xref: /linux/net/core/bpf_sk_storage.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 Facebook  */
3 #include <linux/rculist.h>
4 #include <linux/list.h>
5 #include <linux/hash.h>
6 #include <linux/types.h>
7 #include <linux/spinlock.h>
8 #include <linux/bpf.h>
9 #include <net/bpf_sk_storage.h>
10 #include <net/sock.h>
11 #include <uapi/linux/btf.h>
12 
13 static atomic_t cache_idx;
14 
15 #define SK_STORAGE_CREATE_FLAG_MASK					\
16 	(BPF_F_NO_PREALLOC | BPF_F_CLONE)
17 
18 struct bucket {
19 	struct hlist_head list;
20 	raw_spinlock_t lock;
21 };
22 
23 /* Thp map is not the primary owner of a bpf_sk_storage_elem.
24  * Instead, the sk->sk_bpf_storage is.
25  *
26  * The map (bpf_sk_storage_map) is for two purposes
27  * 1. Define the size of the "sk local storage".  It is
28  *    the map's value_size.
29  *
30  * 2. Maintain a list to keep track of all elems such
31  *    that they can be cleaned up during the map destruction.
32  *
33  * When a bpf local storage is being looked up for a
34  * particular sk,  the "bpf_map" pointer is actually used
35  * as the "key" to search in the list of elem in
36  * sk->sk_bpf_storage.
37  *
38  * Hence, consider sk->sk_bpf_storage is the mini-map
39  * with the "bpf_map" pointer as the searching key.
40  */
41 struct bpf_sk_storage_map {
42 	struct bpf_map map;
43 	/* Lookup elem does not require accessing the map.
44 	 *
45 	 * Updating/Deleting requires a bucket lock to
46 	 * link/unlink the elem from the map.  Having
47 	 * multiple buckets to improve contention.
48 	 */
49 	struct bucket *buckets;
50 	u32 bucket_log;
51 	u16 elem_size;
52 	u16 cache_idx;
53 };
54 
55 struct bpf_sk_storage_data {
56 	/* smap is used as the searching key when looking up
57 	 * from sk->sk_bpf_storage.
58 	 *
59 	 * Put it in the same cacheline as the data to minimize
60 	 * the number of cachelines access during the cache hit case.
61 	 */
62 	struct bpf_sk_storage_map __rcu *smap;
63 	u8 data[0] __aligned(8);
64 };
65 
66 /* Linked to bpf_sk_storage and bpf_sk_storage_map */
67 struct bpf_sk_storage_elem {
68 	struct hlist_node map_node;	/* Linked to bpf_sk_storage_map */
69 	struct hlist_node snode;	/* Linked to bpf_sk_storage */
70 	struct bpf_sk_storage __rcu *sk_storage;
71 	struct rcu_head rcu;
72 	/* 8 bytes hole */
73 	/* The data is stored in aother cacheline to minimize
74 	 * the number of cachelines access during a cache hit.
75 	 */
76 	struct bpf_sk_storage_data sdata ____cacheline_aligned;
77 };
78 
79 #define SELEM(_SDATA) container_of((_SDATA), struct bpf_sk_storage_elem, sdata)
80 #define SDATA(_SELEM) (&(_SELEM)->sdata)
81 #define BPF_SK_STORAGE_CACHE_SIZE	16
82 
83 struct bpf_sk_storage {
84 	struct bpf_sk_storage_data __rcu *cache[BPF_SK_STORAGE_CACHE_SIZE];
85 	struct hlist_head list;	/* List of bpf_sk_storage_elem */
86 	struct sock *sk;	/* The sk that owns the the above "list" of
87 				 * bpf_sk_storage_elem.
