xref: /linux/net/core/dev.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *				Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <rzsfl@rz.uni-sb.de>
12  *		Alan Cox <gw4pts@gw4pts.ampr.org>
13  *		David Hinds <dahinds@users.sourceforge.net>
14  *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *		Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145 
146 #include "net-sysfs.h"
147 
148 #define MAX_GRO_SKBS 8
149 
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;	/* Taps */
157 static struct list_head offload_base __read_mostly;
158 
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161 					 struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163 					   struct net_device *dev,
164 					   struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166 
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188 
189 static DEFINE_MUTEX(ifalias_mutex);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	if (!dev_valid_name(name))
1066 		return -EINVAL;
1067 
1068 	p = strchr(name, '%');
1069 	if (p) {
1070 		/*
1071 		 * Verify the string as this thing may have come from
1072 		 * the user.  There must be either one "%d" and no other "%"
1073 		 * characters.
1074 		 */
1075 		if (p[1] != 'd' || strchr(p + 2, '%'))
1076 			return -EINVAL;
1077 
1078 		/* Use one page as a bit array of possible slots */
1079 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080 		if (!inuse)
1081 			return -ENOMEM;
1082 
1083 		for_each_netdev(net, d) {
1084 			if (!sscanf(d->name, name, &i))
1085 				continue;
1086 			if (i < 0 || i >= max_netdevices)
1087 				continue;
1088 
1089 			/*  avoid cases where sscanf is not exact inverse of printf */
1090 			snprintf(buf, IFNAMSIZ, name, i);
1091 			if (!strncmp(buf, d->name, IFNAMSIZ))
1092 				set_bit(i, inuse);
1093 		}
1094 
1095 		i = find_first_zero_bit(inuse, max_netdevices);
1096 		free_page((unsigned long) inuse);
1097 	}
1098 
1099 	snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 static int dev_alloc_name_ns(struct net *net,
1111 			     struct net_device *dev,
1112 			     const char *name)
1113 {
1114 	char buf[IFNAMSIZ];
1115 	int ret;
1116 
1117 	BUG_ON(!net);
1118 	ret = __dev_alloc_name(net, name, buf);
1119 	if (ret >= 0)
1120 		strlcpy(dev->name, buf, IFNAMSIZ);
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_alloc_name - allocate a name for a device
1126  *	@dev: device
1127  *	@name: name format string
1128  *
1129  *	Passed a format string - eg "lt%d" it will try and find a suitable
1130  *	id. It scans list of devices to build up a free map, then chooses
1131  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *	while allocating the name and adding the device in order to avoid
1133  *	duplicates.
1134  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *	Returns the number of the unit assigned or a negative errno code.
1136  */
1137 
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143 
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145 		       const char *name)
1146 {
1147 	BUG_ON(!net);
1148 
1149 	if (!dev_valid_name(name))
1150 		return -EINVAL;
1151 
1152 	if (strchr(name, '%'))
1153 		return dev_alloc_name_ns(net, dev, name);
1154 	else if (__dev_get_by_name(net, name))
1155 		return -EEXIST;
1156 	else if (dev->name != name)
1157 		strlcpy(dev->name, name, IFNAMSIZ);
1158 
1159 	return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162 
1163 /**
1164  *	dev_change_name - change name of a device
1165  *	@dev: device
1166  *	@newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *	Change name of a device, can pass format strings "eth%d".
1169  *	for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173 	unsigned char old_assign_type;
1174 	char oldname[IFNAMSIZ];
1175 	int err = 0;
1176 	int ret;
1177 	struct net *net;
1178 
1179 	ASSERT_RTNL();
1180 	BUG_ON(!dev_net(dev));
1181 
1182 	net = dev_net(dev);
1183 
1184 	/* Some auto-enslaved devices e.g. failover slaves are
1185 	 * special, as userspace might rename the device after
1186 	 * the interface had been brought up and running since
1187 	 * the point kernel initiated auto-enslavement. Allow
1188 	 * live name change even when these slave devices are
1189 	 * up and running.
1190 	 *
1191 	 * Typically, users of these auto-enslaving devices
1192 	 * don't actually care about slave name change, as
1193 	 * they are supposed to operate on master interface
1194 	 * directly.
