xref: /linux/mm/sparse.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 
17 #include "internal.h"
18 #include <asm/dma.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
21 
22 /*
23  * Permanent SPARSEMEM data:
24  *
25  * 1) mem_section	- memory sections, mem_map's for valid memory
26  */
27 #ifdef CONFIG_SPARSEMEM_EXTREME
28 struct mem_section **mem_section;
29 #else
30 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
31 	____cacheline_internodealigned_in_smp;
32 #endif
33 EXPORT_SYMBOL(mem_section);
34 
35 #ifdef NODE_NOT_IN_PAGE_FLAGS
36 /*
37  * If we did not store the node number in the page then we have to
38  * do a lookup in the section_to_node_table in order to find which
39  * node the page belongs to.
40  */
41 #if MAX_NUMNODES <= 256
42 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #else
44 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
45 #endif
46 
47 int page_to_nid(const struct page *page)
48 {
49 	return section_to_node_table[page_to_section(page)];
50 }
51 EXPORT_SYMBOL(page_to_nid);
52 
53 static void set_section_nid(unsigned long section_nr, int nid)
54 {
55 	section_to_node_table[section_nr] = nid;
56 }
57 #else /* !NODE_NOT_IN_PAGE_FLAGS */
58 static inline void set_section_nid(unsigned long section_nr, int nid)
59 {
60 }
61 #endif
62 
63 #ifdef CONFIG_SPARSEMEM_EXTREME
64 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
65 {
66 	struct mem_section *section = NULL;
67 	unsigned long array_size = SECTIONS_PER_ROOT *
68 				   sizeof(struct mem_section);
69 
70 	if (slab_is_available()) {
71 		section = kzalloc_node(array_size, GFP_KERNEL, nid);
72 	} else {
73 		section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
74 					      nid);
75 		if (!section)
76 			panic("%s: Failed to allocate %lu bytes nid=%d\n",
77 			      __func__, array_size, nid);
78 	}
79 
80 	return section;
81 }
82 
83 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
84 {
85 	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86 	struct mem_section *section;
87 
88 	/*
89 	 * An existing section is possible in the sub-section hotplug
90 	 * case. First hot-add instantiates, follow-on hot-add reuses
91 	 * the existing section.
92 	 *
93 	 * The mem_hotplug_lock resolves the apparent race below.
94 	 */
95 	if (mem_section[root])
96 		return 0;
97 
98 	section = sparse_index_alloc(nid);
99 	if (!section)
100 		return -ENOMEM;
101 
102 	mem_section[root] = section;
103 
104 	return 0;
105 }
106 #else /* !SPARSEMEM_EXTREME */
107 static inline int sparse_index_init(unsigned long section_nr, int nid)
108 {
109 	return 0;
110 }
111 #endif
112 
113 #ifdef CONFIG_SPARSEMEM_EXTREME
114 unsigned long __section_nr(struct mem_section *ms)
115 {
116 	unsigned long root_nr;
117 	struct mem_section *root = NULL;
118 
119 	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120 		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121 		if (!root)
122 			continue;
123 
124 		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125 		     break;
126 	}
127 
128 	VM_BUG_ON(!root);
129 
130 	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131 }
132 #else
133 unsigned long __section_nr(struct mem_section *ms)
134 {
135 	return (unsigned long)(ms - mem_section[0]);
136 }
137 #endif
138 
139 /*
140  * During early boot, before section_mem_map is used for an actual
141  * mem_map, we use section_mem_map to store the section's NUMA
142  * node.  This keeps us from having to use another data structure.  The
143  * node information is cleared just before we store the real mem_map.