88 				 */
89 	struct rcu_head rcu;
90 	raw_spinlock_t lock;	/* Protect adding/removing from the "list" */
91 };
92 
93 static struct bucket *select_bucket(struct bpf_sk_storage_map *smap,
94 				    struct bpf_sk_storage_elem *selem)
95 {
96 	return &smap->buckets[hash_ptr(selem, smap->bucket_log)];
97 }
98 
99 static int omem_charge(struct sock *sk, unsigned int size)
100 {
101 	/* same check as in sock_kmalloc() */
102 	if (size <= sysctl_optmem_max &&
103 	    atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
104 		atomic_add(size, &sk->sk_omem_alloc);
105 		return 0;
106 	}
107 
108 	return -ENOMEM;
109 }
110 
111 static bool selem_linked_to_sk(const struct bpf_sk_storage_elem *selem)
112 {
113 	return !hlist_unhashed(&selem->snode);
114 }
115 
116 static bool selem_linked_to_map(const struct bpf_sk_storage_elem *selem)
117 {
118 	return !hlist_unhashed(&selem->map_node);
119 }
120 
121 static struct bpf_sk_storage_elem *selem_alloc(struct bpf_sk_storage_map *smap,
122 					       struct sock *sk, void *value,
123 					       bool charge_omem)
124 {
125 	struct bpf_sk_storage_elem *selem;
126 
127 	if (charge_omem && omem_charge(sk, smap->elem_size))
128 		return NULL;
129 
130 	selem = kzalloc(smap->elem_size, GFP_ATOMIC | __GFP_NOWARN);
131 	if (selem) {
132 		if (value)
133 			memcpy(SDATA(selem)->data, value, smap->map.value_size);
134 		return selem;
135 	}
136 
137 	if (charge_omem)
138 		atomic_sub(smap->elem_size, &sk->sk_omem_alloc);
139 
140 	return NULL;
141 }
142 
143 /* sk_storage->lock must be held and selem->sk_storage == sk_storage.
144  * The caller must ensure selem->smap is still valid to be
145  * dereferenced for its smap->elem_size and smap->cache_idx.
146  */
147 static bool __selem_unlink_sk(struct bpf_sk_storage *sk_storage,
148 			      struct bpf_sk_storage_elem *selem,
149 			      bool uncharge_omem)
150 {
151 	struct bpf_sk_storage_map *smap;
152 	bool free_sk_storage;
153 	struct sock *sk;
154 
155 	smap = rcu_dereference(SDATA(selem)->smap);
156 	sk = sk_storage->sk;
157 
158 	/* All uncharging on sk->sk_omem_alloc must be done first.
159 	 * sk may be freed once the last selem is unlinked from sk_storage.
160 	 */
161 	if (uncharge_omem)
162 		atomic_sub(smap->elem_size, &sk->sk_omem_alloc);
163 
164 	free_sk_storage = hlist_is_singular_node(&selem->snode,
165 						 &sk_storage->list);
166 	if (free_sk_storage) {
167 		atomic_sub(sizeof(struct bpf_sk_storage), &sk->sk_omem_alloc);
168 		sk_storage->sk = NULL;
169 		/* After this RCU_INIT, sk may be freed and cannot be used */
170 		RCU_INIT_POINTER(sk->sk_bpf_storage, NULL);
171 
172 		/* sk_storage is not freed now.  sk_storage->lock is
173 		 * still held and raw_spin_unlock_bh(&sk_storage->lock)
174 		 * will be done by the caller.
175 		 *
176 		 * Although the unlock will be done under
177 		 * rcu_read_lock(),  it is more intutivie to
178 		 * read if kfree_rcu(sk_storage, rcu) is done
179 		 * after the raw_spin_unlock_bh(&sk_storage->lock).
180 		 *
181 		 * Hence, a "bool free_sk_storage" is returned
182 		 * to the caller which then calls the kfree_rcu()
183 		 * after unlock.
184 		 */
185 	}
186 	hlist_del_init_rcu(&selem->snode);
187 	if (rcu_access_pointer(sk_storage->cache[smap->cache_idx]) ==
188 	    SDATA(selem))
189 		RCU_INIT_POINTER(sk_storage->cache[smap->cache_idx], NULL);
190 
191 	kfree_rcu(selem, rcu);
192 
193 	return free_sk_storage;
194 }
195 
196 static void selem_unlink_sk(struct bpf_sk_storage_elem *selem)
197 {
198 	struct bpf_sk_storage *sk_storage;
199 	bool free_sk_storage = false;
200 
201 	if (unlikely(!selem_linked_to_sk(selem)))
202 		/* selem has already been unlinked from sk */
203 		return;
204 
205 	sk_storage = rcu_dereference(selem->sk_storage);
206 	raw_spin_lock_bh(&sk_storage->lock);
207 	if (likely(selem_linked_to_sk(selem)))
208 		free_sk_storage = __selem_unlink_sk(sk_storage, selem, true);
209 	raw_spin_unlock_bh(&sk_storage->lock);
210 
211 	if (free_sk_storage)
212 		kfree_rcu(sk_storage, rcu);
213 }
214 
215 static void __selem_link_sk(struct bpf_sk_storage *sk_storage,
216 			    struct bpf_sk_storage_elem *selem)
217 {
218 	RCU_INIT_POINTER(selem->sk_storage, sk_storage);
219 	hlist_add_head(&selem->snode, &sk_storage->list);
220 }
221 
222 static void selem_unlink_map(struct bpf_sk_storage_elem *selem)
223 {
224 	struct bpf_sk_storage_map *smap;
225 	struct bucket *b;
226 
227 	if (unlikely(!selem_linked_to_map(selem)))
228 		/* selem has already be unlinked from smap */
229 		return;
230 
231 	smap = rcu_dereference(SDATA(selem)->smap);
232 	b = select_bucket(smap, selem);
233 	raw_spin_lock_bh(&b->lock);
234 	if (likely(selem_linked_to_map(selem)))
235 		hlist_del_init_rcu(&selem->map_node);
236 	raw_spin_unlock_bh(&b->lock);
237 }
238 
239 static void selem_link_map(struct bpf_sk_storage_map *smap,
240 			   struct bpf_sk_storage_elem *selem)
241 {
242 	struct bucket *b = select_bucket(smap, selem);
243 
244 	raw_spin_lock_bh(&b->lock);
245 	RCU_INIT_POINTER(SDATA(selem)->smap, smap);
246 	hlist_add_head_rcu(&selem->map_node, &b->list);
247 	raw_spin_unlock_bh(&b->lock);
248 }
249 
250 static void selem_unlink(struct bpf_sk_storage_elem *selem)
251 {
252 	/* Always unlink from map before unlinking from sk_storage
253 	 * because selem will be freed after successfully unlinked from
254 	 * the sk_storage.
