xref: /linux/mm/slub.c (revision d6fd48ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
44 
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
47 
48 #include "internal.h"
49 
50 /*
51  * Lock order:
52  *   1. slab_mutex (Global Mutex)
53  *   2. node->list_lock (Spinlock)
54  *   3. kmem_cache->cpu_slab->lock (Local lock)
55  *   4. slab_lock(slab) (Only on some arches)
56  *   5. object_map_lock (Only for debugging)
57  *
58  *   slab_mutex
59  *
60  *   The role of the slab_mutex is to protect the list of all the slabs
61  *   and to synchronize major metadata changes to slab cache structures.
62  *   Also synchronizes memory hotplug callbacks.
63  *
64  *   slab_lock
65  *
66  *   The slab_lock is a wrapper around the page lock, thus it is a bit
67  *   spinlock.
68  *
69  *   The slab_lock is only used on arches that do not have the ability
70  *   to do a cmpxchg_double. It only protects:
71  *
72  *	A. slab->freelist	-> List of free objects in a slab
73  *	B. slab->inuse		-> Number of objects in use
74  *	C. slab->objects	-> Number of objects in slab
75  *	D. slab->frozen		-> frozen state
76  *
77  *   Frozen slabs
78  *
79  *   If a slab is frozen then it is exempt from list management. It is not
80  *   on any list except per cpu partial list. The processor that froze the
81  *   slab is the one who can perform list operations on the slab. Other
82  *   processors may put objects onto the freelist but the processor that
83  *   froze the slab is the only one that can retrieve the objects from the
84  *   slab's freelist.
85  *
86  *   list_lock
87  *
88  *   The list_lock protects the partial and full list on each node and
89  *   the partial slab counter. If taken then no new slabs may be added or
90  *   removed from the lists nor make the number of partial slabs be modified.
91  *   (Note that the total number of slabs is an atomic value that may be
92  *   modified without taking the list lock).
93  *
94  *   The list_lock is a centralized lock and thus we avoid taking it as
95  *   much as possible. As long as SLUB does not have to handle partial
96  *   slabs, operations can continue without any centralized lock. F.e.
97  *   allocating a long series of objects that fill up slabs does not require
98  *   the list lock.
99  *
100  *   For debug caches, all allocations are forced to go through a list_lock
101  *   protected region to serialize against concurrent validation.
102  *
103  *   cpu_slab->lock local lock
104  *
105  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
106  *   except the stat counters. This is a percpu structure manipulated only by
107  *   the local cpu, so the lock protects against being preempted or interrupted
108  *   by an irq. Fast path operations rely on lockless operations instead.
109  *
110  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111  *   which means the lockless fastpath cannot be used as it might interfere with
112  *   an in-progress slow path operations. In this case the local lock is always
113  *   taken but it still utilizes the freelist for the common operations.
114  *
115  *   lockless fastpaths
116  *
117  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118  *   are fully lockless when satisfied from the percpu slab (and when
119  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
120  *   They also don't disable preemption or migration or irqs. They rely on
121  *   the transaction id (tid) field to detect being preempted or moved to
122  *   another cpu.
123  *
124  *   irq, preemption, migration considerations
125  *
126  *   Interrupts are disabled as part of list_lock or local_lock operations, or
127  *   around the slab_lock operation, in order to make the slab allocator safe
128  *   to use in the context of an irq.
129  *
130  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133  *   doesn't have to be revalidated in each section protected by the local lock.
134  *
135  * SLUB assigns one slab for allocation to each processor.
136  * Allocations only occur from these slabs called cpu slabs.
137  *
138  * Slabs with free elements are kept on a partial list and during regular
139  * operations no list for full slabs is used. If an object in a full slab is
140  * freed then the slab will show up again on the partial lists.
141  * We track full slabs for debugging purposes though because otherwise we
142  * cannot scan all objects.
143  *
144  * Slabs are freed when they become empty. Teardown and setup is
145  * minimal so we rely on the page allocators per cpu caches for
146  * fast frees and allocs.
147  *
148  * slab->frozen		The slab is frozen and exempt from list processing.
149  * 			This means that the slab is dedicated to a purpose
150  * 			such as satisfying allocations for a specific
151  * 			processor. Objects may be freed in the slab while
152  * 			it is frozen but slab_free will then skip the usual
153  * 			list operations. It is up to the processor holding
154  * 			the slab to integrate the slab into the slab lists
155  * 			when the slab is no longer needed.
156  *
157  * 			One use of this flag is to mark slabs that are
158  * 			used for allocations. Then such a slab becomes a cpu
159  * 			slab. The cpu slab may be equipped with an additional
160  * 			freelist that allows lockless access to
161  * 			free objects in addition to the regular freelist
162  * 			that requires the slab lock.
163  *
164  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
165  * 			options set. This moves	slab handling out of
166  * 			the fast path and disables lockless freelists.
167  */
168 
169 /*
170  * We could simply use migrate_disable()/enable() but as long as it's a
171  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
172  */
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH()	(true)
177 #else
178 #define slub_get_cpu_ptr(var)		\
179 ({					\
180 	migrate_disable();		\
181 	this_cpu_ptr(var);		\
182 })
183 #define slub_put_cpu_ptr(var)		\
184 do {					\
185 	(void)(var);			\
186 	migrate_enable();		\
187 } while (0)
188 #define USE_LOCKLESS_FAST_PATH()	(false)
189 #endif
190 
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
193 #else
194 #define __fastpath_inline
195 #endif
196 
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
200 #else
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
202 #endif
203 #endif		/* CONFIG_SLUB_DEBUG */
204 
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
207 	struct slab **slab;
208 	gfp_t flags;
209 	unsigned int orig_size;
210 };
211 
212 static inline bool kmem_cache_debug(struct kmem_cache *s)
213 {
214 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
215 }
216 
217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
218 {
219 	return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 			(s->flags & SLAB_KMALLOC));
221 }
222 
223 void *fixup_red_left(struct kmem_cache *s, void *p)
224 {
225 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 		p += s->red_left_pad;
227 
228 	return p;
229 }
230 
231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
232 {
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 	return !kmem_cache_debug(s);
235 #else
236 	return false;
237 #endif
238 }
239 
240 /*
241  * Issues still to be resolved:
242  *
243  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
244  *
245  * - Variable sizing of the per node arrays
246  */
247 
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
250 
251 #ifndef CONFIG_SLUB_TINY
252 /*
253  * Minimum number of partial slabs. These will be left on the partial
254  * lists even if they are empty. kmem_cache_shrink may reclaim them.
255  */
256 #define MIN_PARTIAL 5
257 
258 /*
259  * Maximum number of desirable partial slabs.
260  * The existence of more partial slabs makes kmem_cache_shrink
261  * sort the partial list by the number of objects in use.
262  */
263 #define MAX_PARTIAL 10
264 #else
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
267 #endif
268 
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 				SLAB_POISON | SLAB_STORE_USER)
271 
272 /*
273  * These debug flags cannot use CMPXCHG because there might be consistency
274  * issues when checking or reading debug information
275  */
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
277 				SLAB_TRACE)
278 
279 
280 /*
281  * Debugging flags that require metadata to be stored in the slab.  These get
282  * disabled when slub_debug=O is used and a cache's min order increases with
283  * metadata.
284  */
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
286 
287 #define OO_SHIFT	16
288 #define OO_MASK		((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
290 
291 /* Internal SLUB flags */
292 /* Poison object */
293 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
295 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
296 
297 /*
298  * Tracking user of a slab.
299  */
300 #define TRACK_ADDRS_COUNT 16
301 struct track {
302 	unsigned long addr;	/* Called from address */
303 #ifdef CONFIG_STACKDEPOT
304 	depot_stack_handle_t handle;
305 #endif
306 	int cpu;		/* Was running on cpu */
307 	int pid;		/* Pid context */
308 	unsigned long when;	/* When did the operation occur */
309 };
310 
311 enum track_item { TRACK_ALLOC, TRACK_FREE };
312 
313 #ifdef SLAB_SUPPORTS_SYSFS
314 static int sysfs_slab_add(struct kmem_cache *);
315 static int sysfs_slab_alias(struct kmem_cache *, const char *);
316 #else
317 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
318 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
319 							{ return 0; }
320 #endif
321 
322 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
323 static void debugfs_slab_add(struct kmem_cache *);
324 #else
325 static inline void debugfs_slab_add(struct kmem_cache *s) { }
326 #endif
327 
328 static inline void stat(const struct kmem_cache *s, enum stat_item si)
329 {
330 #ifdef CONFIG_SLUB_STATS
331 	/*
332 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
333 	 * avoid this_cpu_add()'s irq-disable overhead.
334 	 */
335 	raw_cpu_inc(s->cpu_slab->stat[si]);
336 #endif
337 }
338 
339 /*
340  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
341  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
342  * differ during memory hotplug/hotremove operations.
343  * Protected by slab_mutex.
344  */
345 static nodemask_t slab_nodes;
346 
347 #ifndef CONFIG_SLUB_TINY
348 /*
349  * Workqueue used for flush_cpu_slab().
350  */
351 static struct workqueue_struct *flushwq;
352 #endif
353 
354 /********************************************************************
355  * 			Core slab cache functions
356  *******************************************************************/
357 
358 /*
359  * Returns freelist pointer (ptr). With hardening, this is obfuscated
360  * with an XOR of the address where the pointer is held and a per-cache
361  * random number.
362  */
363 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
364 				 unsigned long ptr_addr)
365 {
366 #ifdef CONFIG_SLAB_FREELIST_HARDENED
367 	/*
368 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
369 	 * Normally, this doesn't cause any issues, as both set_freepointer()
370 	 * and get_freepointer() are called with a pointer with the same tag.
371 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
372 	 * example, when __free_slub() iterates over objects in a cache, it
373 	 * passes untagged pointers to check_object(). check_object() in turns
374 	 * calls get_freepointer() with an untagged pointer, which causes the
375 	 * freepointer to be restored incorrectly.
376 	 */
377 	return (void *)((unsigned long)ptr ^ s->random ^
378 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
379 #else
380 	return ptr;
381 #endif
382 }
383 
384 /* Returns the freelist pointer recorded at location ptr_addr. */
385 static inline void *freelist_dereference(const struct kmem_cache *s,
386 					 void *ptr_addr)
387 {
388 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
389 			    (unsigned long)ptr_addr);
390 }
391 
392 static inline void *get_freepointer(struct kmem_cache *s, void *object)
393 {
394 	object = kasan_reset_tag(object);
395 	return freelist_dereference(s, object + s->offset);
396 }
397 
398 #ifndef CONFIG_SLUB_TINY
399 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
400 {
401 	prefetchw(object + s->offset);
402 }
403 #endif
404 
405 /*
406  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
407  * pointer value in the case the current thread loses the race for the next
408  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
409  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
410  * KMSAN will still check all arguments of cmpxchg because of imperfect
411  * handling of inline assembly.
412  * To work around this problem, we apply __no_kmsan_checks to ensure that
413  * get_freepointer_safe() returns initialized memory.
414  */
415 __no_kmsan_checks
416 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
417 {
418 	unsigned long freepointer_addr;
419 	void *p;
420 
421 	if (!debug_pagealloc_enabled_static())
422 		return get_freepointer(s, object);
423 
424 	object = kasan_reset_tag(object);
425 	freepointer_addr = (unsigned long)object + s->offset;
426 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
427 	return freelist_ptr(s, p, freepointer_addr);
428 }
429 
430 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
431 {
432 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
433 
434 #ifdef CONFIG_SLAB_FREELIST_HARDENED
435 	BUG_ON(object == fp); /* naive detection of double free or corruption */
436 #endif
437 
438 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
439 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
440 }
441 
442 /* Loop over all objects in a slab */
443 #define for_each_object(__p, __s, __addr, __objects) \
444 	for (__p = fixup_red_left(__s, __addr); \
445 		__p < (__addr) + (__objects) * (__s)->size; \
446 		__p += (__s)->size)
447 
448 static inline unsigned int order_objects(unsigned int order, unsigned int size)
449 {
450 	return ((unsigned int)PAGE_SIZE << order) / size;
451 }
452 
453 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
454 		unsigned int size)
455 {
456 	struct kmem_cache_order_objects x = {
457 		(order << OO_SHIFT) + order_objects(order, size)
458 	};
459 
460 	return x;
461 }
462 
463 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
464 {
465 	return x.x >> OO_SHIFT;
466 }
467 
468 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
469 {
470 	return x.x & OO_MASK;
471 }
472 
473 #ifdef CONFIG_SLUB_CPU_PARTIAL
474 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
475 {
476 	unsigned int nr_slabs;
477 
478 	s->cpu_partial = nr_objects;
479 
480 	/*
481 	 * We take the number of objects but actually limit the number of
482 	 * slabs on the per cpu partial list, in order to limit excessive
483 	 * growth of the list. For simplicity we assume that the slabs will
484 	 * be half-full.
485 	 */
486 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
487 	s->cpu_partial_slabs = nr_slabs;
488 }
489 #else
490 static inline void
491 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
492 {
493 }
494 #endif /* CONFIG_SLUB_CPU_PARTIAL */
495 
496 /*
497  * Per slab locking using the pagelock
498  */
499 static __always_inline void slab_lock(struct slab *slab)
500 {
501 	struct page *page = slab_page(slab);
502 
503 	VM_BUG_ON_PAGE(PageTail(page), page);
504 	bit_spin_lock(PG_locked, &page->flags);
505 }
506 
507 static __always_inline void slab_unlock(struct slab *slab)
508 {
509 	struct page *page = slab_page(slab);
510 
511 	VM_BUG_ON_PAGE(PageTail(page), page);
512 	__bit_spin_unlock(PG_locked, &page->flags);
513 }
514 
515 /*
516  * Interrupts must be disabled (for the fallback code to work right), typically
517  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
518  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
519  * allocation/ free operation in hardirq context. Therefore nothing can
520  * interrupt the operation.
521  */
522 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
523 		void *freelist_old, unsigned long counters_old,
524 		void *freelist_new, unsigned long counters_new,
525 		const char *n)
526 {
527 	if (USE_LOCKLESS_FAST_PATH())
528 		lockdep_assert_irqs_disabled();
529 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
530     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
531 	if (s->flags & __CMPXCHG_DOUBLE) {
532 		if (cmpxchg_double(&slab->freelist, &slab->counters,
533 				   freelist_old, counters_old,
534 				   freelist_new, counters_new))
535 			return true;
536 	} else
537 #endif
538 	{
539 		slab_lock(slab);
540 		if (slab->freelist == freelist_old &&
541 					slab->counters == counters_old) {
542 			slab->freelist = freelist_new;
543 			slab->counters = counters_new;
544 			slab_unlock(slab);
545 			return true;
546 		}
547 		slab_unlock(slab);
548 	}
549 
550 	cpu_relax();
551 	stat(s, CMPXCHG_DOUBLE_FAIL);
552 
553 #ifdef SLUB_DEBUG_CMPXCHG
554 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
555 #endif
556 
557 	return false;
558 }
559 
560 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
561 		void *freelist_old, unsigned long counters_old,
562 		void *freelist_new, unsigned long counters_new,
563 		const char *n)
564 {
565 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
566     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
567 	if (s->flags & __CMPXCHG_DOUBLE) {
568 		if (cmpxchg_double(&slab->freelist, &slab->counters,
569 				   freelist_old, counters_old,
570 				   freelist_new, counters_new))
571 			return true;
572 	} else
573 #endif
574 	{
575 		unsigned long flags;
576 
577 		local_irq_save(flags);
578 		slab_lock(slab);
579 		if (slab->freelist == freelist_old &&
580 					slab->counters == counters_old) {
581 			slab->freelist = freelist_new;
582 			slab->counters = counters_new;
583 			slab_unlock(slab);
584 			local_irq_restore(flags);
585 			return true;
586 		}
587 		slab_unlock(slab);
588 		local_irq_restore(flags);
589 	}
590 
591 	cpu_relax();
592 	stat(s, CMPXCHG_DOUBLE_FAIL);
593 
594 #ifdef SLUB_DEBUG_CMPXCHG
595 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
596 #endif
597 
598 	return false;
599 }
600 
601 #ifdef CONFIG_SLUB_DEBUG
602 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
603 static DEFINE_SPINLOCK(object_map_lock);
604 
605 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
606 		       struct slab *slab)
607 {
608 	void *addr = slab_address(slab);
609 	void *p;
610 
611 	bitmap_zero(obj_map, slab->objects);
612 
613 	for (p = slab->freelist; p; p = get_freepointer(s, p))
614 		set_bit(__obj_to_index(s, addr, p), obj_map);
615 }
616 
617 #if IS_ENABLED(CONFIG_KUNIT)
618 static bool slab_add_kunit_errors(void)
619 {
620 	struct kunit_resource *resource;
621 
622 	if (!kunit_get_current_test())
623 		return false;
624 
625 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
626 	if (!resource)
627 		return false;
628 
629 	(*(int *)resource->data)++;
630 	kunit_put_resource(resource);
631 	return true;
632 }
633 #else
634 static inline bool slab_add_kunit_errors(void) { return false; }
635 #endif
636 
637 static inline unsigned int size_from_object(struct kmem_cache *s)
638 {
639 	if (s->flags & SLAB_RED_ZONE)
640 		return s->size - s->red_left_pad;
641 
642 	return s->size;
643 }
644 
645 static inline void *restore_red_left(struct kmem_cache *s, void *p)
646 {
647 	if (s->flags & SLAB_RED_ZONE)
648 		p -= s->red_left_pad;
649 
650 	return p;
651 }
652 
653 /*
654  * Debug settings:
655  */
656 #if defined(CONFIG_SLUB_DEBUG_ON)
657 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
658 #else
659 static slab_flags_t slub_debug;
660 #endif
661 
662 static char *slub_debug_string;
663 static int disable_higher_order_debug;
664 
665 /*
666  * slub is about to manipulate internal object metadata.  This memory lies
667  * outside the range of the allocated object, so accessing it would normally
668  * be reported by kasan as a bounds error.  metadata_access_enable() is used
669  * to tell kasan that these accesses are OK.
670  */
671 static inline void metadata_access_enable(void)
672 {
673 	kasan_disable_current();
674 }
675 
676 static inline void metadata_access_disable(void)
677 {
678 	kasan_enable_current();
679 }
680 
681 /*
682  * Object debugging
683  */
684 
685 /* Verify that a pointer has an address that is valid within a slab page */
686 static inline int check_valid_pointer(struct kmem_cache *s,
687 				struct slab *slab, void *object)
688 {
689 	void *base;
690 
691 	if (!object)
692 		return 1;
693 
694 	base = slab_address(slab);
695 	object = kasan_reset_tag(object);
696 	object = restore_red_left(s, object);
697 	if (object < base || object >= base + slab->objects * s->size ||
698 		(object - base) % s->size) {
699 		return 0;
700 	}
701 
702 	return 1;
703 }
704 
705 static void print_section(char *level, char *text, u8 *addr,
706 			  unsigned int length)
707 {
708 	metadata_access_enable();
709 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
710 			16, 1, kasan_reset_tag((void *)addr), length, 1);
711 	metadata_access_disable();
712 }
713 
714 /*
715  * See comment in calculate_sizes().
716  */
717 static inline bool freeptr_outside_object(struct kmem_cache *s)
718 {
719 	return s->offset >= s->inuse;
720 }
721 
722 /*
723  * Return offset of the end of info block which is inuse + free pointer if
724  * not overlapping with object.
725  */
726 static inline unsigned int get_info_end(struct kmem_cache *s)
727 {
728 	if (freeptr_outside_object(s))
729 		return s->inuse + sizeof(void *);
730 	else
731 		return s->inuse;
732 }
733 
734 static struct track *get_track(struct kmem_cache *s, void *object,
735 	enum track_item alloc)
736 {
737 	struct track *p;
738 
739 	p = object + get_info_end(s);
740 
741 	return kasan_reset_tag(p + alloc);
742 }
743 
744 #ifdef CONFIG_STACKDEPOT
745 static noinline depot_stack_handle_t set_track_prepare(void)
746 {
747 	depot_stack_handle_t handle;
748 	unsigned long entries[TRACK_ADDRS_COUNT];
749 	unsigned int nr_entries;
750 
751 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
752 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
753 
754 	return handle;
755 }
756 #else
757 static inline depot_stack_handle_t set_track_prepare(void)
758 {
759 	return 0;
760 }
761 #endif
762 
763 static void set_track_update(struct kmem_cache *s, void *object,
764 			     enum track_item alloc, unsigned long addr,
765 			     depot_stack_handle_t handle)
766 {
767 	struct track *p = get_track(s, object, alloc);
768 
769 #ifdef CONFIG_STACKDEPOT
770 	p->handle = handle;
771 #endif
772 	p->addr = addr;
773 	p->cpu = smp_processor_id();
774 	p->pid = current->pid;
775 	p->when = jiffies;
776 }
777 
778 static __always_inline void set_track(struct kmem_cache *s, void *object,
779 				      enum track_item alloc, unsigned long addr)
780 {
781 	depot_stack_handle_t handle = set_track_prepare();
782 
783 	set_track_update(s, object, alloc, addr, handle);
784 }
785 
786 static void init_tracking(struct kmem_cache *s, void *object)
787 {
788 	struct track *p;
789 
790 	if (!(s->flags & SLAB_STORE_USER))
791 		return;
792 
793 	p = get_track(s, object, TRACK_ALLOC);
794 	memset(p, 0, 2*sizeof(struct track));
795 }
796 
797 static void print_track(const char *s, struct track *t, unsigned long pr_time)
798 {
799 	depot_stack_handle_t handle __maybe_unused;
800 
801 	if (!t->addr)
802 		return;
803 
804 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
805 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
806 #ifdef CONFIG_STACKDEPOT
807 	handle = READ_ONCE(t->handle);
808 	if (handle)
809 		stack_depot_print(handle);
810 	else
811 		pr_err("object allocation/free stack trace missing\n");
812 #endif
813 }
814 
815 void print_tracking(struct kmem_cache *s, void *object)
816 {
817 	unsigned long pr_time = jiffies;
818 	if (!(s->flags & SLAB_STORE_USER))
819 		return;
820 
821 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
822 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
823 }
824 
825 static void print_slab_info(const struct slab *slab)
826 {
827 	struct folio *folio = (struct folio *)slab_folio(slab);
828 
829 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
830 	       slab, slab->objects, slab->inuse, slab->freelist,
831 	       folio_flags(folio, 0));
832 }
833 
834 /*
835  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
836  * family will round up the real request size to these fixed ones, so
837  * there could be an extra area than what is requested. Save the original
838  * request size in the meta data area, for better debug and sanity check.
839  */
840 static inline void set_orig_size(struct kmem_cache *s,
841 				void *object, unsigned int orig_size)
842 {
843 	void *p = kasan_reset_tag(object);
844 
845 	if (!slub_debug_orig_size(s))
846 		return;
847 
848 #ifdef CONFIG_KASAN_GENERIC
849 	/*
850 	 * KASAN could save its free meta data in object's data area at
851 	 * offset 0, if the size is larger than 'orig_size', it will
852 	 * overlap the data redzone in [orig_size+1, object_size], and
853 	 * the check should be skipped.
