xref: /linux/net/bluetooth/hci_sock.c (revision 709fca50)
1 /*
2    BlueZ - Bluetooth protocol stack for Linux
3    Copyright (C) 2000-2001 Qualcomm Incorporated
4 
5    Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License version 2 as
9    published by the Free Software Foundation;
10 
11    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12    OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13    FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14    IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15    CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17    ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18    OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 
20    ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21    COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22    SOFTWARE IS DISCLAIMED.
23 */
24 
25 /* Bluetooth HCI sockets. */
26 #include <linux/compat.h>
27 #include <linux/export.h>
28 #include <linux/utsname.h>
29 #include <linux/sched.h>
30 #include <asm/unaligned.h>
31 
32 #include <net/bluetooth/bluetooth.h>
33 #include <net/bluetooth/hci_core.h>
34 #include <net/bluetooth/hci_mon.h>
35 #include <net/bluetooth/mgmt.h>
36 
37 #include "mgmt_util.h"
38 
39 static LIST_HEAD(mgmt_chan_list);
40 static DEFINE_MUTEX(mgmt_chan_list_lock);
41 
42 static DEFINE_IDA(sock_cookie_ida);
43 
44 static atomic_t monitor_promisc = ATOMIC_INIT(0);
45 
46 /* ----- HCI socket interface ----- */
47 
48 /* Socket info */
49 #define hci_pi(sk) ((struct hci_pinfo *) sk)
50 
51 struct hci_pinfo {
52 	struct bt_sock    bt;
53 	struct hci_dev    *hdev;
54 	struct hci_filter filter;
55 	__u8              cmsg_mask;
56 	unsigned short    channel;
57 	unsigned long     flags;
58 	__u32             cookie;
59 	char              comm[TASK_COMM_LEN];
60 	__u16             mtu;
61 };
62 
63 static struct hci_dev *hci_hdev_from_sock(struct sock *sk)
64 {
65 	struct hci_dev *hdev = hci_pi(sk)->hdev;
66 
67 	if (!hdev)
68 		return ERR_PTR(-EBADFD);
69 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER))
70 		return ERR_PTR(-EPIPE);
71 	return hdev;
72 }
73 
74 void hci_sock_set_flag(struct sock *sk, int nr)
75 {
76 	set_bit(nr, &hci_pi(sk)->flags);
77 }
78 
79 void hci_sock_clear_flag(struct sock *sk, int nr)
80 {
81 	clear_bit(nr, &hci_pi(sk)->flags);
82 }
83 
84 int hci_sock_test_flag(struct sock *sk, int nr)
85 {
86 	return test_bit(nr, &hci_pi(sk)->flags);
87 }
88 
89 unsigned short hci_sock_get_channel(struct sock *sk)
90 {
91 	return hci_pi(sk)->channel;
92 }
93 
94 u32 hci_sock_get_cookie(struct sock *sk)
95 {
96 	return hci_pi(sk)->cookie;
97 }
98 
99 static bool hci_sock_gen_cookie(struct sock *sk)
100 {
101 	int id = hci_pi(sk)->cookie;
102 
103 	if (!id) {
104 		id = ida_simple_get(&sock_cookie_ida, 1, 0, GFP_KERNEL);
105 		if (id < 0)
106 			id = 0xffffffff;
107 
108 		hci_pi(sk)->cookie = id;
109 		get_task_comm(hci_pi(sk)->comm, current);
110 		return true;
111 	}
112 
113 	return false;
114 }
115 
116 static void hci_sock_free_cookie(struct sock *sk)
117 {
118 	int id = hci_pi(sk)->cookie;
119 
120 	if (id) {
121 		hci_pi(sk)->cookie = 0xffffffff;
122 		ida_simple_remove(&sock_cookie_ida, id);
123 	}
124 }
125 
126 static inline int hci_test_bit(int nr, const void *addr)
127 {
128 	return *((const __u32 *) addr + (nr >> 5)) & ((__u32) 1 << (nr & 31));
129 }
130 
131 /* Security filter */
132 #define HCI_SFLT_MAX_OGF  5
133 
134 struct hci_sec_filter {
135 	__u32 type_mask;
136 	__u32 event_mask[2];
137 	__u32 ocf_mask[HCI_SFLT_MAX_OGF + 1][4];
138 };
139 
140 static const struct hci_sec_filter hci_sec_filter = {
141 	/* Packet types */
142 	0x10,
143 	/* Events */
144 	{ 0x1000d9fe, 0x0000b00c },
145 	/* Commands */
146 	{
147 		{ 0x0 },
148 		/* OGF_LINK_CTL */
149 		{ 0xbe000006, 0x00000001, 0x00000000, 0x00 },
150 		/* OGF_LINK_POLICY */
151 		{ 0x00005200, 0x00000000, 0x00000000, 0x00 },
152 		/* OGF_HOST_CTL */
153 		{ 0xaab00200, 0x2b402aaa, 0x05220154, 0x00 },
154 		/* OGF_INFO_PARAM */
155 		{ 0x000002be, 0x00000000, 0x00000000, 0x00 },
156 		/* OGF_STATUS_PARAM */
157 		{ 0x000000ea, 0x00000000, 0x00000000, 0x00 }
158 	}
159 };
160 
161 static struct bt_sock_list hci_sk_list = {
162 	.lock = __RW_LOCK_UNLOCKED(hci_sk_list.lock)
163 };
164 
165 static bool is_filtered_packet(struct sock *sk, struct sk_buff *skb)
166 {
167 	struct hci_filter *flt;
168 	int flt_type, flt_event;
169 
170 	/* Apply filter */
171 	flt = &hci_pi(sk)->filter;
172 
173 	flt_type = hci_skb_pkt_type(skb) & HCI_FLT_TYPE_BITS;
174 
175 	if (!test_bit(flt_type, &flt->type_mask))
176 		return true;
177 
178 	/* Extra filter for event packets only */
179 	if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT)
180 		return false;
181 
182 	flt_event = (*(__u8 *)skb->data & HCI_FLT_EVENT_BITS);
183 
184 	if (!hci_test_bit(flt_event, &flt->event_mask))
185 		return true;
186 
187 	/* Check filter only when opcode is set */
188 	if (!flt->opcode)
189 		return false;
190 
191 	if (flt_event == HCI_EV_CMD_COMPLETE &&
192 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 3)))
193 		return true;
194 
195 	if (flt_event == HCI_EV_CMD_STATUS &&
196 	    flt->opcode != get_unaligned((__le16 *)(skb->data + 4)))
197 		return true;
198 
199 	return false;
200 }
201 
202 /* Send frame to RAW socket */
203 void hci_send_to_sock(struct hci_dev *hdev, struct sk_buff *skb)
204 {
205 	struct sock *sk;
206 	struct sk_buff *skb_copy = NULL;
207 
208 	BT_DBG("hdev %p len %d", hdev, skb->len);
209 
210 	read_lock(&hci_sk_list.lock);
211 
212 	sk_for_each(sk, &hci_sk_list.head) {
213 		struct sk_buff *nskb;
214 
215 		if (sk->sk_state != BT_BOUND || hci_pi(sk)->hdev != hdev)
216 			continue;
217 
218 		/* Don't send frame to the socket it came from */
219 		if (skb->sk == sk)
220 			continue;
221 
222 		if (hci_pi(sk)->channel == HCI_CHANNEL_RAW) {
223 			if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
224 			    hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
225 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
226 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
227 			    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
228 				continue;
229 			if (is_filtered_packet(sk, skb))
230 				continue;
231 		} else if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
232 			if (!bt_cb(skb)->incoming)
233 				continue;
234 			if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
235 			    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
236 			    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
237 			    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT)
238 				continue;
239 		} else {
240 			/* Don't send frame to other channel types */
241 			continue;
242 		}
243 
244 		if (!skb_copy) {
245 			/* Create a private copy with headroom */
246 			skb_copy = __pskb_copy_fclone(skb, 1, GFP_ATOMIC, true);
247 			if (!skb_copy)
248 				continue;
249 
250 			/* Put type byte before the data */
251 			memcpy(skb_push(skb_copy, 1), &hci_skb_pkt_type(skb), 1);
252 		}
253 
254 		nskb = skb_clone(skb_copy, GFP_ATOMIC);
255 		if (!nskb)
256 			continue;
257 
258 		if (sock_queue_rcv_skb(sk, nskb))
259 			kfree_skb(nskb);
260 	}
261 
262 	read_unlock(&hci_sk_list.lock);
263 
264 	kfree_skb(skb_copy);
265 }
266 
267 /* Send frame to sockets with specific channel */
268 static void __hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
269 				  int flag, struct sock *skip_sk)
270 {
271 	struct sock *sk;
272 
273 	BT_DBG("channel %u len %d", channel, skb->len);
274 
275 	sk_for_each(sk, &hci_sk_list.head) {
276 		struct sk_buff *nskb;
277 
278 		/* Ignore socket without the flag set */
279 		if (!hci_sock_test_flag(sk, flag))
280 			continue;
281 
282 		/* Skip the original socket */
283 		if (sk == skip_sk)
284 			continue;
285 
286 		if (sk->sk_state != BT_BOUND)
287 			continue;
288 
289 		if (hci_pi(sk)->channel != channel)
290 			continue;
291 
292 		nskb = skb_clone(skb, GFP_ATOMIC);
293 		if (!nskb)
294 			continue;
295 
296 		if (sock_queue_rcv_skb(sk, nskb))
297 			kfree_skb(nskb);
298 	}
299 
300 }
301 
302 void hci_send_to_channel(unsigned short channel, struct sk_buff *skb,
303 			 int flag, struct sock *skip_sk)
304 {
305 	read_lock(&hci_sk_list.lock);
306 	__hci_send_to_channel(channel, skb, flag, skip_sk);
307 	read_unlock(&hci_sk_list.lock);
308 }
309 
310 /* Send frame to monitor socket */
311 void hci_send_to_monitor(struct hci_dev *hdev, struct sk_buff *skb)