144  */
145 static inline unsigned long sparse_encode_early_nid(int nid)
146 {
147 	return (nid << SECTION_NID_SHIFT);
148 }
149 
150 static inline int sparse_early_nid(struct mem_section *section)
151 {
152 	return (section->section_mem_map >> SECTION_NID_SHIFT);
153 }
154 
155 /* Validate the physical addressing limitations of the model */
156 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157 						unsigned long *end_pfn)
158 {
159 	unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160 
161 	/*
162 	 * Sanity checks - do not allow an architecture to pass
163 	 * in larger pfns than the maximum scope of sparsemem:
164 	 */
165 	if (*start_pfn > max_sparsemem_pfn) {
166 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167 			"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168 			*start_pfn, *end_pfn, max_sparsemem_pfn);
169 		WARN_ON_ONCE(1);
170 		*start_pfn = max_sparsemem_pfn;
171 		*end_pfn = max_sparsemem_pfn;
172 	} else if (*end_pfn > max_sparsemem_pfn) {
173 		mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174 			"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175 			*start_pfn, *end_pfn, max_sparsemem_pfn);
176 		WARN_ON_ONCE(1);
177 		*end_pfn = max_sparsemem_pfn;
178 	}
179 }
180 
181 /*
182  * There are a number of times that we loop over NR_MEM_SECTIONS,
183  * looking for section_present() on each.  But, when we have very
184  * large physical address spaces, NR_MEM_SECTIONS can also be
185  * very large which makes the loops quite long.
186  *
187  * Keeping track of this gives us an easy way to break out of
188  * those loops early.
189  */
190 unsigned long __highest_present_section_nr;
191 static void section_mark_present(struct mem_section *ms)
192 {
193 	unsigned long section_nr = __section_nr(ms);
194 
195 	if (section_nr > __highest_present_section_nr)
196 		__highest_present_section_nr = section_nr;
197 
198 	ms->section_mem_map |= SECTION_MARKED_PRESENT;
199 }
200 
201 static inline unsigned long next_present_section_nr(unsigned long section_nr)
202 {
203 	do {
204 		section_nr++;
205 		if (present_section_nr(section_nr))
206 			return section_nr;
207 	} while ((section_nr <= __highest_present_section_nr));
208 
209 	return -1;
210 }
211 #define for_each_present_section_nr(start, section_nr)		\
212 	for (section_nr = next_present_section_nr(start-1);	\
213 	     ((section_nr != -1) &&				\
214 	      (section_nr <= __highest_present_section_nr));	\
215 	     section_nr = next_present_section_nr(section_nr))
216 
217 static inline unsigned long first_present_section_nr(void)
218 {
219 	return next_present_section_nr(-1);
220 }
221 
222 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
223 		unsigned long nr_pages)
224 {
225 	int idx = subsection_map_index(pfn);
226 	int end = subsection_map_index(pfn + nr_pages - 1);
227 
228 	bitmap_set(map, idx, end - idx + 1);
229 }
230 
231 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
232 {
233 	int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
234 	unsigned long nr, start_sec = pfn_to_section_nr(pfn);
235 
236 	if (!nr_pages)
237 		return;
238 
239 	for (nr = start_sec; nr <= end_sec; nr++) {
240 		struct mem_section *ms;
241 		unsigned long pfns;
242 
243 		pfns = min(nr_pages, PAGES_PER_SECTION
244 				- (pfn & ~PAGE_SECTION_MASK));
245 		ms = __nr_to_section(nr);
246 		subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
247 
248 		pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
249 				pfns, subsection_map_index(pfn),
250 				subsection_map_index(pfn + pfns - 1));
251 
252 		pfn += pfns;
253 		nr_pages -= pfns;
254 	}
255 }
256 
257 /* Record a memory area against a node. */
258 void __init memory_present(int nid, unsigned long start, unsigned long end)
259 {
260 	unsigned long pfn;
261 
262 #ifdef CONFIG_SPARSEMEM_EXTREME
263 	if (unlikely(!mem_section)) {
264 		unsigned long size, align;
265 
266 		size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
267 		align = 1 << (INTERNODE_CACHE_SHIFT);
268 		mem_section = memblock_alloc(size, align);
269 		if (!mem_section)
270 			panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
271 			      __func__, size, align);
272 	}
273 #endif
274 
275 	start &= PAGE_SECTION_MASK;
276 	mminit_validate_memmodel_limits(&start, &end);
277 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
278 		unsigned long section = pfn_to_section_nr(pfn);
279 		struct mem_section *ms;
280 
281 		sparse_index_init(section, nid);
282 		set_section_nid(section, nid);
283 
284 		ms = __nr_to_section(section);
285 		if (!ms->section_mem_map) {
286 			ms->section_mem_map = sparse_encode_early_nid(nid) |
287 							SECTION_IS_ONLINE;
288 			section_mark_present(ms);
289 		}
290 	}
291 }
292 
293 /*
294  * Mark all memblocks as present using memory_present(). This is a
295  * convienence function that is useful for a number of arches
296  * to mark all of the systems memory as present during initialization.