854 	 */
855 	if (kasan_metadata_size(s, true) > orig_size)
856 		orig_size = s->object_size;
857 #endif
858 
859 	p += get_info_end(s);
860 	p += sizeof(struct track) * 2;
861 
862 	*(unsigned int *)p = orig_size;
863 }
864 
865 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
866 {
867 	void *p = kasan_reset_tag(object);
868 
869 	if (!slub_debug_orig_size(s))
870 		return s->object_size;
871 
872 	p += get_info_end(s);
873 	p += sizeof(struct track) * 2;
874 
875 	return *(unsigned int *)p;
876 }
877 
878 void skip_orig_size_check(struct kmem_cache *s, const void *object)
879 {
880 	set_orig_size(s, (void *)object, s->object_size);
881 }
882 
883 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
884 {
885 	struct va_format vaf;
886 	va_list args;
887 
888 	va_start(args, fmt);
889 	vaf.fmt = fmt;
890 	vaf.va = &args;
891 	pr_err("=============================================================================\n");
892 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
893 	pr_err("-----------------------------------------------------------------------------\n\n");
894 	va_end(args);
895 }
896 
897 __printf(2, 3)
898 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
899 {
900 	struct va_format vaf;
901 	va_list args;
902 
903 	if (slab_add_kunit_errors())
904 		return;
905 
906 	va_start(args, fmt);
907 	vaf.fmt = fmt;
908 	vaf.va = &args;
909 	pr_err("FIX %s: %pV\n", s->name, &vaf);
910 	va_end(args);
911 }
912 
913 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
914 {
915 	unsigned int off;	/* Offset of last byte */
916 	u8 *addr = slab_address(slab);
917 
918 	print_tracking(s, p);
919 
920 	print_slab_info(slab);
921 
922 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
923 	       p, p - addr, get_freepointer(s, p));
924 
925 	if (s->flags & SLAB_RED_ZONE)
926 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
927 			      s->red_left_pad);
928 	else if (p > addr + 16)
929 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
930 
931 	print_section(KERN_ERR,         "Object   ", p,
932 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
933 	if (s->flags & SLAB_RED_ZONE)
934 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
935 			s->inuse - s->object_size);
936 
937 	off = get_info_end(s);
938 
939 	if (s->flags & SLAB_STORE_USER)
940 		off += 2 * sizeof(struct track);
941 
942 	if (slub_debug_orig_size(s))
943 		off += sizeof(unsigned int);
944 
945 	off += kasan_metadata_size(s, false);
946 
947 	if (off != size_from_object(s))
948 		/* Beginning of the filler is the free pointer */
949 		print_section(KERN_ERR, "Padding  ", p + off,
950 			      size_from_object(s) - off);
951 
952 	dump_stack();
953 }
954 
955 static void object_err(struct kmem_cache *s, struct slab *slab,
956 			u8 *object, char *reason)
957 {
958 	if (slab_add_kunit_errors())
959 		return;
960 
961 	slab_bug(s, "%s", reason);
962 	print_trailer(s, slab, object);
963 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
964 }
965 
966 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
967 			       void **freelist, void *nextfree)
968 {
969 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
970 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
971 		object_err(s, slab, *freelist, "Freechain corrupt");
972 		*freelist = NULL;
973 		slab_fix(s, "Isolate corrupted freechain");
974 		return true;
975 	}
976 
977 	return false;
978 }
979 
980 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
981 			const char *fmt, ...)
982 {
983 	va_list args;
984 	char buf[100];
985 
986 	if (slab_add_kunit_errors())
987 		return;
988 
989 	va_start(args, fmt);
990 	vsnprintf(buf, sizeof(buf), fmt, args);
991 	va_end(args);
992 	slab_bug(s, "%s", buf);
993 	print_slab_info(slab);
994 	dump_stack();
995 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
996 }
997 
998 static void init_object(struct kmem_cache *s, void *object, u8 val)
999 {
1000 	u8 *p = kasan_reset_tag(object);
1001 	unsigned int poison_size = s->object_size;
1002 
1003 	if (s->flags & SLAB_RED_ZONE) {
1004 		memset(p - s->red_left_pad, val, s->red_left_pad);
1005 
1006 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1007 			/*
1008 			 * Redzone the extra allocated space by kmalloc than
1009 			 * requested, and the poison size will be limited to
1010 			 * the original request size accordingly.
1011 			 */
1012 			poison_size = get_orig_size(s, object);
1013 		}
1014 	}
1015 
1016 	if (s->flags & __OBJECT_POISON) {
1017 		memset(p, POISON_FREE, poison_size - 1);
1018 		p[poison_size - 1] = POISON_END;
1019 	}
1020 
1021 	if (s->flags & SLAB_RED_ZONE)
1022 		memset(p + poison_size, val, s->inuse - poison_size);
1023 }
1024 
1025 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1026 						void *from, void *to)
1027 {
1028 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1029 	memset(from, data, to - from);
1030 }
1031 
1032 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1033 			u8 *object, char *what,
1034 			u8 *start, unsigned int value, unsigned int bytes)
1035 {
1036 	u8 *fault;
1037 	u8 *end;
1038 	u8 *addr = slab_address(slab);
1039 
1040 	metadata_access_enable();
1041 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1042 	metadata_access_disable();
1043 	if (!fault)
1044 		return 1;
1045 
1046 	end = start + bytes;
1047 	while (end > fault && end[-1] == value)
1048 		end--;
1049 
1050 	if (slab_add_kunit_errors())
1051 		goto skip_bug_print;
1052 
1053 	slab_bug(s, "%s overwritten", what);
1054 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1055 					fault, end - 1, fault - addr,
1056 					fault[0], value);
1057 	print_trailer(s, slab, object);
1058 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1059 
1060 skip_bug_print:
1061 	restore_bytes(s, what, value, fault, end);
1062 	return 0;
1063 }
1064 
1065 /*
1066  * Object layout:
1067  *
1068  * object address
1069  * 	Bytes of the object to be managed.
1070  * 	If the freepointer may overlay the object then the free
1071  *	pointer is at the middle of the object.
1072  *
1073  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1074  * 	0xa5 (POISON_END)
1075  *
1076  * object + s->object_size
1077  * 	Padding to reach word boundary. This is also used for Redzoning.
1078  * 	Padding is extended by another word if Redzoning is enabled and
1079  * 	object_size == inuse.
1080  *
1081  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1082  * 	0xcc (RED_ACTIVE) for objects in use.
1083  *
1084  * object + s->inuse
1085  * 	Meta data starts here.
1086  *
1087  * 	A. Free pointer (if we cannot overwrite object on free)
1088  * 	B. Tracking data for SLAB_STORE_USER
1089  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1090  *	D. Padding to reach required alignment boundary or at minimum
1091  * 		one word if debugging is on to be able to detect writes
1092  * 		before the word boundary.
1093  *
1094  *	Padding is done using 0x5a (POISON_INUSE)
1095  *
1096  * object + s->size
1097  * 	Nothing is used beyond s->size.
1098  *
1099  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1100  * ignored. And therefore no slab options that rely on these boundaries
1101  * may be used with merged slabcaches.
1102  */
1103 
1104 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1105 {
1106 	unsigned long off = get_info_end(s);	/* The end of info */
1107 
1108 	if (s->flags & SLAB_STORE_USER) {
1109 		/* We also have user information there */
1110 		off += 2 * sizeof(struct track);
1111 
1112 		if (s->flags & SLAB_KMALLOC)
1113 			off += sizeof(unsigned int);
1114 	}
1115 
1116 	off += kasan_metadata_size(s, false);
1117 
1118 	if (size_from_object(s) == off)
1119 		return 1;
1120 
1121 	return check_bytes_and_report(s, slab, p, "Object padding",
1122 			p + off, POISON_INUSE, size_from_object(s) - off);
1123 }
1124 
1125 /* Check the pad bytes at the end of a slab page */
1126 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1127 {
1128 	u8 *start;
1129 	u8 *fault;
1130 	u8 *end;
1131 	u8 *pad;
1132 	int length;
1133 	int remainder;
1134 
1135 	if (!(s->flags & SLAB_POISON))
1136 		return;
1137 
1138 	start = slab_address(slab);
1139 	length = slab_size(slab);
1140 	end = start + length;
1141 	remainder = length % s->size;
1142 	if (!remainder)
1143 		return;
1144 
1145 	pad = end - remainder;
1146 	metadata_access_enable();
1147 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1148 	metadata_access_disable();
1149 	if (!fault)
1150 		return;
1151 	while (end > fault && end[-1] == POISON_INUSE)
1152 		end--;
1153 
1154 	slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1155 			fault, end - 1, fault - start);
1156 	print_section(KERN_ERR, "Padding ", pad, remainder);
1157 
1158 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1159 }
1160 
1161 static int check_object(struct kmem_cache *s, struct slab *slab,
1162 					void *object, u8 val)
1163 {
1164 	u8 *p = object;
1165 	u8 *endobject = object + s->object_size;
1166 	unsigned int orig_size;
1167 
1168 	if (s->flags & SLAB_RED_ZONE) {
1169 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1170 			object - s->red_left_pad, val, s->red_left_pad))
1171 			return 0;
1172 
1173 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1174 			endobject, val, s->inuse - s->object_size))
1175 			return 0;
1176 
1177 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1178 			orig_size = get_orig_size(s, object);
1179 
1180 			if (s->object_size > orig_size  &&
1181 				!check_bytes_and_report(s, slab, object,
1182 					"kmalloc Redzone", p + orig_size,
1183 					val, s->object_size - orig_size)) {
1184 				return 0;
1185 			}
1186 		}
1187 	} else {
1188 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1189 			check_bytes_and_report(s, slab, p, "Alignment padding",
1190 				endobject, POISON_INUSE,
1191 				s->inuse - s->object_size);
1192 		}
1193 	}
1194 
1195 	if (s->flags & SLAB_POISON) {
1196 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1197 			(!check_bytes_and_report(s, slab, p, "Poison", p,
1198 					POISON_FREE, s->object_size - 1) ||
1199 			 !check_bytes_and_report(s, slab, p, "End Poison",
1200 				p + s->object_size - 1, POISON_END, 1)))
1201 			return 0;
1202 		/*
1203 		 * check_pad_bytes cleans up on its own.
1204 		 */
1205 		check_pad_bytes(s, slab, p);
1206 	}
1207 
1208 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1209 		/*
1210 		 * Object and freepointer overlap. Cannot check
1211 		 * freepointer while object is allocated.
1212 		 */
1213 		return 1;
1214 
1215 	/* Check free pointer validity */
1216 	if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1217 		object_err(s, slab, p, "Freepointer corrupt");
1218 		/*
1219 		 * No choice but to zap it and thus lose the remainder
1220 		 * of the free objects in this slab. May cause
1221 		 * another error because the object count is now wrong.
1222 		 */
1223 		set_freepointer(s, p, NULL);
1224 		return 0;
1225 	}
1226 	return 1;
1227 }
1228 
1229 static int check_slab(struct kmem_cache *s, struct slab *slab)
1230 {
1231 	int maxobj;
1232 
1233 	if (!folio_test_slab(slab_folio(slab))) {
1234 		slab_err(s, slab, "Not a valid slab page");
1235 		return 0;
1236 	}
1237 
1238 	maxobj = order_objects(slab_order(slab), s->size);
1239 	if (slab->objects > maxobj) {
1240 		slab_err(s, slab, "objects %u > max %u",
1241 			slab->objects, maxobj);
1242 		return 0;
1243 	}
1244 	if (slab->inuse > slab->objects) {
1245 		slab_err(s, slab, "inuse %u > max %u",
1246 			slab->inuse, slab->objects);
1247 		return 0;
1248 	}
1249 	/* Slab_pad_check fixes things up after itself */
1250 	slab_pad_check(s, slab);
1251 	return 1;
1252 }
1253 
1254 /*
1255  * Determine if a certain object in a slab is on the freelist. Must hold the
1256  * slab lock to guarantee that the chains are in a consistent state.
1257  */
1258 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1259 {
1260 	int nr = 0;
1261 	void *fp;
1262 	void *object = NULL;
1263 	int max_objects;
1264 
1265 	fp = slab->freelist;
1266 	while (fp && nr <= slab->objects) {
1267 		if (fp == search)
1268 			return 1;
1269 		if (!check_valid_pointer(s, slab, fp)) {
1270 			if (object) {
1271 				object_err(s, slab, object,
1272 					"Freechain corrupt");
1273 				set_freepointer(s, object, NULL);
1274 			} else {
1275 				slab_err(s, slab, "Freepointer corrupt");
1276 				slab->freelist = NULL;
1277 				slab->inuse = slab->objects;
1278 				slab_fix(s, "Freelist cleared");
1279 				return 0;
1280 			}
1281 			break;
1282 		}
1283 		object = fp;
1284 		fp = get_freepointer(s, object);
1285 		nr++;
1286 	}
1287 
1288 	max_objects = order_objects(slab_order(slab), s->size);
1289 	if (max_objects > MAX_OBJS_PER_PAGE)
1290 		max_objects = MAX_OBJS_PER_PAGE;
1291 
1292 	if (slab->objects != max_objects) {
1293 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1294 			 slab->objects, max_objects);
1295 		slab->objects = max_objects;
1296 		slab_fix(s, "Number of objects adjusted");
1297 	}
1298 	if (slab->inuse != slab->objects - nr) {
1299 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1300 			 slab->inuse, slab->objects - nr);
1301 		slab->inuse = slab->objects - nr;
1302 		slab_fix(s, "Object count adjusted");
1303 	}
1304 	return search == NULL;
1305 }
1306 
1307 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1308 								int alloc)
1309 {
1310 	if (s->flags & SLAB_TRACE) {
1311 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1312 			s->name,
1313 			alloc ? "alloc" : "free",
1314 			object, slab->inuse,
1315 			slab->freelist);
1316 
1317 		if (!alloc)
1318 			print_section(KERN_INFO, "Object ", (void *)object,
1319 					s->object_size);
1320 
1321 		dump_stack();
1322 	}
1323 }
1324 
1325 /*
1326  * Tracking of fully allocated slabs for debugging purposes.
1327  */
1328 static void add_full(struct kmem_cache *s,
1329 	struct kmem_cache_node *n, struct slab *slab)
1330 {
1331 	if (!(s->flags & SLAB_STORE_USER))
1332 		return;
1333 
1334 	lockdep_assert_held(&n->list_lock);
1335 	list_add(&slab->slab_list, &n->full);
1336 }
1337 
1338 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1339 {
1340 	if (!(s->flags & SLAB_STORE_USER))
1341 		return;
1342 
1343 	lockdep_assert_held(&n->list_lock);
1344 	list_del(&slab->slab_list);
1345 }
1346 
1347 /* Tracking of the number of slabs for debugging purposes */
1348 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1349 {
1350 	struct kmem_cache_node *n = get_node(s, node);
1351 
1352 	return atomic_long_read(&n->nr_slabs);
1353 }
1354 
1355 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1356 {
1357 	return atomic_long_read(&n->nr_slabs);
1358 }
1359 
1360 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1361 {
1362 	struct kmem_cache_node *n = get_node(s, node);
1363 
1364 	/*
1365 	 * May be called early in order to allocate a slab for the
1366 	 * kmem_cache_node structure. Solve the chicken-egg
1367 	 * dilemma by deferring the increment of the count during
1368 	 * bootstrap (see early_kmem_cache_node_alloc).
1369 	 */
1370 	if (likely(n)) {
1371 		atomic_long_inc(&n->nr_slabs);
1372 		atomic_long_add(objects, &n->total_objects);
1373 	}
1374 }
1375 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1376 {
1377 	struct kmem_cache_node *n = get_node(s, node);
1378 
1379 	atomic_long_dec(&n->nr_slabs);
1380 	atomic_long_sub(objects, &n->total_objects);
1381 }
1382 
1383 /* Object debug checks for alloc/free paths */
1384 static void setup_object_debug(struct kmem_cache *s, void *object)
1385 {
1386 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1387 		return;
1388 
1389 	init_object(s, object, SLUB_RED_INACTIVE);
1390 	init_tracking(s, object);
1391 }
1392 
1393 static
1394 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1395 {
1396 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1397 		return;
1398 
1399 	metadata_access_enable();
1400 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1401 	metadata_access_disable();
1402 }
1403 
1404 static inline int alloc_consistency_checks(struct kmem_cache *s,
1405 					struct slab *slab, void *object)
1406 {
1407 	if (!check_slab(s, slab))
1408 		return 0;
1409 
1410 	if (!check_valid_pointer(s, slab, object)) {
1411 		object_err(s, slab, object, "Freelist Pointer check fails");
1412 		return 0;
1413 	}
1414 
1415 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1416 		return 0;
1417 
1418 	return 1;
1419 }
1420 
1421 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1422 			struct slab *slab, void *object, int orig_size)
1423 {
1424 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1425 		if (!alloc_consistency_checks(s, slab, object))
1426 			goto bad;
1427 	}
1428 
1429 	/* Success. Perform special debug activities for allocs */
1430 	trace(s, slab, object, 1);
1431 	set_orig_size(s, object, orig_size);
1432 	init_object(s, object, SLUB_RED_ACTIVE);
1433 	return true;
1434 
1435 bad:
1436 	if (folio_test_slab(slab_folio(slab))) {
1437 		/*
1438 		 * If this is a slab page then lets do the best we can
1439 		 * to avoid issues in the future. Marking all objects
1440 		 * as used avoids touching the remaining objects.
1441 		 */
1442 		slab_fix(s, "Marking all objects used");
1443 		slab->inuse = slab->objects;
1444 		slab->freelist = NULL;
1445 	}
1446 	return false;
1447 }
1448 
1449 static inline int free_consistency_checks(struct kmem_cache *s,
1450 		struct slab *slab, void *object, unsigned long addr)
1451 {
1452 	if (!check_valid_pointer(s, slab, object)) {
1453 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1454 		return 0;
1455 	}
1456 
1457 	if (on_freelist(s, slab, object)) {
1458 		object_err(s, slab, object, "Object already free");
1459 		return 0;
1460 	}
1461 
1462 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1463 		return 0;
1464 
1465 	if (unlikely(s != slab->slab_cache)) {
1466 		if (!folio_test_slab(slab_folio(slab))) {
1467 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1468 				 object);
1469 		} else if (!slab->slab_cache) {
1470 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1471 			       object);
1472 			dump_stack();
1473 		} else
1474 			object_err(s, slab, object,
1475 					"page slab pointer corrupt.");
1476 		return 0;
1477 	}
1478 	return 1;
1479 }
1480 
1481 /*
1482  * Parse a block of slub_debug options. Blocks are delimited by ';'
1483  *
1484  * @str:    start of block
1485  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1486  * @slabs:  return start of list of slabs, or NULL when there's no list
1487  * @init:   assume this is initial parsing and not per-kmem-create parsing
1488  *
1489  * returns the start of next block if there's any, or NULL
1490  */
1491 static char *
1492 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1493 {
1494 	bool higher_order_disable = false;
1495 
1496 	/* Skip any completely empty blocks */
1497 	while (*str && *str == ';')
1498 		str++;
1499 
1500 	if (*str == ',') {
1501 		/*
1502 		 * No options but restriction on slabs. This means full
1503 		 * debugging for slabs matching a pattern.
1504 		 */
1505 		*flags = DEBUG_DEFAULT_FLAGS;
1506 		goto check_slabs;
1507 	}
1508 	*flags = 0;
1509 
1510 	/* Determine which debug features should be switched on */
1511 	for (; *str && *str != ',' && *str != ';'; str++) {
1512 		switch (tolower(*str)) {
1513 		case '-':
1514 			*flags = 0;
1515 			break;
1516 		case 'f':
1517 			*flags |= SLAB_CONSISTENCY_CHECKS;
1518 			break;
1519 		case 'z':
1520 			*flags |= SLAB_RED_ZONE;
1521 			break;
1522 		case 'p':
1523 			*flags |= SLAB_POISON;
1524 			break;
1525 		case 'u':
1526 			*flags |= SLAB_STORE_USER;
1527 			break;
1528 		case 't':
1529 			*flags |= SLAB_TRACE;
1530 			break;
1531 		case 'a':
1532 			*flags |= SLAB_FAILSLAB;
1533 			break;
1534 		case 'o':
1535 			/*
1536 			 * Avoid enabling debugging on caches if its minimum
1537 			 * order would increase as a result.
1538 			 */
1539 			higher_order_disable = true;
1540 			break;
1541 		default:
1542 			if (init)
1543 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1544 		}
1545 	}
1546 check_slabs:
1547 	if (*str == ',')
1548 		*slabs = ++str;
1549 	else
1550 		*slabs = NULL;
1551 
1552 	/* Skip over the slab list */
1553 	while (*str && *str != ';')
1554 		str++;
1555 
1556 	/* Skip any completely empty blocks */
1557 	while (*str && *str == ';')
1558 		str++;
1559 
1560 	if (init && higher_order_disable)
1561 		disable_higher_order_debug = 1;
1562 
1563 	if (*str)
1564 		return str;
1565 	else
1566 		return NULL;
1567 }
1568 
1569 static int __init setup_slub_debug(char *str)
1570 {
1571 	slab_flags_t flags;
1572 	slab_flags_t global_flags;
1573 	char *saved_str;
1574 	char *slab_list;
1575 	bool global_slub_debug_changed = false;
1576 	bool slab_list_specified = false;
1577 
1578 	global_flags = DEBUG_DEFAULT_FLAGS;
1579 	if (*str++ != '=' || !*str)
1580 		/*
1581 		 * No options specified. Switch on full debugging.
1582 		 */
1583 		goto out;
1584 
1585 	saved_str = str;
1586 	while (str) {
1587 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1588 
1589 		if (!slab_list) {
1590 			global_flags = flags;
1591 			global_slub_debug_changed = true;
1592 		} else {
1593 			slab_list_specified = true;
1594 			if (flags & SLAB_STORE_USER)
1595 				stack_depot_request_early_init();
1596 		}
1597 	}
1598 
1599 	/*
1600 	 * For backwards compatibility, a single list of flags with list of
1601 	 * slabs means debugging is only changed for those slabs, so the global
1602 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1603 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1604 	 * long as there is no option specifying flags without a slab list.
1605 	 */
1606 	if (slab_list_specified) {
1607 		if (!global_slub_debug_changed)
1608 			global_flags = slub_debug;
1609 		slub_debug_string = saved_str;
1610 	}
1611 out:
1612 	slub_debug = global_flags;
1613 	if (slub_debug & SLAB_STORE_USER)
1614 		stack_depot_request_early_init();
1615 	if (slub_debug != 0 || slub_debug_string)
1616 		static_branch_enable(&slub_debug_enabled);
1617 	else
1618 		static_branch_disable(&slub_debug_enabled);
1619 	if ((static_branch_unlikely(&init_on_alloc) ||
1620 	     static_branch_unlikely(&init_on_free)) &&
1621 	    (slub_debug & SLAB_POISON))
1622 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1623 	return 1;
1624 }
1625 
1626 __setup("slub_debug", setup_slub_debug);
1627 
1628 /*
1629  * kmem_cache_flags - apply debugging options to the cache
1630  * @object_size:	the size of an object without meta data
1631  * @flags:		flags to set
1632  * @name:		name of the cache
1633  *
1634  * Debug option(s) are applied to @flags. In addition to the debug
1635  * option(s), if a slab name (or multiple) is specified i.e.
1636  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1637  * then only the select slabs will receive the debug option(s).
1638  */
1639 slab_flags_t kmem_cache_flags(unsigned int object_size,
1640 	slab_flags_t flags, const char *name)
1641 {
1642 	char *iter;
1643 	size_t len;
1644 	char *next_block;
1645 	slab_flags_t block_flags;
1646 	slab_flags_t slub_debug_local = slub_debug;
1647 
1648 	if (flags & SLAB_NO_USER_FLAGS)
1649 		return flags;
1650 
1651 	/*
1652 	 * If the slab cache is for debugging (e.g. kmemleak) then
1653 	 * don't store user (stack trace) information by default,
1654 	 * but let the user enable it via the command line below.
1655 	 */
1656 	if (flags & SLAB_NOLEAKTRACE)
1657 		slub_debug_local &= ~SLAB_STORE_USER;
1658 
1659 	len = strlen(name);
1660 	next_block = slub_debug_string;
1661 	/* Go through all blocks of debug options, see if any matches our slab's name */
1662 	while (next_block) {
1663 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1664 		if (!iter)
1665 			continue;
1666 		/* Found a block that has a slab list, search it */
1667 		while (*iter) {
1668 			char *end, *glob;
1669 			size_t cmplen;
1670 
1671 			end = strchrnul(iter, ',');
1672 			if (next_block && next_block < end)
1673 				end = next_block - 1;
1674 
1675 			glob = strnchr(iter, end - iter, '*');
1676 			if (glob)
1677 				cmplen = glob - iter;
1678 			else
1679 				cmplen = max_t(size_t, len, (end - iter));
1680 
1681 			if (!strncmp(name, iter, cmplen)) {
1682 				flags |= block_flags;
1683 				return flags;
1684 			}
1685 
1686 			if (!*end || *end == ';')
1687 				break;
1688 			iter = end + 1;
1689 		}
1690 	}
1691 
1692 	return flags | slub_debug_local;
1693 }
1694 #else /* !CONFIG_SLUB_DEBUG */
1695 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1696 static inline
1697 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1698 
1699 static inline bool alloc_debug_processing(struct kmem_cache *s,
1700 	struct slab *slab, void *object, int orig_size) { return true; }
1701 
1702 static inline bool free_debug_processing(struct kmem_cache *s,
1703 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1704 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1705 
1706 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1707 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1708 			void *object, u8 val) { return 1; }
1709 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1710 static inline void set_track(struct kmem_cache *s, void *object,
1711 			     enum track_item alloc, unsigned long addr) {}
1712 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1713 					struct slab *slab) {}
1714 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1715 					struct slab *slab) {}
1716 slab_flags_t kmem_cache_flags(unsigned int object_size,
1717 	slab_flags_t flags, const char *name)
1718 {
1719 	return flags;
1720 }
1721 #define slub_debug 0
1722 
1723 #define disable_higher_order_debug 0
1724 
1725 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1726 							{ return 0; }
1727 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1728 							{ return 0; }
1729 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1730 							int objects) {}
1731 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1732 							int objects) {}
1733 
1734 #ifndef CONFIG_SLUB_TINY
1735 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1736 			       void **freelist, void *nextfree)
1737 {
1738 	return false;
1739 }
1740 #endif
1741 #endif /* CONFIG_SLUB_DEBUG */
1742 
1743 /*
1744  * Hooks for other subsystems that check memory allocations. In a typical
1745  * production configuration these hooks all should produce no code at all.
