xref: /linux/net/bridge/br_netfilter_hooks.c (revision d6fd48ef)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Handle firewalling
4  *	Linux ethernet bridge
5  *
6  *	Authors:
7  *	Lennert Buytenhek		<buytenh@gnu.org>
8  *	Bart De Schuymer		<bdschuym@pandora.be>
9  *
10  *	Lennert dedicates this file to Kerstin Wurdinger.
11  */
12 
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/ip.h>
17 #include <linux/netdevice.h>
18 #include <linux/skbuff.h>
19 #include <linux/if_arp.h>
20 #include <linux/if_ether.h>
21 #include <linux/if_vlan.h>
22 #include <linux/if_pppox.h>
23 #include <linux/ppp_defs.h>
24 #include <linux/netfilter_bridge.h>
25 #include <uapi/linux/netfilter_bridge.h>
26 #include <linux/netfilter_ipv4.h>
27 #include <linux/netfilter_ipv6.h>
28 #include <linux/netfilter_arp.h>
29 #include <linux/in_route.h>
30 #include <linux/rculist.h>
31 #include <linux/inetdevice.h>
32 
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/addrconf.h>
36 #include <net/route.h>
37 #include <net/netfilter/br_netfilter.h>
38 #include <net/netns/generic.h>
39 
40 #include <linux/uaccess.h>
41 #include "br_private.h"
42 #ifdef CONFIG_SYSCTL
43 #include <linux/sysctl.h>
44 #endif
45 
46 static unsigned int brnf_net_id __read_mostly;
47 
48 struct brnf_net {
49 	bool enabled;
50 
51 #ifdef CONFIG_SYSCTL
52 	struct ctl_table_header *ctl_hdr;
53 #endif
54 
55 	/* default value is 1 */
56 	int call_iptables;
57 	int call_ip6tables;
58 	int call_arptables;
59 
60 	/* default value is 0 */
61 	int filter_vlan_tagged;
62 	int filter_pppoe_tagged;
63 	int pass_vlan_indev;
64 };
65 
66 #define IS_IP(skb) \
67 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IP))
68 
69 #define IS_IPV6(skb) \
70 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_IPV6))
71 
72 #define IS_ARP(skb) \
73 	(!skb_vlan_tag_present(skb) && skb->protocol == htons(ETH_P_ARP))
74 
75 static inline __be16 vlan_proto(const struct sk_buff *skb)
76 {
77 	if (skb_vlan_tag_present(skb))
78 		return skb->protocol;
79 	else if (skb->protocol == htons(ETH_P_8021Q))
80 		return vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
81 	else
82 		return 0;
83 }
84 
85 static inline bool is_vlan_ip(const struct sk_buff *skb, const struct net *net)
86 {
87 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
88 
89 	return vlan_proto(skb) == htons(ETH_P_IP) && brnet->filter_vlan_tagged;
90 }
91 
92 static inline bool is_vlan_ipv6(const struct sk_buff *skb,
93 				const struct net *net)
94 {
95 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
96 
97 	return vlan_proto(skb) == htons(ETH_P_IPV6) &&
98 	       brnet->filter_vlan_tagged;
99 }
100 
101 static inline bool is_vlan_arp(const struct sk_buff *skb, const struct net *net)
102 {
103 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
104 
105 	return vlan_proto(skb) == htons(ETH_P_ARP) && brnet->filter_vlan_tagged;
106 }
107 
108 static inline __be16 pppoe_proto(const struct sk_buff *skb)
109 {
110 	return *((__be16 *)(skb_mac_header(skb) + ETH_HLEN +
111 			    sizeof(struct pppoe_hdr)));
112 }
113 
114 static inline bool is_pppoe_ip(const struct sk_buff *skb, const struct net *net)
115 {
116 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
117 
118 	return skb->protocol == htons(ETH_P_PPP_SES) &&
119 	       pppoe_proto(skb) == htons(PPP_IP) && brnet->filter_pppoe_tagged;
120 }
121 
122 static inline bool is_pppoe_ipv6(const struct sk_buff *skb,
123 				 const struct net *net)
124 {
125 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
126 
127 	return skb->protocol == htons(ETH_P_PPP_SES) &&
128 	       pppoe_proto(skb) == htons(PPP_IPV6) &&
129 	       brnet->filter_pppoe_tagged;
130 }
131 
132 /* largest possible L2 header, see br_nf_dev_queue_xmit() */
133 #define NF_BRIDGE_MAX_MAC_HEADER_LENGTH (PPPOE_SES_HLEN + ETH_HLEN)
134 
135 struct brnf_frag_data {
136 	char mac[NF_BRIDGE_MAX_MAC_HEADER_LENGTH];
137 	u8 encap_size;
138 	u8 size;
139 	u16 vlan_tci;
140 	__be16 vlan_proto;
141 };
142 
143 static DEFINE_PER_CPU(struct brnf_frag_data, brnf_frag_data_storage);
144 
145 static void nf_bridge_info_free(struct sk_buff *skb)
146 {
147 	skb_ext_del(skb, SKB_EXT_BRIDGE_NF);
148 }
149 
150 static inline struct net_device *bridge_parent(const struct net_device *dev)
151 {
152 	struct net_bridge_port *port;
153 
154 	port = br_port_get_rcu(dev);
155 	return port ? port->br->dev : NULL;
156 }
157 
158 static inline struct nf_bridge_info *nf_bridge_unshare(struct sk_buff *skb)
159 {
160 	return skb_ext_add(skb, SKB_EXT_BRIDGE_NF);
161 }
162 
163 unsigned int nf_bridge_encap_header_len(const struct sk_buff *skb)
164 {
165 	switch (skb->protocol) {
166 	case __cpu_to_be16(ETH_P_8021Q):
167 		return VLAN_HLEN;
168 	case __cpu_to_be16(ETH_P_PPP_SES):
169 		return PPPOE_SES_HLEN;
170 	default:
171 		return 0;
