xref: /linux/net/can/isotp.c (revision 4f027cba)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3  *
4  * This implementation does not provide ISO-TP specific return values to the
5  * userspace.
6  *
7  * - RX path timeout of data reception leads to -ETIMEDOUT
8  * - RX path SN mismatch leads to -EILSEQ
9  * - RX path data reception with wrong padding leads to -EBADMSG
10  * - TX path flowcontrol reception timeout leads to -ECOMM
11  * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12  * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13  * - when a transfer (tx) is on the run the next write() blocks until it's done
14  * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15  * - as we have static buffers the check whether the PDU fits into the buffer
16  *   is done at FF reception time (no support for sending 'wait frames')
17  *
18  * Copyright (c) 2020 Volkswagen Group Electronic Research
19  * All rights reserved.
20  *
21  * Redistribution and use in source and binary forms, with or without
22  * modification, are permitted provided that the following conditions
23  * are met:
24  * 1. Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  * 2. Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in the
28  *    documentation and/or other materials provided with the distribution.
29  * 3. Neither the name of Volkswagen nor the names of its contributors
30  *    may be used to endorse or promote products derived from this software
31  *    without specific prior written permission.
32  *
33  * Alternatively, provided that this notice is retained in full, this
34  * software may be distributed under the terms of the GNU General
35  * Public License ("GPL") version 2, in which case the provisions of the
36  * GPL apply INSTEAD OF those given above.
37  *
38  * The provided data structures and external interfaces from this code
39  * are not restricted to be used by modules with a GPL compatible license.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52  * DAMAGE.
53  */
54 
55 #include <linux/module.h>
56 #include <linux/init.h>
57 #include <linux/interrupt.h>
58 #include <linux/spinlock.h>
59 #include <linux/hrtimer.h>
60 #include <linux/wait.h>
61 #include <linux/uio.h>
62 #include <linux/net.h>
63 #include <linux/netdevice.h>
64 #include <linux/socket.h>
65 #include <linux/if_arp.h>
66 #include <linux/skbuff.h>
67 #include <linux/can.h>
68 #include <linux/can/core.h>
69 #include <linux/can/skb.h>
70 #include <linux/can/isotp.h>
71 #include <linux/slab.h>
72 #include <net/sock.h>
73 #include <net/net_namespace.h>
74 
75 MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
76 MODULE_LICENSE("Dual BSD/GPL");
77 MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
78 MODULE_ALIAS("can-proto-6");
79 
80 #define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
81 
82 #define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
83 			 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
84 			 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
85 
86 /* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
87  * take full 32 bit values (4 Gbyte). We would need some good concept to handle
88  * this between user space and kernel space. For now increase the static buffer
89  * to something about 64 kbyte to be able to test this new functionality.
90  */
91 #define MAX_MSG_LENGTH 66000
92 
93 /* N_PCI type values in bits 7-4 of N_PCI bytes */
94 #define N_PCI_SF 0x00	/* single frame */
95 #define N_PCI_FF 0x10	/* first frame */
96 #define N_PCI_CF 0x20	/* consecutive frame */
97 #define N_PCI_FC 0x30	/* flow control */
98 
99 #define N_PCI_SZ 1	/* size of the PCI byte #1 */
100 #define SF_PCI_SZ4 1	/* size of SingleFrame PCI including 4 bit SF_DL */
101 #define SF_PCI_SZ8 2	/* size of SingleFrame PCI including 8 bit SF_DL */
102 #define FF_PCI_SZ12 2	/* size of FirstFrame PCI including 12 bit FF_DL */
103 #define FF_PCI_SZ32 6	/* size of FirstFrame PCI including 32 bit FF_DL */
104 #define FC_CONTENT_SZ 3	/* flow control content size in byte (FS/BS/STmin) */
105 
106 #define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
107 #define ISOTP_ALL_BC_FLAGS (CAN_ISOTP_SF_BROADCAST | CAN_ISOTP_CF_BROADCAST)
108 
109 /* Flow Status given in FC frame */
110 #define ISOTP_FC_CTS 0		/* clear to send */
111 #define ISOTP_FC_WT 1		/* wait */
112 #define ISOTP_FC_OVFLW 2	/* overflow */
113 
114 #define ISOTP_FC_TIMEOUT 1	/* 1 sec */
115 #define ISOTP_ECHO_TIMEOUT 2	/* 2 secs */
116 
117 enum {
118 	ISOTP_IDLE = 0,
119 	ISOTP_WAIT_FIRST_FC,
120 	ISOTP_WAIT_FC,
121 	ISOTP_WAIT_DATA,
122 	ISOTP_SENDING
123 };
124 
125 struct tpcon {
126 	unsigned int idx;
127 	unsigned int len;
128 	u32 state;
129 	u8 bs;
130 	u8 sn;
131 	u8 ll_dl;
132 	u8 buf[MAX_MSG_LENGTH + 1];
133 };
134 
135 struct isotp_sock {
136 	struct sock sk;
137 	int bound;
138 	int ifindex;
139 	canid_t txid;
140 	canid_t rxid;
141 	ktime_t tx_gap;
142 	ktime_t lastrxcf_tstamp;
143 	struct hrtimer rxtimer, txtimer, txfrtimer;
144 	struct can_isotp_options opt;
145 	struct can_isotp_fc_options rxfc, txfc;
146 	struct can_isotp_ll_options ll;
147 	u32 frame_txtime;
148 	u32 force_tx_stmin;
149 	u32 force_rx_stmin;
150 	u32 cfecho; /* consecutive frame echo tag */
151 	struct tpcon rx, tx;
152 	struct list_head notifier;
153 	wait_queue_head_t wait;
154 	spinlock_t rx_lock; /* protect single thread state machine */
155 };
156 
157 static LIST_HEAD(isotp_notifier_list);
158 static DEFINE_SPINLOCK(isotp_notifier_lock);
159 static struct isotp_sock *isotp_busy_notifier;
160 
161 static inline struct isotp_sock *isotp_sk(const struct sock *sk)
162 {
163 	return (struct isotp_sock *)sk;
164 }
165 
166 static u32 isotp_bc_flags(struct isotp_sock *so)
167 {
168 	return so->opt.flags & ISOTP_ALL_BC_FLAGS;
169 }
170 
171 static bool isotp_register_rxid(struct isotp_sock *so)
172 {
173 	/* no broadcast modes => register rx_id for FC frame reception */
174 	return (isotp_bc_flags(so) == 0);
175 }
176 
177 static bool isotp_register_txecho(struct isotp_sock *so)
178 {
179 	/* all modes but SF_BROADCAST register for tx echo skbs */
180 	return (isotp_bc_flags(so) != CAN_ISOTP_SF_BROADCAST);
181 }
182 
183 static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
184 {
185 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
186 					     rxtimer);
187 	struct sock *sk = &so->sk;
188 
189 	if (so->rx.state == ISOTP_WAIT_DATA) {
190 		/* we did not get new data frames in time */
191 
192 		/* report 'connection timed out' */
193 		sk->sk_err = ETIMEDOUT;
194 		if (!sock_flag(sk, SOCK_DEAD))
195 			sk_error_report(sk);
196 
197 		/* reset rx state */
198 		so->rx.state = ISOTP_IDLE;
199 	}
200 
201 	return HRTIMER_NORESTART;
202 }
203 