312 {
313 	struct sk_buff *skb_copy = NULL;
314 	struct hci_mon_hdr *hdr;
315 	__le16 opcode;
316 
317 	if (!atomic_read(&monitor_promisc))
318 		return;
319 
320 	BT_DBG("hdev %p len %d", hdev, skb->len);
321 
322 	switch (hci_skb_pkt_type(skb)) {
323 	case HCI_COMMAND_PKT:
324 		opcode = cpu_to_le16(HCI_MON_COMMAND_PKT);
325 		break;
326 	case HCI_EVENT_PKT:
327 		opcode = cpu_to_le16(HCI_MON_EVENT_PKT);
328 		break;
329 	case HCI_ACLDATA_PKT:
330 		if (bt_cb(skb)->incoming)
331 			opcode = cpu_to_le16(HCI_MON_ACL_RX_PKT);
332 		else
333 			opcode = cpu_to_le16(HCI_MON_ACL_TX_PKT);
334 		break;
335 	case HCI_SCODATA_PKT:
336 		if (bt_cb(skb)->incoming)
337 			opcode = cpu_to_le16(HCI_MON_SCO_RX_PKT);
338 		else
339 			opcode = cpu_to_le16(HCI_MON_SCO_TX_PKT);
340 		break;
341 	case HCI_ISODATA_PKT:
342 		if (bt_cb(skb)->incoming)
343 			opcode = cpu_to_le16(HCI_MON_ISO_RX_PKT);
344 		else
345 			opcode = cpu_to_le16(HCI_MON_ISO_TX_PKT);
346 		break;
347 	case HCI_DIAG_PKT:
348 		opcode = cpu_to_le16(HCI_MON_VENDOR_DIAG);
349 		break;
350 	default:
351 		return;
352 	}
353 
354 	/* Create a private copy with headroom */
355 	skb_copy = __pskb_copy_fclone(skb, HCI_MON_HDR_SIZE, GFP_ATOMIC, true);
356 	if (!skb_copy)
357 		return;
358 
359 	/* Put header before the data */
360 	hdr = skb_push(skb_copy, HCI_MON_HDR_SIZE);
361 	hdr->opcode = opcode;
362 	hdr->index = cpu_to_le16(hdev->id);
363 	hdr->len = cpu_to_le16(skb->len);
364 
365 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb_copy,
366 			    HCI_SOCK_TRUSTED, NULL);
367 	kfree_skb(skb_copy);
368 }
369 
370 void hci_send_monitor_ctrl_event(struct hci_dev *hdev, u16 event,
371 				 void *data, u16 data_len, ktime_t tstamp,
372 				 int flag, struct sock *skip_sk)
373 {
374 	struct sock *sk;
375 	__le16 index;
376 
377 	if (hdev)
378 		index = cpu_to_le16(hdev->id);
379 	else
380 		index = cpu_to_le16(MGMT_INDEX_NONE);
381 
382 	read_lock(&hci_sk_list.lock);
383 
384 	sk_for_each(sk, &hci_sk_list.head) {
385 		struct hci_mon_hdr *hdr;
386 		struct sk_buff *skb;
387 
388 		if (hci_pi(sk)->channel != HCI_CHANNEL_CONTROL)
389 			continue;
390 
391 		/* Ignore socket without the flag set */
392 		if (!hci_sock_test_flag(sk, flag))
393 			continue;
394 
395 		/* Skip the original socket */
396 		if (sk == skip_sk)
397 			continue;
398 
399 		skb = bt_skb_alloc(6 + data_len, GFP_ATOMIC);
400 		if (!skb)
401 			continue;
402 
403 		put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
404 		put_unaligned_le16(event, skb_put(skb, 2));
405 
406 		if (data)
407 			skb_put_data(skb, data, data_len);
408 
409 		skb->tstamp = tstamp;
410 
411 		hdr = skb_push(skb, HCI_MON_HDR_SIZE);
412 		hdr->opcode = cpu_to_le16(HCI_MON_CTRL_EVENT);
413 		hdr->index = index;
414 		hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
415 
416 		__hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
417 				      HCI_SOCK_TRUSTED, NULL);
418 		kfree_skb(skb);
419 	}
420 
421 	read_unlock(&hci_sk_list.lock);
422 }
423 
424 static struct sk_buff *create_monitor_event(struct hci_dev *hdev, int event)
425 {
426 	struct hci_mon_hdr *hdr;
427 	struct hci_mon_new_index *ni;
428 	struct hci_mon_index_info *ii;
429 	struct sk_buff *skb;
430 	__le16 opcode;
431 
432 	switch (event) {
433 	case HCI_DEV_REG:
434 		skb = bt_skb_alloc(HCI_MON_NEW_INDEX_SIZE, GFP_ATOMIC);
435 		if (!skb)
436 			return NULL;
437 
438 		ni = skb_put(skb, HCI_MON_NEW_INDEX_SIZE);
439 		ni->type = hdev->dev_type;
440 		ni->bus = hdev->bus;
441 		bacpy(&ni->bdaddr, &hdev->bdaddr);
442 		memcpy(ni->name, hdev->name, 8);
443 
444 		opcode = cpu_to_le16(HCI_MON_NEW_INDEX);
445 		break;
446 
447 	case HCI_DEV_UNREG:
448 		skb = bt_skb_alloc(0, GFP_ATOMIC);
449 		if (!skb)
450 			return NULL;
451 
452 		opcode = cpu_to_le16(HCI_MON_DEL_INDEX);
453 		break;
454 
455 	case HCI_DEV_SETUP:
456 		if (hdev->manufacturer == 0xffff)
457 			return NULL;
458 		fallthrough;
459 
460 	case HCI_DEV_UP:
461 		skb = bt_skb_alloc(HCI_MON_INDEX_INFO_SIZE, GFP_ATOMIC);
462 		if (!skb)
463 			return NULL;
464 
465 		ii = skb_put(skb, HCI_MON_INDEX_INFO_SIZE);
466 		bacpy(&ii->bdaddr, &hdev->bdaddr);
467 		ii->manufacturer = cpu_to_le16(hdev->manufacturer);
468 
469 		opcode = cpu_to_le16(HCI_MON_INDEX_INFO);
470 		break;
471 
472 	case HCI_DEV_OPEN:
473 		skb = bt_skb_alloc(0, GFP_ATOMIC);
474 		if (!skb)
475 			return NULL;
476 
477 		opcode = cpu_to_le16(HCI_MON_OPEN_INDEX);
478 		break;
479 
480 	case HCI_DEV_CLOSE:
481 		skb = bt_skb_alloc(0, GFP_ATOMIC);
482 		if (!skb)
483 			return NULL;
484 
485 		opcode = cpu_to_le16(HCI_MON_CLOSE_INDEX);
486 		break;
487 
488 	default:
489 		return NULL;
490 	}
491 
492 	__net_timestamp(skb);
493 
494 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
495 	hdr->opcode = opcode;
496 	hdr->index = cpu_to_le16(hdev->id);
497 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
498 
499 	return skb;
500 }
501 
502 static struct sk_buff *create_monitor_ctrl_open(struct sock *sk)
503 {
504 	struct hci_mon_hdr *hdr;
505 	struct sk_buff *skb;
506 	u16 format;
507 	u8 ver[3];
508 	u32 flags;
509 
510 	/* No message needed when cookie is not present */
511 	if (!hci_pi(sk)->cookie)
512 		return NULL;
513 
514 	switch (hci_pi(sk)->channel) {
515 	case HCI_CHANNEL_RAW:
516 		format = 0x0000;
517 		ver[0] = BT_SUBSYS_VERSION;
518 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
519 		break;
520 	case HCI_CHANNEL_USER:
521 		format = 0x0001;
522 		ver[0] = BT_SUBSYS_VERSION;
523 		put_unaligned_le16(BT_SUBSYS_REVISION, ver + 1);
524 		break;
525 	case HCI_CHANNEL_CONTROL:
526 		format = 0x0002;
527 		mgmt_fill_version_info(ver);
528 		break;
529 	default:
530 		/* No message for unsupported format */
531 		return NULL;
532 	}
533 
534 	skb = bt_skb_alloc(14 + TASK_COMM_LEN , GFP_ATOMIC);
535 	if (!skb)
536 		return NULL;
537 
538 	flags = hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) ? 0x1 : 0x0;
539 
540 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
541 	put_unaligned_le16(format, skb_put(skb, 2));
542 	skb_put_data(skb, ver, sizeof(ver));
543 	put_unaligned_le32(flags, skb_put(skb, 4));
544 	skb_put_u8(skb, TASK_COMM_LEN);
545 	skb_put_data(skb, hci_pi(sk)->comm, TASK_COMM_LEN);
546 
547 	__net_timestamp(skb);
548 
549 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
550 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_OPEN);
551 	if (hci_pi(sk)->hdev)
552 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
553 	else
554 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
555 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
556 
557 	return skb;
558 }
559 
560 static struct sk_buff *create_monitor_ctrl_close(struct sock *sk)
561 {
562 	struct hci_mon_hdr *hdr;
563 	struct sk_buff *skb;
564 
565 	/* No message needed when cookie is not present */
566 	if (!hci_pi(sk)->cookie)
567 		return NULL;
568 
569 	switch (hci_pi(sk)->channel) {
570 	case HCI_CHANNEL_RAW:
571 	case HCI_CHANNEL_USER:
572 	case HCI_CHANNEL_CONTROL:
573 		break;
574 	default:
575 		/* No message for unsupported format */
576 		return NULL;
577 	}
578 
579 	skb = bt_skb_alloc(4, GFP_ATOMIC);
580 	if (!skb)
581 		return NULL;
582 
583 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
584 
585 	__net_timestamp(skb);
586 
587 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
588 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_CLOSE);
589 	if (hci_pi(sk)->hdev)
590 		hdr->index = cpu_to_le16(hci_pi(sk)->hdev->id);
591 	else
592 		hdr->index = cpu_to_le16(HCI_DEV_NONE);
593 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
594 
595 	return skb;
596 }
597 
598 static struct sk_buff *create_monitor_ctrl_command(struct sock *sk, u16 index,
599 						   u16 opcode, u16 len,
600 						   const void *buf)
601 {
602 	struct hci_mon_hdr *hdr;
603 	struct sk_buff *skb;
604 
605 	skb = bt_skb_alloc(6 + len, GFP_ATOMIC);
606 	if (!skb)
607 		return NULL;
608 
609 	put_unaligned_le32(hci_pi(sk)->cookie, skb_put(skb, 4));
610 	put_unaligned_le16(opcode, skb_put(skb, 2));
611 
612 	if (buf)
613 		skb_put_data(skb, buf, len);
614 
615 	__net_timestamp(skb);
616 
617 	hdr = skb_push(skb, HCI_MON_HDR_SIZE);
618 	hdr->opcode = cpu_to_le16(HCI_MON_CTRL_COMMAND);
619 	hdr->index = cpu_to_le16(index);
620 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
621 
622 	return skb;
623 }
624 
625 static void __printf(2, 3)
626 send_monitor_note(struct sock *sk, const char *fmt, ...)