297  */
298 void __init memblocks_present(void)
299 {
300 	struct memblock_region *reg;
301 
302 	for_each_memblock(memory, reg) {
303 		memory_present(memblock_get_region_node(reg),
304 			       memblock_region_memory_base_pfn(reg),
305 			       memblock_region_memory_end_pfn(reg));
306 	}
307 }
308 
309 /*
310  * Subtle, we encode the real pfn into the mem_map such that
311  * the identity pfn - section_mem_map will return the actual
312  * physical page frame number.
313  */
314 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
315 {
316 	unsigned long coded_mem_map =
317 		(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
318 	BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
319 	BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
320 	return coded_mem_map;
321 }
322 
323 /*
324  * Decode mem_map from the coded memmap
325  */
326 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
327 {
328 	/* mask off the extra low bits of information */
329 	coded_mem_map &= SECTION_MAP_MASK;
330 	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
331 }
332 
333 static void __meminit sparse_init_one_section(struct mem_section *ms,
334 		unsigned long pnum, struct page *mem_map,
335 		struct mem_section_usage *usage, unsigned long flags)
336 {
337 	ms->section_mem_map &= ~SECTION_MAP_MASK;
338 	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
339 		| SECTION_HAS_MEM_MAP | flags;
340 	ms->usage = usage;
341 }
342 
343 static unsigned long usemap_size(void)
344 {
345 	return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
346 }
347 
348 size_t mem_section_usage_size(void)
349 {
350 	return sizeof(struct mem_section_usage) + usemap_size();
351 }
352 
353 #ifdef CONFIG_MEMORY_HOTREMOVE
354 static struct mem_section_usage * __init
355 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
356 					 unsigned long size)
357 {
358 	struct mem_section_usage *usage;
359 	unsigned long goal, limit;
360 	int nid;
361 	/*
362 	 * A page may contain usemaps for other sections preventing the
363 	 * page being freed and making a section unremovable while
364 	 * other sections referencing the usemap remain active. Similarly,
365 	 * a pgdat can prevent a section being removed. If section A
366 	 * contains a pgdat and section B contains the usemap, both
367 	 * sections become inter-dependent. This allocates usemaps
368 	 * from the same section as the pgdat where possible to avoid
369 	 * this problem.
370 	 */
371 	goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
372 	limit = goal + (1UL << PA_SECTION_SHIFT);
373 	nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
374 again:
375 	usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
376 	if (!usage && limit) {
377 		limit = 0;
378 		goto again;
379 	}
380 	return usage;
381 }
382 
383 static void __init check_usemap_section_nr(int nid,
384 		struct mem_section_usage *usage)
385 {
386 	unsigned long usemap_snr, pgdat_snr;
387 	static unsigned long old_usemap_snr;
388 	static unsigned long old_pgdat_snr;
389 	struct pglist_data *pgdat = NODE_DATA(nid);
390 	int usemap_nid;
391 
392 	/* First call */
393 	if (!old_usemap_snr) {
394 		old_usemap_snr = NR_MEM_SECTIONS;
395 		old_pgdat_snr = NR_MEM_SECTIONS;
396 	}
397 
398 	usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
399 	pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
400 	if (usemap_snr == pgdat_snr)
401 		return;
402 
403 	if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
404 		/* skip redundant message */
405 		return;
406 
407 	old_usemap_snr = usemap_snr;
408 	old_pgdat_snr = pgdat_snr;
409 
410 	usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
411 	if (usemap_nid != nid) {
412 		pr_info("node %d must be removed before remove section %ld\n",
413 			nid, usemap_snr);
414 		return;
415 	}
416 	/*
417 	 * There is a circular dependency.