1195 	 */
1196 	if (dev->flags & IFF_UP &&
1197 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198 		return -EBUSY;
1199 
1200 	write_seqcount_begin(&devnet_rename_seq);
1201 
1202 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203 		write_seqcount_end(&devnet_rename_seq);
1204 		return 0;
1205 	}
1206 
1207 	memcpy(oldname, dev->name, IFNAMSIZ);
1208 
1209 	err = dev_get_valid_name(net, dev, newname);
1210 	if (err < 0) {
1211 		write_seqcount_end(&devnet_rename_seq);
1212 		return err;
1213 	}
1214 
1215 	if (oldname[0] && !strchr(oldname, '%'))
1216 		netdev_info(dev, "renamed from %s\n", oldname);
1217 
1218 	old_assign_type = dev->name_assign_type;
1219 	dev->name_assign_type = NET_NAME_RENAMED;
1220 
1221 rollback:
1222 	ret = device_rename(&dev->dev, dev->name);
1223 	if (ret) {
1224 		memcpy(dev->name, oldname, IFNAMSIZ);
1225 		dev->name_assign_type = old_assign_type;
1226 		write_seqcount_end(&devnet_rename_seq);
1227 		return ret;
1228 	}
1229 
1230 	write_seqcount_end(&devnet_rename_seq);
1231 
1232 	netdev_adjacent_rename_links(dev, oldname);
1233 
1234 	write_lock_bh(&dev_base_lock);
1235 	hlist_del_rcu(&dev->name_hlist);
1236 	write_unlock_bh(&dev_base_lock);
1237 
1238 	synchronize_rcu();
1239 
1240 	write_lock_bh(&dev_base_lock);
1241 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242 	write_unlock_bh(&dev_base_lock);
1243 
1244 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245 	ret = notifier_to_errno(ret);
1246 
1247 	if (ret) {
1248 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1249 		if (err >= 0) {
1250 			err = ret;
1251 			write_seqcount_begin(&devnet_rename_seq);
1252 			memcpy(dev->name, oldname, IFNAMSIZ);
1253 			memcpy(oldname, newname, IFNAMSIZ);
1254 			dev->name_assign_type = old_assign_type;
1255 			old_assign_type = NET_NAME_RENAMED;
1256 			goto rollback;
1257 		} else {
1258 			pr_err("%s: name change rollback failed: %d\n",
1259 			       dev->name, ret);
1260 		}
1261 	}
1262 
1263 	return err;
1264 }
1265 
1266 /**
1267  *	dev_set_alias - change ifalias of a device
1268  *	@dev: device
1269  *	@alias: name up to IFALIASZ
1270  *	@len: limit of bytes to copy from info
1271  *
1272  *	Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276 	struct dev_ifalias *new_alias = NULL;
1277 
1278 	if (len >= IFALIASZ)
1279 		return -EINVAL;
1280 
1281 	if (len) {
1282 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283 		if (!new_alias)
1284 			return -ENOMEM;
1285 
1286 		memcpy(new_alias->ifalias, alias, len);
1287 		new_alias->ifalias[len] = 0;
1288 	}
1289 
1290 	mutex_lock(&ifalias_mutex);
1291 	rcu_swap_protected(dev->ifalias, new_alias,
1292 			   mutex_is_locked(&ifalias_mutex));
1293 	mutex_unlock(&ifalias_mutex);
1294 
1295 	if (new_alias)
1296 		kfree_rcu(new_alias, rcuhead);
1297 
1298 	return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301 
1302 /**
1303  *	dev_get_alias - get ifalias of a device
1304  *	@dev: device
1305  *	@name: buffer to store name of ifalias
1306  *	@len: size of buffer
1307  *
1308  *	get ifalias for a device.  Caller must make sure dev cannot go
1309  *	away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313 	const struct dev_ifalias *alias;
1314 	int ret = 0;
1315 
1316 	rcu_read_lock();
1317 	alias = rcu_dereference(dev->ifalias);
1318 	if (alias)
1319 		ret = snprintf(name, len, "%s", alias->ifalias);
1320 	rcu_read_unlock();
1321 
1322 	return ret;
1323 }
1324 
1325 /**
1326  *	netdev_features_change - device changes features
1327  *	@dev: device to cause notification
1328  *
1329  *	Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336 
1337 /**
1338  *	netdev_state_change - device changes state
1339  *	@dev: device to cause notification
1340  *
1341  *	Called to indicate a device has changed state. This function calls
1342  *	the notifier chains for netdev_chain and sends a NEWLINK message
1343  *	to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347 	if (dev->flags & IFF_UP) {
1348 		struct netdev_notifier_change_info change_info = {
1349 			.info.dev = dev,
1350 		};
1351 
1352 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1353 					      &change_info.info);
1354 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1355 	}
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358 
1359 /**
1360  * netdev_notify_peers - notify network peers about existence of @dev
1361  * @dev: network device
1362  *
1363  * Generate traffic such that interested network peers are aware of
1364  * @dev, such as by generating a gratuitous ARP. This may be used when
1365  * a device wants to inform the rest of the network about some sort of
1366  * reconfiguration such as a failover event or virtual machine
1367  * migration.