627 {
628 	size_t len;
629 	struct hci_mon_hdr *hdr;
630 	struct sk_buff *skb;
631 	va_list args;
632 
633 	va_start(args, fmt);
634 	len = vsnprintf(NULL, 0, fmt, args);
635 	va_end(args);
636 
637 	skb = bt_skb_alloc(len + 1, GFP_ATOMIC);
638 	if (!skb)
639 		return;
640 
641 	va_start(args, fmt);
642 	vsprintf(skb_put(skb, len), fmt, args);
643 	*(u8 *)skb_put(skb, 1) = 0;
644 	va_end(args);
645 
646 	__net_timestamp(skb);
647 
648 	hdr = (void *)skb_push(skb, HCI_MON_HDR_SIZE);
649 	hdr->opcode = cpu_to_le16(HCI_MON_SYSTEM_NOTE);
650 	hdr->index = cpu_to_le16(HCI_DEV_NONE);
651 	hdr->len = cpu_to_le16(skb->len - HCI_MON_HDR_SIZE);
652 
653 	if (sock_queue_rcv_skb(sk, skb))
654 		kfree_skb(skb);
655 }
656 
657 static void send_monitor_replay(struct sock *sk)
658 {
659 	struct hci_dev *hdev;
660 
661 	read_lock(&hci_dev_list_lock);
662 
663 	list_for_each_entry(hdev, &hci_dev_list, list) {
664 		struct sk_buff *skb;
665 
666 		skb = create_monitor_event(hdev, HCI_DEV_REG);
667 		if (!skb)
668 			continue;
669 
670 		if (sock_queue_rcv_skb(sk, skb))
671 			kfree_skb(skb);
672 
673 		if (!test_bit(HCI_RUNNING, &hdev->flags))
674 			continue;
675 
676 		skb = create_monitor_event(hdev, HCI_DEV_OPEN);
677 		if (!skb)
678 			continue;
679 
680 		if (sock_queue_rcv_skb(sk, skb))
681 			kfree_skb(skb);
682 
683 		if (test_bit(HCI_UP, &hdev->flags))
684 			skb = create_monitor_event(hdev, HCI_DEV_UP);
685 		else if (hci_dev_test_flag(hdev, HCI_SETUP))
686 			skb = create_monitor_event(hdev, HCI_DEV_SETUP);
687 		else
688 			skb = NULL;
689 
690 		if (skb) {
691 			if (sock_queue_rcv_skb(sk, skb))
692 				kfree_skb(skb);
693 		}
694 	}
695 
696 	read_unlock(&hci_dev_list_lock);
697 }
698 
699 static void send_monitor_control_replay(struct sock *mon_sk)
700 {
701 	struct sock *sk;
702 
703 	read_lock(&hci_sk_list.lock);
704 
705 	sk_for_each(sk, &hci_sk_list.head) {
706 		struct sk_buff *skb;
707 
708 		skb = create_monitor_ctrl_open(sk);
709 		if (!skb)
710 			continue;
711 
712 		if (sock_queue_rcv_skb(mon_sk, skb))
713 			kfree_skb(skb);
714 	}
715 
716 	read_unlock(&hci_sk_list.lock);
717 }
718 
719 /* Generate internal stack event */
720 static void hci_si_event(struct hci_dev *hdev, int type, int dlen, void *data)
721 {
722 	struct hci_event_hdr *hdr;
723 	struct hci_ev_stack_internal *ev;
724 	struct sk_buff *skb;
725 
726 	skb = bt_skb_alloc(HCI_EVENT_HDR_SIZE + sizeof(*ev) + dlen, GFP_ATOMIC);
727 	if (!skb)
728 		return;
729 
730 	hdr = skb_put(skb, HCI_EVENT_HDR_SIZE);
731 	hdr->evt  = HCI_EV_STACK_INTERNAL;
732 	hdr->plen = sizeof(*ev) + dlen;
733 
734 	ev = skb_put(skb, sizeof(*ev) + dlen);
735 	ev->type = type;
736 	memcpy(ev->data, data, dlen);
737 
738 	bt_cb(skb)->incoming = 1;
739 	__net_timestamp(skb);
740 
741 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
742 	hci_send_to_sock(hdev, skb);
743 	kfree_skb(skb);
744 }
745 
746 void hci_sock_dev_event(struct hci_dev *hdev, int event)
747 {
748 	BT_DBG("hdev %s event %d", hdev->name, event);
749 
750 	if (atomic_read(&monitor_promisc)) {
751 		struct sk_buff *skb;
752 
753 		/* Send event to monitor */
754 		skb = create_monitor_event(hdev, event);
755 		if (skb) {
756 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
757 					    HCI_SOCK_TRUSTED, NULL);
758 			kfree_skb(skb);
759 		}
760 	}
761 
762 	if (event <= HCI_DEV_DOWN) {
763 		struct hci_ev_si_device ev;
764 
765 		/* Send event to sockets */
766 		ev.event  = event;
767 		ev.dev_id = hdev->id;
768 		hci_si_event(NULL, HCI_EV_SI_DEVICE, sizeof(ev), &ev);
769 	}
770 
771 	if (event == HCI_DEV_UNREG) {
772 		struct sock *sk;
773 
774 		/* Wake up sockets using this dead device */
775 		read_lock(&hci_sk_list.lock);
776 		sk_for_each(sk, &hci_sk_list.head) {
777 			if (hci_pi(sk)->hdev == hdev) {
778 				sk->sk_err = EPIPE;
779 				sk->sk_state_change(sk);
780 			}
781 		}
782 		read_unlock(&hci_sk_list.lock);
783 	}
784 }
785 
786 static struct hci_mgmt_chan *__hci_mgmt_chan_find(unsigned short channel)
787 {
788 	struct hci_mgmt_chan *c;
789 
790 	list_for_each_entry(c, &mgmt_chan_list, list) {
791 		if (c->channel == channel)
792 			return c;
793 	}
794 
795 	return NULL;
796 }
797 
798 static struct hci_mgmt_chan *hci_mgmt_chan_find(unsigned short channel)
799 {
800 	struct hci_mgmt_chan *c;
801 
802 	mutex_lock(&mgmt_chan_list_lock);
803 	c = __hci_mgmt_chan_find(channel);
804 	mutex_unlock(&mgmt_chan_list_lock);
805 
806 	return c;
807 }
808 
809 int hci_mgmt_chan_register(struct hci_mgmt_chan *c)
810 {
811 	if (c->channel < HCI_CHANNEL_CONTROL)
812 		return -EINVAL;
813 
814 	mutex_lock(&mgmt_chan_list_lock);
815 	if (__hci_mgmt_chan_find(c->channel)) {
816 		mutex_unlock(&mgmt_chan_list_lock);
817 		return -EALREADY;
818 	}
819 
820 	list_add_tail(&c->list, &mgmt_chan_list);
821 
822 	mutex_unlock(&mgmt_chan_list_lock);
823 
824 	return 0;
825 }
826 EXPORT_SYMBOL(hci_mgmt_chan_register);
827 
828 void hci_mgmt_chan_unregister(struct hci_mgmt_chan *c)
829 {
830 	mutex_lock(&mgmt_chan_list_lock);
831 	list_del(&c->list);
832 	mutex_unlock(&mgmt_chan_list_lock);
833 }
834 EXPORT_SYMBOL(hci_mgmt_chan_unregister);
835 
836 static int hci_sock_release(struct socket *sock)
837 {
838 	struct sock *sk = sock->sk;
839 	struct hci_dev *hdev;
840 	struct sk_buff *skb;
841 
842 	BT_DBG("sock %p sk %p", sock, sk);
843 
844 	if (!sk)
845 		return 0;
846 
847 	lock_sock(sk);
848 
849 	switch (hci_pi(sk)->channel) {
850 	case HCI_CHANNEL_MONITOR:
851 		atomic_dec(&monitor_promisc);
852 		break;
853 	case HCI_CHANNEL_RAW:
854 	case HCI_CHANNEL_USER:
855 	case HCI_CHANNEL_CONTROL:
856 		/* Send event to monitor */
857 		skb = create_monitor_ctrl_close(sk);
858 		if (skb) {
859 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
860 					    HCI_SOCK_TRUSTED, NULL);
861 			kfree_skb(skb);
862 		}
863 
864 		hci_sock_free_cookie(sk);
865 		break;
866 	}
867 
868 	bt_sock_unlink(&hci_sk_list, sk);
869 
870 	hdev = hci_pi(sk)->hdev;
871 	if (hdev) {
872 		if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
873 			/* When releasing a user channel exclusive access,
874 			 * call hci_dev_do_close directly instead of calling
875 			 * hci_dev_close to ensure the exclusive access will
876 			 * be released and the controller brought back down.
