xref: /linux/mm/swapfile.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65 
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70 
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76 
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91 
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 
94 static DEFINE_MUTEX(swapon_mutex);
95 
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 	if (type >= READ_ONCE(nr_swapfiles))
105 		return NULL;
106 
107 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
108 	return READ_ONCE(swap_info[type]);
109 }
110 
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
114 }
115 
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY		0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED		0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL		0x4
125 
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 				 unsigned long offset, unsigned long flags)
129 {
130 	swp_entry_t entry = swp_entry(si->type, offset);
131 	struct page *page;
132 	int ret = 0;
133 
134 	page = find_get_page(swap_address_space(entry), offset);
135 	if (!page)
136 		return 0;
137 	/*
138 	 * When this function is called from scan_swap_map_slots() and it's
139 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 	 * here. We have to use trylock for avoiding deadlock. This is a special
141 	 * case and you should use try_to_free_swap() with explicit lock_page()
142 	 * in usual operations.
143 	 */
144 	if (trylock_page(page)) {
145 		if ((flags & TTRS_ANYWAY) ||
146 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 			ret = try_to_free_swap(page);
149 		unlock_page(page);
150 	}
151 	put_page(page);
152 	return ret;
153 }
154 
155 /*
156  * swapon tell device that all the old swap contents can be discarded,
157  * to allow the swap device to optimize its wear-levelling.
158  */
159 static int discard_swap(struct swap_info_struct *si)
160 {
161 	struct swap_extent *se;
162 	sector_t start_block;
163 	sector_t nr_blocks;
164 	int err = 0;
165 
166 	/* Do not discard the swap header page! */
167 	se = &si->first_swap_extent;
168 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
169 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
170 	if (nr_blocks) {
171 		err = blkdev_issue_discard(si->bdev, start_block,
172 				nr_blocks, GFP_KERNEL, 0);
173 		if (err)
174 			return err;
175 		cond_resched();
176 	}
177 
178 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
179 		start_block = se->start_block << (PAGE_SHIFT - 9);
180 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
181 
182 		err = blkdev_issue_discard(si->bdev, start_block,
183 				nr_blocks, GFP_KERNEL, 0);
184 		if (err)
185 			break;
186 
187 		cond_resched();
188 	}
189 	return err;		/* That will often be -EOPNOTSUPP */
190 }
191 
192 /*
193  * swap allocation tell device that a cluster of swap can now be discarded,
194  * to allow the swap device to optimize its wear-levelling.
195  */
196 static void discard_swap_cluster(struct swap_info_struct *si,
197 				 pgoff_t start_page, pgoff_t nr_pages)
198 {
199 	struct swap_extent *se = si->curr_swap_extent;
200 	int found_extent = 0;
201 
202 	while (nr_pages) {
203 		if (se->start_page <= start_page &&
204 		    start_page < se->start_page + se->nr_pages) {
205 			pgoff_t offset = start_page - se->start_page;
206 			sector_t start_block = se->start_block + offset;
207 			sector_t nr_blocks = se->nr_pages - offset;
208 
209 			if (nr_blocks > nr_pages)
210 				nr_blocks = nr_pages;
211 			start_page += nr_blocks;
212 			nr_pages -= nr_blocks;
213 
214 			if (!found_extent++)
215 				si->curr_swap_extent = se;
216 
217 			start_block <<= PAGE_SHIFT - 9;
218 			nr_blocks <<= PAGE_SHIFT - 9;
219 			if (blkdev_issue_discard(si->bdev, start_block,
220 				    nr_blocks, GFP_NOIO, 0))
221 				break;
222 		}
223 
224 		se = list_next_entry(se, list);
225 	}
226 }
227 
228 #ifdef CONFIG_THP_SWAP
229 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
230 
231 #define swap_entry_size(size)	(size)
232 #else
233 #define SWAPFILE_CLUSTER	256
234 
235 /*
236  * Define swap_entry_size() as constant to let compiler to optimize
237  * out some code if !CONFIG_THP_SWAP
238  */
239 #define swap_entry_size(size)	1
240 #endif
241 #define LATENCY_LIMIT		256
242 
243 static inline void cluster_set_flag(struct swap_cluster_info *info,
244 	unsigned int flag)
245 {
246 	info->flags = flag;
247 }
248 
249 static inline unsigned int cluster_count(struct swap_cluster_info *info)
250 {
251 	return info->data;
252 }
253 
254 static inline void cluster_set_count(struct swap_cluster_info *info,
255 				     unsigned int c)
256 {
257 	info->data = c;
258 }
259 
260 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
261 					 unsigned int c, unsigned int f)
262 {
263 	info->flags = f;
264 	info->data = c;
265 }
266 
267 static inline unsigned int cluster_next(struct swap_cluster_info *info)
268 {
269 	return info->data;
270 }
271 
272 static inline void cluster_set_next(struct swap_cluster_info *info,
273 				    unsigned int n)
274 {
275 	info->data = n;
276 }
277 
278 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
279 					 unsigned int n, unsigned int f)
280 {
281 	info->flags = f;
282 	info->data = n;
283 }
284 
285 static inline bool cluster_is_free(struct swap_cluster_info *info)
286 {
287 	return info->flags & CLUSTER_FLAG_FREE;
288 }
289 
290 static inline bool cluster_is_null(struct swap_cluster_info *info)
291 {
292 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
293 }
294 
295 static inline void cluster_set_null(struct swap_cluster_info *info)
296 {
297 	info->flags = CLUSTER_FLAG_NEXT_NULL;
298 	info->data = 0;
299 }
300 
301 static inline bool cluster_is_huge(struct swap_cluster_info *info)
302 {
303 	if (IS_ENABLED(CONFIG_THP_SWAP))
304 		return info->flags & CLUSTER_FLAG_HUGE;
305 	return false;
306 }
307 
308 static inline void cluster_clear_huge(struct swap_cluster_info *info)
309 {
310 	info->flags &= ~CLUSTER_FLAG_HUGE;
311 }
312 
313 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
314 						     unsigned long offset)
315 {
316 	struct swap_cluster_info *ci;
317 
318 	ci = si->cluster_info;
319 	if (ci) {
320 		ci += offset / SWAPFILE_CLUSTER;
321 		spin_lock(&ci->lock);
322 	}
323 	return ci;
324 }
325 
326 static inline void unlock_cluster(struct swap_cluster_info *ci)
327 {
328 	if (ci)
329 		spin_unlock(&ci->lock);
330 }
331 
332 /*
333  * Determine the locking method in use for this device.  Return
334  * swap_cluster_info if SSD-style cluster-based locking is in place.
335  */
336 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
337 		struct swap_info_struct *si, unsigned long offset)
338 {
339 	struct swap_cluster_info *ci;
340 
341 	/* Try to use fine-grained SSD-style locking if available: */
342 	ci = lock_cluster(si, offset);
343 	/* Otherwise, fall back to traditional, coarse locking: */
344 	if (!ci)
345 		spin_lock(&si->lock);
346 
347 	return ci;
348 }
349 
350 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
351 					       struct swap_cluster_info *ci)
352 {
353 	if (ci)
354 		unlock_cluster(ci);
355 	else
356 		spin_unlock(&si->lock);
357 }
358 
359 static inline bool cluster_list_empty(struct swap_cluster_list *list)
360 {
361 	return cluster_is_null(&list->head);
362 }
363 
364 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
365 {
366 	return cluster_next(&list->head);
367 }
368 
369 static void cluster_list_init(struct swap_cluster_list *list)
370 {
371 	cluster_set_null(&list->head);
372 	cluster_set_null(&list->tail);
373 }
374 
375 static void cluster_list_add_tail(struct swap_cluster_list *list,
376 				  struct swap_cluster_info *ci,
377 				  unsigned int idx)
378 {
379 	if (cluster_list_empty(list)) {
380 		cluster_set_next_flag(&list->head, idx, 0);
381 		cluster_set_next_flag(&list->tail, idx, 0);
382 	} else {
383 		struct swap_cluster_info *ci_tail;
384 		unsigned int tail = cluster_next(&list->tail);
385 
386 		/*
387 		 * Nested cluster lock, but both cluster locks are
388 		 * only acquired when we held swap_info_struct->lock
389 		 */
390 		ci_tail = ci + tail;
391 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
392 		cluster_set_next(ci_tail, idx);
393 		spin_unlock(&ci_tail->lock);
394 		cluster_set_next_flag(&list->tail, idx, 0);
395 	}
396 }
397 
398 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
399 					   struct swap_cluster_info *ci)
400 {
401 	unsigned int idx;
402 
403 	idx = cluster_next(&list->head);
404 	if (cluster_next(&list->tail) == idx) {
405 		cluster_set_null(&list->head);
406 		cluster_set_null(&list->tail);
407 	} else
408 		cluster_set_next_flag(&list->head,
409 				      cluster_next(&ci[idx]), 0);
410 
411 	return idx;
412 }
413 
414 /* Add a cluster to discard list and schedule it to do discard */
415 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
416 		unsigned int idx)
417 {
418 	/*
419 	 * If scan_swap_map() can't find a free cluster, it will check
420 	 * si->swap_map directly. To make sure the discarding cluster isn't
421 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
422 	 * will be cleared after discard
423 	 */
424 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
425 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
426 
427 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
428 
429 	schedule_work(&si->discard_work);
430 }
431 
432 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
433 {
434 	struct swap_cluster_info *ci = si->cluster_info;
435 
436 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
437 	cluster_list_add_tail(&si->free_clusters, ci, idx);
438 }
439 
440 /*
441  * Doing discard actually. After a cluster discard is finished, the cluster
442  * will be added to free cluster list. caller should hold si->lock.
443 */
444 static void swap_do_scheduled_discard(struct swap_info_struct *si)
445 {
446 	struct swap_cluster_info *info, *ci;
447 	unsigned int idx;
448 
449 	info = si->cluster_info;
450 
451 	while (!cluster_list_empty(&si->discard_clusters)) {
452 		idx = cluster_list_del_first(&si->discard_clusters, info);
453 		spin_unlock(&si->lock);
454 
455 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
456 				SWAPFILE_CLUSTER);
457 
458 		spin_lock(&si->lock);
459 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
460 		__free_cluster(si, idx);
461 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462 				0, SWAPFILE_CLUSTER);
463 		unlock_cluster(ci);
464 	}
465 }
466 
467 static void swap_discard_work(struct work_struct *work)
468 {
469 	struct swap_info_struct *si;
470 
471 	si = container_of(work, struct swap_info_struct, discard_work);
472 
473 	spin_lock(&si->lock);
474 	swap_do_scheduled_discard(si);
475 	spin_unlock(&si->lock);
476 }
477 
478 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
479 {
480 	struct swap_cluster_info *ci = si->cluster_info;
481 
482 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
483 	cluster_list_del_first(&si->free_clusters, ci);
484 	cluster_set_count_flag(ci + idx, 0, 0);
485 }
486 
487 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
488 {
489 	struct swap_cluster_info *ci = si->cluster_info + idx;
490 
491 	VM_BUG_ON(cluster_count(ci) != 0);
492 	/*
493 	 * If the swap is discardable, prepare discard the cluster
494 	 * instead of free it immediately. The cluster will be freed
495 	 * after discard.
496 	 */
497 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
498 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
499 		swap_cluster_schedule_discard(si, idx);
500 		return;
501 	}
502 
503 	__free_cluster(si, idx);
504 }
505 
506 /*
507  * The cluster corresponding to page_nr will be used. The cluster will be
508  * removed from free cluster list and its usage counter will be increased.
509  */
510 static void inc_cluster_info_page(struct swap_info_struct *p,
511 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
512 {
513 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
514 
515 	if (!cluster_info)
516 		return;
517 	if (cluster_is_free(&cluster_info[idx]))
518 		alloc_cluster(p, idx);
519 
520 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
521 	cluster_set_count(&cluster_info[idx],
522 		cluster_count(&cluster_info[idx]) + 1);
523 }
524 
525 /*
526  * The cluster corresponding to page_nr decreases one usage. If the usage
527  * counter becomes 0, which means no page in the cluster is in using, we can
528  * optionally discard the cluster and add it to free cluster list.
529  */
530 static void dec_cluster_info_page(struct swap_info_struct *p,
531 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
532 {
533 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
534 
535 	if (!cluster_info)
536 		return;
537 
538 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
539 	cluster_set_count(&cluster_info[idx],
540 		cluster_count(&cluster_info[idx]) - 1);
541 
542 	if (cluster_count(&cluster_info[idx]) == 0)
543 		free_cluster(p, idx);
544 }
545 
546 /*
547  * It's possible scan_swap_map() uses a free cluster in the middle of free
548  * cluster list. Avoiding such abuse to avoid list corruption.
549  */
550 static bool
551 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
552 	unsigned long offset)
553 {
554 	struct percpu_cluster *percpu_cluster;
555 	bool conflict;
556 
557 	offset /= SWAPFILE_CLUSTER;
558 	conflict = !cluster_list_empty(&si->free_clusters) &&
559 		offset != cluster_list_first(&si->free_clusters) &&
560 		cluster_is_free(&si->cluster_info[offset]);
561 
562 	if (!conflict)
563 		return false;
564 
565 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
566 	cluster_set_null(&percpu_cluster->index);
567 	return true;
568 }
569 
570 /*
571  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
572  * might involve allocating a new cluster for current CPU too.