204 static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
205 {
206 	struct net_device *dev;
207 	struct sk_buff *nskb;
208 	struct canfd_frame *ncf;
209 	struct isotp_sock *so = isotp_sk(sk);
210 	int can_send_ret;
211 
212 	nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
213 	if (!nskb)
214 		return 1;
215 
216 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
217 	if (!dev) {
218 		kfree_skb(nskb);
219 		return 1;
220 	}
221 
222 	can_skb_reserve(nskb);
223 	can_skb_prv(nskb)->ifindex = dev->ifindex;
224 	can_skb_prv(nskb)->skbcnt = 0;
225 
226 	nskb->dev = dev;
227 	can_skb_set_owner(nskb, sk);
228 	ncf = (struct canfd_frame *)nskb->data;
229 	skb_put_zero(nskb, so->ll.mtu);
230 
231 	/* create & send flow control reply */
232 	ncf->can_id = so->txid;
233 
234 	if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
235 		memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
236 		ncf->len = CAN_MAX_DLEN;
237 	} else {
238 		ncf->len = ae + FC_CONTENT_SZ;
239 	}
240 
241 	ncf->data[ae] = N_PCI_FC | flowstatus;
242 	ncf->data[ae + 1] = so->rxfc.bs;
243 	ncf->data[ae + 2] = so->rxfc.stmin;
244 
245 	if (ae)
246 		ncf->data[0] = so->opt.ext_address;
247 
248 	ncf->flags = so->ll.tx_flags;
249 
250 	can_send_ret = can_send(nskb, 1);
251 	if (can_send_ret)
252 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
253 			       __func__, ERR_PTR(can_send_ret));
254 
255 	dev_put(dev);
256 
257 	/* reset blocksize counter */
258 	so->rx.bs = 0;
259 
260 	/* reset last CF frame rx timestamp for rx stmin enforcement */
261 	so->lastrxcf_tstamp = ktime_set(0, 0);
262 
263 	/* start rx timeout watchdog */
264 	hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
265 		      HRTIMER_MODE_REL_SOFT);
266 	return 0;
267 }
268 
269 static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
270 {
271 	struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
272 
273 	BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
274 
275 	memset(addr, 0, sizeof(*addr));
276 	addr->can_family = AF_CAN;
277 	addr->can_ifindex = skb->dev->ifindex;
278 
279 	if (sock_queue_rcv_skb(sk, skb) < 0)
280 		kfree_skb(skb);
281 }
282 
283 static u8 padlen(u8 datalen)
284 {
285 	static const u8 plen[] = {
286 		8, 8, 8, 8, 8, 8, 8, 8, 8,	/* 0 - 8 */
287 		12, 12, 12, 12,			/* 9 - 12 */
288 		16, 16, 16, 16,			/* 13 - 16 */
289 		20, 20, 20, 20,			/* 17 - 20 */
290 		24, 24, 24, 24,			/* 21 - 24 */
291 		32, 32, 32, 32, 32, 32, 32, 32,	/* 25 - 32 */
292 		48, 48, 48, 48, 48, 48, 48, 48,	/* 33 - 40 */
293 		48, 48, 48, 48, 48, 48, 48, 48	/* 41 - 48 */
294 	};
295 
296 	if (datalen > 48)
297 		return 64;
298 
299 	return plen[datalen];
300 }
301 
302 /* check for length optimization and return 1/true when the check fails */
303 static int check_optimized(struct canfd_frame *cf, int start_index)
304 {
305 	/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
306 	 * padding would start at this point. E.g. if the padding would
307 	 * start at cf.data[7] cf->len has to be 7 to be optimal.
308 	 * Note: The data[] index starts with zero.
309 	 */
310 	if (cf->len <= CAN_MAX_DLEN)
311 		return (cf->len != start_index);
312 
313 	/* This relation is also valid in the non-linear DLC range, where
314 	 * we need to take care of the minimal next possible CAN_DL.
315 	 * The correct check would be (padlen(cf->len) != padlen(start_index)).
316 	 * But as cf->len can only take discrete values from 12, .., 64 at this
317 	 * point the padlen(cf->len) is always equal to cf->len.
318 	 */
319 	return (cf->len != padlen(start_index));
320 }
321 
322 /* check padding and return 1/true when the check fails */
323 static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
324 		     int start_index, u8 content)
325 {
326 	int i;
327 
328 	/* no RX_PADDING value => check length of optimized frame length */
329 	if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
330 		if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
331 			return check_optimized(cf, start_index);
332 
333 		/* no valid test against empty value => ignore frame */
334 		return 1;
335 	}
336 
337 	/* check datalength of correctly padded CAN frame */
338 	if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
339 	    cf->len != padlen(cf->len))
340 		return 1;
341 
342 	/* check padding content */
343 	if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
344 		for (i = start_index; i < cf->len; i++)
345 			if (cf->data[i] != content)
346 				return 1;
347 	}
348 	return 0;
349 }
350 
351 static void isotp_send_cframe(struct isotp_sock *so);
352 
353 static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
354 {
355 	struct sock *sk = &so->sk;
356 
357 	if (so->tx.state != ISOTP_WAIT_FC &&
358 	    so->tx.state != ISOTP_WAIT_FIRST_FC)
359 		return 0;
360 
361 	hrtimer_cancel(&so->txtimer);
362 
363 	if ((cf->len < ae + FC_CONTENT_SZ) ||
364 	    ((so->opt.flags & ISOTP_CHECK_PADDING) &&
365 	     check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
366 		/* malformed PDU - report 'not a data message' */
367 		sk->sk_err = EBADMSG;
368 		if (!sock_flag(sk, SOCK_DEAD))
369 			sk_error_report(sk);
370 
371 		so->tx.state = ISOTP_IDLE;
372 		wake_up_interruptible(&so->wait);
373 		return 1;
374 	}
375 
376 	/* get communication parameters only from the first FC frame */
377 	if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
378 		so->txfc.bs = cf->data[ae + 1];
379 		so->txfc.stmin = cf->data[ae + 2];
380 
381 		/* fix wrong STmin values according spec */
382 		if (so->txfc.stmin > 0x7F &&
383 		    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
384 			so->txfc.stmin = 0x7F;
385 
386 		so->tx_gap = ktime_set(0, 0);
387 		/* add transmission time for CAN frame N_As */
388 		so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
389 		/* add waiting time for consecutive frames N_Cs */
390 		if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
391 			so->tx_gap = ktime_add_ns(so->tx_gap,
392 						  so->force_tx_stmin);
393 		else if (so->txfc.stmin < 0x80)
394 			so->tx_gap = ktime_add_ns(so->tx_gap,
395 						  so->txfc.stmin * 1000000);
396 		else
397 			so->tx_gap = ktime_add_ns(so->tx_gap,
398 						  (so->txfc.stmin - 0xF0)
399 						  * 100000);
400 		so->tx.state = ISOTP_WAIT_FC;
401 	}
402 
403 	switch (cf->data[ae] & 0x0F) {
404 	case ISOTP_FC_CTS:
405 		so->tx.bs = 0;
406 		so->tx.state = ISOTP_SENDING;
407 		/* send CF frame and enable echo timeout handling */
408 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
409 			      HRTIMER_MODE_REL_SOFT);
410 		isotp_send_cframe(so);
411 		break;
412 
413 	case ISOTP_FC_WT:
414 		/* start timer to wait for next FC frame */
415 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
416 			      HRTIMER_MODE_REL_SOFT);