172 	}
173 }
174 
175 static inline void nf_bridge_pull_encap_header(struct sk_buff *skb)
176 {
177 	unsigned int len = nf_bridge_encap_header_len(skb);
178 
179 	skb_pull(skb, len);
180 	skb->network_header += len;
181 }
182 
183 static inline void nf_bridge_pull_encap_header_rcsum(struct sk_buff *skb)
184 {
185 	unsigned int len = nf_bridge_encap_header_len(skb);
186 
187 	skb_pull_rcsum(skb, len);
188 	skb->network_header += len;
189 }
190 
191 /* When handing a packet over to the IP layer
192  * check whether we have a skb that is in the
193  * expected format
194  */
195 
196 static int br_validate_ipv4(struct net *net, struct sk_buff *skb)
197 {
198 	const struct iphdr *iph;
199 	u32 len;
200 
201 	if (!pskb_may_pull(skb, sizeof(struct iphdr)))
202 		goto inhdr_error;
203 
204 	iph = ip_hdr(skb);
205 
206 	/* Basic sanity checks */
207 	if (iph->ihl < 5 || iph->version != 4)
208 		goto inhdr_error;
209 
210 	if (!pskb_may_pull(skb, iph->ihl*4))
211 		goto inhdr_error;
212 
213 	iph = ip_hdr(skb);
214 	if (unlikely(ip_fast_csum((u8 *)iph, iph->ihl)))
215 		goto csum_error;
216 
217 	len = skb_ip_totlen(skb);
218 	if (skb->len < len) {
219 		__IP_INC_STATS(net, IPSTATS_MIB_INTRUNCATEDPKTS);
220 		goto drop;
221 	} else if (len < (iph->ihl*4))
222 		goto inhdr_error;
223 
224 	if (pskb_trim_rcsum(skb, len)) {
225 		__IP_INC_STATS(net, IPSTATS_MIB_INDISCARDS);
226 		goto drop;
227 	}
228 
229 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
230 	/* We should really parse IP options here but until
231 	 * somebody who actually uses IP options complains to
232 	 * us we'll just silently ignore the options because
233 	 * we're lazy!
234 	 */
235 	return 0;
236 
237 csum_error:
238 	__IP_INC_STATS(net, IPSTATS_MIB_CSUMERRORS);
239 inhdr_error:
240 	__IP_INC_STATS(net, IPSTATS_MIB_INHDRERRORS);
241 drop:
242 	return -1;
243 }
244 
245 void nf_bridge_update_protocol(struct sk_buff *skb)
246 {
247 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
248 
249 	switch (nf_bridge->orig_proto) {
250 	case BRNF_PROTO_8021Q:
251 		skb->protocol = htons(ETH_P_8021Q);
252 		break;
253 	case BRNF_PROTO_PPPOE:
254 		skb->protocol = htons(ETH_P_PPP_SES);
255 		break;
256 	case BRNF_PROTO_UNCHANGED:
257 		break;
258 	}
259 }
260 
261 /* Obtain the correct destination MAC address, while preserving the original
262  * source MAC address. If we already know this address, we just copy it. If we
263  * don't, we use the neighbour framework to find out. In both cases, we make
264  * sure that br_handle_frame_finish() is called afterwards.
265  */
266 int br_nf_pre_routing_finish_bridge(struct net *net, struct sock *sk, struct sk_buff *skb)
267 {
268 	struct neighbour *neigh;
269 	struct dst_entry *dst;
270 
271 	skb->dev = bridge_parent(skb->dev);
272 	if (!skb->dev)
273 		goto free_skb;
274 	dst = skb_dst(skb);
275 	neigh = dst_neigh_lookup_skb(dst, skb);
276 	if (neigh) {
277 		struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
278 		int ret;
279 
280 		if ((neigh->nud_state & NUD_CONNECTED) && neigh->hh.hh_len) {
281 			neigh_hh_bridge(&neigh->hh, skb);
282 			skb->dev = nf_bridge->physindev;
283 			ret = br_handle_frame_finish(net, sk, skb);
284 		} else {
285 			/* the neighbour function below overwrites the complete
286 			 * MAC header, so we save the Ethernet source address and
287 			 * protocol number.
288 			 */
289 			skb_copy_from_linear_data_offset(skb,
290 							 -(ETH_HLEN-ETH_ALEN),
291 							 nf_bridge->neigh_header,
292 							 ETH_HLEN-ETH_ALEN);
293 			/* tell br_dev_xmit to continue with forwarding */
294 			nf_bridge->bridged_dnat = 1;
295 			/* FIXME Need to refragment */
296 			ret = neigh->output(neigh, skb);
297 		}
298 		neigh_release(neigh);
299 		return ret;
300 	}
301 free_skb:
302 	kfree_skb(skb);
303 	return 0;
304 }
305 
306 static inline bool
307 br_nf_ipv4_daddr_was_changed(const struct sk_buff *skb,
308 			     const struct nf_bridge_info *nf_bridge)
309 {
310 	return ip_hdr(skb)->daddr != nf_bridge->ipv4_daddr;
311 }
312 
313 /* This requires some explaining. If DNAT has taken place,
314  * we will need to fix up the destination Ethernet address.
315  * This is also true when SNAT takes place (for the reply direction).
316  *
317  * There are two cases to consider:
318  * 1. The packet was DNAT'ed to a device in the same bridge
319  *    port group as it was received on. We can still bridge
320  *    the packet.
321  * 2. The packet was DNAT'ed to a different device, either
322  *    a non-bridged device or another bridge port group.
323  *    The packet will need to be routed.
324  *
325  * The correct way of distinguishing between these two cases is to
326  * call ip_route_input() and to look at skb->dst->dev, which is
327  * changed to the destination device if ip_route_input() succeeds.