877 			 *
878 			 * The checking of HCI_AUTO_OFF is not needed in this
879 			 * case since it will have been cleared already when
880 			 * opening the user channel.
881 			 */
882 			hci_dev_do_close(hdev);
883 			hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
884 			mgmt_index_added(hdev);
885 		}
886 
887 		atomic_dec(&hdev->promisc);
888 		hci_dev_put(hdev);
889 	}
890 
891 	sock_orphan(sk);
892 	release_sock(sk);
893 	sock_put(sk);
894 	return 0;
895 }
896 
897 static int hci_sock_reject_list_add(struct hci_dev *hdev, void __user *arg)
898 {
899 	bdaddr_t bdaddr;
900 	int err;
901 
902 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
903 		return -EFAULT;
904 
905 	hci_dev_lock(hdev);
906 
907 	err = hci_bdaddr_list_add(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
908 
909 	hci_dev_unlock(hdev);
910 
911 	return err;
912 }
913 
914 static int hci_sock_reject_list_del(struct hci_dev *hdev, void __user *arg)
915 {
916 	bdaddr_t bdaddr;
917 	int err;
918 
919 	if (copy_from_user(&bdaddr, arg, sizeof(bdaddr)))
920 		return -EFAULT;
921 
922 	hci_dev_lock(hdev);
923 
924 	err = hci_bdaddr_list_del(&hdev->reject_list, &bdaddr, BDADDR_BREDR);
925 
926 	hci_dev_unlock(hdev);
927 
928 	return err;
929 }
930 
931 /* Ioctls that require bound socket */
932 static int hci_sock_bound_ioctl(struct sock *sk, unsigned int cmd,
933 				unsigned long arg)
934 {
935 	struct hci_dev *hdev = hci_hdev_from_sock(sk);
936 
937 	if (IS_ERR(hdev))
938 		return PTR_ERR(hdev);
939 
940 	if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
941 		return -EBUSY;
942 
943 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
944 		return -EOPNOTSUPP;
945 
946 	if (hdev->dev_type != HCI_PRIMARY)
947 		return -EOPNOTSUPP;
948 
949 	switch (cmd) {
950 	case HCISETRAW:
951 		if (!capable(CAP_NET_ADMIN))
952 			return -EPERM;
953 		return -EOPNOTSUPP;
954 
955 	case HCIGETCONNINFO:
956 		return hci_get_conn_info(hdev, (void __user *)arg);
957 
958 	case HCIGETAUTHINFO:
959 		return hci_get_auth_info(hdev, (void __user *)arg);
960 
961 	case HCIBLOCKADDR:
962 		if (!capable(CAP_NET_ADMIN))
963 			return -EPERM;
964 		return hci_sock_reject_list_add(hdev, (void __user *)arg);
965 
966 	case HCIUNBLOCKADDR:
967 		if (!capable(CAP_NET_ADMIN))
968 			return -EPERM;
969 		return hci_sock_reject_list_del(hdev, (void __user *)arg);
970 	}
971 
972 	return -ENOIOCTLCMD;
973 }
974 
975 static int hci_sock_ioctl(struct socket *sock, unsigned int cmd,
976 			  unsigned long arg)
977 {
978 	void __user *argp = (void __user *)arg;
979 	struct sock *sk = sock->sk;
980 	int err;
981 
982 	BT_DBG("cmd %x arg %lx", cmd, arg);
983 
984 	lock_sock(sk);
985 
986 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
987 		err = -EBADFD;
988 		goto done;
989 	}
990 
991 	/* When calling an ioctl on an unbound raw socket, then ensure
992 	 * that the monitor gets informed. Ensure that the resulting event
993 	 * is only send once by checking if the cookie exists or not. The
994 	 * socket cookie will be only ever generated once for the lifetime
995 	 * of a given socket.
996 	 */
997 	if (hci_sock_gen_cookie(sk)) {
998 		struct sk_buff *skb;
999 
1000 		if (capable(CAP_NET_ADMIN))
1001 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1002 
1003 		/* Send event to monitor */
1004 		skb = create_monitor_ctrl_open(sk);
1005 		if (skb) {
1006 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1007 					    HCI_SOCK_TRUSTED, NULL);
1008 			kfree_skb(skb);
1009 		}
1010 	}
1011 
1012 	release_sock(sk);
1013 
1014 	switch (cmd) {
1015 	case HCIGETDEVLIST:
1016 		return hci_get_dev_list(argp);
1017 
1018 	case HCIGETDEVINFO:
1019 		return hci_get_dev_info(argp);
1020 
1021 	case HCIGETCONNLIST:
1022 		return hci_get_conn_list(argp);
1023 
1024 	case HCIDEVUP:
1025 		if (!capable(CAP_NET_ADMIN))
1026 			return -EPERM;
1027 		return hci_dev_open(arg);
1028 
1029 	case HCIDEVDOWN:
1030 		if (!capable(CAP_NET_ADMIN))
1031 			return -EPERM;
1032 		return hci_dev_close(arg);
1033 
1034 	case HCIDEVRESET:
1035 		if (!capable(CAP_NET_ADMIN))
1036 			return -EPERM;
1037 		return hci_dev_reset(arg);
1038 
1039 	case HCIDEVRESTAT:
1040 		if (!capable(CAP_NET_ADMIN))
1041 			return -EPERM;
1042 		return hci_dev_reset_stat(arg);
1043 
1044 	case HCISETSCAN:
1045 	case HCISETAUTH:
1046 	case HCISETENCRYPT:
1047 	case HCISETPTYPE:
1048 	case HCISETLINKPOL:
1049 	case HCISETLINKMODE:
1050 	case HCISETACLMTU:
1051 	case HCISETSCOMTU:
1052 		if (!capable(CAP_NET_ADMIN))
1053 			return -EPERM;
1054 		return hci_dev_cmd(cmd, argp);
1055 
1056 	case HCIINQUIRY:
1057 		return hci_inquiry(argp);
1058 	}
1059 
1060 	lock_sock(sk);
1061 
1062 	err = hci_sock_bound_ioctl(sk, cmd, arg);
1063 
1064 done:
1065 	release_sock(sk);
1066 	return err;
1067 }
1068 
1069 #ifdef CONFIG_COMPAT
1070 static int hci_sock_compat_ioctl(struct socket *sock, unsigned int cmd,
1071 				 unsigned long arg)
1072 {
1073 	switch (cmd) {
1074 	case HCIDEVUP:
1075 	case HCIDEVDOWN:
1076 	case HCIDEVRESET:
1077 	case HCIDEVRESTAT:
1078 		return hci_sock_ioctl(sock, cmd, arg);
1079 	}
1080 
1081 	return hci_sock_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
1082 }
1083 #endif
1084 
1085 static int hci_sock_bind(struct socket *sock, struct sockaddr *addr,
1086 			 int addr_len)
1087 {
1088 	struct sockaddr_hci haddr;
1089 	struct sock *sk = sock->sk;
1090 	struct hci_dev *hdev = NULL;
1091 	struct sk_buff *skb;
1092 	int len, err = 0;
1093 
1094 	BT_DBG("sock %p sk %p", sock, sk);
1095 
1096 	if (!addr)
1097 		return -EINVAL;
1098 
1099 	memset(&haddr, 0, sizeof(haddr));
1100 	len = min_t(unsigned int, sizeof(haddr), addr_len);
1101 	memcpy(&haddr, addr, len);
1102 
1103 	if (haddr.hci_family != AF_BLUETOOTH)
1104 		return -EINVAL;
1105 
1106 	lock_sock(sk);
1107 
1108 	/* Allow detaching from dead device and attaching to alive device, if
1109 	 * the caller wants to re-bind (instead of close) this socket in
1110 	 * response to hci_sock_dev_event(HCI_DEV_UNREG) notification.
