444 			 * mount options form a comma-separated list,
3445 			 * but mpol's nodelist may also contain commas.
3446 			 */
3447 			options = strchr(options, ',');
3448 			if (options == NULL)
3449 				break;
3450 			options++;
3451 			if (!isdigit(*options)) {
3452 				options[-1] = '\0';
3453 				break;
3454 			}
3455 		}
3456 		if (*this_char) {
3457 			char *value = strchr(this_char, '=');
3458 			size_t len = 0;
3459 			int err;
3460 
3461 			if (value) {
3462 				*value++ = '\0';
3463 				len = strlen(value);
3464 			}
3465 			err = vfs_parse_fs_string(fc, this_char, value, len);
3466 			if (err < 0)
3467 				return err;
3468 		}
3469 	}
3470 	return 0;
3471 }
3472 
3473 /*
3474  * Reconfigure a shmem filesystem.
3475  *
3476  * Note that we disallow change from limited->unlimited blocks/inodes while any
3477  * are in use; but we must separately disallow unlimited->limited, because in
3478  * that case we have no record of how much is already in use.
3479  */
3480 static int shmem_reconfigure(struct fs_context *fc)
3481 {
3482 	struct shmem_options *ctx = fc->fs_private;
3483 	struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3484 	unsigned long inodes;
3485 	struct mempolicy *mpol = NULL;
3486 	const char *err;
3487 
3488 	raw_spin_lock(&sbinfo->stat_lock);
3489 	inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3490 	if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3491 		if (!sbinfo->max_blocks) {
3492 			err = "Cannot retroactively limit size";
3493 			goto out;
3494 		}
3495 		if (percpu_counter_compare(&sbinfo->used_blocks,
3496 					   ctx->blocks) > 0) {
3497 			err = "Too small a size for current use";
3498 			goto out;
3499 		}
3500 	}
3501 	if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3502 		if (!sbinfo->max_inodes) {
3503 			err = "Cannot retroactively limit inodes";
3504 			goto out;
3505 		}
3506 		if (ctx->inodes < inodes) {
3507 			err = "Too few inodes for current use";
3508 			goto out;
3509 		}
3510 	}
3511 
3512 	if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3513 	    sbinfo->next_ino > UINT_MAX) {
3514 		err = "Current inum too high to switch to 32-bit inums";
3515 		goto out;
3516 	}
3517 
3518 	if (ctx->seen & SHMEM_SEEN_HUGE)
3519 		sbinfo->huge = ctx->huge;
3520 	if (ctx->seen & SHMEM_SEEN_INUMS)
3521 		sbinfo->full_inums = ctx->full_inums;
3522 	if (ctx->seen & SHMEM_SEEN_BLOCKS)
3523 		sbinfo->max_blocks  = ctx->blocks;
3524 	if (ctx->seen & SHMEM_SEEN_INODES) {
3525 		sbinfo->max_inodes  = ctx->inodes;
3526 		sbinfo->free_inodes = ctx->inodes - inodes;
3527 	}
3528 
3529 	/*
3530 	 * Preserve previous mempolicy unless mpol remount option was specified.
3531 	 */
3532 	if (ctx->mpol) {
3533 		mpol = sbinfo->mpol;
3534 		sbinfo->mpol = ctx->mpol;	/* transfers initial ref */
3535 		ctx->mpol = NULL;
3536 	}
3537 	raw_spin_unlock(&sbinfo->stat_lock);
3538 	mpol_put(mpol);
3539 	return 0;
3540 out:
3541 	raw_spin_unlock(&sbinfo->stat_lock);
3542 	return invalfc(fc, "%s", err);
3543 }
3544 
3545 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3546 {
3547 	struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3548 
3549 	if (sbinfo->max_blocks != shmem_default_max_blocks())
3550 		seq_printf(seq, ",size=%luk",
3551 			sbinfo->max_blocks << (PAGE_SHIFT - 10));
3552 	if (sbinfo->max_inodes != shmem_default_max_inodes())
3553 		seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3554 	if (sbinfo->mode != (0777 | S_ISVTX))
3555 		seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3556 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3557 		seq_printf(seq, ",uid=%u",
3558 				from_kuid_munged(&init_user_ns, sbinfo->uid));
3559 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3560 		seq_printf(seq, ",gid=%u",
3561 				from_kgid_munged(&init_user_ns, sbinfo->gid));
3562 
3563 	/*
3564 	 * Showing inode{64,32} might be useful even if it's the system default,
3565 	 * since then people don't have to resort to checking both here and
3566 	 * /proc/config.gz to confirm 64-bit inums were successfully applied
3567 	 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3568 	 *
3569 	 * We hide it when inode64 isn't the default and we are using 32-bit
3570 	 * inodes, since that probably just means the feature isn't even under
3571 	 * consideration.