1368  */
1369 void netdev_notify_peers(struct net_device *dev)
1370 {
1371 	rtnl_lock();
1372 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374 	rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377 
1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379 {
1380 	const struct net_device_ops *ops = dev->netdev_ops;
1381 	int ret;
1382 
1383 	ASSERT_RTNL();
1384 
1385 	if (!netif_device_present(dev))
1386 		return -ENODEV;
1387 
1388 	/* Block netpoll from trying to do any rx path servicing.
1389 	 * If we don't do this there is a chance ndo_poll_controller
1390 	 * or ndo_poll may be running while we open the device
1391 	 */
1392 	netpoll_poll_disable(dev);
1393 
1394 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395 	ret = notifier_to_errno(ret);
1396 	if (ret)
1397 		return ret;
1398 
1399 	set_bit(__LINK_STATE_START, &dev->state);
1400 
1401 	if (ops->ndo_validate_addr)
1402 		ret = ops->ndo_validate_addr(dev);
1403 
1404 	if (!ret && ops->ndo_open)
1405 		ret = ops->ndo_open(dev);
1406 
1407 	netpoll_poll_enable(dev);
1408 
1409 	if (ret)
1410 		clear_bit(__LINK_STATE_START, &dev->state);
1411 	else {
1412 		dev->flags |= IFF_UP;
1413 		dev_set_rx_mode(dev);
1414 		dev_activate(dev);
1415 		add_device_randomness(dev->dev_addr, dev->addr_len);
1416 	}
1417 
1418 	return ret;
1419 }
1420 
1421 /**
1422  *	dev_open	- prepare an interface for use.
1423  *	@dev: device to open
1424  *	@extack: netlink extended ack
1425  *
1426  *	Takes a device from down to up state. The device's private open
1427  *	function is invoked and then the multicast lists are loaded. Finally
1428  *	the device is moved into the up state and a %NETDEV_UP message is
1429  *	sent to the netdev notifier chain.
1430  *
1431  *	Calling this function on an active interface is a nop. On a failure
1432  *	a negative errno code is returned.
1433  */
1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1435 {
1436 	int ret;
1437 
1438 	if (dev->flags & IFF_UP)
1439 		return 0;
1440 
1441 	ret = __dev_open(dev, extack);
1442 	if (ret < 0)
1443 		return ret;
1444 
1445 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446 	call_netdevice_notifiers(NETDEV_UP, dev);
1447 
1448 	return ret;
1449 }
1450 EXPORT_SYMBOL(dev_open);
1451 
1452 static void __dev_close_many(struct list_head *head)
1453 {
1454 	struct net_device *dev;
1455 
1456 	ASSERT_RTNL();
1457 	might_sleep();
1458 
1459 	list_for_each_entry(dev, head, close_list) {
1460 		/* Temporarily disable netpoll until the interface is down */
1461 		netpoll_poll_disable(dev);
1462 
1463 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1464 
1465 		clear_bit(__LINK_STATE_START, &dev->state);
1466 
1467 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1468 		 * can be even on different cpu. So just clear netif_running().
1469 		 *
1470 		 * dev->stop() will invoke napi_disable() on all of it's
1471 		 * napi_struct instances on this device.
