xref: /linux/net/bluetooth/hci_sync.c (revision db10cb9b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BlueZ - Bluetooth protocol stack for Linux
4  *
5  * Copyright (C) 2021 Intel Corporation
6  * Copyright 2023 NXP
7  */
8 
9 #include <linux/property.h>
10 
11 #include <net/bluetooth/bluetooth.h>
12 #include <net/bluetooth/hci_core.h>
13 #include <net/bluetooth/mgmt.h>
14 
15 #include "hci_request.h"
16 #include "hci_codec.h"
17 #include "hci_debugfs.h"
18 #include "smp.h"
19 #include "eir.h"
20 #include "msft.h"
21 #include "aosp.h"
22 #include "leds.h"
23 
24 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
25 				  struct sk_buff *skb)
26 {
27 	bt_dev_dbg(hdev, "result 0x%2.2x", result);
28 
29 	if (hdev->req_status != HCI_REQ_PEND)
30 		return;
31 
32 	hdev->req_result = result;
33 	hdev->req_status = HCI_REQ_DONE;
34 
35 	if (skb) {
36 		struct sock *sk = hci_skb_sk(skb);
37 
38 		/* Drop sk reference if set */
39 		if (sk)
40 			sock_put(sk);
41 
42 		hdev->req_skb = skb_get(skb);
43 	}
44 
45 	wake_up_interruptible(&hdev->req_wait_q);
46 }
47 
48 static struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode,
49 					  u32 plen, const void *param,
50 					  struct sock *sk)
51 {
52 	int len = HCI_COMMAND_HDR_SIZE + plen;
53 	struct hci_command_hdr *hdr;
54 	struct sk_buff *skb;
55 
56 	skb = bt_skb_alloc(len, GFP_ATOMIC);
57 	if (!skb)
58 		return NULL;
59 
60 	hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
61 	hdr->opcode = cpu_to_le16(opcode);
62 	hdr->plen   = plen;
63 
64 	if (plen)
65 		skb_put_data(skb, param, plen);
66 
67 	bt_dev_dbg(hdev, "skb len %d", skb->len);
68 
69 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
70 	hci_skb_opcode(skb) = opcode;
71 
72 	/* Grab a reference if command needs to be associated with a sock (e.g.
73 	 * likely mgmt socket that initiated the command).
74 	 */
75 	if (sk) {
76 		hci_skb_sk(skb) = sk;
77 		sock_hold(sk);
78 	}
79 
80 	return skb;
81 }
82 
83 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
84 			     const void *param, u8 event, struct sock *sk)
85 {
86 	struct hci_dev *hdev = req->hdev;
87 	struct sk_buff *skb;
88 
89 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
90 
91 	/* If an error occurred during request building, there is no point in
92 	 * queueing the HCI command. We can simply return.
93 	 */
94 	if (req->err)
95 		return;
96 
97 	skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
98 	if (!skb) {
99 		bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
100 			   opcode);
101 		req->err = -ENOMEM;
102 		return;
103 	}
104 
105 	if (skb_queue_empty(&req->cmd_q))
106 		bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
107 
108 	hci_skb_event(skb) = event;
109 
110 	skb_queue_tail(&req->cmd_q, skb);
111 }
112 
113 static int hci_cmd_sync_run(struct hci_request *req)
114 {
115 	struct hci_dev *hdev = req->hdev;
116 	struct sk_buff *skb;
117 	unsigned long flags;
118 
119 	bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
120 
121 	/* If an error occurred during request building, remove all HCI
122 	 * commands queued on the HCI request queue.
123 	 */
124 	if (req->err) {
125 		skb_queue_purge(&req->cmd_q);
126 		return req->err;
127 	}
128 
129 	/* Do not allow empty requests */
130 	if (skb_queue_empty(&req->cmd_q))
131 		return -ENODATA;
132 
133 	skb = skb_peek_tail(&req->cmd_q);
134 	bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
135 	bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
136 
137 	spin_lock_irqsave(&hdev->cmd_q.lock, flags);
138 	skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
139 	spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
140 
141 	queue_work(hdev->workqueue, &hdev->cmd_work);
142 
143 	return 0;
144 }
145 
146 /* This function requires the caller holds hdev->req_lock. */
147 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
148 				  const void *param, u8 event, u32 timeout,
149 				  struct sock *sk)
150 {
151 	struct hci_request req;
152 	struct sk_buff *skb;
153 	int err = 0;
154 
155 	bt_dev_dbg(hdev, "Opcode 0x%4x", opcode);
156 
157 	hci_req_init(&req, hdev);
158 
159 	hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
160 
161 	hdev->req_status = HCI_REQ_PEND;
162 
163 	err = hci_cmd_sync_run(&req);
164 	if (err < 0)
165 		return ERR_PTR(err);
166 
167 	err = wait_event_interruptible_timeout(hdev->req_wait_q,
168 					       hdev->req_status != HCI_REQ_PEND,
169 					       timeout);
170 
171 	if (err == -ERESTARTSYS)
172 		return ERR_PTR(-EINTR);
173 
174 	switch (hdev->req_status) {
175 	case HCI_REQ_DONE:
176 		err = -bt_to_errno(hdev->req_result);
177 		break;
178 
179 	case HCI_REQ_CANCELED:
180 		err = -hdev->req_result;
181 		break;
182 
183 	default:
184 		err = -ETIMEDOUT;
185 		break;
186 	}
187 
188 	hdev->req_status = 0;
189 	hdev->req_result = 0;
190 	skb = hdev->req_skb;
191 	hdev->req_skb = NULL;
192 
193 	bt_dev_dbg(hdev, "end: err %d", err);
194 
195 	if (err < 0) {
196 		kfree_skb(skb);
197 		return ERR_PTR(err);
198 	}
199 
200 	return skb;
201 }
202 EXPORT_SYMBOL(__hci_cmd_sync_sk);
203 
204 /* This function requires the caller holds hdev->req_lock. */
205 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
206 			       const void *param, u32 timeout)
207 {
208 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
209 }
210 EXPORT_SYMBOL(__hci_cmd_sync);
211 
212 /* Send HCI command and wait for command complete event */
213 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
214 			     const void *param, u32 timeout)
215 {
216 	struct sk_buff *skb;
217 
218 	if (!test_bit(HCI_UP, &hdev->flags))
219 		return ERR_PTR(-ENETDOWN);
220 
221 	bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
222 
223 	hci_req_sync_lock(hdev);
224 	skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
225 	hci_req_sync_unlock(hdev);
226 
227 	return skb;
228 }
229 EXPORT_SYMBOL(hci_cmd_sync);
230 
231 /* This function requires the caller holds hdev->req_lock. */
232 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
233 				  const void *param, u8 event, u32 timeout)
234 {
235 	return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
236 				 NULL);
237 }
238 EXPORT_SYMBOL(__hci_cmd_sync_ev);
239 
240 /* This function requires the caller holds hdev->req_lock. */
241 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
242 			     const void *param, u8 event, u32 timeout,
243 			     struct sock *sk)
244 {
245 	struct sk_buff *skb;
246 	u8 status;
247 
248 	skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
249 	if (IS_ERR(skb)) {
250 		if (!event)
251 			bt_dev_err(hdev, "Opcode 0x%4x failed: %ld", opcode,
252 				   PTR_ERR(skb));
253 		return PTR_ERR(skb);
254 	}
255 
256 	/* If command return a status event skb will be set to NULL as there are
257 	 * no parameters, in case of failure IS_ERR(skb) would have be set to
258 	 * the actual error would be found with PTR_ERR(skb).
259 	 */
260 	if (!skb)
261 		return 0;
262 
263 	status = skb->data[0];
264 
265 	kfree_skb(skb);
266 
267 	return status;
268 }
269 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
270 
271 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
272 			  const void *param, u32 timeout)
273 {
274 	return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
275 					NULL);
276 }
277 EXPORT_SYMBOL(__hci_cmd_sync_status);
278 
279 static void hci_cmd_sync_work(struct work_struct *work)
280 {
281 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
282 
283 	bt_dev_dbg(hdev, "");
284 
285 	/* Dequeue all entries and run them */
286 	while (1) {
287 		struct hci_cmd_sync_work_entry *entry;
288 
289 		mutex_lock(&hdev->cmd_sync_work_lock);
290 		entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
291 						 struct hci_cmd_sync_work_entry,
292 						 list);
293 		if (entry)
294 			list_del(&entry->list);
295 		mutex_unlock(&hdev->cmd_sync_work_lock);
296 
297 		if (!entry)
298 			break;
299 
300 		bt_dev_dbg(hdev, "entry %p", entry);
301 
302 		if (entry->func) {
303 			int err;
304 
305 			hci_req_sync_lock(hdev);
306 			err = entry->func(hdev, entry->data);
307 			if (entry->destroy)
308 				entry->destroy(hdev, entry->data, err);
309 			hci_req_sync_unlock(hdev);
310 		}
311 
312 		kfree(entry);
313 	}
314 }
315 
316 static void hci_cmd_sync_cancel_work(struct work_struct *work)
317 {
318 	struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
319 
320 	cancel_delayed_work_sync(&hdev->cmd_timer);
321 	cancel_delayed_work_sync(&hdev->ncmd_timer);
322 	atomic_set(&hdev->cmd_cnt, 1);
323 
324 	wake_up_interruptible(&hdev->req_wait_q);
325 }
326 
327 static int hci_scan_disable_sync(struct hci_dev *hdev);
328 static int scan_disable_sync(struct hci_dev *hdev, void *data)
329 {
330 	return hci_scan_disable_sync(hdev);
331 }
332 
333 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length);
334 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
335 {
336 	return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN);
337 }
338 
339 static void le_scan_disable(struct work_struct *work)
340 {
341 	struct hci_dev *hdev = container_of(work, struct hci_dev,
342 					    le_scan_disable.work);
343 	int status;
344 
345 	bt_dev_dbg(hdev, "");
346 	hci_dev_lock(hdev);
347 
348 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
349 		goto _return;
350 
351 	cancel_delayed_work(&hdev->le_scan_restart);
352 
353 	status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
354 	if (status) {
355 		bt_dev_err(hdev, "failed to disable LE scan: %d", status);
356 		goto _return;
357 	}
358 
359 	hdev->discovery.scan_start = 0;
360 
361 	/* If we were running LE only scan, change discovery state. If
362 	 * we were running both LE and BR/EDR inquiry simultaneously,
363 	 * and BR/EDR inquiry is already finished, stop discovery,
364 	 * otherwise BR/EDR inquiry will stop discovery when finished.
365 	 * If we will resolve remote device name, do not change
366 	 * discovery state.
367 	 */
368 
369 	if (hdev->discovery.type == DISCOV_TYPE_LE)
370 		goto discov_stopped;
371 
372 	if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
373 		goto _return;
374 
375 	if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
376 		if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
377 		    hdev->discovery.state != DISCOVERY_RESOLVING)
378 			goto discov_stopped;
379 
380 		goto _return;
381 	}
382 
383 	status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
384 	if (status) {
385 		bt_dev_err(hdev, "inquiry failed: status %d", status);
386 		goto discov_stopped;
387 	}
388 
389 	goto _return;
390 
391 discov_stopped:
392 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
393 
394 _return:
395 	hci_dev_unlock(hdev);
396 }
397 
398 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
399 				       u8 filter_dup);
400 static int hci_le_scan_restart_sync(struct hci_dev *hdev)
401 {
402 	/* If controller is not scanning we are done. */
403 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
404 		return 0;
405 
406 	if (hdev->scanning_paused) {
407 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
408 		return 0;
409 	}
410 
411 	hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
412 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE,
413 					   LE_SCAN_FILTER_DUP_ENABLE);
414 }
415 
416 static int le_scan_restart_sync(struct hci_dev *hdev, void *data)
417 {
418 	return hci_le_scan_restart_sync(hdev);
419 }
420 
421 static void le_scan_restart(struct work_struct *work)
422 {
423 	struct hci_dev *hdev = container_of(work, struct hci_dev,
424 					    le_scan_restart.work);
425 	unsigned long timeout, duration, scan_start, now;
426 	int status;
427 
428 	bt_dev_dbg(hdev, "");
429 
430 	hci_dev_lock(hdev);
431 
432 	status = hci_cmd_sync_queue(hdev, le_scan_restart_sync, NULL, NULL);
433 	if (status) {
434 		bt_dev_err(hdev, "failed to restart LE scan: status %d",
435 			   status);
436 		goto unlock;
437 	}
438 
439 	if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
440 	    !hdev->discovery.scan_start)
441 		goto unlock;
442 
443 	/* When the scan was started, hdev->le_scan_disable has been queued
444 	 * after duration from scan_start. During scan restart this job
445 	 * has been canceled, and we need to queue it again after proper
446 	 * timeout, to make sure that scan does not run indefinitely.
447 	 */
448 	duration = hdev->discovery.scan_duration;
449 	scan_start = hdev->discovery.scan_start;
450 	now = jiffies;
451 	if (now - scan_start <= duration) {
452 		int elapsed;
453 
454 		if (now >= scan_start)
455 			elapsed = now - scan_start;
456 		else
457 			elapsed = ULONG_MAX - scan_start + now;
458 
459 		timeout = duration - elapsed;
460 	} else {
461 		timeout = 0;
462 	}
463 
464 	queue_delayed_work(hdev->req_workqueue,
465 			   &hdev->le_scan_disable, timeout);
466 
467 unlock:
468 	hci_dev_unlock(hdev);
469 }
470 
471 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
472 {
473 	bt_dev_dbg(hdev, "");
474 
475 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
476 	    list_empty(&hdev->adv_instances))
477 		return 0;
478 
479 	if (hdev->cur_adv_instance) {
480 		return hci_schedule_adv_instance_sync(hdev,
481 						      hdev->cur_adv_instance,
482 						      true);
483 	} else {
484 		if (ext_adv_capable(hdev)) {
485 			hci_start_ext_adv_sync(hdev, 0x00);
486 		} else {
487 			hci_update_adv_data_sync(hdev, 0x00);
488 			hci_update_scan_rsp_data_sync(hdev, 0x00);
489 			hci_enable_advertising_sync(hdev);
490 		}
491 	}
492 
493 	return 0;
494 }
495 
496 static void reenable_adv(struct work_struct *work)
497 {
498 	struct hci_dev *hdev = container_of(work, struct hci_dev,
499 					    reenable_adv_work);
500 	int status;
501 
502 	bt_dev_dbg(hdev, "");
503 
504 	hci_dev_lock(hdev);
505 
506 	status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
507 	if (status)
508 		bt_dev_err(hdev, "failed to reenable ADV: %d", status);
509 
510 	hci_dev_unlock(hdev);
511 }
512 
513 static void cancel_adv_timeout(struct hci_dev *hdev)
514 {
515 	if (hdev->adv_instance_timeout) {
516 		hdev->adv_instance_timeout = 0;
517 		cancel_delayed_work(&hdev->adv_instance_expire);
518 	}
519 }
520 
521 /* For a single instance:
522  * - force == true: The instance will be removed even when its remaining
523  *   lifetime is not zero.
524  * - force == false: the instance will be deactivated but kept stored unless
525  *   the remaining lifetime is zero.
526  *
527  * For instance == 0x00:
528  * - force == true: All instances will be removed regardless of their timeout
529  *   setting.
530  * - force == false: Only instances that have a timeout will be removed.
531  */
532 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
533 				u8 instance, bool force)
534 {
535 	struct adv_info *adv_instance, *n, *next_instance = NULL;
536 	int err;
537 	u8 rem_inst;
538 
539 	/* Cancel any timeout concerning the removed instance(s). */
540 	if (!instance || hdev->cur_adv_instance == instance)
541 		cancel_adv_timeout(hdev);
542 
543 	/* Get the next instance to advertise BEFORE we remove
544 	 * the current one. This can be the same instance again
545 	 * if there is only one instance.
546 	 */
547 	if (instance && hdev->cur_adv_instance == instance)
548 		next_instance = hci_get_next_instance(hdev, instance);
549 
550 	if (instance == 0x00) {
551 		list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
552 					 list) {
553 			if (!(force || adv_instance->timeout))
554 				continue;
555 
556 			rem_inst = adv_instance->instance;
557 			err = hci_remove_adv_instance(hdev, rem_inst);
558 			if (!err)
559 				mgmt_advertising_removed(sk, hdev, rem_inst);
560 		}
561 	} else {
562 		adv_instance = hci_find_adv_instance(hdev, instance);
563 
564 		if (force || (adv_instance && adv_instance->timeout &&
565 			      !adv_instance->remaining_time)) {
566 			/* Don't advertise a removed instance. */
567 			if (next_instance &&
568 			    next_instance->instance == instance)
569 				next_instance = NULL;
570 
571 			err = hci_remove_adv_instance(hdev, instance);
572 			if (!err)
573 				mgmt_advertising_removed(sk, hdev, instance);
574 		}
575 	}
576 
577 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
578 		return 0;
579 
580 	if (next_instance && !ext_adv_capable(hdev))
581 		return hci_schedule_adv_instance_sync(hdev,
582 						      next_instance->instance,
583 						      false);
584 
585 	return 0;
586 }
587 
588 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
589 {
590 	u8 instance = *(u8 *)data;
591 
592 	kfree(data);
593 
594 	hci_clear_adv_instance_sync(hdev, NULL, instance, false);
595 
596 	if (list_empty(&hdev->adv_instances))
597 		return hci_disable_advertising_sync(hdev);
598 
599 	return 0;
600 }
601 
602 static void adv_timeout_expire(struct work_struct *work)
603 {
604 	u8 *inst_ptr;
605 	struct hci_dev *hdev = container_of(work, struct hci_dev,
606 					    adv_instance_expire.work);
607 
608 	bt_dev_dbg(hdev, "");
609 
610 	hci_dev_lock(hdev);
611 
612 	hdev->adv_instance_timeout = 0;
613 
614 	if (hdev->cur_adv_instance == 0x00)
615 		goto unlock;
616 
617 	inst_ptr = kmalloc(1, GFP_KERNEL);
618 	if (!inst_ptr)
619 		goto unlock;
620 
621 	*inst_ptr = hdev->cur_adv_instance;
622 	hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
623 
624 unlock:
625 	hci_dev_unlock(hdev);
626 }
627 
628 void hci_cmd_sync_init(struct hci_dev *hdev)
629 {
630 	INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
631 	INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
632 	mutex_init(&hdev->cmd_sync_work_lock);
633 	mutex_init(&hdev->unregister_lock);
634 
635 	INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
636 	INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
637 	INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
638 	INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart);
639 	INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
640 }
641 
642 void hci_cmd_sync_clear(struct hci_dev *hdev)
643 {
644 	struct hci_cmd_sync_work_entry *entry, *tmp;
645 
646 	cancel_work_sync(&hdev->cmd_sync_work);
647 	cancel_work_sync(&hdev->reenable_adv_work);
648 
649 	mutex_lock(&hdev->cmd_sync_work_lock);
650 	list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
651 		if (entry->destroy)
652 			entry->destroy(hdev, entry->data, -ECANCELED);
653 
654 		list_del(&entry->list);
655 		kfree(entry);
656 	}
657 	mutex_unlock(&hdev->cmd_sync_work_lock);
658 }
659 
660 void __hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
661 {
662 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
663 
664 	if (hdev->req_status == HCI_REQ_PEND) {
665 		hdev->req_result = err;
666 		hdev->req_status = HCI_REQ_CANCELED;
667 
668 		cancel_delayed_work_sync(&hdev->cmd_timer);
669 		cancel_delayed_work_sync(&hdev->ncmd_timer);
670 		atomic_set(&hdev->cmd_cnt, 1);
671 
672 		wake_up_interruptible(&hdev->req_wait_q);
673 	}
674 }
675 
676 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
677 {
678 	bt_dev_dbg(hdev, "err 0x%2.2x", err);
679 
680 	if (hdev->req_status == HCI_REQ_PEND) {
681 		hdev->req_result = err;
682 		hdev->req_status = HCI_REQ_CANCELED;
683 
684 		queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
685 	}
686 }
687 EXPORT_SYMBOL(hci_cmd_sync_cancel);
688 
689 /* Submit HCI command to be run in as cmd_sync_work:
690  *
691  * - hdev must _not_ be unregistered
692  */
693 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
694 			void *data, hci_cmd_sync_work_destroy_t destroy)
695 {
696 	struct hci_cmd_sync_work_entry *entry;
697 	int err = 0;
698 
699 	mutex_lock(&hdev->unregister_lock);
700 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
701 		err = -ENODEV;
702 		goto unlock;
703 	}
704 
705 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
706 	if (!entry) {
707 		err = -ENOMEM;
708 		goto unlock;
709 	}
710 	entry->func = func;
711 	entry->data = data;
712 	entry->destroy = destroy;
713 
714 	mutex_lock(&hdev->cmd_sync_work_lock);
715 	list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
716 	mutex_unlock(&hdev->cmd_sync_work_lock);
717 
718 	queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
719 
720 unlock:
721 	mutex_unlock(&hdev->unregister_lock);
722 	return err;
723 }
724 EXPORT_SYMBOL(hci_cmd_sync_submit);
725 
726 /* Queue HCI command:
727  *
728  * - hdev must be running
729  */
730 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
731 		       void *data, hci_cmd_sync_work_destroy_t destroy)
732 {
733 	/* Only queue command if hdev is running which means it had been opened
734 	 * and is either on init phase or is already up.
735 	 */
736 	if (!test_bit(HCI_RUNNING, &hdev->flags))
737 		return -ENETDOWN;
738 
739 	return hci_cmd_sync_submit(hdev, func, data, destroy);
740 }
741 EXPORT_SYMBOL(hci_cmd_sync_queue);
742 
743 int hci_update_eir_sync(struct hci_dev *hdev)
744 {
745 	struct hci_cp_write_eir cp;
746 
747 	bt_dev_dbg(hdev, "");
748 
749 	if (!hdev_is_powered(hdev))
750 		return 0;
751 
752 	if (!lmp_ext_inq_capable(hdev))
753 		return 0;
754 
755 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
756 		return 0;
757 
758 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
759 		return 0;
760 
761 	memset(&cp, 0, sizeof(cp));
762 
763 	eir_create(hdev, cp.data);
764 
765 	if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
766 		return 0;
767 
768 	memcpy(hdev->eir, cp.data, sizeof(cp.data));
769 
770 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
771 				     HCI_CMD_TIMEOUT);
772 }
773 
774 static u8 get_service_classes(struct hci_dev *hdev)
775 {
776 	struct bt_uuid *uuid;
777 	u8 val = 0;
778 
779 	list_for_each_entry(uuid, &hdev->uuids, list)
780 		val |= uuid->svc_hint;
781 
782 	return val;
783 }
784 
785 int hci_update_class_sync(struct hci_dev *hdev)
786 {
787 	u8 cod[3];
788 
789 	bt_dev_dbg(hdev, "");
790 
791 	if (!hdev_is_powered(hdev))
792 		return 0;
793 
794 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
795 		return 0;
796 
797 	if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
798 		return 0;
799 
800 	cod[0] = hdev->minor_class;
801 	cod[1] = hdev->major_class;
802 	cod[2] = get_service_classes(hdev);
803 
804 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
805 		cod[1] |= 0x20;
806 
807 	if (memcmp(cod, hdev->dev_class, 3) == 0)
808 		return 0;
809 
810 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
811 				     sizeof(cod), cod, HCI_CMD_TIMEOUT);
812 }
813 
814 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
815 {
816 	/* If there is no connection we are OK to advertise. */
817 	if (hci_conn_num(hdev, LE_LINK) == 0)
818 		return true;
819 
820 	/* Check le_states if there is any connection in peripheral role. */
821 	if (hdev->conn_hash.le_num_peripheral > 0) {
822 		/* Peripheral connection state and non connectable mode
823 		 * bit 20.
824 		 */
825 		if (!connectable && !(hdev->le_states[2] & 0x10))
826 			return false;
827 
828 		/* Peripheral connection state and connectable mode bit 38
829 		 * and scannable bit 21.
830 		 */
831 		if (connectable && (!(hdev->le_states[4] & 0x40) ||
832 				    !(hdev->le_states[2] & 0x20)))
833 			return false;
834 	}
835 
836 	/* Check le_states if there is any connection in central role. */
837 	if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
838 		/* Central connection state and non connectable mode bit 18. */
839 		if (!connectable && !(hdev->le_states[2] & 0x02))
840 			return false;
841 
842 		/* Central connection state and connectable mode bit 35 and
843 		 * scannable 19.
844 		 */
845 		if (connectable && (!(hdev->le_states[4] & 0x08) ||
846 				    !(hdev->le_states[2] & 0x08)))
847 			return false;
848 	}
849 
850 	return true;
851 }
852 
853 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
854 {
855 	/* If privacy is not enabled don't use RPA */
856 	if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
857 		return false;
858 
859 	/* If basic privacy mode is enabled use RPA */
860 	if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
861 		return true;
862 
863 	/* If limited privacy mode is enabled don't use RPA if we're
864 	 * both discoverable and bondable.
865 	 */
866 	if ((flags & MGMT_ADV_FLAG_DISCOV) &&
867 	    hci_dev_test_flag(hdev, HCI_BONDABLE))
868 		return false;
869 
870 	/* We're neither bondable nor discoverable in the limited
871 	 * privacy mode, therefore use RPA.
872 	 */
873 	return true;
874 }
875 
876 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
877 {
878 	/* If we're advertising or initiating an LE connection we can't
879 	 * go ahead and change the random address at this time. This is
880 	 * because the eventual initiator address used for the
881 	 * subsequently created connection will be undefined (some
882 	 * controllers use the new address and others the one we had
883 	 * when the operation started).