328  *
329  * Let's first consider the case that ip_route_input() succeeds:
330  *
331  * If the output device equals the logical bridge device the packet
332  * came in on, we can consider this bridging. The corresponding MAC
333  * address will be obtained in br_nf_pre_routing_finish_bridge.
334  * Otherwise, the packet is considered to be routed and we just
335  * change the destination MAC address so that the packet will
336  * later be passed up to the IP stack to be routed. For a redirected
337  * packet, ip_route_input() will give back the localhost as output device,
338  * which differs from the bridge device.
339  *
340  * Let's now consider the case that ip_route_input() fails:
341  *
342  * This can be because the destination address is martian, in which case
343  * the packet will be dropped.
344  * If IP forwarding is disabled, ip_route_input() will fail, while
345  * ip_route_output_key() can return success. The source
346  * address for ip_route_output_key() is set to zero, so ip_route_output_key()
347  * thinks we're handling a locally generated packet and won't care
348  * if IP forwarding is enabled. If the output device equals the logical bridge
349  * device, we proceed as if ip_route_input() succeeded. If it differs from the
350  * logical bridge port or if ip_route_output_key() fails we drop the packet.
351  */
352 static int br_nf_pre_routing_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
353 {
354 	struct net_device *dev = skb->dev;
355 	struct iphdr *iph = ip_hdr(skb);
356 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
357 	struct rtable *rt;
358 	int err;
359 
360 	nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
361 
362 	if (nf_bridge->pkt_otherhost) {
363 		skb->pkt_type = PACKET_OTHERHOST;
364 		nf_bridge->pkt_otherhost = false;
365 	}
366 	nf_bridge->in_prerouting = 0;
367 	if (br_nf_ipv4_daddr_was_changed(skb, nf_bridge)) {
368 		if ((err = ip_route_input(skb, iph->daddr, iph->saddr, iph->tos, dev))) {
369 			struct in_device *in_dev = __in_dev_get_rcu(dev);
370 
371 			/* If err equals -EHOSTUNREACH the error is due to a
372 			 * martian destination or due to the fact that
373 			 * forwarding is disabled. For most martian packets,
374 			 * ip_route_output_key() will fail. It won't fail for 2 types of
375 			 * martian destinations: loopback destinations and destination
376 			 * 0.0.0.0. In both cases the packet will be dropped because the
377 			 * destination is the loopback device and not the bridge. */
378 			if (err != -EHOSTUNREACH || !in_dev || IN_DEV_FORWARD(in_dev))
379 				goto free_skb;
380 
381 			rt = ip_route_output(net, iph->daddr, 0,
382 					     RT_TOS(iph->tos), 0);
383 			if (!IS_ERR(rt)) {
384 				/* - Bridged-and-DNAT'ed traffic doesn't
385 				 *   require ip_forwarding. */
386 				if (rt->dst.dev == dev) {
387 					skb_dst_drop(skb);
388 					skb_dst_set(skb, &rt->dst);
389 					goto bridged_dnat;
390 				}
391 				ip_rt_put(rt);
392 			}
393 free_skb:
394 			kfree_skb(skb);
395 			return 0;
396 		} else {
397 			if (skb_dst(skb)->dev == dev) {
398 bridged_dnat:
399 				skb->dev = nf_bridge->physindev;
400 				nf_bridge_update_protocol(skb);
401 				nf_bridge_push_encap_header(skb);
402 				br_nf_hook_thresh(NF_BR_PRE_ROUTING,
403 						  net, sk, skb, skb->dev,
404 						  NULL,
405 						  br_nf_pre_routing_finish_bridge);
406 				return 0;
407 			}
408 			ether_addr_copy(eth_hdr(skb)->h_dest, dev->dev_addr);
409 			skb->pkt_type = PACKET_HOST;
410 		}
411 	} else {
412 		rt = bridge_parent_rtable(nf_bridge->physindev);
413 		if (!rt) {
414 			kfree_skb(skb);
415 			return 0;
416 		}
417 		skb_dst_drop(skb);
418 		skb_dst_set_noref(skb, &rt->dst);
419 	}
420 
421 	skb->dev = nf_bridge->physindev;
422 	nf_bridge_update_protocol(skb);
423 	nf_bridge_push_encap_header(skb);
424 	br_nf_hook_thresh(NF_BR_PRE_ROUTING, net, sk, skb, skb->dev, NULL,
425 			  br_handle_frame_finish);
426 	return 0;
427 }
428 
429 static struct net_device *brnf_get_logical_dev(struct sk_buff *skb,
430 					       const struct net_device *dev,
431 					       const struct net *net)
432 {
433 	struct net_device *vlan, *br;
434 	struct brnf_net *brnet = net_generic(net, brnf_net_id);
435 
436 	br = bridge_parent(dev);
437 
438 	if (brnet->pass_vlan_indev == 0 || !skb_vlan_tag_present(skb))
439 		return br;
440 
441 	vlan = __vlan_find_dev_deep_rcu(br, skb->vlan_proto,
442 				    skb_vlan_tag_get(skb) & VLAN_VID_MASK);
443 
444 	return vlan ? vlan : br;
445 }
446 
447 /* Some common code for IPv4/IPv6 */
448 struct net_device *setup_pre_routing(struct sk_buff *skb, const struct net *net)
449 {
450 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
451 
452 	if (skb->pkt_type == PACKET_OTHERHOST) {
453 		skb->pkt_type = PACKET_HOST;
454 		nf_bridge->pkt_otherhost = true;
455 	}
456 
457 	nf_bridge->in_prerouting = 1;
458 	nf_bridge->physindev = skb->dev;
459 	skb->dev = brnf_get_logical_dev(skb, skb->dev, net);
460 
461 	if (skb->protocol == htons(ETH_P_8021Q))
462 		nf_bridge->orig_proto = BRNF_PROTO_8021Q;
463 	else if (skb->protocol == htons(ETH_P_PPP_SES))
464 		nf_bridge->orig_proto = BRNF_PROTO_PPPOE;
465 
466 	/* Must drop socket now because of tproxy. */
467 	skb_orphan(skb);
468 	return skb->dev;
469 }
470 
471 /* Direct IPv6 traffic to br_nf_pre_routing_ipv6.