573  */
574 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
575 	unsigned long *offset, unsigned long *scan_base)
576 {
577 	struct percpu_cluster *cluster;
578 	struct swap_cluster_info *ci;
579 	bool found_free;
580 	unsigned long tmp, max;
581 
582 new_cluster:
583 	cluster = this_cpu_ptr(si->percpu_cluster);
584 	if (cluster_is_null(&cluster->index)) {
585 		if (!cluster_list_empty(&si->free_clusters)) {
586 			cluster->index = si->free_clusters.head;
587 			cluster->next = cluster_next(&cluster->index) *
588 					SWAPFILE_CLUSTER;
589 		} else if (!cluster_list_empty(&si->discard_clusters)) {
590 			/*
591 			 * we don't have free cluster but have some clusters in
592 			 * discarding, do discard now and reclaim them
593 			 */
594 			swap_do_scheduled_discard(si);
595 			*scan_base = *offset = si->cluster_next;
596 			goto new_cluster;
597 		} else
598 			return false;
599 	}
600 
601 	found_free = false;
602 
603 	/*
604 	 * Other CPUs can use our cluster if they can't find a free cluster,
605 	 * check if there is still free entry in the cluster
606 	 */
607 	tmp = cluster->next;
608 	max = min_t(unsigned long, si->max,
609 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
610 	if (tmp >= max) {
611 		cluster_set_null(&cluster->index);
612 		goto new_cluster;
613 	}
614 	ci = lock_cluster(si, tmp);
615 	while (tmp < max) {
616 		if (!si->swap_map[tmp]) {
617 			found_free = true;
618 			break;
619 		}
620 		tmp++;
621 	}
622 	unlock_cluster(ci);
623 	if (!found_free) {
624 		cluster_set_null(&cluster->index);
625 		goto new_cluster;
626 	}
627 	cluster->next = tmp + 1;
628 	*offset = tmp;
629 	*scan_base = tmp;
630 	return found_free;
631 }
632 
633 static void __del_from_avail_list(struct swap_info_struct *p)
634 {
635 	int nid;
636 
637 	for_each_node(nid)
638 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
639 }
640 
641 static void del_from_avail_list(struct swap_info_struct *p)
642 {
643 	spin_lock(&swap_avail_lock);
644 	__del_from_avail_list(p);
645 	spin_unlock(&swap_avail_lock);
646 }
647 
648 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
649 			     unsigned int nr_entries)
650 {
651 	unsigned int end = offset + nr_entries - 1;
652 
653 	if (offset == si->lowest_bit)
654 		si->lowest_bit += nr_entries;
655 	if (end == si->highest_bit)
656 		si->highest_bit -= nr_entries;
657 	si->inuse_pages += nr_entries;
658 	if (si->inuse_pages == si->pages) {
659 		si->lowest_bit = si->max;
660 		si->highest_bit = 0;
661 		del_from_avail_list(si);
662 	}
663 }
664 
665 static void add_to_avail_list(struct swap_info_struct *p)
666 {
667 	int nid;
668 
669 	spin_lock(&swap_avail_lock);
670 	for_each_node(nid) {
671 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
672 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
673 	}
674 	spin_unlock(&swap_avail_lock);
675 }
676 
677 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
678 			    unsigned int nr_entries)
679 {
680 	unsigned long end = offset + nr_entries - 1;
681 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
682 
683 	if (offset < si->lowest_bit)
684 		si->lowest_bit = offset;
685 	if (end > si->highest_bit) {
686 		bool was_full = !si->highest_bit;
687 
688 		si->highest_bit = end;
689 		if (was_full && (si->flags & SWP_WRITEOK))
690 			add_to_avail_list(si);
691 	}
692 	atomic_long_add(nr_entries, &nr_swap_pages);
693 	si->inuse_pages -= nr_entries;
694 	if (si->flags & SWP_BLKDEV)
695 		swap_slot_free_notify =
696 			si->bdev->bd_disk->fops->swap_slot_free_notify;
697 	else
698 		swap_slot_free_notify = NULL;
699 	while (offset <= end) {
700 		frontswap_invalidate_page(si->type, offset);
701 		if (swap_slot_free_notify)
702 			swap_slot_free_notify(si->bdev, offset);
703 		offset++;
704 	}
705 }
706 
707 static int scan_swap_map_slots(struct swap_info_struct *si,
708 			       unsigned char usage, int nr,
709 			       swp_entry_t slots[])
710 {
711 	struct swap_cluster_info *ci;
712 	unsigned long offset;
713 	unsigned long scan_base;
714 	unsigned long last_in_cluster = 0;
715 	int latency_ration = LATENCY_LIMIT;
716 	int n_ret = 0;
717 
718 	if (nr > SWAP_BATCH)
719 		nr = SWAP_BATCH;
720 
721 	/*
722 	 * We try to cluster swap pages by allocating them sequentially
723 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
724 	 * way, however, we resort to first-free allocation, starting
725 	 * a new cluster.  This prevents us from scattering swap pages
726 	 * all over the entire swap partition, so that we reduce
727 	 * overall disk seek times between swap pages.  -- sct
728 	 * But we do now try to find an empty cluster.  -Andrea
729 	 * And we let swap pages go all over an SSD partition.  Hugh
730 	 */
731 
732 	si->flags += SWP_SCANNING;
733 	scan_base = offset = si->cluster_next;
734 
735 	/* SSD algorithm */
736 	if (si->cluster_info) {
737 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
738 			goto checks;
739 		else
740 			goto scan;
741 	}
742 
743 	if (unlikely(!si->cluster_nr--)) {
744 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
745 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
746 			goto checks;
747 		}
748 
749 		spin_unlock(&si->lock);
750 
751 		/*
752 		 * If seek is expensive, start searching for new cluster from
753 		 * start of partition, to minimize the span of allocated swap.
754 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
755 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
756 		 */
757 		scan_base = offset = si->lowest_bit;
758 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
759 
760 		/* Locate the first empty (unaligned) cluster */
761 		for (; last_in_cluster <= si->highest_bit; offset++) {
762 			if (si->swap_map[offset])
763 				last_in_cluster = offset + SWAPFILE_CLUSTER;
764 			else if (offset == last_in_cluster) {
765 				spin_lock(&si->lock);
766 				offset -= SWAPFILE_CLUSTER - 1;
767 				si->cluster_next = offset;
768 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
769 				goto checks;
770 			}
771 			if (unlikely(--latency_ration < 0)) {
772 				cond_resched();
773 				latency_ration = LATENCY_LIMIT;
774 			}
775 		}
776 
777 		offset = scan_base;
778 		spin_lock(&si->lock);
779 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
780 	}
781 
782 checks:
783 	if (si->cluster_info) {
784 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
785 		/* take a break if we already got some slots */
786 			if (n_ret)
787 				goto done;
788 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
789 							&scan_base))
790 				goto scan;
791 		}
792 	}
793 	if (!(si->flags & SWP_WRITEOK))
794 		goto no_page;
795 	if (!si->highest_bit)
796 		goto no_page;
797 	if (offset > si->highest_bit)
798 		scan_base = offset = si->lowest_bit;
799 
800 	ci = lock_cluster(si, offset);
801 	/* reuse swap entry of cache-only swap if not busy. */
802 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
803 		int swap_was_freed;
804 		unlock_cluster(ci);
805 		spin_unlock(&si->lock);
806 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
807 		spin_lock(&si->lock);
808 		/* entry was freed successfully, try to use this again */
809 		if (swap_was_freed)
810 			goto checks;
811 		goto scan; /* check next one */
812 	}
813 
814 	if (si->swap_map[offset]) {
815 		unlock_cluster(ci);
816 		if (!n_ret)
817 			goto scan;
818 		else
819 			goto done;
820 	}
821 	si->swap_map[offset] = usage;
822 	inc_cluster_info_page(si, si->cluster_info, offset);
823 	unlock_cluster(ci);
824 
825 	swap_range_alloc(si, offset, 1);
826 	si->cluster_next = offset + 1;
827 	slots[n_ret++] = swp_entry(si->type, offset);
828 
829 	/* got enough slots or reach max slots? */
830 	if ((n_ret == nr) || (offset >= si->highest_bit))
831 		goto done;
832 
833 	/* search for next available slot */
834 
835 	/* time to take a break? */
836 	if (unlikely(--latency_ration < 0)) {
837 		if (n_ret)
838 			goto done;
839 		spin_unlock(&si->lock);
840 		cond_resched();
841 		spin_lock(&si->lock);
842 		latency_ration = LATENCY_LIMIT;
843 	}
844 
845 	/* try to get more slots in cluster */
846 	if (si->cluster_info) {
847 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
848 			goto checks;
849 		else
850 			goto done;
851 	}
852 	/* non-ssd case */
853 	++offset;
854 
855 	/* non-ssd case, still more slots in cluster? */
856 	if (si->cluster_nr && !si->swap_map[offset]) {
857 		--si->cluster_nr;
858 		goto checks;
859 	}
860 
861 done:
862 	si->flags -= SWP_SCANNING;
863 	return n_ret;
864 
865 scan:
866 	spin_unlock(&si->lock);
867 	while (++offset <= si->highest_bit) {
868 		if (!si->swap_map[offset]) {
869 			spin_lock(&si->lock);
870 			goto checks;
871 		}
872 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
873 			spin_lock(&si->lock);
874 			goto checks;
875 		}
876 		if (unlikely(--latency_ration < 0)) {
877 			cond_resched();
878 			latency_ration = LATENCY_LIMIT;
879 		}
880 	}
881 	offset = si->lowest_bit;
882 	while (offset < scan_base) {
883 		if (!si->swap_map[offset]) {
884 			spin_lock(&si->lock);
885 			goto checks;
886 		}
887 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
888 			spin_lock(&si->lock);
889 			goto checks;
890 		}
891 		if (unlikely(--latency_ration < 0)) {
892 			cond_resched();
893 			latency_ration = LATENCY_LIMIT;
894 		}
895 		offset++;
896 	}
897 	spin_lock(&si->lock);
898 
899 no_page:
900 	si->flags -= SWP_SCANNING;
901 	return n_ret;
902 }
903 
904 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
905 {
906 	unsigned long idx;
907 	struct swap_cluster_info *ci;
908 	unsigned long offset, i;
909 	unsigned char *map;
910 
911 	/*
912 	 * Should not even be attempting cluster allocations when huge
913 	 * page swap is disabled.  Warn and fail the allocation.
914 	 */
915 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
916 		VM_WARN_ON_ONCE(1);
917 		return 0;
918 	}
919 
920 	if (cluster_list_empty(&si->free_clusters))
921 		return 0;
922 
923 	idx = cluster_list_first(&si->free_clusters);
924 	offset = idx * SWAPFILE_CLUSTER;
925 	ci = lock_cluster(si, offset);
926 	alloc_cluster(si, idx);
927 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
928 
929 	map = si->swap_map + offset;
930 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
931 		map[i] = SWAP_HAS_CACHE;
932 	unlock_cluster(ci);
933 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
934 	*slot = swp_entry(si->type, offset);
935 
936 	return 1;
937 }
938 
939 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
940 {
941 	unsigned long offset = idx * SWAPFILE_CLUSTER;
942 	struct swap_cluster_info *ci;
943 
944 	ci = lock_cluster(si, offset);
945 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
946 	cluster_set_count_flag(ci, 0, 0);
947 	free_cluster(si, idx);
948 	unlock_cluster(ci);
949 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
950 }
951 
952 static unsigned long scan_swap_map(struct swap_info_struct *si,
953 				   unsigned char usage)
954 {
955 	swp_entry_t entry;
956 	int n_ret;
957 
958 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
959 
960 	if (n_ret)
961 		return swp_offset(entry);
962 	else
963 		return 0;
964 
965 }
966 
967 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
968 {
969 	unsigned long size = swap_entry_size(entry_size);
970 	struct swap_info_struct *si, *next;
971 	long avail_pgs;
972 	int n_ret = 0;
973 	int node;
974 
975 	/* Only single cluster request supported */
976 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
977 
978 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
979 	if (avail_pgs <= 0)
980 		goto noswap;
981 
982 	if (n_goal > SWAP_BATCH)
983 		n_goal = SWAP_BATCH;
984 
985 	if (n_goal > avail_pgs)
986 		n_goal = avail_pgs;
987 
988 	atomic_long_sub(n_goal * size, &nr_swap_pages);
989 
990 	spin_lock(&swap_avail_lock);
991 
992 start_over:
993 	node = numa_node_id();
994 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
995 		/* requeue si to after same-priority siblings */
996 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
997 		spin_unlock(&swap_avail_lock);
998 		spin_lock(&si->lock);
999 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1000 			spin_lock(&swap_avail_lock);
1001 			if (plist_node_empty(&si->avail_lists[node])) {
1002 				spin_unlock(&si->lock);
1003 				goto nextsi;
1004 			}
1005 			WARN(!si->highest_bit,
1006 			     "swap_info %d in list but !highest_bit\n",
1007 			     si->type);
1008 			WARN(!(si->flags & SWP_WRITEOK),
1009 			     "swap_info %d in list but !SWP_WRITEOK\n",
1010 			     si->type);
1011 			__del_from_avail_list(si);
1012 			spin_unlock(&si->lock);
1013 			goto nextsi;
1014 		}
1015 		if (size == SWAPFILE_CLUSTER) {
1016 			if (!(si->flags & SWP_FS))
1017 				n_ret = swap_alloc_cluster(si, swp_entries);
1018 		} else
1019 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1020 						    n_goal, swp_entries);
1021 		spin_unlock(&si->lock);
1022 		if (n_ret || size == SWAPFILE_CLUSTER)
1023 			goto check_out;
1024 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1025 			si->type);
1026 
1027 		spin_lock(&swap_avail_lock);
1028 nextsi:
1029 		/*
1030 		 * if we got here, it's likely that si was almost full before,
1031 		 * and since scan_swap_map() can drop the si->lock, multiple
1032 		 * callers probably all tried to get a page from the same si
1033 		 * and it filled up before we could get one; or, the si filled
1034 		 * up between us dropping swap_avail_lock and taking si->lock.
1035 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1036 		 * list may have been modified; so if next is still in the
1037 		 * swap_avail_head list then try it, otherwise start over
1038 		 * if we have not gotten any slots.