884 	 *
885 	 * In this kind of scenario skip the update and let the random
886 	 * address be updated at the next cycle.
887 	 */
888 	if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
889 	    hci_lookup_le_connect(hdev)) {
890 		bt_dev_dbg(hdev, "Deferring random address update");
891 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
892 		return 0;
893 	}
894 
895 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
896 				     6, rpa, HCI_CMD_TIMEOUT);
897 }
898 
899 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
900 				   bool rpa, u8 *own_addr_type)
901 {
902 	int err;
903 
904 	/* If privacy is enabled use a resolvable private address. If
905 	 * current RPA has expired or there is something else than
906 	 * the current RPA in use, then generate a new one.
907 	 */
908 	if (rpa) {
909 		/* If Controller supports LL Privacy use own address type is
910 		 * 0x03
911 		 */
912 		if (use_ll_privacy(hdev))
913 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
914 		else
915 			*own_addr_type = ADDR_LE_DEV_RANDOM;
916 
917 		/* Check if RPA is valid */
918 		if (rpa_valid(hdev))
919 			return 0;
920 
921 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
922 		if (err < 0) {
923 			bt_dev_err(hdev, "failed to generate new RPA");
924 			return err;
925 		}
926 
927 		err = hci_set_random_addr_sync(hdev, &hdev->rpa);
928 		if (err)
929 			return err;
930 
931 		return 0;
932 	}
933 
934 	/* In case of required privacy without resolvable private address,
935 	 * use an non-resolvable private address. This is useful for active
936 	 * scanning and non-connectable advertising.
937 	 */
938 	if (require_privacy) {
939 		bdaddr_t nrpa;
940 
941 		while (true) {
942 			/* The non-resolvable private address is generated
943 			 * from random six bytes with the two most significant
944 			 * bits cleared.
945 			 */
946 			get_random_bytes(&nrpa, 6);
947 			nrpa.b[5] &= 0x3f;
948 
949 			/* The non-resolvable private address shall not be
950 			 * equal to the public address.
951 			 */
952 			if (bacmp(&hdev->bdaddr, &nrpa))
953 				break;
954 		}
955 
956 		*own_addr_type = ADDR_LE_DEV_RANDOM;
957 
958 		return hci_set_random_addr_sync(hdev, &nrpa);
959 	}
960 
961 	/* If forcing static address is in use or there is no public
962 	 * address use the static address as random address (but skip
963 	 * the HCI command if the current random address is already the
964 	 * static one.
965 	 *
966 	 * In case BR/EDR has been disabled on a dual-mode controller
967 	 * and a static address has been configured, then use that
968 	 * address instead of the public BR/EDR address.
969 	 */
970 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
971 	    !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
972 	    (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
973 	     bacmp(&hdev->static_addr, BDADDR_ANY))) {
974 		*own_addr_type = ADDR_LE_DEV_RANDOM;
975 		if (bacmp(&hdev->static_addr, &hdev->random_addr))
976 			return hci_set_random_addr_sync(hdev,
977 							&hdev->static_addr);
978 		return 0;
979 	}
980 
981 	/* Neither privacy nor static address is being used so use a
982 	 * public address.
983 	 */
984 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
985 
986 	return 0;
987 }
988 
989 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
990 {
991 	struct hci_cp_le_set_ext_adv_enable *cp;
992 	struct hci_cp_ext_adv_set *set;
993 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
994 	u8 size;
995 
996 	/* If request specifies an instance that doesn't exist, fail */
997 	if (instance > 0) {
998 		struct adv_info *adv;
999 
1000 		adv = hci_find_adv_instance(hdev, instance);
1001 		if (!adv)
1002 			return -EINVAL;
1003 
1004 		/* If not enabled there is nothing to do */
1005 		if (!adv->enabled)
1006 			return 0;
1007 	}
1008 
1009 	memset(data, 0, sizeof(data));
1010 
1011 	cp = (void *)data;
1012 	set = (void *)cp->data;
1013 
1014 	/* Instance 0x00 indicates all advertising instances will be disabled */
1015 	cp->num_of_sets = !!instance;
1016 	cp->enable = 0x00;
1017 
1018 	set->handle = instance;
1019 
1020 	size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
1021 
1022 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1023 				     size, data, HCI_CMD_TIMEOUT);
1024 }
1025 
1026 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
1027 					    bdaddr_t *random_addr)
1028 {
1029 	struct hci_cp_le_set_adv_set_rand_addr cp;
1030 	int err;
1031 
1032 	if (!instance) {
1033 		/* Instance 0x00 doesn't have an adv_info, instead it uses
1034 		 * hdev->random_addr to track its address so whenever it needs
1035 		 * to be updated this also set the random address since
1036 		 * hdev->random_addr is shared with scan state machine.
1037 		 */
1038 		err = hci_set_random_addr_sync(hdev, random_addr);
1039 		if (err)
1040 			return err;
1041 	}
1042 
1043 	memset(&cp, 0, sizeof(cp));
1044 
1045 	cp.handle = instance;
1046 	bacpy(&cp.bdaddr, random_addr);
1047 
1048 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1049 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1050 }
1051 
1052 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1053 {
1054 	struct hci_cp_le_set_ext_adv_params cp;
1055 	bool connectable;
1056 	u32 flags;
1057 	bdaddr_t random_addr;
1058 	u8 own_addr_type;
1059 	int err;
1060 	struct adv_info *adv;
1061 	bool secondary_adv;
1062 
1063 	if (instance > 0) {
1064 		adv = hci_find_adv_instance(hdev, instance);
1065 		if (!adv)
1066 			return -EINVAL;
1067 	} else {
1068 		adv = NULL;
1069 	}
1070 
1071 	/* Updating parameters of an active instance will return a
1072 	 * Command Disallowed error, so we must first disable the
1073 	 * instance if it is active.
1074 	 */
1075 	if (adv && !adv->pending) {
1076 		err = hci_disable_ext_adv_instance_sync(hdev, instance);
1077 		if (err)
1078 			return err;
1079 	}
1080 
1081 	flags = hci_adv_instance_flags(hdev, instance);
1082 
1083 	/* If the "connectable" instance flag was not set, then choose between
1084 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1085 	 */
1086 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1087 		      mgmt_get_connectable(hdev);
1088 
1089 	if (!is_advertising_allowed(hdev, connectable))
1090 		return -EPERM;
1091 
1092 	/* Set require_privacy to true only when non-connectable
1093 	 * advertising is used. In that case it is fine to use a
1094 	 * non-resolvable private address.
1095 	 */
1096 	err = hci_get_random_address(hdev, !connectable,
1097 				     adv_use_rpa(hdev, flags), adv,
1098 				     &own_addr_type, &random_addr);
1099 	if (err < 0)
1100 		return err;
1101 
1102 	memset(&cp, 0, sizeof(cp));
1103 
1104 	if (adv) {
1105 		hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1106 		hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1107 		cp.tx_power = adv->tx_power;
1108 	} else {
1109 		hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1110 		hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1111 		cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1112 	}
1113 
1114 	secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1115 
1116 	if (connectable) {
1117 		if (secondary_adv)
1118 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1119 		else
1120 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1121 	} else if (hci_adv_instance_is_scannable(hdev, instance) ||
1122 		   (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1123 		if (secondary_adv)
1124 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1125 		else
1126 			cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1127 	} else {
1128 		if (secondary_adv)
1129 			cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1130 		else
1131 			cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1132 	}
1133 
1134 	/* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1135 	 * contains the peer’s Identity Address and the Peer_Address_Type
1136 	 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1137 	 * These parameters are used to locate the corresponding local IRK in
1138 	 * the resolving list; this IRK is used to generate their own address
1139 	 * used in the advertisement.
1140 	 */
1141 	if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1142 		hci_copy_identity_address(hdev, &cp.peer_addr,
1143 					  &cp.peer_addr_type);
1144 
1145 	cp.own_addr_type = own_addr_type;
1146 	cp.channel_map = hdev->le_adv_channel_map;
1147 	cp.handle = instance;
1148 
1149 	if (flags & MGMT_ADV_FLAG_SEC_2M) {
1150 		cp.primary_phy = HCI_ADV_PHY_1M;
1151 		cp.secondary_phy = HCI_ADV_PHY_2M;
1152 	} else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1153 		cp.primary_phy = HCI_ADV_PHY_CODED;
1154 		cp.secondary_phy = HCI_ADV_PHY_CODED;
1155 	} else {
1156 		/* In all other cases use 1M */
1157 		cp.primary_phy = HCI_ADV_PHY_1M;
1158 		cp.secondary_phy = HCI_ADV_PHY_1M;
1159 	}
1160 
1161 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1162 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1163 	if (err)
1164 		return err;
1165 
1166 	if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1167 	     own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1168 	    bacmp(&random_addr, BDADDR_ANY)) {
1169 		/* Check if random address need to be updated */
1170 		if (adv) {
1171 			if (!bacmp(&random_addr, &adv->random_addr))
1172 				return 0;
1173 		} else {
1174 			if (!bacmp(&random_addr, &hdev->random_addr))
1175 				return 0;
1176 		}
1177 
1178 		return hci_set_adv_set_random_addr_sync(hdev, instance,
1179 							&random_addr);
1180 	}
1181 
1182 	return 0;
1183 }
1184 
1185 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1186 {
1187 	struct {
1188 		struct hci_cp_le_set_ext_scan_rsp_data cp;
1189 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1190 	} pdu;
1191 	u8 len;
1192 	struct adv_info *adv = NULL;
1193 	int err;
1194 
1195 	memset(&pdu, 0, sizeof(pdu));
1196 
1197 	if (instance) {
1198 		adv = hci_find_adv_instance(hdev, instance);
1199 		if (!adv || !adv->scan_rsp_changed)
1200 			return 0;
1201 	}
1202 
1203 	len = eir_create_scan_rsp(hdev, instance, pdu.data);
1204 
1205 	pdu.cp.handle = instance;
1206 	pdu.cp.length = len;
1207 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1208 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1209 
1210 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1211 				    sizeof(pdu.cp) + len, &pdu.cp,
1212 				    HCI_CMD_TIMEOUT);
1213 	if (err)
1214 		return err;
1215 
1216 	if (adv) {
1217 		adv->scan_rsp_changed = false;
1218 	} else {
1219 		memcpy(hdev->scan_rsp_data, pdu.data, len);
1220 		hdev->scan_rsp_data_len = len;
1221 	}
1222 
1223 	return 0;
1224 }
1225 
1226 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1227 {
1228 	struct hci_cp_le_set_scan_rsp_data cp;
1229 	u8 len;
1230 
1231 	memset(&cp, 0, sizeof(cp));
1232 
1233 	len = eir_create_scan_rsp(hdev, instance, cp.data);
1234 
1235 	if (hdev->scan_rsp_data_len == len &&
1236 	    !memcmp(cp.data, hdev->scan_rsp_data, len))
1237 		return 0;
1238 
1239 	memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1240 	hdev->scan_rsp_data_len = len;
1241 
1242 	cp.length = len;
1243 
1244 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1245 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1246 }
1247 
1248 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1249 {
1250 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1251 		return 0;
1252 
1253 	if (ext_adv_capable(hdev))
1254 		return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1255 
1256 	return __hci_set_scan_rsp_data_sync(hdev, instance);
1257 }
1258 
1259 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1260 {
1261 	struct hci_cp_le_set_ext_adv_enable *cp;
1262 	struct hci_cp_ext_adv_set *set;
1263 	u8 data[sizeof(*cp) + sizeof(*set) * 1];
1264 	struct adv_info *adv;
1265 
1266 	if (instance > 0) {
1267 		adv = hci_find_adv_instance(hdev, instance);
1268 		if (!adv)
1269 			return -EINVAL;
1270 		/* If already enabled there is nothing to do */
1271 		if (adv->enabled)
1272 			return 0;
1273 	} else {
1274 		adv = NULL;
1275 	}
1276 
1277 	cp = (void *)data;
1278 	set = (void *)cp->data;
1279 
1280 	memset(cp, 0, sizeof(*cp));
1281 
1282 	cp->enable = 0x01;
1283 	cp->num_of_sets = 0x01;
1284 
1285 	memset(set, 0, sizeof(*set));
1286 
1287 	set->handle = instance;
1288 
1289 	/* Set duration per instance since controller is responsible for
1290 	 * scheduling it.
1291 	 */
1292 	if (adv && adv->timeout) {
1293 		u16 duration = adv->timeout * MSEC_PER_SEC;
1294 
1295 		/* Time = N * 10 ms */
1296 		set->duration = cpu_to_le16(duration / 10);
1297 	}
1298 
1299 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1300 				     sizeof(*cp) +
1301 				     sizeof(*set) * cp->num_of_sets,
1302 				     data, HCI_CMD_TIMEOUT);
1303 }
1304 
1305 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1306 {
1307 	int err;
1308 
1309 	err = hci_setup_ext_adv_instance_sync(hdev, instance);
1310 	if (err)
1311 		return err;
1312 
1313 	err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1314 	if (err)
1315 		return err;
1316 
1317 	return hci_enable_ext_advertising_sync(hdev, instance);
1318 }
1319 
1320 static int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1321 {
1322 	struct hci_cp_le_set_per_adv_enable cp;
1323 	struct adv_info *adv = NULL;
1324 
1325 	/* If periodic advertising already disabled there is nothing to do. */
1326 	adv = hci_find_adv_instance(hdev, instance);
1327 	if (!adv || !adv->periodic || !adv->enabled)
1328 		return 0;
1329 
1330 	memset(&cp, 0, sizeof(cp));
1331 
1332 	cp.enable = 0x00;
1333 	cp.handle = instance;
1334 
1335 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1336 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1337 }
1338 
1339 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1340 				       u16 min_interval, u16 max_interval)
1341 {
1342 	struct hci_cp_le_set_per_adv_params cp;
1343 
1344 	memset(&cp, 0, sizeof(cp));
1345 
1346 	if (!min_interval)
1347 		min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1348 
1349 	if (!max_interval)
1350 		max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1351 
1352 	cp.handle = instance;
1353 	cp.min_interval = cpu_to_le16(min_interval);
1354 	cp.max_interval = cpu_to_le16(max_interval);
1355 	cp.periodic_properties = 0x0000;
1356 
1357 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1358 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1359 }
1360 
1361 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1362 {
1363 	struct {
1364 		struct hci_cp_le_set_per_adv_data cp;
1365 		u8 data[HCI_MAX_PER_AD_LENGTH];
1366 	} pdu;
1367 	u8 len;
1368 
1369 	memset(&pdu, 0, sizeof(pdu));
1370 
1371 	if (instance) {
1372 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1373 
1374 		if (!adv || !adv->periodic)
1375 			return 0;
1376 	}
1377 
1378 	len = eir_create_per_adv_data(hdev, instance, pdu.data);
1379 
1380 	pdu.cp.length = len;
1381 	pdu.cp.handle = instance;
1382 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1383 
1384 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1385 				     sizeof(pdu.cp) + len, &pdu,
1386 				     HCI_CMD_TIMEOUT);
1387 }
1388 
1389 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1390 {
1391 	struct hci_cp_le_set_per_adv_enable cp;
1392 	struct adv_info *adv = NULL;
1393 
1394 	/* If periodic advertising already enabled there is nothing to do. */
1395 	adv = hci_find_adv_instance(hdev, instance);
1396 	if (adv && adv->periodic && adv->enabled)
1397 		return 0;
1398 
1399 	memset(&cp, 0, sizeof(cp));
1400 
1401 	cp.enable = 0x01;
1402 	cp.handle = instance;
1403 
1404 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1405 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1406 }
1407 
1408 /* Checks if periodic advertising data contains a Basic Announcement and if it
1409  * does generates a Broadcast ID and add Broadcast Announcement.
1410  */
1411 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1412 {
1413 	u8 bid[3];
1414 	u8 ad[4 + 3];
1415 
1416 	/* Skip if NULL adv as instance 0x00 is used for general purpose
1417 	 * advertising so it cannot used for the likes of Broadcast Announcement
1418 	 * as it can be overwritten at any point.
1419 	 */
1420 	if (!adv)
1421 		return 0;
1422 
1423 	/* Check if PA data doesn't contains a Basic Audio Announcement then
1424 	 * there is nothing to do.
1425 	 */
1426 	if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1427 				  0x1851, NULL))
1428 		return 0;
1429 
1430 	/* Check if advertising data already has a Broadcast Announcement since
1431 	 * the process may want to control the Broadcast ID directly and in that
1432 	 * case the kernel shall no interfere.
1433 	 */
1434 	if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1435 				 NULL))
1436 		return 0;
1437 
1438 	/* Generate Broadcast ID */
1439 	get_random_bytes(bid, sizeof(bid));
1440 	eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1441 	hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1442 
1443 	return hci_update_adv_data_sync(hdev, adv->instance);
1444 }
1445 
1446 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1447 			   u8 *data, u32 flags, u16 min_interval,
1448 			   u16 max_interval, u16 sync_interval)
1449 {
1450 	struct adv_info *adv = NULL;
1451 	int err;
1452 	bool added = false;
1453 
1454 	hci_disable_per_advertising_sync(hdev, instance);
1455 
1456 	if (instance) {
1457 		adv = hci_find_adv_instance(hdev, instance);
1458 		/* Create an instance if that could not be found */
1459 		if (!adv) {
1460 			adv = hci_add_per_instance(hdev, instance, flags,
1461 						   data_len, data,
1462 						   sync_interval,
1463 						   sync_interval);
1464 			if (IS_ERR(adv))
1465 				return PTR_ERR(adv);
1466 			adv->pending = false;
1467 			added = true;
1468 		}
1469 	}
1470 
1471 	/* Start advertising */
1472 	err = hci_start_ext_adv_sync(hdev, instance);
1473 	if (err < 0)
1474 		goto fail;
1475 
1476 	err = hci_adv_bcast_annoucement(hdev, adv);
1477 	if (err < 0)
1478 		goto fail;
1479 
1480 	err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1481 					  max_interval);
1482 	if (err < 0)
1483 		goto fail;
1484 
1485 	err = hci_set_per_adv_data_sync(hdev, instance);
1486 	if (err < 0)
1487 		goto fail;
1488 
1489 	err = hci_enable_per_advertising_sync(hdev, instance);
1490 	if (err < 0)
1491 		goto fail;
1492 
1493 	return 0;
1494 
1495 fail:
1496 	if (added)
1497 		hci_remove_adv_instance(hdev, instance);
1498 
1499 	return err;
1500 }
1501 
1502 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1503 {
1504 	int err;
1505 
1506 	if (ext_adv_capable(hdev))
1507 		return hci_start_ext_adv_sync(hdev, instance);
1508 
1509 	err = hci_update_adv_data_sync(hdev, instance);
1510 	if (err)
1511 		return err;
1512 
1513 	err = hci_update_scan_rsp_data_sync(hdev, instance);
1514 	if (err)
1515 		return err;
1516 
1517 	return hci_enable_advertising_sync(hdev);
1518 }
1519 
1520 int hci_enable_advertising_sync(struct hci_dev *hdev)
1521 {
1522 	struct adv_info *adv_instance;
1523 	struct hci_cp_le_set_adv_param cp;
1524 	u8 own_addr_type, enable = 0x01;
1525 	bool connectable;
1526 	u16 adv_min_interval, adv_max_interval;
1527 	u32 flags;
1528 	u8 status;
1529 
1530 	if (ext_adv_capable(hdev))
1531 		return hci_enable_ext_advertising_sync(hdev,
1532 						       hdev->cur_adv_instance);
1533 
1534 	flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1535 	adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1536 
1537 	/* If the "connectable" instance flag was not set, then choose between
1538 	 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1539 	 */
1540 	connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1541 		      mgmt_get_connectable(hdev);
1542 
1543 	if (!is_advertising_allowed(hdev, connectable))
1544 		return -EINVAL;
1545 
1546 	status = hci_disable_advertising_sync(hdev);
1547 	if (status)
1548 		return status;
1549 
1550 	/* Clear the HCI_LE_ADV bit temporarily so that the
1551 	 * hci_update_random_address knows that it's safe to go ahead
1552 	 * and write a new random address. The flag will be set back on
1553 	 * as soon as the SET_ADV_ENABLE HCI command completes.
1554 	 */
1555 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
1556 
1557 	/* Set require_privacy to true only when non-connectable
1558 	 * advertising is used. In that case it is fine to use a
1559 	 * non-resolvable private address.
1560 	 */
1561 	status = hci_update_random_address_sync(hdev, !connectable,
1562 						adv_use_rpa(hdev, flags),
1563 						&own_addr_type);
1564 	if (status)
1565 		return status;
1566 
1567 	memset(&cp, 0, sizeof(cp));
1568 
1569 	if (adv_instance) {
1570 		adv_min_interval = adv_instance->min_interval;
1571 		adv_max_interval = adv_instance->max_interval;
1572 	} else {
1573 		adv_min_interval = hdev->le_adv_min_interval;
1574 		adv_max_interval = hdev->le_adv_max_interval;
1575 	}
1576 
1577 	if (connectable) {
1578 		cp.type = LE_ADV_IND;
1579 	} else {
1580 		if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1581 			cp.type = LE_ADV_SCAN_IND;
1582 		else
1583 			cp.type = LE_ADV_NONCONN_IND;
1584 
1585 		if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1586 		    hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1587 			adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1588 			adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1589 		}
1590 	}
1591 
1592 	cp.min_interval = cpu_to_le16(adv_min_interval);
1593 	cp.max_interval = cpu_to_le16(adv_max_interval);
1594 	cp.own_address_type = own_addr_type;
1595 	cp.channel_map = hdev->le_adv_channel_map;
1596 
1597 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1598 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1599 	if (status)
1600 		return status;
1601 
1602 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1603 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1604 }
1605 
1606 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1607 {
1608 	return hci_enable_advertising_sync(hdev);
1609 }
1610 
1611 int hci_enable_advertising(struct hci_dev *hdev)
1612 {
1613 	if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1614 	    list_empty(&hdev->adv_instances))
1615 		return 0;
1616 
1617 	return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1618 }
1619 
1620 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1621 				     struct sock *sk)
1622 {
1623 	int err;
1624 
1625 	if (!ext_adv_capable(hdev))
1626 		return 0;
1627 
1628 	err = hci_disable_ext_adv_instance_sync(hdev, instance);
1629 	if (err)
1630 		return err;
1631 
1632 	/* If request specifies an instance that doesn't exist, fail */
1633 	if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1634 		return -EINVAL;
1635 
1636 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1637 					sizeof(instance), &instance, 0,
1638 					HCI_CMD_TIMEOUT, sk);
1639 }
1640 
1641 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1642 {
1643 	struct adv_info *adv = data;
1644 	u8 instance = 0;
1645 
1646 	if (adv)
1647 		instance = adv->instance;
1648 
1649 	return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1650 }
1651 
1652 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1653 {
1654 	struct adv_info *adv = NULL;
1655 
1656 	if (instance) {
1657 		adv = hci_find_adv_instance(hdev, instance);
1658 		if (!adv)
1659 			return -EINVAL;
1660 	}
1661 
1662 	return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1663 }
1664 
1665 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1666 {
1667 	struct hci_cp_le_term_big cp;
1668 
1669 	memset(&cp, 0, sizeof(cp));
1670 	cp.handle = handle;
1671 	cp.reason = reason;
1672 
1673 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1674 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1675 }
1676 
1677 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1678 {
1679 	struct {
1680 		struct hci_cp_le_set_ext_adv_data cp;
1681 		u8 data[HCI_MAX_EXT_AD_LENGTH];
1682 	} pdu;
1683 	u8 len;
1684 	struct adv_info *adv = NULL;
1685 	int err;
1686 
1687 	memset(&pdu, 0, sizeof(pdu));
1688 
1689 	if (instance) {
1690 		adv = hci_find_adv_instance(hdev, instance);
1691 		if (!adv || !adv->adv_data_changed)
1692 			return 0;
1693 	}
1694 
1695 	len = eir_create_adv_data(hdev, instance, pdu.data);
1696 
1697 	pdu.cp.length = len;
1698 	pdu.cp.handle = instance;
1699 	pdu.cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1700 	pdu.cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1701 
1702 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1703 				    sizeof(pdu.cp) + len, &pdu.cp,
1704 				    HCI_CMD_TIMEOUT);
1705 	if (err)
1706 		return err;
1707 
1708 	/* Update data if the command succeed */
1709 	if (adv) {
1710 		adv->adv_data_changed = false;
1711 	} else {
1712 		memcpy(hdev->adv_data, pdu.data, len);
1713 		hdev->adv_data_len = len;
1714 	}
1715 
1716 	return 0;
1717 }
1718 
1719 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1720 {
1721 	struct hci_cp_le_set_adv_data cp;
1722 	u8 len;
1723 
1724 	memset(&cp, 0, sizeof(cp));
1725 
1726 	len = eir_create_adv_data(hdev, instance, cp.data);
1727 
1728 	/* There's nothing to do if the data hasn't changed */
1729 	if (hdev->adv_data_len == len &&
1730 	    memcmp(cp.data, hdev->adv_data, len) == 0)
1731 		return 0;
1732 
1733 	memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1734 	hdev->adv_data_len = len;
1735 
1736 	cp.length = len;
1737 
1738 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1739 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1740 }
1741 
1742 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1743 {
1744 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1745 		return 0;
1746 
1747 	if (ext_adv_capable(hdev))
1748 		return hci_set_ext_adv_data_sync(hdev, instance);
1749 
1750 	return hci_set_adv_data_sync(hdev, instance);
1751 }
1752 
1753 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1754 				   bool force)
1755 {
1756 	struct adv_info *adv = NULL;
1757 	u16 timeout;
1758 
1759 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1760 		return -EPERM;
1761 
1762 	if (hdev->adv_instance_timeout)
1763 		return -EBUSY;
1764 
1765 	adv = hci_find_adv_instance(hdev, instance);
1766 	if (!adv)
1767 		return -ENOENT;
1768 
1769 	/* A zero timeout means unlimited advertising. As long as there is
1770 	 * only one instance, duration should be ignored. We still set a timeout
1771 	 * in case further instances are being added later on.