3572 	 *
3573 	 * As such:
3574 	 *
3575 	 *                     +-----------------+-----------------+
3576 	 *                     | TMPFS_INODE64=y | TMPFS_INODE64=n |
3577 	 *  +------------------+-----------------+-----------------+
3578 	 *  | full_inums=true  | show            | show            |
3579 	 *  | full_inums=false | show            | hide            |
3580 	 *  +------------------+-----------------+-----------------+
3581 	 *
3582 	 */
3583 	if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3584 		seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3585 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3586 	/* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3587 	if (sbinfo->huge)
3588 		seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3589 #endif
3590 	shmem_show_mpol(seq, sbinfo->mpol);
3591 	return 0;
3592 }
3593 
3594 #endif /* CONFIG_TMPFS */
3595 
3596 static void shmem_put_super(struct super_block *sb)
3597 {
3598 	struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3599 
3600 	free_percpu(sbinfo->ino_batch);
3601 	percpu_counter_destroy(&sbinfo->used_blocks);
3602 	mpol_put(sbinfo->mpol);
3603 	kfree(sbinfo);
3604 	sb->s_fs_info = NULL;
3605 }
3606 
3607 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3608 {
3609 	struct shmem_options *ctx = fc->fs_private;
3610 	struct inode *inode;
3611 	struct shmem_sb_info *sbinfo;
3612 
3613 	/* Round up to L1_CACHE_BYTES to resist false sharing */
3614 	sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3615 				L1_CACHE_BYTES), GFP_KERNEL);
3616 	if (!sbinfo)
3617 		return -ENOMEM;
3618 
3619 	sb->s_fs_info = sbinfo;
3620 
3621 #ifdef CONFIG_TMPFS
3622 	/*
3623 	 * Per default we only allow half of the physical ram per
3624 	 * tmpfs instance, limiting inodes to one per page of lowmem;
3625 	 * but the internal instance is left unlimited.
3626 	 */
3627 	if (!(sb->s_flags & SB_KERNMOUNT)) {
3628 		if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3629 			ctx->blocks = shmem_default_max_blocks();
3630 		if (!(ctx->seen & SHMEM_SEEN_INODES))
3631 			ctx->inodes = shmem_default_max_inodes();
3632 		if (!(ctx->seen & SHMEM_SEEN_INUMS))
3633 			ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3634 	} else {
3635 		sb->s_flags |= SB_NOUSER;
3636 	}
3637 	sb->s_export_op = &shmem_export_ops;
3638 	sb->s_flags |= SB_NOSEC;
3639 #else
3640 	sb->s_flags |= SB_NOUSER;
3641 #endif
3642 	sbinfo->max_blocks = ctx->blocks;
3643 	sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3644 	if (sb->s_flags & SB_KERNMOUNT) {
3645 		sbinfo->ino_batch = alloc_percpu(ino_t);
3646 		if (!sbinfo->ino_batch)
3647 			goto failed;
3648 	}
3649 	sbinfo->uid = ctx->uid;
3650 	sbinfo->gid = ctx->gid;
3651 	sbinfo->full_inums = ctx->full_inums;
3652 	sbinfo->mode = ctx->mode;
3653 	sbinfo->huge = ctx->huge;
3654 	sbinfo->mpol = ctx->mpol;
3655 	ctx->mpol = NULL;
3656 
3657 	raw_spin_lock_init(&sbinfo->stat_lock);
3658 	if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3659 		goto failed;
3660 	spin_lock_init(&sbinfo->shrinklist_lock);
3661 	INIT_LIST_HEAD(&sbinfo->shrinklist);
3662 
3663 	sb->s_maxbytes = MAX_LFS_FILESIZE;
3664 	sb->s_blocksize = PAGE_SIZE;
3665 	sb->s_blocksize_bits = PAGE_SHIFT;
3666 	sb->s_magic = TMPFS_MAGIC;
3667 	sb->s_op = &shmem_ops;
3668 	sb->s_time_gran = 1;
3669 #ifdef CONFIG_TMPFS_XATTR
3670 	sb->s_xattr = shmem_xattr_handlers;
3671 #endif
3672 #ifdef CONFIG_TMPFS_POSIX_ACL
3673 	sb->s_flags |= SB_POSIXACL;
3674 #endif
3675 	uuid_gen(&sb->s_uuid);
3676 
3677 	inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3678 	if (!inode)
3679 		goto failed;
3680 	inode->i_uid = sbinfo->uid;
3681 	inode->i_gid = sbinfo->gid;
3682 	sb->s_root = d_make_root(inode);
3683 	if (!sb->s_root)
3684 		goto failed;
3685 	return 0;
3686 
3687 failed:
3688 	shmem_put_super(sb);
3689 	return -ENOMEM;