1039 		 */
1040 		if (plist_node_empty(&next->avail_lists[node]))
1041 			goto start_over;
1042 	}
1043 
1044 	spin_unlock(&swap_avail_lock);
1045 
1046 check_out:
1047 	if (n_ret < n_goal)
1048 		atomic_long_add((long)(n_goal - n_ret) * size,
1049 				&nr_swap_pages);
1050 noswap:
1051 	return n_ret;
1052 }
1053 
1054 /* The only caller of this function is now suspend routine */
1055 swp_entry_t get_swap_page_of_type(int type)
1056 {
1057 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1058 	pgoff_t offset;
1059 
1060 	if (!si)
1061 		goto fail;
1062 
1063 	spin_lock(&si->lock);
1064 	if (si->flags & SWP_WRITEOK) {
1065 		atomic_long_dec(&nr_swap_pages);
1066 		/* This is called for allocating swap entry, not cache */
1067 		offset = scan_swap_map(si, 1);
1068 		if (offset) {
1069 			spin_unlock(&si->lock);
1070 			return swp_entry(type, offset);
1071 		}
1072 		atomic_long_inc(&nr_swap_pages);
1073 	}
1074 	spin_unlock(&si->lock);
1075 fail:
1076 	return (swp_entry_t) {0};
1077 }
1078 
1079 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1080 {
1081 	struct swap_info_struct *p;
1082 	unsigned long offset, type;
1083 
1084 	if (!entry.val)
1085 		goto out;
1086 	type = swp_type(entry);
1087 	p = swap_type_to_swap_info(type);
1088 	if (!p)
1089 		goto bad_nofile;
1090 	if (!(p->flags & SWP_USED))
1091 		goto bad_device;
1092 	offset = swp_offset(entry);
1093 	if (offset >= p->max)
1094 		goto bad_offset;
1095 	return p;
1096 
1097 bad_offset:
1098 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1099 	goto out;
1100 bad_device:
1101 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1102 	goto out;
1103 bad_nofile:
1104 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1105 out:
1106 	return NULL;
1107 }
1108 
1109 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1110 {
1111 	struct swap_info_struct *p;
1112 
1113 	p = __swap_info_get(entry);
1114 	if (!p)
1115 		goto out;
1116 	if (!p->swap_map[swp_offset(entry)])
1117 		goto bad_free;
1118 	return p;
1119 
1120 bad_free:
1121 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1122 	goto out;
1123 out:
1124 	return NULL;
1125 }
1126 
1127 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1128 {
1129 	struct swap_info_struct *p;
1130 
1131 	p = _swap_info_get(entry);
1132 	if (p)
1133 		spin_lock(&p->lock);
1134 	return p;
1135 }
1136 
1137 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1138 					struct swap_info_struct *q)
1139 {
1140 	struct swap_info_struct *p;
1141 
1142 	p = _swap_info_get(entry);
1143 
1144 	if (p != q) {
1145 		if (q != NULL)
1146 			spin_unlock(&q->lock);
1147 		if (p != NULL)
1148 			spin_lock(&p->lock);
1149 	}
1150 	return p;
1151 }
1152 
1153 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1154 					      unsigned long offset,
1155 					      unsigned char usage)
1156 {
1157 	unsigned char count;
1158 	unsigned char has_cache;
1159 
1160 	count = p->swap_map[offset];
1161 
1162 	has_cache = count & SWAP_HAS_CACHE;
1163 	count &= ~SWAP_HAS_CACHE;
1164 
1165 	if (usage == SWAP_HAS_CACHE) {
1166 		VM_BUG_ON(!has_cache);
1167 		has_cache = 0;
1168 	} else if (count == SWAP_MAP_SHMEM) {
1169 		/*
1170 		 * Or we could insist on shmem.c using a special
1171 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1172 		 */
1173 		count = 0;
1174 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1175 		if (count == COUNT_CONTINUED) {
1176 			if (swap_count_continued(p, offset, count))
1177 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1178 			else
1179 				count = SWAP_MAP_MAX;
1180 		} else
1181 			count--;
1182 	}
1183 
1184 	usage = count | has_cache;
1185 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1186 
1187 	return usage;
1188 }
1189 
1190 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1191 				       swp_entry_t entry, unsigned char usage)
1192 {
1193 	struct swap_cluster_info *ci;
1194 	unsigned long offset = swp_offset(entry);
1195 
1196 	ci = lock_cluster_or_swap_info(p, offset);
1197 	usage = __swap_entry_free_locked(p, offset, usage);
1198 	unlock_cluster_or_swap_info(p, ci);
1199 	if (!usage)
1200 		free_swap_slot(entry);
1201 
1202 	return usage;
1203 }
1204 
1205 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1206 {
1207 	struct swap_cluster_info *ci;
1208 	unsigned long offset = swp_offset(entry);
1209 	unsigned char count;
1210 
1211 	ci = lock_cluster(p, offset);
1212 	count = p->swap_map[offset];
1213 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1214 	p->swap_map[offset] = 0;
1215 	dec_cluster_info_page(p, p->cluster_info, offset);
1216 	unlock_cluster(ci);
1217 
1218 	mem_cgroup_uncharge_swap(entry, 1);
1219 	swap_range_free(p, offset, 1);
1220 }
1221 
1222 /*
1223  * Caller has made sure that the swap device corresponding to entry
1224  * is still around or has not been recycled.
1225  */
1226 void swap_free(swp_entry_t entry)
1227 {
1228 	struct swap_info_struct *p;
1229 
1230 	p = _swap_info_get(entry);
1231 	if (p)
1232 		__swap_entry_free(p, entry, 1);
1233 }
1234 
1235 /*
1236  * Called after dropping swapcache to decrease refcnt to swap entries.
1237  */
1238 void put_swap_page(struct page *page, swp_entry_t entry)
1239 {
1240 	unsigned long offset = swp_offset(entry);
1241 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1242 	struct swap_cluster_info *ci;
1243 	struct swap_info_struct *si;
1244 	unsigned char *map;
1245 	unsigned int i, free_entries = 0;
1246 	unsigned char val;
1247 	int size = swap_entry_size(hpage_nr_pages(page));
1248 
1249 	si = _swap_info_get(entry);
1250 	if (!si)
1251 		return;
1252 
1253 	ci = lock_cluster_or_swap_info(si, offset);
1254 	if (size == SWAPFILE_CLUSTER) {
1255 		VM_BUG_ON(!cluster_is_huge(ci));
1256 		map = si->swap_map + offset;
1257 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1258 			val = map[i];
1259 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1260 			if (val == SWAP_HAS_CACHE)
1261 				free_entries++;
1262 		}
1263 		cluster_clear_huge(ci);
1264 		if (free_entries == SWAPFILE_CLUSTER) {
1265 			unlock_cluster_or_swap_info(si, ci);
1266 			spin_lock(&si->lock);
1267 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1268 			swap_free_cluster(si, idx);
1269 			spin_unlock(&si->lock);
1270 			return;
1271 		}
1272 	}
1273 	for (i = 0; i < size; i++, entry.val++) {
1274 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1275 			unlock_cluster_or_swap_info(si, ci);
1276 			free_swap_slot(entry);
1277 			if (i == size - 1)
1278 				return;
1279 			lock_cluster_or_swap_info(si, offset);
1280 		}
1281 	}
1282 	unlock_cluster_or_swap_info(si, ci);
1283 }
1284 
1285 #ifdef CONFIG_THP_SWAP
1286 int split_swap_cluster(swp_entry_t entry)
1287 {
1288 	struct swap_info_struct *si;
1289 	struct swap_cluster_info *ci;
1290 	unsigned long offset = swp_offset(entry);
1291 
1292 	si = _swap_info_get(entry);
1293 	if (!si)
1294 		return -EBUSY;
1295 	ci = lock_cluster(si, offset);
1296 	cluster_clear_huge(ci);
1297 	unlock_cluster(ci);
1298 	return 0;
1299 }
1300 #endif
1301 
1302 static int swp_entry_cmp(const void *ent1, const void *ent2)
1303 {
1304 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1305 
1306 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1307 }
1308 
1309 void swapcache_free_entries(swp_entry_t *entries, int n)
1310 {
1311 	struct swap_info_struct *p, *prev;
1312 	int i;
1313 
1314 	if (n <= 0)
1315 		return;
1316 
1317 	prev = NULL;
1318 	p = NULL;
1319 
1320 	/*
1321 	 * Sort swap entries by swap device, so each lock is only taken once.
1322 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1323 	 * so low that it isn't necessary to optimize further.
1324 	 */
1325 	if (nr_swapfiles > 1)
1326 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1327 	for (i = 0; i < n; ++i) {
1328 		p = swap_info_get_cont(entries[i], prev);
1329 		if (p)
1330 			swap_entry_free(p, entries[i]);
1331 		prev = p;
1332 	}
1333 	if (p)
1334 		spin_unlock(&p->lock);
1335 }
1336 
1337 /*
1338  * How many references to page are currently swapped out?
1339  * This does not give an exact answer when swap count is continued,
1340  * but does include the high COUNT_CONTINUED flag to allow for that.
1341  */
1342 int page_swapcount(struct page *page)
1343 {
1344 	int count = 0;
1345 	struct swap_info_struct *p;
1346 	struct swap_cluster_info *ci;
1347 	swp_entry_t entry;
1348 	unsigned long offset;
1349 
1350 	entry.val = page_private(page);
1351 	p = _swap_info_get(entry);
1352 	if (p) {
1353 		offset = swp_offset(entry);
1354 		ci = lock_cluster_or_swap_info(p, offset);
1355 		count = swap_count(p->swap_map[offset]);
1356 		unlock_cluster_or_swap_info(p, ci);
1357 	}
1358 	return count;
1359 }
1360 
1361 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1362 {
1363 	pgoff_t offset = swp_offset(entry);
1364 
1365 	return swap_count(si->swap_map[offset]);
1366 }
1367 
1368 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1369 {
1370 	int count = 0;
1371 	pgoff_t offset = swp_offset(entry);
1372 	struct swap_cluster_info *ci;
1373 
1374 	ci = lock_cluster_or_swap_info(si, offset);
1375 	count = swap_count(si->swap_map[offset]);
1376 	unlock_cluster_or_swap_info(si, ci);
1377 	return count;
1378 }
1379 
1380 /*
1381  * How many references to @entry are currently swapped out?
1382  * This does not give an exact answer when swap count is continued,
1383  * but does include the high COUNT_CONTINUED flag to allow for that.
1384  */
1385 int __swp_swapcount(swp_entry_t entry)
1386 {
1387 	int count = 0;
1388 	struct swap_info_struct *si;
1389 
1390 	si = __swap_info_get(entry);
1391 	if (si)
1392 		count = swap_swapcount(si, entry);
1393 	return count;
1394 }
1395 
1396 /*
1397  * How many references to @entry are currently swapped out?
1398  * This considers COUNT_CONTINUED so it returns exact answer.
1399  */
1400 int swp_swapcount(swp_entry_t entry)
1401 {
1402 	int count, tmp_count, n;
1403 	struct swap_info_struct *p;
1404 	struct swap_cluster_info *ci;
1405 	struct page *page;
1406 	pgoff_t offset;
1407 	unsigned char *map;
1408 
1409 	p = _swap_info_get(entry);
1410 	if (!p)
1411 		return 0;
1412 
1413 	offset = swp_offset(entry);
1414 
1415 	ci = lock_cluster_or_swap_info(p, offset);
1416 
1417 	count = swap_count(p->swap_map[offset]);
1418 	if (!(count & COUNT_CONTINUED))
1419 		goto out;
1420 
1421 	count &= ~COUNT_CONTINUED;
1422 	n = SWAP_MAP_MAX + 1;
1423 
1424 	page = vmalloc_to_page(p->swap_map + offset);
1425 	offset &= ~PAGE_MASK;
1426 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1427 
1428 	do {
1429 		page = list_next_entry(page, lru);
1430 		map = kmap_atomic(page);
1431 		tmp_count = map[offset];
1432 		kunmap_atomic(map);
1433 
1434 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1435 		n *= (SWAP_CONT_MAX + 1);
1436 	} while (tmp_count & COUNT_CONTINUED);
1437 out:
1438 	unlock_cluster_or_swap_info(p, ci);
1439 	return count;
1440 }
1441 
1442 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1443 					 swp_entry_t entry)
1444 {
1445 	struct swap_cluster_info *ci;
1446 	unsigned char *map = si->swap_map;
1447 	unsigned long roffset = swp_offset(entry);
1448 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1449 	int i;
1450 	bool ret = false;
1451 
1452 	ci = lock_cluster_or_swap_info(si, offset);
1453 	if (!ci || !cluster_is_huge(ci)) {
1454 		if (swap_count(map[roffset]))
1455 			ret = true;
1456 		goto unlock_out;
1457 	}
1458 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1459 		if (swap_count(map[offset + i])) {
1460 			ret = true;
1461 			break;
1462 		}
1463 	}
1464 unlock_out:
1465 	unlock_cluster_or_swap_info(si, ci);
1466 	return ret;
1467 }
1468 
1469 static bool page_swapped(struct page *page)
1470 {
1471 	swp_entry_t entry;
1472 	struct swap_info_struct *si;
1473 
1474 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1475 		return page_swapcount(page) != 0;
1476 
1477 	page = compound_head(page);
1478 	entry.val = page_private(page);
1479 	si = _swap_info_get(entry);
1480 	if (si)
1481 		return swap_page_trans_huge_swapped(si, entry);
1482 	return false;
1483 }
1484 
1485 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1486 					 int *total_swapcount)
1487 {
1488 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1489 	unsigned long offset = 0;
1490 	struct swap_info_struct *si;
1491 	struct swap_cluster_info *ci = NULL;
1492 	unsigned char *map = NULL;
1493 	int mapcount, swapcount = 0;
1494 
1495 	/* hugetlbfs shouldn't call it */
1496 	VM_BUG_ON_PAGE(PageHuge(page), page);
1497 
1498 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1499 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1500 		if (PageSwapCache(page))
1501 			swapcount = page_swapcount(page);
1502 		if (total_swapcount)
1503 			*total_swapcount = swapcount;
1504 		return mapcount + swapcount;
1505 	}
1506 
1507 	page = compound_head(page);
1508 
1509 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1510 	if (PageSwapCache(page)) {
1511 		swp_entry_t entry;
1512 
1513 		entry.val = page_private(page);
1514 		si = _swap_info_get(entry);
1515 		if (si) {
1516 			map = si->swap_map;
1517 			offset = swp_offset(entry);
1518 		}
1519 	}
1520 	if (map)
1521 		ci = lock_cluster(si, offset);
1522 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1523 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1524 		_total_mapcount += mapcount;
1525 		if (map) {
1526 			swapcount = swap_count(map[offset + i]);
1527 			_total_swapcount += swapcount;
1528 		}
1529 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1530 	}
1531 	unlock_cluster(ci);
1532 	if (PageDoubleMap(page)) {
1533 		map_swapcount -= 1;
1534 		_total_mapcount -= HPAGE_PMD_NR;
1535 	}
1536 	mapcount = compound_mapcount(page);
1537 	map_swapcount += mapcount;
1538 	_total_mapcount += mapcount;
1539 	if (total_mapcount)
1540 		*total_mapcount = _total_mapcount;
1541 	if (total_swapcount)
1542 		*total_swapcount = _total_swapcount;
1543 
1544 	return map_swapcount;
1545 }
1546 
1547 /*
1548  * We can write to an anon page without COW if there are no other references
1549  * to it.  And as a side-effect, free up its swap: because the old content
1550  * on disk will never be read, and seeking back there to write new content
1551  * later would only waste time away from clustering.