1772 	 *
1773 	 * If the remaining lifetime of the instance is more than the duration
1774 	 * then the timeout corresponds to the duration, otherwise it will be
1775 	 * reduced to the remaining instance lifetime.
1776 	 */
1777 	if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1778 		timeout = adv->duration;
1779 	else
1780 		timeout = adv->remaining_time;
1781 
1782 	/* The remaining time is being reduced unless the instance is being
1783 	 * advertised without time limit.
1784 	 */
1785 	if (adv->timeout)
1786 		adv->remaining_time = adv->remaining_time - timeout;
1787 
1788 	/* Only use work for scheduling instances with legacy advertising */
1789 	if (!ext_adv_capable(hdev)) {
1790 		hdev->adv_instance_timeout = timeout;
1791 		queue_delayed_work(hdev->req_workqueue,
1792 				   &hdev->adv_instance_expire,
1793 				   msecs_to_jiffies(timeout * 1000));
1794 	}
1795 
1796 	/* If we're just re-scheduling the same instance again then do not
1797 	 * execute any HCI commands. This happens when a single instance is
1798 	 * being advertised.
1799 	 */
1800 	if (!force && hdev->cur_adv_instance == instance &&
1801 	    hci_dev_test_flag(hdev, HCI_LE_ADV))
1802 		return 0;
1803 
1804 	hdev->cur_adv_instance = instance;
1805 
1806 	return hci_start_adv_sync(hdev, instance);
1807 }
1808 
1809 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1810 {
1811 	int err;
1812 
1813 	if (!ext_adv_capable(hdev))
1814 		return 0;
1815 
1816 	/* Disable instance 0x00 to disable all instances */
1817 	err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1818 	if (err)
1819 		return err;
1820 
1821 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1822 					0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1823 }
1824 
1825 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1826 {
1827 	struct adv_info *adv, *n;
1828 	int err = 0;
1829 
1830 	if (ext_adv_capable(hdev))
1831 		/* Remove all existing sets */
1832 		err = hci_clear_adv_sets_sync(hdev, sk);
1833 	if (ext_adv_capable(hdev))
1834 		return err;
1835 
1836 	/* This is safe as long as there is no command send while the lock is
1837 	 * held.
1838 	 */
1839 	hci_dev_lock(hdev);
1840 
1841 	/* Cleanup non-ext instances */
1842 	list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1843 		u8 instance = adv->instance;
1844 		int err;
1845 
1846 		if (!(force || adv->timeout))
1847 			continue;
1848 
1849 		err = hci_remove_adv_instance(hdev, instance);
1850 		if (!err)
1851 			mgmt_advertising_removed(sk, hdev, instance);
1852 	}
1853 
1854 	hci_dev_unlock(hdev);
1855 
1856 	return 0;
1857 }
1858 
1859 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
1860 			       struct sock *sk)
1861 {
1862 	int err = 0;
1863 
1864 	/* If we use extended advertising, instance has to be removed first. */
1865 	if (ext_adv_capable(hdev))
1866 		err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
1867 	if (ext_adv_capable(hdev))
1868 		return err;
1869 
1870 	/* This is safe as long as there is no command send while the lock is
1871 	 * held.
1872 	 */
1873 	hci_dev_lock(hdev);
1874 
1875 	err = hci_remove_adv_instance(hdev, instance);
1876 	if (!err)
1877 		mgmt_advertising_removed(sk, hdev, instance);
1878 
1879 	hci_dev_unlock(hdev);
1880 
1881 	return err;
1882 }
1883 
1884 /* For a single instance:
1885  * - force == true: The instance will be removed even when its remaining
1886  *   lifetime is not zero.
1887  * - force == false: the instance will be deactivated but kept stored unless
1888  *   the remaining lifetime is zero.
1889  *
1890  * For instance == 0x00:
1891  * - force == true: All instances will be removed regardless of their timeout
1892  *   setting.
1893  * - force == false: Only instances that have a timeout will be removed.
1894  */
1895 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
1896 				u8 instance, bool force)
1897 {
1898 	struct adv_info *next = NULL;
1899 	int err;
1900 
1901 	/* Cancel any timeout concerning the removed instance(s). */
1902 	if (!instance || hdev->cur_adv_instance == instance)
1903 		cancel_adv_timeout(hdev);
1904 
1905 	/* Get the next instance to advertise BEFORE we remove
1906 	 * the current one. This can be the same instance again
1907 	 * if there is only one instance.
1908 	 */
1909 	if (hdev->cur_adv_instance == instance)
1910 		next = hci_get_next_instance(hdev, instance);
1911 
1912 	if (!instance) {
1913 		err = hci_clear_adv_sync(hdev, sk, force);
1914 		if (err)
1915 			return err;
1916 	} else {
1917 		struct adv_info *adv = hci_find_adv_instance(hdev, instance);
1918 
1919 		if (force || (adv && adv->timeout && !adv->remaining_time)) {
1920 			/* Don't advertise a removed instance. */
1921 			if (next && next->instance == instance)
1922 				next = NULL;
1923 
1924 			err = hci_remove_adv_sync(hdev, instance, sk);
1925 			if (err)
1926 				return err;
1927 		}
1928 	}
1929 
1930 	if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
1931 		return 0;
1932 
1933 	if (next && !ext_adv_capable(hdev))
1934 		hci_schedule_adv_instance_sync(hdev, next->instance, false);
1935 
1936 	return 0;
1937 }
1938 
1939 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
1940 {
1941 	struct hci_cp_read_rssi cp;
1942 
1943 	cp.handle = handle;
1944 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
1945 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1946 }
1947 
1948 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
1949 {
1950 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
1951 					sizeof(*cp), cp, HCI_CMD_TIMEOUT);
1952 }
1953 
1954 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
1955 {
1956 	struct hci_cp_read_tx_power cp;
1957 
1958 	cp.handle = handle;
1959 	cp.type = type;
1960 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
1961 					sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1962 }
1963 
1964 int hci_disable_advertising_sync(struct hci_dev *hdev)
1965 {
1966 	u8 enable = 0x00;
1967 	int err = 0;
1968 
1969 	/* If controller is not advertising we are done. */
1970 	if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
1971 		return 0;
1972 
1973 	if (ext_adv_capable(hdev))
1974 		err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1975 	if (ext_adv_capable(hdev))
1976 		return err;
1977 
1978 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1979 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1980 }
1981 
1982 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
1983 					   u8 filter_dup)
1984 {
1985 	struct hci_cp_le_set_ext_scan_enable cp;
1986 
1987 	memset(&cp, 0, sizeof(cp));
1988 	cp.enable = val;
1989 
1990 	if (hci_dev_test_flag(hdev, HCI_MESH))
1991 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
1992 	else
1993 		cp.filter_dup = filter_dup;
1994 
1995 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
1996 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1997 }
1998 
1999 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
2000 				       u8 filter_dup)
2001 {
2002 	struct hci_cp_le_set_scan_enable cp;
2003 
2004 	if (use_ext_scan(hdev))
2005 		return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
2006 
2007 	memset(&cp, 0, sizeof(cp));
2008 	cp.enable = val;
2009 
2010 	if (val && hci_dev_test_flag(hdev, HCI_MESH))
2011 		cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2012 	else
2013 		cp.filter_dup = filter_dup;
2014 
2015 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
2016 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2017 }
2018 
2019 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
2020 {
2021 	if (!use_ll_privacy(hdev))
2022 		return 0;
2023 
2024 	/* If controller is not/already resolving we are done. */
2025 	if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2026 		return 0;
2027 
2028 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
2029 				     sizeof(val), &val, HCI_CMD_TIMEOUT);
2030 }
2031 
2032 static int hci_scan_disable_sync(struct hci_dev *hdev)
2033 {
2034 	int err;
2035 
2036 	/* If controller is not scanning we are done. */
2037 	if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2038 		return 0;
2039 
2040 	if (hdev->scanning_paused) {
2041 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2042 		return 0;
2043 	}
2044 
2045 	err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2046 	if (err) {
2047 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2048 		return err;
2049 	}
2050 
2051 	return err;
2052 }
2053 
2054 static bool scan_use_rpa(struct hci_dev *hdev)
2055 {
2056 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
2057 }
2058 
2059 static void hci_start_interleave_scan(struct hci_dev *hdev)
2060 {
2061 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2062 	queue_delayed_work(hdev->req_workqueue,
2063 			   &hdev->interleave_scan, 0);
2064 }
2065 
2066 static bool is_interleave_scanning(struct hci_dev *hdev)
2067 {
2068 	return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
2069 }
2070 
2071 static void cancel_interleave_scan(struct hci_dev *hdev)
2072 {
2073 	bt_dev_dbg(hdev, "cancelling interleave scan");
2074 
2075 	cancel_delayed_work_sync(&hdev->interleave_scan);
2076 
2077 	hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2078 }
2079 
2080 /* Return true if interleave_scan wasn't started until exiting this function,
2081  * otherwise, return false
2082  */
2083 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2084 {
2085 	/* Do interleaved scan only if all of the following are true:
2086 	 * - There is at least one ADV monitor
2087 	 * - At least one pending LE connection or one device to be scanned for
2088 	 * - Monitor offloading is not supported
2089 	 * If so, we should alternate between allowlist scan and one without
2090 	 * any filters to save power.
2091 	 */
2092 	bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2093 				!(list_empty(&hdev->pend_le_conns) &&
2094 				  list_empty(&hdev->pend_le_reports)) &&
2095 				hci_get_adv_monitor_offload_ext(hdev) ==
2096 				    HCI_ADV_MONITOR_EXT_NONE;
2097 	bool is_interleaving = is_interleave_scanning(hdev);
2098 
2099 	if (use_interleaving && !is_interleaving) {
2100 		hci_start_interleave_scan(hdev);
2101 		bt_dev_dbg(hdev, "starting interleave scan");
2102 		return true;
2103 	}
2104 
2105 	if (!use_interleaving && is_interleaving)
2106 		cancel_interleave_scan(hdev);
2107 
2108 	return false;
2109 }
2110 
2111 /* Removes connection to resolve list if needed.*/
2112 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2113 					bdaddr_t *bdaddr, u8 bdaddr_type)
2114 {
2115 	struct hci_cp_le_del_from_resolv_list cp;
2116 	struct bdaddr_list_with_irk *entry;
2117 
2118 	if (!use_ll_privacy(hdev))
2119 		return 0;
2120 
2121 	/* Check if the IRK has been programmed */
2122 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2123 						bdaddr_type);
2124 	if (!entry)
2125 		return 0;
2126 
2127 	cp.bdaddr_type = bdaddr_type;
2128 	bacpy(&cp.bdaddr, bdaddr);
2129 
2130 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2131 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2132 }
2133 
2134 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2135 				       bdaddr_t *bdaddr, u8 bdaddr_type)
2136 {
2137 	struct hci_cp_le_del_from_accept_list cp;
2138 	int err;
2139 
2140 	/* Check if device is on accept list before removing it */
2141 	if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2142 		return 0;
2143 
2144 	cp.bdaddr_type = bdaddr_type;
2145 	bacpy(&cp.bdaddr, bdaddr);
2146 
2147 	/* Ignore errors when removing from resolving list as that is likely
2148 	 * that the device was never added.
2149 	 */
2150 	hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2151 
2152 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2153 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2154 	if (err) {
2155 		bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2156 		return err;
2157 	}
2158 
2159 	bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2160 		   cp.bdaddr_type);
2161 
2162 	return 0;
2163 }
2164 
2165 struct conn_params {
2166 	bdaddr_t addr;
2167 	u8 addr_type;
2168 	hci_conn_flags_t flags;
2169 	u8 privacy_mode;
2170 };
2171 
2172 /* Adds connection to resolve list if needed.
2173  * Setting params to NULL programs local hdev->irk
2174  */
2175 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2176 					struct conn_params *params)
2177 {
2178 	struct hci_cp_le_add_to_resolv_list cp;
2179 	struct smp_irk *irk;
2180 	struct bdaddr_list_with_irk *entry;
2181 	struct hci_conn_params *p;
2182 
2183 	if (!use_ll_privacy(hdev))
2184 		return 0;
2185 
2186 	/* Attempt to program local identity address, type and irk if params is
2187 	 * NULL.
2188 	 */
2189 	if (!params) {
2190 		if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2191 			return 0;
2192 
2193 		hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2194 		memcpy(cp.peer_irk, hdev->irk, 16);
2195 		goto done;
2196 	}
2197 
2198 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2199 	if (!irk)
2200 		return 0;
2201 
2202 	/* Check if the IK has _not_ been programmed yet. */
2203 	entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2204 						&params->addr,
2205 						params->addr_type);
2206 	if (entry)
2207 		return 0;
2208 
2209 	cp.bdaddr_type = params->addr_type;
2210 	bacpy(&cp.bdaddr, &params->addr);
2211 	memcpy(cp.peer_irk, irk->val, 16);
2212 
2213 	/* Default privacy mode is always Network */
2214 	params->privacy_mode = HCI_NETWORK_PRIVACY;
2215 
2216 	rcu_read_lock();
2217 	p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2218 				      &params->addr, params->addr_type);
2219 	if (!p)
2220 		p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2221 					      &params->addr, params->addr_type);
2222 	if (p)
2223 		WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
2224 	rcu_read_unlock();
2225 
2226 done:
2227 	if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2228 		memcpy(cp.local_irk, hdev->irk, 16);
2229 	else
2230 		memset(cp.local_irk, 0, 16);
2231 
2232 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2233 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2234 }
2235 
2236 /* Set Device Privacy Mode. */
2237 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2238 					struct conn_params *params)
2239 {
2240 	struct hci_cp_le_set_privacy_mode cp;
2241 	struct smp_irk *irk;
2242 
2243 	/* If device privacy mode has already been set there is nothing to do */
2244 	if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2245 		return 0;
2246 
2247 	/* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2248 	 * indicates that LL Privacy has been enabled and
2249 	 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2250 	 */
2251 	if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2252 		return 0;
2253 
2254 	irk = hci_find_irk_by_addr(hdev, &params->addr, params->addr_type);
2255 	if (!irk)
2256 		return 0;
2257 
2258 	memset(&cp, 0, sizeof(cp));
2259 	cp.bdaddr_type = irk->addr_type;
2260 	bacpy(&cp.bdaddr, &irk->bdaddr);
2261 	cp.mode = HCI_DEVICE_PRIVACY;
2262 
2263 	/* Note: params->privacy_mode is not updated since it is a copy */
2264 
2265 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2266 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2267 }
2268 
2269 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2270  * this attempts to program the device in the resolving list as well and
2271  * properly set the privacy mode.
2272  */
2273 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2274 				       struct conn_params *params,
2275 				       u8 *num_entries)
2276 {
2277 	struct hci_cp_le_add_to_accept_list cp;
2278 	int err;
2279 
2280 	/* During suspend, only wakeable devices can be in acceptlist */
2281 	if (hdev->suspended &&
2282 	    !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
2283 		return 0;
2284 
2285 	/* Select filter policy to accept all advertising */
2286 	if (*num_entries >= hdev->le_accept_list_size)
2287 		return -ENOSPC;
2288 
2289 	/* Accept list can not be used with RPAs */
2290 	if (!use_ll_privacy(hdev) &&
2291 	    hci_find_irk_by_addr(hdev, &params->addr, params->addr_type))
2292 		return -EINVAL;
2293 
2294 	/* Attempt to program the device in the resolving list first to avoid
2295 	 * having to rollback in case it fails since the resolving list is
2296 	 * dynamic it can probably be smaller than the accept list.
2297 	 */
2298 	err = hci_le_add_resolve_list_sync(hdev, params);
2299 	if (err) {
2300 		bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2301 		return err;
2302 	}
2303 
2304 	/* Set Privacy Mode */
2305 	err = hci_le_set_privacy_mode_sync(hdev, params);
2306 	if (err) {
2307 		bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2308 		return err;
2309 	}
2310 
2311 	/* Check if already in accept list */
2312 	if (hci_bdaddr_list_lookup(&hdev->le_accept_list, &params->addr,
2313 				   params->addr_type))
2314 		return 0;
2315 
2316 	*num_entries += 1;
2317 	cp.bdaddr_type = params->addr_type;
2318 	bacpy(&cp.bdaddr, &params->addr);
2319 
2320 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2321 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2322 	if (err) {
2323 		bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2324 		/* Rollback the device from the resolving list */
2325 		hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2326 		return err;
2327 	}
2328 
2329 	bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2330 		   cp.bdaddr_type);
2331 
2332 	return 0;
2333 }
2334 
2335 /* This function disables/pause all advertising instances */
2336 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2337 {
2338 	int err;
2339 	int old_state;
2340 
2341 	/* If already been paused there is nothing to do. */
2342 	if (hdev->advertising_paused)
2343 		return 0;
2344 
2345 	bt_dev_dbg(hdev, "Pausing directed advertising");
2346 
2347 	/* Stop directed advertising */
2348 	old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2349 	if (old_state) {
2350 		/* When discoverable timeout triggers, then just make sure
2351 		 * the limited discoverable flag is cleared. Even in the case
2352 		 * of a timeout triggered from general discoverable, it is
2353 		 * safe to unconditionally clear the flag.
2354 		 */
2355 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2356 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2357 		hdev->discov_timeout = 0;
2358 	}
2359 
2360 	bt_dev_dbg(hdev, "Pausing advertising instances");
2361 
2362 	/* Call to disable any advertisements active on the controller.
2363 	 * This will succeed even if no advertisements are configured.
2364 	 */
2365 	err = hci_disable_advertising_sync(hdev);
2366 	if (err)
2367 		return err;
2368 
2369 	/* If we are using software rotation, pause the loop */
2370 	if (!ext_adv_capable(hdev))
2371 		cancel_adv_timeout(hdev);
2372 
2373 	hdev->advertising_paused = true;
2374 	hdev->advertising_old_state = old_state;
2375 
2376 	return 0;
2377 }
2378 
2379 /* This function enables all user advertising instances */
2380 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2381 {
2382 	struct adv_info *adv, *tmp;
2383 	int err;
2384 
2385 	/* If advertising has not been paused there is nothing  to do. */
2386 	if (!hdev->advertising_paused)
2387 		return 0;
2388 
2389 	/* Resume directed advertising */
2390 	hdev->advertising_paused = false;
2391 	if (hdev->advertising_old_state) {
2392 		hci_dev_set_flag(hdev, HCI_ADVERTISING);
2393 		hdev->advertising_old_state = 0;
2394 	}
2395 
2396 	bt_dev_dbg(hdev, "Resuming advertising instances");
2397 
2398 	if (ext_adv_capable(hdev)) {
2399 		/* Call for each tracked instance to be re-enabled */
2400 		list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2401 			err = hci_enable_ext_advertising_sync(hdev,
2402 							      adv->instance);
2403 			if (!err)
2404 				continue;
2405 
2406 			/* If the instance cannot be resumed remove it */
2407 			hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2408 							 NULL);
2409 		}
2410 	} else {
2411 		/* Schedule for most recent instance to be restarted and begin
2412 		 * the software rotation loop
2413 		 */
2414 		err = hci_schedule_adv_instance_sync(hdev,
2415 						     hdev->cur_adv_instance,
2416 						     true);
2417 	}
2418 
2419 	hdev->advertising_paused = false;
2420 
2421 	return err;
2422 }
2423 
2424 static int hci_pause_addr_resolution(struct hci_dev *hdev)
2425 {
2426 	int err;
2427 
2428 	if (!use_ll_privacy(hdev))
2429 		return 0;
2430 
2431 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2432 		return 0;
2433 
2434 	/* Cannot disable addr resolution if scanning is enabled or
2435 	 * when initiating an LE connection.
2436 	 */
2437 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2438 	    hci_lookup_le_connect(hdev)) {
2439 		bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2440 		return -EPERM;
2441 	}
2442 
2443 	/* Cannot disable addr resolution if advertising is enabled. */
2444 	err = hci_pause_advertising_sync(hdev);
2445 	if (err) {
2446 		bt_dev_err(hdev, "Pause advertising failed: %d", err);
2447 		return err;
2448 	}
2449 
2450 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2451 	if (err)
2452 		bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2453 			   err);
2454 
2455 	/* Return if address resolution is disabled and RPA is not used. */
2456 	if (!err && scan_use_rpa(hdev))
2457 		return 0;
2458 
2459 	hci_resume_advertising_sync(hdev);
2460 	return err;
2461 }
2462 
2463 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2464 					     bool extended, struct sock *sk)
2465 {
2466 	u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2467 					HCI_OP_READ_LOCAL_OOB_DATA;
2468 
2469 	return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2470 }
2471 
2472 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
2473 {
2474 	struct hci_conn_params *params;
2475 	struct conn_params *p;
2476 	size_t i;
2477 
2478 	rcu_read_lock();
2479 
2480 	i = 0;
2481 	list_for_each_entry_rcu(params, list, action)
2482 		++i;
2483 	*n = i;
2484 
2485 	rcu_read_unlock();
2486 
2487 	p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
2488 	if (!p)
2489 		return NULL;
2490 
2491 	rcu_read_lock();
2492 
2493 	i = 0;
2494 	list_for_each_entry_rcu(params, list, action) {
2495 		/* Racing adds are handled in next scan update */
2496 		if (i >= *n)
2497 			break;
2498 
2499 		/* No hdev->lock, but: addr, addr_type are immutable.
2500 		 * privacy_mode is only written by us or in
2501 		 * hci_cc_le_set_privacy_mode that we wait for.
2502 		 * We should be idempotent so MGMT updating flags
2503 		 * while we are processing is OK.
2504 		 */
2505 		bacpy(&p[i].addr, &params->addr);
2506 		p[i].addr_type = params->addr_type;
2507 		p[i].flags = READ_ONCE(params->flags);
2508 		p[i].privacy_mode = READ_ONCE(params->privacy_mode);
2509 		++i;
2510 	}
2511 
2512 	rcu_read_unlock();
2513 
2514 	*n = i;
2515 	return p;
2516 }
2517 
2518 /* Device must not be scanning when updating the accept list.
2519  *
2520  * Update is done using the following sequence:
2521  *
2522  * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2523  * Remove Devices From Accept List ->
2524  * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2525  * Add Devices to Accept List ->
2526  * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2527  * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2528  * Enable Scanning
2529  *
2530  * In case of failure advertising shall be restored to its original state and
2531  * return would disable accept list since either accept or resolving list could
2532  * not be programmed.
2533  *
2534  */
2535 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2536 {
2537 	struct conn_params *params;
2538 	struct bdaddr_list *b, *t;
2539 	u8 num_entries = 0;
2540 	bool pend_conn, pend_report;
2541 	u8 filter_policy;
2542 	size_t i, n;
2543 	int err;
2544 
2545 	/* Pause advertising if resolving list can be used as controllers
2546 	 * cannot accept resolving list modifications while advertising.
2547 	 */
2548 	if (use_ll_privacy(hdev)) {
2549 		err = hci_pause_advertising_sync(hdev);
2550 		if (err) {
2551 			bt_dev_err(hdev, "pause advertising failed: %d", err);
2552 			return 0x00;
2553 		}
2554 	}
2555 
2556 	/* Disable address resolution while reprogramming accept list since
2557 	 * devices that do have an IRK will be programmed in the resolving list
2558 	 * when LL Privacy is enabled.
2559 	 */
2560 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2561 	if (err) {
2562 		bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2563 		goto done;
2564 	}
2565 
2566 	/* Go through the current accept list programmed into the
2567 	 * controller one by one and check if that address is connected or is
2568 	 * still in the list of pending connections or list of devices to
2569 	 * report. If not present in either list, then remove it from
2570 	 * the controller.
2571 	 */
2572 	list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2573 		if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2574 			continue;
2575 
2576 		/* Pointers not dereferenced, no locks needed */
2577 		pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2578 						      &b->bdaddr,
2579 						      b->bdaddr_type);
2580 		pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2581 							&b->bdaddr,
2582 							b->bdaddr_type);
2583 
2584 		/* If the device is not likely to connect or report,
2585 		 * remove it from the acceptlist.
2586 		 */
2587 		if (!pend_conn && !pend_report) {
2588 			hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2589 						    b->bdaddr_type);
2590 			continue;
2591 		}
2592 
2593 		num_entries++;
2594 	}
2595 
2596 	/* Since all no longer valid accept list entries have been
2597 	 * removed, walk through the list of pending connections
2598 	 * and ensure that any new device gets programmed into
2599 	 * the controller.
2600 	 *
2601 	 * If the list of the devices is larger than the list of
2602 	 * available accept list entries in the controller, then
2603 	 * just abort and return filer policy value to not use the
2604 	 * accept list.
2605 	 *
2606 	 * The list and params may be mutated while we wait for events,
2607 	 * so make a copy and iterate it.
2608 	 */
2609 
2610 	params = conn_params_copy(&hdev->pend_le_conns, &n);
2611 	if (!params) {
2612 		err = -ENOMEM;
2613 		goto done;
2614 	}
2615 
2616 	for (i = 0; i < n; ++i) {
2617 		err = hci_le_add_accept_list_sync(hdev, &params[i],
2618 						  &num_entries);
2619 		if (err) {
2620 			kvfree(params);
2621 			goto done;
2622 		}
2623 	}
2624 
2625 	kvfree(params);
2626 
2627 	/* After adding all new pending connections, walk through
2628 	 * the list of pending reports and also add these to the
2629 	 * accept list if there is still space. Abort if space runs out.