1472 		 */
1473 		smp_mb__after_atomic(); /* Commit netif_running(). */
1474 	}
1475 
1476 	dev_deactivate_many(head);
1477 
1478 	list_for_each_entry(dev, head, close_list) {
1479 		const struct net_device_ops *ops = dev->netdev_ops;
1480 
1481 		/*
1482 		 *	Call the device specific close. This cannot fail.
1483 		 *	Only if device is UP
1484 		 *
1485 		 *	We allow it to be called even after a DETACH hot-plug
1486 		 *	event.
1487 		 */
1488 		if (ops->ndo_stop)
1489 			ops->ndo_stop(dev);
1490 
1491 		dev->flags &= ~IFF_UP;
1492 		netpoll_poll_enable(dev);
1493 	}
1494 }
1495 
1496 static void __dev_close(struct net_device *dev)
1497 {
1498 	LIST_HEAD(single);
1499 
1500 	list_add(&dev->close_list, &single);
1501 	__dev_close_many(&single);
1502 	list_del(&single);
1503 }
1504 
1505 void dev_close_many(struct list_head *head, bool unlink)
1506 {
1507 	struct net_device *dev, *tmp;
1508 
1509 	/* Remove the devices that don't need to be closed */
1510 	list_for_each_entry_safe(dev, tmp, head, close_list)
1511 		if (!(dev->flags & IFF_UP))
1512 			list_del_init(&dev->close_list);
1513 
1514 	__dev_close_many(head);
1515 
1516 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1517 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1519 		if (unlink)
1520 			list_del_init(&dev->close_list);
1521 	}
1522 }
1523 EXPORT_SYMBOL(dev_close_many);
1524 
1525 /**
1526  *	dev_close - shutdown an interface.
1527  *	@dev: device to shutdown
1528  *
1529  *	This function moves an active device into down state. A
1530  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532  *	chain.
1533  */
1534 void dev_close(struct net_device *dev)
1535 {
1536 	if (dev->flags & IFF_UP) {
1537 		LIST_HEAD(single);
1538 
1539 		list_add(&dev->close_list, &single);
1540 		dev_close_many(&single, true);
1541 		list_del(&single);
1542 	}
1543 }
1544 EXPORT_SYMBOL(dev_close);
1545 
1546 
1547 /**
1548  *	dev_disable_lro - disable Large Receive Offload on a device
1549  *	@dev: device
1550  *
1551  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1552  *	called under RTNL.  This is needed if received packets may be
1553  *	forwarded to another interface.
1554  */
1555 void dev_disable_lro(struct net_device *dev)
1556 {
1557 	struct net_device *lower_dev;
1558 	struct list_head *iter;
1559 
1560 	dev->wanted_features &= ~NETIF_F_LRO;
1561 	netdev_update_features(dev);
1562 
1563 	if (unlikely(dev->features & NETIF_F_LRO))
1564 		netdev_WARN(dev, "failed to disable LRO!\n");
1565 
1566 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1567 		dev_disable_lro(lower_dev);
1568 }
1569 EXPORT_SYMBOL(dev_disable_lro);
1570 
1571 /**
1572  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573  *	@dev: device
1574  *
1575  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1576  *	called under RTNL.  This is needed if Generic XDP is installed on
1577  *	the device.
1578  */
1579 static void dev_disable_gro_hw(struct net_device *dev)
1580 {
1581 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1582 	netdev_update_features(dev);
1583 
1584 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1585 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586 }
1587 
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589 {
1590 #define N(val) 						\
1591 	case NETDEV_##val:				\
1592 		return "NETDEV_" __stringify(val);
1593 	switch (cmd) {
1594 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603 	N(PRE_CHANGEADDR)
1604 	}
1605 #undef N
1606 	return "UNKNOWN_NETDEV_EVENT";
1607 }
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609 
1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611 				   struct net_device *dev)
1612 {
1613 	struct netdev_notifier_info info = {
1614 		.dev = dev,
1615 	};
1616 
1617 	return nb->notifier_call(nb, val, &info);
1618 }
1619 
1620 static int dev_boot_phase = 1;
1621 
1622 /**
1623  * register_netdevice_notifier - register a network notifier block
1624  * @nb: notifier
1625  *
1626  * Register a notifier to be called when network device events occur.