417 		break;
418 
419 	case ISOTP_FC_OVFLW:
420 		/* overflow on receiver side - report 'message too long' */
421 		sk->sk_err = EMSGSIZE;
422 		if (!sock_flag(sk, SOCK_DEAD))
423 			sk_error_report(sk);
424 		fallthrough;
425 
426 	default:
427 		/* stop this tx job */
428 		so->tx.state = ISOTP_IDLE;
429 		wake_up_interruptible(&so->wait);
430 	}
431 	return 0;
432 }
433 
434 static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
435 			struct sk_buff *skb, int len)
436 {
437 	struct isotp_sock *so = isotp_sk(sk);
438 	struct sk_buff *nskb;
439 
440 	hrtimer_cancel(&so->rxtimer);
441 	so->rx.state = ISOTP_IDLE;
442 
443 	if (!len || len > cf->len - pcilen)
444 		return 1;
445 
446 	if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
447 	    check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
448 		/* malformed PDU - report 'not a data message' */
449 		sk->sk_err = EBADMSG;
450 		if (!sock_flag(sk, SOCK_DEAD))
451 			sk_error_report(sk);
452 		return 1;
453 	}
454 
455 	nskb = alloc_skb(len, gfp_any());
456 	if (!nskb)
457 		return 1;
458 
459 	memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
460 
461 	nskb->tstamp = skb->tstamp;
462 	nskb->dev = skb->dev;
463 	isotp_rcv_skb(nskb, sk);
464 	return 0;
465 }
466 
467 static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
468 {
469 	struct isotp_sock *so = isotp_sk(sk);
470 	int i;
471 	int off;
472 	int ff_pci_sz;
473 
474 	hrtimer_cancel(&so->rxtimer);
475 	so->rx.state = ISOTP_IDLE;
476 
477 	/* get the used sender LL_DL from the (first) CAN frame data length */
478 	so->rx.ll_dl = padlen(cf->len);
479 
480 	/* the first frame has to use the entire frame up to LL_DL length */
481 	if (cf->len != so->rx.ll_dl)
482 		return 1;
483 
484 	/* get the FF_DL */
485 	so->rx.len = (cf->data[ae] & 0x0F) << 8;
486 	so->rx.len += cf->data[ae + 1];
487 
488 	/* Check for FF_DL escape sequence supporting 32 bit PDU length */
489 	if (so->rx.len) {
490 		ff_pci_sz = FF_PCI_SZ12;
491 	} else {
492 		/* FF_DL = 0 => get real length from next 4 bytes */
493 		so->rx.len = cf->data[ae + 2] << 24;
494 		so->rx.len += cf->data[ae + 3] << 16;
495 		so->rx.len += cf->data[ae + 4] << 8;
496 		so->rx.len += cf->data[ae + 5];
497 		ff_pci_sz = FF_PCI_SZ32;
498 	}
499 
500 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
501 	off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
502 
503 	if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
504 		return 1;
505 
506 	if (so->rx.len > MAX_MSG_LENGTH) {
507 		/* send FC frame with overflow status */
508 		isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
509 		return 1;
510 	}
511 
512 	/* copy the first received data bytes */
513 	so->rx.idx = 0;
514 	for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
515 		so->rx.buf[so->rx.idx++] = cf->data[i];
516 
517 	/* initial setup for this pdu reception */
518 	so->rx.sn = 1;
519 	so->rx.state = ISOTP_WAIT_DATA;
520 
521 	/* no creation of flow control frames */
522 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
523 		return 0;
524 
525 	/* send our first FC frame */
526 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
527 	return 0;
528 }
529 
530 static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
531 			struct sk_buff *skb)
532 {
533 	struct isotp_sock *so = isotp_sk(sk);
534 	struct sk_buff *nskb;
535 	int i;
536 
537 	if (so->rx.state != ISOTP_WAIT_DATA)
538 		return 0;
539 
540 	/* drop if timestamp gap is less than force_rx_stmin nano secs */
541 	if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
542 		if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
543 		    so->force_rx_stmin)
544 			return 0;
545 
546 		so->lastrxcf_tstamp = skb->tstamp;
547 	}
548 
549 	hrtimer_cancel(&so->rxtimer);
550 
551 	/* CFs are never longer than the FF */
552 	if (cf->len > so->rx.ll_dl)
553 		return 1;
554 
555 	/* CFs have usually the LL_DL length */
556 	if (cf->len < so->rx.ll_dl) {
557 		/* this is only allowed for the last CF */
558 		if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
559 			return 1;
560 	}
561 
562 	if ((cf->data[ae] & 0x0F) != so->rx.sn) {
563 		/* wrong sn detected - report 'illegal byte sequence' */
564 		sk->sk_err = EILSEQ;
565 		if (!sock_flag(sk, SOCK_DEAD))
566 			sk_error_report(sk);
567 
568 		/* reset rx state */
569 		so->rx.state = ISOTP_IDLE;
570 		return 1;
571 	}
572 	so->rx.sn++;
573 	so->rx.sn %= 16;
574 
575 	for (i = ae + N_PCI_SZ; i < cf->len; i++) {
576 		so->rx.buf[so->rx.idx++] = cf->data[i];
577 		if (so->rx.idx >= so->rx.len)
578 			break;
579 	}
580 
581 	if (so->rx.idx >= so->rx.len) {
582 		/* we are done */
583 		so->rx.state = ISOTP_IDLE;
584 
585 		if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
586 		    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
587 			/* malformed PDU - report 'not a data message' */
588 			sk->sk_err = EBADMSG;
589 			if (!sock_flag(sk, SOCK_DEAD))
590 				sk_error_report(sk);
591 			return 1;
592 		}
593 
594 		nskb = alloc_skb(so->rx.len, gfp_any());
595 		if (!nskb)
596 			return 1;
597 
598 		memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
599 		       so->rx.len);
600 
601 		nskb->tstamp = skb->tstamp;
602 		nskb->dev = skb->dev;
603 		isotp_rcv_skb(nskb, sk);
604 		return 0;
605 	}
606 
607 	/* perform blocksize handling, if enabled */
608 	if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
609 		/* start rx timeout watchdog */
610 		hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
611 			      HRTIMER_MODE_REL_SOFT);
612 		return 0;
613 	}
614 
615 	/* no creation of flow control frames */
616 	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
617 		return 0;
618 
619 	/* we reached the specified blocksize so->rxfc.bs */
620 	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
621 	return 0;
622 }
623 
624 static void isotp_rcv(struct sk_buff *skb, void *data)
625 {
626 	struct sock *sk = (struct sock *)data;
627 	struct isotp_sock *so = isotp_sk(sk);
628 	struct canfd_frame *cf;
629 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
630 	u8 n_pci_type, sf_dl;
631 
632 	/* Strictly receive only frames with the configured MTU size
633 	 * => clear separation of CAN2.0 / CAN FD transport channels
634 	 */
635 	if (skb->len != so->ll.mtu)
636 		return;
637 
638 	cf = (struct canfd_frame *)skb->data;
639 
640 	/* if enabled: check reception of my configured extended address */
641 	if (ae && cf->data[0] != so->opt.rx_ext_address)
642 		return;
643 
644 	n_pci_type = cf->data[ae] & 0xF0;
645 
646 	/* Make sure the state changes and data structures stay consistent at
647 	 * CAN frame reception time. This locking is not needed in real world
648 	 * use cases but the inconsistency can be triggered with syzkaller.