1552  *
1553  * NOTE: total_map_swapcount should not be relied upon by the caller if
1554  * reuse_swap_page() returns false, but it may be always overwritten
1555  * (see the other implementation for CONFIG_SWAP=n).
1556  */
1557 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1558 {
1559 	int count, total_mapcount, total_swapcount;
1560 
1561 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1562 	if (unlikely(PageKsm(page)))
1563 		return false;
1564 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1565 					      &total_swapcount);
1566 	if (total_map_swapcount)
1567 		*total_map_swapcount = total_mapcount + total_swapcount;
1568 	if (count == 1 && PageSwapCache(page) &&
1569 	    (likely(!PageTransCompound(page)) ||
1570 	     /* The remaining swap count will be freed soon */
1571 	     total_swapcount == page_swapcount(page))) {
1572 		if (!PageWriteback(page)) {
1573 			page = compound_head(page);
1574 			delete_from_swap_cache(page);
1575 			SetPageDirty(page);
1576 		} else {
1577 			swp_entry_t entry;
1578 			struct swap_info_struct *p;
1579 
1580 			entry.val = page_private(page);
1581 			p = swap_info_get(entry);
1582 			if (p->flags & SWP_STABLE_WRITES) {
1583 				spin_unlock(&p->lock);
1584 				return false;
1585 			}
1586 			spin_unlock(&p->lock);
1587 		}
1588 	}
1589 
1590 	return count <= 1;
1591 }
1592 
1593 /*
1594  * If swap is getting full, or if there are no more mappings of this page,
1595  * then try_to_free_swap is called to free its swap space.
1596  */
1597 int try_to_free_swap(struct page *page)
1598 {
1599 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1600 
1601 	if (!PageSwapCache(page))
1602 		return 0;
1603 	if (PageWriteback(page))
1604 		return 0;
1605 	if (page_swapped(page))
1606 		return 0;
1607 
1608 	/*
1609 	 * Once hibernation has begun to create its image of memory,
1610 	 * there's a danger that one of the calls to try_to_free_swap()
1611 	 * - most probably a call from __try_to_reclaim_swap() while
1612 	 * hibernation is allocating its own swap pages for the image,
1613 	 * but conceivably even a call from memory reclaim - will free
1614 	 * the swap from a page which has already been recorded in the
1615 	 * image as a clean swapcache page, and then reuse its swap for
1616 	 * another page of the image.  On waking from hibernation, the
1617 	 * original page might be freed under memory pressure, then
1618 	 * later read back in from swap, now with the wrong data.
1619 	 *
1620 	 * Hibernation suspends storage while it is writing the image
1621 	 * to disk so check that here.
1622 	 */
1623 	if (pm_suspended_storage())
1624 		return 0;
1625 
1626 	page = compound_head(page);
1627 	delete_from_swap_cache(page);
1628 	SetPageDirty(page);
1629 	return 1;
1630 }
1631 
1632 /*
1633  * Free the swap entry like above, but also try to
1634  * free the page cache entry if it is the last user.
1635  */
1636 int free_swap_and_cache(swp_entry_t entry)
1637 {
1638 	struct swap_info_struct *p;
1639 	unsigned char count;
1640 
1641 	if (non_swap_entry(entry))
1642 		return 1;
1643 
1644 	p = _swap_info_get(entry);
1645 	if (p) {
1646 		count = __swap_entry_free(p, entry, 1);
1647 		if (count == SWAP_HAS_CACHE &&
1648 		    !swap_page_trans_huge_swapped(p, entry))
1649 			__try_to_reclaim_swap(p, swp_offset(entry),
1650 					      TTRS_UNMAPPED | TTRS_FULL);
1651 	}
1652 	return p != NULL;
1653 }
1654 
1655 #ifdef CONFIG_HIBERNATION
1656 /*
1657  * Find the swap type that corresponds to given device (if any).
1658  *
1659  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1660  * from 0, in which the swap header is expected to be located.
1661  *
1662  * This is needed for the suspend to disk (aka swsusp).
1663  */
1664 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1665 {
1666 	struct block_device *bdev = NULL;
1667 	int type;
1668 
1669 	if (device)
1670 		bdev = bdget(device);
1671 
1672 	spin_lock(&swap_lock);
1673 	for (type = 0; type < nr_swapfiles; type++) {
1674 		struct swap_info_struct *sis = swap_info[type];
1675 
1676 		if (!(sis->flags & SWP_WRITEOK))
1677 			continue;
1678 
1679 		if (!bdev) {
1680 			if (bdev_p)
1681 				*bdev_p = bdgrab(sis->bdev);
1682 
1683 			spin_unlock(&swap_lock);
1684 			return type;
1685 		}
1686 		if (bdev == sis->bdev) {
1687 			struct swap_extent *se = &sis->first_swap_extent;
1688 
1689 			if (se->start_block == offset) {
1690 				if (bdev_p)
1691 					*bdev_p = bdgrab(sis->bdev);
1692 
1693 				spin_unlock(&swap_lock);
1694 				bdput(bdev);
1695 				return type;
1696 			}
1697 		}
1698 	}
1699 	spin_unlock(&swap_lock);
1700 	if (bdev)
1701 		bdput(bdev);
1702 
1703 	return -ENODEV;
1704 }
1705 
1706 /*
1707  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1708  * corresponding to given index in swap_info (swap type).
1709  */
1710 sector_t swapdev_block(int type, pgoff_t offset)
1711 {
1712 	struct block_device *bdev;
1713 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1714 
1715 	if (!si || !(si->flags & SWP_WRITEOK))
1716 		return 0;
1717 	return map_swap_entry(swp_entry(type, offset), &bdev);
1718 }
1719 
1720 /*
1721  * Return either the total number of swap pages of given type, or the number
1722  * of free pages of that type (depending on @free)
1723  *
1724  * This is needed for software suspend
1725  */
1726 unsigned int count_swap_pages(int type, int free)
1727 {
1728 	unsigned int n = 0;
1729 
1730 	spin_lock(&swap_lock);
1731 	if ((unsigned int)type < nr_swapfiles) {
1732 		struct swap_info_struct *sis = swap_info[type];
1733 
1734 		spin_lock(&sis->lock);
1735 		if (sis->flags & SWP_WRITEOK) {
1736 			n = sis->pages;
1737 			if (free)
1738 				n -= sis->inuse_pages;
1739 		}
1740 		spin_unlock(&sis->lock);
1741 	}
1742 	spin_unlock(&swap_lock);
1743 	return n;
1744 }
1745 #endif /* CONFIG_HIBERNATION */
1746 
1747 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1748 {
1749 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1750 }
1751 
1752 /*
1753  * No need to decide whether this PTE shares the swap entry with others,
1754  * just let do_wp_page work it out if a write is requested later - to
1755  * force COW, vm_page_prot omits write permission from any private vma.
1756  */
1757 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1758 		unsigned long addr, swp_entry_t entry, struct page *page)
1759 {
1760 	struct page *swapcache;
1761 	struct mem_cgroup *memcg;
1762 	spinlock_t *ptl;
1763 	pte_t *pte;
1764 	int ret = 1;
1765 
1766 	swapcache = page;
1767 	page = ksm_might_need_to_copy(page, vma, addr);
1768 	if (unlikely(!page))
1769 		return -ENOMEM;
1770 
1771 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1772 				&memcg, false)) {
1773 		ret = -ENOMEM;
1774 		goto out_nolock;
1775 	}
1776 
1777 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1778 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1779 		mem_cgroup_cancel_charge(page, memcg, false);
1780 		ret = 0;
1781 		goto out;
1782 	}
1783 
1784 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1785 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1786 	get_page(page);
1787 	set_pte_at(vma->vm_mm, addr, pte,
1788 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1789 	if (page == swapcache) {
1790 		page_add_anon_rmap(page, vma, addr, false);
1791 		mem_cgroup_commit_charge(page, memcg, true, false);
1792 	} else { /* ksm created a completely new copy */
1793 		page_add_new_anon_rmap(page, vma, addr, false);
1794 		mem_cgroup_commit_charge(page, memcg, false, false);
1795 		lru_cache_add_active_or_unevictable(page, vma);
1796 	}
1797 	swap_free(entry);
1798 	/*
1799 	 * Move the page to the active list so it is not
1800 	 * immediately swapped out again after swapon.
1801 	 */
1802 	activate_page(page);
1803 out:
1804 	pte_unmap_unlock(pte, ptl);
1805 out_nolock:
1806 	if (page != swapcache) {
1807 		unlock_page(page);
1808 		put_page(page);
1809 	}
1810 	return ret;
1811 }
1812 
1813 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1814 			unsigned long addr, unsigned long end,
1815 			unsigned int type, bool frontswap,
1816 			unsigned long *fs_pages_to_unuse)
1817 {
1818 	struct page *page;
1819 	swp_entry_t entry;
1820 	pte_t *pte;
1821 	struct swap_info_struct *si;
1822 	unsigned long offset;
1823 	int ret = 0;
1824 	volatile unsigned char *swap_map;
1825 
1826 	si = swap_info[type];
1827 	pte = pte_offset_map(pmd, addr);
1828 	do {
1829 		struct vm_fault vmf;
1830 
1831 		if (!is_swap_pte(*pte))
1832 			continue;
1833 
1834 		entry = pte_to_swp_entry(*pte);
1835 		if (swp_type(entry) != type)
1836 			continue;
1837 
1838 		offset = swp_offset(entry);
1839 		if (frontswap && !frontswap_test(si, offset))
1840 			continue;
1841 
1842 		pte_unmap(pte);
1843 		swap_map = &si->swap_map[offset];
1844 		vmf.vma = vma;
1845 		vmf.address = addr;
1846 		vmf.pmd = pmd;
1847 		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1848 		if (!page) {
1849 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1850 				goto try_next;
1851 			return -ENOMEM;
1852 		}
1853 
1854 		lock_page(page);
1855 		wait_on_page_writeback(page);
1856 		ret = unuse_pte(vma, pmd, addr, entry, page);
1857 		if (ret < 0) {
1858 			unlock_page(page);
1859 			put_page(page);
1860 			goto out;
1861 		}
1862 
1863 		try_to_free_swap(page);
1864 		unlock_page(page);
1865 		put_page(page);
1866 
1867 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1868 			ret = FRONTSWAP_PAGES_UNUSED;
1869 			goto out;
1870 		}
1871 try_next:
1872 		pte = pte_offset_map(pmd, addr);
1873 	} while (pte++, addr += PAGE_SIZE, addr != end);
1874 	pte_unmap(pte - 1);
1875 
1876 	ret = 0;
1877 out:
1878 	return ret;
1879 }
1880 
1881 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1882 				unsigned long addr, unsigned long end,
1883 				unsigned int type, bool frontswap,
1884 				unsigned long *fs_pages_to_unuse)
1885 {
1886 	pmd_t *pmd;
1887 	unsigned long next;
1888 	int ret;
1889 
1890 	pmd = pmd_offset(pud, addr);
1891 	do {
1892 		cond_resched();
1893 		next = pmd_addr_end(addr, end);
1894 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1895 			continue;
1896 		ret = unuse_pte_range(vma, pmd, addr, next, type,
1897 				      frontswap, fs_pages_to_unuse);
1898 		if (ret)
1899 			return ret;
1900 	} while (pmd++, addr = next, addr != end);
1901 	return 0;
1902 }
1903 
1904 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1905 				unsigned long addr, unsigned long end,
1906 				unsigned int type, bool frontswap,
1907 				unsigned long *fs_pages_to_unuse)
1908 {
1909 	pud_t *pud;
1910 	unsigned long next;
1911 	int ret;
1912 
1913 	pud = pud_offset(p4d, addr);
1914 	do {
1915 		next = pud_addr_end(addr, end);
1916 		if (pud_none_or_clear_bad(pud))
1917 			continue;
1918 		ret = unuse_pmd_range(vma, pud, addr, next, type,
1919 				      frontswap, fs_pages_to_unuse);
1920 		if (ret)
1921 			return ret;
1922 	} while (pud++, addr = next, addr != end);
1923 	return 0;
1924 }
1925 
1926 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1927 				unsigned long addr, unsigned long end,
1928 				unsigned int type, bool frontswap,
1929 				unsigned long *fs_pages_to_unuse)
1930 {
1931 	p4d_t *p4d;
1932 	unsigned long next;
1933 	int ret;
1934 
1935 	p4d = p4d_offset(pgd, addr);
1936 	do {
1937 		next = p4d_addr_end(addr, end);
1938 		if (p4d_none_or_clear_bad(p4d))
1939 			continue;
1940 		ret = unuse_pud_range(vma, p4d, addr, next, type,
1941 				      frontswap, fs_pages_to_unuse);
1942 		if (ret)
1943 			return ret;
1944 	} while (p4d++, addr = next, addr != end);
1945 	return 0;
1946 }
1947 
1948 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
1949 		     bool frontswap, unsigned long *fs_pages_to_unuse)
1950 {
1951 	pgd_t *pgd;
1952 	unsigned long addr, end, next;
1953 	int ret;
1954 
1955 	addr = vma->vm_start;
1956 	end = vma->vm_end;
1957 
1958 	pgd = pgd_offset(vma->vm_mm, addr);
1959 	do {
1960 		next = pgd_addr_end(addr, end);
1961 		if (pgd_none_or_clear_bad(pgd))
1962 			continue;
1963 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
1964 				      frontswap, fs_pages_to_unuse);
1965 		if (ret)
1966 			return ret;
1967 	} while (pgd++, addr = next, addr != end);
1968 	return 0;
1969 }
1970 
1971 static int unuse_mm(struct mm_struct *mm, unsigned int type,
1972 		    bool frontswap, unsigned long *fs_pages_to_unuse)
1973 {
1974 	struct vm_area_struct *vma;
1975 	int ret = 0;
1976 
1977 	down_read(&mm->mmap_sem);
1978 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1979 		if (vma->anon_vma) {
1980 			ret = unuse_vma(vma, type, frontswap,
1981 					fs_pages_to_unuse);
1982 			if (ret)
1983 				break;
1984 		}
1985 		cond_resched();
1986 	}
1987 	up_read(&mm->mmap_sem);
1988 	return ret;
1989 }
1990 
1991 /*
1992  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1993  * from current position to next entry still in use. Return 0
1994  * if there are no inuse entries after prev till end of the map.