1746  */
1747 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1748 						void *x, bool init)
1749 {
1750 	kmemleak_free_recursive(x, s->flags);
1751 	kmsan_slab_free(s, x);
1752 
1753 	debug_check_no_locks_freed(x, s->object_size);
1754 
1755 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1756 		debug_check_no_obj_freed(x, s->object_size);
1757 
1758 	/* Use KCSAN to help debug racy use-after-free. */
1759 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1760 		__kcsan_check_access(x, s->object_size,
1761 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1762 
1763 	/*
1764 	 * As memory initialization might be integrated into KASAN,
1765 	 * kasan_slab_free and initialization memset's must be
1766 	 * kept together to avoid discrepancies in behavior.
1767 	 *
1768 	 * The initialization memset's clear the object and the metadata,
1769 	 * but don't touch the SLAB redzone.
1770 	 */
1771 	if (init) {
1772 		int rsize;
1773 
1774 		if (!kasan_has_integrated_init())
1775 			memset(kasan_reset_tag(x), 0, s->object_size);
1776 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1777 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1778 		       s->size - s->inuse - rsize);
1779 	}
1780 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1781 	return kasan_slab_free(s, x, init);
1782 }
1783 
1784 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1785 					   void **head, void **tail,
1786 					   int *cnt)
1787 {
1788 
1789 	void *object;
1790 	void *next = *head;
1791 	void *old_tail = *tail ? *tail : *head;
1792 
1793 	if (is_kfence_address(next)) {
1794 		slab_free_hook(s, next, false);
1795 		return true;
1796 	}
1797 
1798 	/* Head and tail of the reconstructed freelist */
1799 	*head = NULL;
1800 	*tail = NULL;
1801 
1802 	do {
1803 		object = next;
1804 		next = get_freepointer(s, object);
1805 
1806 		/* If object's reuse doesn't have to be delayed */
1807 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1808 			/* Move object to the new freelist */
1809 			set_freepointer(s, object, *head);
1810 			*head = object;
1811 			if (!*tail)
1812 				*tail = object;
1813 		} else {
1814 			/*
1815 			 * Adjust the reconstructed freelist depth
1816 			 * accordingly if object's reuse is delayed.
1817 			 */
1818 			--(*cnt);
1819 		}
1820 	} while (object != old_tail);
1821 
1822 	if (*head == *tail)
1823 		*tail = NULL;
1824 
1825 	return *head != NULL;
1826 }
1827 
1828 static void *setup_object(struct kmem_cache *s, void *object)
1829 {
1830 	setup_object_debug(s, object);
1831 	object = kasan_init_slab_obj(s, object);
1832 	if (unlikely(s->ctor)) {
1833 		kasan_unpoison_object_data(s, object);
1834 		s->ctor(object);
1835 		kasan_poison_object_data(s, object);
1836 	}
1837 	return object;
1838 }
1839 
1840 /*
1841  * Slab allocation and freeing
1842  */
1843 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1844 		struct kmem_cache_order_objects oo)
1845 {
1846 	struct folio *folio;
1847 	struct slab *slab;
1848 	unsigned int order = oo_order(oo);
1849 
1850 	if (node == NUMA_NO_NODE)
1851 		folio = (struct folio *)alloc_pages(flags, order);
1852 	else
1853 		folio = (struct folio *)__alloc_pages_node(node, flags, order);
1854 
1855 	if (!folio)
1856 		return NULL;
1857 
1858 	slab = folio_slab(folio);
1859 	__folio_set_slab(folio);
1860 	/* Make the flag visible before any changes to folio->mapping */
1861 	smp_wmb();
1862 	if (folio_is_pfmemalloc(folio))
1863 		slab_set_pfmemalloc(slab);
1864 
1865 	return slab;
1866 }
1867 
1868 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1869 /* Pre-initialize the random sequence cache */
1870 static int init_cache_random_seq(struct kmem_cache *s)
1871 {
1872 	unsigned int count = oo_objects(s->oo);
1873 	int err;
1874 
1875 	/* Bailout if already initialised */
1876 	if (s->random_seq)
1877 		return 0;
1878 
1879 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1880 	if (err) {
1881 		pr_err("SLUB: Unable to initialize free list for %s\n",
1882 			s->name);
1883 		return err;
1884 	}
1885 
1886 	/* Transform to an offset on the set of pages */
1887 	if (s->random_seq) {
1888 		unsigned int i;
1889 
1890 		for (i = 0; i < count; i++)
1891 			s->random_seq[i] *= s->size;
1892 	}
1893 	return 0;
1894 }
1895 
1896 /* Initialize each random sequence freelist per cache */
1897 static void __init init_freelist_randomization(void)
1898 {
1899 	struct kmem_cache *s;
1900 
1901 	mutex_lock(&slab_mutex);
1902 
1903 	list_for_each_entry(s, &slab_caches, list)
1904 		init_cache_random_seq(s);
1905 
1906 	mutex_unlock(&slab_mutex);
1907 }
1908 
1909 /* Get the next entry on the pre-computed freelist randomized */
1910 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1911 				unsigned long *pos, void *start,
1912 				unsigned long page_limit,
1913 				unsigned long freelist_count)
1914 {
1915 	unsigned int idx;
1916 
1917 	/*
1918 	 * If the target page allocation failed, the number of objects on the
1919 	 * page might be smaller than the usual size defined by the cache.
1920 	 */
1921 	do {
1922 		idx = s->random_seq[*pos];
1923 		*pos += 1;
1924 		if (*pos >= freelist_count)
1925 			*pos = 0;
1926 	} while (unlikely(idx >= page_limit));
1927 
1928 	return (char *)start + idx;
1929 }
1930 
1931 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1932 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1933 {
1934 	void *start;
1935 	void *cur;
1936 	void *next;
1937 	unsigned long idx, pos, page_limit, freelist_count;
1938 
1939 	if (slab->objects < 2 || !s->random_seq)
1940 		return false;
1941 
1942 	freelist_count = oo_objects(s->oo);
1943 	pos = get_random_u32_below(freelist_count);
1944 
1945 	page_limit = slab->objects * s->size;
1946 	start = fixup_red_left(s, slab_address(slab));
1947 
1948 	/* First entry is used as the base of the freelist */
1949 	cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1950 				freelist_count);
1951 	cur = setup_object(s, cur);
1952 	slab->freelist = cur;
1953 
1954 	for (idx = 1; idx < slab->objects; idx++) {
1955 		next = next_freelist_entry(s, slab, &pos, start, page_limit,
1956 			freelist_count);
1957 		next = setup_object(s, next);
1958 		set_freepointer(s, cur, next);
1959 		cur = next;
1960 	}
1961 	set_freepointer(s, cur, NULL);
1962 
1963 	return true;
1964 }
1965 #else
1966 static inline int init_cache_random_seq(struct kmem_cache *s)
1967 {
1968 	return 0;
1969 }
1970 static inline void init_freelist_randomization(void) { }
1971 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1972 {
1973 	return false;
1974 }
1975 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1976 
1977 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1978 {
1979 	struct slab *slab;
1980 	struct kmem_cache_order_objects oo = s->oo;
1981 	gfp_t alloc_gfp;
1982 	void *start, *p, *next;
1983 	int idx;
1984 	bool shuffle;
1985 
1986 	flags &= gfp_allowed_mask;
1987 
1988 	flags |= s->allocflags;
1989 
1990 	/*
1991 	 * Let the initial higher-order allocation fail under memory pressure
1992 	 * so we fall-back to the minimum order allocation.
1993 	 */
1994 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1995 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1996 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1997 
1998 	slab = alloc_slab_page(alloc_gfp, node, oo);
1999 	if (unlikely(!slab)) {
2000 		oo = s->min;
2001 		alloc_gfp = flags;
2002 		/*
2003 		 * Allocation may have failed due to fragmentation.
2004 		 * Try a lower order alloc if possible
2005 		 */
2006 		slab = alloc_slab_page(alloc_gfp, node, oo);
2007 		if (unlikely(!slab))
2008 			return NULL;
2009 		stat(s, ORDER_FALLBACK);
2010 	}
2011 
2012 	slab->objects = oo_objects(oo);
2013 	slab->inuse = 0;
2014 	slab->frozen = 0;
2015 
2016 	account_slab(slab, oo_order(oo), s, flags);
2017 
2018 	slab->slab_cache = s;
2019 
2020 	kasan_poison_slab(slab);
2021 
2022 	start = slab_address(slab);
2023 
2024 	setup_slab_debug(s, slab, start);
2025 
2026 	shuffle = shuffle_freelist(s, slab);
2027 
2028 	if (!shuffle) {
2029 		start = fixup_red_left(s, start);
2030 		start = setup_object(s, start);
2031 		slab->freelist = start;
2032 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2033 			next = p + s->size;
2034 			next = setup_object(s, next);
2035 			set_freepointer(s, p, next);
2036 			p = next;
2037 		}
2038 		set_freepointer(s, p, NULL);
2039 	}
2040 
2041 	return slab;
2042 }
2043 
2044 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2045 {
2046 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2047 		flags = kmalloc_fix_flags(flags);
2048 
2049 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2050 
2051 	return allocate_slab(s,
2052 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2053 }
2054 
2055 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2056 {
2057 	struct folio *folio = slab_folio(slab);
2058 	int order = folio_order(folio);
2059 	int pages = 1 << order;
2060 
2061 	__slab_clear_pfmemalloc(slab);
2062 	folio->mapping = NULL;
2063 	/* Make the mapping reset visible before clearing the flag */
2064 	smp_wmb();
2065 	__folio_clear_slab(folio);
2066 	if (current->reclaim_state)
2067 		current->reclaim_state->reclaimed_slab += pages;
2068 	unaccount_slab(slab, order, s);
2069 	__free_pages(&folio->page, order);
2070 }
2071 
2072 static void rcu_free_slab(struct rcu_head *h)
2073 {
2074 	struct slab *slab = container_of(h, struct slab, rcu_head);
2075 
2076 	__free_slab(slab->slab_cache, slab);
2077 }
2078 
2079 static void free_slab(struct kmem_cache *s, struct slab *slab)
2080 {
2081 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2082 		void *p;
2083 
2084 		slab_pad_check(s, slab);
2085 		for_each_object(p, s, slab_address(slab), slab->objects)
2086 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2087 	}
2088 
2089 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2090 		call_rcu(&slab->rcu_head, rcu_free_slab);
2091 	else
2092 		__free_slab(s, slab);
2093 }
2094 
2095 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2096 {
2097 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2098 	free_slab(s, slab);
2099 }
2100 
2101 /*
2102  * Management of partially allocated slabs.
2103  */
2104 static inline void
2105 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2106 {
2107 	n->nr_partial++;
2108 	if (tail == DEACTIVATE_TO_TAIL)
2109 		list_add_tail(&slab->slab_list, &n->partial);
2110 	else
2111 		list_add(&slab->slab_list, &n->partial);
2112 }
2113 
2114 static inline void add_partial(struct kmem_cache_node *n,
2115 				struct slab *slab, int tail)
2116 {
2117 	lockdep_assert_held(&n->list_lock);
2118 	__add_partial(n, slab, tail);
2119 }
2120 
2121 static inline void remove_partial(struct kmem_cache_node *n,
2122 					struct slab *slab)
2123 {
2124 	lockdep_assert_held(&n->list_lock);
2125 	list_del(&slab->slab_list);
2126 	n->nr_partial--;
2127 }
2128 
2129 /*
2130  * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2131  * slab from the n->partial list. Remove only a single object from the slab, do
2132  * the alloc_debug_processing() checks and leave the slab on the list, or move
2133  * it to full list if it was the last free object.
2134  */
2135 static void *alloc_single_from_partial(struct kmem_cache *s,
2136 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2137 {
2138 	void *object;
2139 
2140 	lockdep_assert_held(&n->list_lock);
2141 
2142 	object = slab->freelist;
2143 	slab->freelist = get_freepointer(s, object);
2144 	slab->inuse++;
2145 
2146 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2147 		remove_partial(n, slab);
2148 		return NULL;
2149 	}
2150 
2151 	if (slab->inuse == slab->objects) {
2152 		remove_partial(n, slab);
2153 		add_full(s, n, slab);
2154 	}
2155 
2156 	return object;
2157 }
2158 
2159 /*
2160  * Called only for kmem_cache_debug() caches to allocate from a freshly
2161  * allocated slab. Allocate a single object instead of whole freelist
2162  * and put the slab to the partial (or full) list.
2163  */
2164 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2165 					struct slab *slab, int orig_size)
2166 {
2167 	int nid = slab_nid(slab);
2168 	struct kmem_cache_node *n = get_node(s, nid);
2169 	unsigned long flags;
2170 	void *object;
2171 
2172 
2173 	object = slab->freelist;
2174 	slab->freelist = get_freepointer(s, object);
2175 	slab->inuse = 1;
2176 
2177 	if (!alloc_debug_processing(s, slab, object, orig_size))
2178 		/*
2179 		 * It's not really expected that this would fail on a
2180 		 * freshly allocated slab, but a concurrent memory
2181 		 * corruption in theory could cause that.
2182 		 */
2183 		return NULL;
2184 
2185 	spin_lock_irqsave(&n->list_lock, flags);
2186 
2187 	if (slab->inuse == slab->objects)
2188 		add_full(s, n, slab);
2189 	else
2190 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2191 
2192 	inc_slabs_node(s, nid, slab->objects);
2193 	spin_unlock_irqrestore(&n->list_lock, flags);
2194 
2195 	return object;
2196 }
2197 
2198 /*
2199  * Remove slab from the partial list, freeze it and
2200  * return the pointer to the freelist.
2201  *
2202  * Returns a list of objects or NULL if it fails.
2203  */
2204 static inline void *acquire_slab(struct kmem_cache *s,
2205 		struct kmem_cache_node *n, struct slab *slab,
2206 		int mode)
2207 {
2208 	void *freelist;
2209 	unsigned long counters;
2210 	struct slab new;
2211 
2212 	lockdep_assert_held(&n->list_lock);
2213 
2214 	/*
2215 	 * Zap the freelist and set the frozen bit.
2216 	 * The old freelist is the list of objects for the
2217 	 * per cpu allocation list.
2218 	 */
2219 	freelist = slab->freelist;
2220 	counters = slab->counters;
2221 	new.counters = counters;
2222 	if (mode) {
2223 		new.inuse = slab->objects;
2224 		new.freelist = NULL;
2225 	} else {
2226 		new.freelist = freelist;
2227 	}
2228 
2229 	VM_BUG_ON(new.frozen);
2230 	new.frozen = 1;
2231 
2232 	if (!__cmpxchg_double_slab(s, slab,
2233 			freelist, counters,
2234 			new.freelist, new.counters,
2235 			"acquire_slab"))
2236 		return NULL;
2237 
2238 	remove_partial(n, slab);
2239 	WARN_ON(!freelist);
2240 	return freelist;
2241 }
2242 
2243 #ifdef CONFIG_SLUB_CPU_PARTIAL
2244 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2245 #else
2246 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2247 				   int drain) { }
2248 #endif
2249 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2250 
2251 /*
2252  * Try to allocate a partial slab from a specific node.
2253  */
2254 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2255 			      struct partial_context *pc)
2256 {
2257 	struct slab *slab, *slab2;
2258 	void *object = NULL;
2259 	unsigned long flags;
2260 	unsigned int partial_slabs = 0;
2261 
2262 	/*
2263 	 * Racy check. If we mistakenly see no partial slabs then we
2264 	 * just allocate an empty slab. If we mistakenly try to get a
2265 	 * partial slab and there is none available then get_partial()
2266 	 * will return NULL.
2267 	 */
2268 	if (!n || !n->nr_partial)
2269 		return NULL;
2270 
2271 	spin_lock_irqsave(&n->list_lock, flags);
2272 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2273 		void *t;
2274 
2275 		if (!pfmemalloc_match(slab, pc->flags))
2276 			continue;
2277 
2278 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2279 			object = alloc_single_from_partial(s, n, slab,
2280 							pc->orig_size);
2281 			if (object)
2282 				break;
2283 			continue;
2284 		}
2285 
2286 		t = acquire_slab(s, n, slab, object == NULL);
2287 		if (!t)
2288 			break;
2289 
2290 		if (!object) {
2291 			*pc->slab = slab;
2292 			stat(s, ALLOC_FROM_PARTIAL);
2293 			object = t;
2294 		} else {
2295 			put_cpu_partial(s, slab, 0);
2296 			stat(s, CPU_PARTIAL_NODE);
2297 			partial_slabs++;
2298 		}
2299 #ifdef CONFIG_SLUB_CPU_PARTIAL
2300 		if (!kmem_cache_has_cpu_partial(s)
2301 			|| partial_slabs > s->cpu_partial_slabs / 2)
2302 			break;
2303 #else
2304 		break;
2305 #endif
2306 
2307 	}
2308 	spin_unlock_irqrestore(&n->list_lock, flags);
2309 	return object;
2310 }
2311 
2312 /*
2313  * Get a slab from somewhere. Search in increasing NUMA distances.
2314  */
2315 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2316 {
2317 #ifdef CONFIG_NUMA
2318 	struct zonelist *zonelist;
2319 	struct zoneref *z;
2320 	struct zone *zone;
2321 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2322 	void *object;
2323 	unsigned int cpuset_mems_cookie;
2324 
2325 	/*
2326 	 * The defrag ratio allows a configuration of the tradeoffs between
2327 	 * inter node defragmentation and node local allocations. A lower
2328 	 * defrag_ratio increases the tendency to do local allocations
2329 	 * instead of attempting to obtain partial slabs from other nodes.
2330 	 *
2331 	 * If the defrag_ratio is set to 0 then kmalloc() always
2332 	 * returns node local objects. If the ratio is higher then kmalloc()
2333 	 * may return off node objects because partial slabs are obtained
2334 	 * from other nodes and filled up.
2335 	 *
2336 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2337 	 * (which makes defrag_ratio = 1000) then every (well almost)
2338 	 * allocation will first attempt to defrag slab caches on other nodes.
2339 	 * This means scanning over all nodes to look for partial slabs which
2340 	 * may be expensive if we do it every time we are trying to find a slab
2341 	 * with available objects.
2342 	 */
2343 	if (!s->remote_node_defrag_ratio ||
2344 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2345 		return NULL;
2346 
2347 	do {
2348 		cpuset_mems_cookie = read_mems_allowed_begin();
2349 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2350 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2351 			struct kmem_cache_node *n;
2352 
2353 			n = get_node(s, zone_to_nid(zone));
2354 
2355 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2356 					n->nr_partial > s->min_partial) {
2357 				object = get_partial_node(s, n, pc);
2358 				if (object) {
2359 					/*
2360 					 * Don't check read_mems_allowed_retry()
2361 					 * here - if mems_allowed was updated in
2362 					 * parallel, that was a harmless race
2363 					 * between allocation and the cpuset
2364 					 * update
2365 					 */
2366 					return object;
2367 				}
2368 			}
2369 		}
2370 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2371 #endif	/* CONFIG_NUMA */
2372 	return NULL;
2373 }
2374 
2375 /*
2376  * Get a partial slab, lock it and return it.
2377  */
2378 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2379 {
2380 	void *object;
2381 	int searchnode = node;
2382 
2383 	if (node == NUMA_NO_NODE)
2384 		searchnode = numa_mem_id();
2385 
2386 	object = get_partial_node(s, get_node(s, searchnode), pc);
2387 	if (object || node != NUMA_NO_NODE)
2388 		return object;
2389 
2390 	return get_any_partial(s, pc);
2391 }
2392 
2393 #ifndef CONFIG_SLUB_TINY
2394 
2395 #ifdef CONFIG_PREEMPTION
2396 /*
2397  * Calculate the next globally unique transaction for disambiguation
2398  * during cmpxchg. The transactions start with the cpu number and are then
2399  * incremented by CONFIG_NR_CPUS.
2400  */
2401 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2402 #else
2403 /*
2404  * No preemption supported therefore also no need to check for
2405  * different cpus.
2406  */
2407 #define TID_STEP 1
2408 #endif /* CONFIG_PREEMPTION */
2409 
2410 static inline unsigned long next_tid(unsigned long tid)
2411 {
2412 	return tid + TID_STEP;
2413 }
2414 
2415 #ifdef SLUB_DEBUG_CMPXCHG
2416 static inline unsigned int tid_to_cpu(unsigned long tid)
2417 {
2418 	return tid % TID_STEP;
2419 }
2420 
2421 static inline unsigned long tid_to_event(unsigned long tid)
2422 {
2423 	return tid / TID_STEP;
2424 }
2425 #endif
2426 
2427 static inline unsigned int init_tid(int cpu)
2428 {
2429 	return cpu;
2430 }
2431 
2432 static inline void note_cmpxchg_failure(const char *n,
2433 		const struct kmem_cache *s, unsigned long tid)
2434 {
2435 #ifdef SLUB_DEBUG_CMPXCHG
2436 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2437 
2438 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2439 
2440 #ifdef CONFIG_PREEMPTION
2441 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2442 		pr_warn("due to cpu change %d -> %d\n",
2443 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2444 	else
2445 #endif
2446 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2447 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2448 			tid_to_event(tid), tid_to_event(actual_tid));
2449 	else
2450 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2451 			actual_tid, tid, next_tid(tid));
2452 #endif
2453 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2454 }
2455 
2456 static void init_kmem_cache_cpus(struct kmem_cache *s)
2457 {
2458 	int cpu;
2459 	struct kmem_cache_cpu *c;
2460 
2461 	for_each_possible_cpu(cpu) {
2462 		c = per_cpu_ptr(s->cpu_slab, cpu);
2463 		local_lock_init(&c->lock);
2464 		c->tid = init_tid(cpu);
2465 	}
2466 }
2467 
2468 /*
2469  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2470  * unfreezes the slabs and puts it on the proper list.
2471  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2472  * by the caller.
2473  */
2474 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2475 			    void *freelist)
2476 {
2477 	enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2478 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2479 	int free_delta = 0;
2480 	enum slab_modes mode = M_NONE;
2481 	void *nextfree, *freelist_iter, *freelist_tail;
2482 	int tail = DEACTIVATE_TO_HEAD;
2483 	unsigned long flags = 0;
2484 	struct slab new;
2485 	struct slab old;
2486 
2487 	if (slab->freelist) {
2488 		stat(s, DEACTIVATE_REMOTE_FREES);
2489 		tail = DEACTIVATE_TO_TAIL;
2490 	}
2491 
2492 	/*
2493 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2494 	 * remember the last object in freelist_tail for later splicing.
2495 	 */
2496 	freelist_tail = NULL;
2497 	freelist_iter = freelist;
2498 	while (freelist_iter) {
2499 		nextfree = get_freepointer(s, freelist_iter);
2500 
2501 		/*
2502 		 * If 'nextfree' is invalid, it is possible that the object at
2503 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2504 		 * starting at 'freelist_iter' by skipping them.
2505 		 */
2506 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2507 			break;
2508 
2509 		freelist_tail = freelist_iter;
2510 		free_delta++;
2511 
2512 		freelist_iter = nextfree;
2513 	}
2514 
2515 	/*
2516 	 * Stage two: Unfreeze the slab while splicing the per-cpu
2517 	 * freelist to the head of slab's freelist.