2630 	 */
2631 
2632 	params = conn_params_copy(&hdev->pend_le_reports, &n);
2633 	if (!params) {
2634 		err = -ENOMEM;
2635 		goto done;
2636 	}
2637 
2638 	for (i = 0; i < n; ++i) {
2639 		err = hci_le_add_accept_list_sync(hdev, &params[i],
2640 						  &num_entries);
2641 		if (err) {
2642 			kvfree(params);
2643 			goto done;
2644 		}
2645 	}
2646 
2647 	kvfree(params);
2648 
2649 	/* Use the allowlist unless the following conditions are all true:
2650 	 * - We are not currently suspending
2651 	 * - There are 1 or more ADV monitors registered and it's not offloaded
2652 	 * - Interleaved scanning is not currently using the allowlist
2653 	 */
2654 	if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2655 	    hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2656 	    hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2657 		err = -EINVAL;
2658 
2659 done:
2660 	filter_policy = err ? 0x00 : 0x01;
2661 
2662 	/* Enable address resolution when LL Privacy is enabled. */
2663 	err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2664 	if (err)
2665 		bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2666 
2667 	/* Resume advertising if it was paused */
2668 	if (use_ll_privacy(hdev))
2669 		hci_resume_advertising_sync(hdev);
2670 
2671 	/* Select filter policy to use accept list */
2672 	return filter_policy;
2673 }
2674 
2675 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2676 					  u16 interval, u16 window,
2677 					  u8 own_addr_type, u8 filter_policy)
2678 {
2679 	struct hci_cp_le_set_ext_scan_params *cp;
2680 	struct hci_cp_le_scan_phy_params *phy;
2681 	u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2682 	u8 num_phy = 0;
2683 
2684 	cp = (void *)data;
2685 	phy = (void *)cp->data;
2686 
2687 	memset(data, 0, sizeof(data));
2688 
2689 	cp->own_addr_type = own_addr_type;
2690 	cp->filter_policy = filter_policy;
2691 
2692 	if (scan_1m(hdev) || scan_2m(hdev)) {
2693 		cp->scanning_phys |= LE_SCAN_PHY_1M;
2694 
2695 		phy->type = type;
2696 		phy->interval = cpu_to_le16(interval);
2697 		phy->window = cpu_to_le16(window);
2698 
2699 		num_phy++;
2700 		phy++;
2701 	}
2702 
2703 	if (scan_coded(hdev)) {
2704 		cp->scanning_phys |= LE_SCAN_PHY_CODED;
2705 
2706 		phy->type = type;
2707 		phy->interval = cpu_to_le16(interval);
2708 		phy->window = cpu_to_le16(window);
2709 
2710 		num_phy++;
2711 		phy++;
2712 	}
2713 
2714 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2715 				     sizeof(*cp) + sizeof(*phy) * num_phy,
2716 				     data, HCI_CMD_TIMEOUT);
2717 }
2718 
2719 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2720 				      u16 interval, u16 window,
2721 				      u8 own_addr_type, u8 filter_policy)
2722 {
2723 	struct hci_cp_le_set_scan_param cp;
2724 
2725 	if (use_ext_scan(hdev))
2726 		return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2727 						      window, own_addr_type,
2728 						      filter_policy);
2729 
2730 	memset(&cp, 0, sizeof(cp));
2731 	cp.type = type;
2732 	cp.interval = cpu_to_le16(interval);
2733 	cp.window = cpu_to_le16(window);
2734 	cp.own_address_type = own_addr_type;
2735 	cp.filter_policy = filter_policy;
2736 
2737 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2738 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2739 }
2740 
2741 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2742 			       u16 window, u8 own_addr_type, u8 filter_policy,
2743 			       u8 filter_dup)
2744 {
2745 	int err;
2746 
2747 	if (hdev->scanning_paused) {
2748 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2749 		return 0;
2750 	}
2751 
2752 	err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2753 					 own_addr_type, filter_policy);
2754 	if (err)
2755 		return err;
2756 
2757 	return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2758 }
2759 
2760 static int hci_passive_scan_sync(struct hci_dev *hdev)
2761 {
2762 	u8 own_addr_type;
2763 	u8 filter_policy;
2764 	u16 window, interval;
2765 	u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2766 	int err;
2767 
2768 	if (hdev->scanning_paused) {
2769 		bt_dev_dbg(hdev, "Scanning is paused for suspend");
2770 		return 0;
2771 	}
2772 
2773 	err = hci_scan_disable_sync(hdev);
2774 	if (err) {
2775 		bt_dev_err(hdev, "disable scanning failed: %d", err);
2776 		return err;
2777 	}
2778 
2779 	/* Set require_privacy to false since no SCAN_REQ are send
2780 	 * during passive scanning. Not using an non-resolvable address
2781 	 * here is important so that peer devices using direct
2782 	 * advertising with our address will be correctly reported
2783 	 * by the controller.
2784 	 */
2785 	if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
2786 					   &own_addr_type))
2787 		return 0;
2788 
2789 	if (hdev->enable_advmon_interleave_scan &&
2790 	    hci_update_interleaved_scan_sync(hdev))
2791 		return 0;
2792 
2793 	bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
2794 
2795 	/* Adding or removing entries from the accept list must
2796 	 * happen before enabling scanning. The controller does
2797 	 * not allow accept list modification while scanning.
2798 	 */
2799 	filter_policy = hci_update_accept_list_sync(hdev);
2800 
2801 	/* When the controller is using random resolvable addresses and
2802 	 * with that having LE privacy enabled, then controllers with
2803 	 * Extended Scanner Filter Policies support can now enable support
2804 	 * for handling directed advertising.
2805 	 *
2806 	 * So instead of using filter polices 0x00 (no acceptlist)
2807 	 * and 0x01 (acceptlist enabled) use the new filter policies
2808 	 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
2809 	 */
2810 	if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
2811 	    (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
2812 		filter_policy |= 0x02;
2813 
2814 	if (hdev->suspended) {
2815 		window = hdev->le_scan_window_suspend;
2816 		interval = hdev->le_scan_int_suspend;
2817 	} else if (hci_is_le_conn_scanning(hdev)) {
2818 		window = hdev->le_scan_window_connect;
2819 		interval = hdev->le_scan_int_connect;
2820 	} else if (hci_is_adv_monitoring(hdev)) {
2821 		window = hdev->le_scan_window_adv_monitor;
2822 		interval = hdev->le_scan_int_adv_monitor;
2823 	} else {
2824 		window = hdev->le_scan_window;
2825 		interval = hdev->le_scan_interval;
2826 	}
2827 
2828 	/* Disable all filtering for Mesh */
2829 	if (hci_dev_test_flag(hdev, HCI_MESH)) {
2830 		filter_policy = 0;
2831 		filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
2832 	}
2833 
2834 	bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
2835 
2836 	return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
2837 				   own_addr_type, filter_policy, filter_dups);
2838 }
2839 
2840 /* This function controls the passive scanning based on hdev->pend_le_conns
2841  * list. If there are pending LE connection we start the background scanning,
2842  * otherwise we stop it in the following sequence:
2843  *
2844  * If there are devices to scan:
2845  *
2846  * Disable Scanning -> Update Accept List ->
2847  * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
2848  * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
2849  * Enable Scanning
2850  *
2851  * Otherwise:
2852  *
2853  * Disable Scanning
2854  */
2855 int hci_update_passive_scan_sync(struct hci_dev *hdev)
2856 {
2857 	int err;
2858 
2859 	if (!test_bit(HCI_UP, &hdev->flags) ||
2860 	    test_bit(HCI_INIT, &hdev->flags) ||
2861 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2862 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2863 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2864 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2865 		return 0;
2866 
2867 	/* No point in doing scanning if LE support hasn't been enabled */
2868 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
2869 		return 0;
2870 
2871 	/* If discovery is active don't interfere with it */
2872 	if (hdev->discovery.state != DISCOVERY_STOPPED)
2873 		return 0;
2874 
2875 	/* Reset RSSI and UUID filters when starting background scanning
2876 	 * since these filters are meant for service discovery only.
2877 	 *
2878 	 * The Start Discovery and Start Service Discovery operations
2879 	 * ensure to set proper values for RSSI threshold and UUID
2880 	 * filter list. So it is safe to just reset them here.
2881 	 */
2882 	hci_discovery_filter_clear(hdev);
2883 
2884 	bt_dev_dbg(hdev, "ADV monitoring is %s",
2885 		   hci_is_adv_monitoring(hdev) ? "on" : "off");
2886 
2887 	if (!hci_dev_test_flag(hdev, HCI_MESH) &&
2888 	    list_empty(&hdev->pend_le_conns) &&
2889 	    list_empty(&hdev->pend_le_reports) &&
2890 	    !hci_is_adv_monitoring(hdev) &&
2891 	    !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2892 		/* If there is no pending LE connections or devices
2893 		 * to be scanned for or no ADV monitors, we should stop the
2894 		 * background scanning.
2895 		 */
2896 
2897 		bt_dev_dbg(hdev, "stopping background scanning");
2898 
2899 		err = hci_scan_disable_sync(hdev);
2900 		if (err)
2901 			bt_dev_err(hdev, "stop background scanning failed: %d",
2902 				   err);
2903 	} else {
2904 		/* If there is at least one pending LE connection, we should
2905 		 * keep the background scan running.
2906 		 */
2907 
2908 		/* If controller is connecting, we should not start scanning
2909 		 * since some controllers are not able to scan and connect at
2910 		 * the same time.
2911 		 */
2912 		if (hci_lookup_le_connect(hdev))
2913 			return 0;
2914 
2915 		bt_dev_dbg(hdev, "start background scanning");
2916 
2917 		err = hci_passive_scan_sync(hdev);
2918 		if (err)
2919 			bt_dev_err(hdev, "start background scanning failed: %d",
2920 				   err);
2921 	}
2922 
2923 	return err;
2924 }
2925 
2926 static int update_scan_sync(struct hci_dev *hdev, void *data)
2927 {
2928 	return hci_update_scan_sync(hdev);
2929 }
2930 
2931 int hci_update_scan(struct hci_dev *hdev)
2932 {
2933 	return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
2934 }
2935 
2936 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
2937 {
2938 	return hci_update_passive_scan_sync(hdev);
2939 }
2940 
2941 int hci_update_passive_scan(struct hci_dev *hdev)
2942 {
2943 	/* Only queue if it would have any effect */
2944 	if (!test_bit(HCI_UP, &hdev->flags) ||
2945 	    test_bit(HCI_INIT, &hdev->flags) ||
2946 	    hci_dev_test_flag(hdev, HCI_SETUP) ||
2947 	    hci_dev_test_flag(hdev, HCI_CONFIG) ||
2948 	    hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
2949 	    hci_dev_test_flag(hdev, HCI_UNREGISTER))
2950 		return 0;
2951 
2952 	return hci_cmd_sync_queue(hdev, update_passive_scan_sync, NULL, NULL);
2953 }
2954 
2955 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
2956 {
2957 	int err;
2958 
2959 	if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
2960 		return 0;
2961 
2962 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
2963 				    sizeof(val), &val, HCI_CMD_TIMEOUT);
2964 
2965 	if (!err) {
2966 		if (val) {
2967 			hdev->features[1][0] |= LMP_HOST_SC;
2968 			hci_dev_set_flag(hdev, HCI_SC_ENABLED);
2969 		} else {
2970 			hdev->features[1][0] &= ~LMP_HOST_SC;
2971 			hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
2972 		}
2973 	}
2974 
2975 	return err;
2976 }
2977 
2978 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
2979 {
2980 	int err;
2981 
2982 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
2983 	    lmp_host_ssp_capable(hdev))
2984 		return 0;
2985 
2986 	if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
2987 		__hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
2988 				      sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2989 	}
2990 
2991 	err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
2992 				    sizeof(mode), &mode, HCI_CMD_TIMEOUT);
2993 	if (err)
2994 		return err;
2995 
2996 	return hci_write_sc_support_sync(hdev, 0x01);
2997 }
2998 
2999 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
3000 {
3001 	struct hci_cp_write_le_host_supported cp;
3002 
3003 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
3004 	    !lmp_bredr_capable(hdev))
3005 		return 0;
3006 
3007 	/* Check first if we already have the right host state
3008 	 * (host features set)
3009 	 */
3010 	if (le == lmp_host_le_capable(hdev) &&
3011 	    simul == lmp_host_le_br_capable(hdev))
3012 		return 0;
3013 
3014 	memset(&cp, 0, sizeof(cp));
3015 
3016 	cp.le = le;
3017 	cp.simul = simul;
3018 
3019 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3020 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3021 }
3022 
3023 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
3024 {
3025 	struct adv_info *adv, *tmp;
3026 	int err;
3027 
3028 	if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
3029 		return 0;
3030 
3031 	/* If RPA Resolution has not been enable yet it means the
3032 	 * resolving list is empty and we should attempt to program the
3033 	 * local IRK in order to support using own_addr_type
3034 	 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
3035 	 */
3036 	if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
3037 		hci_le_add_resolve_list_sync(hdev, NULL);
3038 		hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
3039 	}
3040 
3041 	/* Make sure the controller has a good default for
3042 	 * advertising data. This also applies to the case
3043 	 * where BR/EDR was toggled during the AUTO_OFF phase.
3044 	 */
3045 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3046 	    list_empty(&hdev->adv_instances)) {
3047 		if (ext_adv_capable(hdev)) {
3048 			err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
3049 			if (!err)
3050 				hci_update_scan_rsp_data_sync(hdev, 0x00);
3051 		} else {
3052 			err = hci_update_adv_data_sync(hdev, 0x00);
3053 			if (!err)
3054 				hci_update_scan_rsp_data_sync(hdev, 0x00);
3055 		}
3056 
3057 		if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
3058 			hci_enable_advertising_sync(hdev);
3059 	}
3060 
3061 	/* Call for each tracked instance to be scheduled */
3062 	list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
3063 		hci_schedule_adv_instance_sync(hdev, adv->instance, true);
3064 
3065 	return 0;
3066 }
3067 
3068 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
3069 {
3070 	u8 link_sec;
3071 
3072 	link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3073 	if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
3074 		return 0;
3075 
3076 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
3077 				     sizeof(link_sec), &link_sec,
3078 				     HCI_CMD_TIMEOUT);
3079 }
3080 
3081 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
3082 {
3083 	struct hci_cp_write_page_scan_activity cp;
3084 	u8 type;
3085 	int err = 0;
3086 
3087 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3088 		return 0;
3089 
3090 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3091 		return 0;
3092 
3093 	memset(&cp, 0, sizeof(cp));
3094 
3095 	if (enable) {
3096 		type = PAGE_SCAN_TYPE_INTERLACED;
3097 
3098 		/* 160 msec page scan interval */
3099 		cp.interval = cpu_to_le16(0x0100);
3100 	} else {
3101 		type = hdev->def_page_scan_type;
3102 		cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3103 	}
3104 
3105 	cp.window = cpu_to_le16(hdev->def_page_scan_window);
3106 
3107 	if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3108 	    __cpu_to_le16(hdev->page_scan_window) != cp.window) {
3109 		err = __hci_cmd_sync_status(hdev,
3110 					    HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3111 					    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3112 		if (err)
3113 			return err;
3114 	}
3115 
3116 	if (hdev->page_scan_type != type)
3117 		err = __hci_cmd_sync_status(hdev,
3118 					    HCI_OP_WRITE_PAGE_SCAN_TYPE,
3119 					    sizeof(type), &type,
3120 					    HCI_CMD_TIMEOUT);
3121 
3122 	return err;
3123 }
3124 
3125 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3126 {
3127 	struct bdaddr_list *b;
3128 
3129 	list_for_each_entry(b, &hdev->accept_list, list) {
3130 		struct hci_conn *conn;
3131 
3132 		conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3133 		if (!conn)
3134 			return true;
3135 
3136 		if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3137 			return true;
3138 	}
3139 
3140 	return false;
3141 }
3142 
3143 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3144 {
3145 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3146 					    sizeof(val), &val,
3147 					    HCI_CMD_TIMEOUT);
3148 }
3149 
3150 int hci_update_scan_sync(struct hci_dev *hdev)
3151 {
3152 	u8 scan;
3153 
3154 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3155 		return 0;
3156 
3157 	if (!hdev_is_powered(hdev))
3158 		return 0;
3159 
3160 	if (mgmt_powering_down(hdev))
3161 		return 0;
3162 
3163 	if (hdev->scanning_paused)
3164 		return 0;
3165 
3166 	if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3167 	    disconnected_accept_list_entries(hdev))
3168 		scan = SCAN_PAGE;
3169 	else
3170 		scan = SCAN_DISABLED;
3171 
3172 	if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3173 		scan |= SCAN_INQUIRY;
3174 
3175 	if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3176 	    test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3177 		return 0;
3178 
3179 	return hci_write_scan_enable_sync(hdev, scan);
3180 }
3181 
3182 int hci_update_name_sync(struct hci_dev *hdev)
3183 {
3184 	struct hci_cp_write_local_name cp;
3185 
3186 	memset(&cp, 0, sizeof(cp));
3187 
3188 	memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3189 
3190 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3191 					    sizeof(cp), &cp,
3192 					    HCI_CMD_TIMEOUT);
3193 }
3194 
3195 /* This function perform powered update HCI command sequence after the HCI init
3196  * sequence which end up resetting all states, the sequence is as follows:
3197  *
3198  * HCI_SSP_ENABLED(Enable SSP)
3199  * HCI_LE_ENABLED(Enable LE)
3200  * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3201  * Update adv data)
3202  * Enable Authentication
3203  * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3204  * Set Name -> Set EIR)
3205  * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3206  */
3207 int hci_powered_update_sync(struct hci_dev *hdev)
3208 {
3209 	int err;
3210 
3211 	/* Register the available SMP channels (BR/EDR and LE) only when
3212 	 * successfully powering on the controller. This late
3213 	 * registration is required so that LE SMP can clearly decide if
3214 	 * the public address or static address is used.
3215 	 */
3216 	smp_register(hdev);
3217 
3218 	err = hci_write_ssp_mode_sync(hdev, 0x01);
3219 	if (err)
3220 		return err;
3221 
3222 	err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3223 	if (err)
3224 		return err;
3225 
3226 	err = hci_powered_update_adv_sync(hdev);
3227 	if (err)
3228 		return err;
3229 
3230 	err = hci_write_auth_enable_sync(hdev);
3231 	if (err)
3232 		return err;
3233 
3234 	if (lmp_bredr_capable(hdev)) {
3235 		if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3236 			hci_write_fast_connectable_sync(hdev, true);
3237 		else
3238 			hci_write_fast_connectable_sync(hdev, false);
3239 		hci_update_scan_sync(hdev);
3240 		hci_update_class_sync(hdev);
3241 		hci_update_name_sync(hdev);
3242 		hci_update_eir_sync(hdev);
3243 	}
3244 
3245 	/* If forcing static address is in use or there is no public
3246 	 * address use the static address as random address (but skip
3247 	 * the HCI command if the current random address is already the
3248 	 * static one.
3249 	 *
3250 	 * In case BR/EDR has been disabled on a dual-mode controller
3251 	 * and a static address has been configured, then use that
3252 	 * address instead of the public BR/EDR address.
3253 	 */
3254 	if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3255 	    (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3256 	    !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3257 		if (bacmp(&hdev->static_addr, BDADDR_ANY))
3258 			return hci_set_random_addr_sync(hdev,
3259 							&hdev->static_addr);
3260 	}
3261 
3262 	return 0;
3263 }
3264 
3265 /**
3266  * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3267  *				       (BD_ADDR) for a HCI device from
3268  *				       a firmware node property.
3269  * @hdev:	The HCI device
3270  *
3271  * Search the firmware node for 'local-bd-address'.
3272  *
3273  * All-zero BD addresses are rejected, because those could be properties
3274  * that exist in the firmware tables, but were not updated by the firmware. For
3275  * example, the DTS could define 'local-bd-address', with zero BD addresses.
3276  */
3277 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3278 {
3279 	struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3280 	bdaddr_t ba;
3281 	int ret;
3282 
3283 	ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3284 					    (u8 *)&ba, sizeof(ba));
3285 	if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3286 		return;
3287 
3288 	bacpy(&hdev->public_addr, &ba);
3289 }
3290 
3291 struct hci_init_stage {
3292 	int (*func)(struct hci_dev *hdev);
3293 };
3294 
3295 /* Run init stage NULL terminated function table */
3296 static int hci_init_stage_sync(struct hci_dev *hdev,
3297 			       const struct hci_init_stage *stage)
3298 {
3299 	size_t i;
3300 
3301 	for (i = 0; stage[i].func; i++) {
3302 		int err;
3303 
3304 		err = stage[i].func(hdev);
3305 		if (err)
3306 			return err;
3307 	}
3308 
3309 	return 0;
3310 }
3311 
3312 /* Read Local Version */
3313 static int hci_read_local_version_sync(struct hci_dev *hdev)
3314 {
3315 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3316 				     0, NULL, HCI_CMD_TIMEOUT);
3317 }
3318 
3319 /* Read BD Address */
3320 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3321 {
3322 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3323 				     0, NULL, HCI_CMD_TIMEOUT);
3324 }
3325 
3326 #define HCI_INIT(_func) \
3327 { \
3328 	.func = _func, \
3329 }
3330 
3331 static const struct hci_init_stage hci_init0[] = {
3332 	/* HCI_OP_READ_LOCAL_VERSION */
3333 	HCI_INIT(hci_read_local_version_sync),
3334 	/* HCI_OP_READ_BD_ADDR */
3335 	HCI_INIT(hci_read_bd_addr_sync),
3336 	{}
3337 };
3338 
3339 int hci_reset_sync(struct hci_dev *hdev)
3340 {
3341 	int err;
3342 
3343 	set_bit(HCI_RESET, &hdev->flags);
3344 
3345 	err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3346 				    HCI_CMD_TIMEOUT);
3347 	if (err)
3348 		return err;
3349 
3350 	return 0;
3351 }
3352 
3353 static int hci_init0_sync(struct hci_dev *hdev)
3354 {
3355 	int err;
3356 
3357 	bt_dev_dbg(hdev, "");
3358 
3359 	/* Reset */
3360 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3361 		err = hci_reset_sync(hdev);
3362 		if (err)
3363 			return err;
3364 	}
3365 
3366 	return hci_init_stage_sync(hdev, hci_init0);
3367 }
3368 
3369 static int hci_unconf_init_sync(struct hci_dev *hdev)
3370 {
3371 	int err;
3372 
3373 	if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3374 		return 0;
3375 
3376 	err = hci_init0_sync(hdev);
3377 	if (err < 0)
3378 		return err;
3379 
3380 	if (hci_dev_test_flag(hdev, HCI_SETUP))
3381 		hci_debugfs_create_basic(hdev);
3382 
3383 	return 0;
3384 }
3385 
3386 /* Read Local Supported Features. */
3387 static int hci_read_local_features_sync(struct hci_dev *hdev)
3388 {
3389 	 /* Not all AMP controllers support this command */
3390 	if (hdev->dev_type == HCI_AMP && !(hdev->commands[14] & 0x20))
3391 		return 0;
3392 
3393 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3394 				     0, NULL, HCI_CMD_TIMEOUT);
3395 }
3396 
3397 /* BR Controller init stage 1 command sequence */
3398 static const struct hci_init_stage br_init1[] = {
3399 	/* HCI_OP_READ_LOCAL_FEATURES */
3400 	HCI_INIT(hci_read_local_features_sync),
3401 	/* HCI_OP_READ_LOCAL_VERSION */
3402 	HCI_INIT(hci_read_local_version_sync),
3403 	/* HCI_OP_READ_BD_ADDR */
3404 	HCI_INIT(hci_read_bd_addr_sync),
3405 	{}
3406 };
3407 
3408 /* Read Local Commands */
3409 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3410 {
3411 	/* All Bluetooth 1.2 and later controllers should support the
3412 	 * HCI command for reading the local supported commands.
3413 	 *
3414 	 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3415 	 * but do not have support for this command. If that is the case,
3416 	 * the driver can quirk the behavior and skip reading the local
3417 	 * supported commands.