649 	 */
650 	spin_lock(&so->rx_lock);
651 
652 	if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
653 		/* check rx/tx path half duplex expectations */
654 		if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
655 		    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
656 			goto out_unlock;
657 	}
658 
659 	switch (n_pci_type) {
660 	case N_PCI_FC:
661 		/* tx path: flow control frame containing the FC parameters */
662 		isotp_rcv_fc(so, cf, ae);
663 		break;
664 
665 	case N_PCI_SF:
666 		/* rx path: single frame
667 		 *
668 		 * As we do not have a rx.ll_dl configuration, we can only test
669 		 * if the CAN frames payload length matches the LL_DL == 8
670 		 * requirements - no matter if it's CAN 2.0 or CAN FD
671 		 */
672 
673 		/* get the SF_DL from the N_PCI byte */
674 		sf_dl = cf->data[ae] & 0x0F;
675 
676 		if (cf->len <= CAN_MAX_DLEN) {
677 			isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
678 		} else {
679 			if (can_is_canfd_skb(skb)) {
680 				/* We have a CAN FD frame and CAN_DL is greater than 8:
681 				 * Only frames with the SF_DL == 0 ESC value are valid.
682 				 *
683 				 * If so take care of the increased SF PCI size
684 				 * (SF_PCI_SZ8) to point to the message content behind
685 				 * the extended SF PCI info and get the real SF_DL
686 				 * length value from the formerly first data byte.
687 				 */
688 				if (sf_dl == 0)
689 					isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
690 						     cf->data[SF_PCI_SZ4 + ae]);
691 			}
692 		}
693 		break;
694 
695 	case N_PCI_FF:
696 		/* rx path: first frame */
697 		isotp_rcv_ff(sk, cf, ae);
698 		break;
699 
700 	case N_PCI_CF:
701 		/* rx path: consecutive frame */
702 		isotp_rcv_cf(sk, cf, ae, skb);
703 		break;
704 	}
705 
706 out_unlock:
707 	spin_unlock(&so->rx_lock);
708 }
709 
710 static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
711 				 int ae, int off)
712 {
713 	int pcilen = N_PCI_SZ + ae + off;
714 	int space = so->tx.ll_dl - pcilen;
715 	int num = min_t(int, so->tx.len - so->tx.idx, space);
716 	int i;
717 
718 	cf->can_id = so->txid;
719 	cf->len = num + pcilen;
720 
721 	if (num < space) {
722 		if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
723 			/* user requested padding */
724 			cf->len = padlen(cf->len);
725 			memset(cf->data, so->opt.txpad_content, cf->len);
726 		} else if (cf->len > CAN_MAX_DLEN) {
727 			/* mandatory padding for CAN FD frames */
728 			cf->len = padlen(cf->len);
729 			memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
730 			       cf->len);
731 		}
732 	}
733 
734 	for (i = 0; i < num; i++)
735 		cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
736 
737 	if (ae)
738 		cf->data[0] = so->opt.ext_address;
739 }
740 
741 static void isotp_send_cframe(struct isotp_sock *so)
742 {
743 	struct sock *sk = &so->sk;
744 	struct sk_buff *skb;
745 	struct net_device *dev;
746 	struct canfd_frame *cf;
747 	int can_send_ret;
748 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
749 
750 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
751 	if (!dev)
752 		return;
753 
754 	skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), GFP_ATOMIC);
755 	if (!skb) {
756 		dev_put(dev);
757 		return;
758 	}
759 
760 	can_skb_reserve(skb);
761 	can_skb_prv(skb)->ifindex = dev->ifindex;
762 	can_skb_prv(skb)->skbcnt = 0;
763 
764 	cf = (struct canfd_frame *)skb->data;
765 	skb_put_zero(skb, so->ll.mtu);
766 
767 	/* create consecutive frame */
768 	isotp_fill_dataframe(cf, so, ae, 0);
769 
770 	/* place consecutive frame N_PCI in appropriate index */
771 	cf->data[ae] = N_PCI_CF | so->tx.sn++;
772 	so->tx.sn %= 16;
773 	so->tx.bs++;
774 
775 	cf->flags = so->ll.tx_flags;
776 
777 	skb->dev = dev;
778 	can_skb_set_owner(skb, sk);
779 
780 	/* cfecho should have been zero'ed by init/isotp_rcv_echo() */
781 	if (so->cfecho)
782 		pr_notice_once("can-isotp: cfecho is %08X != 0\n", so->cfecho);
783 
784 	/* set consecutive frame echo tag */
785 	so->cfecho = *(u32 *)cf->data;
786 
787 	/* send frame with local echo enabled */
788 	can_send_ret = can_send(skb, 1);
789 	if (can_send_ret) {
790 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
791 			       __func__, ERR_PTR(can_send_ret));
792 		if (can_send_ret == -ENOBUFS)
793 			pr_notice_once("can-isotp: tx queue is full\n");
794 	}
795 	dev_put(dev);
796 }
797 
798 static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
799 				int ae)
800 {
801 	int i;
802 	int ff_pci_sz;
803 
804 	cf->can_id = so->txid;
805 	cf->len = so->tx.ll_dl;
806 	if (ae)
807 		cf->data[0] = so->opt.ext_address;
808 
809 	/* create N_PCI bytes with 12/32 bit FF_DL data length */
810 	if (so->tx.len > 4095) {
811 		/* use 32 bit FF_DL notation */
812 		cf->data[ae] = N_PCI_FF;
813 		cf->data[ae + 1] = 0;
814 		cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
815 		cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
816 		cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
817 		cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
818 		ff_pci_sz = FF_PCI_SZ32;
819 	} else {
820 		/* use 12 bit FF_DL notation */
821 		cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
822 		cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
823 		ff_pci_sz = FF_PCI_SZ12;
824 	}
825 
826 	/* add first data bytes depending on ae */
827 	for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