2518 	 *
2519 	 * Ensure that the slab is unfrozen while the list presence
2520 	 * reflects the actual number of objects during unfreeze.
2521 	 *
2522 	 * We first perform cmpxchg holding lock and insert to list
2523 	 * when it succeed. If there is mismatch then the slab is not
2524 	 * unfrozen and number of objects in the slab may have changed.
2525 	 * Then release lock and retry cmpxchg again.
2526 	 */
2527 redo:
2528 
2529 	old.freelist = READ_ONCE(slab->freelist);
2530 	old.counters = READ_ONCE(slab->counters);
2531 	VM_BUG_ON(!old.frozen);
2532 
2533 	/* Determine target state of the slab */
2534 	new.counters = old.counters;
2535 	if (freelist_tail) {
2536 		new.inuse -= free_delta;
2537 		set_freepointer(s, freelist_tail, old.freelist);
2538 		new.freelist = freelist;
2539 	} else
2540 		new.freelist = old.freelist;
2541 
2542 	new.frozen = 0;
2543 
2544 	if (!new.inuse && n->nr_partial >= s->min_partial) {
2545 		mode = M_FREE;
2546 	} else if (new.freelist) {
2547 		mode = M_PARTIAL;
2548 		/*
2549 		 * Taking the spinlock removes the possibility that
2550 		 * acquire_slab() will see a slab that is frozen
2551 		 */
2552 		spin_lock_irqsave(&n->list_lock, flags);
2553 	} else {
2554 		mode = M_FULL_NOLIST;
2555 	}
2556 
2557 
2558 	if (!cmpxchg_double_slab(s, slab,
2559 				old.freelist, old.counters,
2560 				new.freelist, new.counters,
2561 				"unfreezing slab")) {
2562 		if (mode == M_PARTIAL)
2563 			spin_unlock_irqrestore(&n->list_lock, flags);
2564 		goto redo;
2565 	}
2566 
2567 
2568 	if (mode == M_PARTIAL) {
2569 		add_partial(n, slab, tail);
2570 		spin_unlock_irqrestore(&n->list_lock, flags);
2571 		stat(s, tail);
2572 	} else if (mode == M_FREE) {
2573 		stat(s, DEACTIVATE_EMPTY);
2574 		discard_slab(s, slab);
2575 		stat(s, FREE_SLAB);
2576 	} else if (mode == M_FULL_NOLIST) {
2577 		stat(s, DEACTIVATE_FULL);
2578 	}
2579 }
2580 
2581 #ifdef CONFIG_SLUB_CPU_PARTIAL
2582 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2583 {
2584 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2585 	struct slab *slab, *slab_to_discard = NULL;
2586 	unsigned long flags = 0;
2587 
2588 	while (partial_slab) {
2589 		struct slab new;
2590 		struct slab old;
2591 
2592 		slab = partial_slab;
2593 		partial_slab = slab->next;
2594 
2595 		n2 = get_node(s, slab_nid(slab));
2596 		if (n != n2) {
2597 			if (n)
2598 				spin_unlock_irqrestore(&n->list_lock, flags);
2599 
2600 			n = n2;
2601 			spin_lock_irqsave(&n->list_lock, flags);
2602 		}
2603 
2604 		do {
2605 
2606 			old.freelist = slab->freelist;
2607 			old.counters = slab->counters;
2608 			VM_BUG_ON(!old.frozen);
2609 
2610 			new.counters = old.counters;
2611 			new.freelist = old.freelist;
2612 
2613 			new.frozen = 0;
2614 
2615 		} while (!__cmpxchg_double_slab(s, slab,
2616 				old.freelist, old.counters,
2617 				new.freelist, new.counters,
2618 				"unfreezing slab"));
2619 
2620 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2621 			slab->next = slab_to_discard;
2622 			slab_to_discard = slab;
2623 		} else {
2624 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
2625 			stat(s, FREE_ADD_PARTIAL);
2626 		}
2627 	}
2628 
2629 	if (n)
2630 		spin_unlock_irqrestore(&n->list_lock, flags);
2631 
2632 	while (slab_to_discard) {
2633 		slab = slab_to_discard;
2634 		slab_to_discard = slab_to_discard->next;
2635 
2636 		stat(s, DEACTIVATE_EMPTY);
2637 		discard_slab(s, slab);
2638 		stat(s, FREE_SLAB);
2639 	}
2640 }
2641 
2642 /*
2643  * Unfreeze all the cpu partial slabs.
2644  */
2645 static void unfreeze_partials(struct kmem_cache *s)
2646 {
2647 	struct slab *partial_slab;
2648 	unsigned long flags;
2649 
2650 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2651 	partial_slab = this_cpu_read(s->cpu_slab->partial);
2652 	this_cpu_write(s->cpu_slab->partial, NULL);
2653 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2654 
2655 	if (partial_slab)
2656 		__unfreeze_partials(s, partial_slab);
2657 }
2658 
2659 static void unfreeze_partials_cpu(struct kmem_cache *s,
2660 				  struct kmem_cache_cpu *c)
2661 {
2662 	struct slab *partial_slab;
2663 
2664 	partial_slab = slub_percpu_partial(c);
2665 	c->partial = NULL;
2666 
2667 	if (partial_slab)
2668 		__unfreeze_partials(s, partial_slab);
2669 }
2670 
2671 /*
2672  * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2673  * partial slab slot if available.
2674  *
2675  * If we did not find a slot then simply move all the partials to the
2676  * per node partial list.
2677  */
2678 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2679 {
2680 	struct slab *oldslab;
2681 	struct slab *slab_to_unfreeze = NULL;
2682 	unsigned long flags;
2683 	int slabs = 0;
2684 
2685 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2686 
2687 	oldslab = this_cpu_read(s->cpu_slab->partial);
2688 
2689 	if (oldslab) {
2690 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2691 			/*
2692 			 * Partial array is full. Move the existing set to the
2693 			 * per node partial list. Postpone the actual unfreezing
2694 			 * outside of the critical section.
2695 			 */
2696 			slab_to_unfreeze = oldslab;
2697 			oldslab = NULL;
2698 		} else {
2699 			slabs = oldslab->slabs;
2700 		}
2701 	}
2702 
2703 	slabs++;
2704 
2705 	slab->slabs = slabs;
2706 	slab->next = oldslab;
2707 
2708 	this_cpu_write(s->cpu_slab->partial, slab);
2709 
2710 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2711 
2712 	if (slab_to_unfreeze) {
2713 		__unfreeze_partials(s, slab_to_unfreeze);
2714 		stat(s, CPU_PARTIAL_DRAIN);
2715 	}
2716 }
2717 
2718 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2719 
2720 static inline void unfreeze_partials(struct kmem_cache *s) { }
2721 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2722 				  struct kmem_cache_cpu *c) { }
2723 
2724 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2725 
2726 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2727 {
2728 	unsigned long flags;
2729 	struct slab *slab;
2730 	void *freelist;
2731 
2732 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2733 
2734 	slab = c->slab;
2735 	freelist = c->freelist;
2736 
2737 	c->slab = NULL;
2738 	c->freelist = NULL;
2739 	c->tid = next_tid(c->tid);
2740 
2741 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2742 
2743 	if (slab) {
2744 		deactivate_slab(s, slab, freelist);
2745 		stat(s, CPUSLAB_FLUSH);
2746 	}
2747 }
2748 
2749 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2750 {
2751 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2752 	void *freelist = c->freelist;
2753 	struct slab *slab = c->slab;
2754 
2755 	c->slab = NULL;
2756 	c->freelist = NULL;
2757 	c->tid = next_tid(c->tid);
2758 
2759 	if (slab) {
2760 		deactivate_slab(s, slab, freelist);
2761 		stat(s, CPUSLAB_FLUSH);
2762 	}
2763 
2764 	unfreeze_partials_cpu(s, c);
2765 }
2766 
2767 struct slub_flush_work {
2768 	struct work_struct work;
2769 	struct kmem_cache *s;
2770 	bool skip;
2771 };
2772 
2773 /*
2774  * Flush cpu slab.
2775  *
2776  * Called from CPU work handler with migration disabled.
2777  */
2778 static void flush_cpu_slab(struct work_struct *w)
2779 {
2780 	struct kmem_cache *s;
2781 	struct kmem_cache_cpu *c;
2782 	struct slub_flush_work *sfw;
2783 
2784 	sfw = container_of(w, struct slub_flush_work, work);
2785 
2786 	s = sfw->s;
2787 	c = this_cpu_ptr(s->cpu_slab);
2788 
2789 	if (c->slab)
2790 		flush_slab(s, c);
2791 
2792 	unfreeze_partials(s);
2793 }
2794 
2795 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2796 {
2797 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2798 
2799 	return c->slab || slub_percpu_partial(c);
2800 }
2801 
2802 static DEFINE_MUTEX(flush_lock);
2803 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2804 
2805 static void flush_all_cpus_locked(struct kmem_cache *s)
2806 {
2807 	struct slub_flush_work *sfw;
2808 	unsigned int cpu;
2809 
2810 	lockdep_assert_cpus_held();
2811 	mutex_lock(&flush_lock);
2812 
2813 	for_each_online_cpu(cpu) {
2814 		sfw = &per_cpu(slub_flush, cpu);
2815 		if (!has_cpu_slab(cpu, s)) {
2816 			sfw->skip = true;
2817 			continue;
2818 		}
2819 		INIT_WORK(&sfw->work, flush_cpu_slab);
2820 		sfw->skip = false;
2821 		sfw->s = s;
2822 		queue_work_on(cpu, flushwq, &sfw->work);
2823 	}
2824 
2825 	for_each_online_cpu(cpu) {
2826 		sfw = &per_cpu(slub_flush, cpu);
2827 		if (sfw->skip)
2828 			continue;
2829 		flush_work(&sfw->work);
2830 	}
2831 
2832 	mutex_unlock(&flush_lock);
2833 }
2834 
2835 static void flush_all(struct kmem_cache *s)
2836 {
2837 	cpus_read_lock();
2838 	flush_all_cpus_locked(s);
2839 	cpus_read_unlock();
2840 }
2841 
2842 /*
2843  * Use the cpu notifier to insure that the cpu slabs are flushed when
2844  * necessary.
2845  */
2846 static int slub_cpu_dead(unsigned int cpu)
2847 {
2848 	struct kmem_cache *s;
2849 
2850 	mutex_lock(&slab_mutex);
2851 	list_for_each_entry(s, &slab_caches, list)
2852 		__flush_cpu_slab(s, cpu);
2853 	mutex_unlock(&slab_mutex);
2854 	return 0;
2855 }
2856 
2857 #else /* CONFIG_SLUB_TINY */
2858 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2859 static inline void flush_all(struct kmem_cache *s) { }
2860 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2861 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2862 #endif /* CONFIG_SLUB_TINY */
2863 
2864 /*
2865  * Check if the objects in a per cpu structure fit numa
2866  * locality expectations.
2867  */
2868 static inline int node_match(struct slab *slab, int node)
2869 {
2870 #ifdef CONFIG_NUMA
2871 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2872 		return 0;
2873 #endif
2874 	return 1;
2875 }
2876 
2877 #ifdef CONFIG_SLUB_DEBUG
2878 static int count_free(struct slab *slab)
2879 {
2880 	return slab->objects - slab->inuse;
2881 }
2882 
2883 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2884 {
2885 	return atomic_long_read(&n->total_objects);
2886 }
2887 
2888 /* Supports checking bulk free of a constructed freelist */
2889 static inline bool free_debug_processing(struct kmem_cache *s,
2890 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
2891 	unsigned long addr, depot_stack_handle_t handle)
2892 {
2893 	bool checks_ok = false;
2894 	void *object = head;
2895 	int cnt = 0;
2896 
2897 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2898 		if (!check_slab(s, slab))
2899 			goto out;
2900 	}
2901 
2902 	if (slab->inuse < *bulk_cnt) {
2903 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2904 			 slab->inuse, *bulk_cnt);
2905 		goto out;
2906 	}
2907 
2908 next_object:
2909 
2910 	if (++cnt > *bulk_cnt)
2911 		goto out_cnt;
2912 
2913 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2914 		if (!free_consistency_checks(s, slab, object, addr))
2915 			goto out;
2916 	}
2917 
2918 	if (s->flags & SLAB_STORE_USER)
2919 		set_track_update(s, object, TRACK_FREE, addr, handle);
2920 	trace(s, slab, object, 0);
2921 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2922 	init_object(s, object, SLUB_RED_INACTIVE);
2923 
2924 	/* Reached end of constructed freelist yet? */
2925 	if (object != tail) {
2926 		object = get_freepointer(s, object);
2927 		goto next_object;
2928 	}
2929 	checks_ok = true;
2930 
2931 out_cnt:
2932 	if (cnt != *bulk_cnt) {
2933 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2934 			 *bulk_cnt, cnt);
2935 		*bulk_cnt = cnt;
2936 	}
2937 
2938 out:
2939 
2940 	if (!checks_ok)
2941 		slab_fix(s, "Object at 0x%p not freed", object);
2942 
2943 	return checks_ok;
2944 }
2945 #endif /* CONFIG_SLUB_DEBUG */
2946 
2947 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2948 static unsigned long count_partial(struct kmem_cache_node *n,
2949 					int (*get_count)(struct slab *))
2950 {
2951 	unsigned long flags;
2952 	unsigned long x = 0;
2953 	struct slab *slab;
2954 
2955 	spin_lock_irqsave(&n->list_lock, flags);
2956 	list_for_each_entry(slab, &n->partial, slab_list)
2957 		x += get_count(slab);
2958 	spin_unlock_irqrestore(&n->list_lock, flags);
2959 	return x;
2960 }
2961 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2962 
2963 #ifdef CONFIG_SLUB_DEBUG
2964 static noinline void
2965 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2966 {
2967 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2968 				      DEFAULT_RATELIMIT_BURST);
2969 	int node;
2970 	struct kmem_cache_node *n;
2971 
2972 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2973 		return;
2974 
2975 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2976 		nid, gfpflags, &gfpflags);
2977 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2978 		s->name, s->object_size, s->size, oo_order(s->oo),
2979 		oo_order(s->min));
2980 
2981 	if (oo_order(s->min) > get_order(s->object_size))
2982 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2983 			s->name);
2984 
2985 	for_each_kmem_cache_node(s, node, n) {
2986 		unsigned long nr_slabs;
2987 		unsigned long nr_objs;
2988 		unsigned long nr_free;
2989 
2990 		nr_free  = count_partial(n, count_free);
2991 		nr_slabs = node_nr_slabs(n);
2992 		nr_objs  = node_nr_objs(n);
2993 
2994 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2995 			node, nr_slabs, nr_objs, nr_free);
2996 	}
2997 }
2998 #else /* CONFIG_SLUB_DEBUG */
2999 static inline void
3000 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3001 #endif
3002 
3003 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3004 {
3005 	if (unlikely(slab_test_pfmemalloc(slab)))
3006 		return gfp_pfmemalloc_allowed(gfpflags);
3007 
3008 	return true;
3009 }
3010 
3011 #ifndef CONFIG_SLUB_TINY
3012 /*
3013  * Check the slab->freelist and either transfer the freelist to the
3014  * per cpu freelist or deactivate the slab.
3015  *
3016  * The slab is still frozen if the return value is not NULL.
3017  *
3018  * If this function returns NULL then the slab has been unfrozen.
3019  */
3020 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3021 {
3022 	struct slab new;
3023 	unsigned long counters;
3024 	void *freelist;
3025 
3026 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3027 
3028 	do {
3029 		freelist = slab->freelist;
3030 		counters = slab->counters;
3031 
3032 		new.counters = counters;
3033 		VM_BUG_ON(!new.frozen);
3034 
3035 		new.inuse = slab->objects;
3036 		new.frozen = freelist != NULL;
3037 
3038 	} while (!__cmpxchg_double_slab(s, slab,
3039 		freelist, counters,
3040 		NULL, new.counters,
3041 		"get_freelist"));
3042 
3043 	return freelist;
3044 }
3045 
3046 /*
3047  * Slow path. The lockless freelist is empty or we need to perform
3048  * debugging duties.
3049  *
3050  * Processing is still very fast if new objects have been freed to the
3051  * regular freelist. In that case we simply take over the regular freelist
3052  * as the lockless freelist and zap the regular freelist.
3053  *
3054  * If that is not working then we fall back to the partial lists. We take the
3055  * first element of the freelist as the object to allocate now and move the
3056  * rest of the freelist to the lockless freelist.
3057  *
3058  * And if we were unable to get a new slab from the partial slab lists then
3059  * we need to allocate a new slab. This is the slowest path since it involves
3060  * a call to the page allocator and the setup of a new slab.
3061  *
3062  * Version of __slab_alloc to use when we know that preemption is
3063  * already disabled (which is the case for bulk allocation).
3064  */
3065 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3066 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3067 {
3068 	void *freelist;
3069 	struct slab *slab;
3070 	unsigned long flags;
3071 	struct partial_context pc;
3072 
3073 	stat(s, ALLOC_SLOWPATH);
3074 
3075 reread_slab:
3076 
3077 	slab = READ_ONCE(c->slab);
3078 	if (!slab) {
3079 		/*
3080 		 * if the node is not online or has no normal memory, just
3081 		 * ignore the node constraint
3082 		 */
3083 		if (unlikely(node != NUMA_NO_NODE &&
3084 			     !node_isset(node, slab_nodes)))
3085 			node = NUMA_NO_NODE;
3086 		goto new_slab;
3087 	}
3088 redo:
3089 
3090 	if (unlikely(!node_match(slab, node))) {
3091 		/*
3092 		 * same as above but node_match() being false already
3093 		 * implies node != NUMA_NO_NODE
3094 		 */
3095 		if (!node_isset(node, slab_nodes)) {
3096 			node = NUMA_NO_NODE;
3097 		} else {
3098 			stat(s, ALLOC_NODE_MISMATCH);
3099 			goto deactivate_slab;
3100 		}
3101 	}
3102 
3103 	/*
3104 	 * By rights, we should be searching for a slab page that was
3105 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3106 	 * information when the page leaves the per-cpu allocator
3107 	 */
3108 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3109 		goto deactivate_slab;
3110 
3111 	/* must check again c->slab in case we got preempted and it changed */
3112 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3113 	if (unlikely(slab != c->slab)) {
3114 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3115 		goto reread_slab;
3116 	}
3117 	freelist = c->freelist;
3118 	if (freelist)
3119 		goto load_freelist;
3120 
3121 	freelist = get_freelist(s, slab);
3122 
3123 	if (!freelist) {
3124 		c->slab = NULL;
3125 		c->tid = next_tid(c->tid);
3126 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3127 		stat(s, DEACTIVATE_BYPASS);
3128 		goto new_slab;
3129 	}
3130 
3131 	stat(s, ALLOC_REFILL);
3132 
3133 load_freelist:
3134 
3135 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3136 
3137 	/*
3138 	 * freelist is pointing to the list of objects to be used.
3139 	 * slab is pointing to the slab from which the objects are obtained.
3140 	 * That slab must be frozen for per cpu allocations to work.
3141 	 */
3142 	VM_BUG_ON(!c->slab->frozen);
3143 	c->freelist = get_freepointer(s, freelist);
3144 	c->tid = next_tid(c->tid);
3145 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3146 	return freelist;
3147 
3148 deactivate_slab:
3149 
3150 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3151 	if (slab != c->slab) {
3152 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3153 		goto reread_slab;
3154 	}
3155 	freelist = c->freelist;
3156 	c->slab = NULL;
3157 	c->freelist = NULL;
3158 	c->tid = next_tid(c->tid);
3159 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3160 	deactivate_slab(s, slab, freelist);
3161 
3162 new_slab:
3163 
3164 	if (slub_percpu_partial(c)) {
3165 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3166 		if (unlikely(c->slab)) {
3167 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3168 			goto reread_slab;
3169 		}
3170 		if (unlikely(!slub_percpu_partial(c))) {
3171 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3172 			/* we were preempted and partial list got empty */
3173 			goto new_objects;
3174 		}
3175 
3176 		slab = c->slab = slub_percpu_partial(c);
3177 		slub_set_percpu_partial(c, slab);
3178 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3179 		stat(s, CPU_PARTIAL_ALLOC);
3180 		goto redo;
3181 	}
3182 
3183 new_objects:
3184 
3185 	pc.flags = gfpflags;
3186 	pc.slab = &slab;
3187 	pc.orig_size = orig_size;
3188 	freelist = get_partial(s, node, &pc);
3189 	if (freelist)
3190 		goto check_new_slab;
3191 
3192 	slub_put_cpu_ptr(s->cpu_slab);
3193 	slab = new_slab(s, gfpflags, node);
3194 	c = slub_get_cpu_ptr(s->cpu_slab);
3195 
3196 	if (unlikely(!slab)) {
3197 		slab_out_of_memory(s, gfpflags, node);
3198 		return NULL;
3199 	}
3200 
3201 	stat(s, ALLOC_SLAB);
3202 
3203 	if (kmem_cache_debug(s)) {
3204 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3205 
3206 		if (unlikely(!freelist))
3207 			goto new_objects;
3208 
3209 		if (s->flags & SLAB_STORE_USER)
3210 			set_track(s, freelist, TRACK_ALLOC, addr);
3211 
3212 		return freelist;
3213 	}
3214 
3215 	/*
3216 	 * No other reference to the slab yet so we can
3217 	 * muck around with it freely without cmpxchg
3218 	 */
3219 	freelist = slab->freelist;
3220 	slab->freelist = NULL;
3221 	slab->inuse = slab->objects;
3222 	slab->frozen = 1;
3223 
3224 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3225 
3226 check_new_slab:
3227 
3228 	if (kmem_cache_debug(s)) {
3229 		/*
3230 		 * For debug caches here we had to go through
3231 		 * alloc_single_from_partial() so just store the tracking info
3232 		 * and return the object
3233 		 */
3234 		if (s->flags & SLAB_STORE_USER)
3235 			set_track(s, freelist, TRACK_ALLOC, addr);
3236 
3237 		return freelist;
3238 	}
3239 
3240 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3241 		/*
3242 		 * For !pfmemalloc_match() case we don't load freelist so that
3243 		 * we don't make further mismatched allocations easier.
3244 		 */
3245 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3246 		return freelist;
3247 	}
3248 
3249 retry_load_slab:
3250 
3251 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3252 	if (unlikely(c->slab)) {
3253 		void *flush_freelist = c->freelist;
3254 		struct slab *flush_slab = c->slab;
3255 
3256 		c->slab = NULL;
3257 		c->freelist = NULL;
3258 		c->tid = next_tid(c->tid);
3259 
3260 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3261 
3262 		deactivate_slab(s, flush_slab, flush_freelist);
3263 
3264 		stat(s, CPUSLAB_FLUSH);
3265 
3266 		goto retry_load_slab;
3267 	}
3268 	c->slab = slab;
3269 
3270 	goto load_freelist;
3271 }
3272 
3273 /*
3274  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3275  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3276  * pointer.
3277  */
3278 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3279 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3280 {
3281 	void *p;
3282 
3283 #ifdef CONFIG_PREEMPT_COUNT
3284 	/*
3285 	 * We may have been preempted and rescheduled on a different
3286 	 * cpu before disabling preemption. Need to reload cpu area
3287 	 * pointer.
3288 	 */
3289 	c = slub_get_cpu_ptr(s->cpu_slab);
3290 #endif
3291 
3292 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3293 #ifdef CONFIG_PREEMPT_COUNT
3294 	slub_put_cpu_ptr(s->cpu_slab);
3295 #endif
3296 	return p;
3297 }
3298 
3299 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3300 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3301 {
3302 	struct kmem_cache_cpu *c;
3303 	struct slab *slab;
3304 	unsigned long tid;
3305 	void *object;
3306 
3307 redo:
3308 	/*
3309 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3310 	 * enabled. We may switch back and forth between cpus while
3311 	 * reading from one cpu area. That does not matter as long
3312 	 * as we end up on the original cpu again when doing the cmpxchg.
3313 	 *
3314 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3315 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3316 	 * the tid. If we are preempted and switched to another cpu between the
3317 	 * two reads, it's OK as the two are still associated with the same cpu
3318 	 * and cmpxchg later will validate the cpu.