255 	 */
256 	selem_unlink_map(selem);
257 	selem_unlink_sk(selem);
258 }
259 
260 static struct bpf_sk_storage_data *
261 __sk_storage_lookup(struct bpf_sk_storage *sk_storage,
262 		    struct bpf_sk_storage_map *smap,
263 		    bool cacheit_lockit)
264 {
265 	struct bpf_sk_storage_data *sdata;
266 	struct bpf_sk_storage_elem *selem;
267 
268 	/* Fast path (cache hit) */
269 	sdata = rcu_dereference(sk_storage->cache[smap->cache_idx]);
270 	if (sdata && rcu_access_pointer(sdata->smap) == smap)
271 		return sdata;
272 
273 	/* Slow path (cache miss) */
274 	hlist_for_each_entry_rcu(selem, &sk_storage->list, snode)
275 		if (rcu_access_pointer(SDATA(selem)->smap) == smap)
276 			break;
277 
278 	if (!selem)
279 		return NULL;
280 
281 	sdata = SDATA(selem);
282 	if (cacheit_lockit) {
283 		/* spinlock is needed to avoid racing with the
284 		 * parallel delete.  Otherwise, publishing an already
285 		 * deleted sdata to the cache will become a use-after-free
286 		 * problem in the next __sk_storage_lookup().
287 		 */
288 		raw_spin_lock_bh(&sk_storage->lock);
289 		if (selem_linked_to_sk(selem))
290 			rcu_assign_pointer(sk_storage->cache[smap->cache_idx],
291 					   sdata);
292 		raw_spin_unlock_bh(&sk_storage->lock);
293 	}
294 
295 	return sdata;
296 }
297 
298 static struct bpf_sk_storage_data *
299 sk_storage_lookup(struct sock *sk, struct bpf_map *map, bool cacheit_lockit)
300 {
301 	struct bpf_sk_storage *sk_storage;
302 	struct bpf_sk_storage_map *smap;
303 
304 	sk_storage = rcu_dereference(sk->sk_bpf_storage);
305 	if (!sk_storage)
306 		return NULL;
307 
308 	smap = (struct bpf_sk_storage_map *)map;
309 	return __sk_storage_lookup(sk_storage, smap, cacheit_lockit);
310 }
311 
312 static int check_flags(const struct bpf_sk_storage_data *old_sdata,
313 		       u64 map_flags)
314 {
315 	if (old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
316 		/* elem already exists */
317 		return -EEXIST;
318 
319 	if (!old_sdata && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
320 		/* elem doesn't exist, cannot update it */
321 		return -ENOENT;
322 
323 	return 0;
324 }
325 
326 static int sk_storage_alloc(struct sock *sk,
327 			    struct bpf_sk_storage_map *smap,
328 			    struct bpf_sk_storage_elem *first_selem)
329 {
330 	struct bpf_sk_storage *prev_sk_storage, *sk_storage;
331 	int err;
332 
333 	err = omem_charge(sk, sizeof(*sk_storage));
334 	if (err)
335 		return err;
336 
337 	sk_storage = kzalloc(sizeof(*sk_storage), GFP_ATOMIC | __GFP_NOWARN);
338 	if (!sk_storage) {
339 		err = -ENOMEM;
340 		goto uncharge;
341 	}
342 	INIT_HLIST_HEAD(&sk_storage->list);
343 	raw_spin_lock_init(&sk_storage->lock);
344 	sk_storage->sk = sk;
345 
346 	__selem_link_sk(sk_storage, first_selem);
347 	selem_link_map(smap, first_selem);
348 	/* Publish sk_storage to sk.  sk->sk_lock cannot be acquired.