418 	 * Some platforms allow un-removable section because they will just
419 	 * gather other removable sections for dynamic partitioning.
420 	 * Just notify un-removable section's number here.
421 	 */
422 	pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
423 		usemap_snr, pgdat_snr, nid);
424 }
425 #else
426 static struct mem_section_usage * __init
427 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
428 					 unsigned long size)
429 {
430 	return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
431 }
432 
433 static void __init check_usemap_section_nr(int nid,
434 		struct mem_section_usage *usage)
435 {
436 }
437 #endif /* CONFIG_MEMORY_HOTREMOVE */
438 
439 #ifdef CONFIG_SPARSEMEM_VMEMMAP
440 static unsigned long __init section_map_size(void)
441 {
442 	return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
443 }
444 
445 #else
446 static unsigned long __init section_map_size(void)
447 {
448 	return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
449 }
450 
451 struct page __init *__populate_section_memmap(unsigned long pfn,
452 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
453 {
454 	unsigned long size = section_map_size();
455 	struct page *map = sparse_buffer_alloc(size);
456 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457 
458 	if (map)
459 		return map;
460 
461 	map = memblock_alloc_try_nid_raw(size, size, addr,
462 					  MEMBLOCK_ALLOC_ACCESSIBLE, nid);
463 	if (!map)
464 		panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
465 		      __func__, size, PAGE_SIZE, nid, &addr);
466 
467 	return map;
468 }
469 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
470 
471 static void *sparsemap_buf __meminitdata;
472 static void *sparsemap_buf_end __meminitdata;
473 
474 static inline void __meminit sparse_buffer_free(unsigned long size)
475 {
476 	WARN_ON(!sparsemap_buf || size == 0);
477 	memblock_free_early(__pa(sparsemap_buf), size);
478 }
479 
480 static void __init sparse_buffer_init(unsigned long size, int nid)
481 {
482 	phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
483 	WARN_ON(sparsemap_buf);	/* forgot to call sparse_buffer_fini()? */
484 	/*
485 	 * Pre-allocated buffer is mainly used by __populate_section_memmap
486 	 * and we want it to be properly aligned to the section size - this is
487 	 * especially the case for VMEMMAP which maps memmap to PMDs
488 	 */
489 	sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
490 					addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
491 	sparsemap_buf_end = sparsemap_buf + size;
492 }
493 
494 static void __init sparse_buffer_fini(void)
495 {
496 	unsigned long size = sparsemap_buf_end - sparsemap_buf;
497 
498 	if (sparsemap_buf && size > 0)
499 		sparse_buffer_free(size);
500 	sparsemap_buf = NULL;
501 }
502 
503 void * __meminit sparse_buffer_alloc(unsigned long size)
504 {
505 	void *ptr = NULL;
506 
507 	if (sparsemap_buf) {
508 		ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
509 		if (ptr + size > sparsemap_buf_end)
510 			ptr = NULL;
511 		else {
512 			/* Free redundant aligned space */
513 			if ((unsigned long)(ptr - sparsemap_buf) > 0)
514 				sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
515 			sparsemap_buf = ptr + size;
516 		}
517 	}
518 	return ptr;
519 }
520 
521 void __weak __meminit vmemmap_populate_print_last(void)
522 {
523 }
524 
525 /*
526  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
527  * And number of present sections in this node is map_count.