3690 }
3691 
3692 static int shmem_get_tree(struct fs_context *fc)
3693 {
3694 	return get_tree_nodev(fc, shmem_fill_super);
3695 }
3696 
3697 static void shmem_free_fc(struct fs_context *fc)
3698 {
3699 	struct shmem_options *ctx = fc->fs_private;
3700 
3701 	if (ctx) {
3702 		mpol_put(ctx->mpol);
3703 		kfree(ctx);
3704 	}
3705 }
3706 
3707 static const struct fs_context_operations shmem_fs_context_ops = {
3708 	.free			= shmem_free_fc,
3709 	.get_tree		= shmem_get_tree,
3710 #ifdef CONFIG_TMPFS
3711 	.parse_monolithic	= shmem_parse_options,
3712 	.parse_param		= shmem_parse_one,
3713 	.reconfigure		= shmem_reconfigure,
3714 #endif
3715 };
3716 
3717 static struct kmem_cache *shmem_inode_cachep;
3718 
3719 static struct inode *shmem_alloc_inode(struct super_block *sb)
3720 {
3721 	struct shmem_inode_info *info;
3722 	info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3723 	if (!info)
3724 		return NULL;
3725 	return &info->vfs_inode;
3726 }
3727 
3728 static void shmem_free_in_core_inode(struct inode *inode)
3729 {
3730 	if (S_ISLNK(inode->i_mode))
3731 		kfree(inode->i_link);
3732 	kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3733 }
3734 
3735 static void shmem_destroy_inode(struct inode *inode)
3736 {
3737 	if (S_ISREG(inode->i_mode))
3738 		mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3739 }
3740 
3741 static void shmem_init_inode(void *foo)
3742 {
3743 	struct shmem_inode_info *info = foo;
3744 	inode_init_once(&info->vfs_inode);
3745 }
3746 
3747 static void shmem_init_inodecache(void)
3748 {
3749 	shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3750 				sizeof(struct shmem_inode_info),
3751 				0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3752 }
3753 
3754 static void shmem_destroy_inodecache(void)
3755 {
3756 	kmem_cache_destroy(shmem_inode_cachep);
3757 }
3758 
3759 /* Keep the page in page cache instead of truncating it */
3760 static int shmem_error_remove_page(struct address_space *mapping,
3761 				   struct page *page)
3762 {
3763 	return 0;
3764 }
3765 
3766 const struct address_space_operations shmem_aops = {
3767 	.writepage	= shmem_writepage,
3768 	.dirty_folio	= noop_dirty_folio,
3769 #ifdef CONFIG_TMPFS
3770 	.write_begin	= shmem_write_begin,
3771 	.write_end	= shmem_write_end,
3772 #endif
3773 #ifdef CONFIG_MIGRATION
3774 	.migratepage	= migrate_page,
3775 #endif
3776 	.error_remove_page = shmem_error_remove_page,
3777 };
3778 EXPORT_SYMBOL(shmem_aops);
3779 
3780 static const struct file_operations shmem_file_operations = {
3781 	.mmap		= shmem_mmap,
3782 	.get_unmapped_area = shmem_get_unmapped_area,
3783 #ifdef CONFIG_TMPFS
3784 	.llseek		= shmem_file_llseek,
3785 	.read_iter	= shmem_file_read_iter,
3786 	.write_iter	= generic_file_write_iter,
3787 	.fsync		= noop_fsync,
3788 	.splice_read	= generic_file_splice_read,
3789 	.splice_write	= iter_file_splice_write,
3790 	.fallocate	= shmem_fallocate,
3791 #endif
3792 };
3793 
3794 static const struct inode_operations shmem_inode_operations = {
3795 	.getattr	= shmem_getattr,
3796 	.setattr	= shmem_setattr,
3797 #ifdef CONFIG_TMPFS_XATTR
3798 	.listxattr	= shmem_listxattr,
3799 	.set_acl	= simple_set_acl,
3800 #endif
3801 };
3802 
3803 static const struct inode_operations shmem_dir_inode_operations = {
3804 #ifdef CONFIG_TMPFS
3805 	.getattr	= shmem_getattr,
3806 	.create		= shmem_create,
3807 	.lookup		= simple_lookup,
3808 	.link		= shmem_link,
3809 	.unlink		= shmem_unlink,
3810 	.symlink	= shmem_symlink,
3811 	.mkdir		= shmem_mkdir,
3812 	.rmdir		= shmem_rmdir,
3813 	.mknod		= shmem_mknod,
3814 	.rename		= shmem_rename2,
3815 	.tmpfile	= shmem_tmpfile,
3816 #endif
3817 #ifdef CONFIG_TMPFS_XATTR
3818 	.listxattr	= shmem_listxattr,
3819 #endif
3820 #ifdef CONFIG_TMPFS_POSIX_ACL
3821 	.setattr	= shmem_setattr,
3822 	.set_acl	= simple_set_acl,
3823 #endif
3824 };
3825 