349 	 * Hence, atomic ops is used to set sk->sk_bpf_storage
350 	 * from NULL to the newly allocated sk_storage ptr.
351 	 *
352 	 * From now on, the sk->sk_bpf_storage pointer is protected
353 	 * by the sk_storage->lock.  Hence,  when freeing
354 	 * the sk->sk_bpf_storage, the sk_storage->lock must
355 	 * be held before setting sk->sk_bpf_storage to NULL.
356 	 */
357 	prev_sk_storage = cmpxchg((struct bpf_sk_storage **)&sk->sk_bpf_storage,
358 				  NULL, sk_storage);
359 	if (unlikely(prev_sk_storage)) {
360 		selem_unlink_map(first_selem);
361 		err = -EAGAIN;
362 		goto uncharge;
363 
364 		/* Note that even first_selem was linked to smap's
365 		 * bucket->list, first_selem can be freed immediately
366 		 * (instead of kfree_rcu) because
367 		 * bpf_sk_storage_map_free() does a
368 		 * synchronize_rcu() before walking the bucket->list.
369 		 * Hence, no one is accessing selem from the
370 		 * bucket->list under rcu_read_lock().
371 		 */
372 	}
373 
374 	return 0;
375 
376 uncharge:
377 	kfree(sk_storage);
378 	atomic_sub(sizeof(*sk_storage), &sk->sk_omem_alloc);
379 	return err;
380 }
381 
382 /* sk cannot be going away because it is linking new elem
383  * to sk->sk_bpf_storage. (i.e. sk->sk_refcnt cannot be 0).
384  * Otherwise, it will become a leak (and other memory issues
385  * during map destruction).
386  */
387 static struct bpf_sk_storage_data *sk_storage_update(struct sock *sk,
388 						     struct bpf_map *map,
389 						     void *value,
390 						     u64 map_flags)
391 {
392 	struct bpf_sk_storage_data *old_sdata = NULL;
393 	struct bpf_sk_storage_elem *selem;
394 	struct bpf_sk_storage *sk_storage;
395 	struct bpf_sk_storage_map *smap;
396 	int err;
397 
398 	/* BPF_EXIST and BPF_NOEXIST cannot be both set */
399 	if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST) ||
400 	    /* BPF_F_LOCK can only be used in a value with spin_lock */
401 	    unlikely((map_flags & BPF_F_LOCK) && !map_value_has_spin_lock(map)))
402 		return ERR_PTR(-EINVAL);
403 
404 	smap = (struct bpf_sk_storage_map *)map;
405 	sk_storage = rcu_dereference(sk->sk_bpf_storage);
406 	if (!sk_storage || hlist_empty(&sk_storage->list)) {
407 		/* Very first elem for this sk */
408 		err = check_flags(NULL, map_flags);
409 		if (err)
410 			return ERR_PTR(err);
411 
412 		selem = selem_alloc(smap, sk, value, true);
413 		if (!selem)
414 			return ERR_PTR(-ENOMEM);
415 
416 		err = sk_storage_alloc(sk, smap, selem);
417 		if (err) {
418 			kfree(selem);
419 			atomic_sub(smap->elem_size, &sk->sk_omem_alloc);
420 			return ERR_PTR(err);
421 		}
422 
423 		return SDATA(selem);
424 	}
425 
426 	if ((map_flags & BPF_F_LOCK) && !(map_flags & BPF_NOEXIST)) {
427 		/* Hoping to find an old_sdata to do inline update
428 		 * such that it can avoid taking the sk_storage->lock
429 		 * and changing the lists.
430 		 */
431 		old_sdata = __sk_storage_lookup(sk_storage, smap, false);
432 		err = check_flags(old_sdata, map_flags);
433 		if (err)
434 			return ERR_PTR(err);
435 		if (old_sdata && selem_linked_to_sk(SELEM(old_sdata))) {
436 			copy_map_value_locked(map, old_sdata->data,
437 					      value, false);
438 			return old_sdata;
439 		}
440 	}
441 
442 	raw_spin_lock_bh(&sk_storage->lock);
443 
444 	/* Recheck sk_storage->list under sk_storage->lock */
445 	if (unlikely(hlist_empty(&sk_storage->list))) {
446 		/* A parallel del is happening and sk_storage is going
447 		 * away.  It has just been checked before, so very
448 		 * unlikely.  Return instead of retry to keep things
449 		 * simple.