528  */
529 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
530 				   unsigned long pnum_end,
531 				   unsigned long map_count)
532 {
533 	struct mem_section_usage *usage;
534 	unsigned long pnum;
535 	struct page *map;
536 
537 	usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
538 			mem_section_usage_size() * map_count);
539 	if (!usage) {
540 		pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
541 		goto failed;
542 	}
543 	sparse_buffer_init(map_count * section_map_size(), nid);
544 	for_each_present_section_nr(pnum_begin, pnum) {
545 		unsigned long pfn = section_nr_to_pfn(pnum);
546 
547 		if (pnum >= pnum_end)
548 			break;
549 
550 		map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
551 				nid, NULL);
552 		if (!map) {
553 			pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
554 			       __func__, nid);
555 			pnum_begin = pnum;
556 			goto failed;
557 		}
558 		check_usemap_section_nr(nid, usage);
559 		sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
560 				SECTION_IS_EARLY);
561 		usage = (void *) usage + mem_section_usage_size();
562 	}
563 	sparse_buffer_fini();
564 	return;
565 failed:
566 	/* We failed to allocate, mark all the following pnums as not present */
567 	for_each_present_section_nr(pnum_begin, pnum) {
568 		struct mem_section *ms;
569 
570 		if (pnum >= pnum_end)
571 			break;
572 		ms = __nr_to_section(pnum);
573 		ms->section_mem_map = 0;
574 	}
575 }
576 
577 /*
578  * Allocate the accumulated non-linear sections, allocate a mem_map
579  * for each and record the physical to section mapping.
580  */
581 void __init sparse_init(void)
582 {
583 	unsigned long pnum_begin = first_present_section_nr();
584 	int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
585 	unsigned long pnum_end, map_count = 1;
586 
587 	/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
588 	set_pageblock_order();
589 
590 	for_each_present_section_nr(pnum_begin + 1, pnum_end) {
591 		int nid = sparse_early_nid(__nr_to_section(pnum_end));
592 
593 		if (nid == nid_begin) {
594 			map_count++;
595 			continue;
596 		}
597 		/* Init node with sections in range [pnum_begin, pnum_end) */
598 		sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
599 		nid_begin = nid;
600 		pnum_begin = pnum_end;
601 		map_count = 1;
602 	}
603 	/* cover the last node */
604 	sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
605 	vmemmap_populate_print_last();
606 }
607 
608 #ifdef CONFIG_MEMORY_HOTPLUG
609 
610 /* Mark all memory sections within the pfn range as online */
611 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
612 {
613 	unsigned long pfn;
614 
615 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
616 		unsigned long section_nr = pfn_to_section_nr(pfn);
617 		struct mem_section *ms;
618 
619 		/* onlining code should never touch invalid ranges */
620 		if (WARN_ON(!valid_section_nr(section_nr)))
621 			continue;
622 
623 		ms = __nr_to_section(section_nr);
624 		ms->section_mem_map |= SECTION_IS_ONLINE;
625 	}
626 }
627 
628 #ifdef CONFIG_MEMORY_HOTREMOVE
629 /* Mark all memory sections within the pfn range as offline */
630 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
631 {
632 	unsigned long pfn;
633 
634 	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
635 		unsigned long section_nr = pfn_to_section_nr(pfn);
636 		struct mem_section *ms;
637 
638 		/*
639 		 * TODO this needs some double checking. Offlining code makes
640 		 * sure to check pfn_valid but those checks might be just bogus
641 		 */
642 		if (WARN_ON(!valid_section_nr(section_nr)))
643 			continue;
644 
645 		ms = __nr_to_section(section_nr);
646 		ms->section_mem_map &= ~SECTION_IS_ONLINE;
647 	}
648 }
649 #endif
650 
651 #ifdef CONFIG_SPARSEMEM_VMEMMAP
652 static struct page * __meminit populate_section_memmap(unsigned long pfn,
653 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