3826 static const struct inode_operations shmem_special_inode_operations = {
3827 	.getattr	= shmem_getattr,
3828 #ifdef CONFIG_TMPFS_XATTR
3829 	.listxattr	= shmem_listxattr,
3830 #endif
3831 #ifdef CONFIG_TMPFS_POSIX_ACL
3832 	.setattr	= shmem_setattr,
3833 	.set_acl	= simple_set_acl,
3834 #endif
3835 };
3836 
3837 static const struct super_operations shmem_ops = {
3838 	.alloc_inode	= shmem_alloc_inode,
3839 	.free_inode	= shmem_free_in_core_inode,
3840 	.destroy_inode	= shmem_destroy_inode,
3841 #ifdef CONFIG_TMPFS
3842 	.statfs		= shmem_statfs,
3843 	.show_options	= shmem_show_options,
3844 #endif
3845 	.evict_inode	= shmem_evict_inode,
3846 	.drop_inode	= generic_delete_inode,
3847 	.put_super	= shmem_put_super,
3848 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3849 	.nr_cached_objects	= shmem_unused_huge_count,
3850 	.free_cached_objects	= shmem_unused_huge_scan,
3851 #endif
3852 };
3853 
3854 static const struct vm_operations_struct shmem_vm_ops = {
3855 	.fault		= shmem_fault,
3856 	.map_pages	= filemap_map_pages,
3857 #ifdef CONFIG_NUMA
3858 	.set_policy     = shmem_set_policy,
3859 	.get_policy     = shmem_get_policy,
3860 #endif
3861 };
3862 
3863 int shmem_init_fs_context(struct fs_context *fc)
3864 {
3865 	struct shmem_options *ctx;
3866 
3867 	ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
3868 	if (!ctx)
3869 		return -ENOMEM;
3870 
3871 	ctx->mode = 0777 | S_ISVTX;
3872 	ctx->uid = current_fsuid();
3873 	ctx->gid = current_fsgid();
3874 
3875 	fc->fs_private = ctx;
3876 	fc->ops = &shmem_fs_context_ops;
3877 	return 0;
3878 }
3879 
3880 static struct file_system_type shmem_fs_type = {
3881 	.owner		= THIS_MODULE,
3882 	.name		= "tmpfs",
3883 	.init_fs_context = shmem_init_fs_context,
3884 #ifdef CONFIG_TMPFS
3885 	.parameters	= shmem_fs_parameters,
3886 #endif
3887 	.kill_sb	= kill_litter_super,
3888 	.fs_flags	= FS_USERNS_MOUNT,
3889 };
3890 
3891 int __init shmem_init(void)
3892 {
3893 	int error;
3894 
3895 	shmem_init_inodecache();
3896 
3897 	error = register_filesystem(&shmem_fs_type);
3898 	if (error) {
3899 		pr_err("Could not register tmpfs\n");
3900 		goto out2;
3901 	}
3902 
3903 	shm_mnt = kern_mount(&shmem_fs_type);
3904 	if (IS_ERR(shm_mnt)) {
3905 		error = PTR_ERR(shm_mnt);
3906 		pr_err("Could not kern_mount tmpfs\n");
3907 		goto out1;
3908 	}
3909 
3910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3911 	if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3912 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3913 	else
3914 		shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
3915 #endif
3916 	return 0;
3917 
3918 out1:
3919 	unregister_filesystem(&shmem_fs_type);
3920 out2:
3921 	shmem_destroy_inodecache();
3922 	shm_mnt = ERR_PTR(error);
3923 	return error;
3924 }
3925 
3926 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
3927 static ssize_t shmem_enabled_show(struct kobject *kobj,
3928 				  struct kobj_attribute *attr, char *buf)
3929 {
3930 	static const int values[] = {
3931 		SHMEM_HUGE_ALWAYS,
3932 		SHMEM_HUGE_WITHIN_SIZE,
3933 		SHMEM_HUGE_ADVISE,
3934 		SHMEM_HUGE_NEVER,
3935 		SHMEM_HUGE_DENY,
3936 		SHMEM_HUGE_FORCE,
3937 	};
3938 	int len = 0;
3939 	int i;
3940 
3941 	for (i = 0; i < ARRAY_SIZE(values); i++) {
3942 		len += sysfs_emit_at(buf, len,
3943 				     shmem_huge == values[i] ? "%s[%s]" : "%s%s",
3944 				     i ? " " : "",
3945 				     shmem_format_huge(values[i]));
3946 	}
3947 
3948 	len += sysfs_emit_at(buf, len, "\n");
3949 
3950 	return len;
3951 }
3952 
3953 static ssize_t shmem_enabled_store(struct kobject *kobj,
3954 		struct kobj_attribute *attr, const char *buf, size_t count)
3955 {
3956 	char tmp[16];
3957 	int huge;
3958 
3959 	if (count + 1 > sizeof(tmp))
3960 		return -EINVAL;
3961 	memcpy(tmp, buf, count);
3962 	tmp[count] = '\0';
3963 	if (count && tmp[count - 1] == '\n')