450 		 */
451 		err = -EAGAIN;
452 		goto unlock_err;
453 	}
454 
455 	old_sdata = __sk_storage_lookup(sk_storage, smap, false);
456 	err = check_flags(old_sdata, map_flags);
457 	if (err)
458 		goto unlock_err;
459 
460 	if (old_sdata && (map_flags & BPF_F_LOCK)) {
461 		copy_map_value_locked(map, old_sdata->data, value, false);
462 		selem = SELEM(old_sdata);
463 		goto unlock;
464 	}
465 
466 	/* sk_storage->lock is held.  Hence, we are sure
467 	 * we can unlink and uncharge the old_sdata successfully
468 	 * later.  Hence, instead of charging the new selem now
469 	 * and then uncharge the old selem later (which may cause
470 	 * a potential but unnecessary charge failure),  avoid taking
471 	 * a charge at all here (the "!old_sdata" check) and the
472 	 * old_sdata will not be uncharged later during __selem_unlink_sk().
473 	 */
474 	selem = selem_alloc(smap, sk, value, !old_sdata);
475 	if (!selem) {
476 		err = -ENOMEM;
477 		goto unlock_err;
478 	}
479 
480 	/* First, link the new selem to the map */
481 	selem_link_map(smap, selem);
482 
483 	/* Second, link (and publish) the new selem to sk_storage */
484 	__selem_link_sk(sk_storage, selem);
485 
486 	/* Third, remove old selem, SELEM(old_sdata) */
487 	if (old_sdata) {
488 		selem_unlink_map(SELEM(old_sdata));
489 		__selem_unlink_sk(sk_storage, SELEM(old_sdata), false);
490 	}
491 
492 unlock:
493 	raw_spin_unlock_bh(&sk_storage->lock);
494 	return SDATA(selem);
495 
496 unlock_err:
497 	raw_spin_unlock_bh(&sk_storage->lock);
498 	return ERR_PTR(err);
499 }
500 
501 static int sk_storage_delete(struct sock *sk, struct bpf_map *map)
502 {
503 	struct bpf_sk_storage_data *sdata;
504 
505 	sdata = sk_storage_lookup(sk, map, false);
506 	if (!sdata)
507 		return -ENOENT;
508 
509 	selem_unlink(SELEM(sdata));
510 
511 	return 0;
512 }
513 
514 /* Called by __sk_destruct() & bpf_sk_storage_clone() */
515 void bpf_sk_storage_free(struct sock *sk)
516 {
517 	struct bpf_sk_storage_elem *selem;
518 	struct bpf_sk_storage *sk_storage;
519 	bool free_sk_storage = false;
520 	struct hlist_node *n;
521 
522 	rcu_read_lock();
523 	sk_storage = rcu_dereference(sk->sk_bpf_storage);
524 	if (!sk_storage) {
525 		rcu_read_unlock();
526 		return;
527 	}
528 
529 	/* Netiher the bpf_prog nor the bpf-map's syscall
530 	 * could be modifying the sk_storage->list now.
531 	 * Thus, no elem can be added-to or deleted-from the
532 	 * sk_storage->list by the bpf_prog or by the bpf-map's syscall.
533 	 *
534 	 * It is racing with bpf_sk_storage_map_free() alone
535 	 * when unlinking elem from the sk_storage->list and
536 	 * the map's bucket->list.
537 	 */
538 	raw_spin_lock_bh(&sk_storage->lock);
539 	hlist_for_each_entry_safe(selem, n, &sk_storage->list, snode) {
540 		/* Always unlink from map before unlinking from
541 		 * sk_storage.
542 		 */
543 		selem_unlink_map(selem);
544 		free_sk_storage = __selem_unlink_sk(sk_storage, selem, true);
545 	}
546 	raw_spin_unlock_bh(&sk_storage->lock);
547 	rcu_read_unlock();
548 
549 	if (free_sk_storage)
550 		kfree_rcu(sk_storage, rcu);
551 }
552 
553 static void bpf_sk_storage_map_free(struct bpf_map *map)
554 {
555 	struct bpf_sk_storage_elem *selem;
556 	struct bpf_sk_storage_map *smap;
557 	struct bucket *b;
558 	unsigned int i;
559 
560 	smap = (struct bpf_sk_storage_map *)map;
561 
562 	/* Note that this map might be concurrently cloned from
563 	 * bpf_sk_storage_clone. Wait for any existing bpf_sk_storage_clone
564 	 * RCU read section to finish before proceeding. New RCU
565 	 * read sections should be prevented via bpf_map_inc_not_zero.