3418 	 */
3419 	if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3420 	    !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3421 		return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3422 					     0, NULL, HCI_CMD_TIMEOUT);
3423 
3424 	return 0;
3425 }
3426 
3427 /* Read Local AMP Info */
3428 static int hci_read_local_amp_info_sync(struct hci_dev *hdev)
3429 {
3430 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_AMP_INFO,
3431 				     0, NULL, HCI_CMD_TIMEOUT);
3432 }
3433 
3434 /* Read Data Blk size */
3435 static int hci_read_data_block_size_sync(struct hci_dev *hdev)
3436 {
3437 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DATA_BLOCK_SIZE,
3438 				     0, NULL, HCI_CMD_TIMEOUT);
3439 }
3440 
3441 /* Read Flow Control Mode */
3442 static int hci_read_flow_control_mode_sync(struct hci_dev *hdev)
3443 {
3444 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_FLOW_CONTROL_MODE,
3445 				     0, NULL, HCI_CMD_TIMEOUT);
3446 }
3447 
3448 /* Read Location Data */
3449 static int hci_read_location_data_sync(struct hci_dev *hdev)
3450 {
3451 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCATION_DATA,
3452 				     0, NULL, HCI_CMD_TIMEOUT);
3453 }
3454 
3455 /* AMP Controller init stage 1 command sequence */
3456 static const struct hci_init_stage amp_init1[] = {
3457 	/* HCI_OP_READ_LOCAL_VERSION */
3458 	HCI_INIT(hci_read_local_version_sync),
3459 	/* HCI_OP_READ_LOCAL_COMMANDS */
3460 	HCI_INIT(hci_read_local_cmds_sync),
3461 	/* HCI_OP_READ_LOCAL_AMP_INFO */
3462 	HCI_INIT(hci_read_local_amp_info_sync),
3463 	/* HCI_OP_READ_DATA_BLOCK_SIZE */
3464 	HCI_INIT(hci_read_data_block_size_sync),
3465 	/* HCI_OP_READ_FLOW_CONTROL_MODE */
3466 	HCI_INIT(hci_read_flow_control_mode_sync),
3467 	/* HCI_OP_READ_LOCATION_DATA */
3468 	HCI_INIT(hci_read_location_data_sync),
3469 	{}
3470 };
3471 
3472 static int hci_init1_sync(struct hci_dev *hdev)
3473 {
3474 	int err;
3475 
3476 	bt_dev_dbg(hdev, "");
3477 
3478 	/* Reset */
3479 	if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3480 		err = hci_reset_sync(hdev);
3481 		if (err)
3482 			return err;
3483 	}
3484 
3485 	switch (hdev->dev_type) {
3486 	case HCI_PRIMARY:
3487 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
3488 		return hci_init_stage_sync(hdev, br_init1);
3489 	case HCI_AMP:
3490 		hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
3491 		return hci_init_stage_sync(hdev, amp_init1);
3492 	default:
3493 		bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
3494 		break;
3495 	}
3496 
3497 	return 0;
3498 }
3499 
3500 /* AMP Controller init stage 2 command sequence */
3501 static const struct hci_init_stage amp_init2[] = {
3502 	/* HCI_OP_READ_LOCAL_FEATURES */
3503 	HCI_INIT(hci_read_local_features_sync),
3504 	{}
3505 };
3506 
3507 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
3508 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3509 {
3510 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3511 				     0, NULL, HCI_CMD_TIMEOUT);
3512 }
3513 
3514 /* Read Class of Device */
3515 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3516 {
3517 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3518 				     0, NULL, HCI_CMD_TIMEOUT);
3519 }
3520 
3521 /* Read Local Name */
3522 static int hci_read_local_name_sync(struct hci_dev *hdev)
3523 {
3524 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3525 				     0, NULL, HCI_CMD_TIMEOUT);
3526 }
3527 
3528 /* Read Voice Setting */
3529 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3530 {
3531 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3532 				     0, NULL, HCI_CMD_TIMEOUT);
3533 }
3534 
3535 /* Read Number of Supported IAC */
3536 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3537 {
3538 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3539 				     0, NULL, HCI_CMD_TIMEOUT);
3540 }
3541 
3542 /* Read Current IAC LAP */
3543 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3544 {
3545 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3546 				     0, NULL, HCI_CMD_TIMEOUT);
3547 }
3548 
3549 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3550 				     u8 cond_type, bdaddr_t *bdaddr,
3551 				     u8 auto_accept)
3552 {
3553 	struct hci_cp_set_event_filter cp;
3554 
3555 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3556 		return 0;
3557 
3558 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3559 		return 0;
3560 
3561 	memset(&cp, 0, sizeof(cp));
3562 	cp.flt_type = flt_type;
3563 
3564 	if (flt_type != HCI_FLT_CLEAR_ALL) {
3565 		cp.cond_type = cond_type;
3566 		bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3567 		cp.addr_conn_flt.auto_accept = auto_accept;
3568 	}
3569 
3570 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3571 				     flt_type == HCI_FLT_CLEAR_ALL ?
3572 				     sizeof(cp.flt_type) : sizeof(cp), &cp,
3573 				     HCI_CMD_TIMEOUT);
3574 }
3575 
3576 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3577 {
3578 	if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3579 		return 0;
3580 
3581 	/* In theory the state machine should not reach here unless
3582 	 * a hci_set_event_filter_sync() call succeeds, but we do
3583 	 * the check both for parity and as a future reminder.
3584 	 */
3585 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3586 		return 0;
3587 
3588 	return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3589 					 BDADDR_ANY, 0x00);
3590 }
3591 
3592 /* Connection accept timeout ~20 secs */
3593 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3594 {
3595 	__le16 param = cpu_to_le16(0x7d00);
3596 
3597 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3598 				     sizeof(param), &param, HCI_CMD_TIMEOUT);
3599 }
3600 
3601 /* BR Controller init stage 2 command sequence */
3602 static const struct hci_init_stage br_init2[] = {
3603 	/* HCI_OP_READ_BUFFER_SIZE */
3604 	HCI_INIT(hci_read_buffer_size_sync),
3605 	/* HCI_OP_READ_CLASS_OF_DEV */
3606 	HCI_INIT(hci_read_dev_class_sync),
3607 	/* HCI_OP_READ_LOCAL_NAME */
3608 	HCI_INIT(hci_read_local_name_sync),
3609 	/* HCI_OP_READ_VOICE_SETTING */
3610 	HCI_INIT(hci_read_voice_setting_sync),
3611 	/* HCI_OP_READ_NUM_SUPPORTED_IAC */
3612 	HCI_INIT(hci_read_num_supported_iac_sync),
3613 	/* HCI_OP_READ_CURRENT_IAC_LAP */
3614 	HCI_INIT(hci_read_current_iac_lap_sync),
3615 	/* HCI_OP_SET_EVENT_FLT */
3616 	HCI_INIT(hci_clear_event_filter_sync),
3617 	/* HCI_OP_WRITE_CA_TIMEOUT */
3618 	HCI_INIT(hci_write_ca_timeout_sync),
3619 	{}
3620 };
3621 
3622 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3623 {
3624 	u8 mode = 0x01;
3625 
3626 	if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3627 		return 0;
3628 
3629 	/* When SSP is available, then the host features page
3630 	 * should also be available as well. However some
3631 	 * controllers list the max_page as 0 as long as SSP
3632 	 * has not been enabled. To achieve proper debugging
3633 	 * output, force the minimum max_page to 1 at least.
3634 	 */
3635 	hdev->max_page = 0x01;
3636 
3637 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3638 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3639 }
3640 
3641 static int hci_write_eir_sync(struct hci_dev *hdev)
3642 {
3643 	struct hci_cp_write_eir cp;
3644 
3645 	if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3646 		return 0;
3647 
3648 	memset(hdev->eir, 0, sizeof(hdev->eir));
3649 	memset(&cp, 0, sizeof(cp));
3650 
3651 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3652 				     HCI_CMD_TIMEOUT);
3653 }
3654 
3655 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3656 {
3657 	u8 mode;
3658 
3659 	if (!lmp_inq_rssi_capable(hdev) &&
3660 	    !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3661 		return 0;
3662 
3663 	/* If Extended Inquiry Result events are supported, then
3664 	 * they are clearly preferred over Inquiry Result with RSSI
3665 	 * events.
3666 	 */
3667 	mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3668 
3669 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3670 				     sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3671 }
3672 
3673 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3674 {
3675 	if (!lmp_inq_tx_pwr_capable(hdev))
3676 		return 0;
3677 
3678 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3679 				     0, NULL, HCI_CMD_TIMEOUT);
3680 }
3681 
3682 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3683 {
3684 	struct hci_cp_read_local_ext_features cp;
3685 
3686 	if (!lmp_ext_feat_capable(hdev))
3687 		return 0;
3688 
3689 	memset(&cp, 0, sizeof(cp));
3690 	cp.page = page;
3691 
3692 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3693 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3694 }
3695 
3696 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3697 {
3698 	return hci_read_local_ext_features_sync(hdev, 0x01);
3699 }
3700 
3701 /* HCI Controller init stage 2 command sequence */
3702 static const struct hci_init_stage hci_init2[] = {
3703 	/* HCI_OP_READ_LOCAL_COMMANDS */
3704 	HCI_INIT(hci_read_local_cmds_sync),
3705 	/* HCI_OP_WRITE_SSP_MODE */
3706 	HCI_INIT(hci_write_ssp_mode_1_sync),
3707 	/* HCI_OP_WRITE_EIR */
3708 	HCI_INIT(hci_write_eir_sync),
3709 	/* HCI_OP_WRITE_INQUIRY_MODE */
3710 	HCI_INIT(hci_write_inquiry_mode_sync),
3711 	/* HCI_OP_READ_INQ_RSP_TX_POWER */
3712 	HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3713 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
3714 	HCI_INIT(hci_read_local_ext_features_1_sync),
3715 	/* HCI_OP_WRITE_AUTH_ENABLE */
3716 	HCI_INIT(hci_write_auth_enable_sync),
3717 	{}
3718 };
3719 
3720 /* Read LE Buffer Size */
3721 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3722 {
3723 	/* Use Read LE Buffer Size V2 if supported */
3724 	if (iso_capable(hdev) && hdev->commands[41] & 0x20)
3725 		return __hci_cmd_sync_status(hdev,
3726 					     HCI_OP_LE_READ_BUFFER_SIZE_V2,
3727 					     0, NULL, HCI_CMD_TIMEOUT);
3728 
3729 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3730 				     0, NULL, HCI_CMD_TIMEOUT);
3731 }
3732 
3733 /* Read LE Local Supported Features */
3734 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3735 {
3736 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3737 				     0, NULL, HCI_CMD_TIMEOUT);
3738 }
3739 
3740 /* Read LE Supported States */
3741 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3742 {
3743 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3744 				     0, NULL, HCI_CMD_TIMEOUT);
3745 }
3746 
3747 /* LE Controller init stage 2 command sequence */
3748 static const struct hci_init_stage le_init2[] = {
3749 	/* HCI_OP_LE_READ_LOCAL_FEATURES */
3750 	HCI_INIT(hci_le_read_local_features_sync),
3751 	/* HCI_OP_LE_READ_BUFFER_SIZE */
3752 	HCI_INIT(hci_le_read_buffer_size_sync),
3753 	/* HCI_OP_LE_READ_SUPPORTED_STATES */
3754 	HCI_INIT(hci_le_read_supported_states_sync),
3755 	{}
3756 };
3757 
3758 static int hci_init2_sync(struct hci_dev *hdev)
3759 {
3760 	int err;
3761 
3762 	bt_dev_dbg(hdev, "");
3763 
3764 	if (hdev->dev_type == HCI_AMP)
3765 		return hci_init_stage_sync(hdev, amp_init2);
3766 
3767 	err = hci_init_stage_sync(hdev, hci_init2);
3768 	if (err)
3769 		return err;
3770 
3771 	if (lmp_bredr_capable(hdev)) {
3772 		err = hci_init_stage_sync(hdev, br_init2);
3773 		if (err)
3774 			return err;
3775 	} else {
3776 		hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3777 	}
3778 
3779 	if (lmp_le_capable(hdev)) {
3780 		err = hci_init_stage_sync(hdev, le_init2);
3781 		if (err)
3782 			return err;
3783 		/* LE-only controllers have LE implicitly enabled */
3784 		if (!lmp_bredr_capable(hdev))
3785 			hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3786 	}
3787 
3788 	return 0;
3789 }
3790 
3791 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3792 {
3793 	/* The second byte is 0xff instead of 0x9f (two reserved bits
3794 	 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3795 	 * command otherwise.
3796 	 */
3797 	u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3798 
3799 	/* CSR 1.1 dongles does not accept any bitfield so don't try to set
3800 	 * any event mask for pre 1.2 devices.
3801 	 */
3802 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3803 		return 0;
3804 
3805 	if (lmp_bredr_capable(hdev)) {
3806 		events[4] |= 0x01; /* Flow Specification Complete */
3807 
3808 		/* Don't set Disconnect Complete when suspended as that
3809 		 * would wakeup the host when disconnecting due to
3810 		 * suspend.
3811 		 */
3812 		if (hdev->suspended)
3813 			events[0] &= 0xef;
3814 	} else {
3815 		/* Use a different default for LE-only devices */
3816 		memset(events, 0, sizeof(events));
3817 		events[1] |= 0x20; /* Command Complete */
3818 		events[1] |= 0x40; /* Command Status */
3819 		events[1] |= 0x80; /* Hardware Error */
3820 
3821 		/* If the controller supports the Disconnect command, enable
3822 		 * the corresponding event. In addition enable packet flow
3823 		 * control related events.
3824 		 */
3825 		if (hdev->commands[0] & 0x20) {
3826 			/* Don't set Disconnect Complete when suspended as that
3827 			 * would wakeup the host when disconnecting due to
3828 			 * suspend.
3829 			 */
3830 			if (!hdev->suspended)
3831 				events[0] |= 0x10; /* Disconnection Complete */
3832 			events[2] |= 0x04; /* Number of Completed Packets */
3833 			events[3] |= 0x02; /* Data Buffer Overflow */
3834 		}
3835 
3836 		/* If the controller supports the Read Remote Version
3837 		 * Information command, enable the corresponding event.
3838 		 */
3839 		if (hdev->commands[2] & 0x80)
3840 			events[1] |= 0x08; /* Read Remote Version Information
3841 					    * Complete
3842 					    */
3843 
3844 		if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
3845 			events[0] |= 0x80; /* Encryption Change */
3846 			events[5] |= 0x80; /* Encryption Key Refresh Complete */
3847 		}
3848 	}
3849 
3850 	if (lmp_inq_rssi_capable(hdev) ||
3851 	    test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3852 		events[4] |= 0x02; /* Inquiry Result with RSSI */
3853 
3854 	if (lmp_ext_feat_capable(hdev))
3855 		events[4] |= 0x04; /* Read Remote Extended Features Complete */
3856 
3857 	if (lmp_esco_capable(hdev)) {
3858 		events[5] |= 0x08; /* Synchronous Connection Complete */
3859 		events[5] |= 0x10; /* Synchronous Connection Changed */
3860 	}
3861 
3862 	if (lmp_sniffsubr_capable(hdev))
3863 		events[5] |= 0x20; /* Sniff Subrating */
3864 
3865 	if (lmp_pause_enc_capable(hdev))
3866 		events[5] |= 0x80; /* Encryption Key Refresh Complete */
3867 
3868 	if (lmp_ext_inq_capable(hdev))
3869 		events[5] |= 0x40; /* Extended Inquiry Result */
3870 
3871 	if (lmp_no_flush_capable(hdev))
3872 		events[7] |= 0x01; /* Enhanced Flush Complete */
3873 
3874 	if (lmp_lsto_capable(hdev))
3875 		events[6] |= 0x80; /* Link Supervision Timeout Changed */
3876 
3877 	if (lmp_ssp_capable(hdev)) {
3878 		events[6] |= 0x01;	/* IO Capability Request */
3879 		events[6] |= 0x02;	/* IO Capability Response */
3880 		events[6] |= 0x04;	/* User Confirmation Request */
3881 		events[6] |= 0x08;	/* User Passkey Request */
3882 		events[6] |= 0x10;	/* Remote OOB Data Request */
3883 		events[6] |= 0x20;	/* Simple Pairing Complete */
3884 		events[7] |= 0x04;	/* User Passkey Notification */
3885 		events[7] |= 0x08;	/* Keypress Notification */
3886 		events[7] |= 0x10;	/* Remote Host Supported
3887 					 * Features Notification
3888 					 */
3889 	}
3890 
3891 	if (lmp_le_capable(hdev))
3892 		events[7] |= 0x20;	/* LE Meta-Event */
3893 
3894 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
3895 				     sizeof(events), events, HCI_CMD_TIMEOUT);
3896 }
3897 
3898 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
3899 {
3900 	struct hci_cp_read_stored_link_key cp;
3901 
3902 	if (!(hdev->commands[6] & 0x20) ||
3903 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
3904 		return 0;
3905 
3906 	memset(&cp, 0, sizeof(cp));
3907 	bacpy(&cp.bdaddr, BDADDR_ANY);
3908 	cp.read_all = 0x01;
3909 
3910 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
3911 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3912 }
3913 
3914 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
3915 {
3916 	struct hci_cp_write_def_link_policy cp;
3917 	u16 link_policy = 0;
3918 
3919 	if (!(hdev->commands[5] & 0x10))
3920 		return 0;
3921 
3922 	memset(&cp, 0, sizeof(cp));
3923 
3924 	if (lmp_rswitch_capable(hdev))
3925 		link_policy |= HCI_LP_RSWITCH;
3926 	if (lmp_hold_capable(hdev))
3927 		link_policy |= HCI_LP_HOLD;
3928 	if (lmp_sniff_capable(hdev))
3929 		link_policy |= HCI_LP_SNIFF;
3930 	if (lmp_park_capable(hdev))
3931 		link_policy |= HCI_LP_PARK;
3932 
3933 	cp.policy = cpu_to_le16(link_policy);
3934 
3935 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
3936 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3937 }
3938 
3939 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
3940 {
3941 	if (!(hdev->commands[8] & 0x01))
3942 		return 0;
3943 
3944 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
3945 				     0, NULL, HCI_CMD_TIMEOUT);
3946 }
3947 
3948 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
3949 {
3950 	if (!(hdev->commands[18] & 0x04) ||
3951 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
3952 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
3953 		return 0;
3954 
3955 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
3956 				     0, NULL, HCI_CMD_TIMEOUT);
3957 }
3958 
3959 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
3960 {
3961 	/* Some older Broadcom based Bluetooth 1.2 controllers do not
3962 	 * support the Read Page Scan Type command. Check support for
3963 	 * this command in the bit mask of supported commands.
3964 	 */
3965 	if (!(hdev->commands[13] & 0x01))
3966 		return 0;
3967 
3968 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
3969 				     0, NULL, HCI_CMD_TIMEOUT);
3970 }
3971 
3972 /* Read features beyond page 1 if available */
3973 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
3974 {
3975 	u8 page;
3976 	int err;
3977 
3978 	if (!lmp_ext_feat_capable(hdev))
3979 		return 0;
3980 
3981 	for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
3982 	     page++) {
3983 		err = hci_read_local_ext_features_sync(hdev, page);
3984 		if (err)
3985 			return err;
3986 	}
3987 
3988 	return 0;
3989 }
3990 
3991 /* HCI Controller init stage 3 command sequence */
3992 static const struct hci_init_stage hci_init3[] = {
3993 	/* HCI_OP_SET_EVENT_MASK */
3994 	HCI_INIT(hci_set_event_mask_sync),
3995 	/* HCI_OP_READ_STORED_LINK_KEY */
3996 	HCI_INIT(hci_read_stored_link_key_sync),
3997 	/* HCI_OP_WRITE_DEF_LINK_POLICY */
3998 	HCI_INIT(hci_setup_link_policy_sync),
3999 	/* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
4000 	HCI_INIT(hci_read_page_scan_activity_sync),
4001 	/* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
4002 	HCI_INIT(hci_read_def_err_data_reporting_sync),
4003 	/* HCI_OP_READ_PAGE_SCAN_TYPE */
4004 	HCI_INIT(hci_read_page_scan_type_sync),
4005 	/* HCI_OP_READ_LOCAL_EXT_FEATURES */
4006 	HCI_INIT(hci_read_local_ext_features_all_sync),
4007 	{}
4008 };
4009 
4010 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
4011 {
4012 	u8 events[8];
4013 
4014 	if (!lmp_le_capable(hdev))
4015 		return 0;
4016 
4017 	memset(events, 0, sizeof(events));
4018 
4019 	if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
4020 		events[0] |= 0x10;	/* LE Long Term Key Request */
4021 
4022 	/* If controller supports the Connection Parameters Request
4023 	 * Link Layer Procedure, enable the corresponding event.
4024 	 */
4025 	if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
4026 		/* LE Remote Connection Parameter Request */
4027 		events[0] |= 0x20;
4028 
4029 	/* If the controller supports the Data Length Extension
4030 	 * feature, enable the corresponding event.
4031 	 */
4032 	if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
4033 		events[0] |= 0x40;	/* LE Data Length Change */
4034 
4035 	/* If the controller supports LL Privacy feature or LE Extended Adv,
4036 	 * enable the corresponding event.
4037 	 */
4038 	if (use_enhanced_conn_complete(hdev))
4039 		events[1] |= 0x02;	/* LE Enhanced Connection Complete */
4040 
4041 	/* If the controller supports Extended Scanner Filter
4042 	 * Policies, enable the corresponding event.
4043 	 */
4044 	if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
4045 		events[1] |= 0x04;	/* LE Direct Advertising Report */
4046 
4047 	/* If the controller supports Channel Selection Algorithm #2
4048 	 * feature, enable the corresponding event.
4049 	 */
4050 	if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
4051 		events[2] |= 0x08;	/* LE Channel Selection Algorithm */
4052 
4053 	/* If the controller supports the LE Set Scan Enable command,
4054 	 * enable the corresponding advertising report event.
4055 	 */
4056 	if (hdev->commands[26] & 0x08)
4057 		events[0] |= 0x02;	/* LE Advertising Report */
4058 
4059 	/* If the controller supports the LE Create Connection
4060 	 * command, enable the corresponding event.
4061 	 */
4062 	if (hdev->commands[26] & 0x10)
4063 		events[0] |= 0x01;	/* LE Connection Complete */
4064 
4065 	/* If the controller supports the LE Connection Update
4066 	 * command, enable the corresponding event.
4067 	 */
4068 	if (hdev->commands[27] & 0x04)
4069 		events[0] |= 0x04;	/* LE Connection Update Complete */
4070 
4071 	/* If the controller supports the LE Read Remote Used Features
4072 	 * command, enable the corresponding event.
4073 	 */
4074 	if (hdev->commands[27] & 0x20)
4075 		/* LE Read Remote Used Features Complete */
4076 		events[0] |= 0x08;
4077 
4078 	/* If the controller supports the LE Read Local P-256
4079 	 * Public Key command, enable the corresponding event.
4080 	 */
4081 	if (hdev->commands[34] & 0x02)
4082 		/* LE Read Local P-256 Public Key Complete */
4083 		events[0] |= 0x80;
4084 
4085 	/* If the controller supports the LE Generate DHKey
4086 	 * command, enable the corresponding event.
4087 	 */
4088 	if (hdev->commands[34] & 0x04)
4089 		events[1] |= 0x01;	/* LE Generate DHKey Complete */
4090 
4091 	/* If the controller supports the LE Set Default PHY or
4092 	 * LE Set PHY commands, enable the corresponding event.
4093 	 */
4094 	if (hdev->commands[35] & (0x20 | 0x40))
4095 		events[1] |= 0x08;        /* LE PHY Update Complete */
4096 
4097 	/* If the controller supports LE Set Extended Scan Parameters
4098 	 * and LE Set Extended Scan Enable commands, enable the
4099 	 * corresponding event.
4100 	 */
4101 	if (use_ext_scan(hdev))
4102 		events[1] |= 0x10;	/* LE Extended Advertising Report */
4103 
4104 	/* If the controller supports the LE Extended Advertising
4105 	 * command, enable the corresponding event.
4106 	 */
4107 	if (ext_adv_capable(hdev))
4108 		events[2] |= 0x02;	/* LE Advertising Set Terminated */
4109 
4110 	if (cis_capable(hdev)) {
4111 		events[3] |= 0x01;	/* LE CIS Established */
4112 		if (cis_peripheral_capable(hdev))
4113 			events[3] |= 0x02; /* LE CIS Request */
4114 	}
4115 
4116 	if (bis_capable(hdev)) {
4117 		events[1] |= 0x20;	/* LE PA Report */
4118 		events[1] |= 0x40;	/* LE PA Sync Established */
4119 		events[3] |= 0x04;	/* LE Create BIG Complete */
4120 		events[3] |= 0x08;	/* LE Terminate BIG Complete */
4121 		events[3] |= 0x10;	/* LE BIG Sync Established */
4122 		events[3] |= 0x20;	/* LE BIG Sync Loss */
4123 		events[4] |= 0x02;	/* LE BIG Info Advertising Report */
4124 	}
4125 
4126 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4127 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4128 }
4129 
4130 /* Read LE Advertising Channel TX Power */
4131 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4132 {
4133 	if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4134 		/* HCI TS spec forbids mixing of legacy and extended
4135 		 * advertising commands wherein READ_ADV_TX_POWER is
4136 		 * also included. So do not call it if extended adv
4137 		 * is supported otherwise controller will return
4138 		 * COMMAND_DISALLOWED for extended commands.