1995  */
1996 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1997 					unsigned int prev, bool frontswap)
1998 {
1999 	unsigned int i;
2000 	unsigned char count;
2001 
2002 	/*
2003 	 * No need for swap_lock here: we're just looking
2004 	 * for whether an entry is in use, not modifying it; false
2005 	 * hits are okay, and sys_swapoff() has already prevented new
2006 	 * allocations from this area (while holding swap_lock).
2007 	 */
2008 	for (i = prev + 1; i < si->max; i++) {
2009 		count = READ_ONCE(si->swap_map[i]);
2010 		if (count && swap_count(count) != SWAP_MAP_BAD)
2011 			if (!frontswap || frontswap_test(si, i))
2012 				break;
2013 		if ((i % LATENCY_LIMIT) == 0)
2014 			cond_resched();
2015 	}
2016 
2017 	if (i == si->max)
2018 		i = 0;
2019 
2020 	return i;
2021 }
2022 
2023 /*
2024  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2025  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2026  */
2027 int try_to_unuse(unsigned int type, bool frontswap,
2028 		 unsigned long pages_to_unuse)
2029 {
2030 	struct mm_struct *prev_mm;
2031 	struct mm_struct *mm;
2032 	struct list_head *p;
2033 	int retval = 0;
2034 	struct swap_info_struct *si = swap_info[type];
2035 	struct page *page;
2036 	swp_entry_t entry;
2037 	unsigned int i;
2038 
2039 	if (!si->inuse_pages)
2040 		return 0;
2041 
2042 	if (!frontswap)
2043 		pages_to_unuse = 0;
2044 
2045 retry:
2046 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2047 	if (retval)
2048 		goto out;
2049 
2050 	prev_mm = &init_mm;
2051 	mmget(prev_mm);
2052 
2053 	spin_lock(&mmlist_lock);
2054 	p = &init_mm.mmlist;
2055 	while (si->inuse_pages &&
2056 	       !signal_pending(current) &&
2057 	       (p = p->next) != &init_mm.mmlist) {
2058 
2059 		mm = list_entry(p, struct mm_struct, mmlist);
2060 		if (!mmget_not_zero(mm))
2061 			continue;
2062 		spin_unlock(&mmlist_lock);
2063 		mmput(prev_mm);
2064 		prev_mm = mm;
2065 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2066 
2067 		if (retval) {
2068 			mmput(prev_mm);
2069 			goto out;
2070 		}
2071 
2072 		/*
2073 		 * Make sure that we aren't completely killing
2074 		 * interactive performance.
2075 		 */
2076 		cond_resched();
2077 		spin_lock(&mmlist_lock);
2078 	}
2079 	spin_unlock(&mmlist_lock);
2080 
2081 	mmput(prev_mm);
2082 
2083 	i = 0;
2084 	while (si->inuse_pages &&
2085 	       !signal_pending(current) &&
2086 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2087 
2088 		entry = swp_entry(type, i);
2089 		page = find_get_page(swap_address_space(entry), i);
2090 		if (!page)
2091 			continue;
2092 
2093 		/*
2094 		 * It is conceivable that a racing task removed this page from
2095 		 * swap cache just before we acquired the page lock. The page
2096 		 * might even be back in swap cache on another swap area. But
2097 		 * that is okay, try_to_free_swap() only removes stale pages.
2098 		 */
2099 		lock_page(page);
2100 		wait_on_page_writeback(page);
2101 		try_to_free_swap(page);
2102 		unlock_page(page);
2103 		put_page(page);
2104 
2105 		/*
2106 		 * For frontswap, we just need to unuse pages_to_unuse, if
2107 		 * it was specified. Need not check frontswap again here as
2108 		 * we already zeroed out pages_to_unuse if not frontswap.
2109 		 */
2110 		if (pages_to_unuse && --pages_to_unuse == 0)
2111 			goto out;
2112 	}
2113 
2114 	/*
2115 	 * Lets check again to see if there are still swap entries in the map.
2116 	 * If yes, we would need to do retry the unuse logic again.
2117 	 * Under global memory pressure, swap entries can be reinserted back
2118 	 * into process space after the mmlist loop above passes over them.
2119 	 *
2120 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2121 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2122 	 * at its own independent pace; and even shmem_writepage() could have
2123 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2124 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2125 	 */
2126 	if (si->inuse_pages) {
2127 		if (!signal_pending(current))
2128 			goto retry;
2129 		retval = -EINTR;
2130 	}
2131 out:
2132 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2133 }
2134 
2135 /*
2136  * After a successful try_to_unuse, if no swap is now in use, we know
2137  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2138  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2139  * added to the mmlist just after page_duplicate - before would be racy.
2140  */
2141 static void drain_mmlist(void)
2142 {
2143 	struct list_head *p, *next;
2144 	unsigned int type;
2145 
2146 	for (type = 0; type < nr_swapfiles; type++)
2147 		if (swap_info[type]->inuse_pages)
2148 			return;
2149 	spin_lock(&mmlist_lock);
2150 	list_for_each_safe(p, next, &init_mm.mmlist)
2151 		list_del_init(p);
2152 	spin_unlock(&mmlist_lock);
2153 }
2154 
2155 /*
2156  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2157  * corresponds to page offset for the specified swap entry.
2158  * Note that the type of this function is sector_t, but it returns page offset
2159  * into the bdev, not sector offset.
2160  */
2161 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2162 {
2163 	struct swap_info_struct *sis;
2164 	struct swap_extent *start_se;
2165 	struct swap_extent *se;
2166 	pgoff_t offset;
2167 
2168 	sis = swp_swap_info(entry);
2169 	*bdev = sis->bdev;
2170 
2171 	offset = swp_offset(entry);
2172 	start_se = sis->curr_swap_extent;
2173 	se = start_se;
2174 
2175 	for ( ; ; ) {
2176 		if (se->start_page <= offset &&
2177 				offset < (se->start_page + se->nr_pages)) {
2178 			return se->start_block + (offset - se->start_page);
2179 		}
2180 		se = list_next_entry(se, list);
2181 		sis->curr_swap_extent = se;
2182 		BUG_ON(se == start_se);		/* It *must* be present */
2183 	}
2184 }
2185 
2186 /*
2187  * Returns the page offset into bdev for the specified page's swap entry.
2188  */
2189 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2190 {
2191 	swp_entry_t entry;
2192 	entry.val = page_private(page);
2193 	return map_swap_entry(entry, bdev);
2194 }
2195 
2196 /*
2197  * Free all of a swapdev's extent information
2198  */
2199 static void destroy_swap_extents(struct swap_info_struct *sis)
2200 {
2201 	while (!list_empty(&sis->first_swap_extent.list)) {
2202 		struct swap_extent *se;
2203 
2204 		se = list_first_entry(&sis->first_swap_extent.list,
2205 				struct swap_extent, list);
2206 		list_del(&se->list);
2207 		kfree(se);
2208 	}
2209 
2210 	if (sis->flags & SWP_ACTIVATED) {
2211 		struct file *swap_file = sis->swap_file;
2212 		struct address_space *mapping = swap_file->f_mapping;
2213 
2214 		sis->flags &= ~SWP_ACTIVATED;
2215 		if (mapping->a_ops->swap_deactivate)
2216 			mapping->a_ops->swap_deactivate(swap_file);
2217 	}
2218 }
2219 
2220 /*
2221  * Add a block range (and the corresponding page range) into this swapdev's
2222  * extent list.  The extent list is kept sorted in page order.
2223  *
2224  * This function rather assumes that it is called in ascending page order.
2225  */
2226 int
2227 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2228 		unsigned long nr_pages, sector_t start_block)
2229 {
2230 	struct swap_extent *se;
2231 	struct swap_extent *new_se;
2232 	struct list_head *lh;
2233 
2234 	if (start_page == 0) {
2235 		se = &sis->first_swap_extent;
2236 		sis->curr_swap_extent = se;
2237 		se->start_page = 0;
2238 		se->nr_pages = nr_pages;
2239 		se->start_block = start_block;
2240 		return 1;
2241 	} else {
2242 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
2243 		se = list_entry(lh, struct swap_extent, list);
2244 		BUG_ON(se->start_page + se->nr_pages != start_page);
2245 		if (se->start_block + se->nr_pages == start_block) {
2246 			/* Merge it */
2247 			se->nr_pages += nr_pages;
2248 			return 0;
2249 		}
2250 	}
2251 
2252 	/*
2253 	 * No merge.  Insert a new extent, preserving ordering.
2254 	 */
2255 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2256 	if (new_se == NULL)
2257 		return -ENOMEM;
2258 	new_se->start_page = start_page;
2259 	new_se->nr_pages = nr_pages;
2260 	new_se->start_block = start_block;
2261 
2262 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2263 	return 1;
2264 }
2265 EXPORT_SYMBOL_GPL(add_swap_extent);
2266 
2267 /*
2268  * A `swap extent' is a simple thing which maps a contiguous range of pages
2269  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2270  * is built at swapon time and is then used at swap_writepage/swap_readpage
2271  * time for locating where on disk a page belongs.
2272  *
2273  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2274  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2275  * swap files identically.
2276  *
2277  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2278  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2279  * swapfiles are handled *identically* after swapon time.
2280  *
2281  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2282  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2283  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2284  * requirements, they are simply tossed out - we will never use those blocks
2285  * for swapping.
2286  *
2287  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2288  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2289  * which will scribble on the fs.
2290  *
2291  * The amount of disk space which a single swap extent represents varies.
2292  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2293  * extents in the list.  To avoid much list walking, we cache the previous
2294  * search location in `curr_swap_extent', and start new searches from there.
2295  * This is extremely effective.  The average number of iterations in
2296  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2297  */
2298 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2299 {
2300 	struct file *swap_file = sis->swap_file;
2301 	struct address_space *mapping = swap_file->f_mapping;
2302 	struct inode *inode = mapping->host;
2303 	int ret;
2304 
2305 	if (S_ISBLK(inode->i_mode)) {
2306 		ret = add_swap_extent(sis, 0, sis->max, 0);
2307 		*span = sis->pages;
2308 		return ret;
2309 	}
2310 
2311 	if (mapping->a_ops->swap_activate) {
2312 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2313 		if (ret >= 0)
2314 			sis->flags |= SWP_ACTIVATED;
2315 		if (!ret) {
2316 			sis->flags |= SWP_FS;
2317 			ret = add_swap_extent(sis, 0, sis->max, 0);
2318 			*span = sis->pages;
2319 		}
2320 		return ret;
2321 	}
2322 
2323 	return generic_swapfile_activate(sis, swap_file, span);
2324 }
2325 
2326 static int swap_node(struct swap_info_struct *p)
2327 {
2328 	struct block_device *bdev;
2329 
2330 	if (p->bdev)
2331 		bdev = p->bdev;
2332 	else
2333 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2334 
2335 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2336 }
2337 
2338 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2339 				unsigned char *swap_map,
2340 				struct swap_cluster_info *cluster_info)
2341 {
2342 	int i;
2343 
2344 	if (prio >= 0)
2345 		p->prio = prio;
2346 	else
2347 		p->prio = --least_priority;
2348 	/*
2349 	 * the plist prio is negated because plist ordering is
2350 	 * low-to-high, while swap ordering is high-to-low
2351 	 */
2352 	p->list.prio = -p->prio;
2353 	for_each_node(i) {
2354 		if (p->prio >= 0)
2355 			p->avail_lists[i].prio = -p->prio;
2356 		else {
2357 			if (swap_node(p) == i)
2358 				p->avail_lists[i].prio = 1;
2359 			else
2360 				p->avail_lists[i].prio = -p->prio;
2361 		}
2362 	}
2363 	p->swap_map = swap_map;
2364 	p->cluster_info = cluster_info;
2365 	p->flags |= SWP_WRITEOK;
2366 	atomic_long_add(p->pages, &nr_swap_pages);
2367 	total_swap_pages += p->pages;
2368 
2369 	assert_spin_locked(&swap_lock);
2370 	/*
2371 	 * both lists are plists, and thus priority ordered.