828 		cf->data[i] = so->tx.buf[so->tx.idx++];
829 
830 	so->tx.sn = 1;
831 }
832 
833 static void isotp_rcv_echo(struct sk_buff *skb, void *data)
834 {
835 	struct sock *sk = (struct sock *)data;
836 	struct isotp_sock *so = isotp_sk(sk);
837 	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
838 
839 	/* only handle my own local echo CF/SF skb's (no FF!) */
840 	if (skb->sk != sk || so->cfecho != *(u32 *)cf->data)
841 		return;
842 
843 	/* cancel local echo timeout */
844 	hrtimer_cancel(&so->txtimer);
845 
846 	/* local echo skb with consecutive frame has been consumed */
847 	so->cfecho = 0;
848 
849 	if (so->tx.idx >= so->tx.len) {
850 		/* we are done */
851 		so->tx.state = ISOTP_IDLE;
852 		wake_up_interruptible(&so->wait);
853 		return;
854 	}
855 
856 	if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
857 		/* stop and wait for FC with timeout */
858 		so->tx.state = ISOTP_WAIT_FC;
859 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
860 			      HRTIMER_MODE_REL_SOFT);
861 		return;
862 	}
863 
864 	/* no gap between data frames needed => use burst mode */
865 	if (!so->tx_gap) {
866 		/* enable echo timeout handling */
867 		hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
868 			      HRTIMER_MODE_REL_SOFT);
869 		isotp_send_cframe(so);
870 		return;
871 	}
872 
873 	/* start timer to send next consecutive frame with correct delay */
874 	hrtimer_start(&so->txfrtimer, so->tx_gap, HRTIMER_MODE_REL_SOFT);
875 }
876 
877 static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
878 {
879 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
880 					     txtimer);
881 	struct sock *sk = &so->sk;
882 
883 	/* don't handle timeouts in IDLE state */
884 	if (so->tx.state == ISOTP_IDLE)
885 		return HRTIMER_NORESTART;
886 
887 	/* we did not get any flow control or echo frame in time */
888 
889 	/* report 'communication error on send' */
890 	sk->sk_err = ECOMM;
891 	if (!sock_flag(sk, SOCK_DEAD))
892 		sk_error_report(sk);
893 
894 	/* reset tx state */
895 	so->tx.state = ISOTP_IDLE;
896 	wake_up_interruptible(&so->wait);
897 
898 	return HRTIMER_NORESTART;
899 }
900 
901 static enum hrtimer_restart isotp_txfr_timer_handler(struct hrtimer *hrtimer)
902 {
903 	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
904 					     txfrtimer);
905 
906 	/* start echo timeout handling and cover below protocol error */
907 	hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
908 		      HRTIMER_MODE_REL_SOFT);
909 
910 	/* cfecho should be consumed by isotp_rcv_echo() here */
911 	if (so->tx.state == ISOTP_SENDING && !so->cfecho)
912 		isotp_send_cframe(so);
913 
914 	return HRTIMER_NORESTART;
915 }
916 
917 static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
918 {
919 	struct sock *sk = sock->sk;
920 	struct isotp_sock *so = isotp_sk(sk);
921 	u32 old_state = so->tx.state;
922 	struct sk_buff *skb;
923 	struct net_device *dev;
924 	struct canfd_frame *cf;
925 	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
926 	int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
927 	s64 hrtimer_sec = ISOTP_ECHO_TIMEOUT;
928 	int off;
929 	int err;
930 
931 	if (!so->bound)
932 		return -EADDRNOTAVAIL;
933 
934 	/* we do not support multiple buffers - for now */
935 	if (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE ||
936 	    wq_has_sleeper(&so->wait)) {
937 		if (msg->msg_flags & MSG_DONTWAIT) {
938 			err = -EAGAIN;
939 			goto err_out;
940 		}
941 
942 		/* wait for complete transmission of current pdu */
943 		err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
944 		if (err)
945 			goto err_out;
946 
947 		so->tx.state = ISOTP_SENDING;
948 	}
949 
950 	if (!size || size > MAX_MSG_LENGTH) {
951 		err = -EINVAL;
952 		goto err_out_drop;
953 	}
954 
955 	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
956 	off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
957 
958 	/* does the given data fit into a single frame for SF_BROADCAST? */
959 	if ((isotp_bc_flags(so) == CAN_ISOTP_SF_BROADCAST) &&
960 	    (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
961 		err = -EINVAL;
962 		goto err_out_drop;
963 	}
964 
965 	err = memcpy_from_msg(so->tx.buf, msg, size);
966 	if (err < 0)
967 		goto err_out_drop;
968 
969 	dev = dev_get_by_index(sock_net(sk), so->ifindex);
970 	if (!dev) {
971 		err = -ENXIO;
972 		goto err_out_drop;
973 	}
974 
975 	skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
976 				  msg->msg_flags & MSG_DONTWAIT, &err);
977 	if (!skb) {
978 		dev_put(dev);
979 		goto err_out_drop;
980 	}
981 
982 	can_skb_reserve(skb);
983 	can_skb_prv(skb)->ifindex = dev->ifindex;
984 	can_skb_prv(skb)->skbcnt = 0;
985 
986 	so->tx.len = size;
987 	so->tx.idx = 0;
988 
989 	cf = (struct canfd_frame *)skb->data;
990 	skb_put_zero(skb, so->ll.mtu);
991 
992 	/* cfecho should have been zero'ed by init / former isotp_rcv_echo() */
993 	if (so->cfecho)
994 		pr_notice_once("can-isotp: uninit cfecho %08X\n", so->cfecho);
995 
996 	/* check for single frame transmission depending on TX_DL */
997 	if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
998 		/* The message size generally fits into a SingleFrame - good.
999 		 *
1000 		 * SF_DL ESC offset optimization:
1001 		 *
1002 		 * When TX_DL is greater 8 but the message would still fit
1003 		 * into a 8 byte CAN frame, we can omit the offset.