4139 		 */
4140 		return __hci_cmd_sync_status(hdev,
4141 					       HCI_OP_LE_READ_ADV_TX_POWER,
4142 					       0, NULL, HCI_CMD_TIMEOUT);
4143 	}
4144 
4145 	return 0;
4146 }
4147 
4148 /* Read LE Min/Max Tx Power*/
4149 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4150 {
4151 	if (!(hdev->commands[38] & 0x80) ||
4152 	    test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
4153 		return 0;
4154 
4155 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4156 				     0, NULL, HCI_CMD_TIMEOUT);
4157 }
4158 
4159 /* Read LE Accept List Size */
4160 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4161 {
4162 	if (!(hdev->commands[26] & 0x40))
4163 		return 0;
4164 
4165 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4166 				     0, NULL, HCI_CMD_TIMEOUT);
4167 }
4168 
4169 /* Clear LE Accept List */
4170 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
4171 {
4172 	if (!(hdev->commands[26] & 0x80))
4173 		return 0;
4174 
4175 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
4176 				     HCI_CMD_TIMEOUT);
4177 }
4178 
4179 /* Read LE Resolving List Size */
4180 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4181 {
4182 	if (!(hdev->commands[34] & 0x40))
4183 		return 0;
4184 
4185 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4186 				     0, NULL, HCI_CMD_TIMEOUT);
4187 }
4188 
4189 /* Clear LE Resolving List */
4190 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4191 {
4192 	if (!(hdev->commands[34] & 0x20))
4193 		return 0;
4194 
4195 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4196 				     HCI_CMD_TIMEOUT);
4197 }
4198 
4199 /* Set RPA timeout */
4200 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4201 {
4202 	__le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4203 
4204 	if (!(hdev->commands[35] & 0x04) ||
4205 	    test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
4206 		return 0;
4207 
4208 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4209 				     sizeof(timeout), &timeout,
4210 				     HCI_CMD_TIMEOUT);
4211 }
4212 
4213 /* Read LE Maximum Data Length */
4214 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4215 {
4216 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4217 		return 0;
4218 
4219 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4220 				     HCI_CMD_TIMEOUT);
4221 }
4222 
4223 /* Read LE Suggested Default Data Length */
4224 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4225 {
4226 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4227 		return 0;
4228 
4229 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4230 				     HCI_CMD_TIMEOUT);
4231 }
4232 
4233 /* Read LE Number of Supported Advertising Sets */
4234 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4235 {
4236 	if (!ext_adv_capable(hdev))
4237 		return 0;
4238 
4239 	return __hci_cmd_sync_status(hdev,
4240 				     HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4241 				     0, NULL, HCI_CMD_TIMEOUT);
4242 }
4243 
4244 /* Write LE Host Supported */
4245 static int hci_set_le_support_sync(struct hci_dev *hdev)
4246 {
4247 	struct hci_cp_write_le_host_supported cp;
4248 
4249 	/* LE-only devices do not support explicit enablement */
4250 	if (!lmp_bredr_capable(hdev))
4251 		return 0;
4252 
4253 	memset(&cp, 0, sizeof(cp));
4254 
4255 	if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4256 		cp.le = 0x01;
4257 		cp.simul = 0x00;
4258 	}
4259 
4260 	if (cp.le == lmp_host_le_capable(hdev))
4261 		return 0;
4262 
4263 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4264 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4265 }
4266 
4267 /* LE Set Host Feature */
4268 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4269 {
4270 	struct hci_cp_le_set_host_feature cp;
4271 
4272 	if (!iso_capable(hdev))
4273 		return 0;
4274 
4275 	memset(&cp, 0, sizeof(cp));
4276 
4277 	/* Isochronous Channels (Host Support) */
4278 	cp.bit_number = 32;
4279 	cp.bit_value = 1;
4280 
4281 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4282 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4283 }
4284 
4285 /* LE Controller init stage 3 command sequence */
4286 static const struct hci_init_stage le_init3[] = {
4287 	/* HCI_OP_LE_SET_EVENT_MASK */
4288 	HCI_INIT(hci_le_set_event_mask_sync),
4289 	/* HCI_OP_LE_READ_ADV_TX_POWER */
4290 	HCI_INIT(hci_le_read_adv_tx_power_sync),
4291 	/* HCI_OP_LE_READ_TRANSMIT_POWER */
4292 	HCI_INIT(hci_le_read_tx_power_sync),
4293 	/* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4294 	HCI_INIT(hci_le_read_accept_list_size_sync),
4295 	/* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4296 	HCI_INIT(hci_le_clear_accept_list_sync),
4297 	/* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4298 	HCI_INIT(hci_le_read_resolv_list_size_sync),
4299 	/* HCI_OP_LE_CLEAR_RESOLV_LIST */
4300 	HCI_INIT(hci_le_clear_resolv_list_sync),
4301 	/* HCI_OP_LE_SET_RPA_TIMEOUT */
4302 	HCI_INIT(hci_le_set_rpa_timeout_sync),
4303 	/* HCI_OP_LE_READ_MAX_DATA_LEN */
4304 	HCI_INIT(hci_le_read_max_data_len_sync),
4305 	/* HCI_OP_LE_READ_DEF_DATA_LEN */
4306 	HCI_INIT(hci_le_read_def_data_len_sync),
4307 	/* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4308 	HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4309 	/* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4310 	HCI_INIT(hci_set_le_support_sync),
4311 	/* HCI_OP_LE_SET_HOST_FEATURE */
4312 	HCI_INIT(hci_le_set_host_feature_sync),
4313 	{}
4314 };
4315 
4316 static int hci_init3_sync(struct hci_dev *hdev)
4317 {
4318 	int err;
4319 
4320 	bt_dev_dbg(hdev, "");
4321 
4322 	err = hci_init_stage_sync(hdev, hci_init3);
4323 	if (err)
4324 		return err;
4325 
4326 	if (lmp_le_capable(hdev))
4327 		return hci_init_stage_sync(hdev, le_init3);
4328 
4329 	return 0;
4330 }
4331 
4332 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4333 {
4334 	struct hci_cp_delete_stored_link_key cp;
4335 
4336 	/* Some Broadcom based Bluetooth controllers do not support the
4337 	 * Delete Stored Link Key command. They are clearly indicating its
4338 	 * absence in the bit mask of supported commands.
4339 	 *
4340 	 * Check the supported commands and only if the command is marked
4341 	 * as supported send it. If not supported assume that the controller
4342 	 * does not have actual support for stored link keys which makes this
4343 	 * command redundant anyway.
4344 	 *
4345 	 * Some controllers indicate that they support handling deleting
4346 	 * stored link keys, but they don't. The quirk lets a driver
4347 	 * just disable this command.
4348 	 */
4349 	if (!(hdev->commands[6] & 0x80) ||
4350 	    test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4351 		return 0;
4352 
4353 	memset(&cp, 0, sizeof(cp));
4354 	bacpy(&cp.bdaddr, BDADDR_ANY);
4355 	cp.delete_all = 0x01;
4356 
4357 	return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4358 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4359 }
4360 
4361 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4362 {
4363 	u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4364 	bool changed = false;
4365 
4366 	/* Set event mask page 2 if the HCI command for it is supported */
4367 	if (!(hdev->commands[22] & 0x04))
4368 		return 0;
4369 
4370 	/* If Connectionless Peripheral Broadcast central role is supported
4371 	 * enable all necessary events for it.
4372 	 */
4373 	if (lmp_cpb_central_capable(hdev)) {
4374 		events[1] |= 0x40;	/* Triggered Clock Capture */
4375 		events[1] |= 0x80;	/* Synchronization Train Complete */
4376 		events[2] |= 0x08;	/* Truncated Page Complete */
4377 		events[2] |= 0x20;	/* CPB Channel Map Change */
4378 		changed = true;
4379 	}
4380 
4381 	/* If Connectionless Peripheral Broadcast peripheral role is supported
4382 	 * enable all necessary events for it.
4383 	 */
4384 	if (lmp_cpb_peripheral_capable(hdev)) {
4385 		events[2] |= 0x01;	/* Synchronization Train Received */
4386 		events[2] |= 0x02;	/* CPB Receive */
4387 		events[2] |= 0x04;	/* CPB Timeout */
4388 		events[2] |= 0x10;	/* Peripheral Page Response Timeout */
4389 		changed = true;
4390 	}
4391 
4392 	/* Enable Authenticated Payload Timeout Expired event if supported */
4393 	if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4394 		events[2] |= 0x80;
4395 		changed = true;
4396 	}
4397 
4398 	/* Some Broadcom based controllers indicate support for Set Event
4399 	 * Mask Page 2 command, but then actually do not support it. Since
4400 	 * the default value is all bits set to zero, the command is only
4401 	 * required if the event mask has to be changed. In case no change
4402 	 * to the event mask is needed, skip this command.
4403 	 */
4404 	if (!changed)
4405 		return 0;
4406 
4407 	return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4408 				     sizeof(events), events, HCI_CMD_TIMEOUT);
4409 }
4410 
4411 /* Read local codec list if the HCI command is supported */
4412 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4413 {
4414 	if (hdev->commands[45] & 0x04)
4415 		hci_read_supported_codecs_v2(hdev);
4416 	else if (hdev->commands[29] & 0x20)
4417 		hci_read_supported_codecs(hdev);
4418 
4419 	return 0;
4420 }
4421 
4422 /* Read local pairing options if the HCI command is supported */
4423 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4424 {
4425 	if (!(hdev->commands[41] & 0x08))
4426 		return 0;
4427 
4428 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4429 				     0, NULL, HCI_CMD_TIMEOUT);
4430 }
4431 
4432 /* Get MWS transport configuration if the HCI command is supported */
4433 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4434 {
4435 	if (!mws_transport_config_capable(hdev))
4436 		return 0;
4437 
4438 	return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4439 				     0, NULL, HCI_CMD_TIMEOUT);
4440 }
4441 
4442 /* Check for Synchronization Train support */
4443 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4444 {
4445 	if (!lmp_sync_train_capable(hdev))
4446 		return 0;
4447 
4448 	return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4449 				     0, NULL, HCI_CMD_TIMEOUT);
4450 }
4451 
4452 /* Enable Secure Connections if supported and configured */
4453 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4454 {
4455 	u8 support = 0x01;
4456 
4457 	if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4458 	    !bredr_sc_enabled(hdev))
4459 		return 0;
4460 
4461 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4462 				     sizeof(support), &support,
4463 				     HCI_CMD_TIMEOUT);
4464 }
4465 
4466 /* Set erroneous data reporting if supported to the wideband speech
4467  * setting value
4468  */
4469 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4470 {
4471 	struct hci_cp_write_def_err_data_reporting cp;
4472 	bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4473 
4474 	if (!(hdev->commands[18] & 0x08) ||
4475 	    !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4476 	    test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4477 		return 0;
4478 
4479 	if (enabled == hdev->err_data_reporting)
4480 		return 0;
4481 
4482 	memset(&cp, 0, sizeof(cp));
4483 	cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4484 				ERR_DATA_REPORTING_DISABLED;
4485 
4486 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4487 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4488 }
4489 
4490 static const struct hci_init_stage hci_init4[] = {
4491 	 /* HCI_OP_DELETE_STORED_LINK_KEY */
4492 	HCI_INIT(hci_delete_stored_link_key_sync),
4493 	/* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4494 	HCI_INIT(hci_set_event_mask_page_2_sync),
4495 	/* HCI_OP_READ_LOCAL_CODECS */
4496 	HCI_INIT(hci_read_local_codecs_sync),
4497 	 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4498 	HCI_INIT(hci_read_local_pairing_opts_sync),
4499 	 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4500 	HCI_INIT(hci_get_mws_transport_config_sync),
4501 	 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4502 	HCI_INIT(hci_read_sync_train_params_sync),
4503 	/* HCI_OP_WRITE_SC_SUPPORT */
4504 	HCI_INIT(hci_write_sc_support_1_sync),
4505 	/* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4506 	HCI_INIT(hci_set_err_data_report_sync),
4507 	{}
4508 };
4509 
4510 /* Set Suggested Default Data Length to maximum if supported */
4511 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4512 {
4513 	struct hci_cp_le_write_def_data_len cp;
4514 
4515 	if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4516 		return 0;
4517 
4518 	memset(&cp, 0, sizeof(cp));
4519 	cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4520 	cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4521 
4522 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4523 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4524 }
4525 
4526 /* Set Default PHY parameters if command is supported, enables all supported
4527  * PHYs according to the LE Features bits.
4528  */
4529 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4530 {
4531 	struct hci_cp_le_set_default_phy cp;
4532 
4533 	if (!(hdev->commands[35] & 0x20)) {
4534 		/* If the command is not supported it means only 1M PHY is
4535 		 * supported.
4536 		 */
4537 		hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4538 		hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4539 		return 0;
4540 	}
4541 
4542 	memset(&cp, 0, sizeof(cp));
4543 	cp.all_phys = 0x00;
4544 	cp.tx_phys = HCI_LE_SET_PHY_1M;
4545 	cp.rx_phys = HCI_LE_SET_PHY_1M;
4546 
4547 	/* Enables 2M PHY if supported */
4548 	if (le_2m_capable(hdev)) {
4549 		cp.tx_phys |= HCI_LE_SET_PHY_2M;
4550 		cp.rx_phys |= HCI_LE_SET_PHY_2M;
4551 	}
4552 
4553 	/* Enables Coded PHY if supported */
4554 	if (le_coded_capable(hdev)) {
4555 		cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4556 		cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4557 	}
4558 
4559 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4560 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4561 }
4562 
4563 static const struct hci_init_stage le_init4[] = {
4564 	/* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4565 	HCI_INIT(hci_le_set_write_def_data_len_sync),
4566 	/* HCI_OP_LE_SET_DEFAULT_PHY */
4567 	HCI_INIT(hci_le_set_default_phy_sync),
4568 	{}
4569 };
4570 
4571 static int hci_init4_sync(struct hci_dev *hdev)
4572 {
4573 	int err;
4574 
4575 	bt_dev_dbg(hdev, "");
4576 
4577 	err = hci_init_stage_sync(hdev, hci_init4);
4578 	if (err)
4579 		return err;
4580 
4581 	if (lmp_le_capable(hdev))
4582 		return hci_init_stage_sync(hdev, le_init4);
4583 
4584 	return 0;
4585 }
4586 
4587 static int hci_init_sync(struct hci_dev *hdev)
4588 {
4589 	int err;
4590 
4591 	err = hci_init1_sync(hdev);
4592 	if (err < 0)
4593 		return err;
4594 
4595 	if (hci_dev_test_flag(hdev, HCI_SETUP))
4596 		hci_debugfs_create_basic(hdev);
4597 
4598 	err = hci_init2_sync(hdev);
4599 	if (err < 0)
4600 		return err;
4601 
4602 	/* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
4603 	 * BR/EDR/LE type controllers. AMP controllers only need the
4604 	 * first two stages of init.
4605 	 */
4606 	if (hdev->dev_type != HCI_PRIMARY)
4607 		return 0;
4608 
4609 	err = hci_init3_sync(hdev);
4610 	if (err < 0)
4611 		return err;
4612 
4613 	err = hci_init4_sync(hdev);
4614 	if (err < 0)
4615 		return err;
4616 
4617 	/* This function is only called when the controller is actually in
4618 	 * configured state. When the controller is marked as unconfigured,
4619 	 * this initialization procedure is not run.
4620 	 *
4621 	 * It means that it is possible that a controller runs through its
4622 	 * setup phase and then discovers missing settings. If that is the
4623 	 * case, then this function will not be called. It then will only
4624 	 * be called during the config phase.
4625 	 *
4626 	 * So only when in setup phase or config phase, create the debugfs
4627 	 * entries and register the SMP channels.
4628 	 */
4629 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4630 	    !hci_dev_test_flag(hdev, HCI_CONFIG))
4631 		return 0;
4632 
4633 	if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
4634 		return 0;
4635 
4636 	hci_debugfs_create_common(hdev);
4637 
4638 	if (lmp_bredr_capable(hdev))
4639 		hci_debugfs_create_bredr(hdev);
4640 
4641 	if (lmp_le_capable(hdev))
4642 		hci_debugfs_create_le(hdev);
4643 
4644 	return 0;
4645 }
4646 
4647 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4648 
4649 static const struct {
4650 	unsigned long quirk;
4651 	const char *desc;
4652 } hci_broken_table[] = {
4653 	HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4654 			 "HCI Read Local Supported Commands not supported"),
4655 	HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4656 			 "HCI Delete Stored Link Key command is advertised, "
4657 			 "but not supported."),
4658 	HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4659 			 "HCI Read Default Erroneous Data Reporting command is "
4660 			 "advertised, but not supported."),
4661 	HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4662 			 "HCI Read Transmit Power Level command is advertised, "
4663 			 "but not supported."),
4664 	HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4665 			 "HCI Set Event Filter command not supported."),
4666 	HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4667 			 "HCI Enhanced Setup Synchronous Connection command is "
4668 			 "advertised, but not supported."),
4669 	HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4670 			 "HCI LE Set Random Private Address Timeout command is "
4671 			 "advertised, but not supported."),
4672 	HCI_QUIRK_BROKEN(LE_CODED,
4673 			 "HCI LE Coded PHY feature bit is set, "
4674 			 "but its usage is not supported.")
4675 };
4676 
4677 /* This function handles hdev setup stage:
4678  *
4679  * Calls hdev->setup
4680  * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4681  */
4682 static int hci_dev_setup_sync(struct hci_dev *hdev)
4683 {
4684 	int ret = 0;
4685 	bool invalid_bdaddr;
4686 	size_t i;
4687 
4688 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4689 	    !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4690 		return 0;
4691 
4692 	bt_dev_dbg(hdev, "");
4693 
4694 	hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4695 
4696 	if (hdev->setup)
4697 		ret = hdev->setup(hdev);
4698 
4699 	for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4700 		if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4701 			bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4702 	}
4703 
4704 	/* The transport driver can set the quirk to mark the
4705 	 * BD_ADDR invalid before creating the HCI device or in
4706 	 * its setup callback.
4707 	 */
4708 	invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) ||
4709 			 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
4710 	if (!ret) {
4711 		if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) &&
4712 		    !bacmp(&hdev->public_addr, BDADDR_ANY))
4713 			hci_dev_get_bd_addr_from_property(hdev);
4714 
4715 		if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
4716 		    hdev->set_bdaddr) {
4717 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4718 			if (!ret)
4719 				invalid_bdaddr = false;
4720 		}
4721 	}
4722 
4723 	/* The transport driver can set these quirks before
4724 	 * creating the HCI device or in its setup callback.
4725 	 *
4726 	 * For the invalid BD_ADDR quirk it is possible that
4727 	 * it becomes a valid address if the bootloader does
4728 	 * provide it (see above).
4729 	 *
4730 	 * In case any of them is set, the controller has to
4731 	 * start up as unconfigured.
4732 	 */
4733 	if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4734 	    invalid_bdaddr)
4735 		hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4736 
4737 	/* For an unconfigured controller it is required to
4738 	 * read at least the version information provided by
4739 	 * the Read Local Version Information command.
4740 	 *
4741 	 * If the set_bdaddr driver callback is provided, then
4742 	 * also the original Bluetooth public device address
4743 	 * will be read using the Read BD Address command.
4744 	 */
4745 	if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4746 		return hci_unconf_init_sync(hdev);
4747 
4748 	return ret;
4749 }
4750 
4751 /* This function handles hdev init stage:
4752  *
4753  * Calls hci_dev_setup_sync to perform setup stage
4754  * Calls hci_init_sync to perform HCI command init sequence
4755  */
4756 static int hci_dev_init_sync(struct hci_dev *hdev)
4757 {
4758 	int ret;
4759 
4760 	bt_dev_dbg(hdev, "");
4761 
4762 	atomic_set(&hdev->cmd_cnt, 1);
4763 	set_bit(HCI_INIT, &hdev->flags);
4764 
4765 	ret = hci_dev_setup_sync(hdev);
4766 
4767 	if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4768 		/* If public address change is configured, ensure that
4769 		 * the address gets programmed. If the driver does not
4770 		 * support changing the public address, fail the power
4771 		 * on procedure.
4772 		 */
4773 		if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4774 		    hdev->set_bdaddr)
4775 			ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4776 		else
4777 			ret = -EADDRNOTAVAIL;
4778 	}
4779 
4780 	if (!ret) {
4781 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4782 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4783 			ret = hci_init_sync(hdev);
4784 			if (!ret && hdev->post_init)
4785 				ret = hdev->post_init(hdev);
4786 		}
4787 	}
4788 
4789 	/* If the HCI Reset command is clearing all diagnostic settings,
4790 	 * then they need to be reprogrammed after the init procedure
4791 	 * completed.
4792 	 */
4793 	if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4794 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4795 	    hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4796 		ret = hdev->set_diag(hdev, true);
4797 
4798 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4799 		msft_do_open(hdev);
4800 		aosp_do_open(hdev);
4801 	}
4802 
4803 	clear_bit(HCI_INIT, &hdev->flags);
4804 
4805 	return ret;
4806 }
4807 
4808 int hci_dev_open_sync(struct hci_dev *hdev)
4809 {
4810 	int ret;
4811 
4812 	bt_dev_dbg(hdev, "");
4813 
4814 	if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4815 		ret = -ENODEV;
4816 		goto done;
4817 	}
4818 
4819 	if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4820 	    !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4821 		/* Check for rfkill but allow the HCI setup stage to
4822 		 * proceed (which in itself doesn't cause any RF activity).
4823 		 */
4824 		if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4825 			ret = -ERFKILL;
4826 			goto done;
4827 		}
4828 
4829 		/* Check for valid public address or a configured static
4830 		 * random address, but let the HCI setup proceed to
4831 		 * be able to determine if there is a public address
4832 		 * or not.
4833 		 *
4834 		 * In case of user channel usage, it is not important
4835 		 * if a public address or static random address is
4836 		 * available.
4837 		 *
4838 		 * This check is only valid for BR/EDR controllers
4839 		 * since AMP controllers do not have an address.
4840 		 */
4841 		if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4842 		    hdev->dev_type == HCI_PRIMARY &&
4843 		    !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
4844 		    !bacmp(&hdev->static_addr, BDADDR_ANY)) {
4845 			ret = -EADDRNOTAVAIL;
4846 			goto done;
4847 		}
4848 	}
4849 
4850 	if (test_bit(HCI_UP, &hdev->flags)) {
4851 		ret = -EALREADY;
4852 		goto done;
4853 	}
4854 
4855 	if (hdev->open(hdev)) {
4856 		ret = -EIO;
4857 		goto done;
4858 	}
4859 
4860 	hci_devcd_reset(hdev);
4861 
4862 	set_bit(HCI_RUNNING, &hdev->flags);
4863 	hci_sock_dev_event(hdev, HCI_DEV_OPEN);
4864 
4865 	ret = hci_dev_init_sync(hdev);
4866 	if (!ret) {
4867 		hci_dev_hold(hdev);
4868 		hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
4869 		hci_adv_instances_set_rpa_expired(hdev, true);
4870 		set_bit(HCI_UP, &hdev->flags);
4871 		hci_sock_dev_event(hdev, HCI_DEV_UP);
4872 		hci_leds_update_powered(hdev, true);
4873 		if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4874 		    !hci_dev_test_flag(hdev, HCI_CONFIG) &&
4875 		    !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4876 		    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4877 		    hci_dev_test_flag(hdev, HCI_MGMT) &&
4878 		    hdev->dev_type == HCI_PRIMARY) {
4879 			ret = hci_powered_update_sync(hdev);
4880 			mgmt_power_on(hdev, ret);
4881 		}
4882 	} else {
4883 		/* Init failed, cleanup */
4884 		flush_work(&hdev->tx_work);
4885 
4886 		/* Since hci_rx_work() is possible to awake new cmd_work
4887 		 * it should be flushed first to avoid unexpected call of
4888 		 * hci_cmd_work()
4889 		 */
4890 		flush_work(&hdev->rx_work);
4891 		flush_work(&hdev->cmd_work);
4892 
4893 		skb_queue_purge(&hdev->cmd_q);
4894 		skb_queue_purge(&hdev->rx_q);
4895 
4896 		if (hdev->flush)
4897 			hdev->flush(hdev);
4898 
4899 		if (hdev->sent_cmd) {
4900 			cancel_delayed_work_sync(&hdev->cmd_timer);
4901 			kfree_skb(hdev->sent_cmd);
4902 			hdev->sent_cmd = NULL;
4903 		}
4904 
4905 		clear_bit(HCI_RUNNING, &hdev->flags);
4906 		hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
4907 
4908 		hdev->close(hdev);
4909 		hdev->flags &= BIT(HCI_RAW);
4910 	}
4911 
4912 done:
4913 	return ret;
4914 }
4915 
4916 /* This function requires the caller holds hdev->lock */
4917 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
4918 {
4919 	struct hci_conn_params *p;
4920 
4921 	list_for_each_entry(p, &hdev->le_conn_params, list) {
4922 		hci_pend_le_list_del_init(p);
4923 		if (p->conn) {
4924 			hci_conn_drop(p->conn);
4925 			hci_conn_put(p->conn);
4926 			p->conn = NULL;
4927 		}
4928 	}
4929 
4930 	BT_DBG("All LE pending actions cleared");
4931 }
4932 
4933 static int hci_dev_shutdown(struct hci_dev *hdev)
4934 {
4935 	int err = 0;
4936 	/* Similar to how we first do setup and then set the exclusive access
4937 	 * bit for userspace, we must first unset userchannel and then clean up.
4938 	 * Otherwise, the kernel can't properly use the hci channel to clean up
4939 	 * the controller (some shutdown routines require sending additional
4940 	 * commands to the controller for example).
4941 	 */
4942 	bool was_userchannel =
4943 		hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
4944 
4945 	if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
4946 	    test_bit(HCI_UP, &hdev->flags)) {
4947 		/* Execute vendor specific shutdown routine */
4948 		if (hdev->shutdown)
4949 			err = hdev->shutdown(hdev);
4950 	}
4951 
4952 	if (was_userchannel)
4953 		hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
4954 
4955 	return err;
4956 }
4957 
4958 int hci_dev_close_sync(struct hci_dev *hdev)
4959 {
4960 	bool auto_off;
4961 	int err = 0;
4962 
4963 	bt_dev_dbg(hdev, "");
4964 
4965 	cancel_delayed_work(&hdev->power_off);
4966 	cancel_delayed_work(&hdev->ncmd_timer);
4967 	cancel_delayed_work(&hdev->le_scan_disable);
4968 	cancel_delayed_work(&hdev->le_scan_restart);
4969 
4970 	hci_request_cancel_all(hdev);
4971 
4972 	if (hdev->adv_instance_timeout) {
4973 		cancel_delayed_work_sync(&hdev->adv_instance_expire);
4974 		hdev->adv_instance_timeout = 0;
4975 	}
4976 
4977 	err = hci_dev_shutdown(hdev);
4978 
4979 	if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
4980 		cancel_delayed_work_sync(&hdev->cmd_timer);
4981 		return err;
4982 	}
4983 
4984 	hci_leds_update_powered(hdev, false);
4985 
4986 	/* Flush RX and TX works */
4987 	flush_work(&hdev->tx_work);
4988 	flush_work(&hdev->rx_work);
4989 
4990 	if (hdev->discov_timeout > 0) {
4991 		hdev->discov_timeout = 0;
4992 		hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
4993 		hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
4994 	}
4995 
4996 	if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
4997 		cancel_delayed_work(&hdev->service_cache);
4998 
4999 	if (hci_dev_test_flag(hdev, HCI_MGMT)) {
5000 		struct adv_info *adv_instance;
5001 
5002 		cancel_delayed_work_sync(&hdev->rpa_expired);
5003 
5004 		list_for_each_entry(adv_instance, &hdev->adv_instances, list)
5005 			cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
5006 	}
5007 
5008 	/* Avoid potential lockdep warnings from the *_flush() calls by
5009 	 * ensuring the workqueue is empty up front.