2372 	 * swap_active_head needs to be priority ordered for swapoff(),
2373 	 * which on removal of any swap_info_struct with an auto-assigned
2374 	 * (i.e. negative) priority increments the auto-assigned priority
2375 	 * of any lower-priority swap_info_structs.
2376 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2377 	 * which allocates swap pages from the highest available priority
2378 	 * swap_info_struct.
2379 	 */
2380 	plist_add(&p->list, &swap_active_head);
2381 	add_to_avail_list(p);
2382 }
2383 
2384 static void enable_swap_info(struct swap_info_struct *p, int prio,
2385 				unsigned char *swap_map,
2386 				struct swap_cluster_info *cluster_info,
2387 				unsigned long *frontswap_map)
2388 {
2389 	frontswap_init(p->type, frontswap_map);
2390 	spin_lock(&swap_lock);
2391 	spin_lock(&p->lock);
2392 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2393 	spin_unlock(&p->lock);
2394 	spin_unlock(&swap_lock);
2395 }
2396 
2397 static void reinsert_swap_info(struct swap_info_struct *p)
2398 {
2399 	spin_lock(&swap_lock);
2400 	spin_lock(&p->lock);
2401 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2402 	spin_unlock(&p->lock);
2403 	spin_unlock(&swap_lock);
2404 }
2405 
2406 bool has_usable_swap(void)
2407 {
2408 	bool ret = true;
2409 
2410 	spin_lock(&swap_lock);
2411 	if (plist_head_empty(&swap_active_head))
2412 		ret = false;
2413 	spin_unlock(&swap_lock);
2414 	return ret;
2415 }
2416 
2417 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2418 {
2419 	struct swap_info_struct *p = NULL;
2420 	unsigned char *swap_map;
2421 	struct swap_cluster_info *cluster_info;
2422 	unsigned long *frontswap_map;
2423 	struct file *swap_file, *victim;
2424 	struct address_space *mapping;
2425 	struct inode *inode;
2426 	struct filename *pathname;
2427 	int err, found = 0;
2428 	unsigned int old_block_size;
2429 
2430 	if (!capable(CAP_SYS_ADMIN))
2431 		return -EPERM;
2432 
2433 	BUG_ON(!current->mm);
2434 
2435 	pathname = getname(specialfile);
2436 	if (IS_ERR(pathname))
2437 		return PTR_ERR(pathname);
2438 
2439 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2440 	err = PTR_ERR(victim);
2441 	if (IS_ERR(victim))
2442 		goto out;
2443 
2444 	mapping = victim->f_mapping;
2445 	spin_lock(&swap_lock);
2446 	plist_for_each_entry(p, &swap_active_head, list) {
2447 		if (p->flags & SWP_WRITEOK) {
2448 			if (p->swap_file->f_mapping == mapping) {
2449 				found = 1;
2450 				break;
2451 			}
2452 		}
2453 	}
2454 	if (!found) {
2455 		err = -EINVAL;
2456 		spin_unlock(&swap_lock);
2457 		goto out_dput;
2458 	}
2459 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2460 		vm_unacct_memory(p->pages);
2461 	else {
2462 		err = -ENOMEM;
2463 		spin_unlock(&swap_lock);
2464 		goto out_dput;
2465 	}
2466 	del_from_avail_list(p);
2467 	spin_lock(&p->lock);
2468 	if (p->prio < 0) {
2469 		struct swap_info_struct *si = p;
2470 		int nid;
2471 
2472 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2473 			si->prio++;
2474 			si->list.prio--;
2475 			for_each_node(nid) {
2476 				if (si->avail_lists[nid].prio != 1)
2477 					si->avail_lists[nid].prio--;
2478 			}
2479 		}
2480 		least_priority++;
2481 	}
2482 	plist_del(&p->list, &swap_active_head);
2483 	atomic_long_sub(p->pages, &nr_swap_pages);
2484 	total_swap_pages -= p->pages;
2485 	p->flags &= ~SWP_WRITEOK;
2486 	spin_unlock(&p->lock);
2487 	spin_unlock(&swap_lock);
2488 
2489 	disable_swap_slots_cache_lock();
2490 
2491 	set_current_oom_origin();
2492 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2493 	clear_current_oom_origin();
2494 
2495 	if (err) {
2496 		/* re-insert swap space back into swap_list */
2497 		reinsert_swap_info(p);
2498 		reenable_swap_slots_cache_unlock();
2499 		goto out_dput;
2500 	}
2501 
2502 	reenable_swap_slots_cache_unlock();
2503 
2504 	flush_work(&p->discard_work);
2505 
2506 	destroy_swap_extents(p);
2507 	if (p->flags & SWP_CONTINUED)
2508 		free_swap_count_continuations(p);
2509 
2510 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2511 		atomic_dec(&nr_rotate_swap);
2512 
2513 	mutex_lock(&swapon_mutex);
2514 	spin_lock(&swap_lock);
2515 	spin_lock(&p->lock);
2516 	drain_mmlist();
2517 
2518 	/* wait for anyone still in scan_swap_map */
2519 	p->highest_bit = 0;		/* cuts scans short */
2520 	while (p->flags >= SWP_SCANNING) {
2521 		spin_unlock(&p->lock);
2522 		spin_unlock(&swap_lock);
2523 		schedule_timeout_uninterruptible(1);
2524 		spin_lock(&swap_lock);
2525 		spin_lock(&p->lock);
2526 	}
2527 
2528 	swap_file = p->swap_file;
2529 	old_block_size = p->old_block_size;
2530 	p->swap_file = NULL;
2531 	p->max = 0;
2532 	swap_map = p->swap_map;
2533 	p->swap_map = NULL;
2534 	cluster_info = p->cluster_info;
2535 	p->cluster_info = NULL;
2536 	frontswap_map = frontswap_map_get(p);
2537 	spin_unlock(&p->lock);
2538 	spin_unlock(&swap_lock);
2539 	frontswap_invalidate_area(p->type);
2540 	frontswap_map_set(p, NULL);
2541 	mutex_unlock(&swapon_mutex);
2542 	free_percpu(p->percpu_cluster);
2543 	p->percpu_cluster = NULL;
2544 	vfree(swap_map);
2545 	kvfree(cluster_info);
2546 	kvfree(frontswap_map);
2547 	/* Destroy swap account information */
2548 	swap_cgroup_swapoff(p->type);
2549 	exit_swap_address_space(p->type);
2550 
2551 	inode = mapping->host;
2552 	if (S_ISBLK(inode->i_mode)) {
2553 		struct block_device *bdev = I_BDEV(inode);
2554 		set_blocksize(bdev, old_block_size);
2555 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2556 	} else {
2557 		inode_lock(inode);
2558 		inode->i_flags &= ~S_SWAPFILE;
2559 		inode_unlock(inode);
2560 	}
2561 	filp_close(swap_file, NULL);
2562 
2563 	/*
2564 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2565 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2566 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2567 	 */
2568 	spin_lock(&swap_lock);
2569 	p->flags = 0;
2570 	spin_unlock(&swap_lock);
2571 
2572 	err = 0;
2573 	atomic_inc(&proc_poll_event);
2574 	wake_up_interruptible(&proc_poll_wait);
2575 
2576 out_dput:
2577 	filp_close(victim, NULL);
2578 out:
2579 	putname(pathname);
2580 	return err;
2581 }
2582 
2583 #ifdef CONFIG_PROC_FS
2584 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2585 {
2586 	struct seq_file *seq = file->private_data;
2587 
2588 	poll_wait(file, &proc_poll_wait, wait);
2589 
2590 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2591 		seq->poll_event = atomic_read(&proc_poll_event);
2592 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2593 	}
2594 
2595 	return EPOLLIN | EPOLLRDNORM;
2596 }
2597 
2598 /* iterator */
2599 static void *swap_start(struct seq_file *swap, loff_t *pos)
2600 {
2601 	struct swap_info_struct *si;
2602 	int type;
2603 	loff_t l = *pos;
2604 
2605 	mutex_lock(&swapon_mutex);
2606 
2607 	if (!l)
2608 		return SEQ_START_TOKEN;
2609 
2610 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2611 		if (!(si->flags & SWP_USED) || !si->swap_map)
2612 			continue;
2613 		if (!--l)
2614 			return si;
2615 	}
2616 
2617 	return NULL;
2618 }
2619 
2620 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2621 {
2622 	struct swap_info_struct *si = v;
2623 	int type;
2624 
2625 	if (v == SEQ_START_TOKEN)
2626 		type = 0;
2627 	else
2628 		type = si->type + 1;
2629 
2630 	for (; (si = swap_type_to_swap_info(type)); type++) {
2631 		if (!(si->flags & SWP_USED) || !si->swap_map)
2632 			continue;
2633 		++*pos;
2634 		return si;
2635 	}
2636 
2637 	return NULL;
2638 }
2639 
2640 static void swap_stop(struct seq_file *swap, void *v)
2641 {
2642 	mutex_unlock(&swapon_mutex);
2643 }
2644 
2645 static int swap_show(struct seq_file *swap, void *v)
2646 {
2647 	struct swap_info_struct *si = v;
2648 	struct file *file;
2649 	int len;
2650 
2651 	if (si == SEQ_START_TOKEN) {
2652 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2653 		return 0;
2654 	}
2655 
2656 	file = si->swap_file;
2657 	len = seq_file_path(swap, file, " \t\n\\");
2658 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2659 			len < 40 ? 40 - len : 1, " ",
2660 			S_ISBLK(file_inode(file)->i_mode) ?
2661 				"partition" : "file\t",
2662 			si->pages << (PAGE_SHIFT - 10),
2663 			si->inuse_pages << (PAGE_SHIFT - 10),
2664 			si->prio);
2665 	return 0;
2666 }
2667 
2668 static const struct seq_operations swaps_op = {
2669 	.start =	swap_start,
2670 	.next =		swap_next,
2671 	.stop =		swap_stop,
2672 	.show =		swap_show
2673 };
2674 
2675 static int swaps_open(struct inode *inode, struct file *file)
2676 {
2677 	struct seq_file *seq;
2678 	int ret;
2679 
2680 	ret = seq_open(file, &swaps_op);
2681 	if (ret)
2682 		return ret;
2683 
2684 	seq = file->private_data;
2685 	seq->poll_event = atomic_read(&proc_poll_event);
2686 	return 0;
2687 }
2688 
2689 static const struct file_operations proc_swaps_operations = {
2690 	.open		= swaps_open,
2691 	.read		= seq_read,
2692 	.llseek		= seq_lseek,
2693 	.release	= seq_release,
2694 	.poll		= swaps_poll,
2695 };
2696 
2697 static int __init procswaps_init(void)
2698 {
2699 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2700 	return 0;
2701 }
2702 __initcall(procswaps_init);
2703 #endif /* CONFIG_PROC_FS */
2704 
2705 #ifdef MAX_SWAPFILES_CHECK
2706 static int __init max_swapfiles_check(void)
2707 {
2708 	MAX_SWAPFILES_CHECK();
2709 	return 0;
2710 }
2711 late_initcall(max_swapfiles_check);
2712 #endif
2713 
2714 static struct swap_info_struct *alloc_swap_info(void)
2715 {
2716 	struct swap_info_struct *p;
2717 	unsigned int type;
2718 	int i;
2719 
2720 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2721 	if (!p)
2722 		return ERR_PTR(-ENOMEM);
2723 
2724 	spin_lock(&swap_lock);
2725 	for (type = 0; type < nr_swapfiles; type++) {
2726 		if (!(swap_info[type]->flags & SWP_USED))
2727 			break;
2728 	}
2729 	if (type >= MAX_SWAPFILES) {
2730 		spin_unlock(&swap_lock);
2731 		kvfree(p);
2732 		return ERR_PTR(-EPERM);
2733 	}
2734 	if (type >= nr_swapfiles) {
2735 		p->type = type;
2736 		WRITE_ONCE(swap_info[type], p);
2737 		/*
2738 		 * Write swap_info[type] before nr_swapfiles, in case a
2739 		 * racing procfs swap_start() or swap_next() is reading them.
2740 		 * (We never shrink nr_swapfiles, we never free this entry.)
2741 		 */
2742 		smp_wmb();
2743 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2744 	} else {
2745 		kvfree(p);
2746 		p = swap_info[type];
2747 		/*
2748 		 * Do not memset this entry: a racing procfs swap_next()
2749 		 * would be relying on p->type to remain valid.
2750 		 */
2751 	}
2752 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2753 	plist_node_init(&p->list, 0);
2754 	for_each_node(i)
2755 		plist_node_init(&p->avail_lists[i], 0);
2756 	p->flags = SWP_USED;
2757 	spin_unlock(&swap_lock);
2758 	spin_lock_init(&p->lock);
2759 	spin_lock_init(&p->cont_lock);
2760 
2761 	return p;
2762 }
2763 
2764 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2765 {
2766 	int error;
2767 
2768 	if (S_ISBLK(inode->i_mode)) {
2769 		p->bdev = bdgrab(I_BDEV(inode));
2770 		error = blkdev_get(p->bdev,
2771 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2772 		if (error < 0) {
2773 			p->bdev = NULL;
2774 			return error;
2775 		}
2776 		p->old_block_size = block_size(p->bdev);
2777 		error = set_blocksize(p->bdev, PAGE_SIZE);
2778 		if (error < 0)
2779 			return error;
2780 		p->flags |= SWP_BLKDEV;
2781 	} else if (S_ISREG(inode->i_mode)) {
2782 		p->bdev = inode->i_sb->s_bdev;
2783 		inode_lock(inode);
2784 		if (IS_SWAPFILE(inode))
2785 			return -EBUSY;
2786 	} else
2787 		return -EINVAL;
2788 
2789 	return 0;
2790 }
2791 
2792 
2793 /*
2794  * Find out how many pages are allowed for a single swap device. There
2795  * are two limiting factors:
2796  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2797  * 2) the number of bits in the swap pte, as defined by the different
2798  * architectures.