1627  * The notifier passed is linked into the kernel structures and must
1628  * not be reused until it has been unregistered. A negative errno code
1629  * is returned on a failure.
1630  *
1631  * When registered all registration and up events are replayed
1632  * to the new notifier to allow device to have a race free
1633  * view of the network device list.
1634  */
1635 
1636 int register_netdevice_notifier(struct notifier_block *nb)
1637 {
1638 	struct net_device *dev;
1639 	struct net_device *last;
1640 	struct net *net;
1641 	int err;
1642 
1643 	/* Close race with setup_net() and cleanup_net() */
1644 	down_write(&pernet_ops_rwsem);
1645 	rtnl_lock();
1646 	err = raw_notifier_chain_register(&netdev_chain, nb);
1647 	if (err)
1648 		goto unlock;
1649 	if (dev_boot_phase)
1650 		goto unlock;
1651 	for_each_net(net) {
1652 		for_each_netdev(net, dev) {
1653 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654 			err = notifier_to_errno(err);
1655 			if (err)
1656 				goto rollback;
1657 
1658 			if (!(dev->flags & IFF_UP))
1659 				continue;
1660 
1661 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1662 		}
1663 	}
1664 
1665 unlock:
1666 	rtnl_unlock();
1667 	up_write(&pernet_ops_rwsem);
1668 	return err;
1669 
1670 rollback:
1671 	last = dev;
1672 	for_each_net(net) {
1673 		for_each_netdev(net, dev) {
1674 			if (dev == last)
1675 				goto outroll;
1676 
1677 			if (dev->flags & IFF_UP) {
1678 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679 							dev);
1680 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1681 			}
1682 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1683 		}
1684 	}
1685 
1686 outroll:
1687 	raw_notifier_chain_unregister(&netdev_chain, nb);
1688 	goto unlock;
1689 }
1690 EXPORT_SYMBOL(register_netdevice_notifier);
1691 
1692 /**
1693  * unregister_netdevice_notifier - unregister a network notifier block
1694  * @nb: notifier
1695  *
1696  * Unregister a notifier previously registered by
1697  * register_netdevice_notifier(). The notifier is unlinked into the
1698  * kernel structures and may then be reused. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * After unregistering unregister and down device events are synthesized
1702  * for all devices on the device list to the removed notifier to remove
1703  * the need for special case cleanup code.
1704  */
1705 
1706 int unregister_netdevice_notifier(struct notifier_block *nb)
1707 {
1708 	struct net_device *dev;
1709 	struct net *net;
1710 	int err;
1711 
1712 	/* Close race with setup_net() and cleanup_net() */
1713 	down_write(&pernet_ops_rwsem);
1714 	rtnl_lock();
1715 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716 	if (err)
1717 		goto unlock;
1718 
1719 	for_each_net(net) {
1720 		for_each_netdev(net, dev) {
1721 			if (dev->flags & IFF_UP) {
1722 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723 							dev);
1724 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725 			}
1726 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727 		}
1728 	}
1729 unlock:
1730 	rtnl_unlock();
1731 	up_write(&pernet_ops_rwsem);
1732 	return err;
1733 }
1734 EXPORT_SYMBOL(unregister_netdevice_notifier);
1735 
1736 /**
1737  *	call_netdevice_notifiers_info - call all network notifier blocks
1738  *	@val: value passed unmodified to notifier function
1739  *	@info: notifier information data
1740  *
1741  *	Call all network notifier blocks.  Parameters and return value
1742  *	are as for raw_notifier_call_chain().
1743  */
1744 
1745 static int call_netdevice_notifiers_info(unsigned long val,
1746 					 struct netdev_notifier_info *info)
1747 {
1748 	ASSERT_RTNL();
1749 	return raw_notifier_call_chain(&netdev_chain, val, info);
1750 }
1751 
1752 static int call_netdevice_notifiers_extack(unsigned long val,
1753 					   struct net_device *dev,
1754 					   struct netlink_ext_ack *extack)
1755 {
1756 	struct netdev_notifier_info info = {
1757 		.dev = dev,
1758 		.extack = extack,
1759 	};
1760 
1761 	return call_netdevice_notifiers_info(val, &info);
1762 }
1763 
1764 /**
1765  *	call_netdevice_notifiers - call all network notifier blocks
1766  *      @val: value passed unmodified to notifier function
1767  *      @dev: net_device pointer passed unmodified to notifier function
1768  *
1769  *	Call all network notifier blocks.  Parameters and return value
1770  *	are as for raw_notifier_call_chain().