5010 	 */
5011 	drain_workqueue(hdev->workqueue);
5012 
5013 	hci_dev_lock(hdev);
5014 
5015 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5016 
5017 	auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
5018 
5019 	if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
5020 	    !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5021 	    hci_dev_test_flag(hdev, HCI_MGMT))
5022 		__mgmt_power_off(hdev);
5023 
5024 	hci_inquiry_cache_flush(hdev);
5025 	hci_pend_le_actions_clear(hdev);
5026 	hci_conn_hash_flush(hdev);
5027 	/* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
5028 	smp_unregister(hdev);
5029 	hci_dev_unlock(hdev);
5030 
5031 	hci_sock_dev_event(hdev, HCI_DEV_DOWN);
5032 
5033 	if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5034 		aosp_do_close(hdev);
5035 		msft_do_close(hdev);
5036 	}
5037 
5038 	if (hdev->flush)
5039 		hdev->flush(hdev);
5040 
5041 	/* Reset device */
5042 	skb_queue_purge(&hdev->cmd_q);
5043 	atomic_set(&hdev->cmd_cnt, 1);
5044 	if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
5045 	    !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
5046 		set_bit(HCI_INIT, &hdev->flags);
5047 		hci_reset_sync(hdev);
5048 		clear_bit(HCI_INIT, &hdev->flags);
5049 	}
5050 
5051 	/* flush cmd  work */
5052 	flush_work(&hdev->cmd_work);
5053 
5054 	/* Drop queues */
5055 	skb_queue_purge(&hdev->rx_q);
5056 	skb_queue_purge(&hdev->cmd_q);
5057 	skb_queue_purge(&hdev->raw_q);
5058 
5059 	/* Drop last sent command */
5060 	if (hdev->sent_cmd) {
5061 		cancel_delayed_work_sync(&hdev->cmd_timer);
5062 		kfree_skb(hdev->sent_cmd);
5063 		hdev->sent_cmd = NULL;
5064 	}
5065 
5066 	clear_bit(HCI_RUNNING, &hdev->flags);
5067 	hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
5068 
5069 	/* After this point our queues are empty and no tasks are scheduled. */
5070 	hdev->close(hdev);
5071 
5072 	/* Clear flags */
5073 	hdev->flags &= BIT(HCI_RAW);
5074 	hci_dev_clear_volatile_flags(hdev);
5075 
5076 	/* Controller radio is available but is currently powered down */
5077 	hdev->amp_status = AMP_STATUS_POWERED_DOWN;
5078 
5079 	memset(hdev->eir, 0, sizeof(hdev->eir));
5080 	memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
5081 	bacpy(&hdev->random_addr, BDADDR_ANY);
5082 
5083 	hci_dev_put(hdev);
5084 	return err;
5085 }
5086 
5087 /* This function perform power on HCI command sequence as follows:
5088  *
5089  * If controller is already up (HCI_UP) performs hci_powered_update_sync
5090  * sequence otherwise run hci_dev_open_sync which will follow with
5091  * hci_powered_update_sync after the init sequence is completed.
5092  */
5093 static int hci_power_on_sync(struct hci_dev *hdev)
5094 {
5095 	int err;
5096 
5097 	if (test_bit(HCI_UP, &hdev->flags) &&
5098 	    hci_dev_test_flag(hdev, HCI_MGMT) &&
5099 	    hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5100 		cancel_delayed_work(&hdev->power_off);
5101 		return hci_powered_update_sync(hdev);
5102 	}
5103 
5104 	err = hci_dev_open_sync(hdev);
5105 	if (err < 0)
5106 		return err;
5107 
5108 	/* During the HCI setup phase, a few error conditions are
5109 	 * ignored and they need to be checked now. If they are still
5110 	 * valid, it is important to return the device back off.
5111 	 */
5112 	if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5113 	    hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5114 	    (hdev->dev_type == HCI_PRIMARY &&
5115 	     !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5116 	     !bacmp(&hdev->static_addr, BDADDR_ANY))) {
5117 		hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5118 		hci_dev_close_sync(hdev);
5119 	} else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5120 		queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5121 				   HCI_AUTO_OFF_TIMEOUT);
5122 	}
5123 
5124 	if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5125 		/* For unconfigured devices, set the HCI_RAW flag
5126 		 * so that userspace can easily identify them.
5127 		 */
5128 		if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5129 			set_bit(HCI_RAW, &hdev->flags);
5130 
5131 		/* For fully configured devices, this will send
5132 		 * the Index Added event. For unconfigured devices,
5133 		 * it will send Unconfigued Index Added event.
5134 		 *
5135 		 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
5136 		 * and no event will be send.
5137 		 */
5138 		mgmt_index_added(hdev);
5139 	} else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5140 		/* When the controller is now configured, then it
5141 		 * is important to clear the HCI_RAW flag.
5142 		 */
5143 		if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5144 			clear_bit(HCI_RAW, &hdev->flags);
5145 
5146 		/* Powering on the controller with HCI_CONFIG set only
5147 		 * happens with the transition from unconfigured to
5148 		 * configured. This will send the Index Added event.
5149 		 */
5150 		mgmt_index_added(hdev);
5151 	}
5152 
5153 	return 0;
5154 }
5155 
5156 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5157 {
5158 	struct hci_cp_remote_name_req_cancel cp;
5159 
5160 	memset(&cp, 0, sizeof(cp));
5161 	bacpy(&cp.bdaddr, addr);
5162 
5163 	return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5164 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5165 }
5166 
5167 int hci_stop_discovery_sync(struct hci_dev *hdev)
5168 {
5169 	struct discovery_state *d = &hdev->discovery;
5170 	struct inquiry_entry *e;
5171 	int err;
5172 
5173 	bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5174 
5175 	if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5176 		if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5177 			err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5178 						    0, NULL, HCI_CMD_TIMEOUT);
5179 			if (err)
5180 				return err;
5181 		}
5182 
5183 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5184 			cancel_delayed_work(&hdev->le_scan_disable);
5185 			cancel_delayed_work(&hdev->le_scan_restart);
5186 
5187 			err = hci_scan_disable_sync(hdev);
5188 			if (err)
5189 				return err;
5190 		}
5191 
5192 	} else {
5193 		err = hci_scan_disable_sync(hdev);
5194 		if (err)
5195 			return err;
5196 	}
5197 
5198 	/* Resume advertising if it was paused */
5199 	if (use_ll_privacy(hdev))
5200 		hci_resume_advertising_sync(hdev);
5201 
5202 	/* No further actions needed for LE-only discovery */
5203 	if (d->type == DISCOV_TYPE_LE)
5204 		return 0;
5205 
5206 	if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5207 		e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5208 						     NAME_PENDING);
5209 		if (!e)
5210 			return 0;
5211 
5212 		return hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5213 	}
5214 
5215 	return 0;
5216 }
5217 
5218 static int hci_disconnect_phy_link_sync(struct hci_dev *hdev, u16 handle,
5219 					u8 reason)
5220 {
5221 	struct hci_cp_disconn_phy_link cp;
5222 
5223 	memset(&cp, 0, sizeof(cp));
5224 	cp.phy_handle = HCI_PHY_HANDLE(handle);
5225 	cp.reason = reason;
5226 
5227 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONN_PHY_LINK,
5228 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5229 }
5230 
5231 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5232 			       u8 reason)
5233 {
5234 	struct hci_cp_disconnect cp;
5235 
5236 	if (conn->type == AMP_LINK)
5237 		return hci_disconnect_phy_link_sync(hdev, conn->handle, reason);
5238 
5239 	memset(&cp, 0, sizeof(cp));
5240 	cp.handle = cpu_to_le16(conn->handle);
5241 	cp.reason = reason;
5242 
5243 	/* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5244 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5245 	 * used when suspending or powering off, where we don't want to wait
5246 	 * for the peer's response.
5247 	 */
5248 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5249 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5250 						sizeof(cp), &cp,
5251 						HCI_EV_DISCONN_COMPLETE,
5252 						HCI_CMD_TIMEOUT, NULL);
5253 
5254 	return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5255 				     HCI_CMD_TIMEOUT);
5256 }
5257 
5258 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5259 				      struct hci_conn *conn, u8 reason)
5260 {
5261 	/* Return reason if scanning since the connection shall probably be
5262 	 * cleanup directly.
5263 	 */
5264 	if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5265 		return reason;
5266 
5267 	if (conn->role == HCI_ROLE_SLAVE ||
5268 	    test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5269 		return 0;
5270 
5271 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5272 				     0, NULL, HCI_CMD_TIMEOUT);
5273 }
5274 
5275 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
5276 				   u8 reason)
5277 {
5278 	if (conn->type == LE_LINK)
5279 		return hci_le_connect_cancel_sync(hdev, conn, reason);
5280 
5281 	if (conn->type == ISO_LINK) {
5282 		/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
5283 		 * page 1857:
5284 		 *
5285 		 * If this command is issued for a CIS on the Central and the
5286 		 * CIS is successfully terminated before being established,
5287 		 * then an HCI_LE_CIS_Established event shall also be sent for
5288 		 * this CIS with the Status Operation Cancelled by Host (0x44).
5289 		 */
5290 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
5291 			return hci_disconnect_sync(hdev, conn, reason);
5292 
5293 		/* CIS with no Create CIS sent have nothing to cancel */
5294 		if (bacmp(&conn->dst, BDADDR_ANY))
5295 			return HCI_ERROR_LOCAL_HOST_TERM;
5296 
5297 		/* There is no way to cancel a BIS without terminating the BIG
5298 		 * which is done later on connection cleanup.
5299 		 */
5300 		return 0;
5301 	}
5302 
5303 	if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5304 		return 0;
5305 
5306 	/* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5307 	 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5308 	 * used when suspending or powering off, where we don't want to wait
5309 	 * for the peer's response.
5310 	 */
5311 	if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5312 		return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
5313 						6, &conn->dst,
5314 						HCI_EV_CONN_COMPLETE,
5315 						HCI_CMD_TIMEOUT, NULL);
5316 
5317 	return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5318 				     6, &conn->dst, HCI_CMD_TIMEOUT);
5319 }
5320 
5321 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5322 			       u8 reason)
5323 {
5324 	struct hci_cp_reject_sync_conn_req cp;
5325 
5326 	memset(&cp, 0, sizeof(cp));
5327 	bacpy(&cp.bdaddr, &conn->dst);
5328 	cp.reason = reason;
5329 
5330 	/* SCO rejection has its own limited set of
5331 	 * allowed error values (0x0D-0x0F).
5332 	 */
5333 	if (reason < 0x0d || reason > 0x0f)
5334 		cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5335 
5336 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5337 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5338 }
5339 
5340 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
5341 				  u8 reason)
5342 {
5343 	struct hci_cp_le_reject_cis cp;
5344 
5345 	memset(&cp, 0, sizeof(cp));
5346 	cp.handle = cpu_to_le16(conn->handle);
5347 	cp.reason = reason;
5348 
5349 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
5350 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5351 }
5352 
5353 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5354 				u8 reason)
5355 {
5356 	struct hci_cp_reject_conn_req cp;
5357 
5358 	if (conn->type == ISO_LINK)
5359 		return hci_le_reject_cis_sync(hdev, conn, reason);
5360 
5361 	if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5362 		return hci_reject_sco_sync(hdev, conn, reason);
5363 
5364 	memset(&cp, 0, sizeof(cp));
5365 	bacpy(&cp.bdaddr, &conn->dst);
5366 	cp.reason = reason;
5367 
5368 	return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5369 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5370 }
5371 
5372 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5373 {
5374 	int err = 0;
5375 	u16 handle = conn->handle;
5376 	struct hci_conn *c;
5377 
5378 	switch (conn->state) {
5379 	case BT_CONNECTED:
5380 	case BT_CONFIG:
5381 		err = hci_disconnect_sync(hdev, conn, reason);
5382 		break;
5383 	case BT_CONNECT:
5384 		err = hci_connect_cancel_sync(hdev, conn, reason);
5385 		break;
5386 	case BT_CONNECT2:
5387 		err = hci_reject_conn_sync(hdev, conn, reason);
5388 		break;
5389 	case BT_OPEN:
5390 		hci_dev_lock(hdev);
5391 
5392 		/* Cleanup bis or pa sync connections */
5393 		if (test_and_clear_bit(HCI_CONN_BIG_SYNC_FAILED, &conn->flags) ||
5394 		    test_and_clear_bit(HCI_CONN_PA_SYNC_FAILED, &conn->flags)) {
5395 			hci_conn_failed(conn, reason);
5396 		} else if (test_bit(HCI_CONN_PA_SYNC, &conn->flags) ||
5397 			   test_bit(HCI_CONN_BIG_SYNC, &conn->flags)) {
5398 			conn->state = BT_CLOSED;
5399 			hci_disconn_cfm(conn, reason);
5400 			hci_conn_del(conn);
5401 		}
5402 
5403 		hci_dev_unlock(hdev);
5404 		return 0;
5405 	case BT_BOUND:
5406 		hci_dev_lock(hdev);
5407 		hci_conn_failed(conn, reason);
5408 		hci_dev_unlock(hdev);
5409 		return 0;
5410 	default:
5411 		hci_dev_lock(hdev);
5412 		conn->state = BT_CLOSED;
5413 		hci_disconn_cfm(conn, reason);
5414 		hci_conn_del(conn);
5415 		hci_dev_unlock(hdev);
5416 		return 0;
5417 	}
5418 
5419 	hci_dev_lock(hdev);
5420 
5421 	/* Check if the connection hasn't been cleanup while waiting
5422 	 * commands to complete.
5423 	 */
5424 	c = hci_conn_hash_lookup_handle(hdev, handle);
5425 	if (!c || c != conn) {
5426 		err = 0;
5427 		goto unlock;
5428 	}
5429 
5430 	/* Cleanup hci_conn object if it cannot be cancelled as it
5431 	 * likelly means the controller and host stack are out of sync
5432 	 * or in case of LE it was still scanning so it can be cleanup
5433 	 * safely.
5434 	 */
5435 	hci_conn_failed(conn, reason);
5436 
5437 unlock:
5438 	hci_dev_unlock(hdev);
5439 	return err;
5440 }
5441 
5442 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5443 {
5444 	struct list_head *head = &hdev->conn_hash.list;
5445 	struct hci_conn *conn;
5446 
5447 	rcu_read_lock();
5448 	while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
5449 		/* Make sure the connection is not freed while unlocking */
5450 		conn = hci_conn_get(conn);
5451 		rcu_read_unlock();
5452 		/* Disregard possible errors since hci_conn_del shall have been
5453 		 * called even in case of errors had occurred since it would
5454 		 * then cause hci_conn_failed to be called which calls
5455 		 * hci_conn_del internally.
5456 		 */
5457 		hci_abort_conn_sync(hdev, conn, reason);
5458 		hci_conn_put(conn);
5459 		rcu_read_lock();
5460 	}
5461 	rcu_read_unlock();
5462 
5463 	return 0;
5464 }
5465 
5466 /* This function perform power off HCI command sequence as follows:
5467  *
5468  * Clear Advertising
5469  * Stop Discovery
5470  * Disconnect all connections
5471  * hci_dev_close_sync
5472  */
5473 static int hci_power_off_sync(struct hci_dev *hdev)
5474 {
5475 	int err;
5476 
5477 	/* If controller is already down there is nothing to do */
5478 	if (!test_bit(HCI_UP, &hdev->flags))
5479 		return 0;
5480 
5481 	if (test_bit(HCI_ISCAN, &hdev->flags) ||
5482 	    test_bit(HCI_PSCAN, &hdev->flags)) {
5483 		err = hci_write_scan_enable_sync(hdev, 0x00);
5484 		if (err)
5485 			return err;
5486 	}
5487 
5488 	err = hci_clear_adv_sync(hdev, NULL, false);
5489 	if (err)
5490 		return err;
5491 
5492 	err = hci_stop_discovery_sync(hdev);
5493 	if (err)
5494 		return err;
5495 
5496 	/* Terminated due to Power Off */
5497 	err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5498 	if (err)
5499 		return err;
5500 
5501 	return hci_dev_close_sync(hdev);
5502 }
5503 
5504 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5505 {
5506 	if (val)
5507 		return hci_power_on_sync(hdev);
5508 
5509 	return hci_power_off_sync(hdev);
5510 }
5511 
5512 static int hci_write_iac_sync(struct hci_dev *hdev)
5513 {
5514 	struct hci_cp_write_current_iac_lap cp;
5515 
5516 	if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5517 		return 0;
5518 
5519 	memset(&cp, 0, sizeof(cp));
5520 
5521 	if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5522 		/* Limited discoverable mode */
5523 		cp.num_iac = min_t(u8, hdev->num_iac, 2);
5524 		cp.iac_lap[0] = 0x00;	/* LIAC */
5525 		cp.iac_lap[1] = 0x8b;
5526 		cp.iac_lap[2] = 0x9e;
5527 		cp.iac_lap[3] = 0x33;	/* GIAC */
5528 		cp.iac_lap[4] = 0x8b;
5529 		cp.iac_lap[5] = 0x9e;
5530 	} else {
5531 		/* General discoverable mode */
5532 		cp.num_iac = 1;
5533 		cp.iac_lap[0] = 0x33;	/* GIAC */
5534 		cp.iac_lap[1] = 0x8b;
5535 		cp.iac_lap[2] = 0x9e;
5536 	}
5537 
5538 	return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5539 				     (cp.num_iac * 3) + 1, &cp,
5540 				     HCI_CMD_TIMEOUT);
5541 }
5542 
5543 int hci_update_discoverable_sync(struct hci_dev *hdev)
5544 {
5545 	int err = 0;
5546 
5547 	if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5548 		err = hci_write_iac_sync(hdev);
5549 		if (err)
5550 			return err;
5551 
5552 		err = hci_update_scan_sync(hdev);
5553 		if (err)
5554 			return err;
5555 
5556 		err = hci_update_class_sync(hdev);
5557 		if (err)
5558 			return err;
5559 	}
5560 
5561 	/* Advertising instances don't use the global discoverable setting, so
5562 	 * only update AD if advertising was enabled using Set Advertising.
5563 	 */
5564 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5565 		err = hci_update_adv_data_sync(hdev, 0x00);
5566 		if (err)
5567 			return err;
5568 
5569 		/* Discoverable mode affects the local advertising
5570 		 * address in limited privacy mode.
5571 		 */
5572 		if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5573 			if (ext_adv_capable(hdev))
5574 				err = hci_start_ext_adv_sync(hdev, 0x00);
5575 			else
5576 				err = hci_enable_advertising_sync(hdev);
5577 		}
5578 	}
5579 
5580 	return err;
5581 }
5582 
5583 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5584 {
5585 	return hci_update_discoverable_sync(hdev);
5586 }
5587 
5588 int hci_update_discoverable(struct hci_dev *hdev)
5589 {
5590 	/* Only queue if it would have any effect */
5591 	if (hdev_is_powered(hdev) &&
5592 	    hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5593 	    hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5594 	    hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5595 		return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5596 					  NULL);
5597 
5598 	return 0;
5599 }
5600 
5601 int hci_update_connectable_sync(struct hci_dev *hdev)
5602 {
5603 	int err;
5604 
5605 	err = hci_update_scan_sync(hdev);
5606 	if (err)
5607 		return err;
5608 
5609 	/* If BR/EDR is not enabled and we disable advertising as a
5610 	 * by-product of disabling connectable, we need to update the
5611 	 * advertising flags.
5612 	 */
5613 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5614 		err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5615 
5616 	/* Update the advertising parameters if necessary */
5617 	if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5618 	    !list_empty(&hdev->adv_instances)) {
5619 		if (ext_adv_capable(hdev))
5620 			err = hci_start_ext_adv_sync(hdev,
5621 						     hdev->cur_adv_instance);
5622 		else
5623 			err = hci_enable_advertising_sync(hdev);
5624 
5625 		if (err)
5626 			return err;
5627 	}
5628 
5629 	return hci_update_passive_scan_sync(hdev);
5630 }
5631 
5632 static int hci_inquiry_sync(struct hci_dev *hdev, u8 length)
5633 {
5634 	const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5635 	const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5636 	struct hci_cp_inquiry cp;
5637 
5638 	bt_dev_dbg(hdev, "");
5639 
5640 	if (hci_dev_test_flag(hdev, HCI_INQUIRY))
5641 		return 0;
5642 
5643 	hci_dev_lock(hdev);
5644 	hci_inquiry_cache_flush(hdev);
5645 	hci_dev_unlock(hdev);
5646 
5647 	memset(&cp, 0, sizeof(cp));
5648 
5649 	if (hdev->discovery.limited)
5650 		memcpy(&cp.lap, liac, sizeof(cp.lap));
5651 	else
5652 		memcpy(&cp.lap, giac, sizeof(cp.lap));
5653 
5654 	cp.length = length;
5655 
5656 	return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5657 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5658 }
5659 
5660 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5661 {
5662 	u8 own_addr_type;
5663 	/* Accept list is not used for discovery */
5664 	u8 filter_policy = 0x00;
5665 	/* Default is to enable duplicates filter */
5666 	u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5667 	int err;
5668 
5669 	bt_dev_dbg(hdev, "");
5670 
5671 	/* If controller is scanning, it means the passive scanning is
5672 	 * running. Thus, we should temporarily stop it in order to set the
5673 	 * discovery scanning parameters.
5674 	 */
5675 	err = hci_scan_disable_sync(hdev);
5676 	if (err) {
5677 		bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5678 		return err;
5679 	}
5680 
5681 	cancel_interleave_scan(hdev);
5682 
5683 	/* Pause address resolution for active scan and stop advertising if
5684 	 * privacy is enabled.
5685 	 */
5686 	err = hci_pause_addr_resolution(hdev);
5687 	if (err)
5688 		goto failed;
5689 
5690 	/* All active scans will be done with either a resolvable private
5691 	 * address (when privacy feature has been enabled) or non-resolvable
5692 	 * private address.
5693 	 */
5694 	err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5695 					     &own_addr_type);
5696 	if (err < 0)
5697 		own_addr_type = ADDR_LE_DEV_PUBLIC;
5698 
5699 	if (hci_is_adv_monitoring(hdev)) {
5700 		/* Duplicate filter should be disabled when some advertisement
5701 		 * monitor is activated, otherwise AdvMon can only receive one
5702 		 * advertisement for one peer(*) during active scanning, and
5703 		 * might report loss to these peers.
5704 		 *
5705 		 * Note that different controllers have different meanings of
5706 		 * |duplicate|. Some of them consider packets with the same
5707 		 * address as duplicate, and others consider packets with the
5708 		 * same address and the same RSSI as duplicate. Although in the
5709 		 * latter case we don't need to disable duplicate filter, but
5710 		 * it is common to have active scanning for a short period of
5711 		 * time, the power impact should be neglectable.
5712 		 */
5713 		filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5714 	}
5715 
5716 	err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5717 				  hdev->le_scan_window_discovery,
5718 				  own_addr_type, filter_policy, filter_dup);
5719 	if (!err)
5720 		return err;
5721 
5722 failed:
5723 	/* Resume advertising if it was paused */
5724 	if (use_ll_privacy(hdev))
5725 		hci_resume_advertising_sync(hdev);
5726 
5727 	/* Resume passive scanning */
5728 	hci_update_passive_scan_sync(hdev);
5729 	return err;
5730 }
5731 
5732 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5733 {
5734 	int err;
5735 
5736 	bt_dev_dbg(hdev, "");
5737 
5738 	err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5739 	if (err)
5740 		return err;
5741 
5742 	return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5743 }
5744 
5745 int hci_start_discovery_sync(struct hci_dev *hdev)
5746 {
5747 	unsigned long timeout;
5748 	int err;
5749 
5750 	bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5751 
5752 	switch (hdev->discovery.type) {
5753 	case DISCOV_TYPE_BREDR:
5754 		return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN);
5755 	case DISCOV_TYPE_INTERLEAVED:
5756 		/* When running simultaneous discovery, the LE scanning time
5757 		 * should occupy the whole discovery time sine BR/EDR inquiry
5758 		 * and LE scanning are scheduled by the controller.
5759 		 *
5760 		 * For interleaving discovery in comparison, BR/EDR inquiry
5761 		 * and LE scanning are done sequentially with separate
5762 		 * timeouts.
5763 		 */
5764 		if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5765 			     &hdev->quirks)) {
5766 			timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5767 			/* During simultaneous discovery, we double LE scan
5768 			 * interval. We must leave some time for the controller
5769 			 * to do BR/EDR inquiry.