472  * Replicate the checks that IPv4 does on packet reception.
473  * Set skb->dev to the bridge device (i.e. parent of the
474  * receiving device) to make netfilter happy, the REDIRECT
475  * target in particular.  Save the original destination IP
476  * address to be able to detect DNAT afterwards. */
477 static unsigned int br_nf_pre_routing(void *priv,
478 				      struct sk_buff *skb,
479 				      const struct nf_hook_state *state)
480 {
481 	struct nf_bridge_info *nf_bridge;
482 	struct net_bridge_port *p;
483 	struct net_bridge *br;
484 	__u32 len = nf_bridge_encap_header_len(skb);
485 	struct brnf_net *brnet;
486 
487 	if (unlikely(!pskb_may_pull(skb, len)))
488 		return NF_DROP;
489 
490 	p = br_port_get_rcu(state->in);
491 	if (p == NULL)
492 		return NF_DROP;
493 	br = p->br;
494 
495 	brnet = net_generic(state->net, brnf_net_id);
496 	if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
497 	    is_pppoe_ipv6(skb, state->net)) {
498 		if (!brnet->call_ip6tables &&
499 		    !br_opt_get(br, BROPT_NF_CALL_IP6TABLES))
500 			return NF_ACCEPT;
501 		if (!ipv6_mod_enabled()) {
502 			pr_warn_once("Module ipv6 is disabled, so call_ip6tables is not supported.");
503 			return NF_DROP;
504 		}
505 
506 		nf_bridge_pull_encap_header_rcsum(skb);
507 		return br_nf_pre_routing_ipv6(priv, skb, state);
508 	}
509 
510 	if (!brnet->call_iptables && !br_opt_get(br, BROPT_NF_CALL_IPTABLES))
511 		return NF_ACCEPT;
512 
513 	if (!IS_IP(skb) && !is_vlan_ip(skb, state->net) &&
514 	    !is_pppoe_ip(skb, state->net))
515 		return NF_ACCEPT;
516 
517 	nf_bridge_pull_encap_header_rcsum(skb);
518 
519 	if (br_validate_ipv4(state->net, skb))
520 		return NF_DROP;
521 
522 	if (!nf_bridge_alloc(skb))
523 		return NF_DROP;
524 	if (!setup_pre_routing(skb, state->net))
525 		return NF_DROP;
526 
527 	nf_bridge = nf_bridge_info_get(skb);
528 	nf_bridge->ipv4_daddr = ip_hdr(skb)->daddr;
529 
530 	skb->protocol = htons(ETH_P_IP);
531 	skb->transport_header = skb->network_header + ip_hdr(skb)->ihl * 4;
532 
533 	NF_HOOK(NFPROTO_IPV4, NF_INET_PRE_ROUTING, state->net, state->sk, skb,
534 		skb->dev, NULL,
535 		br_nf_pre_routing_finish);
536 
537 	return NF_STOLEN;
538 }
539 
540 
541 /* PF_BRIDGE/FORWARD *************************************************/
542 static int br_nf_forward_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
543 {
544 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
545 	struct net_device *in;
546 
547 	if (!IS_ARP(skb) && !is_vlan_arp(skb, net)) {
548 
549 		if (skb->protocol == htons(ETH_P_IP))
550 			nf_bridge->frag_max_size = IPCB(skb)->frag_max_size;
551 
552 		if (skb->protocol == htons(ETH_P_IPV6))
553 			nf_bridge->frag_max_size = IP6CB(skb)->frag_max_size;
554 
555 		in = nf_bridge->physindev;
556 		if (nf_bridge->pkt_otherhost) {
557 			skb->pkt_type = PACKET_OTHERHOST;
558 			nf_bridge->pkt_otherhost = false;
559 		}
560 		nf_bridge_update_protocol(skb);
561 	} else {
562 		in = *((struct net_device **)(skb->cb));
563 	}
564 	nf_bridge_push_encap_header(skb);
565 
566 	br_nf_hook_thresh(NF_BR_FORWARD, net, sk, skb, in, skb->dev,
567 			  br_forward_finish);
568 	return 0;
569 }
570 
571 
572 /* This is the 'purely bridged' case.  For IP, we pass the packet to
573  * netfilter with indev and outdev set to the bridge device,
574  * but we are still able to filter on the 'real' indev/outdev
575  * because of the physdev module. For ARP, indev and outdev are the
576  * bridge ports. */
577 static unsigned int br_nf_forward_ip(void *priv,
578 				     struct sk_buff *skb,
579 				     const struct nf_hook_state *state)
580 {
581 	struct nf_bridge_info *nf_bridge;
582 	struct net_device *parent;
583 	u_int8_t pf;
584 
585 	nf_bridge = nf_bridge_info_get(skb);
586 	if (!nf_bridge)
587 		return NF_ACCEPT;
588 
589 	/* Need exclusive nf_bridge_info since we might have multiple
590 	 * different physoutdevs. */
591 	if (!nf_bridge_unshare(skb))
592 		return NF_DROP;
593 
594 	nf_bridge = nf_bridge_info_get(skb);
595 	if (!nf_bridge)
596 		return NF_DROP;
597 
598 	parent = bridge_parent(state->out);
599 	if (!parent)
600 		return NF_DROP;
601 
602 	if (IS_IP(skb) || is_vlan_ip(skb, state->net) ||
603 	    is_pppoe_ip(skb, state->net))
604 		pf = NFPROTO_IPV4;
605 	else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
606 		 is_pppoe_ipv6(skb, state->net))
607 		pf = NFPROTO_IPV6;