3319 	 */
3320 	c = raw_cpu_ptr(s->cpu_slab);
3321 	tid = READ_ONCE(c->tid);
3322 
3323 	/*
3324 	 * Irqless object alloc/free algorithm used here depends on sequence
3325 	 * of fetching cpu_slab's data. tid should be fetched before anything
3326 	 * on c to guarantee that object and slab associated with previous tid
3327 	 * won't be used with current tid. If we fetch tid first, object and
3328 	 * slab could be one associated with next tid and our alloc/free
3329 	 * request will be failed. In this case, we will retry. So, no problem.
3330 	 */
3331 	barrier();
3332 
3333 	/*
3334 	 * The transaction ids are globally unique per cpu and per operation on
3335 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3336 	 * occurs on the right processor and that there was no operation on the
3337 	 * linked list in between.
3338 	 */
3339 
3340 	object = c->freelist;
3341 	slab = c->slab;
3342 
3343 	if (!USE_LOCKLESS_FAST_PATH() ||
3344 	    unlikely(!object || !slab || !node_match(slab, node))) {
3345 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3346 	} else {
3347 		void *next_object = get_freepointer_safe(s, object);
3348 
3349 		/*
3350 		 * The cmpxchg will only match if there was no additional
3351 		 * operation and if we are on the right processor.
3352 		 *
3353 		 * The cmpxchg does the following atomically (without lock
3354 		 * semantics!)
3355 		 * 1. Relocate first pointer to the current per cpu area.
3356 		 * 2. Verify that tid and freelist have not been changed
3357 		 * 3. If they were not changed replace tid and freelist
3358 		 *
3359 		 * Since this is without lock semantics the protection is only
3360 		 * against code executing on this cpu *not* from access by
3361 		 * other cpus.
3362 		 */
3363 		if (unlikely(!this_cpu_cmpxchg_double(
3364 				s->cpu_slab->freelist, s->cpu_slab->tid,
3365 				object, tid,
3366 				next_object, next_tid(tid)))) {
3367 
3368 			note_cmpxchg_failure("slab_alloc", s, tid);
3369 			goto redo;
3370 		}
3371 		prefetch_freepointer(s, next_object);
3372 		stat(s, ALLOC_FASTPATH);
3373 	}
3374 
3375 	return object;
3376 }
3377 #else /* CONFIG_SLUB_TINY */
3378 static void *__slab_alloc_node(struct kmem_cache *s,
3379 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3380 {
3381 	struct partial_context pc;
3382 	struct slab *slab;
3383 	void *object;
3384 
3385 	pc.flags = gfpflags;
3386 	pc.slab = &slab;
3387 	pc.orig_size = orig_size;
3388 	object = get_partial(s, node, &pc);
3389 
3390 	if (object)
3391 		return object;
3392 
3393 	slab = new_slab(s, gfpflags, node);
3394 	if (unlikely(!slab)) {
3395 		slab_out_of_memory(s, gfpflags, node);
3396 		return NULL;
3397 	}
3398 
3399 	object = alloc_single_from_new_slab(s, slab, orig_size);
3400 
3401 	return object;
3402 }
3403 #endif /* CONFIG_SLUB_TINY */
3404 
3405 /*
3406  * If the object has been wiped upon free, make sure it's fully initialized by
3407  * zeroing out freelist pointer.
3408  */
3409 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3410 						   void *obj)
3411 {
3412 	if (unlikely(slab_want_init_on_free(s)) && obj)
3413 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3414 			0, sizeof(void *));
3415 }
3416 
3417 /*
3418  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3419  * have the fastpath folded into their functions. So no function call
3420  * overhead for requests that can be satisfied on the fastpath.
3421  *
3422  * The fastpath works by first checking if the lockless freelist can be used.
3423  * If not then __slab_alloc is called for slow processing.
3424  *
3425  * Otherwise we can simply pick the next object from the lockless free list.
3426  */
3427 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3428 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3429 {
3430 	void *object;
3431 	struct obj_cgroup *objcg = NULL;
3432 	bool init = false;
3433 
3434 	s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3435 	if (!s)
3436 		return NULL;
3437 
3438 	object = kfence_alloc(s, orig_size, gfpflags);
3439 	if (unlikely(object))
3440 		goto out;
3441 
3442 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3443 
3444 	maybe_wipe_obj_freeptr(s, object);
3445 	init = slab_want_init_on_alloc(gfpflags, s);
3446 
3447 out:
3448 	/*
3449 	 * When init equals 'true', like for kzalloc() family, only
3450 	 * @orig_size bytes might be zeroed instead of s->object_size
3451 	 */
3452 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3453 
3454 	return object;
3455 }
3456 
3457 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3458 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3459 {
3460 	return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3461 }
3462 
3463 static __fastpath_inline
3464 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3465 			     gfp_t gfpflags)
3466 {
3467 	void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3468 
3469 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3470 
3471 	return ret;
3472 }
3473 
3474 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3475 {
3476 	return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3477 }
3478 EXPORT_SYMBOL(kmem_cache_alloc);
3479 
3480 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3481 			   gfp_t gfpflags)
3482 {
3483 	return __kmem_cache_alloc_lru(s, lru, gfpflags);
3484 }
3485 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3486 
3487 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3488 			      int node, size_t orig_size,
3489 			      unsigned long caller)
3490 {
3491 	return slab_alloc_node(s, NULL, gfpflags, node,
3492 			       caller, orig_size);
3493 }
3494 
3495 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3496 {
3497 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3498 
3499 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3500 
3501 	return ret;
3502 }
3503 EXPORT_SYMBOL(kmem_cache_alloc_node);
3504 
3505 static noinline void free_to_partial_list(
3506 	struct kmem_cache *s, struct slab *slab,
3507 	void *head, void *tail, int bulk_cnt,
3508 	unsigned long addr)
3509 {
3510 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3511 	struct slab *slab_free = NULL;
3512 	int cnt = bulk_cnt;
3513 	unsigned long flags;
3514 	depot_stack_handle_t handle = 0;
3515 
3516 	if (s->flags & SLAB_STORE_USER)
3517 		handle = set_track_prepare();
3518 
3519 	spin_lock_irqsave(&n->list_lock, flags);
3520 
3521 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3522 		void *prior = slab->freelist;
3523 
3524 		/* Perform the actual freeing while we still hold the locks */
3525 		slab->inuse -= cnt;
3526 		set_freepointer(s, tail, prior);
3527 		slab->freelist = head;
3528 
3529 		/*
3530 		 * If the slab is empty, and node's partial list is full,
3531 		 * it should be discarded anyway no matter it's on full or
3532 		 * partial list.
3533 		 */
3534 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3535 			slab_free = slab;
3536 
3537 		if (!prior) {
3538 			/* was on full list */
3539 			remove_full(s, n, slab);
3540 			if (!slab_free) {
3541 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
3542 				stat(s, FREE_ADD_PARTIAL);
3543 			}
3544 		} else if (slab_free) {
3545 			remove_partial(n, slab);
3546 			stat(s, FREE_REMOVE_PARTIAL);
3547 		}
3548 	}
3549 
3550 	if (slab_free) {
3551 		/*
3552 		 * Update the counters while still holding n->list_lock to
3553 		 * prevent spurious validation warnings
3554 		 */
3555 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3556 	}
3557 
3558 	spin_unlock_irqrestore(&n->list_lock, flags);
3559 
3560 	if (slab_free) {
3561 		stat(s, FREE_SLAB);
3562 		free_slab(s, slab_free);
3563 	}
3564 }
3565 
3566 /*
3567  * Slow path handling. This may still be called frequently since objects
3568  * have a longer lifetime than the cpu slabs in most processing loads.
3569  *
3570  * So we still attempt to reduce cache line usage. Just take the slab
3571  * lock and free the item. If there is no additional partial slab
3572  * handling required then we can return immediately.
3573  */
3574 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3575 			void *head, void *tail, int cnt,
3576 			unsigned long addr)
3577 
3578 {
3579 	void *prior;
3580 	int was_frozen;
3581 	struct slab new;
3582 	unsigned long counters;
3583 	struct kmem_cache_node *n = NULL;
3584 	unsigned long flags;
3585 
3586 	stat(s, FREE_SLOWPATH);
3587 
3588 	if (kfence_free(head))
3589 		return;
3590 
3591 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3592 		free_to_partial_list(s, slab, head, tail, cnt, addr);
3593 		return;
3594 	}
3595 
3596 	do {
3597 		if (unlikely(n)) {
3598 			spin_unlock_irqrestore(&n->list_lock, flags);
3599 			n = NULL;
3600 		}
3601 		prior = slab->freelist;
3602 		counters = slab->counters;
3603 		set_freepointer(s, tail, prior);
3604 		new.counters = counters;
3605 		was_frozen = new.frozen;
3606 		new.inuse -= cnt;
3607 		if ((!new.inuse || !prior) && !was_frozen) {
3608 
3609 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3610 
3611 				/*
3612 				 * Slab was on no list before and will be
3613 				 * partially empty
3614 				 * We can defer the list move and instead
3615 				 * freeze it.
3616 				 */
3617 				new.frozen = 1;
3618 
3619 			} else { /* Needs to be taken off a list */
3620 
3621 				n = get_node(s, slab_nid(slab));
3622 				/*
3623 				 * Speculatively acquire the list_lock.
3624 				 * If the cmpxchg does not succeed then we may
3625 				 * drop the list_lock without any processing.
3626 				 *
3627 				 * Otherwise the list_lock will synchronize with
3628 				 * other processors updating the list of slabs.
3629 				 */
3630 				spin_lock_irqsave(&n->list_lock, flags);
3631 
3632 			}
3633 		}
3634 
3635 	} while (!cmpxchg_double_slab(s, slab,
3636 		prior, counters,
3637 		head, new.counters,
3638 		"__slab_free"));
3639 
3640 	if (likely(!n)) {
3641 
3642 		if (likely(was_frozen)) {
3643 			/*
3644 			 * The list lock was not taken therefore no list
3645 			 * activity can be necessary.
3646 			 */
3647 			stat(s, FREE_FROZEN);
3648 		} else if (new.frozen) {
3649 			/*
3650 			 * If we just froze the slab then put it onto the
3651 			 * per cpu partial list.
3652 			 */
3653 			put_cpu_partial(s, slab, 1);
3654 			stat(s, CPU_PARTIAL_FREE);
3655 		}
3656 
3657 		return;
3658 	}
3659 
3660 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3661 		goto slab_empty;
3662 
3663 	/*
3664 	 * Objects left in the slab. If it was not on the partial list before
3665 	 * then add it.
3666 	 */
3667 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3668 		remove_full(s, n, slab);
3669 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
3670 		stat(s, FREE_ADD_PARTIAL);
3671 	}
3672 	spin_unlock_irqrestore(&n->list_lock, flags);
3673 	return;
3674 
3675 slab_empty:
3676 	if (prior) {
3677 		/*
3678 		 * Slab on the partial list.
3679 		 */
3680 		remove_partial(n, slab);
3681 		stat(s, FREE_REMOVE_PARTIAL);
3682 	} else {
3683 		/* Slab must be on the full list */
3684 		remove_full(s, n, slab);
3685 	}
3686 
3687 	spin_unlock_irqrestore(&n->list_lock, flags);
3688 	stat(s, FREE_SLAB);
3689 	discard_slab(s, slab);
3690 }
3691 
3692 #ifndef CONFIG_SLUB_TINY
3693 /*
3694  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3695  * can perform fastpath freeing without additional function calls.
3696  *
3697  * The fastpath is only possible if we are freeing to the current cpu slab
3698  * of this processor. This typically the case if we have just allocated
3699  * the item before.
3700  *
3701  * If fastpath is not possible then fall back to __slab_free where we deal
3702  * with all sorts of special processing.
3703  *
3704  * Bulk free of a freelist with several objects (all pointing to the
3705  * same slab) possible by specifying head and tail ptr, plus objects
3706  * count (cnt). Bulk free indicated by tail pointer being set.
3707  */
3708 static __always_inline void do_slab_free(struct kmem_cache *s,
3709 				struct slab *slab, void *head, void *tail,
3710 				int cnt, unsigned long addr)
3711 {
3712 	void *tail_obj = tail ? : head;
3713 	struct kmem_cache_cpu *c;
3714 	unsigned long tid;
3715 	void **freelist;
3716 
3717 redo:
3718 	/*
3719 	 * Determine the currently cpus per cpu slab.
3720 	 * The cpu may change afterward. However that does not matter since
3721 	 * data is retrieved via this pointer. If we are on the same cpu
3722 	 * during the cmpxchg then the free will succeed.
3723 	 */
3724 	c = raw_cpu_ptr(s->cpu_slab);
3725 	tid = READ_ONCE(c->tid);
3726 
3727 	/* Same with comment on barrier() in slab_alloc_node() */
3728 	barrier();
3729 
3730 	if (unlikely(slab != c->slab)) {
3731 		__slab_free(s, slab, head, tail_obj, cnt, addr);
3732 		return;
3733 	}
3734 
3735 	if (USE_LOCKLESS_FAST_PATH()) {
3736 		freelist = READ_ONCE(c->freelist);
3737 
3738 		set_freepointer(s, tail_obj, freelist);
3739 
3740 		if (unlikely(!this_cpu_cmpxchg_double(
3741 				s->cpu_slab->freelist, s->cpu_slab->tid,
3742 				freelist, tid,
3743 				head, next_tid(tid)))) {
3744 
3745 			note_cmpxchg_failure("slab_free", s, tid);
3746 			goto redo;
3747 		}
3748 	} else {
3749 		/* Update the free list under the local lock */
3750 		local_lock(&s->cpu_slab->lock);
3751 		c = this_cpu_ptr(s->cpu_slab);
3752 		if (unlikely(slab != c->slab)) {
3753 			local_unlock(&s->cpu_slab->lock);
3754 			goto redo;
3755 		}
3756 		tid = c->tid;
3757 		freelist = c->freelist;
3758 
3759 		set_freepointer(s, tail_obj, freelist);
3760 		c->freelist = head;
3761 		c->tid = next_tid(tid);
3762 
3763 		local_unlock(&s->cpu_slab->lock);
3764 	}
3765 	stat(s, FREE_FASTPATH);
3766 }
3767 #else /* CONFIG_SLUB_TINY */
3768 static void do_slab_free(struct kmem_cache *s,
3769 				struct slab *slab, void *head, void *tail,
3770 				int cnt, unsigned long addr)
3771 {
3772 	void *tail_obj = tail ? : head;
3773 
3774 	__slab_free(s, slab, head, tail_obj, cnt, addr);
3775 }
3776 #endif /* CONFIG_SLUB_TINY */
3777 
3778 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3779 				      void *head, void *tail, void **p, int cnt,
3780 				      unsigned long addr)
3781 {
3782 	memcg_slab_free_hook(s, slab, p, cnt);
3783 	/*
3784 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3785 	 * to remove objects, whose reuse must be delayed.
3786 	 */
3787 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3788 		do_slab_free(s, slab, head, tail, cnt, addr);
3789 }
3790 
3791 #ifdef CONFIG_KASAN_GENERIC
3792 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3793 {
3794 	do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3795 }
3796 #endif
3797 
3798 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3799 {
3800 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3801 }
3802 
3803 void kmem_cache_free(struct kmem_cache *s, void *x)
3804 {
3805 	s = cache_from_obj(s, x);
3806 	if (!s)
3807 		return;
3808 	trace_kmem_cache_free(_RET_IP_, x, s);
3809 	slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3810 }
3811 EXPORT_SYMBOL(kmem_cache_free);
3812 
3813 struct detached_freelist {
3814 	struct slab *slab;
3815 	void *tail;
3816 	void *freelist;
3817 	int cnt;
3818 	struct kmem_cache *s;
3819 };
3820 
3821 /*
3822  * This function progressively scans the array with free objects (with
3823  * a limited look ahead) and extract objects belonging to the same
3824  * slab.  It builds a detached freelist directly within the given
3825  * slab/objects.  This can happen without any need for
3826  * synchronization, because the objects are owned by running process.
3827  * The freelist is build up as a single linked list in the objects.
3828  * The idea is, that this detached freelist can then be bulk
3829  * transferred to the real freelist(s), but only requiring a single
3830  * synchronization primitive.  Look ahead in the array is limited due
3831  * to performance reasons.
3832  */
3833 static inline
3834 int build_detached_freelist(struct kmem_cache *s, size_t size,
3835 			    void **p, struct detached_freelist *df)
3836 {
3837 	int lookahead = 3;
3838 	void *object;
3839 	struct folio *folio;
3840 	size_t same;
3841 
3842 	object = p[--size];
3843 	folio = virt_to_folio(object);
3844 	if (!s) {
3845 		/* Handle kalloc'ed objects */
3846 		if (unlikely(!folio_test_slab(folio))) {
3847 			free_large_kmalloc(folio, object);
3848 			df->slab = NULL;
3849 			return size;
3850 		}
3851 		/* Derive kmem_cache from object */
3852 		df->slab = folio_slab(folio);
3853 		df->s = df->slab->slab_cache;
3854 	} else {
3855 		df->slab = folio_slab(folio);
3856 		df->s = cache_from_obj(s, object); /* Support for memcg */
3857 	}
3858 
3859 	/* Start new detached freelist */
3860 	df->tail = object;
3861 	df->freelist = object;
3862 	df->cnt = 1;
3863 
3864 	if (is_kfence_address(object))
3865 		return size;
3866 
3867 	set_freepointer(df->s, object, NULL);
3868 
3869 	same = size;
3870 	while (size) {
3871 		object = p[--size];
3872 		/* df->slab is always set at this point */
3873 		if (df->slab == virt_to_slab(object)) {
3874 			/* Opportunity build freelist */
3875 			set_freepointer(df->s, object, df->freelist);
3876 			df->freelist = object;
3877 			df->cnt++;
3878 			same--;
3879 			if (size != same)
3880 				swap(p[size], p[same]);
3881 			continue;
3882 		}
3883 
3884 		/* Limit look ahead search */
3885 		if (!--lookahead)
3886 			break;
3887 	}
3888 
3889 	return same;
3890 }
3891 
3892 /* Note that interrupts must be enabled when calling this function. */
3893 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3894 {
3895 	if (!size)
3896 		return;
3897 
3898 	do {
3899 		struct detached_freelist df;
3900 
3901 		size = build_detached_freelist(s, size, p, &df);
3902 		if (!df.slab)
3903 			continue;
3904 
3905 		slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3906 			  _RET_IP_);
3907 	} while (likely(size));
3908 }
3909 EXPORT_SYMBOL(kmem_cache_free_bulk);
3910 
3911 #ifndef CONFIG_SLUB_TINY
3912 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3913 			size_t size, void **p, struct obj_cgroup *objcg)
3914 {
3915 	struct kmem_cache_cpu *c;
3916 	unsigned long irqflags;
3917 	int i;
3918 
3919 	/*
3920 	 * Drain objects in the per cpu slab, while disabling local
3921 	 * IRQs, which protects against PREEMPT and interrupts
3922 	 * handlers invoking normal fastpath.
3923 	 */
3924 	c = slub_get_cpu_ptr(s->cpu_slab);
3925 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3926 
3927 	for (i = 0; i < size; i++) {
3928 		void *object = kfence_alloc(s, s->object_size, flags);
3929 
3930 		if (unlikely(object)) {
3931 			p[i] = object;
3932 			continue;
3933 		}
3934 
3935 		object = c->freelist;
3936 		if (unlikely(!object)) {
3937 			/*
3938 			 * We may have removed an object from c->freelist using
3939 			 * the fastpath in the previous iteration; in that case,
3940 			 * c->tid has not been bumped yet.
3941 			 * Since ___slab_alloc() may reenable interrupts while
3942 			 * allocating memory, we should bump c->tid now.
3943 			 */
3944 			c->tid = next_tid(c->tid);
3945 
3946 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3947 
3948 			/*
3949 			 * Invoking slow path likely have side-effect
3950 			 * of re-populating per CPU c->freelist
3951 			 */
3952 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3953 					    _RET_IP_, c, s->object_size);
3954 			if (unlikely(!p[i]))
3955 				goto error;
3956 
3957 			c = this_cpu_ptr(s->cpu_slab);
3958 			maybe_wipe_obj_freeptr(s, p[i]);
3959 
3960 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3961 
3962 			continue; /* goto for-loop */
3963 		}
3964 		c->freelist = get_freepointer(s, object);
3965 		p[i] = object;
3966 		maybe_wipe_obj_freeptr(s, p[i]);
3967 	}
3968 	c->tid = next_tid(c->tid);
3969 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3970 	slub_put_cpu_ptr(s->cpu_slab);
3971 
3972 	return i;
3973 
3974 error:
3975 	slub_put_cpu_ptr(s->cpu_slab);
3976 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3977 	kmem_cache_free_bulk(s, i, p);
3978 	return 0;
3979 
3980 }
3981 #else /* CONFIG_SLUB_TINY */
3982 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3983 			size_t size, void **p, struct obj_cgroup *objcg)
3984 {
3985 	int i;
3986 
3987 	for (i = 0; i < size; i++) {
3988 		void *object = kfence_alloc(s, s->object_size, flags);
3989 
3990 		if (unlikely(object)) {
3991 			p[i] = object;
3992 			continue;
3993 		}
3994 
3995 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
3996 					 _RET_IP_, s->object_size);
3997 		if (unlikely(!p[i]))
3998 			goto error;
3999 
4000 		maybe_wipe_obj_freeptr(s, p[i]);
4001 	}
4002 
4003 	return i;
4004 
4005 error:
4006 	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4007 	kmem_cache_free_bulk(s, i, p);
4008 	return 0;
4009 }
4010 #endif /* CONFIG_SLUB_TINY */
4011 
4012 /* Note that interrupts must be enabled when calling this function. */
4013 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4014 			  void **p)
4015 {
4016 	int i;
4017 	struct obj_cgroup *objcg = NULL;
4018 
4019 	if (!size)
4020 		return 0;
4021 
4022 	/* memcg and kmem_cache debug support */
4023 	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4024 	if (unlikely(!s))
4025 		return 0;
4026 
4027 	i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4028 
4029 	/*
4030 	 * memcg and kmem_cache debug support and memory initialization.
4031 	 * Done outside of the IRQ disabled fastpath loop.
4032 	 */
4033 	if (i != 0)
4034 		slab_post_alloc_hook(s, objcg, flags, size, p,
4035 			slab_want_init_on_alloc(flags, s), s->object_size);
4036 	return i;
4037 }
4038 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4039 
4040 
4041 /*
4042  * Object placement in a slab is made very easy because we always start at
4043  * offset 0. If we tune the size of the object to the alignment then we can
4044  * get the required alignment by putting one properly sized object after
4045  * another.
4046  *
4047  * Notice that the allocation order determines the sizes of the per cpu
4048  * caches. Each processor has always one slab available for allocations.
4049  * Increasing the allocation order reduces the number of times that slabs
4050  * must be moved on and off the partial lists and is therefore a factor in
4051  * locking overhead.
4052  */
4053 
4054 /*
4055  * Minimum / Maximum order of slab pages. This influences locking overhead
4056  * and slab fragmentation. A higher order reduces the number of partial slabs
4057  * and increases the number of allocations possible without having to
4058  * take the list_lock.
4059  */
4060 static unsigned int slub_min_order;
4061 static unsigned int slub_max_order =
4062 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4063 static unsigned int slub_min_objects;
4064 
4065 /*
4066  * Calculate the order of allocation given an slab object size.
4067  *
4068  * The order of allocation has significant impact on performance and other
4069  * system components. Generally order 0 allocations should be preferred since
4070  * order 0 does not cause fragmentation in the page allocator. Larger objects
4071  * be problematic to put into order 0 slabs because there may be too much
4072  * unused space left. We go to a higher order if more than 1/16th of the slab
4073  * would be wasted.
4074  *
4075  * In order to reach satisfactory performance we must ensure that a minimum
4076  * number of objects is in one slab. Otherwise we may generate too much
4077  * activity on the partial lists which requires taking the list_lock. This is
4078  * less a concern for large slabs though which are rarely used.
4079  *
4080  * slub_max_order specifies the order where we begin to stop considering the
4081  * number of objects in a slab as critical. If we reach slub_max_order then
4082  * we try to keep the page order as low as possible. So we accept more waste
4083  * of space in favor of a small page order.
4084  *
4085  * Higher order allocations also allow the placement of more objects in a
4086  * slab and thereby reduce object handling overhead. If the user has
4087  * requested a higher minimum order then we start with that one instead of
4088  * the smallest order which will fit the object.