1004 		 * This prevents a protocol caused length extension from
1005 		 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
1006 		 */
1007 		if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
1008 			off = 0;
1009 
1010 		isotp_fill_dataframe(cf, so, ae, off);
1011 
1012 		/* place single frame N_PCI w/o length in appropriate index */
1013 		cf->data[ae] = N_PCI_SF;
1014 
1015 		/* place SF_DL size value depending on the SF_DL ESC offset */
1016 		if (off)
1017 			cf->data[SF_PCI_SZ4 + ae] = size;
1018 		else
1019 			cf->data[ae] |= size;
1020 
1021 		/* set CF echo tag for isotp_rcv_echo() (SF-mode) */
1022 		so->cfecho = *(u32 *)cf->data;
1023 	} else {
1024 		/* send first frame */
1025 
1026 		isotp_create_fframe(cf, so, ae);
1027 
1028 		if (isotp_bc_flags(so) == CAN_ISOTP_CF_BROADCAST) {
1029 			/* set timer for FC-less operation (STmin = 0) */
1030 			if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
1031 				so->tx_gap = ktime_set(0, so->force_tx_stmin);
1032 			else
1033 				so->tx_gap = ktime_set(0, so->frame_txtime);
1034 
1035 			/* disable wait for FCs due to activated block size */
1036 			so->txfc.bs = 0;
1037 
1038 			/* set CF echo tag for isotp_rcv_echo() (CF-mode) */
1039 			so->cfecho = *(u32 *)cf->data;
1040 		} else {
1041 			/* standard flow control check */
1042 			so->tx.state = ISOTP_WAIT_FIRST_FC;
1043 
1044 			/* start timeout for FC */
1045 			hrtimer_sec = ISOTP_FC_TIMEOUT;
1046 
1047 			/* no CF echo tag for isotp_rcv_echo() (FF-mode) */
1048 			so->cfecho = 0;
1049 		}
1050 	}
1051 
1052 	hrtimer_start(&so->txtimer, ktime_set(hrtimer_sec, 0),
1053 		      HRTIMER_MODE_REL_SOFT);
1054 
1055 	/* send the first or only CAN frame */
1056 	cf->flags = so->ll.tx_flags;
1057 
1058 	skb->dev = dev;
1059 	skb->sk = sk;
1060 	err = can_send(skb, 1);
1061 	dev_put(dev);
1062 	if (err) {
1063 		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
1064 			       __func__, ERR_PTR(err));
1065 
1066 		/* no transmission -> no timeout monitoring */
1067 		hrtimer_cancel(&so->txtimer);
1068 
1069 		/* reset consecutive frame echo tag */
1070 		so->cfecho = 0;
1071 
1072 		goto err_out_drop;
1073 	}
1074 
1075 	if (wait_tx_done) {
1076 		/* wait for complete transmission of current pdu */
1077 		wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1078 
1079 		if (sk->sk_err)
1080 			return -sk->sk_err;
1081 	}
1082 
1083 	return size;
1084 
1085 err_out_drop:
1086 	/* drop this PDU and unlock a potential wait queue */
1087 	old_state = ISOTP_IDLE;
1088 err_out:
1089 	so->tx.state = old_state;
1090 	if (so->tx.state == ISOTP_IDLE)
1091 		wake_up_interruptible(&so->wait);
1092 
1093 	return err;
1094 }
1095 
1096 static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1097 			 int flags)
1098 {
1099 	struct sock *sk = sock->sk;
1100 	struct sk_buff *skb;
1101 	struct isotp_sock *so = isotp_sk(sk);
1102 	int ret = 0;
1103 
1104 	if (flags & ~(MSG_DONTWAIT | MSG_TRUNC | MSG_PEEK))
1105 		return -EINVAL;
1106 
1107 	if (!so->bound)
1108 		return -EADDRNOTAVAIL;
1109 
1110 	skb = skb_recv_datagram(sk, flags, &ret);
1111 	if (!skb)
1112 		return ret;
1113 
1114 	if (size < skb->len)
1115 		msg->msg_flags |= MSG_TRUNC;
1116 	else
1117 		size = skb->len;
1118 
1119 	ret = memcpy_to_msg(msg, skb->data, size);
1120 	if (ret < 0)
1121 		goto out_err;
1122 
1123 	sock_recv_timestamp(msg, sk, skb);
1124 
1125 	if (msg->msg_name) {
1126 		__sockaddr_check_size(ISOTP_MIN_NAMELEN);
1127 		msg->msg_namelen = ISOTP_MIN_NAMELEN;
1128 		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1129 	}
1130 
1131 	/* set length of return value */
1132 	ret = (flags & MSG_TRUNC) ? skb->len : size;
1133 
1134 out_err:
1135 	skb_free_datagram(sk, skb);
1136 
1137 	return ret;
1138 }
1139 
1140 static int isotp_release(struct socket *sock)
1141 {
1142 	struct sock *sk = sock->sk;
1143 	struct isotp_sock *so;
1144 	struct net *net;
1145 
1146 	if (!sk)
1147 		return 0;
1148 
1149 	so = isotp_sk(sk);
1150 	net = sock_net(sk);
1151 
1152 	/* wait for complete transmission of current pdu */
1153 	wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1154 
1155 	/* force state machines to be idle also when a signal occurred */
1156 	so->tx.state = ISOTP_IDLE;
1157 	so->rx.state = ISOTP_IDLE;
1158 
1159 	spin_lock(&isotp_notifier_lock);
1160 	while (isotp_busy_notifier == so) {
1161 		spin_unlock(&isotp_notifier_lock);
1162 		schedule_timeout_uninterruptible(1);
1163 		spin_lock(&isotp_notifier_lock);
1164 	}
1165 	list_del(&so->notifier);
1166 	spin_unlock(&isotp_notifier_lock);
1167 
1168 	lock_sock(sk);
1169 
1170 	/* remove current filters & unregister */
1171 	if (so->bound && isotp_register_txecho(so)) {
1172 		if (so->ifindex) {
1173 			struct net_device *dev;
1174 
1175 			dev = dev_get_by_index(net, so->ifindex);
1176 			if (dev) {
1177 				if (isotp_register_rxid(so))
1178 					can_rx_unregister(net, dev, so->rxid,
1179 							  SINGLE_MASK(so->rxid),
1180 							  isotp_rcv, sk);
1181 
1182 				can_rx_unregister(net, dev, so->txid,
1183 						  SINGLE_MASK(so->txid),
1184 						  isotp_rcv_echo, sk);
1185 				dev_put(dev);
1186 				synchronize_rcu();
1187 			}
1188 		}
1189 	}
1190 
1191 	hrtimer_cancel(&so->txfrtimer);
1192 	hrtimer_cancel(&so->txtimer);
1193 	hrtimer_cancel(&so->rxtimer);
1194 
1195 	so->ifindex = 0;
1196 	so->bound = 0;
1197 
1198 	sock_orphan(sk);
1199 	sock->sk = NULL;
1200 
1201 	release_sock(sk);
1202 	sock_put(sk);
1203 
1204 	return 0;
1205 }
1206 
1207 static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1208 {
1209 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1210 	struct sock *sk = sock->sk;
1211 	struct isotp_sock *so = isotp_sk(sk);
1212 	struct net *net = sock_net(sk);
1213 	int ifindex;
1214 	struct net_device *dev;
1215 	canid_t tx_id = addr->can_addr.tp.tx_id;
1216 	canid_t rx_id = addr->can_addr.tp.rx_id;
1217 	int err = 0;
1218 	int notify_enetdown = 0;
1219 
1220 	if (len < ISOTP_MIN_NAMELEN)
1221 		return -EINVAL;
1222 
1223 	/* sanitize tx CAN identifier */
1224 	if (tx_id & CAN_EFF_FLAG)
1225 		tx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1226 	else
1227 		tx_id &= CAN_SFF_MASK;
1228 
1229 	/* give feedback on wrong CAN-ID value */
1230 	if (tx_id != addr->can_addr.tp.tx_id)