1111 	 */
1112 	hdev = hci_pi(sk)->hdev;
1113 	if (hdev && hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1114 		hci_pi(sk)->hdev = NULL;
1115 		sk->sk_state = BT_OPEN;
1116 		hci_dev_put(hdev);
1117 	}
1118 	hdev = NULL;
1119 
1120 	if (sk->sk_state == BT_BOUND) {
1121 		err = -EALREADY;
1122 		goto done;
1123 	}
1124 
1125 	switch (haddr.hci_channel) {
1126 	case HCI_CHANNEL_RAW:
1127 		if (hci_pi(sk)->hdev) {
1128 			err = -EALREADY;
1129 			goto done;
1130 		}
1131 
1132 		if (haddr.hci_dev != HCI_DEV_NONE) {
1133 			hdev = hci_dev_get(haddr.hci_dev);
1134 			if (!hdev) {
1135 				err = -ENODEV;
1136 				goto done;
1137 			}
1138 
1139 			atomic_inc(&hdev->promisc);
1140 		}
1141 
1142 		hci_pi(sk)->channel = haddr.hci_channel;
1143 
1144 		if (!hci_sock_gen_cookie(sk)) {
1145 			/* In the case when a cookie has already been assigned,
1146 			 * then there has been already an ioctl issued against
1147 			 * an unbound socket and with that triggered an open
1148 			 * notification. Send a close notification first to
1149 			 * allow the state transition to bounded.
1150 			 */
1151 			skb = create_monitor_ctrl_close(sk);
1152 			if (skb) {
1153 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1154 						    HCI_SOCK_TRUSTED, NULL);
1155 				kfree_skb(skb);
1156 			}
1157 		}
1158 
1159 		if (capable(CAP_NET_ADMIN))
1160 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1161 
1162 		hci_pi(sk)->hdev = hdev;
1163 
1164 		/* Send event to monitor */
1165 		skb = create_monitor_ctrl_open(sk);
1166 		if (skb) {
1167 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1168 					    HCI_SOCK_TRUSTED, NULL);
1169 			kfree_skb(skb);
1170 		}
1171 		break;
1172 
1173 	case HCI_CHANNEL_USER:
1174 		if (hci_pi(sk)->hdev) {
1175 			err = -EALREADY;
1176 			goto done;
1177 		}
1178 
1179 		if (haddr.hci_dev == HCI_DEV_NONE) {
1180 			err = -EINVAL;
1181 			goto done;
1182 		}
1183 
1184 		if (!capable(CAP_NET_ADMIN)) {
1185 			err = -EPERM;
1186 			goto done;
1187 		}
1188 
1189 		hdev = hci_dev_get(haddr.hci_dev);
1190 		if (!hdev) {
1191 			err = -ENODEV;
1192 			goto done;
1193 		}
1194 
1195 		if (test_bit(HCI_INIT, &hdev->flags) ||
1196 		    hci_dev_test_flag(hdev, HCI_SETUP) ||
1197 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1198 		    (!hci_dev_test_flag(hdev, HCI_AUTO_OFF) &&
1199 		     test_bit(HCI_UP, &hdev->flags))) {
1200 			err = -EBUSY;
1201 			hci_dev_put(hdev);
1202 			goto done;
1203 		}
1204 
1205 		if (hci_dev_test_and_set_flag(hdev, HCI_USER_CHANNEL)) {
1206 			err = -EUSERS;
1207 			hci_dev_put(hdev);
1208 			goto done;
1209 		}
1210 
1211 		mgmt_index_removed(hdev);
1212 
1213 		err = hci_dev_open(hdev->id);
1214 		if (err) {
1215 			if (err == -EALREADY) {
1216 				/* In case the transport is already up and
1217 				 * running, clear the error here.
1218 				 *
1219 				 * This can happen when opening a user
1220 				 * channel and HCI_AUTO_OFF grace period
1221 				 * is still active.
1222 				 */
1223 				err = 0;
1224 			} else {
1225 				hci_dev_clear_flag(hdev, HCI_USER_CHANNEL);
1226 				mgmt_index_added(hdev);
1227 				hci_dev_put(hdev);
1228 				goto done;
1229 			}
1230 		}
1231 
1232 		hci_pi(sk)->channel = haddr.hci_channel;
1233 
1234 		if (!hci_sock_gen_cookie(sk)) {
1235 			/* In the case when a cookie has already been assigned,
1236 			 * this socket will transition from a raw socket into
1237 			 * a user channel socket. For a clean transition, send
1238 			 * the close notification first.
1239 			 */
1240 			skb = create_monitor_ctrl_close(sk);
1241 			if (skb) {
1242 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1243 						    HCI_SOCK_TRUSTED, NULL);
1244 				kfree_skb(skb);
1245 			}
1246 		}
1247 
1248 		/* The user channel is restricted to CAP_NET_ADMIN
1249 		 * capabilities and with that implicitly trusted.
1250 		 */
1251 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1252 
1253 		hci_pi(sk)->hdev = hdev;
1254 
1255 		/* Send event to monitor */
1256 		skb = create_monitor_ctrl_open(sk);
1257 		if (skb) {
1258 			hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1259 					    HCI_SOCK_TRUSTED, NULL);
1260 			kfree_skb(skb);
1261 		}
1262 
1263 		atomic_inc(&hdev->promisc);
1264 		break;
1265 
1266 	case HCI_CHANNEL_MONITOR:
1267 		if (haddr.hci_dev != HCI_DEV_NONE) {
1268 			err = -EINVAL;
1269 			goto done;
1270 		}
1271 
1272 		if (!capable(CAP_NET_RAW)) {
1273 			err = -EPERM;
1274 			goto done;
1275 		}
1276 
1277 		hci_pi(sk)->channel = haddr.hci_channel;
1278 
1279 		/* The monitor interface is restricted to CAP_NET_RAW
1280 		 * capabilities and with that implicitly trusted.
1281 		 */
1282 		hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1283 
1284 		send_monitor_note(sk, "Linux version %s (%s)",
1285 				  init_utsname()->release,
1286 				  init_utsname()->machine);
1287 		send_monitor_note(sk, "Bluetooth subsystem version %u.%u",
1288 				  BT_SUBSYS_VERSION, BT_SUBSYS_REVISION);
1289 		send_monitor_replay(sk);
1290 		send_monitor_control_replay(sk);
1291 
1292 		atomic_inc(&monitor_promisc);
1293 		break;
1294 
1295 	case HCI_CHANNEL_LOGGING:
1296 		if (haddr.hci_dev != HCI_DEV_NONE) {
1297 			err = -EINVAL;
1298 			goto done;
1299 		}
1300 
1301 		if (!capable(CAP_NET_ADMIN)) {
1302 			err = -EPERM;
1303 			goto done;
1304 		}
1305 
1306 		hci_pi(sk)->channel = haddr.hci_channel;
1307 		break;
1308 
1309 	default:
1310 		if (!hci_mgmt_chan_find(haddr.hci_channel)) {
1311 			err = -EINVAL;
1312 			goto done;
1313 		}
1314 
1315 		if (haddr.hci_dev != HCI_DEV_NONE) {
1316 			err = -EINVAL;
1317 			goto done;
1318 		}
1319 
1320 		/* Users with CAP_NET_ADMIN capabilities are allowed
1321 		 * access to all management commands and events. For
1322 		 * untrusted users the interface is restricted and
1323 		 * also only untrusted events are sent.
1324 		 */
1325 		if (capable(CAP_NET_ADMIN))
1326 			hci_sock_set_flag(sk, HCI_SOCK_TRUSTED);
1327 
1328 		hci_pi(sk)->channel = haddr.hci_channel;
1329 
1330 		/* At the moment the index and unconfigured index events
1331 		 * are enabled unconditionally. Setting them on each
1332 		 * socket when binding keeps this functionality. They
1333 		 * however might be cleared later and then sending of these
1334 		 * events will be disabled, but that is then intentional.
1335 		 *
1336 		 * This also enables generic events that are safe to be
1337 		 * received by untrusted users. Example for such events
1338 		 * are changes to settings, class of device, name etc.
1339 		 */
1340 		if (hci_pi(sk)->channel == HCI_CHANNEL_CONTROL) {
1341 			if (!hci_sock_gen_cookie(sk)) {
1342 				/* In the case when a cookie has already been
1343 				 * assigned, this socket will transition from
1344 				 * a raw socket into a control socket. To
1345 				 * allow for a clean transition, send the
1346 				 * close notification first.