5770 			 */
5771 			err = hci_start_interleaved_discovery_sync(hdev);
5772 			break;
5773 		}
5774 
5775 		timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5776 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5777 		break;
5778 	case DISCOV_TYPE_LE:
5779 		timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5780 		err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5781 		break;
5782 	default:
5783 		return -EINVAL;
5784 	}
5785 
5786 	if (err)
5787 		return err;
5788 
5789 	bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5790 
5791 	/* When service discovery is used and the controller has a
5792 	 * strict duplicate filter, it is important to remember the
5793 	 * start and duration of the scan. This is required for
5794 	 * restarting scanning during the discovery phase.
5795 	 */
5796 	if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5797 	    hdev->discovery.result_filtering) {
5798 		hdev->discovery.scan_start = jiffies;
5799 		hdev->discovery.scan_duration = timeout;
5800 	}
5801 
5802 	queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5803 			   timeout);
5804 	return 0;
5805 }
5806 
5807 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5808 {
5809 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
5810 	case HCI_ADV_MONITOR_EXT_MSFT:
5811 		msft_suspend_sync(hdev);
5812 		break;
5813 	default:
5814 		return;
5815 	}
5816 }
5817 
5818 /* This function disables discovery and mark it as paused */
5819 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5820 {
5821 	int old_state = hdev->discovery.state;
5822 	int err;
5823 
5824 	/* If discovery already stopped/stopping/paused there nothing to do */
5825 	if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5826 	    hdev->discovery_paused)
5827 		return 0;
5828 
5829 	hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5830 	err = hci_stop_discovery_sync(hdev);
5831 	if (err)
5832 		return err;
5833 
5834 	hdev->discovery_paused = true;
5835 	hdev->discovery_old_state = old_state;
5836 	hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5837 
5838 	return 0;
5839 }
5840 
5841 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5842 {
5843 	struct bdaddr_list_with_flags *b;
5844 	u8 scan = SCAN_DISABLED;
5845 	bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
5846 	int err;
5847 
5848 	if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5849 		return 0;
5850 
5851 	/* Some fake CSR controllers lock up after setting this type of
5852 	 * filter, so avoid sending the request altogether.
5853 	 */
5854 	if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
5855 		return 0;
5856 
5857 	/* Always clear event filter when starting */
5858 	hci_clear_event_filter_sync(hdev);
5859 
5860 	list_for_each_entry(b, &hdev->accept_list, list) {
5861 		if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
5862 			continue;
5863 
5864 		bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
5865 
5866 		err =  hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
5867 						 HCI_CONN_SETUP_ALLOW_BDADDR,
5868 						 &b->bdaddr,
5869 						 HCI_CONN_SETUP_AUTO_ON);
5870 		if (err)
5871 			bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
5872 				   &b->bdaddr);
5873 		else
5874 			scan = SCAN_PAGE;
5875 	}
5876 
5877 	if (scan && !scanning)
5878 		hci_write_scan_enable_sync(hdev, scan);
5879 	else if (!scan && scanning)
5880 		hci_write_scan_enable_sync(hdev, scan);
5881 
5882 	return 0;
5883 }
5884 
5885 /* This function disables scan (BR and LE) and mark it as paused */
5886 static int hci_pause_scan_sync(struct hci_dev *hdev)
5887 {
5888 	if (hdev->scanning_paused)
5889 		return 0;
5890 
5891 	/* Disable page scan if enabled */
5892 	if (test_bit(HCI_PSCAN, &hdev->flags))
5893 		hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
5894 
5895 	hci_scan_disable_sync(hdev);
5896 
5897 	hdev->scanning_paused = true;
5898 
5899 	return 0;
5900 }
5901 
5902 /* This function performs the HCI suspend procedures in the follow order:
5903  *
5904  * Pause discovery (active scanning/inquiry)
5905  * Pause Directed Advertising/Advertising
5906  * Pause Scanning (passive scanning in case discovery was not active)
5907  * Disconnect all connections
5908  * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
5909  * otherwise:
5910  * Update event mask (only set events that are allowed to wake up the host)
5911  * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
5912  * Update passive scanning (lower duty cycle)
5913  * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
5914  */
5915 int hci_suspend_sync(struct hci_dev *hdev)
5916 {
5917 	int err;
5918 
5919 	/* If marked as suspended there nothing to do */
5920 	if (hdev->suspended)
5921 		return 0;
5922 
5923 	/* Mark device as suspended */
5924 	hdev->suspended = true;
5925 
5926 	/* Pause discovery if not already stopped */
5927 	hci_pause_discovery_sync(hdev);
5928 
5929 	/* Pause other advertisements */
5930 	hci_pause_advertising_sync(hdev);
5931 
5932 	/* Suspend monitor filters */
5933 	hci_suspend_monitor_sync(hdev);
5934 
5935 	/* Prevent disconnects from causing scanning to be re-enabled */
5936 	hci_pause_scan_sync(hdev);
5937 
5938 	if (hci_conn_count(hdev)) {
5939 		/* Soft disconnect everything (power off) */
5940 		err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5941 		if (err) {
5942 			/* Set state to BT_RUNNING so resume doesn't notify */
5943 			hdev->suspend_state = BT_RUNNING;
5944 			hci_resume_sync(hdev);
5945 			return err;
5946 		}
5947 
5948 		/* Update event mask so only the allowed event can wakeup the
5949 		 * host.
5950 		 */
5951 		hci_set_event_mask_sync(hdev);
5952 	}
5953 
5954 	/* Only configure accept list if disconnect succeeded and wake
5955 	 * isn't being prevented.
5956 	 */
5957 	if (!hdev->wakeup || !hdev->wakeup(hdev)) {
5958 		hdev->suspend_state = BT_SUSPEND_DISCONNECT;
5959 		return 0;
5960 	}
5961 
5962 	/* Unpause to take care of updating scanning params */
5963 	hdev->scanning_paused = false;
5964 
5965 	/* Enable event filter for paired devices */
5966 	hci_update_event_filter_sync(hdev);
5967 
5968 	/* Update LE passive scan if enabled */
5969 	hci_update_passive_scan_sync(hdev);
5970 
5971 	/* Pause scan changes again. */
5972 	hdev->scanning_paused = true;
5973 
5974 	hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
5975 
5976 	return 0;
5977 }
5978 
5979 /* This function resumes discovery */
5980 static int hci_resume_discovery_sync(struct hci_dev *hdev)
5981 {
5982 	int err;
5983 
5984 	/* If discovery not paused there nothing to do */
5985 	if (!hdev->discovery_paused)
5986 		return 0;
5987 
5988 	hdev->discovery_paused = false;
5989 
5990 	hci_discovery_set_state(hdev, DISCOVERY_STARTING);
5991 
5992 	err = hci_start_discovery_sync(hdev);
5993 
5994 	hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
5995 				DISCOVERY_FINDING);
5996 
5997 	return err;
5998 }
5999 
6000 static void hci_resume_monitor_sync(struct hci_dev *hdev)
6001 {
6002 	switch (hci_get_adv_monitor_offload_ext(hdev)) {
6003 	case HCI_ADV_MONITOR_EXT_MSFT:
6004 		msft_resume_sync(hdev);
6005 		break;
6006 	default:
6007 		return;
6008 	}
6009 }
6010 
6011 /* This function resume scan and reset paused flag */
6012 static int hci_resume_scan_sync(struct hci_dev *hdev)
6013 {
6014 	if (!hdev->scanning_paused)
6015 		return 0;
6016 
6017 	hdev->scanning_paused = false;
6018 
6019 	hci_update_scan_sync(hdev);
6020 
6021 	/* Reset passive scanning to normal */
6022 	hci_update_passive_scan_sync(hdev);
6023 
6024 	return 0;
6025 }
6026 
6027 /* This function performs the HCI suspend procedures in the follow order:
6028  *
6029  * Restore event mask
6030  * Clear event filter
6031  * Update passive scanning (normal duty cycle)
6032  * Resume Directed Advertising/Advertising
6033  * Resume discovery (active scanning/inquiry)
6034  */
6035 int hci_resume_sync(struct hci_dev *hdev)
6036 {
6037 	/* If not marked as suspended there nothing to do */
6038 	if (!hdev->suspended)
6039 		return 0;
6040 
6041 	hdev->suspended = false;
6042 
6043 	/* Restore event mask */
6044 	hci_set_event_mask_sync(hdev);
6045 
6046 	/* Clear any event filters and restore scan state */
6047 	hci_clear_event_filter_sync(hdev);
6048 
6049 	/* Resume scanning */
6050 	hci_resume_scan_sync(hdev);
6051 
6052 	/* Resume monitor filters */
6053 	hci_resume_monitor_sync(hdev);
6054 
6055 	/* Resume other advertisements */
6056 	hci_resume_advertising_sync(hdev);
6057 
6058 	/* Resume discovery */
6059 	hci_resume_discovery_sync(hdev);
6060 
6061 	return 0;
6062 }
6063 
6064 static bool conn_use_rpa(struct hci_conn *conn)
6065 {
6066 	struct hci_dev *hdev = conn->hdev;
6067 
6068 	return hci_dev_test_flag(hdev, HCI_PRIVACY);
6069 }
6070 
6071 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
6072 						struct hci_conn *conn)
6073 {
6074 	struct hci_cp_le_set_ext_adv_params cp;
6075 	int err;
6076 	bdaddr_t random_addr;
6077 	u8 own_addr_type;
6078 
6079 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6080 					     &own_addr_type);
6081 	if (err)
6082 		return err;
6083 
6084 	/* Set require_privacy to false so that the remote device has a
6085 	 * chance of identifying us.
6086 	 */
6087 	err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
6088 				     &own_addr_type, &random_addr);
6089 	if (err)
6090 		return err;
6091 
6092 	memset(&cp, 0, sizeof(cp));
6093 
6094 	cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
6095 	cp.channel_map = hdev->le_adv_channel_map;
6096 	cp.tx_power = HCI_TX_POWER_INVALID;
6097 	cp.primary_phy = HCI_ADV_PHY_1M;
6098 	cp.secondary_phy = HCI_ADV_PHY_1M;
6099 	cp.handle = 0x00; /* Use instance 0 for directed adv */
6100 	cp.own_addr_type = own_addr_type;
6101 	cp.peer_addr_type = conn->dst_type;
6102 	bacpy(&cp.peer_addr, &conn->dst);
6103 
6104 	/* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
6105 	 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
6106 	 * does not supports advertising data when the advertising set already
6107 	 * contains some, the controller shall return erroc code 'Invalid
6108 	 * HCI Command Parameters(0x12).
6109 	 * So it is required to remove adv set for handle 0x00. since we use
6110 	 * instance 0 for directed adv.
6111 	 */
6112 	err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
6113 	if (err)
6114 		return err;
6115 
6116 	err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
6117 				    sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6118 	if (err)
6119 		return err;
6120 
6121 	/* Check if random address need to be updated */
6122 	if (own_addr_type == ADDR_LE_DEV_RANDOM &&
6123 	    bacmp(&random_addr, BDADDR_ANY) &&
6124 	    bacmp(&random_addr, &hdev->random_addr)) {
6125 		err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
6126 						       &random_addr);
6127 		if (err)
6128 			return err;
6129 	}
6130 
6131 	return hci_enable_ext_advertising_sync(hdev, 0x00);
6132 }
6133 
6134 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
6135 					    struct hci_conn *conn)
6136 {
6137 	struct hci_cp_le_set_adv_param cp;
6138 	u8 status;
6139 	u8 own_addr_type;
6140 	u8 enable;
6141 
6142 	if (ext_adv_capable(hdev))
6143 		return hci_le_ext_directed_advertising_sync(hdev, conn);
6144 
6145 	/* Clear the HCI_LE_ADV bit temporarily so that the
6146 	 * hci_update_random_address knows that it's safe to go ahead
6147 	 * and write a new random address. The flag will be set back on
6148 	 * as soon as the SET_ADV_ENABLE HCI command completes.
6149 	 */
6150 	hci_dev_clear_flag(hdev, HCI_LE_ADV);
6151 
6152 	/* Set require_privacy to false so that the remote device has a
6153 	 * chance of identifying us.
6154 	 */
6155 	status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6156 						&own_addr_type);
6157 	if (status)
6158 		return status;
6159 
6160 	memset(&cp, 0, sizeof(cp));
6161 
6162 	/* Some controllers might reject command if intervals are not
6163 	 * within range for undirected advertising.
6164 	 * BCM20702A0 is known to be affected by this.
6165 	 */
6166 	cp.min_interval = cpu_to_le16(0x0020);
6167 	cp.max_interval = cpu_to_le16(0x0020);
6168 
6169 	cp.type = LE_ADV_DIRECT_IND;
6170 	cp.own_address_type = own_addr_type;
6171 	cp.direct_addr_type = conn->dst_type;
6172 	bacpy(&cp.direct_addr, &conn->dst);
6173 	cp.channel_map = hdev->le_adv_channel_map;
6174 
6175 	status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
6176 				       sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6177 	if (status)
6178 		return status;
6179 
6180 	enable = 0x01;
6181 
6182 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
6183 				     sizeof(enable), &enable, HCI_CMD_TIMEOUT);
6184 }
6185 
6186 static void set_ext_conn_params(struct hci_conn *conn,
6187 				struct hci_cp_le_ext_conn_param *p)
6188 {
6189 	struct hci_dev *hdev = conn->hdev;
6190 
6191 	memset(p, 0, sizeof(*p));
6192 
6193 	p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6194 	p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6195 	p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6196 	p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6197 	p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6198 	p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6199 	p->min_ce_len = cpu_to_le16(0x0000);
6200 	p->max_ce_len = cpu_to_le16(0x0000);
6201 }
6202 
6203 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6204 				       struct hci_conn *conn, u8 own_addr_type)
6205 {
6206 	struct hci_cp_le_ext_create_conn *cp;
6207 	struct hci_cp_le_ext_conn_param *p;
6208 	u8 data[sizeof(*cp) + sizeof(*p) * 3];
6209 	u32 plen;
6210 
6211 	cp = (void *)data;
6212 	p = (void *)cp->data;
6213 
6214 	memset(cp, 0, sizeof(*cp));
6215 
6216 	bacpy(&cp->peer_addr, &conn->dst);
6217 	cp->peer_addr_type = conn->dst_type;
6218 	cp->own_addr_type = own_addr_type;
6219 
6220 	plen = sizeof(*cp);
6221 
6222 	if (scan_1m(hdev)) {
6223 		cp->phys |= LE_SCAN_PHY_1M;
6224 		set_ext_conn_params(conn, p);
6225 
6226 		p++;
6227 		plen += sizeof(*p);
6228 	}
6229 
6230 	if (scan_2m(hdev)) {
6231 		cp->phys |= LE_SCAN_PHY_2M;
6232 		set_ext_conn_params(conn, p);
6233 
6234 		p++;
6235 		plen += sizeof(*p);
6236 	}
6237 
6238 	if (scan_coded(hdev)) {
6239 		cp->phys |= LE_SCAN_PHY_CODED;
6240 		set_ext_conn_params(conn, p);
6241 
6242 		plen += sizeof(*p);
6243 	}
6244 
6245 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6246 					plen, data,
6247 					HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6248 					conn->conn_timeout, NULL);
6249 }
6250 
6251 int hci_le_create_conn_sync(struct hci_dev *hdev, struct hci_conn *conn)
6252 {
6253 	struct hci_cp_le_create_conn cp;
6254 	struct hci_conn_params *params;
6255 	u8 own_addr_type;
6256 	int err;
6257 
6258 	/* If requested to connect as peripheral use directed advertising */
6259 	if (conn->role == HCI_ROLE_SLAVE) {
6260 		/* If we're active scanning and simultaneous roles is not
6261 		 * enabled simply reject the attempt.
6262 		 */
6263 		if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6264 		    hdev->le_scan_type == LE_SCAN_ACTIVE &&
6265 		    !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6266 			hci_conn_del(conn);
6267 			return -EBUSY;
6268 		}
6269 
6270 		/* Pause advertising while doing directed advertising. */
6271 		hci_pause_advertising_sync(hdev);
6272 
6273 		err = hci_le_directed_advertising_sync(hdev, conn);
6274 		goto done;
6275 	}
6276 
6277 	/* Disable advertising if simultaneous roles is not in use. */
6278 	if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6279 		hci_pause_advertising_sync(hdev);
6280 
6281 	params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6282 	if (params) {
6283 		conn->le_conn_min_interval = params->conn_min_interval;
6284 		conn->le_conn_max_interval = params->conn_max_interval;
6285 		conn->le_conn_latency = params->conn_latency;
6286 		conn->le_supv_timeout = params->supervision_timeout;
6287 	} else {
6288 		conn->le_conn_min_interval = hdev->le_conn_min_interval;
6289 		conn->le_conn_max_interval = hdev->le_conn_max_interval;
6290 		conn->le_conn_latency = hdev->le_conn_latency;
6291 		conn->le_supv_timeout = hdev->le_supv_timeout;
6292 	}
6293 
6294 	/* If controller is scanning, we stop it since some controllers are
6295 	 * not able to scan and connect at the same time. Also set the
6296 	 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6297 	 * handler for scan disabling knows to set the correct discovery
6298 	 * state.
6299 	 */
6300 	if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6301 		hci_scan_disable_sync(hdev);
6302 		hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6303 	}
6304 
6305 	/* Update random address, but set require_privacy to false so
6306 	 * that we never connect with an non-resolvable address.
6307 	 */
6308 	err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6309 					     &own_addr_type);
6310 	if (err)
6311 		goto done;
6312 
6313 	if (use_ext_conn(hdev)) {
6314 		err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6315 		goto done;
6316 	}
6317 
6318 	memset(&cp, 0, sizeof(cp));
6319 
6320 	cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6321 	cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6322 
6323 	bacpy(&cp.peer_addr, &conn->dst);
6324 	cp.peer_addr_type = conn->dst_type;
6325 	cp.own_address_type = own_addr_type;
6326 	cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6327 	cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6328 	cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6329 	cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6330 	cp.min_ce_len = cpu_to_le16(0x0000);
6331 	cp.max_ce_len = cpu_to_le16(0x0000);
6332 
6333 	/* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6334 	 *
6335 	 * If this event is unmasked and the HCI_LE_Connection_Complete event
6336 	 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6337 	 * sent when a new connection has been created.
6338 	 */
6339 	err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6340 				       sizeof(cp), &cp,
6341 				       use_enhanced_conn_complete(hdev) ?
6342 				       HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6343 				       HCI_EV_LE_CONN_COMPLETE,
6344 				       conn->conn_timeout, NULL);
6345 
6346 done:
6347 	if (err == -ETIMEDOUT)
6348 		hci_le_connect_cancel_sync(hdev, conn, 0x00);
6349 
6350 	/* Re-enable advertising after the connection attempt is finished. */
6351 	hci_resume_advertising_sync(hdev);
6352 	return err;
6353 }
6354 
6355 int hci_le_create_cis_sync(struct hci_dev *hdev)
6356 {
6357 	struct {
6358 		struct hci_cp_le_create_cis cp;
6359 		struct hci_cis cis[0x1f];
6360 	} cmd;
6361 	struct hci_conn *conn;
6362 	u8 cig = BT_ISO_QOS_CIG_UNSET;
6363 
6364 	/* The spec allows only one pending LE Create CIS command at a time. If
6365 	 * the command is pending now, don't do anything. We check for pending
6366 	 * connections after each CIS Established event.
6367 	 *
6368 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6369 	 * page 2566:
6370 	 *
6371 	 * If the Host issues this command before all the
6372 	 * HCI_LE_CIS_Established events from the previous use of the
6373 	 * command have been generated, the Controller shall return the
6374 	 * error code Command Disallowed (0x0C).
6375 	 *
6376 	 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6377 	 * page 2567:
6378 	 *
6379 	 * When the Controller receives the HCI_LE_Create_CIS command, the
6380 	 * Controller sends the HCI_Command_Status event to the Host. An
6381 	 * HCI_LE_CIS_Established event will be generated for each CIS when it
6382 	 * is established or if it is disconnected or considered lost before
6383 	 * being established; until all the events are generated, the command
6384 	 * remains pending.
6385 	 */
6386 
6387 	memset(&cmd, 0, sizeof(cmd));
6388 
6389 	hci_dev_lock(hdev);
6390 
6391 	rcu_read_lock();
6392 
6393 	/* Wait until previous Create CIS has completed */
6394 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6395 		if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
6396 			goto done;
6397 	}
6398 
6399 	/* Find CIG with all CIS ready */
6400 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6401 		struct hci_conn *link;
6402 
6403 		if (hci_conn_check_create_cis(conn))
6404 			continue;
6405 
6406 		cig = conn->iso_qos.ucast.cig;
6407 
6408 		list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
6409 			if (hci_conn_check_create_cis(link) > 0 &&
6410 			    link->iso_qos.ucast.cig == cig &&
6411 			    link->state != BT_CONNECTED) {
6412 				cig = BT_ISO_QOS_CIG_UNSET;
6413 				break;
6414 			}
6415 		}
6416 
6417 		if (cig != BT_ISO_QOS_CIG_UNSET)
6418 			break;
6419 	}
6420 
6421 	if (cig == BT_ISO_QOS_CIG_UNSET)
6422 		goto done;
6423 
6424 	list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6425 		struct hci_cis *cis = &cmd.cis[cmd.cp.num_cis];
6426 
6427 		if (hci_conn_check_create_cis(conn) ||
6428 		    conn->iso_qos.ucast.cig != cig)
6429 			continue;
6430 
6431 		set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
6432 		cis->acl_handle = cpu_to_le16(conn->parent->handle);
6433 		cis->cis_handle = cpu_to_le16(conn->handle);
6434 		cmd.cp.num_cis++;
6435 
6436 		if (cmd.cp.num_cis >= ARRAY_SIZE(cmd.cis))
6437 			break;
6438 	}
6439 
6440 done:
6441 	rcu_read_unlock();
6442 
6443 	hci_dev_unlock(hdev);
6444 
6445 	if (!cmd.cp.num_cis)
6446 		return 0;
6447 
6448 	/* Wait for HCI_LE_CIS_Established */
6449 	return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6450 					sizeof(cmd.cp) + sizeof(cmd.cis[0]) *
6451 					cmd.cp.num_cis, &cmd,
6452 					HCI_EVT_LE_CIS_ESTABLISHED,
6453 					conn->conn_timeout, NULL);
6454 }
6455 
6456 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6457 {
6458 	struct hci_cp_le_remove_cig cp;
6459 
6460 	memset(&cp, 0, sizeof(cp));
6461 	cp.cig_id = handle;
6462 
6463 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6464 				     &cp, HCI_CMD_TIMEOUT);
6465 }
6466 
6467 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6468 {
6469 	struct hci_cp_le_big_term_sync cp;
6470 
6471 	memset(&cp, 0, sizeof(cp));
6472 	cp.handle = handle;
6473 
6474 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6475 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6476 }
6477 
6478 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6479 {
6480 	struct hci_cp_le_pa_term_sync cp;
6481 
6482 	memset(&cp, 0, sizeof(cp));
6483 	cp.handle = cpu_to_le16(handle);
6484 
6485 	return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6486 				     sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6487 }
6488 
6489 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6490 			   bool use_rpa, struct adv_info *adv_instance,
6491 			   u8 *own_addr_type, bdaddr_t *rand_addr)
6492 {
6493 	int err;
6494 
6495 	bacpy(rand_addr, BDADDR_ANY);
6496 
6497 	/* If privacy is enabled use a resolvable private address. If
6498 	 * current RPA has expired then generate a new one.
6499 	 */
6500 	if (use_rpa) {
6501 		/* If Controller supports LL Privacy use own address type is
6502 		 * 0x03
6503 		 */
6504 		if (use_ll_privacy(hdev))
6505 			*own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6506 		else
6507 			*own_addr_type = ADDR_LE_DEV_RANDOM;
6508 
6509 		if (adv_instance) {
6510 			if (adv_rpa_valid(adv_instance))
6511 				return 0;
6512 		} else {
6513 			if (rpa_valid(hdev))
6514 				return 0;
6515 		}
6516 
6517 		err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6518 		if (err < 0) {
6519 			bt_dev_err(hdev, "failed to generate new RPA");
6520 			return err;
6521 		}
6522 
6523 		bacpy(rand_addr, &hdev->rpa);
6524 
6525 		return 0;
6526 	}
6527 
6528 	/* In case of required privacy without resolvable private address,
6529 	 * use an non-resolvable private address. This is useful for
6530 	 * non-connectable advertising.
6531 	 */
6532 	if (require_privacy) {
6533 		bdaddr_t nrpa;
6534 
6535 		while (true) {
6536 			/* The non-resolvable private address is generated
6537 			 * from random six bytes with the two most significant
6538 			 * bits cleared.
6539 			 */
6540 			get_random_bytes(&nrpa, 6);
6541 			nrpa.b[5] &= 0x3f;
6542 
6543 			/* The non-resolvable private address shall not be
6544 			 * equal to the public address.
6545 			 */
6546 			if (bacmp(&hdev->bdaddr, &nrpa))
6547 				break;
6548 		}
6549 
6550 		*own_addr_type = ADDR_LE_DEV_RANDOM;
6551 		bacpy(rand_addr, &nrpa);
6552 
6553 		return 0;
6554 	}
6555 
6556 	/* No privacy so use a public address. */
6557 	*own_addr_type = ADDR_LE_DEV_PUBLIC;
6558 
6559 	return 0;
6560 }
6561 
6562 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6563 {
6564 	u8 instance = PTR_UINT(data);
6565 
6566 	return hci_update_adv_data_sync(hdev, instance);
6567 }
6568 
6569 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6570 {
6571 	return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6572 				  UINT_PTR(instance), NULL);
6573 }
6574