608 	else
609 		return NF_ACCEPT;
610 
611 	nf_bridge_pull_encap_header(skb);
612 
613 	if (skb->pkt_type == PACKET_OTHERHOST) {
614 		skb->pkt_type = PACKET_HOST;
615 		nf_bridge->pkt_otherhost = true;
616 	}
617 
618 	if (pf == NFPROTO_IPV4) {
619 		if (br_validate_ipv4(state->net, skb))
620 			return NF_DROP;
621 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
622 	}
623 
624 	if (pf == NFPROTO_IPV6) {
625 		if (br_validate_ipv6(state->net, skb))
626 			return NF_DROP;
627 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
628 	}
629 
630 	nf_bridge->physoutdev = skb->dev;
631 	if (pf == NFPROTO_IPV4)
632 		skb->protocol = htons(ETH_P_IP);
633 	else
634 		skb->protocol = htons(ETH_P_IPV6);
635 
636 	NF_HOOK(pf, NF_INET_FORWARD, state->net, NULL, skb,
637 		brnf_get_logical_dev(skb, state->in, state->net),
638 		parent,	br_nf_forward_finish);
639 
640 	return NF_STOLEN;
641 }
642 
643 static unsigned int br_nf_forward_arp(void *priv,
644 				      struct sk_buff *skb,
645 				      const struct nf_hook_state *state)
646 {
647 	struct net_bridge_port *p;
648 	struct net_bridge *br;
649 	struct net_device **d = (struct net_device **)(skb->cb);
650 	struct brnf_net *brnet;
651 
652 	p = br_port_get_rcu(state->out);
653 	if (p == NULL)
654 		return NF_ACCEPT;
655 	br = p->br;
656 
657 	brnet = net_generic(state->net, brnf_net_id);
658 	if (!brnet->call_arptables && !br_opt_get(br, BROPT_NF_CALL_ARPTABLES))
659 		return NF_ACCEPT;
660 
661 	if (!IS_ARP(skb)) {
662 		if (!is_vlan_arp(skb, state->net))
663 			return NF_ACCEPT;
664 		nf_bridge_pull_encap_header(skb);
665 	}
666 
667 	if (unlikely(!pskb_may_pull(skb, sizeof(struct arphdr))))
668 		return NF_DROP;
669 
670 	if (arp_hdr(skb)->ar_pln != 4) {
671 		if (is_vlan_arp(skb, state->net))
672 			nf_bridge_push_encap_header(skb);
673 		return NF_ACCEPT;
674 	}
675 	*d = state->in;
676 	NF_HOOK(NFPROTO_ARP, NF_ARP_FORWARD, state->net, state->sk, skb,
677 		state->in, state->out, br_nf_forward_finish);
678 
679 	return NF_STOLEN;
680 }
681 
682 static int br_nf_push_frag_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
683 {
684 	struct brnf_frag_data *data;
685 	int err;
686 
687 	data = this_cpu_ptr(&brnf_frag_data_storage);
688 	err = skb_cow_head(skb, data->size);
689 
690 	if (err) {
691 		kfree_skb(skb);
692 		return 0;
693 	}
694 
695 	if (data->vlan_proto)
696 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci);
697 
698 	skb_copy_to_linear_data_offset(skb, -data->size, data->mac, data->size);
699 	__skb_push(skb, data->encap_size);
700 
701 	nf_bridge_info_free(skb);
702 	return br_dev_queue_push_xmit(net, sk, skb);
703 }
704 
705 static int
706 br_nf_ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
707 		  int (*output)(struct net *, struct sock *, struct sk_buff *))
708 {
709 	unsigned int mtu = ip_skb_dst_mtu(sk, skb);
710 	struct iphdr *iph = ip_hdr(skb);
711 
712 	if (unlikely(((iph->frag_off & htons(IP_DF)) && !skb->ignore_df) ||
713 		     (IPCB(skb)->frag_max_size &&
714 		      IPCB(skb)->frag_max_size > mtu))) {
715 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
716 		kfree_skb(skb);
717 		return -EMSGSIZE;
718 	}
719 
720 	return ip_do_fragment(net, sk, skb, output);
721 }
722 
723 static unsigned int nf_bridge_mtu_reduction(const struct sk_buff *skb)
724 {
725 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
726 
727 	if (nf_bridge->orig_proto == BRNF_PROTO_PPPOE)
728 		return PPPOE_SES_HLEN;
729 	return 0;
730 }
731 
732 static int br_nf_dev_queue_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
733 {
734 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
735 	unsigned int mtu, mtu_reserved;
736 
737 	mtu_reserved = nf_bridge_mtu_reduction(skb);
738 	mtu = skb->dev->mtu;
739 
740 	if (nf_bridge->pkt_otherhost) {
741 		skb->pkt_type = PACKET_OTHERHOST;
742 		nf_bridge->pkt_otherhost = false;
743 	}
744 
745 	if (nf_bridge->frag_max_size && nf_bridge->frag_max_size < mtu)
746 		mtu = nf_bridge->frag_max_size;
747 
748 	nf_bridge_update_protocol(skb);
749 	nf_bridge_push_encap_header(skb);
750 
751 	if (skb_is_gso(skb) || skb->len + mtu_reserved <= mtu) {
752 		nf_bridge_info_free(skb);
753 		return br_dev_queue_push_xmit(net, sk, skb);
754 	}
755 
756 	/* This is wrong! We should preserve the original fragment
757 	 * boundaries by preserving frag_list rather than refragmenting.