3964 		tmp[count - 1] = '\0';
3965 
3966 	huge = shmem_parse_huge(tmp);
3967 	if (huge == -EINVAL)
3968 		return -EINVAL;
3969 	if (!has_transparent_hugepage() &&
3970 			huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3971 		return -EINVAL;
3972 
3973 	shmem_huge = huge;
3974 	if (shmem_huge > SHMEM_HUGE_DENY)
3975 		SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3976 	return count;
3977 }
3978 
3979 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
3980 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
3981 
3982 #else /* !CONFIG_SHMEM */
3983 
3984 /*
3985  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3986  *
3987  * This is intended for small system where the benefits of the full
3988  * shmem code (swap-backed and resource-limited) are outweighed by
3989  * their complexity. On systems without swap this code should be
3990  * effectively equivalent, but much lighter weight.
3991  */
3992 
3993 static struct file_system_type shmem_fs_type = {
3994 	.name		= "tmpfs",
3995 	.init_fs_context = ramfs_init_fs_context,
3996 	.parameters	= ramfs_fs_parameters,
3997 	.kill_sb	= kill_litter_super,
3998 	.fs_flags	= FS_USERNS_MOUNT,
3999 };
4000 
4001 int __init shmem_init(void)
4002 {
4003 	BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4004 
4005 	shm_mnt = kern_mount(&shmem_fs_type);
4006 	BUG_ON(IS_ERR(shm_mnt));
4007 
4008 	return 0;
4009 }
4010 
4011 int shmem_unuse(unsigned int type)
4012 {
4013 	return 0;
4014 }
4015 
4016 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4017 {
4018 	return 0;
4019 }
4020 
4021 void shmem_unlock_mapping(struct address_space *mapping)
4022 {
4023 }
4024 
4025 #ifdef CONFIG_MMU
4026 unsigned long shmem_get_unmapped_area(struct file *file,
4027 				      unsigned long addr, unsigned long len,
4028 				      unsigned long pgoff, unsigned long flags)
4029 {
4030 	return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4031 }
4032 #endif
4033 
4034 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4035 {
4036 	truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4037 }
4038 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4039 
4040 #define shmem_vm_ops				generic_file_vm_ops
4041 #define shmem_file_operations			ramfs_file_operations
4042 #define shmem_get_inode(sb, dir, mode, dev, flags)	ramfs_get_inode(sb, dir, mode, dev)
4043 #define shmem_acct_size(flags, size)		0
4044 #define shmem_unacct_size(flags, size)		do {} while (0)
4045 
4046 #endif /* CONFIG_SHMEM */
4047 
4048 /* common code */
4049 
4050 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4051 				       unsigned long flags, unsigned int i_flags)
4052 {
4053 	struct inode *inode;
4054 	struct file *res;
4055 
4056 	if (IS_ERR(mnt))
4057 		return ERR_CAST(mnt);
4058 
4059 	if (size < 0 || size > MAX_LFS_FILESIZE)
4060 		return ERR_PTR(-EINVAL);
4061 
4062 	if (shmem_acct_size(flags, size))
4063 		return ERR_PTR(-ENOMEM);
4064 
4065 	inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
4066 				flags);
4067 	if (unlikely(!inode)) {
4068 		shmem_unacct_size(flags, size);
4069 		return ERR_PTR(-ENOSPC);
4070 	}
4071 	inode->i_flags |= i_flags;
4072 	inode->i_size = size;
4073 	clear_nlink(inode);	/* It is unlinked */
4074 	res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4075 	if (!IS_ERR(res))
4076 		res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4077 				&shmem_file_operations);
4078 	if (IS_ERR(res))
4079 		iput(inode);
4080 	return res;
4081 }
4082 
4083 /**
4084  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4085  * 	kernel internal.  There will be NO LSM permission checks against the
4086  * 	underlying inode.  So users of this interface must do LSM checks at a
4087  *	higher layer.  The users are the big_key and shm implementations.  LSM
4088  *	checks are provided at the key or shm level rather than the inode.