1347 				 */
1348 				skb = create_monitor_ctrl_close(sk);
1349 				if (skb) {
1350 					hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1351 							    HCI_SOCK_TRUSTED, NULL);
1352 					kfree_skb(skb);
1353 				}
1354 			}
1355 
1356 			/* Send event to monitor */
1357 			skb = create_monitor_ctrl_open(sk);
1358 			if (skb) {
1359 				hci_send_to_channel(HCI_CHANNEL_MONITOR, skb,
1360 						    HCI_SOCK_TRUSTED, NULL);
1361 				kfree_skb(skb);
1362 			}
1363 
1364 			hci_sock_set_flag(sk, HCI_MGMT_INDEX_EVENTS);
1365 			hci_sock_set_flag(sk, HCI_MGMT_UNCONF_INDEX_EVENTS);
1366 			hci_sock_set_flag(sk, HCI_MGMT_OPTION_EVENTS);
1367 			hci_sock_set_flag(sk, HCI_MGMT_SETTING_EVENTS);
1368 			hci_sock_set_flag(sk, HCI_MGMT_DEV_CLASS_EVENTS);
1369 			hci_sock_set_flag(sk, HCI_MGMT_LOCAL_NAME_EVENTS);
1370 		}
1371 		break;
1372 	}
1373 
1374 	/* Default MTU to HCI_MAX_FRAME_SIZE if not set */
1375 	if (!hci_pi(sk)->mtu)
1376 		hci_pi(sk)->mtu = HCI_MAX_FRAME_SIZE;
1377 
1378 	sk->sk_state = BT_BOUND;
1379 
1380 done:
1381 	release_sock(sk);
1382 	return err;
1383 }
1384 
1385 static int hci_sock_getname(struct socket *sock, struct sockaddr *addr,
1386 			    int peer)
1387 {
1388 	struct sockaddr_hci *haddr = (struct sockaddr_hci *)addr;
1389 	struct sock *sk = sock->sk;
1390 	struct hci_dev *hdev;
1391 	int err = 0;
1392 
1393 	BT_DBG("sock %p sk %p", sock, sk);
1394 
1395 	if (peer)
1396 		return -EOPNOTSUPP;
1397 
1398 	lock_sock(sk);
1399 
1400 	hdev = hci_hdev_from_sock(sk);
1401 	if (IS_ERR(hdev)) {
1402 		err = PTR_ERR(hdev);
1403 		goto done;
1404 	}
1405 
1406 	haddr->hci_family = AF_BLUETOOTH;
1407 	haddr->hci_dev    = hdev->id;
1408 	haddr->hci_channel= hci_pi(sk)->channel;
1409 	err = sizeof(*haddr);
1410 
1411 done:
1412 	release_sock(sk);
1413 	return err;
1414 }
1415 
1416 static void hci_sock_cmsg(struct sock *sk, struct msghdr *msg,
1417 			  struct sk_buff *skb)
1418 {
1419 	__u8 mask = hci_pi(sk)->cmsg_mask;
1420 
1421 	if (mask & HCI_CMSG_DIR) {
1422 		int incoming = bt_cb(skb)->incoming;
1423 		put_cmsg(msg, SOL_HCI, HCI_CMSG_DIR, sizeof(incoming),
1424 			 &incoming);
1425 	}
1426 
1427 	if (mask & HCI_CMSG_TSTAMP) {
1428 #ifdef CONFIG_COMPAT
1429 		struct old_timeval32 ctv;
1430 #endif
1431 		struct __kernel_old_timeval tv;
1432 		void *data;
1433 		int len;
1434 
1435 		skb_get_timestamp(skb, &tv);
1436 
1437 		data = &tv;
1438 		len = sizeof(tv);
1439 #ifdef CONFIG_COMPAT
1440 		if (!COMPAT_USE_64BIT_TIME &&
1441 		    (msg->msg_flags & MSG_CMSG_COMPAT)) {
1442 			ctv.tv_sec = tv.tv_sec;
1443 			ctv.tv_usec = tv.tv_usec;
1444 			data = &ctv;
1445 			len = sizeof(ctv);
1446 		}
1447 #endif
1448 
1449 		put_cmsg(msg, SOL_HCI, HCI_CMSG_TSTAMP, len, data);
1450 	}
1451 }
1452 
1453 static int hci_sock_recvmsg(struct socket *sock, struct msghdr *msg,
1454 			    size_t len, int flags)
1455 {
1456 	int noblock = flags & MSG_DONTWAIT;
1457 	struct sock *sk = sock->sk;
1458 	struct sk_buff *skb;
1459 	int copied, err;
1460 	unsigned int skblen;
1461 
1462 	BT_DBG("sock %p, sk %p", sock, sk);
1463 
1464 	if (flags & MSG_OOB)
1465 		return -EOPNOTSUPP;
1466 
1467 	if (hci_pi(sk)->channel == HCI_CHANNEL_LOGGING)
1468 		return -EOPNOTSUPP;
1469 
1470 	if (sk->sk_state == BT_CLOSED)
1471 		return 0;
1472 
1473 	skb = skb_recv_datagram(sk, flags, noblock, &err);
1474 	if (!skb)
1475 		return err;
1476 
1477 	skblen = skb->len;
1478 	copied = skb->len;
1479 	if (len < copied) {
1480 		msg->msg_flags |= MSG_TRUNC;
1481 		copied = len;
1482 	}
1483 
1484 	skb_reset_transport_header(skb);
1485 	err = skb_copy_datagram_msg(skb, 0, msg, copied);
1486 
1487 	switch (hci_pi(sk)->channel) {
1488 	case HCI_CHANNEL_RAW:
1489 		hci_sock_cmsg(sk, msg, skb);
1490 		break;
1491 	case HCI_CHANNEL_USER:
1492 	case HCI_CHANNEL_MONITOR:
1493 		sock_recv_timestamp(msg, sk, skb);
1494 		break;
1495 	default:
1496 		if (hci_mgmt_chan_find(hci_pi(sk)->channel))
1497 			sock_recv_timestamp(msg, sk, skb);
1498 		break;
1499 	}
1500 
1501 	skb_free_datagram(sk, skb);
1502 
1503 	if (flags & MSG_TRUNC)
1504 		copied = skblen;
1505 
1506 	return err ? : copied;
1507 }
1508 
1509 static int hci_mgmt_cmd(struct hci_mgmt_chan *chan, struct sock *sk,
1510 			struct sk_buff *skb)
1511 {
1512 	u8 *cp;
1513 	struct mgmt_hdr *hdr;
1514 	u16 opcode, index, len;
1515 	struct hci_dev *hdev = NULL;
1516 	const struct hci_mgmt_handler *handler;
1517 	bool var_len, no_hdev;
1518 	int err;
1519 
1520 	BT_DBG("got %d bytes", skb->len);
1521 
1522 	if (skb->len < sizeof(*hdr))
1523 		return -EINVAL;
1524 
1525 	hdr = (void *)skb->data;
1526 	opcode = __le16_to_cpu(hdr->opcode);
1527 	index = __le16_to_cpu(hdr->index);
1528 	len = __le16_to_cpu(hdr->len);
1529 
1530 	if (len != skb->len - sizeof(*hdr)) {
1531 		err = -EINVAL;
1532 		goto done;
1533 	}
1534 
1535 	if (chan->channel == HCI_CHANNEL_CONTROL) {
1536 		struct sk_buff *cmd;
1537 
1538 		/* Send event to monitor */
1539 		cmd = create_monitor_ctrl_command(sk, index, opcode, len,
1540 						  skb->data + sizeof(*hdr));
1541 		if (cmd) {
1542 			hci_send_to_channel(HCI_CHANNEL_MONITOR, cmd,
1543 					    HCI_SOCK_TRUSTED, NULL);
1544 			kfree_skb(cmd);
1545 		}
1546 	}
1547 
1548 	if (opcode >= chan->handler_count ||
1549 	    chan->handlers[opcode].func == NULL) {
1550 		BT_DBG("Unknown op %u", opcode);
1551 		err = mgmt_cmd_status(sk, index, opcode,
1552 				      MGMT_STATUS_UNKNOWN_COMMAND);
1553 		goto done;
1554 	}
1555 
1556 	handler = &chan->handlers[opcode];
1557 
1558 	if (!hci_sock_test_flag(sk, HCI_SOCK_TRUSTED) &&
1559 	    !(handler->flags & HCI_MGMT_UNTRUSTED)) {
1560 		err = mgmt_cmd_status(sk, index, opcode,
1561 				      MGMT_STATUS_PERMISSION_DENIED);
1562 		goto done;
1563 	}
1564 
1565 	if (index != MGMT_INDEX_NONE) {
1566 		hdev = hci_dev_get(index);
1567 		if (!hdev) {
1568 			err = mgmt_cmd_status(sk, index, opcode,
1569 					      MGMT_STATUS_INVALID_INDEX);
1570 			goto done;
1571 		}
1572 
1573 		if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1574 		    hci_dev_test_flag(hdev, HCI_CONFIG) ||
1575 		    hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1576 			err = mgmt_cmd_status(sk, index, opcode,
1577 					      MGMT_STATUS_INVALID_INDEX);
1578 			goto done;
1579 		}
1580 
1581 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1582 		    !(handler->flags & HCI_MGMT_UNCONFIGURED)) {
1583 			err = mgmt_cmd_status(sk, index, opcode,
1584 					      MGMT_STATUS_INVALID_INDEX);
1585 			goto done;
1586 		}
1587 	}
1588 
1589 	if (!(handler->flags & HCI_MGMT_HDEV_OPTIONAL)) {
1590 		no_hdev = (handler->flags & HCI_MGMT_NO_HDEV);
1591 		if (no_hdev != !hdev) {
1592 			err = mgmt_cmd_status(sk, index, opcode,
1593 					      MGMT_STATUS_INVALID_INDEX);
1594 			goto done;
1595 		}
1596 	}
1597 
1598 	var_len = (handler->flags & HCI_MGMT_VAR_LEN);
1599 	if ((var_len && len < handler->data_len) ||
1600 	    (!var_len && len != handler->data_len)) {
1601 		err = mgmt_cmd_status(sk, index, opcode,
1602 				      MGMT_STATUS_INVALID_PARAMS);
1603 		goto done;
1604 	}
1605 
1606 	if (hdev && chan->hdev_init)
1607 		chan->hdev_init(sk, hdev);
1608 
1609 	cp = skb->data + sizeof(*hdr);
1610 
1611 	err = handler->func(sk, hdev, cp, len);
1612 	if (err < 0)
1613 		goto done;
1614 
1615 	err = skb->len;
1616 
1617 done:
1618 	if (hdev)
1619 		hci_dev_put(hdev);
1620 
1621 	return err;
1622 }
1623 
1624 static int hci_logging_frame(struct sock *sk, struct sk_buff *skb,
1625 			     unsigned int flags)
1626 {
1627 	struct hci_mon_hdr *hdr;
1628 	struct hci_dev *hdev;
1629 	u16 index;
1630 	int err;
1631 
1632 	/* The logging frame consists at minimum of the standard header,
1633 	 * the priority byte, the ident length byte and at least one string
1634 	 * terminator NUL byte. Anything shorter are invalid packets.