1771  */
1772 
1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1774 {
1775 	return call_netdevice_notifiers_extack(val, dev, NULL);
1776 }
1777 EXPORT_SYMBOL(call_netdevice_notifiers);
1778 
1779 /**
1780  *	call_netdevice_notifiers_mtu - call all network notifier blocks
1781  *	@val: value passed unmodified to notifier function
1782  *	@dev: net_device pointer passed unmodified to notifier function
1783  *	@arg: additional u32 argument passed to the notifier function
1784  *
1785  *	Call all network notifier blocks.  Parameters and return value
1786  *	are as for raw_notifier_call_chain().
1787  */
1788 static int call_netdevice_notifiers_mtu(unsigned long val,
1789 					struct net_device *dev, u32 arg)
1790 {
1791 	struct netdev_notifier_info_ext info = {
1792 		.info.dev = dev,
1793 		.ext.mtu = arg,
1794 	};
1795 
1796 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797 
1798 	return call_netdevice_notifiers_info(val, &info.info);
1799 }
1800 
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1803 
1804 void net_inc_ingress_queue(void)
1805 {
1806 	static_branch_inc(&ingress_needed_key);
1807 }
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809 
1810 void net_dec_ingress_queue(void)
1811 {
1812 	static_branch_dec(&ingress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815 #endif
1816 
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1819 
1820 void net_inc_egress_queue(void)
1821 {
1822 	static_branch_inc(&egress_needed_key);
1823 }
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825 
1826 void net_dec_egress_queue(void)
1827 {
1828 	static_branch_dec(&egress_needed_key);
1829 }
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831 #endif
1832 
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred;
1836 static atomic_t netstamp_wanted;
1837 static void netstamp_clear(struct work_struct *work)
1838 {
1839 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840 	int wanted;
1841 
1842 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1843 	if (wanted > 0)
1844 		static_branch_enable(&netstamp_needed_key);
1845 	else
1846 		static_branch_disable(&netstamp_needed_key);
1847 }
1848 static DECLARE_WORK(netstamp_work, netstamp_clear);
1849 #endif
1850 
1851 void net_enable_timestamp(void)
1852 {
1853 #ifdef CONFIG_JUMP_LABEL
1854 	int wanted;
1855 
1856 	while (1) {
1857 		wanted = atomic_read(&netstamp_wanted);
1858 		if (wanted <= 0)
1859 			break;
1860 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861 			return;
1862 	}
1863 	atomic_inc(&netstamp_needed_deferred);
1864 	schedule_work(&netstamp_work);
1865 #else
1866 	static_branch_inc(&netstamp_needed_key);
1867 #endif
1868 }
1869 EXPORT_SYMBOL(net_enable_timestamp);
1870 
1871 void net_disable_timestamp(void)
1872 {
1873 #ifdef CONFIG_JUMP_LABEL
1874 	int wanted;
1875 
1876 	while (1) {
1877 		wanted = atomic_read(&netstamp_wanted);
1878 		if (wanted <= 1)
1879 			break;
1880 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881 			return;
1882 	}
1883 	atomic_dec(&netstamp_needed_deferred);
1884 	schedule_work(&netstamp_work);
1885 #else
1886 	static_branch_dec(&netstamp_needed_key);
1887 #endif
1888 }
1889 EXPORT_SYMBOL(net_disable_timestamp);
1890 
1891 static inline void net_timestamp_set(struct sk_buff *skb)
1892 {
1893 	skb->tstamp = 0;
1894 	if (static_branch_unlikely(&netstamp_needed_key))
1895 		__net_timestamp(skb);
1896 }
1897 
1898 #define net_timestamp_check(COND, SKB)				\
1899 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1900 		if ((COND) && !(SKB)->tstamp)			\
1901 			__net_timestamp(SKB);			\
1902 	}							\
1903 
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1905 {
1906 	unsigned int len;
1907 
1908 	if (!(dev->flags & IFF_UP))
1909 		return false;
1910 
1911 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912 	if (skb->len <= len)
1913 		return true;
1914 
1915 	/* if TSO is enabled, we don't care about the length as the packet
1916 	 * could be forwarded without being segmented before
1917 	 */
1918 	if (skb_is_gso(skb))
1919 		return true;
1920 
1921 	return false;
1922 }
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1924 
1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926 {
1927 	int ret = ____dev_forward_skb(dev, skb);
1928 
1929 	if (likely(!ret)) {
1930 		skb->protocol = eth_type_trans(skb, dev);
1931 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932 	}
1933 
1934 	return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937 
1938 /**
1939  * dev_forward_skb - loopback an skb to another netif
1940  *
1941  * @dev: destination network device
1942  * @skb: buffer to forward
1943  *
1944  * return values:
1945  *	NET_RX_SUCCESS	(no congestion)
1946  *	NET_RX_DROP     (packet was dropped, but freed)
1947  *
1948  * dev_forward_skb can be used for injecting an skb from the
1949  * start_xmit function of one device into the receive queue
1950  * of another device.