4089  * @name: name for dentry (to be seen in /proc/<pid>/maps
4090  * @size: size to be set for the file
4091  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4092  */
4093 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4094 {
4095 	return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4096 }
4097 
4098 /**
4099  * shmem_file_setup - get an unlinked file living in tmpfs
4100  * @name: name for dentry (to be seen in /proc/<pid>/maps
4101  * @size: size to be set for the file
4102  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4103  */
4104 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4105 {
4106 	return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4107 }
4108 EXPORT_SYMBOL_GPL(shmem_file_setup);
4109 
4110 /**
4111  * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4112  * @mnt: the tmpfs mount where the file will be created
4113  * @name: name for dentry (to be seen in /proc/<pid>/maps
4114  * @size: size to be set for the file
4115  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4116  */
4117 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4118 				       loff_t size, unsigned long flags)
4119 {
4120 	return __shmem_file_setup(mnt, name, size, flags, 0);
4121 }
4122 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4123 
4124 /**
4125  * shmem_zero_setup - setup a shared anonymous mapping
4126  * @vma: the vma to be mmapped is prepared by do_mmap
4127  */
4128 int shmem_zero_setup(struct vm_area_struct *vma)
4129 {
4130 	struct file *file;
4131 	loff_t size = vma->vm_end - vma->vm_start;
4132 
4133 	/*
4134 	 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4135 	 * between XFS directory reading and selinux: since this file is only
4136 	 * accessible to the user through its mapping, use S_PRIVATE flag to
4137 	 * bypass file security, in the same way as shmem_kernel_file_setup().
4138 	 */
4139 	file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4140 	if (IS_ERR(file))
4141 		return PTR_ERR(file);
4142 
4143 	if (vma->vm_file)
4144 		fput(vma->vm_file);
4145 	vma->vm_file = file;
4146 	vma->vm_ops = &shmem_vm_ops;
4147 
4148 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4149 			((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4150 			(vma->vm_end & HPAGE_PMD_MASK)) {
4151 		khugepaged_enter(vma, vma->vm_flags);
4152 	}
4153 
4154 	return 0;
4155 }
4156 
4157 /**
4158  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4159  * @mapping:	the page's address_space
4160  * @index:	the page index
4161  * @gfp:	the page allocator flags to use if allocating
4162  *
4163  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4164  * with any new page allocations done using the specified allocation flags.
4165  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4166  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4167  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4168  *
4169  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4170  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4171  */
4172 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4173 					 pgoff_t index, gfp_t gfp)
4174 {
4175 #ifdef CONFIG_SHMEM
4176 	struct inode *inode = mapping->host;
4177 	struct page *page;
4178 	int error;
4179 
4180 	BUG_ON(!shmem_mapping(mapping));
4181 	error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4182 				  gfp, NULL, NULL, NULL);
4183 	if (error)
4184 		return ERR_PTR(error);
4185 
4186 	unlock_page(page);
4187 	if (PageHWPoison(page)) {
4188 		put_page(page);
4189 		return ERR_PTR(-EIO);
4190 	}
4191 
4192 	return page;
4193 #else
4194 	/*
4195 	 * The tiny !SHMEM case uses ramfs without swap
4196 	 */
4197 	return read_cache_page_gfp(mapping, index, gfp);
4198 #endif
4199 }
4200 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4201