1635 	 */
1636 	if (skb->len < sizeof(*hdr) + 3)
1637 		return -EINVAL;
1638 
1639 	hdr = (void *)skb->data;
1640 
1641 	if (__le16_to_cpu(hdr->len) != skb->len - sizeof(*hdr))
1642 		return -EINVAL;
1643 
1644 	if (__le16_to_cpu(hdr->opcode) == 0x0000) {
1645 		__u8 priority = skb->data[sizeof(*hdr)];
1646 		__u8 ident_len = skb->data[sizeof(*hdr) + 1];
1647 
1648 		/* Only the priorities 0-7 are valid and with that any other
1649 		 * value results in an invalid packet.
1650 		 *
1651 		 * The priority byte is followed by an ident length byte and
1652 		 * the NUL terminated ident string. Check that the ident
1653 		 * length is not overflowing the packet and also that the
1654 		 * ident string itself is NUL terminated. In case the ident
1655 		 * length is zero, the length value actually doubles as NUL
1656 		 * terminator identifier.
1657 		 *
1658 		 * The message follows the ident string (if present) and
1659 		 * must be NUL terminated. Otherwise it is not a valid packet.
1660 		 */
1661 		if (priority > 7 || skb->data[skb->len - 1] != 0x00 ||
1662 		    ident_len > skb->len - sizeof(*hdr) - 3 ||
1663 		    skb->data[sizeof(*hdr) + ident_len + 1] != 0x00)
1664 			return -EINVAL;
1665 	} else {
1666 		return -EINVAL;
1667 	}
1668 
1669 	index = __le16_to_cpu(hdr->index);
1670 
1671 	if (index != MGMT_INDEX_NONE) {
1672 		hdev = hci_dev_get(index);
1673 		if (!hdev)
1674 			return -ENODEV;
1675 	} else {
1676 		hdev = NULL;
1677 	}
1678 
1679 	hdr->opcode = cpu_to_le16(HCI_MON_USER_LOGGING);
1680 
1681 	hci_send_to_channel(HCI_CHANNEL_MONITOR, skb, HCI_SOCK_TRUSTED, NULL);
1682 	err = skb->len;
1683 
1684 	if (hdev)
1685 		hci_dev_put(hdev);
1686 
1687 	return err;
1688 }
1689 
1690 static int hci_sock_sendmsg(struct socket *sock, struct msghdr *msg,
1691 			    size_t len)
1692 {
1693 	struct sock *sk = sock->sk;
1694 	struct hci_mgmt_chan *chan;
1695 	struct hci_dev *hdev;
1696 	struct sk_buff *skb;
1697 	int err;
1698 	const unsigned int flags = msg->msg_flags;
1699 
1700 	BT_DBG("sock %p sk %p", sock, sk);
1701 
1702 	if (flags & MSG_OOB)
1703 		return -EOPNOTSUPP;
1704 
1705 	if (flags & ~(MSG_DONTWAIT | MSG_NOSIGNAL | MSG_ERRQUEUE | MSG_CMSG_COMPAT))
1706 		return -EINVAL;
1707 
1708 	if (len < 4 || len > hci_pi(sk)->mtu)
1709 		return -EINVAL;
1710 
1711 	skb = bt_skb_sendmsg(sk, msg, len, len, 0, 0);
1712 	if (IS_ERR(skb))
1713 		return PTR_ERR(skb);
1714 
1715 	lock_sock(sk);
1716 
1717 	switch (hci_pi(sk)->channel) {
1718 	case HCI_CHANNEL_RAW:
1719 	case HCI_CHANNEL_USER:
1720 		break;
1721 	case HCI_CHANNEL_MONITOR:
1722 		err = -EOPNOTSUPP;
1723 		goto drop;
1724 	case HCI_CHANNEL_LOGGING:
1725 		err = hci_logging_frame(sk, skb, flags);
1726 		goto drop;
1727 	default:
1728 		mutex_lock(&mgmt_chan_list_lock);
1729 		chan = __hci_mgmt_chan_find(hci_pi(sk)->channel);
1730 		if (chan)
1731 			err = hci_mgmt_cmd(chan, sk, skb);
1732 		else
1733 			err = -EINVAL;
1734 
1735 		mutex_unlock(&mgmt_chan_list_lock);
1736 		goto drop;
1737 	}
1738 
1739 	hdev = hci_hdev_from_sock(sk);
1740 	if (IS_ERR(hdev)) {
1741 		err = PTR_ERR(hdev);
1742 		goto drop;
1743 	}
1744 
1745 	if (!test_bit(HCI_UP, &hdev->flags)) {
1746 		err = -ENETDOWN;
1747 		goto drop;
1748 	}
1749 
1750 	hci_skb_pkt_type(skb) = skb->data[0];
1751 	skb_pull(skb, 1);
1752 
1753 	if (hci_pi(sk)->channel == HCI_CHANNEL_USER) {
1754 		/* No permission check is needed for user channel
1755 		 * since that gets enforced when binding the socket.
1756 		 *
1757 		 * However check that the packet type is valid.
1758 		 */
1759 		if (hci_skb_pkt_type(skb) != HCI_COMMAND_PKT &&
1760 		    hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1761 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1762 		    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1763 			err = -EINVAL;
1764 			goto drop;
1765 		}
1766 
1767 		skb_queue_tail(&hdev->raw_q, skb);
1768 		queue_work(hdev->workqueue, &hdev->tx_work);
1769 	} else if (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT) {
1770 		u16 opcode = get_unaligned_le16(skb->data);
1771 		u16 ogf = hci_opcode_ogf(opcode);
1772 		u16 ocf = hci_opcode_ocf(opcode);
1773 
1774 		if (((ogf > HCI_SFLT_MAX_OGF) ||
1775 		     !hci_test_bit(ocf & HCI_FLT_OCF_BITS,
1776 				   &hci_sec_filter.ocf_mask[ogf])) &&
1777 		    !capable(CAP_NET_RAW)) {
1778 			err = -EPERM;
1779 			goto drop;
1780 		}
1781 
1782 		/* Since the opcode has already been extracted here, store
1783 		 * a copy of the value for later use by the drivers.
1784 		 */
1785 		hci_skb_opcode(skb) = opcode;
1786 
1787 		if (ogf == 0x3f) {
1788 			skb_queue_tail(&hdev->raw_q, skb);
1789 			queue_work(hdev->workqueue, &hdev->tx_work);
1790 		} else {
1791 			/* Stand-alone HCI commands must be flagged as
1792 			 * single-command requests.
1793 			 */
1794 			bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
1795 
1796 			skb_queue_tail(&hdev->cmd_q, skb);
1797 			queue_work(hdev->workqueue, &hdev->cmd_work);
1798 		}
1799 	} else {
1800 		if (!capable(CAP_NET_RAW)) {
1801 			err = -EPERM;
1802 			goto drop;
1803 		}
1804 
1805 		if (hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
1806 		    hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
1807 		    hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
1808 			err = -EINVAL;
1809 			goto drop;
1810 		}
1811 
1812 		skb_queue_tail(&hdev->raw_q, skb);
1813 		queue_work(hdev->workqueue, &hdev->tx_work);
1814 	}
1815 
1816 	err = len;
1817 
1818 done:
1819 	release_sock(sk);
1820 	return err;
1821 
1822 drop:
1823 	kfree_skb(skb);
1824 	goto done;
1825 }
1826 
1827 static int hci_sock_setsockopt_old(struct socket *sock, int level, int optname,
1828 				   sockptr_t optval, unsigned int len)
1829 {
1830 	struct hci_ufilter uf = { .opcode = 0 };
1831 	struct sock *sk = sock->sk;
1832 	int err = 0, opt = 0;
1833 
1834 	BT_DBG("sk %p, opt %d", sk, optname);
1835 
1836 	lock_sock(sk);
1837 
1838 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1839 		err = -EBADFD;
1840 		goto done;
1841 	}
1842 
1843 	switch (optname) {
1844 	case HCI_DATA_DIR:
1845 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1846 			err = -EFAULT;
1847 			break;
1848 		}
1849 
1850 		if (opt)
1851 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_DIR;
1852 		else
1853 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_DIR;
1854 		break;
1855 
1856 	case HCI_TIME_STAMP:
1857 		if (copy_from_sockptr(&opt, optval, sizeof(opt))) {
1858 			err = -EFAULT;
1859 			break;
1860 		}
1861 
1862 		if (opt)
1863 			hci_pi(sk)->cmsg_mask |= HCI_CMSG_TSTAMP;
1864 		else
1865 			hci_pi(sk)->cmsg_mask &= ~HCI_CMSG_TSTAMP;
1866 		break;
1867 
1868 	case HCI_FILTER:
1869 		{
1870 			struct hci_filter *f = &hci_pi(sk)->filter;
1871 
1872 			uf.type_mask = f->type_mask;
1873 			uf.opcode    = f->opcode;
1874 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
1875 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
1876 		}
1877 
1878 		len = min_t(unsigned int, len, sizeof(uf));
1879 		if (copy_from_sockptr(&uf, optval, len)) {
1880 			err = -EFAULT;
1881 			break;
1882 		}
1883 
1884 		if (!capable(CAP_NET_RAW)) {
1885 			uf.type_mask &= hci_sec_filter.type_mask;
1886 			uf.event_mask[0] &= *((u32 *) hci_sec_filter.event_mask + 0);
1887 			uf.event_mask[1] &= *((u32 *) hci_sec_filter.event_mask + 1);
1888 		}
1889 
1890 		{
1891 			struct hci_filter *f = &hci_pi(sk)->filter;
1892 
1893 			f->type_mask = uf.type_mask;
1894 			f->opcode    = uf.opcode;
1895 			*((u32 *) f->event_mask + 0) = uf.event_mask[0];
1896 			*((u32 *) f->event_mask + 1) = uf.event_mask[1];
1897 		}
1898 		break;
1899 
1900 	default:
1901 		err = -ENOPROTOOPT;
1902 		break;
1903 	}
1904 
1905 done:
1906 	release_sock(sk);
1907 	return err;
1908 }
1909 
1910 static int hci_sock_setsockopt(struct socket *sock, int level, int optname,
1911 			       sockptr_t optval, unsigned int len)
1912 {
1913 	struct sock *sk = sock->sk;
1914 	int err = 0, opt = 0;
1915 
1916 	BT_DBG("sk %p, opt %d", sk, optname);
1917 
1918 	if (level == SOL_HCI)
1919 		return hci_sock_setsockopt_old(sock, level, optname, optval,
1920 					       len);
1921 
1922 	if (level != SOL_BLUETOOTH)
1923 		return -ENOPROTOOPT;
1924 
1925 	lock_sock(sk);
1926 
1927 	switch (optname) {
1928 	case BT_SNDMTU:
1929 	case BT_RCVMTU:
1930 		switch (hci_pi(sk)->channel) {
1931 		/* Don't allow changing MTU for channels that are meant for HCI
1932 		 * traffic only.