4089  */
4090 static inline unsigned int calc_slab_order(unsigned int size,
4091 		unsigned int min_objects, unsigned int max_order,
4092 		unsigned int fract_leftover)
4093 {
4094 	unsigned int min_order = slub_min_order;
4095 	unsigned int order;
4096 
4097 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4098 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4099 
4100 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4101 			order <= max_order; order++) {
4102 
4103 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4104 		unsigned int rem;
4105 
4106 		rem = slab_size % size;
4107 
4108 		if (rem <= slab_size / fract_leftover)
4109 			break;
4110 	}
4111 
4112 	return order;
4113 }
4114 
4115 static inline int calculate_order(unsigned int size)
4116 {
4117 	unsigned int order;
4118 	unsigned int min_objects;
4119 	unsigned int max_objects;
4120 	unsigned int nr_cpus;
4121 
4122 	/*
4123 	 * Attempt to find best configuration for a slab. This
4124 	 * works by first attempting to generate a layout with
4125 	 * the best configuration and backing off gradually.
4126 	 *
4127 	 * First we increase the acceptable waste in a slab. Then
4128 	 * we reduce the minimum objects required in a slab.
4129 	 */
4130 	min_objects = slub_min_objects;
4131 	if (!min_objects) {
4132 		/*
4133 		 * Some architectures will only update present cpus when
4134 		 * onlining them, so don't trust the number if it's just 1. But
4135 		 * we also don't want to use nr_cpu_ids always, as on some other
4136 		 * architectures, there can be many possible cpus, but never
4137 		 * onlined. Here we compromise between trying to avoid too high
4138 		 * order on systems that appear larger than they are, and too
4139 		 * low order on systems that appear smaller than they are.
4140 		 */
4141 		nr_cpus = num_present_cpus();
4142 		if (nr_cpus <= 1)
4143 			nr_cpus = nr_cpu_ids;
4144 		min_objects = 4 * (fls(nr_cpus) + 1);
4145 	}
4146 	max_objects = order_objects(slub_max_order, size);
4147 	min_objects = min(min_objects, max_objects);
4148 
4149 	while (min_objects > 1) {
4150 		unsigned int fraction;
4151 
4152 		fraction = 16;
4153 		while (fraction >= 4) {
4154 			order = calc_slab_order(size, min_objects,
4155 					slub_max_order, fraction);
4156 			if (order <= slub_max_order)
4157 				return order;
4158 			fraction /= 2;
4159 		}
4160 		min_objects--;
4161 	}
4162 
4163 	/*
4164 	 * We were unable to place multiple objects in a slab. Now
4165 	 * lets see if we can place a single object there.
4166 	 */
4167 	order = calc_slab_order(size, 1, slub_max_order, 1);
4168 	if (order <= slub_max_order)
4169 		return order;
4170 
4171 	/*
4172 	 * Doh this slab cannot be placed using slub_max_order.
4173 	 */
4174 	order = calc_slab_order(size, 1, MAX_ORDER, 1);
4175 	if (order < MAX_ORDER)
4176 		return order;
4177 	return -ENOSYS;
4178 }
4179 
4180 static void
4181 init_kmem_cache_node(struct kmem_cache_node *n)
4182 {
4183 	n->nr_partial = 0;
4184 	spin_lock_init(&n->list_lock);
4185 	INIT_LIST_HEAD(&n->partial);
4186 #ifdef CONFIG_SLUB_DEBUG
4187 	atomic_long_set(&n->nr_slabs, 0);
4188 	atomic_long_set(&n->total_objects, 0);
4189 	INIT_LIST_HEAD(&n->full);
4190 #endif
4191 }
4192 
4193 #ifndef CONFIG_SLUB_TINY
4194 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4195 {
4196 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4197 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4198 			sizeof(struct kmem_cache_cpu));
4199 
4200 	/*
4201 	 * Must align to double word boundary for the double cmpxchg
4202 	 * instructions to work; see __pcpu_double_call_return_bool().
4203 	 */
4204 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4205 				     2 * sizeof(void *));
4206 
4207 	if (!s->cpu_slab)
4208 		return 0;
4209 
4210 	init_kmem_cache_cpus(s);
4211 
4212 	return 1;
4213 }
4214 #else
4215 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4216 {
4217 	return 1;
4218 }
4219 #endif /* CONFIG_SLUB_TINY */
4220 
4221 static struct kmem_cache *kmem_cache_node;
4222 
4223 /*
4224  * No kmalloc_node yet so do it by hand. We know that this is the first
4225  * slab on the node for this slabcache. There are no concurrent accesses
4226  * possible.
4227  *
4228  * Note that this function only works on the kmem_cache_node
4229  * when allocating for the kmem_cache_node. This is used for bootstrapping
4230  * memory on a fresh node that has no slab structures yet.
4231  */
4232 static void early_kmem_cache_node_alloc(int node)
4233 {
4234 	struct slab *slab;
4235 	struct kmem_cache_node *n;
4236 
4237 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4238 
4239 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4240 
4241 	BUG_ON(!slab);
4242 	inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4243 	if (slab_nid(slab) != node) {
4244 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4245 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4246 	}
4247 
4248 	n = slab->freelist;
4249 	BUG_ON(!n);
4250 #ifdef CONFIG_SLUB_DEBUG
4251 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4252 	init_tracking(kmem_cache_node, n);
4253 #endif
4254 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4255 	slab->freelist = get_freepointer(kmem_cache_node, n);
4256 	slab->inuse = 1;
4257 	kmem_cache_node->node[node] = n;
4258 	init_kmem_cache_node(n);
4259 	inc_slabs_node(kmem_cache_node, node, slab->objects);
4260 
4261 	/*
4262 	 * No locks need to be taken here as it has just been
4263 	 * initialized and there is no concurrent access.
4264 	 */
4265 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
4266 }
4267 
4268 static void free_kmem_cache_nodes(struct kmem_cache *s)
4269 {
4270 	int node;
4271 	struct kmem_cache_node *n;
4272 
4273 	for_each_kmem_cache_node(s, node, n) {
4274 		s->node[node] = NULL;
4275 		kmem_cache_free(kmem_cache_node, n);
4276 	}
4277 }
4278 
4279 void __kmem_cache_release(struct kmem_cache *s)
4280 {
4281 	cache_random_seq_destroy(s);
4282 #ifndef CONFIG_SLUB_TINY
4283 	free_percpu(s->cpu_slab);
4284 #endif
4285 	free_kmem_cache_nodes(s);
4286 }
4287 
4288 static int init_kmem_cache_nodes(struct kmem_cache *s)
4289 {
4290 	int node;
4291 
4292 	for_each_node_mask(node, slab_nodes) {
4293 		struct kmem_cache_node *n;
4294 
4295 		if (slab_state == DOWN) {
4296 			early_kmem_cache_node_alloc(node);
4297 			continue;
4298 		}
4299 		n = kmem_cache_alloc_node(kmem_cache_node,
4300 						GFP_KERNEL, node);
4301 
4302 		if (!n) {
4303 			free_kmem_cache_nodes(s);
4304 			return 0;
4305 		}
4306 
4307 		init_kmem_cache_node(n);
4308 		s->node[node] = n;
4309 	}
4310 	return 1;
4311 }
4312 
4313 static void set_cpu_partial(struct kmem_cache *s)
4314 {
4315 #ifdef CONFIG_SLUB_CPU_PARTIAL
4316 	unsigned int nr_objects;
4317 
4318 	/*
4319 	 * cpu_partial determined the maximum number of objects kept in the
4320 	 * per cpu partial lists of a processor.
4321 	 *
4322 	 * Per cpu partial lists mainly contain slabs that just have one
4323 	 * object freed. If they are used for allocation then they can be
4324 	 * filled up again with minimal effort. The slab will never hit the
4325 	 * per node partial lists and therefore no locking will be required.
4326 	 *
4327 	 * For backwards compatibility reasons, this is determined as number
4328 	 * of objects, even though we now limit maximum number of pages, see
4329 	 * slub_set_cpu_partial()
4330 	 */
4331 	if (!kmem_cache_has_cpu_partial(s))
4332 		nr_objects = 0;
4333 	else if (s->size >= PAGE_SIZE)
4334 		nr_objects = 6;
4335 	else if (s->size >= 1024)
4336 		nr_objects = 24;
4337 	else if (s->size >= 256)
4338 		nr_objects = 52;
4339 	else
4340 		nr_objects = 120;
4341 
4342 	slub_set_cpu_partial(s, nr_objects);
4343 #endif
4344 }
4345 
4346 /*
4347  * calculate_sizes() determines the order and the distribution of data within
4348  * a slab object.
4349  */
4350 static int calculate_sizes(struct kmem_cache *s)
4351 {
4352 	slab_flags_t flags = s->flags;
4353 	unsigned int size = s->object_size;
4354 	unsigned int order;
4355 
4356 	/*
4357 	 * Round up object size to the next word boundary. We can only
4358 	 * place the free pointer at word boundaries and this determines
4359 	 * the possible location of the free pointer.
4360 	 */
4361 	size = ALIGN(size, sizeof(void *));
4362 
4363 #ifdef CONFIG_SLUB_DEBUG
4364 	/*
4365 	 * Determine if we can poison the object itself. If the user of
4366 	 * the slab may touch the object after free or before allocation
4367 	 * then we should never poison the object itself.
4368 	 */
4369 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4370 			!s->ctor)
4371 		s->flags |= __OBJECT_POISON;
4372 	else
4373 		s->flags &= ~__OBJECT_POISON;
4374 
4375 
4376 	/*
4377 	 * If we are Redzoning then check if there is some space between the
4378 	 * end of the object and the free pointer. If not then add an
4379 	 * additional word to have some bytes to store Redzone information.
4380 	 */
4381 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4382 		size += sizeof(void *);
4383 #endif
4384 
4385 	/*
4386 	 * With that we have determined the number of bytes in actual use
4387 	 * by the object and redzoning.
4388 	 */
4389 	s->inuse = size;
4390 
4391 	if (slub_debug_orig_size(s) ||
4392 	    (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4393 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4394 	    s->ctor) {
4395 		/*
4396 		 * Relocate free pointer after the object if it is not
4397 		 * permitted to overwrite the first word of the object on
4398 		 * kmem_cache_free.
4399 		 *
4400 		 * This is the case if we do RCU, have a constructor or
4401 		 * destructor, are poisoning the objects, or are
4402 		 * redzoning an object smaller than sizeof(void *).
4403 		 *
4404 		 * The assumption that s->offset >= s->inuse means free
4405 		 * pointer is outside of the object is used in the
4406 		 * freeptr_outside_object() function. If that is no
4407 		 * longer true, the function needs to be modified.
4408 		 */
4409 		s->offset = size;
4410 		size += sizeof(void *);
4411 	} else {
4412 		/*
4413 		 * Store freelist pointer near middle of object to keep
4414 		 * it away from the edges of the object to avoid small
4415 		 * sized over/underflows from neighboring allocations.
4416 		 */
4417 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4418 	}
4419 
4420 #ifdef CONFIG_SLUB_DEBUG
4421 	if (flags & SLAB_STORE_USER) {
4422 		/*
4423 		 * Need to store information about allocs and frees after
4424 		 * the object.
4425 		 */
4426 		size += 2 * sizeof(struct track);
4427 
4428 		/* Save the original kmalloc request size */
4429 		if (flags & SLAB_KMALLOC)
4430 			size += sizeof(unsigned int);
4431 	}
4432 #endif
4433 
4434 	kasan_cache_create(s, &size, &s->flags);
4435 #ifdef CONFIG_SLUB_DEBUG
4436 	if (flags & SLAB_RED_ZONE) {
4437 		/*
4438 		 * Add some empty padding so that we can catch
4439 		 * overwrites from earlier objects rather than let
4440 		 * tracking information or the free pointer be
4441 		 * corrupted if a user writes before the start
4442 		 * of the object.
4443 		 */
4444 		size += sizeof(void *);
4445 
4446 		s->red_left_pad = sizeof(void *);
4447 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4448 		size += s->red_left_pad;
4449 	}
4450 #endif
4451 
4452 	/*
4453 	 * SLUB stores one object immediately after another beginning from
4454 	 * offset 0. In order to align the objects we have to simply size
4455 	 * each object to conform to the alignment.
4456 	 */
4457 	size = ALIGN(size, s->align);
4458 	s->size = size;
4459 	s->reciprocal_size = reciprocal_value(size);
4460 	order = calculate_order(size);
4461 
4462 	if ((int)order < 0)
4463 		return 0;
4464 
4465 	s->allocflags = 0;
4466 	if (order)
4467 		s->allocflags |= __GFP_COMP;
4468 
4469 	if (s->flags & SLAB_CACHE_DMA)
4470 		s->allocflags |= GFP_DMA;
4471 
4472 	if (s->flags & SLAB_CACHE_DMA32)
4473 		s->allocflags |= GFP_DMA32;
4474 
4475 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4476 		s->allocflags |= __GFP_RECLAIMABLE;
4477 
4478 	/*
4479 	 * Determine the number of objects per slab
4480 	 */
4481 	s->oo = oo_make(order, size);
4482 	s->min = oo_make(get_order(size), size);
4483 
4484 	return !!oo_objects(s->oo);
4485 }
4486 
4487 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4488 {
4489 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4490 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4491 	s->random = get_random_long();
4492 #endif
4493 
4494 	if (!calculate_sizes(s))
4495 		goto error;
4496 	if (disable_higher_order_debug) {
4497 		/*
4498 		 * Disable debugging flags that store metadata if the min slab
4499 		 * order increased.
4500 		 */
4501 		if (get_order(s->size) > get_order(s->object_size)) {
4502 			s->flags &= ~DEBUG_METADATA_FLAGS;
4503 			s->offset = 0;
4504 			if (!calculate_sizes(s))
4505 				goto error;
4506 		}
4507 	}
4508 
4509 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4510     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4511 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4512 		/* Enable fast mode */
4513 		s->flags |= __CMPXCHG_DOUBLE;
4514 #endif
4515 
4516 	/*
4517 	 * The larger the object size is, the more slabs we want on the partial
4518 	 * list to avoid pounding the page allocator excessively.
4519 	 */
4520 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4521 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4522 
4523 	set_cpu_partial(s);
4524 
4525 #ifdef CONFIG_NUMA
4526 	s->remote_node_defrag_ratio = 1000;
4527 #endif
4528 
4529 	/* Initialize the pre-computed randomized freelist if slab is up */
4530 	if (slab_state >= UP) {
4531 		if (init_cache_random_seq(s))
4532 			goto error;
4533 	}
4534 
4535 	if (!init_kmem_cache_nodes(s))
4536 		goto error;
4537 
4538 	if (alloc_kmem_cache_cpus(s))
4539 		return 0;
4540 
4541 error:
4542 	__kmem_cache_release(s);
4543 	return -EINVAL;
4544 }
4545 
4546 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4547 			      const char *text)
4548 {
4549 #ifdef CONFIG_SLUB_DEBUG
4550 	void *addr = slab_address(slab);
4551 	void *p;
4552 
4553 	slab_err(s, slab, text, s->name);
4554 
4555 	spin_lock(&object_map_lock);
4556 	__fill_map(object_map, s, slab);
4557 
4558 	for_each_object(p, s, addr, slab->objects) {
4559 
4560 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4561 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4562 			print_tracking(s, p);
4563 		}
4564 	}
4565 	spin_unlock(&object_map_lock);
4566 #endif
4567 }
4568 
4569 /*
4570  * Attempt to free all partial slabs on a node.
4571  * This is called from __kmem_cache_shutdown(). We must take list_lock
4572  * because sysfs file might still access partial list after the shutdowning.
4573  */
4574 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4575 {
4576 	LIST_HEAD(discard);
4577 	struct slab *slab, *h;
4578 
4579 	BUG_ON(irqs_disabled());
4580 	spin_lock_irq(&n->list_lock);
4581 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4582 		if (!slab->inuse) {
4583 			remove_partial(n, slab);
4584 			list_add(&slab->slab_list, &discard);
4585 		} else {
4586 			list_slab_objects(s, slab,
4587 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4588 		}
4589 	}
4590 	spin_unlock_irq(&n->list_lock);
4591 
4592 	list_for_each_entry_safe(slab, h, &discard, slab_list)
4593 		discard_slab(s, slab);
4594 }
4595 
4596 bool __kmem_cache_empty(struct kmem_cache *s)
4597 {
4598 	int node;
4599 	struct kmem_cache_node *n;
4600 
4601 	for_each_kmem_cache_node(s, node, n)
4602 		if (n->nr_partial || slabs_node(s, node))
4603 			return false;
4604 	return true;
4605 }
4606 
4607 /*
4608  * Release all resources used by a slab cache.
4609  */
4610 int __kmem_cache_shutdown(struct kmem_cache *s)
4611 {
4612 	int node;
4613 	struct kmem_cache_node *n;
4614 
4615 	flush_all_cpus_locked(s);
4616 	/* Attempt to free all objects */
4617 	for_each_kmem_cache_node(s, node, n) {
4618 		free_partial(s, n);
4619 		if (n->nr_partial || slabs_node(s, node))
4620 			return 1;
4621 	}
4622 	return 0;
4623 }
4624 
4625 #ifdef CONFIG_PRINTK
4626 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4627 {
4628 	void *base;
4629 	int __maybe_unused i;
4630 	unsigned int objnr;
4631 	void *objp;
4632 	void *objp0;
4633 	struct kmem_cache *s = slab->slab_cache;
4634 	struct track __maybe_unused *trackp;
4635 
4636 	kpp->kp_ptr = object;
4637 	kpp->kp_slab = slab;
4638 	kpp->kp_slab_cache = s;
4639 	base = slab_address(slab);
4640 	objp0 = kasan_reset_tag(object);
4641 #ifdef CONFIG_SLUB_DEBUG
4642 	objp = restore_red_left(s, objp0);
4643 #else
4644 	objp = objp0;
4645 #endif
4646 	objnr = obj_to_index(s, slab, objp);
4647 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4648 	objp = base + s->size * objnr;
4649 	kpp->kp_objp = objp;
4650 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4651 			 || (objp - base) % s->size) ||
4652 	    !(s->flags & SLAB_STORE_USER))
4653 		return;
4654 #ifdef CONFIG_SLUB_DEBUG
4655 	objp = fixup_red_left(s, objp);
4656 	trackp = get_track(s, objp, TRACK_ALLOC);
4657 	kpp->kp_ret = (void *)trackp->addr;
4658 #ifdef CONFIG_STACKDEPOT
4659 	{
4660 		depot_stack_handle_t handle;
4661 		unsigned long *entries;
4662 		unsigned int nr_entries;
4663 
4664 		handle = READ_ONCE(trackp->handle);
4665 		if (handle) {
4666 			nr_entries = stack_depot_fetch(handle, &entries);
4667 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4668 				kpp->kp_stack[i] = (void *)entries[i];
4669 		}
4670 
4671 		trackp = get_track(s, objp, TRACK_FREE);
4672 		handle = READ_ONCE(trackp->handle);
4673 		if (handle) {
4674 			nr_entries = stack_depot_fetch(handle, &entries);
4675 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4676 				kpp->kp_free_stack[i] = (void *)entries[i];
4677 		}
4678 	}
4679 #endif
4680 #endif
4681 }
4682 #endif
4683 
4684 /********************************************************************
4685  *		Kmalloc subsystem
4686  *******************************************************************/
4687 
4688 static int __init setup_slub_min_order(char *str)
4689 {
4690 	get_option(&str, (int *)&slub_min_order);
4691 
4692 	return 1;
4693 }
4694 
4695 __setup("slub_min_order=", setup_slub_min_order);
4696 
4697 static int __init setup_slub_max_order(char *str)
4698 {
4699 	get_option(&str, (int *)&slub_max_order);
4700 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4701 
4702 	return 1;
4703 }
4704 
4705 __setup("slub_max_order=", setup_slub_max_order);
4706 
4707 static int __init setup_slub_min_objects(char *str)
4708 {
4709 	get_option(&str, (int *)&slub_min_objects);
4710 
4711 	return 1;
4712 }
4713 
4714 __setup("slub_min_objects=", setup_slub_min_objects);
4715 
4716 #ifdef CONFIG_HARDENED_USERCOPY
4717 /*
4718  * Rejects incorrectly sized objects and objects that are to be copied
4719  * to/from userspace but do not fall entirely within the containing slab
4720  * cache's usercopy region.
4721  *
4722  * Returns NULL if check passes, otherwise const char * to name of cache
4723  * to indicate an error.
4724  */
4725 void __check_heap_object(const void *ptr, unsigned long n,
4726 			 const struct slab *slab, bool to_user)
4727 {
4728 	struct kmem_cache *s;
4729 	unsigned int offset;
4730 	bool is_kfence = is_kfence_address(ptr);
4731 
4732 	ptr = kasan_reset_tag(ptr);
4733 
4734 	/* Find object and usable object size. */
4735 	s = slab->slab_cache;
4736 
4737 	/* Reject impossible pointers. */
4738 	if (ptr < slab_address(slab))
4739 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4740 			       to_user, 0, n);
4741 
4742 	/* Find offset within object. */
4743 	if (is_kfence)
4744 		offset = ptr - kfence_object_start(ptr);
4745 	else
4746 		offset = (ptr - slab_address(slab)) % s->size;
4747 
4748 	/* Adjust for redzone and reject if within the redzone. */
4749 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4750 		if (offset < s->red_left_pad)
4751 			usercopy_abort("SLUB object in left red zone",
4752 				       s->name, to_user, offset, n);
4753 		offset -= s->red_left_pad;
4754 	}
4755 
4756 	/* Allow address range falling entirely within usercopy region. */
4757 	if (offset >= s->useroffset &&
4758 	    offset - s->useroffset <= s->usersize &&
4759 	    n <= s->useroffset - offset + s->usersize)
4760 		return;
4761 
4762 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4763 }
4764 #endif /* CONFIG_HARDENED_USERCOPY */
4765 
4766 #define SHRINK_PROMOTE_MAX 32
4767 
4768 /*
4769  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4770  * up most to the head of the partial lists. New allocations will then
4771  * fill those up and thus they can be removed from the partial lists.
4772  *
4773  * The slabs with the least items are placed last. This results in them
4774  * being allocated from last increasing the chance that the last objects
4775  * are freed in them.
4776  */
4777 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4778 {
4779 	int node;
4780 	int i;
4781 	struct kmem_cache_node *n;
4782 	struct slab *slab;
4783 	struct slab *t;
4784 	struct list_head discard;
4785 	struct list_head promote[SHRINK_PROMOTE_MAX];
4786 	unsigned long flags;
4787 	int ret = 0;
4788 
4789 	for_each_kmem_cache_node(s, node, n) {
4790 		INIT_LIST_HEAD(&discard);
4791 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4792 			INIT_LIST_HEAD(promote + i);
4793 
4794 		spin_lock_irqsave(&n->list_lock, flags);
4795 
4796 		/*
4797 		 * Build lists of slabs to discard or promote.
4798 		 *
4799 		 * Note that concurrent frees may occur while we hold the
4800 		 * list_lock. slab->inuse here is the upper limit.
4801 		 */
4802 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4803 			int free = slab->objects - slab->inuse;
4804 
4805 			/* Do not reread slab->inuse */
4806 			barrier();
4807 
4808 			/* We do not keep full slabs on the list */
4809 			BUG_ON(free <= 0);
4810 
4811 			if (free == slab->objects) {
4812 				list_move(&slab->slab_list, &discard);
4813 				n->nr_partial--;
4814 				dec_slabs_node(s, node, slab->objects);
4815 			} else if (free <= SHRINK_PROMOTE_MAX)
4816 				list_move(&slab->slab_list, promote + free - 1);
4817 		}
4818 
4819 		/*
4820 		 * Promote the slabs filled up most to the head of the
4821 		 * partial list.