758 	 */
759 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV4) &&
760 	    skb->protocol == htons(ETH_P_IP)) {
761 		struct brnf_frag_data *data;
762 
763 		if (br_validate_ipv4(net, skb))
764 			goto drop;
765 
766 		IPCB(skb)->frag_max_size = nf_bridge->frag_max_size;
767 
768 		data = this_cpu_ptr(&brnf_frag_data_storage);
769 
770 		if (skb_vlan_tag_present(skb)) {
771 			data->vlan_tci = skb->vlan_tci;
772 			data->vlan_proto = skb->vlan_proto;
773 		} else {
774 			data->vlan_proto = 0;
775 		}
776 
777 		data->encap_size = nf_bridge_encap_header_len(skb);
778 		data->size = ETH_HLEN + data->encap_size;
779 
780 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
781 						 data->size);
782 
783 		return br_nf_ip_fragment(net, sk, skb, br_nf_push_frag_xmit);
784 	}
785 	if (IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) &&
786 	    skb->protocol == htons(ETH_P_IPV6)) {
787 		const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
788 		struct brnf_frag_data *data;
789 
790 		if (br_validate_ipv6(net, skb))
791 			goto drop;
792 
793 		IP6CB(skb)->frag_max_size = nf_bridge->frag_max_size;
794 
795 		data = this_cpu_ptr(&brnf_frag_data_storage);
796 		data->encap_size = nf_bridge_encap_header_len(skb);
797 		data->size = ETH_HLEN + data->encap_size;
798 
799 		skb_copy_from_linear_data_offset(skb, -data->size, data->mac,
800 						 data->size);
801 
802 		if (v6ops)
803 			return v6ops->fragment(net, sk, skb, br_nf_push_frag_xmit);
804 
805 		kfree_skb(skb);
806 		return -EMSGSIZE;
807 	}
808 	nf_bridge_info_free(skb);
809 	return br_dev_queue_push_xmit(net, sk, skb);
810  drop:
811 	kfree_skb(skb);
812 	return 0;
813 }
814 
815 /* PF_BRIDGE/POST_ROUTING ********************************************/
816 static unsigned int br_nf_post_routing(void *priv,
817 				       struct sk_buff *skb,
818 				       const struct nf_hook_state *state)
819 {
820 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
821 	struct net_device *realoutdev = bridge_parent(skb->dev);
822 	u_int8_t pf;
823 
824 	/* if nf_bridge is set, but ->physoutdev is NULL, this packet came in
825 	 * on a bridge, but was delivered locally and is now being routed:
826 	 *
827 	 * POST_ROUTING was already invoked from the ip stack.
828 	 */
829 	if (!nf_bridge || !nf_bridge->physoutdev)
830 		return NF_ACCEPT;
831 
832 	if (!realoutdev)
833 		return NF_DROP;
834 
835 	if (IS_IP(skb) || is_vlan_ip(skb, state->net) ||
836 	    is_pppoe_ip(skb, state->net))
837 		pf = NFPROTO_IPV4;
838 	else if (IS_IPV6(skb) || is_vlan_ipv6(skb, state->net) ||
839 		 is_pppoe_ipv6(skb, state->net))
840 		pf = NFPROTO_IPV6;
841 	else
842 		return NF_ACCEPT;
843 
844 	if (skb->pkt_type == PACKET_OTHERHOST) {
845 		skb->pkt_type = PACKET_HOST;
846 		nf_bridge->pkt_otherhost = true;
847 	}
848 
849 	nf_bridge_pull_encap_header(skb);
850 	if (pf == NFPROTO_IPV4)
851 		skb->protocol = htons(ETH_P_IP);
852 	else
853 		skb->protocol = htons(ETH_P_IPV6);
854 
855 	NF_HOOK(pf, NF_INET_POST_ROUTING, state->net, state->sk, skb,
856 		NULL, realoutdev,
857 		br_nf_dev_queue_xmit);
858 
859 	return NF_STOLEN;
860 }
861 
862 /* IP/SABOTAGE *****************************************************/
863 /* Don't hand locally destined packets to PF_INET(6)/PRE_ROUTING
864  * for the second time. */
865 static unsigned int ip_sabotage_in(void *priv,
866 				   struct sk_buff *skb,
867 				   const struct nf_hook_state *state)
868 {
869 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
870 
871 	if (nf_bridge && !nf_bridge->in_prerouting &&
872 	    !netif_is_l3_master(skb->dev) &&
873 	    !netif_is_l3_slave(skb->dev)) {
874 		nf_bridge_info_free(skb);
875 		state->okfn(state->net, state->sk, skb);
876 		return NF_STOLEN;
877 	}
878 
879 	return NF_ACCEPT;
880 }
881 
882 /* This is called when br_netfilter has called into iptables/netfilter,
883  * and DNAT has taken place on a bridge-forwarded packet.
884  *
885  * neigh->output has created a new MAC header, with local br0 MAC
886  * as saddr.
887  *
888  * This restores the original MAC saddr of the bridged packet
889  * before invoking bridge forward logic to transmit the packet.