1933 		 */
1934 		case HCI_CHANNEL_RAW:
1935 		case HCI_CHANNEL_USER:
1936 			err = -ENOPROTOOPT;
1937 			goto done;
1938 		}
1939 
1940 		if (copy_from_sockptr(&opt, optval, sizeof(u16))) {
1941 			err = -EFAULT;
1942 			break;
1943 		}
1944 
1945 		hci_pi(sk)->mtu = opt;
1946 		break;
1947 
1948 	default:
1949 		err = -ENOPROTOOPT;
1950 		break;
1951 	}
1952 
1953 done:
1954 	release_sock(sk);
1955 	return err;
1956 }
1957 
1958 static int hci_sock_getsockopt_old(struct socket *sock, int level, int optname,
1959 				   char __user *optval, int __user *optlen)
1960 {
1961 	struct hci_ufilter uf;
1962 	struct sock *sk = sock->sk;
1963 	int len, opt, err = 0;
1964 
1965 	BT_DBG("sk %p, opt %d", sk, optname);
1966 
1967 	if (get_user(len, optlen))
1968 		return -EFAULT;
1969 
1970 	lock_sock(sk);
1971 
1972 	if (hci_pi(sk)->channel != HCI_CHANNEL_RAW) {
1973 		err = -EBADFD;
1974 		goto done;
1975 	}
1976 
1977 	switch (optname) {
1978 	case HCI_DATA_DIR:
1979 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_DIR)
1980 			opt = 1;
1981 		else
1982 			opt = 0;
1983 
1984 		if (put_user(opt, optval))
1985 			err = -EFAULT;
1986 		break;
1987 
1988 	case HCI_TIME_STAMP:
1989 		if (hci_pi(sk)->cmsg_mask & HCI_CMSG_TSTAMP)
1990 			opt = 1;
1991 		else
1992 			opt = 0;
1993 
1994 		if (put_user(opt, optval))
1995 			err = -EFAULT;
1996 		break;
1997 
1998 	case HCI_FILTER:
1999 		{
2000 			struct hci_filter *f = &hci_pi(sk)->filter;
2001 
2002 			memset(&uf, 0, sizeof(uf));
2003 			uf.type_mask = f->type_mask;
2004 			uf.opcode    = f->opcode;
2005 			uf.event_mask[0] = *((u32 *) f->event_mask + 0);
2006 			uf.event_mask[1] = *((u32 *) f->event_mask + 1);
2007 		}
2008 
2009 		len = min_t(unsigned int, len, sizeof(uf));
2010 		if (copy_to_user(optval, &uf, len))
2011 			err = -EFAULT;
2012 		break;
2013 
2014 	default:
2015 		err = -ENOPROTOOPT;
2016 		break;
2017 	}
2018 
2019 done:
2020 	release_sock(sk);
2021 	return err;
2022 }
2023 
2024 static int hci_sock_getsockopt(struct socket *sock, int level, int optname,
2025 			       char __user *optval, int __user *optlen)
2026 {
2027 	struct sock *sk = sock->sk;
2028 	int err = 0;
2029 
2030 	BT_DBG("sk %p, opt %d", sk, optname);
2031 
2032 	if (level == SOL_HCI)
2033 		return hci_sock_getsockopt_old(sock, level, optname, optval,
2034 					       optlen);
2035 
2036 	if (level != SOL_BLUETOOTH)
2037 		return -ENOPROTOOPT;
2038 
2039 	lock_sock(sk);
2040 
2041 	switch (optname) {
2042 	case BT_SNDMTU:
2043 	case BT_RCVMTU:
2044 		if (put_user(hci_pi(sk)->mtu, (u16 __user *)optval))
2045 			err = -EFAULT;
2046 		break;
2047 
2048 	default:
2049 		err = -ENOPROTOOPT;
2050 		break;
2051 	}
2052 
2053 	release_sock(sk);
2054 	return err;
2055 }
2056 
2057 static void hci_sock_destruct(struct sock *sk)
2058 {
2059 	skb_queue_purge(&sk->sk_receive_queue);
2060 	skb_queue_purge(&sk->sk_write_queue);
2061 }
2062 
2063 static const struct proto_ops hci_sock_ops = {
2064 	.family		= PF_BLUETOOTH,
2065 	.owner		= THIS_MODULE,
2066 	.release	= hci_sock_release,
2067 	.bind		= hci_sock_bind,
2068 	.getname	= hci_sock_getname,
2069 	.sendmsg	= hci_sock_sendmsg,
2070 	.recvmsg	= hci_sock_recvmsg,
2071 	.ioctl		= hci_sock_ioctl,
2072 #ifdef CONFIG_COMPAT
2073 	.compat_ioctl	= hci_sock_compat_ioctl,
2074 #endif
2075 	.poll		= datagram_poll,
2076 	.listen		= sock_no_listen,
2077 	.shutdown	= sock_no_shutdown,
2078 	.setsockopt	= hci_sock_setsockopt,
2079 	.getsockopt	= hci_sock_getsockopt,
2080 	.connect	= sock_no_connect,
2081 	.socketpair	= sock_no_socketpair,
2082 	.accept		= sock_no_accept,
2083 	.mmap		= sock_no_mmap
2084 };
2085 
2086 static struct proto hci_sk_proto = {
2087 	.name		= "HCI",
2088 	.owner		= THIS_MODULE,
2089 	.obj_size	= sizeof(struct hci_pinfo)
2090 };
2091 
2092 static int hci_sock_create(struct net *net, struct socket *sock, int protocol,
2093 			   int kern)
2094 {
2095 	struct sock *sk;
2096 
2097 	BT_DBG("sock %p", sock);
2098 
2099 	if (sock->type != SOCK_RAW)
2100 		return -ESOCKTNOSUPPORT;
2101 
2102 	sock->ops = &hci_sock_ops;
2103 
2104 	sk = sk_alloc(net, PF_BLUETOOTH, GFP_ATOMIC, &hci_sk_proto, kern);
2105 	if (!sk)
2106 		return -ENOMEM;
2107 
2108 	sock_init_data(sock, sk);
2109 
2110 	sock_reset_flag(sk, SOCK_ZAPPED);
2111 
2112 	sk->sk_protocol = protocol;
2113 
2114 	sock->state = SS_UNCONNECTED;
2115 	sk->sk_state = BT_OPEN;
2116 	sk->sk_destruct = hci_sock_destruct;
2117 
2118 	bt_sock_link(&hci_sk_list, sk);
2119 	return 0;
2120 }
2121 
2122 static const struct net_proto_family hci_sock_family_ops = {
2123 	.family	= PF_BLUETOOTH,
2124 	.owner	= THIS_MODULE,
2125 	.create	= hci_sock_create,
2126 };
2127 
2128 int __init hci_sock_init(void)
2129 {
2130 	int err;
2131 
2132 	BUILD_BUG_ON(sizeof(struct sockaddr_hci) > sizeof(struct sockaddr));
2133 
2134 	err = proto_register(&hci_sk_proto, 0);
2135 	if (err < 0)
2136 		return err;
2137 
2138 	err = bt_sock_register(BTPROTO_HCI, &hci_sock_family_ops);
2139 	if (err < 0) {
2140 		BT_ERR("HCI socket registration failed");
2141 		goto error;
2142 	}
2143 
2144 	err = bt_procfs_init(&init_net, "hci", &hci_sk_list, NULL);
2145 	if (err < 0) {
2146 		BT_ERR("Failed to create HCI proc file");
2147 		bt_sock_unregister(BTPROTO_HCI);
2148 		goto error;
2149 	}
2150 
2151 	BT_INFO("HCI socket layer initialized");
2152 
2153 	return 0;
2154 
2155 error:
2156 	proto_unregister(&hci_sk_proto);
2157 	return err;
2158 }
2159 
2160 void hci_sock_cleanup(void)
2161 {
2162 	bt_procfs_cleanup(&init_net, "hci");
2163 	bt_sock_unregister(BTPROTO_HCI);
2164 	proto_unregister(&hci_sk_proto);
2165 }
2166