4822 		 */
4823 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4824 			list_splice(promote + i, &n->partial);
4825 
4826 		spin_unlock_irqrestore(&n->list_lock, flags);
4827 
4828 		/* Release empty slabs */
4829 		list_for_each_entry_safe(slab, t, &discard, slab_list)
4830 			free_slab(s, slab);
4831 
4832 		if (slabs_node(s, node))
4833 			ret = 1;
4834 	}
4835 
4836 	return ret;
4837 }
4838 
4839 int __kmem_cache_shrink(struct kmem_cache *s)
4840 {
4841 	flush_all(s);
4842 	return __kmem_cache_do_shrink(s);
4843 }
4844 
4845 static int slab_mem_going_offline_callback(void *arg)
4846 {
4847 	struct kmem_cache *s;
4848 
4849 	mutex_lock(&slab_mutex);
4850 	list_for_each_entry(s, &slab_caches, list) {
4851 		flush_all_cpus_locked(s);
4852 		__kmem_cache_do_shrink(s);
4853 	}
4854 	mutex_unlock(&slab_mutex);
4855 
4856 	return 0;
4857 }
4858 
4859 static void slab_mem_offline_callback(void *arg)
4860 {
4861 	struct memory_notify *marg = arg;
4862 	int offline_node;
4863 
4864 	offline_node = marg->status_change_nid_normal;
4865 
4866 	/*
4867 	 * If the node still has available memory. we need kmem_cache_node
4868 	 * for it yet.
4869 	 */
4870 	if (offline_node < 0)
4871 		return;
4872 
4873 	mutex_lock(&slab_mutex);
4874 	node_clear(offline_node, slab_nodes);
4875 	/*
4876 	 * We no longer free kmem_cache_node structures here, as it would be
4877 	 * racy with all get_node() users, and infeasible to protect them with
4878 	 * slab_mutex.
4879 	 */
4880 	mutex_unlock(&slab_mutex);
4881 }
4882 
4883 static int slab_mem_going_online_callback(void *arg)
4884 {
4885 	struct kmem_cache_node *n;
4886 	struct kmem_cache *s;
4887 	struct memory_notify *marg = arg;
4888 	int nid = marg->status_change_nid_normal;
4889 	int ret = 0;
4890 
4891 	/*
4892 	 * If the node's memory is already available, then kmem_cache_node is
4893 	 * already created. Nothing to do.
4894 	 */
4895 	if (nid < 0)
4896 		return 0;
4897 
4898 	/*
4899 	 * We are bringing a node online. No memory is available yet. We must
4900 	 * allocate a kmem_cache_node structure in order to bring the node
4901 	 * online.
4902 	 */
4903 	mutex_lock(&slab_mutex);
4904 	list_for_each_entry(s, &slab_caches, list) {
4905 		/*
4906 		 * The structure may already exist if the node was previously
4907 		 * onlined and offlined.
4908 		 */
4909 		if (get_node(s, nid))
4910 			continue;
4911 		/*
4912 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4913 		 *      since memory is not yet available from the node that
4914 		 *      is brought up.
4915 		 */
4916 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4917 		if (!n) {
4918 			ret = -ENOMEM;
4919 			goto out;
4920 		}
4921 		init_kmem_cache_node(n);
4922 		s->node[nid] = n;
4923 	}
4924 	/*
4925 	 * Any cache created after this point will also have kmem_cache_node
4926 	 * initialized for the new node.
4927 	 */
4928 	node_set(nid, slab_nodes);
4929 out:
4930 	mutex_unlock(&slab_mutex);
4931 	return ret;
4932 }
4933 
4934 static int slab_memory_callback(struct notifier_block *self,
4935 				unsigned long action, void *arg)
4936 {
4937 	int ret = 0;
4938 
4939 	switch (action) {
4940 	case MEM_GOING_ONLINE:
4941 		ret = slab_mem_going_online_callback(arg);
4942 		break;
4943 	case MEM_GOING_OFFLINE:
4944 		ret = slab_mem_going_offline_callback(arg);
4945 		break;
4946 	case MEM_OFFLINE:
4947 	case MEM_CANCEL_ONLINE:
4948 		slab_mem_offline_callback(arg);
4949 		break;
4950 	case MEM_ONLINE:
4951 	case MEM_CANCEL_OFFLINE:
4952 		break;
4953 	}
4954 	if (ret)
4955 		ret = notifier_from_errno(ret);
4956 	else
4957 		ret = NOTIFY_OK;
4958 	return ret;
4959 }
4960 
4961 /********************************************************************
4962  *			Basic setup of slabs
4963  *******************************************************************/
4964 
4965 /*
4966  * Used for early kmem_cache structures that were allocated using
4967  * the page allocator. Allocate them properly then fix up the pointers
4968  * that may be pointing to the wrong kmem_cache structure.
4969  */
4970 
4971 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4972 {
4973 	int node;
4974 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4975 	struct kmem_cache_node *n;
4976 
4977 	memcpy(s, static_cache, kmem_cache->object_size);
4978 
4979 	/*
4980 	 * This runs very early, and only the boot processor is supposed to be
4981 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4982 	 * IPIs around.
4983 	 */
4984 	__flush_cpu_slab(s, smp_processor_id());
4985 	for_each_kmem_cache_node(s, node, n) {
4986 		struct slab *p;
4987 
4988 		list_for_each_entry(p, &n->partial, slab_list)
4989 			p->slab_cache = s;
4990 
4991 #ifdef CONFIG_SLUB_DEBUG
4992 		list_for_each_entry(p, &n->full, slab_list)
4993 			p->slab_cache = s;
4994 #endif
4995 	}
4996 	list_add(&s->list, &slab_caches);
4997 	return s;
4998 }
4999 
5000 void __init kmem_cache_init(void)
5001 {
5002 	static __initdata struct kmem_cache boot_kmem_cache,
5003 		boot_kmem_cache_node;
5004 	int node;
5005 
5006 	if (debug_guardpage_minorder())
5007 		slub_max_order = 0;
5008 
5009 	/* Print slub debugging pointers without hashing */
5010 	if (__slub_debug_enabled())
5011 		no_hash_pointers_enable(NULL);
5012 
5013 	kmem_cache_node = &boot_kmem_cache_node;
5014 	kmem_cache = &boot_kmem_cache;
5015 
5016 	/*
5017 	 * Initialize the nodemask for which we will allocate per node
5018 	 * structures. Here we don't need taking slab_mutex yet.
5019 	 */
5020 	for_each_node_state(node, N_NORMAL_MEMORY)
5021 		node_set(node, slab_nodes);
5022 
5023 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
5024 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5025 
5026 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5027 
5028 	/* Able to allocate the per node structures */
5029 	slab_state = PARTIAL;
5030 
5031 	create_boot_cache(kmem_cache, "kmem_cache",
5032 			offsetof(struct kmem_cache, node) +
5033 				nr_node_ids * sizeof(struct kmem_cache_node *),
5034 		       SLAB_HWCACHE_ALIGN, 0, 0);
5035 
5036 	kmem_cache = bootstrap(&boot_kmem_cache);
5037 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5038 
5039 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
5040 	setup_kmalloc_cache_index_table();
5041 	create_kmalloc_caches(0);
5042 
5043 	/* Setup random freelists for each cache */
5044 	init_freelist_randomization();
5045 
5046 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5047 				  slub_cpu_dead);
5048 
5049 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5050 		cache_line_size(),
5051 		slub_min_order, slub_max_order, slub_min_objects,
5052 		nr_cpu_ids, nr_node_ids);
5053 }
5054 
5055 void __init kmem_cache_init_late(void)
5056 {
5057 #ifndef CONFIG_SLUB_TINY
5058 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5059 	WARN_ON(!flushwq);
5060 #endif
5061 }
5062 
5063 struct kmem_cache *
5064 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5065 		   slab_flags_t flags, void (*ctor)(void *))
5066 {
5067 	struct kmem_cache *s;
5068 
5069 	s = find_mergeable(size, align, flags, name, ctor);
5070 	if (s) {
5071 		if (sysfs_slab_alias(s, name))
5072 			return NULL;
5073 
5074 		s->refcount++;
5075 
5076 		/*
5077 		 * Adjust the object sizes so that we clear
5078 		 * the complete object on kzalloc.
5079 		 */
5080 		s->object_size = max(s->object_size, size);
5081 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5082 	}
5083 
5084 	return s;
5085 }
5086 
5087 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5088 {
5089 	int err;
5090 
5091 	err = kmem_cache_open(s, flags);
5092 	if (err)
5093 		return err;
5094 
5095 	/* Mutex is not taken during early boot */
5096 	if (slab_state <= UP)
5097 		return 0;
5098 
5099 	err = sysfs_slab_add(s);
5100 	if (err) {
5101 		__kmem_cache_release(s);
5102 		return err;
5103 	}
5104 
5105 	if (s->flags & SLAB_STORE_USER)
5106 		debugfs_slab_add(s);
5107 
5108 	return 0;
5109 }
5110 
5111 #ifdef SLAB_SUPPORTS_SYSFS
5112 static int count_inuse(struct slab *slab)
5113 {
5114 	return slab->inuse;
5115 }
5116 
5117 static int count_total(struct slab *slab)
5118 {
5119 	return slab->objects;
5120 }
5121 #endif
5122 
5123 #ifdef CONFIG_SLUB_DEBUG
5124 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5125 			  unsigned long *obj_map)
5126 {
5127 	void *p;
5128 	void *addr = slab_address(slab);
5129 
5130 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5131 		return;
5132 
5133 	/* Now we know that a valid freelist exists */
5134 	__fill_map(obj_map, s, slab);
5135 	for_each_object(p, s, addr, slab->objects) {
5136 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5137 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5138 
5139 		if (!check_object(s, slab, p, val))
5140 			break;
5141 	}
5142 }
5143 
5144 static int validate_slab_node(struct kmem_cache *s,
5145 		struct kmem_cache_node *n, unsigned long *obj_map)
5146 {
5147 	unsigned long count = 0;
5148 	struct slab *slab;
5149 	unsigned long flags;
5150 
5151 	spin_lock_irqsave(&n->list_lock, flags);
5152 
5153 	list_for_each_entry(slab, &n->partial, slab_list) {
5154 		validate_slab(s, slab, obj_map);
5155 		count++;
5156 	}
5157 	if (count != n->nr_partial) {
5158 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5159 		       s->name, count, n->nr_partial);
5160 		slab_add_kunit_errors();
5161 	}
5162 
5163 	if (!(s->flags & SLAB_STORE_USER))
5164 		goto out;
5165 
5166 	list_for_each_entry(slab, &n->full, slab_list) {
5167 		validate_slab(s, slab, obj_map);
5168 		count++;
5169 	}
5170 	if (count != atomic_long_read(&n->nr_slabs)) {
5171 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5172 		       s->name, count, atomic_long_read(&n->nr_slabs));
5173 		slab_add_kunit_errors();
5174 	}
5175 
5176 out:
5177 	spin_unlock_irqrestore(&n->list_lock, flags);
5178 	return count;
5179 }
5180 
5181 long validate_slab_cache(struct kmem_cache *s)
5182 {
5183 	int node;
5184 	unsigned long count = 0;
5185 	struct kmem_cache_node *n;
5186 	unsigned long *obj_map;
5187 
5188 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5189 	if (!obj_map)
5190 		return -ENOMEM;
5191 
5192 	flush_all(s);
5193 	for_each_kmem_cache_node(s, node, n)
5194 		count += validate_slab_node(s, n, obj_map);
5195 
5196 	bitmap_free(obj_map);
5197 
5198 	return count;
5199 }
5200 EXPORT_SYMBOL(validate_slab_cache);
5201 
5202 #ifdef CONFIG_DEBUG_FS
5203 /*
5204  * Generate lists of code addresses where slabcache objects are allocated
5205  * and freed.
5206  */
5207 
5208 struct location {
5209 	depot_stack_handle_t handle;
5210 	unsigned long count;
5211 	unsigned long addr;
5212 	unsigned long waste;
5213 	long long sum_time;
5214 	long min_time;
5215 	long max_time;
5216 	long min_pid;
5217 	long max_pid;
5218 	DECLARE_BITMAP(cpus, NR_CPUS);
5219 	nodemask_t nodes;
5220 };
5221 
5222 struct loc_track {
5223 	unsigned long max;
5224 	unsigned long count;
5225 	struct location *loc;
5226 	loff_t idx;
5227 };
5228 
5229 static struct dentry *slab_debugfs_root;
5230 
5231 static void free_loc_track(struct loc_track *t)
5232 {
5233 	if (t->max)
5234 		free_pages((unsigned long)t->loc,
5235 			get_order(sizeof(struct location) * t->max));
5236 }
5237 
5238 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5239 {
5240 	struct location *l;
5241 	int order;
5242 
5243 	order = get_order(sizeof(struct location) * max);
5244 
5245 	l = (void *)__get_free_pages(flags, order);
5246 	if (!l)
5247 		return 0;
5248 
5249 	if (t->count) {
5250 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5251 		free_loc_track(t);
5252 	}
5253 	t->max = max;
5254 	t->loc = l;
5255 	return 1;
5256 }
5257 
5258 static int add_location(struct loc_track *t, struct kmem_cache *s,
5259 				const struct track *track,
5260 				unsigned int orig_size)
5261 {
5262 	long start, end, pos;
5263 	struct location *l;
5264 	unsigned long caddr, chandle, cwaste;
5265 	unsigned long age = jiffies - track->when;
5266 	depot_stack_handle_t handle = 0;
5267 	unsigned int waste = s->object_size - orig_size;
5268 
5269 #ifdef CONFIG_STACKDEPOT
5270 	handle = READ_ONCE(track->handle);
5271 #endif
5272 	start = -1;
5273 	end = t->count;
5274 
5275 	for ( ; ; ) {
5276 		pos = start + (end - start + 1) / 2;
5277 
5278 		/*
5279 		 * There is nothing at "end". If we end up there
5280 		 * we need to add something to before end.
5281 		 */
5282 		if (pos == end)
5283 			break;
5284 
5285 		l = &t->loc[pos];
5286 		caddr = l->addr;
5287 		chandle = l->handle;
5288 		cwaste = l->waste;
5289 		if ((track->addr == caddr) && (handle == chandle) &&
5290 			(waste == cwaste)) {
5291 
5292 			l->count++;
5293 			if (track->when) {
5294 				l->sum_time += age;
5295 				if (age < l->min_time)
5296 					l->min_time = age;
5297 				if (age > l->max_time)
5298 					l->max_time = age;
5299 
5300 				if (track->pid < l->min_pid)
5301 					l->min_pid = track->pid;
5302 				if (track->pid > l->max_pid)
5303 					l->max_pid = track->pid;
5304 
5305 				cpumask_set_cpu(track->cpu,
5306 						to_cpumask(l->cpus));
5307 			}
5308 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5309 			return 1;
5310 		}
5311 
5312 		if (track->addr < caddr)
5313 			end = pos;
5314 		else if (track->addr == caddr && handle < chandle)
5315 			end = pos;
5316 		else if (track->addr == caddr && handle == chandle &&
5317 				waste < cwaste)
5318 			end = pos;
5319 		else
5320 			start = pos;
5321 	}
5322 
5323 	/*
5324 	 * Not found. Insert new tracking element.
5325 	 */
5326 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5327 		return 0;
5328 
5329 	l = t->loc + pos;
5330 	if (pos < t->count)
5331 		memmove(l + 1, l,
5332 			(t->count - pos) * sizeof(struct location));
5333 	t->count++;
5334 	l->count = 1;
5335 	l->addr = track->addr;
5336 	l->sum_time = age;
5337 	l->min_time = age;
5338 	l->max_time = age;
5339 	l->min_pid = track->pid;
5340 	l->max_pid = track->pid;
5341 	l->handle = handle;
5342 	l->waste = waste;
5343 	cpumask_clear(to_cpumask(l->cpus));
5344 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5345 	nodes_clear(l->nodes);
5346 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5347 	return 1;
5348 }
5349 
5350 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5351 		struct slab *slab, enum track_item alloc,
5352 		unsigned long *obj_map)
5353 {
5354 	void *addr = slab_address(slab);
5355 	bool is_alloc = (alloc == TRACK_ALLOC);
5356 	void *p;
5357 
5358 	__fill_map(obj_map, s, slab);
5359 
5360 	for_each_object(p, s, addr, slab->objects)
5361 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5362 			add_location(t, s, get_track(s, p, alloc),
5363 				     is_alloc ? get_orig_size(s, p) :
5364 						s->object_size);
5365 }
5366 #endif  /* CONFIG_DEBUG_FS   */
5367 #endif	/* CONFIG_SLUB_DEBUG */
5368 
5369 #ifdef SLAB_SUPPORTS_SYSFS
5370 enum slab_stat_type {
5371 	SL_ALL,			/* All slabs */
5372 	SL_PARTIAL,		/* Only partially allocated slabs */
5373 	SL_CPU,			/* Only slabs used for cpu caches */
5374 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5375 	SL_TOTAL		/* Determine object capacity not slabs */
5376 };
5377 
5378 #define SO_ALL		(1 << SL_ALL)
5379 #define SO_PARTIAL	(1 << SL_PARTIAL)
5380 #define SO_CPU		(1 << SL_CPU)
5381 #define SO_OBJECTS	(1 << SL_OBJECTS)
5382 #define SO_TOTAL	(1 << SL_TOTAL)
5383 
5384 static ssize_t show_slab_objects(struct kmem_cache *s,
5385 				 char *buf, unsigned long flags)
5386 {
5387 	unsigned long total = 0;
5388 	int node;
5389 	int x;
5390 	unsigned long *nodes;
5391 	int len = 0;
5392 
5393 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5394 	if (!nodes)
5395 		return -ENOMEM;
5396 
5397 	if (flags & SO_CPU) {
5398 		int cpu;
5399 
5400 		for_each_possible_cpu(cpu) {
5401 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5402 							       cpu);
5403 			int node;
5404 			struct slab *slab;
5405 
5406 			slab = READ_ONCE(c->slab);
5407 			if (!slab)
5408 				continue;
5409 
5410 			node = slab_nid(slab);
5411 			if (flags & SO_TOTAL)
5412 				x = slab->objects;
5413 			else if (flags & SO_OBJECTS)
5414 				x = slab->inuse;
5415 			else
5416 				x = 1;
5417 
5418 			total += x;
5419 			nodes[node] += x;
5420 
5421 #ifdef CONFIG_SLUB_CPU_PARTIAL
5422 			slab = slub_percpu_partial_read_once(c);
5423 			if (slab) {
5424 				node = slab_nid(slab);
5425 				if (flags & SO_TOTAL)
5426 					WARN_ON_ONCE(1);
5427 				else if (flags & SO_OBJECTS)
5428 					WARN_ON_ONCE(1);
5429 				else
5430 					x = slab->slabs;
5431 				total += x;
5432 				nodes[node] += x;
5433 			}
5434 #endif
5435 		}
5436 	}
5437 
5438 	/*
5439 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5440 	 * already held which will conflict with an existing lock order:
5441 	 *
5442 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5443 	 *
5444 	 * We don't really need mem_hotplug_lock (to hold off
5445 	 * slab_mem_going_offline_callback) here because slab's memory hot
5446 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5447 	 */
5448 
5449 #ifdef CONFIG_SLUB_DEBUG
5450 	if (flags & SO_ALL) {
5451 		struct kmem_cache_node *n;
5452 
5453 		for_each_kmem_cache_node(s, node, n) {
5454 
5455 			if (flags & SO_TOTAL)
5456 				x = atomic_long_read(&n->total_objects);
5457 			else if (flags & SO_OBJECTS)
5458 				x = atomic_long_read(&n->total_objects) -
5459 					count_partial(n, count_free);
5460 			else
5461 				x = atomic_long_read(&n->nr_slabs);
5462 			total += x;
5463 			nodes[node] += x;
5464 		}
5465 
5466 	} else
5467 #endif
5468 	if (flags & SO_PARTIAL) {
5469 		struct kmem_cache_node *n;
5470 
5471 		for_each_kmem_cache_node(s, node, n) {
5472 			if (flags & SO_TOTAL)
5473 				x = count_partial(n, count_total);
5474 			else if (flags & SO_OBJECTS)
5475 				x = count_partial(n, count_inuse);
5476 			else
5477 				x = n->nr_partial;
5478 			total += x;
5479 			nodes[node] += x;
5480 		}
5481 	}
5482 
5483 	len += sysfs_emit_at(buf, len, "%lu", total);
5484 #ifdef CONFIG_NUMA
5485 	for (node = 0; node < nr_node_ids; node++) {
5486 		if (nodes[node])
5487 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5488 					     node, nodes[node]);
5489 	}
5490 #endif
5491 	len += sysfs_emit_at(buf, len, "\n");
5492 	kfree(nodes);
5493 
5494 	return len;
5495 }
5496 
5497 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5498 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5499 
5500 struct slab_attribute {
5501 	struct attribute attr;
5502 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5503 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5504 };
5505 
5506 #define SLAB_ATTR_RO(_name) \
5507 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5508 
5509 #define SLAB_ATTR(_name) \
5510 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5511 
5512 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5513 {
5514 	return sysfs_emit(buf, "%u\n", s->size);
5515 }
5516 SLAB_ATTR_RO(slab_size);
5517 
5518 static ssize_t align_show(struct kmem_cache *s, char *buf)
5519 {
5520 	return sysfs_emit(buf, "%u\n", s->align);
5521 }
5522 SLAB_ATTR_RO(align);
5523 
5524 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5525 {
5526 	return sysfs_emit(buf, "%u\n", s->object_size);
5527 }
5528 SLAB_ATTR_RO(object_size);
5529 
5530 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5531 {
5532 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5533 }
5534 SLAB_ATTR_RO(objs_per_slab);
5535 
5536 static ssize_t order_show(struct kmem_cache *s, char *buf)
5537 {
5538 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5539 }
5540 SLAB_ATTR_RO(order);
5541 
5542 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5543 {
5544 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5545 }
5546 
5547 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5548 				 size_t length)
5549 {
5550 	unsigned long min;
5551 	int err;
5552 
5553 	err = kstrtoul(buf, 10, &min);
5554 	if (err)
5555 		return err;
5556 
5557 	s->min_partial = min;
5558 	return length;
5559 }
5560 SLAB_ATTR(min_partial);
5561 
5562 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5563 {
5564 	unsigned int nr_partial = 0;
5565 #ifdef CONFIG_SLUB_CPU_PARTIAL
5566 	nr_partial = s->cpu_partial;
5567 #endif
5568 
5569 	return sysfs_emit(buf, "%u\n", nr_partial);
5570 }
5571 
5572 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5573 				 size_t length)
5574 {
5575 	unsigned int objects;
5576 	int err;
5577 
5578 	err = kstrtouint(buf, 10, &objects);
5579 	if (err)
5580 		return err;
5581 	if (objects && !kmem_cache_has_cpu_partial(s))
5582 		return -EINVAL;
5583 
5584 	slub_set_cpu_partial(s, objects);
5585 	flush_all(s);
5586 	return length;
5587 }
5588 SLAB_ATTR(cpu_partial);
5589 
5590 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5591 {
5592 	if (!s->ctor)
5593 		return 0;
5594 	return sysfs_emit(buf, "%pS\n", s->ctor);
5595 }
5596 SLAB_ATTR_RO(ctor);
5597 
5598 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5599 {
5600 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5601 }
5602 SLAB_ATTR_RO(aliases);
5603 
5604 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5605 {
5606 	return show_slab_objects(s, buf, SO_PARTIAL);
5607 }
5608 SLAB_ATTR_RO(partial);
5609 
5610 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5611 {
5612 	return show_slab_objects(s, buf, SO_CPU);
5613 }
5614 SLAB_ATTR_RO(cpu_slabs);
5615 
5616 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5617 {
5618 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5619 }
5620 SLAB_ATTR_RO(objects);
5621 
5622 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5623 {
5624 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5625 }
5626 SLAB_ATTR_RO(objects_partial);
5627 
5628 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5629 {
5630 	int objects = 0;
5631 	int slabs = 0;
5632 	int cpu __maybe_unused;
5633 	int len = 0;
5634 
5635 #ifdef CONFIG_SLUB_CPU_PARTIAL
5636 	for_each_online_cpu(cpu) {
5637 		struct slab *slab;
5638 
5639 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5640 
5641 		if (slab)
5642 			slabs += slab->slabs;
5643 	}
5644 #endif
5645 
5646 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
5647 	objects = (slabs * oo_objects(s->oo)) / 2;
5648 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5649 
5650 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5651 	for_each_online_cpu(cpu) {
5652 		struct slab *slab;
5653 
5654 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5655 		if (slab) {
5656 			slabs = READ_ONCE(slab->slabs);
5657 			objects = (slabs * oo_objects(s->oo)) / 2;
5658 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5659 					     cpu, objects, slabs);
5660 		}
5661 	}
5662 #endif
5663 	len += sysfs_emit_at(buf, len, "\n");