1231 		return -EINVAL;
1232 
1233 	/* sanitize rx CAN identifier (if needed) */
1234 	if (isotp_register_rxid(so)) {
1235 		if (rx_id & CAN_EFF_FLAG)
1236 			rx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1237 		else
1238 			rx_id &= CAN_SFF_MASK;
1239 
1240 		/* give feedback on wrong CAN-ID value */
1241 		if (rx_id != addr->can_addr.tp.rx_id)
1242 			return -EINVAL;
1243 	}
1244 
1245 	if (!addr->can_ifindex)
1246 		return -ENODEV;
1247 
1248 	lock_sock(sk);
1249 
1250 	if (so->bound) {
1251 		err = -EINVAL;
1252 		goto out;
1253 	}
1254 
1255 	/* ensure different CAN IDs when the rx_id is to be registered */
1256 	if (isotp_register_rxid(so) && rx_id == tx_id) {
1257 		err = -EADDRNOTAVAIL;
1258 		goto out;
1259 	}
1260 
1261 	dev = dev_get_by_index(net, addr->can_ifindex);
1262 	if (!dev) {
1263 		err = -ENODEV;
1264 		goto out;
1265 	}
1266 	if (dev->type != ARPHRD_CAN) {
1267 		dev_put(dev);
1268 		err = -ENODEV;
1269 		goto out;
1270 	}
1271 	if (dev->mtu < so->ll.mtu) {
1272 		dev_put(dev);
1273 		err = -EINVAL;
1274 		goto out;
1275 	}
1276 	if (!(dev->flags & IFF_UP))
1277 		notify_enetdown = 1;
1278 
1279 	ifindex = dev->ifindex;
1280 
1281 	if (isotp_register_rxid(so))
1282 		can_rx_register(net, dev, rx_id, SINGLE_MASK(rx_id),
1283 				isotp_rcv, sk, "isotp", sk);
1284 
1285 	if (isotp_register_txecho(so)) {
1286 		/* no consecutive frame echo skb in flight */
1287 		so->cfecho = 0;
1288 
1289 		/* register for echo skb's */
1290 		can_rx_register(net, dev, tx_id, SINGLE_MASK(tx_id),
1291 				isotp_rcv_echo, sk, "isotpe", sk);
1292 	}
1293 
1294 	dev_put(dev);
1295 
1296 	/* switch to new settings */
1297 	so->ifindex = ifindex;
1298 	so->rxid = rx_id;
1299 	so->txid = tx_id;
1300 	so->bound = 1;
1301 
1302 out:
1303 	release_sock(sk);
1304 
1305 	if (notify_enetdown) {
1306 		sk->sk_err = ENETDOWN;
1307 		if (!sock_flag(sk, SOCK_DEAD))
1308 			sk_error_report(sk);
1309 	}
1310 
1311 	return err;
1312 }
1313 
1314 static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1315 {
1316 	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1317 	struct sock *sk = sock->sk;
1318 	struct isotp_sock *so = isotp_sk(sk);
1319 
1320 	if (peer)
1321 		return -EOPNOTSUPP;
1322 
1323 	memset(addr, 0, ISOTP_MIN_NAMELEN);
1324 	addr->can_family = AF_CAN;
1325 	addr->can_ifindex = so->ifindex;
1326 	addr->can_addr.tp.rx_id = so->rxid;
1327 	addr->can_addr.tp.tx_id = so->txid;
1328 
1329 	return ISOTP_MIN_NAMELEN;
1330 }
1331 
1332 static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1333 			    sockptr_t optval, unsigned int optlen)
1334 {
1335 	struct sock *sk = sock->sk;
1336 	struct isotp_sock *so = isotp_sk(sk);
1337 	int ret = 0;
1338 
1339 	if (so->bound)
1340 		return -EISCONN;
1341 
1342 	switch (optname) {
1343 	case CAN_ISOTP_OPTS:
1344 		if (optlen != sizeof(struct can_isotp_options))
1345 			return -EINVAL;
1346 
1347 		if (copy_from_sockptr(&so->opt, optval, optlen))
1348 			return -EFAULT;
1349 
1350 		/* no separate rx_ext_address is given => use ext_address */
1351 		if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1352 			so->opt.rx_ext_address = so->opt.ext_address;
1353 
1354 		/* these broadcast flags are not allowed together */
1355 		if (isotp_bc_flags(so) == ISOTP_ALL_BC_FLAGS) {
1356 			/* CAN_ISOTP_SF_BROADCAST is prioritized */
1357 			so->opt.flags &= ~CAN_ISOTP_CF_BROADCAST;
1358 
1359 			/* give user feedback on wrong config attempt */
1360 			ret = -EINVAL;
1361 		}
1362 
1363 		/* check for frame_txtime changes (0 => no changes) */
1364 		if (so->opt.frame_txtime) {
1365 			if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
1366 				so->frame_txtime = 0;
1367 			else
1368 				so->frame_txtime = so->opt.frame_txtime;
1369 		}
1370 		break;
1371 
1372 	case CAN_ISOTP_RECV_FC:
1373 		if (optlen != sizeof(struct can_isotp_fc_options))
1374 			return -EINVAL;
1375 
1376 		if (copy_from_sockptr(&so->rxfc, optval, optlen))
1377 			return -EFAULT;
1378 		break;
1379 
1380 	case CAN_ISOTP_TX_STMIN:
1381 		if (optlen != sizeof(u32))
1382 			return -EINVAL;
1383 
1384 		if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1385 			return -EFAULT;
1386 		break;
1387 
1388 	case CAN_ISOTP_RX_STMIN:
1389 		if (optlen != sizeof(u32))
1390 			return -EINVAL;
1391 
1392 		if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1393 			return -EFAULT;
1394 		break;
1395 
1396 	case CAN_ISOTP_LL_OPTS:
1397 		if (optlen == sizeof(struct can_isotp_ll_options)) {
1398 			struct can_isotp_ll_options ll;
1399 
1400 			if (copy_from_sockptr(&ll, optval, optlen))
1401 				return -EFAULT;
1402 
1403 			/* check for correct ISO 11898-1 DLC data length */
1404 			if (ll.tx_dl != padlen(ll.tx_dl))
1405 				return -EINVAL;
1406 
1407 			if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1408 				return -EINVAL;
1409 
1410 			if (ll.mtu == CAN_MTU &&
1411 			    (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1412 				return -EINVAL;
1413 
1414 			memcpy(&so->ll, &ll, sizeof(ll));
1415 
1416 			/* set ll_dl for tx path to similar place as for rx */
1417 			so->tx.ll_dl = ll.tx_dl;
1418 		} else {
1419 			return -EINVAL;
1420 		}
1421 		break;
1422 
1423 	default:
1424 		ret = -ENOPROTOOPT;
1425 	}
1426 
1427 	return ret;
1428 }
1429 
1430 static int isotp_setsockopt(struct socket *sock, int level, int optname,
1431 			    sockptr_t optval, unsigned int optlen)
1432 
1433 {
1434 	struct sock *sk = sock->sk;
1435 	int ret;
1436 
1437 	if (level != SOL_CAN_ISOTP)
1438 		return -EINVAL;
1439 
1440 	lock_sock(sk);
1441 	ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1442 	release_sock(sk);
1443 	return ret;
1444 }
1445 
1446 static int isotp_getsockopt(struct socket *sock, int level, int optname,
1447 			    char __user *optval, int __user *optlen)
1448 {
1449 	struct sock *sk = sock->sk;
1450 	struct isotp_sock *so = isotp_sk(sk);
1451 	int len;
1452 	void *val;
1453 
1454 	if (level != SOL_CAN_ISOTP)
1455 		return -EINVAL;
1456 	if (get_user(len, optlen))
1457 		return -EFAULT;
1458 	if (len < 0)
1459 		return -EINVAL;
1460 
1461 	switch (optname) {
1462 	case CAN_ISOTP_OPTS:
1463 		len = min_t(int, len, sizeof(struct can_isotp_options));
1464 		val = &so->opt;
1465 		break;
1466 
1467 	case CAN_ISOTP_RECV_FC:
1468 		len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1469 		val = &so->rxfc;
1470 		break;
1471 
1472 	case CAN_ISOTP_TX_STMIN:
1473 		len = min_t(int, len, sizeof(u32));
1474 		val = &so->force_tx_stmin;
1475 		break;
1476 
1477 	case CAN_ISOTP_RX_STMIN:
1478 		len = min_t(int, len, sizeof(u32));
1479 		val = &so->force_rx_stmin;
1480 		break;
1481 
1482 	case CAN_ISOTP_LL_OPTS:
1483 		len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1484 		val = &so->ll;
1485 		break;
1486 
1487 	default:
1488 		return -ENOPROTOOPT;
1489 	}
1490 
1491 	if (put_user(len, optlen))
1492 		return -EFAULT;
1493 	if (copy_to_user(optval, val, len))
1494 		return -EFAULT;
1495 	return 0;
1496 }
1497 
1498 static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1499 			 struct net_device *dev)
1500 {
1501 	struct sock *sk = &so->sk;
1502 
1503 	if (!net_eq(dev_net(dev), sock_net(sk)))
1504 		return;
1505 
1506 	if (so->ifindex != dev->ifindex)
1507 		return;
1508 
1509 	switch (msg) {
1510 	case NETDEV_UNREGISTER:
1511 		lock_sock(sk);
1512 		/* remove current filters & unregister */
1513 		if (so->bound && isotp_register_txecho(so)) {
1514 			if (isotp_register_rxid(so))
1515 				can_rx_unregister(dev_net(dev), dev, so->rxid,
1516 						  SINGLE_MASK(so->rxid),
1517 						  isotp_rcv, sk);
1518 
1519 			can_rx_unregister(dev_net(dev), dev, so->txid,
1520 					  SINGLE_MASK(so->txid),
1521 					  isotp_rcv_echo, sk);
1522 		}
1523 
1524 		so->ifindex = 0;
1525 		so->bound  = 0;
1526 		release_sock(sk);
1527 
1528 		sk->sk_err = ENODEV;
1529 		if (!sock_flag(sk, SOCK_DEAD))
1530 			sk_error_report(sk);
1531 		break;
1532 
1533 	case NETDEV_DOWN:
1534 		sk->sk_err = ENETDOWN;
1535 		if (!sock_flag(sk, SOCK_DEAD))
1536 			sk_error_report(sk);
1537 		break;
1538 	}
1539 }
1540 
1541 static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1542 			  void *ptr)
1543 {
1544 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1545 
1546 	if (dev->type != ARPHRD_CAN)
1547 		return NOTIFY_DONE;
1548 	if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1549 		return NOTIFY_DONE;
1550 	if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1551 		return NOTIFY_DONE;
1552 
1553 	spin_lock(&isotp_notifier_lock);
1554 	list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1555 		spin_unlock(&isotp_notifier_lock);
1556 		isotp_notify(isotp_busy_notifier, msg, dev);
1557 		spin_lock(&isotp_notifier_lock);
1558 	}
1559 	isotp_busy_notifier = NULL;
1560 	spin_unlock(&isotp_notifier_lock);
1561 	return NOTIFY_DONE;
1562 }
1563 
1564 static int isotp_init(struct sock *sk)
1565 {
1566 	struct isotp_sock *so = isotp_sk(sk);
1567 
1568 	so->ifindex = 0;
1569 	so->bound = 0;
1570 
1571 	so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1572 	so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1573 	so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1574 	so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1575 	so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1576 	so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1577 	so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1578 	so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1579 	so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1580 	so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1581 	so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1582 	so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1583 	so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1584 
1585 	/* set ll_dl for tx path to similar place as for rx */
1586 	so->tx.ll_dl = so->ll.tx_dl;
1587 
1588 	so->rx.state = ISOTP_IDLE;
1589 	so->tx.state = ISOTP_IDLE;
1590 
1591 	hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1592 	so->rxtimer.function = isotp_rx_timer_handler;
1593 	hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1594 	so->txtimer.function = isotp_tx_timer_handler;
1595 	hrtimer_init(&so->txfrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1596 	so->txfrtimer.function = isotp_txfr_timer_handler;
1597 
1598 	init_waitqueue_head(&so->wait);
1599 	spin_lock_init(&so->rx_lock);
1600 
1601 	spin_lock(&isotp_notifier_lock);
1602 	list_add_tail(&so->notifier, &isotp_notifier_list);
1603 	spin_unlock(&isotp_notifier_lock);
1604 
1605 	return 0;
1606 }
1607 
1608 static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1609 				  unsigned long arg)
1610 {
1611 	/* no ioctls for socket layer -> hand it down to NIC layer */
1612 	return -ENOIOCTLCMD;
1613 }
1614 
1615 static const struct proto_ops isotp_ops = {
1616 	.family = PF_CAN,
1617 	.release = isotp_release,
1618 	.bind = isotp_bind,
1619 	.connect = sock_no_connect,
1620 	.socketpair = sock_no_socketpair,
1621 	.accept = sock_no_accept,
1622 	.getname = isotp_getname,
1623 	.poll = datagram_poll,
1624 	.ioctl = isotp_sock_no_ioctlcmd,
1625 	.gettstamp = sock_gettstamp,
1626 	.listen = sock_no_listen,
1627 	.shutdown = sock_no_shutdown,
1628 	.setsockopt = isotp_setsockopt,
1629 	.getsockopt = isotp_getsockopt,
1630 	.sendmsg = isotp_sendmsg,
1631 	.recvmsg = isotp_recvmsg,
1632 	.mmap = sock_no_mmap,
1633 	.sendpage = sock_no_sendpage,
1634 };
1635 
1636 static struct proto isotp_proto __read_mostly = {
1637 	.name = "CAN_ISOTP",
1638 	.owner = THIS_MODULE,
1639 	.obj_size = sizeof(struct isotp_sock),
1640 	.init = isotp_init,
1641 };
1642 
1643 static const struct can_proto isotp_can_proto = {
1644 	.type = SOCK_DGRAM,
1645 	.protocol = CAN_ISOTP,
1646 	.ops = &isotp_ops,
1647 	.prot = &isotp_proto,
1648 };
1649 
1650 static struct notifier_block canisotp_notifier = {
1651 	.notifier_call = isotp_notifier
1652 };
1653 
1654 static __init int isotp_module_init(void)
1655 {
1656 	int err;
1657 
1658 	pr_info("can: isotp protocol\n");
1659 
1660 	err = can_proto_register(&isotp_can_proto);
1661 	if (err < 0)
1662 		pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1663 	else
1664 		register_netdevice_notifier(&canisotp_notifier);
1665 
1666 	return err;
1667 }
1668 
1669 static __exit void isotp_module_exit(void)
1670 {
1671 	can_proto_unregister(&isotp_can_proto);
1672 	unregister_netdevice_notifier(&canisotp_notifier);
1673 }
1674 
1675 module_init(isotp_module_init);
1676 module_exit(isotp_module_exit);
1677