566 	 */
567 	synchronize_rcu();
568 
569 	/* bpf prog and the userspace can no longer access this map
570 	 * now.  No new selem (of this map) can be added
571 	 * to the sk->sk_bpf_storage or to the map bucket's list.
572 	 *
573 	 * The elem of this map can be cleaned up here
574 	 * or
575 	 * by bpf_sk_storage_free() during __sk_destruct().
576 	 */
577 	for (i = 0; i < (1U << smap->bucket_log); i++) {
578 		b = &smap->buckets[i];
579 
580 		rcu_read_lock();
581 		/* No one is adding to b->list now */
582 		while ((selem = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(&b->list)),
583 						 struct bpf_sk_storage_elem,
584 						 map_node))) {
585 			selem_unlink(selem);
586 			cond_resched_rcu();
587 		}
588 		rcu_read_unlock();
589 	}
590 
591 	/* bpf_sk_storage_free() may still need to access the map.
592 	 * e.g. bpf_sk_storage_free() has unlinked selem from the map
593 	 * which then made the above while((selem = ...)) loop
594 	 * exited immediately.
595 	 *
596 	 * However, the bpf_sk_storage_free() still needs to access
597 	 * the smap->elem_size to do the uncharging in
598 	 * __selem_unlink_sk().
599 	 *
600 	 * Hence, wait another rcu grace period for the
601 	 * bpf_sk_storage_free() to finish.
602 	 */
603 	synchronize_rcu();
604 
605 	kvfree(smap->buckets);
606 	kfree(map);
607 }
608 
609 static int bpf_sk_storage_map_alloc_check(union bpf_attr *attr)
610 {
611 	if (attr->map_flags & ~SK_STORAGE_CREATE_FLAG_MASK ||
612 	    !(attr->map_flags & BPF_F_NO_PREALLOC) ||
613 	    attr->max_entries ||
614 	    attr->key_size != sizeof(int) || !attr->value_size ||
615 	    /* Enforce BTF for userspace sk dumping */
616 	    !attr->btf_key_type_id || !attr->btf_value_type_id)
617 		return -EINVAL;
618 
619 	if (!capable(CAP_SYS_ADMIN))
620 		return -EPERM;
621 
622 	if (attr->value_size >= KMALLOC_MAX_SIZE -
623 	    MAX_BPF_STACK - sizeof(struct bpf_sk_storage_elem) ||
624 	    /* U16_MAX is much more than enough for sk local storage
625 	     * considering a tcp_sock is ~2k.
626 	     */
627 	    attr->value_size > U16_MAX - sizeof(struct bpf_sk_storage_elem))
628 		return -E2BIG;
629 
630 	return 0;
631 }
632 
633 static struct bpf_map *bpf_sk_storage_map_alloc(union bpf_attr *attr)
634 {
635 	struct bpf_sk_storage_map *smap;
636 	unsigned int i;
637 	u32 nbuckets;
638 	u64 cost;
639 	int ret;
640 
641 	smap = kzalloc(sizeof(*smap), GFP_USER | __GFP_NOWARN);
642 	if (!smap)
643 		return ERR_PTR(-ENOMEM);
644 	bpf_map_init_from_attr(&smap->map, attr);
645 
646 	/* Use at least 2 buckets, select_bucket() is undefined behavior with 1 bucket */
647 	smap->bucket_log = max_t(u32, 1, ilog2(roundup_pow_of_two(num_possible_cpus())));
648 	nbuckets = 1U << smap->bucket_log;
649 	cost = sizeof(*smap->buckets) * nbuckets + sizeof(*smap);
650 
651 	ret = bpf_map_charge_init(&smap->map.memory, cost);
652 	if (ret < 0) {
653 		kfree(smap);
654 		return ERR_PTR(ret);
655 	}
656 
657 	smap->buckets = kvcalloc(sizeof(*smap->buckets), nbuckets,
658 				 GFP_USER | __GFP_NOWARN);
659 	if (!smap->buckets) {
660 		bpf_map_charge_finish(&smap->map.memory);
661 		kfree(smap);
662 		return ERR_PTR(-ENOMEM);
663 	}
664 
665 	for (i = 0; i < nbuckets; i++) {
666 		INIT_HLIST_HEAD(&smap->buckets[i].list);
667 		raw_spin_lock_init(&smap->buckets[i].lock);
668 	}
669 
670 	smap->elem_size = sizeof(struct bpf_sk_storage_elem) + attr->value_size;
671 	smap->cache_idx = (unsigned int)atomic_inc_return(&cache_idx) %