5664 
5665 	return len;
5666 }
5667 SLAB_ATTR_RO(slabs_cpu_partial);
5668 
5669 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5670 {
5671 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5672 }
5673 SLAB_ATTR_RO(reclaim_account);
5674 
5675 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5676 {
5677 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5678 }
5679 SLAB_ATTR_RO(hwcache_align);
5680 
5681 #ifdef CONFIG_ZONE_DMA
5682 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5683 {
5684 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5685 }
5686 SLAB_ATTR_RO(cache_dma);
5687 #endif
5688 
5689 #ifdef CONFIG_HARDENED_USERCOPY
5690 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5691 {
5692 	return sysfs_emit(buf, "%u\n", s->usersize);
5693 }
5694 SLAB_ATTR_RO(usersize);
5695 #endif
5696 
5697 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5698 {
5699 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5700 }
5701 SLAB_ATTR_RO(destroy_by_rcu);
5702 
5703 #ifdef CONFIG_SLUB_DEBUG
5704 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5705 {
5706 	return show_slab_objects(s, buf, SO_ALL);
5707 }
5708 SLAB_ATTR_RO(slabs);
5709 
5710 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5711 {
5712 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5713 }
5714 SLAB_ATTR_RO(total_objects);
5715 
5716 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5717 {
5718 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5719 }
5720 SLAB_ATTR_RO(sanity_checks);
5721 
5722 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5723 {
5724 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5725 }
5726 SLAB_ATTR_RO(trace);
5727 
5728 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5729 {
5730 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5731 }
5732 
5733 SLAB_ATTR_RO(red_zone);
5734 
5735 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5736 {
5737 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5738 }
5739 
5740 SLAB_ATTR_RO(poison);
5741 
5742 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5743 {
5744 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5745 }
5746 
5747 SLAB_ATTR_RO(store_user);
5748 
5749 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5750 {
5751 	return 0;
5752 }
5753 
5754 static ssize_t validate_store(struct kmem_cache *s,
5755 			const char *buf, size_t length)
5756 {
5757 	int ret = -EINVAL;
5758 
5759 	if (buf[0] == '1' && kmem_cache_debug(s)) {
5760 		ret = validate_slab_cache(s);
5761 		if (ret >= 0)
5762 			ret = length;
5763 	}
5764 	return ret;
5765 }
5766 SLAB_ATTR(validate);
5767 
5768 #endif /* CONFIG_SLUB_DEBUG */
5769 
5770 #ifdef CONFIG_FAILSLAB
5771 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5772 {
5773 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5774 }
5775 
5776 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5777 				size_t length)
5778 {
5779 	if (s->refcount > 1)
5780 		return -EINVAL;
5781 
5782 	if (buf[0] == '1')
5783 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5784 	else
5785 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5786 
5787 	return length;
5788 }
5789 SLAB_ATTR(failslab);
5790 #endif
5791 
5792 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5793 {
5794 	return 0;
5795 }
5796 
5797 static ssize_t shrink_store(struct kmem_cache *s,
5798 			const char *buf, size_t length)
5799 {
5800 	if (buf[0] == '1')
5801 		kmem_cache_shrink(s);
5802 	else
5803 		return -EINVAL;
5804 	return length;
5805 }
5806 SLAB_ATTR(shrink);
5807 
5808 #ifdef CONFIG_NUMA
5809 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5810 {
5811 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5812 }
5813 
5814 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5815 				const char *buf, size_t length)
5816 {
5817 	unsigned int ratio;
5818 	int err;
5819 
5820 	err = kstrtouint(buf, 10, &ratio);
5821 	if (err)
5822 		return err;
5823 	if (ratio > 100)
5824 		return -ERANGE;
5825 
5826 	s->remote_node_defrag_ratio = ratio * 10;
5827 
5828 	return length;
5829 }
5830 SLAB_ATTR(remote_node_defrag_ratio);
5831 #endif
5832 
5833 #ifdef CONFIG_SLUB_STATS
5834 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5835 {
5836 	unsigned long sum  = 0;
5837 	int cpu;
5838 	int len = 0;
5839 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5840 
5841 	if (!data)
5842 		return -ENOMEM;
5843 
5844 	for_each_online_cpu(cpu) {
5845 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5846 
5847 		data[cpu] = x;
5848 		sum += x;
5849 	}
5850 
5851 	len += sysfs_emit_at(buf, len, "%lu", sum);
5852 
5853 #ifdef CONFIG_SMP
5854 	for_each_online_cpu(cpu) {
5855 		if (data[cpu])
5856 			len += sysfs_emit_at(buf, len, " C%d=%u",
5857 					     cpu, data[cpu]);
5858 	}
5859 #endif
5860 	kfree(data);
5861 	len += sysfs_emit_at(buf, len, "\n");
5862 
5863 	return len;
5864 }
5865 
5866 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5867 {
5868 	int cpu;
5869 
5870 	for_each_online_cpu(cpu)
5871 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5872 }
5873 
5874 #define STAT_ATTR(si, text) 					\
5875 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5876 {								\
5877 	return show_stat(s, buf, si);				\
5878 }								\
5879 static ssize_t text##_store(struct kmem_cache *s,		\
5880 				const char *buf, size_t length)	\
5881 {								\
5882 	if (buf[0] != '0')					\
5883 		return -EINVAL;					\
5884 	clear_stat(s, si);					\
5885 	return length;						\
5886 }								\
5887 SLAB_ATTR(text);						\
5888 
5889 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5890 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5891 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5892 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5893 STAT_ATTR(FREE_FROZEN, free_frozen);
5894 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5895 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5896 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5897 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5898 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5899 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5900 STAT_ATTR(FREE_SLAB, free_slab);
5901 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5902 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5903 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5904 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5905 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5906 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5907 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5908 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5909 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5910 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5911 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5912 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5913 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5914 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5915 #endif	/* CONFIG_SLUB_STATS */
5916 
5917 #ifdef CONFIG_KFENCE
5918 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5919 {
5920 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5921 }
5922 
5923 static ssize_t skip_kfence_store(struct kmem_cache *s,
5924 			const char *buf, size_t length)
5925 {
5926 	int ret = length;
5927 
5928 	if (buf[0] == '0')
5929 		s->flags &= ~SLAB_SKIP_KFENCE;
5930 	else if (buf[0] == '1')
5931 		s->flags |= SLAB_SKIP_KFENCE;
5932 	else
5933 		ret = -EINVAL;
5934 
5935 	return ret;
5936 }
5937 SLAB_ATTR(skip_kfence);
5938 #endif
5939 
5940 static struct attribute *slab_attrs[] = {
5941 	&slab_size_attr.attr,
5942 	&object_size_attr.attr,
5943 	&objs_per_slab_attr.attr,
5944 	&order_attr.attr,
5945 	&min_partial_attr.attr,
5946 	&cpu_partial_attr.attr,
5947 	&objects_attr.attr,
5948 	&objects_partial_attr.attr,
5949 	&partial_attr.attr,
5950 	&cpu_slabs_attr.attr,
5951 	&ctor_attr.attr,
5952 	&aliases_attr.attr,
5953 	&align_attr.attr,
5954 	&hwcache_align_attr.attr,
5955 	&reclaim_account_attr.attr,
5956 	&destroy_by_rcu_attr.attr,
5957 	&shrink_attr.attr,
5958 	&slabs_cpu_partial_attr.attr,
5959 #ifdef CONFIG_SLUB_DEBUG
5960 	&total_objects_attr.attr,
5961 	&slabs_attr.attr,
5962 	&sanity_checks_attr.attr,
5963 	&trace_attr.attr,
5964 	&red_zone_attr.attr,
5965 	&poison_attr.attr,
5966 	&store_user_attr.attr,
5967 	&validate_attr.attr,
5968 #endif
5969 #ifdef CONFIG_ZONE_DMA
5970 	&cache_dma_attr.attr,
5971 #endif
5972 #ifdef CONFIG_NUMA
5973 	&remote_node_defrag_ratio_attr.attr,
5974 #endif
5975 #ifdef CONFIG_SLUB_STATS
5976 	&alloc_fastpath_attr.attr,
5977 	&alloc_slowpath_attr.attr,
5978 	&free_fastpath_attr.attr,
5979 	&free_slowpath_attr.attr,
5980 	&free_frozen_attr.attr,
5981 	&free_add_partial_attr.attr,
5982 	&free_remove_partial_attr.attr,
5983 	&alloc_from_partial_attr.attr,
5984 	&alloc_slab_attr.attr,
5985 	&alloc_refill_attr.attr,
5986 	&alloc_node_mismatch_attr.attr,
5987 	&free_slab_attr.attr,
5988 	&cpuslab_flush_attr.attr,
5989 	&deactivate_full_attr.attr,
5990 	&deactivate_empty_attr.attr,
5991 	&deactivate_to_head_attr.attr,
5992 	&deactivate_to_tail_attr.attr,
5993 	&deactivate_remote_frees_attr.attr,
5994 	&deactivate_bypass_attr.attr,
5995 	&order_fallback_attr.attr,
5996 	&cmpxchg_double_fail_attr.attr,
5997 	&cmpxchg_double_cpu_fail_attr.attr,
5998 	&cpu_partial_alloc_attr.attr,
5999 	&cpu_partial_free_attr.attr,
6000 	&cpu_partial_node_attr.attr,
6001 	&cpu_partial_drain_attr.attr,
6002 #endif
6003 #ifdef CONFIG_FAILSLAB
6004 	&failslab_attr.attr,
6005 #endif
6006 #ifdef CONFIG_HARDENED_USERCOPY
6007 	&usersize_attr.attr,
6008 #endif
6009 #ifdef CONFIG_KFENCE
6010 	&skip_kfence_attr.attr,
6011 #endif
6012 
6013 	NULL
6014 };
6015 
6016 static const struct attribute_group slab_attr_group = {
6017 	.attrs = slab_attrs,
6018 };
6019 
6020 static ssize_t slab_attr_show(struct kobject *kobj,
6021 				struct attribute *attr,
6022 				char *buf)
6023 {
6024 	struct slab_attribute *attribute;
6025 	struct kmem_cache *s;
6026 
6027 	attribute = to_slab_attr(attr);
6028 	s = to_slab(kobj);
6029 
6030 	if (!attribute->show)
6031 		return -EIO;
6032 
6033 	return attribute->show(s, buf);
6034 }
6035 
6036 static ssize_t slab_attr_store(struct kobject *kobj,
6037 				struct attribute *attr,
6038 				const char *buf, size_t len)
6039 {
6040 	struct slab_attribute *attribute;
6041 	struct kmem_cache *s;
6042 
6043 	attribute = to_slab_attr(attr);
6044 	s = to_slab(kobj);
6045 
6046 	if (!attribute->store)
6047 		return -EIO;
6048 
6049 	return attribute->store(s, buf, len);
6050 }
6051 
6052 static void kmem_cache_release(struct kobject *k)
6053 {
6054 	slab_kmem_cache_release(to_slab(k));
6055 }
6056 
6057 static const struct sysfs_ops slab_sysfs_ops = {
6058 	.show = slab_attr_show,
6059 	.store = slab_attr_store,
6060 };
6061 
6062 static struct kobj_type slab_ktype = {
6063 	.sysfs_ops = &slab_sysfs_ops,
6064 	.release = kmem_cache_release,
6065 };
6066 
6067 static struct kset *slab_kset;
6068 
6069 static inline struct kset *cache_kset(struct kmem_cache *s)
6070 {
6071 	return slab_kset;
6072 }
6073 
6074 #define ID_STR_LENGTH 32
6075 
6076 /* Create a unique string id for a slab cache:
6077  *
6078  * Format	:[flags-]size
6079  */
6080 static char *create_unique_id(struct kmem_cache *s)
6081 {
6082 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6083 	char *p = name;
6084 
6085 	if (!name)
6086 		return ERR_PTR(-ENOMEM);
6087 
6088 	*p++ = ':';
6089 	/*
6090 	 * First flags affecting slabcache operations. We will only
6091 	 * get here for aliasable slabs so we do not need to support
6092 	 * too many flags. The flags here must cover all flags that
6093 	 * are matched during merging to guarantee that the id is
6094 	 * unique.
6095 	 */
6096 	if (s->flags & SLAB_CACHE_DMA)
6097 		*p++ = 'd';
6098 	if (s->flags & SLAB_CACHE_DMA32)
6099 		*p++ = 'D';
6100 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
6101 		*p++ = 'a';
6102 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
6103 		*p++ = 'F';
6104 	if (s->flags & SLAB_ACCOUNT)
6105 		*p++ = 'A';
6106 	if (p != name + 1)
6107 		*p++ = '-';
6108 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6109 
6110 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6111 		kfree(name);
6112 		return ERR_PTR(-EINVAL);
6113 	}
6114 	kmsan_unpoison_memory(name, p - name);
6115 	return name;
6116 }
6117 
6118 static int sysfs_slab_add(struct kmem_cache *s)
6119 {
6120 	int err;
6121 	const char *name;
6122 	struct kset *kset = cache_kset(s);
6123 	int unmergeable = slab_unmergeable(s);
6124 
6125 	if (!unmergeable && disable_higher_order_debug &&
6126 			(slub_debug & DEBUG_METADATA_FLAGS))
6127 		unmergeable = 1;
6128 
6129 	if (unmergeable) {
6130 		/*
6131 		 * Slabcache can never be merged so we can use the name proper.
6132 		 * This is typically the case for debug situations. In that
6133 		 * case we can catch duplicate names easily.
6134 		 */
6135 		sysfs_remove_link(&slab_kset->kobj, s->name);
6136 		name = s->name;
6137 	} else {
6138 		/*
6139 		 * Create a unique name for the slab as a target
6140 		 * for the symlinks.
6141 		 */
6142 		name = create_unique_id(s);
6143 		if (IS_ERR(name))
6144 			return PTR_ERR(name);
6145 	}
6146 
6147 	s->kobj.kset = kset;
6148 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6149 	if (err)
6150 		goto out;
6151 
6152 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
6153 	if (err)
6154 		goto out_del_kobj;
6155 
6156 	if (!unmergeable) {
6157 		/* Setup first alias */
6158 		sysfs_slab_alias(s, s->name);
6159 	}
6160 out:
6161 	if (!unmergeable)
6162 		kfree(name);
6163 	return err;
6164 out_del_kobj:
6165 	kobject_del(&s->kobj);
6166 	goto out;
6167 }
6168 
6169 void sysfs_slab_unlink(struct kmem_cache *s)
6170 {
6171 	if (slab_state >= FULL)
6172 		kobject_del(&s->kobj);
6173 }
6174 
6175 void sysfs_slab_release(struct kmem_cache *s)
6176 {
6177 	if (slab_state >= FULL)
6178 		kobject_put(&s->kobj);
6179 }
6180 
6181 /*
6182  * Need to buffer aliases during bootup until sysfs becomes
6183  * available lest we lose that information.
6184  */
6185 struct saved_alias {
6186 	struct kmem_cache *s;
6187 	const char *name;
6188 	struct saved_alias *next;
6189 };
6190 
6191 static struct saved_alias *alias_list;
6192 
6193 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6194 {
6195 	struct saved_alias *al;
6196 
6197 	if (slab_state == FULL) {
6198 		/*
6199 		 * If we have a leftover link then remove it.
6200 		 */
6201 		sysfs_remove_link(&slab_kset->kobj, name);
6202 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6203 	}
6204 
6205 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6206 	if (!al)
6207 		return -ENOMEM;
6208 
6209 	al->s = s;
6210 	al->name = name;
6211 	al->next = alias_list;
6212 	alias_list = al;
6213 	kmsan_unpoison_memory(al, sizeof(*al));
6214 	return 0;
6215 }
6216 
6217 static int __init slab_sysfs_init(void)
6218 {
6219 	struct kmem_cache *s;
6220 	int err;
6221 
6222 	mutex_lock(&slab_mutex);
6223 
6224 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6225 	if (!slab_kset) {
6226 		mutex_unlock(&slab_mutex);
6227 		pr_err("Cannot register slab subsystem.\n");
6228 		return -ENOSYS;
6229 	}
6230 
6231 	slab_state = FULL;
6232 
6233 	list_for_each_entry(s, &slab_caches, list) {
6234 		err = sysfs_slab_add(s);
6235 		if (err)
6236 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6237 			       s->name);
6238 	}
6239 
6240 	while (alias_list) {
6241 		struct saved_alias *al = alias_list;
6242 
6243 		alias_list = alias_list->next;
6244 		err = sysfs_slab_alias(al->s, al->name);
6245 		if (err)
6246 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6247 			       al->name);
6248 		kfree(al);
6249 	}
6250 
6251 	mutex_unlock(&slab_mutex);
6252 	return 0;
6253 }
6254 late_initcall(slab_sysfs_init);
6255 #endif /* SLAB_SUPPORTS_SYSFS */
6256 
6257 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6258 static int slab_debugfs_show(struct seq_file *seq, void *v)
6259 {
6260 	struct loc_track *t = seq->private;
6261 	struct location *l;
6262 	unsigned long idx;
6263 
6264 	idx = (unsigned long) t->idx;
6265 	if (idx < t->count) {
6266 		l = &t->loc[idx];
6267 
6268 		seq_printf(seq, "%7ld ", l->count);
6269 
6270 		if (l->addr)
6271 			seq_printf(seq, "%pS", (void *)l->addr);
6272 		else
6273 			seq_puts(seq, "<not-available>");
6274 
6275 		if (l->waste)
6276 			seq_printf(seq, " waste=%lu/%lu",
6277 				l->count * l->waste, l->waste);
6278 
6279 		if (l->sum_time != l->min_time) {
6280 			seq_printf(seq, " age=%ld/%llu/%ld",
6281 				l->min_time, div_u64(l->sum_time, l->count),
6282 				l->max_time);
6283 		} else
6284 			seq_printf(seq, " age=%ld", l->min_time);
6285 
6286 		if (l->min_pid != l->max_pid)
6287 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6288 		else
6289 			seq_printf(seq, " pid=%ld",
6290 				l->min_pid);
6291 
6292 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6293 			seq_printf(seq, " cpus=%*pbl",
6294 				 cpumask_pr_args(to_cpumask(l->cpus)));
6295 
6296 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6297 			seq_printf(seq, " nodes=%*pbl",
6298 				 nodemask_pr_args(&l->nodes));
6299 
6300 #ifdef CONFIG_STACKDEPOT
6301 		{
6302 			depot_stack_handle_t handle;
6303 			unsigned long *entries;
6304 			unsigned int nr_entries, j;
6305 
6306 			handle = READ_ONCE(l->handle);
6307 			if (handle) {
6308 				nr_entries = stack_depot_fetch(handle, &entries);
6309 				seq_puts(seq, "\n");
6310 				for (j = 0; j < nr_entries; j++)
6311 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
6312 			}
6313 		}
6314 #endif
6315 		seq_puts(seq, "\n");
6316 	}
6317 
6318 	if (!idx && !t->count)
6319 		seq_puts(seq, "No data\n");
6320 
6321 	return 0;
6322 }
6323 
6324 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6325 {
6326 }
6327 
6328 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6329 {
6330 	struct loc_track *t = seq->private;
6331 
6332 	t->idx = ++(*ppos);
6333 	if (*ppos <= t->count)
6334 		return ppos;
6335 
6336 	return NULL;
6337 }
6338 
6339 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6340 {
6341 	struct location *loc1 = (struct location *)a;
6342 	struct location *loc2 = (struct location *)b;
6343 
6344 	if (loc1->count > loc2->count)
6345 		return -1;
6346 	else
6347 		return 1;
6348 }
6349 
6350 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6351 {
6352 	struct loc_track *t = seq->private;
6353 
6354 	t->idx = *ppos;
6355 	return ppos;
6356 }
6357 
6358 static const struct seq_operations slab_debugfs_sops = {
6359 	.start  = slab_debugfs_start,
6360 	.next   = slab_debugfs_next,
6361 	.stop   = slab_debugfs_stop,
6362 	.show   = slab_debugfs_show,
6363 };
6364 
6365 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6366 {
6367 
6368 	struct kmem_cache_node *n;
6369 	enum track_item alloc;
6370 	int node;
6371 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6372 						sizeof(struct loc_track));
6373 	struct kmem_cache *s = file_inode(filep)->i_private;
6374 	unsigned long *obj_map;
6375 
6376 	if (!t)
6377 		return -ENOMEM;
6378 
6379 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6380 	if (!obj_map) {
6381 		seq_release_private(inode, filep);
6382 		return -ENOMEM;
6383 	}
6384 
6385 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6386 		alloc = TRACK_ALLOC;
6387 	else
6388 		alloc = TRACK_FREE;
6389 
6390 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6391 		bitmap_free(obj_map);
6392 		seq_release_private(inode, filep);
6393 		return -ENOMEM;
6394 	}
6395 
6396 	for_each_kmem_cache_node(s, node, n) {
6397 		unsigned long flags;
6398 		struct slab *slab;
6399 
6400 		if (!atomic_long_read(&n->nr_slabs))
6401 			continue;
6402 
6403 		spin_lock_irqsave(&n->list_lock, flags);
6404 		list_for_each_entry(slab, &n->partial, slab_list)
6405 			process_slab(t, s, slab, alloc, obj_map);
6406 		list_for_each_entry(slab, &n->full, slab_list)
6407 			process_slab(t, s, slab, alloc, obj_map);
6408 		spin_unlock_irqrestore(&n->list_lock, flags);
6409 	}
6410 
6411 	/* Sort locations by count */
6412 	sort_r(t->loc, t->count, sizeof(struct location),
6413 		cmp_loc_by_count, NULL, NULL);
6414 
6415 	bitmap_free(obj_map);
6416 	return 0;
6417 }
6418 
6419 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6420 {
6421 	struct seq_file *seq = file->private_data;
6422 	struct loc_track *t = seq->private;
6423 
6424 	free_loc_track(t);
6425 	return seq_release_private(inode, file);
6426 }
6427 
6428 static const struct file_operations slab_debugfs_fops = {
6429 	.open    = slab_debug_trace_open,
6430 	.read    = seq_read,
6431 	.llseek  = seq_lseek,
6432 	.release = slab_debug_trace_release,
6433 };
6434 
6435 static void debugfs_slab_add(struct kmem_cache *s)
6436 {
6437 	struct dentry *slab_cache_dir;
6438 
6439 	if (unlikely(!slab_debugfs_root))
6440 		return;
6441 
6442 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6443 
6444 	debugfs_create_file("alloc_traces", 0400,
6445 		slab_cache_dir, s, &slab_debugfs_fops);
6446 
6447 	debugfs_create_file("free_traces", 0400,
6448 		slab_cache_dir, s, &slab_debugfs_fops);
6449 }
6450 
6451 void debugfs_slab_release(struct kmem_cache *s)
6452 {
6453 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6454 }
6455 
6456 static int __init slab_debugfs_init(void)
6457 {
6458 	struct kmem_cache *s;
6459 
6460 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6461 
6462 	list_for_each_entry(s, &slab_caches, list)
6463 		if (s->flags & SLAB_STORE_USER)
6464 			debugfs_slab_add(s);
6465 
6466 	return 0;
6467 
6468 }
6469 __initcall(slab_debugfs_init);
6470 #endif
6471 /*
6472  * The /proc/slabinfo ABI
6473  */
6474 #ifdef CONFIG_SLUB_DEBUG
6475 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6476 {
6477 	unsigned long nr_slabs = 0;
6478 	unsigned long nr_objs = 0;
6479 	unsigned long nr_free = 0;
6480 	int node;
6481 	struct kmem_cache_node *n;
6482 
6483 	for_each_kmem_cache_node(s, node, n) {
6484 		nr_slabs += node_nr_slabs(n);
6485 		nr_objs += node_nr_objs(n);
6486 		nr_free += count_partial(n, count_free);
6487 	}
6488 
6489 	sinfo->active_objs = nr_objs - nr_free;
6490 	sinfo->num_objs = nr_objs;
6491 	sinfo->active_slabs = nr_slabs;
6492 	sinfo->num_slabs = nr_slabs;
6493 	sinfo->objects_per_slab = oo_objects(s->oo);
6494 	sinfo->cache_order = oo_order(s->oo);
6495 }
6496 
6497 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6498 {
6499 }
6500 
6501 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6502 		       size_t count, loff_t *ppos)
6503 {
6504 	return -EIO;
6505 }
6506 #endif /* CONFIG_SLUB_DEBUG */
6507