2799  *
2800  * In order to find the largest possible bit mask, a swap entry with
2801  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2802  * decoded to a swp_entry_t again, and finally the swap offset is
2803  * extracted.
2804  *
2805  * This will mask all the bits from the initial ~0UL mask that can't
2806  * be encoded in either the swp_entry_t or the architecture definition
2807  * of a swap pte.
2808  */
2809 unsigned long generic_max_swapfile_size(void)
2810 {
2811 	return swp_offset(pte_to_swp_entry(
2812 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2813 }
2814 
2815 /* Can be overridden by an architecture for additional checks. */
2816 __weak unsigned long max_swapfile_size(void)
2817 {
2818 	return generic_max_swapfile_size();
2819 }
2820 
2821 static unsigned long read_swap_header(struct swap_info_struct *p,
2822 					union swap_header *swap_header,
2823 					struct inode *inode)
2824 {
2825 	int i;
2826 	unsigned long maxpages;
2827 	unsigned long swapfilepages;
2828 	unsigned long last_page;
2829 
2830 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2831 		pr_err("Unable to find swap-space signature\n");
2832 		return 0;
2833 	}
2834 
2835 	/* swap partition endianess hack... */
2836 	if (swab32(swap_header->info.version) == 1) {
2837 		swab32s(&swap_header->info.version);
2838 		swab32s(&swap_header->info.last_page);
2839 		swab32s(&swap_header->info.nr_badpages);
2840 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2841 			return 0;
2842 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2843 			swab32s(&swap_header->info.badpages[i]);
2844 	}
2845 	/* Check the swap header's sub-version */
2846 	if (swap_header->info.version != 1) {
2847 		pr_warn("Unable to handle swap header version %d\n",
2848 			swap_header->info.version);
2849 		return 0;
2850 	}
2851 
2852 	p->lowest_bit  = 1;
2853 	p->cluster_next = 1;
2854 	p->cluster_nr = 0;
2855 
2856 	maxpages = max_swapfile_size();
2857 	last_page = swap_header->info.last_page;
2858 	if (!last_page) {
2859 		pr_warn("Empty swap-file\n");
2860 		return 0;
2861 	}
2862 	if (last_page > maxpages) {
2863 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2864 			maxpages << (PAGE_SHIFT - 10),
2865 			last_page << (PAGE_SHIFT - 10));
2866 	}
2867 	if (maxpages > last_page) {
2868 		maxpages = last_page + 1;
2869 		/* p->max is an unsigned int: don't overflow it */
2870 		if ((unsigned int)maxpages == 0)
2871 			maxpages = UINT_MAX;
2872 	}
2873 	p->highest_bit = maxpages - 1;
2874 
2875 	if (!maxpages)
2876 		return 0;
2877 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2878 	if (swapfilepages && maxpages > swapfilepages) {
2879 		pr_warn("Swap area shorter than signature indicates\n");
2880 		return 0;
2881 	}
2882 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2883 		return 0;
2884 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2885 		return 0;
2886 
2887 	return maxpages;
2888 }
2889 
2890 #define SWAP_CLUSTER_INFO_COLS						\
2891 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2892 #define SWAP_CLUSTER_SPACE_COLS						\
2893 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2894 #define SWAP_CLUSTER_COLS						\
2895 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2896 
2897 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2898 					union swap_header *swap_header,
2899 					unsigned char *swap_map,
2900 					struct swap_cluster_info *cluster_info,
2901 					unsigned long maxpages,
2902 					sector_t *span)
2903 {
2904 	unsigned int j, k;
2905 	unsigned int nr_good_pages;
2906 	int nr_extents;
2907 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2908 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2909 	unsigned long i, idx;
2910 
2911 	nr_good_pages = maxpages - 1;	/* omit header page */
2912 
2913 	cluster_list_init(&p->free_clusters);
2914 	cluster_list_init(&p->discard_clusters);
2915 
2916 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2917 		unsigned int page_nr = swap_header->info.badpages[i];
2918 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2919 			return -EINVAL;
2920 		if (page_nr < maxpages) {
2921 			swap_map[page_nr] = SWAP_MAP_BAD;
2922 			nr_good_pages--;
2923 			/*
2924 			 * Haven't marked the cluster free yet, no list
2925 			 * operation involved
2926 			 */
2927 			inc_cluster_info_page(p, cluster_info, page_nr);
2928 		}
2929 	}
2930 
2931 	/* Haven't marked the cluster free yet, no list operation involved */
2932 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2933 		inc_cluster_info_page(p, cluster_info, i);
2934 
2935 	if (nr_good_pages) {
2936 		swap_map[0] = SWAP_MAP_BAD;
2937 		/*
2938 		 * Not mark the cluster free yet, no list
2939 		 * operation involved
2940 		 */
2941 		inc_cluster_info_page(p, cluster_info, 0);
2942 		p->max = maxpages;
2943 		p->pages = nr_good_pages;
2944 		nr_extents = setup_swap_extents(p, span);
2945 		if (nr_extents < 0)
2946 			return nr_extents;
2947 		nr_good_pages = p->pages;
2948 	}
2949 	if (!nr_good_pages) {
2950 		pr_warn("Empty swap-file\n");
2951 		return -EINVAL;
2952 	}
2953 
2954 	if (!cluster_info)
2955 		return nr_extents;
2956 
2957 
2958 	/*
2959 	 * Reduce false cache line sharing between cluster_info and
2960 	 * sharing same address space.
2961 	 */
2962 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2963 		j = (k + col) % SWAP_CLUSTER_COLS;
2964 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2965 			idx = i * SWAP_CLUSTER_COLS + j;
2966 			if (idx >= nr_clusters)
2967 				continue;
2968 			if (cluster_count(&cluster_info[idx]))
2969 				continue;
2970 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2971 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2972 					      idx);
2973 		}
2974 	}
2975 	return nr_extents;
2976 }
2977 
2978 /*
2979  * Helper to sys_swapon determining if a given swap
2980  * backing device queue supports DISCARD operations.
2981  */
2982 static bool swap_discardable(struct swap_info_struct *si)
2983 {
2984 	struct request_queue *q = bdev_get_queue(si->bdev);
2985 
2986 	if (!q || !blk_queue_discard(q))
2987 		return false;
2988 
2989 	return true;
2990 }
2991 
2992 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2993 {
2994 	struct swap_info_struct *p;
2995 	struct filename *name;
2996 	struct file *swap_file = NULL;
2997 	struct address_space *mapping;
2998 	int prio;
2999 	int error;
3000 	union swap_header *swap_header;
3001 	int nr_extents;
3002 	sector_t span;
3003 	unsigned long maxpages;
3004 	unsigned char *swap_map = NULL;
3005 	struct swap_cluster_info *cluster_info = NULL;
3006 	unsigned long *frontswap_map = NULL;
3007 	struct page *page = NULL;
3008 	struct inode *inode = NULL;
3009 	bool inced_nr_rotate_swap = false;
3010 
3011 	if (swap_flags & ~SWAP_FLAGS_VALID)
3012 		return -EINVAL;
3013 
3014 	if (!capable(CAP_SYS_ADMIN))
3015 		return -EPERM;
3016 
3017 	if (!swap_avail_heads)
3018 		return -ENOMEM;
3019 
3020 	p = alloc_swap_info();
3021 	if (IS_ERR(p))
3022 		return PTR_ERR(p);
3023 
3024 	INIT_WORK(&p->discard_work, swap_discard_work);
3025 
3026 	name = getname(specialfile);
3027 	if (IS_ERR(name)) {
3028 		error = PTR_ERR(name);
3029 		name = NULL;
3030 		goto bad_swap;
3031 	}
3032 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3033 	if (IS_ERR(swap_file)) {
3034 		error = PTR_ERR(swap_file);
3035 		swap_file = NULL;
3036 		goto bad_swap;
3037 	}
3038 
3039 	p->swap_file = swap_file;
3040 	mapping = swap_file->f_mapping;
3041 	inode = mapping->host;
3042 
3043 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3044 	error = claim_swapfile(p, inode);
3045 	if (unlikely(error))
3046 		goto bad_swap;
3047 
3048 	/*
3049 	 * Read the swap header.
3050 	 */
3051 	if (!mapping->a_ops->readpage) {
3052 		error = -EINVAL;
3053 		goto bad_swap;
3054 	}
3055 	page = read_mapping_page(mapping, 0, swap_file);
3056 	if (IS_ERR(page)) {
3057 		error = PTR_ERR(page);
3058 		goto bad_swap;
3059 	}
3060 	swap_header = kmap(page);
3061 
3062 	maxpages = read_swap_header(p, swap_header, inode);
3063 	if (unlikely(!maxpages)) {
3064 		error = -EINVAL;
3065 		goto bad_swap;
3066 	}
3067 
3068 	/* OK, set up the swap map and apply the bad block list */
3069 	swap_map = vzalloc(maxpages);
3070 	if (!swap_map) {
3071 		error = -ENOMEM;
3072 		goto bad_swap;
3073 	}
3074 
3075 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3076 		p->flags |= SWP_STABLE_WRITES;
3077 
3078 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3079 		p->flags |= SWP_SYNCHRONOUS_IO;
3080 
3081 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3082 		int cpu;
3083 		unsigned long ci, nr_cluster;
3084 
3085 		p->flags |= SWP_SOLIDSTATE;
3086 		/*
3087 		 * select a random position to start with to help wear leveling
3088 		 * SSD
3089 		 */
3090 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3091 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3092 
3093 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3094 					GFP_KERNEL);
3095 		if (!cluster_info) {
3096 			error = -ENOMEM;
3097 			goto bad_swap;
3098 		}
3099 
3100 		for (ci = 0; ci < nr_cluster; ci++)
3101 			spin_lock_init(&((cluster_info + ci)->lock));
3102 
3103 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3104 		if (!p->percpu_cluster) {
3105 			error = -ENOMEM;
3106 			goto bad_swap;
3107 		}
3108 		for_each_possible_cpu(cpu) {
3109 			struct percpu_cluster *cluster;
3110 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3111 			cluster_set_null(&cluster->index);
3112 		}
3113 	} else {
3114 		atomic_inc(&nr_rotate_swap);
3115 		inced_nr_rotate_swap = true;
3116 	}
3117 
3118 	error = swap_cgroup_swapon(p->type, maxpages);
3119 	if (error)
3120 		goto bad_swap;
3121 
3122 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3123 		cluster_info, maxpages, &span);
3124 	if (unlikely(nr_extents < 0)) {
3125 		error = nr_extents;
3126 		goto bad_swap;
3127 	}
3128 	/* frontswap enabled? set up bit-per-page map for frontswap */
3129 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3130 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3131 					 sizeof(long),
3132 					 GFP_KERNEL);
3133 
3134 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3135 		/*
3136 		 * When discard is enabled for swap with no particular
3137 		 * policy flagged, we set all swap discard flags here in
3138 		 * order to sustain backward compatibility with older
3139 		 * swapon(8) releases.
3140 		 */
3141 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3142 			     SWP_PAGE_DISCARD);
3143 
3144 		/*
3145 		 * By flagging sys_swapon, a sysadmin can tell us to
3146 		 * either do single-time area discards only, or to just
3147 		 * perform discards for released swap page-clusters.
3148 		 * Now it's time to adjust the p->flags accordingly.
3149 		 */
3150 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3151 			p->flags &= ~SWP_PAGE_DISCARD;
3152 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3153 			p->flags &= ~SWP_AREA_DISCARD;
3154 
3155 		/* issue a swapon-time discard if it's still required */
3156 		if (p->flags & SWP_AREA_DISCARD) {
3157 			int err = discard_swap(p);
3158 			if (unlikely(err))
3159 				pr_err("swapon: discard_swap(%p): %d\n",
3160 					p, err);
3161 		}
3162 	}
3163 
3164 	error = init_swap_address_space(p->type, maxpages);
3165 	if (error)
3166 		goto bad_swap;
3167 
3168 	mutex_lock(&swapon_mutex);
3169 	prio = -1;
3170 	if (swap_flags & SWAP_FLAG_PREFER)
3171 		prio =
3172 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3173 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3174 
3175 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3176 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3177 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3178 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3179 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3180 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3181 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3182 		(frontswap_map) ? "FS" : "");
3183 
3184 	mutex_unlock(&swapon_mutex);
3185 	atomic_inc(&proc_poll_event);
3186 	wake_up_interruptible(&proc_poll_wait);
3187 
3188 	if (S_ISREG(inode->i_mode))
3189 		inode->i_flags |= S_SWAPFILE;
3190 	error = 0;
3191 	goto out;
3192 bad_swap:
3193 	free_percpu(p->percpu_cluster);
3194 	p->percpu_cluster = NULL;
3195 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3196 		set_blocksize(p->bdev, p->old_block_size);
3197 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3198 	}
3199 	destroy_swap_extents(p);
3200 	swap_cgroup_swapoff(p->type);
3201 	spin_lock(&swap_lock);
3202 	p->swap_file = NULL;
3203 	p->flags = 0;
3204 	spin_unlock(&swap_lock);
3205 	vfree(swap_map);
3206 	kvfree(cluster_info);
3207 	kvfree(frontswap_map);
3208 	if (inced_nr_rotate_swap)
3209 		atomic_dec(&nr_rotate_swap);
3210 	if (swap_file) {
3211 		if (inode && S_ISREG(inode->i_mode)) {
3212 			inode_unlock(inode);
3213 			inode = NULL;
3214 		}
3215 		filp_close(swap_file, NULL);
3216 	}
3217 out:
3218 	if (page && !IS_ERR(page)) {
3219 		kunmap(page);
3220 		put_page(page);
3221 	}
3222 	if (name)
3223 		putname(name);
3224 	if (inode && S_ISREG(inode->i_mode))
3225 		inode_unlock(inode);
3226 	if (!error)
3227 		enable_swap_slots_cache();
3228 	return error;
3229 }
3230 
3231 void si_swapinfo(struct sysinfo *val)
3232 {
3233 	unsigned int type;
3234 	unsigned long nr_to_be_unused = 0;
3235 
3236 	spin_lock(&swap_lock);
3237 	for (type = 0; type < nr_swapfiles; type++) {
3238 		struct swap_info_struct *si = swap_info[type];
3239 
3240 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3241 			nr_to_be_unused += si->inuse_pages;
3242 	}
3243 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3244 	val->totalswap = total_swap_pages + nr_to_be_unused;
3245 	spin_unlock(&swap_lock);
3246 }
3247 
3248 /*
3249  * Verify that a swap entry is valid and increment its swap map count.