672 		BPF_SK_STORAGE_CACHE_SIZE;
673 
674 	return &smap->map;
675 }
676 
677 static int notsupp_get_next_key(struct bpf_map *map, void *key,
678 				void *next_key)
679 {
680 	return -ENOTSUPP;
681 }
682 
683 static int bpf_sk_storage_map_check_btf(const struct bpf_map *map,
684 					const struct btf *btf,
685 					const struct btf_type *key_type,
686 					const struct btf_type *value_type)
687 {
688 	u32 int_data;
689 
690 	if (BTF_INFO_KIND(key_type->info) != BTF_KIND_INT)
691 		return -EINVAL;
692 
693 	int_data = *(u32 *)(key_type + 1);
694 	if (BTF_INT_BITS(int_data) != 32 || BTF_INT_OFFSET(int_data))
695 		return -EINVAL;
696 
697 	return 0;
698 }
699 
700 static void *bpf_fd_sk_storage_lookup_elem(struct bpf_map *map, void *key)
701 {
702 	struct bpf_sk_storage_data *sdata;
703 	struct socket *sock;
704 	int fd, err;
705 
706 	fd = *(int *)key;
707 	sock = sockfd_lookup(fd, &err);
708 	if (sock) {
709 		sdata = sk_storage_lookup(sock->sk, map, true);
710 		sockfd_put(sock);
711 		return sdata ? sdata->data : NULL;
712 	}
713 
714 	return ERR_PTR(err);
715 }
716 
717 static int bpf_fd_sk_storage_update_elem(struct bpf_map *map, void *key,
718 					 void *value, u64 map_flags)
719 {
720 	struct bpf_sk_storage_data *sdata;
721 	struct socket *sock;
722 	int fd, err;
723 
724 	fd = *(int *)key;
725 	sock = sockfd_lookup(fd, &err);
726 	if (sock) {
727 		sdata = sk_storage_update(sock->sk, map, value, map_flags);
728 		sockfd_put(sock);
729 		return PTR_ERR_OR_ZERO(sdata);
730 	}
731 
732 	return err;
733 }
734 
735 static int bpf_fd_sk_storage_delete_elem(struct bpf_map *map, void *key)
736 {
737 	struct socket *sock;
738 	int fd, err;
739 
740 	fd = *(int *)key;
741 	sock = sockfd_lookup(fd, &err);
742 	if (sock) {
743 		err = sk_storage_delete(sock->sk, map);
744 		sockfd_put(sock);
745 		return err;
746 	}
747 
748 	return err;
749 }
750 
751 static struct bpf_sk_storage_elem *
752 bpf_sk_storage_clone_elem(struct sock *newsk,
753 			  struct bpf_sk_storage_map *smap,
754 			  struct bpf_sk_storage_elem *selem)
755 {
756 	struct bpf_sk_storage_elem *copy_selem;
757 
758 	copy_selem = selem_alloc(smap, newsk, NULL, true);
759 	if (!copy_selem)
760 		return NULL;
761 
762 	if (map_value_has_spin_lock(&smap->map))
763 		copy_map_value_locked(&smap->map, SDATA(copy_selem)->data,
764 				      SDATA(selem)->data, true);
765 	else
766 		copy_map_value(&smap->map, SDATA(copy_selem)->data,
767 			       SDATA(selem)->data);
768 
769 	return copy_selem;
770 }
771 
772 int bpf_sk_storage_clone(const struct sock *sk, struct sock *newsk)
773 {
774 	struct bpf_sk_storage *new_sk_storage = NULL;
775 	struct bpf_sk_storage *sk_storage;
776 	struct bpf_sk_storage_elem *selem;
777 	int ret = 0;
778 
779 	RCU_INIT_POINTER(newsk->sk_bpf_storage, NULL);
780 
781 	rcu_read_lock();
782 	sk_storage = rcu_dereference(sk->sk_bpf_storage);
783 
784 	if (!sk_storage || hlist_empty(&sk_storage->list))
785 		goto out;
786 
787 	hlist_for_each_entry_rcu(selem, &sk_storage->list, snode) {
788 		struct bpf_sk_storage_elem *copy_selem;
789 		struct bpf_sk_storage_map *smap;
790 		struct bpf_map *map;
791 
792 		smap = rcu_dereference(SDATA(selem)->smap);
793 		if (!(smap->map.map_flags & BPF_F_CLONE))
794 			continue;
795 
796 		/* Note that for lockless listeners adding new element
797 		 * here can race with cleanup in bpf_sk_storage_map_free.
798 		 * Try to grab map refcnt to make sure that it's still
799 		 * alive and prevent concurrent removal.