890  */
891 static void br_nf_pre_routing_finish_bridge_slow(struct sk_buff *skb)
892 {
893 	struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
894 
895 	skb_pull(skb, ETH_HLEN);
896 	nf_bridge->bridged_dnat = 0;
897 
898 	BUILD_BUG_ON(sizeof(nf_bridge->neigh_header) != (ETH_HLEN - ETH_ALEN));
899 
900 	skb_copy_to_linear_data_offset(skb, -(ETH_HLEN - ETH_ALEN),
901 				       nf_bridge->neigh_header,
902 				       ETH_HLEN - ETH_ALEN);
903 	skb->dev = nf_bridge->physindev;
904 
905 	nf_bridge->physoutdev = NULL;
906 	br_handle_frame_finish(dev_net(skb->dev), NULL, skb);
907 }
908 
909 static int br_nf_dev_xmit(struct sk_buff *skb)
910 {
911 	const struct nf_bridge_info *nf_bridge = nf_bridge_info_get(skb);
912 
913 	if (nf_bridge && nf_bridge->bridged_dnat) {
914 		br_nf_pre_routing_finish_bridge_slow(skb);
915 		return 1;
916 	}
917 	return 0;
918 }
919 
920 static const struct nf_br_ops br_ops = {
921 	.br_dev_xmit_hook =	br_nf_dev_xmit,
922 };
923 
924 /* For br_nf_post_routing, we need (prio = NF_BR_PRI_LAST), because
925  * br_dev_queue_push_xmit is called afterwards */
926 static const struct nf_hook_ops br_nf_ops[] = {
927 	{
928 		.hook = br_nf_pre_routing,
929 		.pf = NFPROTO_BRIDGE,
930 		.hooknum = NF_BR_PRE_ROUTING,
931 		.priority = NF_BR_PRI_BRNF,
932 	},
933 	{
934 		.hook = br_nf_forward_ip,
935 		.pf = NFPROTO_BRIDGE,
936 		.hooknum = NF_BR_FORWARD,
937 		.priority = NF_BR_PRI_BRNF - 1,
938 	},
939 	{
940 		.hook = br_nf_forward_arp,
941 		.pf = NFPROTO_BRIDGE,
942 		.hooknum = NF_BR_FORWARD,
943 		.priority = NF_BR_PRI_BRNF,
944 	},
945 	{
946 		.hook = br_nf_post_routing,
947 		.pf = NFPROTO_BRIDGE,
948 		.hooknum = NF_BR_POST_ROUTING,
949 		.priority = NF_BR_PRI_LAST,
950 	},
951 	{
952 		.hook = ip_sabotage_in,
953 		.pf = NFPROTO_IPV4,
954 		.hooknum = NF_INET_PRE_ROUTING,
955 		.priority = NF_IP_PRI_FIRST,
956 	},
957 	{
958 		.hook = ip_sabotage_in,
959 		.pf = NFPROTO_IPV6,
960 		.hooknum = NF_INET_PRE_ROUTING,
961 		.priority = NF_IP6_PRI_FIRST,
962 	},
963 };
964 
965 static int brnf_device_event(struct notifier_block *unused, unsigned long event,
966 			     void *ptr)
967 {
968 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
969 	struct brnf_net *brnet;
970 	struct net *net;
971 	int ret;
972 
973 	if (event != NETDEV_REGISTER || !netif_is_bridge_master(dev))
974 		return NOTIFY_DONE;
975 
976 	ASSERT_RTNL();
977 
978 	net = dev_net(dev);
979 	brnet = net_generic(net, brnf_net_id);
980 	if (brnet->enabled)
981 		return NOTIFY_OK;
982 
983 	ret = nf_register_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops));
984 	if (ret)
985 		return NOTIFY_BAD;
986 
987 	brnet->enabled = true;
988 	return NOTIFY_OK;
989 }
990 
991 static struct notifier_block brnf_notifier __read_mostly = {
992 	.notifier_call = brnf_device_event,
993 };
994 
995 /* recursively invokes nf_hook_slow (again), skipping already-called
996  * hooks (< NF_BR_PRI_BRNF).
997  *
998  * Called with rcu read lock held.
999  */
1000 int br_nf_hook_thresh(unsigned int hook, struct net *net,
1001 		      struct sock *sk, struct sk_buff *skb,
1002 		      struct net_device *indev,
1003 		      struct net_device *outdev,
1004 		      int (*okfn)(struct net *, struct sock *,
1005 				  struct sk_buff *))
1006 {
1007 	const struct nf_hook_entries *e;
1008 	struct nf_hook_state state;
1009 	struct nf_hook_ops **ops;
1010 	unsigned int i;
1011 	int ret;
1012 
1013 	e = rcu_dereference(net->nf.hooks_bridge[hook]);
1014 	if (!e)
1015 		return okfn(net, sk, skb);
1016 
1017 	ops = nf_hook_entries_get_hook_ops(e);
1018 	for (i = 0; i < e->num_hook_entries; i++) {
1019 		/* These hooks have already been called */
1020 		if (ops[i]->priority < NF_BR_PRI_BRNF)
1021 			continue;
1022 
1023 		/* These hooks have not been called yet, run them. */
1024 		if (ops[i]->priority > NF_BR_PRI_BRNF)
1025 			break;
1026 
1027 		/* take a closer look at NF_BR_PRI_BRNF. */
1028 		if (ops[i]->hook == br_nf_pre_routing) {
1029 			/* This hook diverted the skb to this function,
1030 			 * hooks after this have not been run yet.