654 {
655 	return __populate_section_memmap(pfn, nr_pages, nid, altmap);
656 }
657 
658 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
659 		struct vmem_altmap *altmap)
660 {
661 	unsigned long start = (unsigned long) pfn_to_page(pfn);
662 	unsigned long end = start + nr_pages * sizeof(struct page);
663 
664 	vmemmap_free(start, end, altmap);
665 }
666 static void free_map_bootmem(struct page *memmap)
667 {
668 	unsigned long start = (unsigned long)memmap;
669 	unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
670 
671 	vmemmap_free(start, end, NULL);
672 }
673 #else
674 struct page * __meminit populate_section_memmap(unsigned long pfn,
675 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
676 {
677 	struct page *page, *ret;
678 	unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
679 
680 	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
681 	if (page)
682 		goto got_map_page;
683 
684 	ret = vmalloc(memmap_size);
685 	if (ret)
686 		goto got_map_ptr;
687 
688 	return NULL;
689 got_map_page:
690 	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
691 got_map_ptr:
692 
693 	return ret;
694 }
695 
696 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
697 		struct vmem_altmap *altmap)
698 {
699 	struct page *memmap = pfn_to_page(pfn);
700 
701 	if (is_vmalloc_addr(memmap))
702 		vfree(memmap);
703 	else
704 		free_pages((unsigned long)memmap,
705 			   get_order(sizeof(struct page) * PAGES_PER_SECTION));
706 }
707 
708 static void free_map_bootmem(struct page *memmap)
709 {
710 	unsigned long maps_section_nr, removing_section_nr, i;
711 	unsigned long magic, nr_pages;
712 	struct page *page = virt_to_page(memmap);
713 
714 	nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
715 		>> PAGE_SHIFT;
716 
717 	for (i = 0; i < nr_pages; i++, page++) {
718 		magic = (unsigned long) page->freelist;
719 
720 		BUG_ON(magic == NODE_INFO);
721 
722 		maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
723 		removing_section_nr = page_private(page);
724 
725 		/*
726 		 * When this function is called, the removing section is
727 		 * logical offlined state. This means all pages are isolated
728 		 * from page allocator. If removing section's memmap is placed
729 		 * on the same section, it must not be freed.
730 		 * If it is freed, page allocator may allocate it which will
731 		 * be removed physically soon.
732 		 */
733 		if (maps_section_nr != removing_section_nr)
734 			put_page_bootmem(page);
735 	}
736 }
737 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
738 
739 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
740 		struct vmem_altmap *altmap)
741 {
742 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
743 	DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
744 	struct mem_section *ms = __pfn_to_section(pfn);
745 	bool section_is_early = early_section(ms);
746 	struct page *memmap = NULL;
747 	unsigned long *subsection_map = ms->usage
748 		? &ms->usage->subsection_map[0] : NULL;
749 
750 	subsection_mask_set(map, pfn, nr_pages);
751 	if (subsection_map)
752 		bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
753 
754 	if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
755 				"section already deactivated (%#lx + %ld)\n",
756 				pfn, nr_pages))
757 		return;
758 
759 	/*
760 	 * There are 3 cases to handle across two configurations
761 	 * (SPARSEMEM_VMEMMAP={y,n}):
762 	 *
763 	 * 1/ deactivation of a partial hot-added section (only possible
764 	 * in the SPARSEMEM_VMEMMAP=y case).
765 	 *    a/ section was present at memory init
766 	 *    b/ section was hot-added post memory init
767 	 * 2/ deactivation of a complete hot-added section
768 	 * 3/ deactivation of a complete section from memory init
769 	 *
770 	 * For 1/, when subsection_map does not empty we will not be
771 	 * freeing the usage map, but still need to free the vmemmap
772 	 * range.