3250  *
3251  * Returns error code in following case.
3252  * - success -> 0
3253  * - swp_entry is invalid -> EINVAL
3254  * - swp_entry is migration entry -> EINVAL
3255  * - swap-cache reference is requested but there is already one. -> EEXIST
3256  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3257  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3258  */
3259 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3260 {
3261 	struct swap_info_struct *p;
3262 	struct swap_cluster_info *ci;
3263 	unsigned long offset;
3264 	unsigned char count;
3265 	unsigned char has_cache;
3266 	int err = -EINVAL;
3267 
3268 	if (non_swap_entry(entry))
3269 		goto out;
3270 
3271 	p = swp_swap_info(entry);
3272 	if (!p)
3273 		goto bad_file;
3274 
3275 	offset = swp_offset(entry);
3276 	if (unlikely(offset >= p->max))
3277 		goto out;
3278 
3279 	ci = lock_cluster_or_swap_info(p, offset);
3280 
3281 	count = p->swap_map[offset];
3282 
3283 	/*
3284 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3285 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3286 	 */
3287 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3288 		err = -ENOENT;
3289 		goto unlock_out;
3290 	}
3291 
3292 	has_cache = count & SWAP_HAS_CACHE;
3293 	count &= ~SWAP_HAS_CACHE;
3294 	err = 0;
3295 
3296 	if (usage == SWAP_HAS_CACHE) {
3297 
3298 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3299 		if (!has_cache && count)
3300 			has_cache = SWAP_HAS_CACHE;
3301 		else if (has_cache)		/* someone else added cache */
3302 			err = -EEXIST;
3303 		else				/* no users remaining */
3304 			err = -ENOENT;
3305 
3306 	} else if (count || has_cache) {
3307 
3308 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3309 			count += usage;
3310 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3311 			err = -EINVAL;
3312 		else if (swap_count_continued(p, offset, count))
3313 			count = COUNT_CONTINUED;
3314 		else
3315 			err = -ENOMEM;
3316 	} else
3317 		err = -ENOENT;			/* unused swap entry */
3318 
3319 	p->swap_map[offset] = count | has_cache;
3320 
3321 unlock_out:
3322 	unlock_cluster_or_swap_info(p, ci);
3323 out:
3324 	return err;
3325 
3326 bad_file:
3327 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3328 	goto out;
3329 }
3330 
3331 /*
3332  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3333  * (in which case its reference count is never incremented).
3334  */
3335 void swap_shmem_alloc(swp_entry_t entry)
3336 {
3337 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3338 }
3339 
3340 /*
3341  * Increase reference count of swap entry by 1.
3342  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3343  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3344  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3345  * might occur if a page table entry has got corrupted.
3346  */
3347 int swap_duplicate(swp_entry_t entry)
3348 {
3349 	int err = 0;
3350 
3351 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3352 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3353 	return err;
3354 }
3355 
3356 /*
3357  * @entry: swap entry for which we allocate swap cache.
3358  *
3359  * Called when allocating swap cache for existing swap entry,
3360  * This can return error codes. Returns 0 at success.
3361  * -EBUSY means there is a swap cache.
3362  * Note: return code is different from swap_duplicate().
3363  */
3364 int swapcache_prepare(swp_entry_t entry)
3365 {
3366 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3367 }
3368 
3369 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3370 {
3371 	return swap_type_to_swap_info(swp_type(entry));
3372 }
3373 
3374 struct swap_info_struct *page_swap_info(struct page *page)
3375 {
3376 	swp_entry_t entry = { .val = page_private(page) };
3377 	return swp_swap_info(entry);
3378 }
3379 
3380 /*
3381  * out-of-line __page_file_ methods to avoid include hell.
3382  */
3383 struct address_space *__page_file_mapping(struct page *page)
3384 {
3385 	return page_swap_info(page)->swap_file->f_mapping;
3386 }
3387 EXPORT_SYMBOL_GPL(__page_file_mapping);
3388 
3389 pgoff_t __page_file_index(struct page *page)
3390 {
3391 	swp_entry_t swap = { .val = page_private(page) };
3392 	return swp_offset(swap);
3393 }
3394 EXPORT_SYMBOL_GPL(__page_file_index);
3395 
3396 /*
3397  * add_swap_count_continuation - called when a swap count is duplicated
3398  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3399  * page of the original vmalloc'ed swap_map, to hold the continuation count
3400  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3401  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3402  *
3403  * These continuation pages are seldom referenced: the common paths all work
3404  * on the original swap_map, only referring to a continuation page when the
3405  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3406  *
3407  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3408  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3409  * can be called after dropping locks.
3410  */
3411 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3412 {
3413 	struct swap_info_struct *si;
3414 	struct swap_cluster_info *ci;
3415 	struct page *head;
3416 	struct page *page;
3417 	struct page *list_page;
3418 	pgoff_t offset;
3419 	unsigned char count;
3420 
3421 	/*
3422 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3423 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3424 	 */
3425 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3426 
3427 	si = swap_info_get(entry);
3428 	if (!si) {
3429 		/*
3430 		 * An acceptable race has occurred since the failing
3431 		 * __swap_duplicate(): the swap entry has been freed,
3432 		 * perhaps even the whole swap_map cleared for swapoff.
3433 		 */
3434 		goto outer;
3435 	}
3436 
3437 	offset = swp_offset(entry);
3438 
3439 	ci = lock_cluster(si, offset);
3440 
3441 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3442 
3443 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3444 		/*
3445 		 * The higher the swap count, the more likely it is that tasks
3446 		 * will race to add swap count continuation: we need to avoid
3447 		 * over-provisioning.
3448 		 */
3449 		goto out;
3450 	}
3451 
3452 	if (!page) {
3453 		unlock_cluster(ci);
3454 		spin_unlock(&si->lock);
3455 		return -ENOMEM;
3456 	}
3457 
3458 	/*
3459 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3460 	 * no architecture is using highmem pages for kernel page tables: so it
3461 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3462 	 */
3463 	head = vmalloc_to_page(si->swap_map + offset);
3464 	offset &= ~PAGE_MASK;
3465 
3466 	spin_lock(&si->cont_lock);
3467 	/*
3468 	 * Page allocation does not initialize the page's lru field,
3469 	 * but it does always reset its private field.
3470 	 */
3471 	if (!page_private(head)) {
3472 		BUG_ON(count & COUNT_CONTINUED);
3473 		INIT_LIST_HEAD(&head->lru);
3474 		set_page_private(head, SWP_CONTINUED);
3475 		si->flags |= SWP_CONTINUED;
3476 	}
3477 
3478 	list_for_each_entry(list_page, &head->lru, lru) {
3479 		unsigned char *map;
3480 
3481 		/*
3482 		 * If the previous map said no continuation, but we've found
3483 		 * a continuation page, free our allocation and use this one.
3484 		 */
3485 		if (!(count & COUNT_CONTINUED))
3486 			goto out_unlock_cont;
3487 
3488 		map = kmap_atomic(list_page) + offset;
3489 		count = *map;
3490 		kunmap_atomic(map);
3491 
3492 		/*
3493 		 * If this continuation count now has some space in it,
3494 		 * free our allocation and use this one.
3495 		 */
3496 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3497 			goto out_unlock_cont;
3498 	}
3499 
3500 	list_add_tail(&page->lru, &head->lru);
3501 	page = NULL;			/* now it's attached, don't free it */
3502 out_unlock_cont:
3503 	spin_unlock(&si->cont_lock);
3504 out:
3505 	unlock_cluster(ci);
3506 	spin_unlock(&si->lock);
3507 outer:
3508 	if (page)
3509 		__free_page(page);
3510 	return 0;
3511 }
3512 
3513 /*
3514  * swap_count_continued - when the original swap_map count is incremented
3515  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3516  * into, carry if so, or else fail until a new continuation page is allocated;
3517  * when the original swap_map count is decremented from 0 with continuation,
3518  * borrow from the continuation and report whether it still holds more.
3519  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3520  * lock.
3521  */
3522 static bool swap_count_continued(struct swap_info_struct *si,
3523 				 pgoff_t offset, unsigned char count)
3524 {
3525 	struct page *head;
3526 	struct page *page;
3527 	unsigned char *map;
3528 	bool ret;
3529 
3530 	head = vmalloc_to_page(si->swap_map + offset);
3531 	if (page_private(head) != SWP_CONTINUED) {
3532 		BUG_ON(count & COUNT_CONTINUED);
3533 		return false;		/* need to add count continuation */
3534 	}
3535 
3536 	spin_lock(&si->cont_lock);
3537 	offset &= ~PAGE_MASK;
3538 	page = list_entry(head->lru.next, struct page, lru);
3539 	map = kmap_atomic(page) + offset;
3540 
3541 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3542 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3543 
3544 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3545 		/*
3546 		 * Think of how you add 1 to 999
3547 		 */
3548 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3549 			kunmap_atomic(map);
3550 			page = list_entry(page->lru.next, struct page, lru);
3551 			BUG_ON(page == head);
3552 			map = kmap_atomic(page) + offset;
3553 		}
3554 		if (*map == SWAP_CONT_MAX) {
3555 			kunmap_atomic(map);
3556 			page = list_entry(page->lru.next, struct page, lru);
3557 			if (page == head) {
3558 				ret = false;	/* add count continuation */
3559 				goto out;
3560 			}
3561 			map = kmap_atomic(page) + offset;
3562 init_map:		*map = 0;		/* we didn't zero the page */
3563 		}
3564 		*map += 1;
3565 		kunmap_atomic(map);
3566 		page = list_entry(page->lru.prev, struct page, lru);
3567 		while (page != head) {
3568 			map = kmap_atomic(page) + offset;
3569 			*map = COUNT_CONTINUED;
3570 			kunmap_atomic(map);
3571 			page = list_entry(page->lru.prev, struct page, lru);
3572 		}
3573 		ret = true;			/* incremented */
3574 
3575 	} else {				/* decrementing */
3576 		/*
3577 		 * Think of how you subtract 1 from 1000
3578 		 */
3579 		BUG_ON(count != COUNT_CONTINUED);
3580 		while (*map == COUNT_CONTINUED) {
3581 			kunmap_atomic(map);
3582 			page = list_entry(page->lru.next, struct page, lru);
3583 			BUG_ON(page == head);
3584 			map = kmap_atomic(page) + offset;
3585 		}
3586 		BUG_ON(*map == 0);
3587 		*map -= 1;
3588 		if (*map == 0)
3589 			count = 0;
3590 		kunmap_atomic(map);
3591 		page = list_entry(page->lru.prev, struct page, lru);
3592 		while (page != head) {
3593 			map = kmap_atomic(page) + offset;
3594 			*map = SWAP_CONT_MAX | count;
3595 			count = COUNT_CONTINUED;
3596 			kunmap_atomic(map);
3597 			page = list_entry(page->lru.prev, struct page, lru);
3598 		}
3599 		ret = count == COUNT_CONTINUED;
3600 	}
3601 out:
3602 	spin_unlock(&si->cont_lock);
3603 	return ret;
3604 }
3605 
3606 /*
3607  * free_swap_count_continuations - swapoff free all the continuation pages
3608  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3609  */
3610 static void free_swap_count_continuations(struct swap_info_struct *si)
3611 {
3612 	pgoff_t offset;
3613 
3614 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3615 		struct page *head;
3616 		head = vmalloc_to_page(si->swap_map + offset);
3617 		if (page_private(head)) {
3618 			struct page *page, *next;
3619 
3620 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3621 				list_del(&page->lru);
3622 				__free_page(page);
3623 			}
3624 		}
3625 	}
3626 }
3627 
3628 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3629 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3630 				  gfp_t gfp_mask)
3631 {
3632 	struct swap_info_struct *si, *next;
3633 	if (!(gfp_mask & __GFP_IO) || !memcg)
3634 		return;
3635 
3636 	if (!blk_cgroup_congested())
3637 		return;
3638 
3639 	/*
3640 	 * We've already scheduled a throttle, avoid taking the global swap
3641 	 * lock.
3642 	 */
3643 	if (current->throttle_queue)
3644 		return;
3645 
3646 	spin_lock(&swap_avail_lock);
3647 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3648 				  avail_lists[node]) {
3649 		if (si->bdev) {
3650 			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3651 						true);
3652 			break;
3653 		}
3654 	}
3655 	spin_unlock(&swap_avail_lock);
3656 }
3657 #endif
3658 
3659 static int __init swapfile_init(void)
3660 {
3661 	int nid;
3662 
3663 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3664 					 GFP_KERNEL);
3665 	if (!swap_avail_heads) {
3666 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3667 		return -ENOMEM;
3668 	}
3669 
3670 	for_each_node(nid)
3671 		plist_head_init(&swap_avail_heads[nid]);
3672 
3673 	return 0;
3674 }
3675 subsys_initcall(swapfile_init);
3676