1031 			 */
1032 			i++;
1033 			break;
1034 		}
1035 	}
1036 
1037 	nf_hook_state_init(&state, hook, NFPROTO_BRIDGE, indev, outdev,
1038 			   sk, net, okfn);
1039 
1040 	ret = nf_hook_slow(skb, &state, e, i);
1041 	if (ret == 1)
1042 		ret = okfn(net, sk, skb);
1043 
1044 	return ret;
1045 }
1046 
1047 #ifdef CONFIG_SYSCTL
1048 static
1049 int brnf_sysctl_call_tables(struct ctl_table *ctl, int write,
1050 			    void *buffer, size_t *lenp, loff_t *ppos)
1051 {
1052 	int ret;
1053 
1054 	ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
1055 
1056 	if (write && *(int *)(ctl->data))
1057 		*(int *)(ctl->data) = 1;
1058 	return ret;
1059 }
1060 
1061 static struct ctl_table brnf_table[] = {
1062 	{
1063 		.procname	= "bridge-nf-call-arptables",
1064 		.maxlen		= sizeof(int),
1065 		.mode		= 0644,
1066 		.proc_handler	= brnf_sysctl_call_tables,
1067 	},
1068 	{
1069 		.procname	= "bridge-nf-call-iptables",
1070 		.maxlen		= sizeof(int),
1071 		.mode		= 0644,
1072 		.proc_handler	= brnf_sysctl_call_tables,
1073 	},
1074 	{
1075 		.procname	= "bridge-nf-call-ip6tables",
1076 		.maxlen		= sizeof(int),
1077 		.mode		= 0644,
1078 		.proc_handler	= brnf_sysctl_call_tables,
1079 	},
1080 	{
1081 		.procname	= "bridge-nf-filter-vlan-tagged",
1082 		.maxlen		= sizeof(int),
1083 		.mode		= 0644,
1084 		.proc_handler	= brnf_sysctl_call_tables,
1085 	},
1086 	{
1087 		.procname	= "bridge-nf-filter-pppoe-tagged",
1088 		.maxlen		= sizeof(int),
1089 		.mode		= 0644,
1090 		.proc_handler	= brnf_sysctl_call_tables,
1091 	},
1092 	{
1093 		.procname	= "bridge-nf-pass-vlan-input-dev",
1094 		.maxlen		= sizeof(int),
1095 		.mode		= 0644,
1096 		.proc_handler	= brnf_sysctl_call_tables,
1097 	},
1098 	{ }
1099 };
1100 
1101 static inline void br_netfilter_sysctl_default(struct brnf_net *brnf)
1102 {
1103 	brnf->call_iptables = 1;
1104 	brnf->call_ip6tables = 1;
1105 	brnf->call_arptables = 1;
1106 	brnf->filter_vlan_tagged = 0;
1107 	brnf->filter_pppoe_tagged = 0;
1108 	brnf->pass_vlan_indev = 0;
1109 }
1110 
1111 static int br_netfilter_sysctl_init_net(struct net *net)
1112 {
1113 	struct ctl_table *table = brnf_table;
1114 	struct brnf_net *brnet;
1115 
1116 	if (!net_eq(net, &init_net)) {
1117 		table = kmemdup(table, sizeof(brnf_table), GFP_KERNEL);
1118 		if (!table)
1119 			return -ENOMEM;
1120 	}
1121 
1122 	brnet = net_generic(net, brnf_net_id);
1123 	table[0].data = &brnet->call_arptables;
1124 	table[1].data = &brnet->call_iptables;
1125 	table[2].data = &brnet->call_ip6tables;
1126 	table[3].data = &brnet->filter_vlan_tagged;
1127 	table[4].data = &brnet->filter_pppoe_tagged;
1128 	table[5].data = &brnet->pass_vlan_indev;
1129 
1130 	br_netfilter_sysctl_default(brnet);
1131 
1132 	brnet->ctl_hdr = register_net_sysctl(net, "net/bridge", table);
1133 	if (!brnet->ctl_hdr) {
1134 		if (!net_eq(net, &init_net))
1135 			kfree(table);
1136 
1137 		return -ENOMEM;
1138 	}
1139 
1140 	return 0;
1141 }
1142 
1143 static void br_netfilter_sysctl_exit_net(struct net *net,
1144 					 struct brnf_net *brnet)
1145 {
1146 	struct ctl_table *table = brnet->ctl_hdr->ctl_table_arg;
1147 
1148 	unregister_net_sysctl_table(brnet->ctl_hdr);
1149 	if (!net_eq(net, &init_net))
1150 		kfree(table);
1151 }
1152 
1153 static int __net_init brnf_init_net(struct net *net)
1154 {
1155 	return br_netfilter_sysctl_init_net(net);
1156 }
1157 #endif
1158 
1159 static void __net_exit brnf_exit_net(struct net *net)
1160 {
1161 	struct brnf_net *brnet;
1162 
1163 	brnet = net_generic(net, brnf_net_id);
1164 	if (brnet->enabled) {
1165 		nf_unregister_net_hooks(net, br_nf_ops, ARRAY_SIZE(br_nf_ops));
1166 		brnet->enabled = false;
1167 	}
1168 
1169 #ifdef CONFIG_SYSCTL
1170 	br_netfilter_sysctl_exit_net(net, brnet);
1171 #endif
1172 }
1173 
1174 static struct pernet_operations brnf_net_ops __read_mostly = {
1175 #ifdef CONFIG_SYSCTL
1176 	.init = brnf_init_net,
1177 #endif
1178 	.exit = brnf_exit_net,
1179 	.id   = &brnf_net_id,
1180 	.size = sizeof(struct brnf_net),
1181 };
1182 
1183 static int __init br_netfilter_init(void)
1184 {
1185 	int ret;
1186 
1187 	ret = register_pernet_subsys(&brnf_net_ops);
1188 	if (ret < 0)
1189 		return ret;
1190 
1191 	ret = register_netdevice_notifier(&brnf_notifier);
1192 	if (ret < 0) {
1193 		unregister_pernet_subsys(&brnf_net_ops);
1194 		return ret;
1195 	}
1196 
1197 	RCU_INIT_POINTER(nf_br_ops, &br_ops);
1198 	printk(KERN_NOTICE "Bridge firewalling registered\n");
1199 	return 0;
1200 }
1201 
1202 static void __exit br_netfilter_fini(void)
1203 {
1204 	RCU_INIT_POINTER(nf_br_ops, NULL);
1205 	unregister_netdevice_notifier(&brnf_notifier);
1206 	unregister_pernet_subsys(&brnf_net_ops);
1207 }
1208 
1209 module_init(br_netfilter_init);
1210 module_exit(br_netfilter_fini);
1211 
1212 MODULE_LICENSE("GPL");
1213 MODULE_AUTHOR("Lennert Buytenhek <buytenh@gnu.org>");
1214 MODULE_AUTHOR("Bart De Schuymer <bdschuym@pandora.be>");
1215 MODULE_DESCRIPTION("Linux ethernet netfilter firewall bridge");
1216