773 	 *
774 	 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
775 	 */
776 	bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
777 	if (bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION)) {
778 		unsigned long section_nr = pfn_to_section_nr(pfn);
779 
780 		if (!section_is_early) {
781 			kfree(ms->usage);
782 			ms->usage = NULL;
783 		}
784 		memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
785 		ms->section_mem_map = sparse_encode_mem_map(NULL, section_nr);
786 	}
787 
788 	if (section_is_early && memmap)
789 		free_map_bootmem(memmap);
790 	else
791 		depopulate_section_memmap(pfn, nr_pages, altmap);
792 }
793 
794 static struct page * __meminit section_activate(int nid, unsigned long pfn,
795 		unsigned long nr_pages, struct vmem_altmap *altmap)
796 {
797 	DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
798 	struct mem_section *ms = __pfn_to_section(pfn);
799 	struct mem_section_usage *usage = NULL;
800 	unsigned long *subsection_map;
801 	struct page *memmap;
802 	int rc = 0;
803 
804 	subsection_mask_set(map, pfn, nr_pages);
805 
806 	if (!ms->usage) {
807 		usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
808 		if (!usage)
809 			return ERR_PTR(-ENOMEM);
810 		ms->usage = usage;
811 	}
812 	subsection_map = &ms->usage->subsection_map[0];
813 
814 	if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
815 		rc = -EINVAL;
816 	else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
817 		rc = -EEXIST;
818 	else
819 		bitmap_or(subsection_map, map, subsection_map,
820 				SUBSECTIONS_PER_SECTION);
821 
822 	if (rc) {
823 		if (usage)
824 			ms->usage = NULL;
825 		kfree(usage);
826 		return ERR_PTR(rc);
827 	}
828 
829 	/*
830 	 * The early init code does not consider partially populated
831 	 * initial sections, it simply assumes that memory will never be
832 	 * referenced.  If we hot-add memory into such a section then we
833 	 * do not need to populate the memmap and can simply reuse what
834 	 * is already there.
835 	 */
836 	if (nr_pages < PAGES_PER_SECTION && early_section(ms))
837 		return pfn_to_page(pfn);
838 
839 	memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
840 	if (!memmap) {
841 		section_deactivate(pfn, nr_pages, altmap);
842 		return ERR_PTR(-ENOMEM);
843 	}
844 
845 	return memmap;
846 }
847 
848 /**
849  * sparse_add_section - add a memory section, or populate an existing one
850  * @nid: The node to add section on
851  * @start_pfn: start pfn of the memory range
852  * @nr_pages: number of pfns to add in the section
853  * @altmap: device page map
854  *
855  * This is only intended for hotplug.
856  *
857  * Return:
858  * * 0		- On success.
859  * * -EEXIST	- Section has been present.
860  * * -ENOMEM	- Out of memory.
861  */
862 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
863 		unsigned long nr_pages, struct vmem_altmap *altmap)
864 {
865 	unsigned long section_nr = pfn_to_section_nr(start_pfn);
866 	struct mem_section *ms;
867 	struct page *memmap;
868 	int ret;
869 
870 	ret = sparse_index_init(section_nr, nid);
871 	if (ret < 0)
872 		return ret;
873 
874 	memmap = section_activate(nid, start_pfn, nr_pages, altmap);
875 	if (IS_ERR(memmap))
876 		return PTR_ERR(memmap);
877 
878 	/*
879 	 * Poison uninitialized struct pages in order to catch invalid flags
880 	 * combinations.
881 	 */
882 	page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
883 
884 	ms = __nr_to_section(section_nr);
885 	set_section_nid(section_nr, nid);
886 	section_mark_present(ms);
887 
888 	/* Align memmap to section boundary in the subsection case */
889 	if (section_nr_to_pfn(section_nr) != start_pfn)
890 		memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
891 	sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
892 
893 	return 0;
894 }
895 
896 #ifdef CONFIG_MEMORY_FAILURE
897 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
898 {
899 	int i;
900 
901 	/*
902 	 * A further optimization is to have per section refcounted
903 	 * num_poisoned_pages.  But that would need more space per memmap, so
904 	 * for now just do a quick global check to speed up this routine in the
905 	 * absence of bad pages.
906 	 */
907 	if (atomic_long_read(&num_poisoned_pages) == 0)
908 		return;
909 
910 	for (i = 0; i < nr_pages; i++) {
911 		if (PageHWPoison(&memmap[i])) {
912 			num_poisoned_pages_dec();
913 			ClearPageHWPoison(&memmap[i]);
914 		}
915 	}
916 }
917 #else
918 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
919 {
920 }
921 #endif
922 
923 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
924 		unsigned long nr_pages, unsigned long map_offset,
925 		struct vmem_altmap *altmap)
926 {
927 	clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
928 			nr_pages - map_offset);
929 	section_deactivate(pfn, nr_pages, altmap);
930 }
931 #endif /* CONFIG_MEMORY_HOTPLUG */
932