800 		 */
801 		map = bpf_map_inc_not_zero(&smap->map, false);
802 		if (IS_ERR(map))
803 			continue;
804 
805 		copy_selem = bpf_sk_storage_clone_elem(newsk, smap, selem);
806 		if (!copy_selem) {
807 			ret = -ENOMEM;
808 			bpf_map_put(map);
809 			goto out;
810 		}
811 
812 		if (new_sk_storage) {
813 			selem_link_map(smap, copy_selem);
814 			__selem_link_sk(new_sk_storage, copy_selem);
815 		} else {
816 			ret = sk_storage_alloc(newsk, smap, copy_selem);
817 			if (ret) {
818 				kfree(copy_selem);
819 				atomic_sub(smap->elem_size,
820 					   &newsk->sk_omem_alloc);
821 				bpf_map_put(map);
822 				goto out;
823 			}
824 
825 			new_sk_storage = rcu_dereference(copy_selem->sk_storage);
826 		}
827 		bpf_map_put(map);
828 	}
829 
830 out:
831 	rcu_read_unlock();
832 
833 	/* In case of an error, don't free anything explicitly here, the
834 	 * caller is responsible to call bpf_sk_storage_free.
835 	 */
836 
837 	return ret;
838 }
839 
840 BPF_CALL_4(bpf_sk_storage_get, struct bpf_map *, map, struct sock *, sk,
841 	   void *, value, u64, flags)
842 {
843 	struct bpf_sk_storage_data *sdata;
844 
845 	if (flags > BPF_SK_STORAGE_GET_F_CREATE)
846 		return (unsigned long)NULL;
847 
848 	sdata = sk_storage_lookup(sk, map, true);
849 	if (sdata)
850 		return (unsigned long)sdata->data;
851 
852 	if (flags == BPF_SK_STORAGE_GET_F_CREATE &&
853 	    /* Cannot add new elem to a going away sk.
854 	     * Otherwise, the new elem may become a leak
855 	     * (and also other memory issues during map
856 	     *  destruction).
857 	     */
858 	    refcount_inc_not_zero(&sk->sk_refcnt)) {
859 		sdata = sk_storage_update(sk, map, value, BPF_NOEXIST);
860 		/* sk must be a fullsock (guaranteed by verifier),
861 		 * so sock_gen_put() is unnecessary.
862 		 */
863 		sock_put(sk);
864 		return IS_ERR(sdata) ?
865 			(unsigned long)NULL : (unsigned long)sdata->data;
866 	}
867 
868 	return (unsigned long)NULL;
869 }
870 
871 BPF_CALL_2(bpf_sk_storage_delete, struct bpf_map *, map, struct sock *, sk)
872 {
873 	if (refcount_inc_not_zero(&sk->sk_refcnt)) {
874 		int err;
875 
876 		err = sk_storage_delete(sk, map);
877 		sock_put(sk);
878 		return err;
879 	}
880 
881 	return -ENOENT;
882 }
883 
884 const struct bpf_map_ops sk_storage_map_ops = {
885 	.map_alloc_check = bpf_sk_storage_map_alloc_check,
886 	.map_alloc = bpf_sk_storage_map_alloc,
887 	.map_free = bpf_sk_storage_map_free,
888 	.map_get_next_key = notsupp_get_next_key,
889 	.map_lookup_elem = bpf_fd_sk_storage_lookup_elem,
890 	.map_update_elem = bpf_fd_sk_storage_update_elem,
891 	.map_delete_elem = bpf_fd_sk_storage_delete_elem,
892 	.map_check_btf = bpf_sk_storage_map_check_btf,
893 };
894 
895 const struct bpf_func_proto bpf_sk_storage_get_proto = {
896 	.func		= bpf_sk_storage_get,
897 	.gpl_only	= false,
898 	.ret_type	= RET_PTR_TO_MAP_VALUE_OR_NULL,
899 	.arg1_type	= ARG_CONST_MAP_PTR,
900 	.arg2_type	= ARG_PTR_TO_SOCKET,
901 	.arg3_type	= ARG_PTR_TO_MAP_VALUE_OR_NULL,
902 	.arg4_type	= ARG_ANYTHING,
903 };
904 
905 const struct bpf_func_proto bpf_sk_storage_delete_proto = {
906 	.func		= bpf_sk_storage_delete,
907 	.gpl_only	= false,
908 	.ret_type	= RET_INTEGER,
909 	.arg1_type	= ARG_CONST_MAP_PTR,
910 	.arg2_type	= ARG_PTR_TO_SOCKET,
911 };
912