1951  *
1952  * The receiving device may be in another namespace, so
1953  * we have to clear all information in the skb that could
1954  * impact namespace isolation.
1955  */
1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957 {
1958 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1959 }
1960 EXPORT_SYMBOL_GPL(dev_forward_skb);
1961 
1962 static inline int deliver_skb(struct sk_buff *skb,
1963 			      struct packet_type *pt_prev,
1964 			      struct net_device *orig_dev)
1965 {
1966 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967 		return -ENOMEM;
1968 	refcount_inc(&skb->users);
1969 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970 }
1971 
1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973 					  struct packet_type **pt,
1974 					  struct net_device *orig_dev,
1975 					  __be16 type,
1976 					  struct list_head *ptype_list)
1977 {
1978 	struct packet_type *ptype, *pt_prev = *pt;
1979 
1980 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1981 		if (ptype->type != type)
1982 			continue;
1983 		if (pt_prev)
1984 			deliver_skb(skb, pt_prev, orig_dev);
1985 		pt_prev = ptype;
1986 	}
1987 	*pt = pt_prev;
1988 }
1989 
1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991 {
1992 	if (!ptype->af_packet_priv || !skb->sk)
1993 		return false;
1994 
1995 	if (ptype->id_match)
1996 		return ptype->id_match(ptype, skb->sk);
1997 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998 		return true;
1999 
2000 	return false;
2001 }
2002 
2003 /**
2004  * dev_nit_active - return true if any network interface taps are in use
2005  *
2006  * @dev: network device to check for the presence of taps
2007  */
2008 bool dev_nit_active(struct net_device *dev)
2009 {
2010 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011 }
2012 EXPORT_SYMBOL_GPL(dev_nit_active);
2013 
2014 /*
2015  *	Support routine. Sends outgoing frames to any network
2016  *	taps currently in use.
2017  */
2018 
2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2020 {
2021 	struct packet_type *ptype;
2022 	struct sk_buff *skb2 = NULL;
2023 	struct packet_type *pt_prev = NULL;
2024 	struct list_head *ptype_list = &ptype_all;
2025 
2026 	rcu_read_lock();
2027 again:
2028 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2029 		if (ptype->ignore_outgoing)
2030 			continue;
2031 
2032 		/* Never send packets back to the socket
2033 		 * they originated from - MvS (miquels@drinkel.ow.org)
2034 		 */
2035 		if (skb_loop_sk(ptype, skb))
2036 			continue;
2037 
2038 		if (pt_prev) {
2039 			deliver_skb(skb2, pt_prev, skb->dev);
2040 			pt_prev = ptype;
2041 			continue;
2042 		}
2043 
2044 		/* need to clone skb, done only once */
2045 		skb2 = skb_clone(skb, GFP_ATOMIC);
2046 		if (!skb2)
2047 			goto out_unlock;
2048 
2049 		net_timestamp_set(skb2);
2050 
2051 		/* skb->nh should be correctly
2052 		 * set by sender, so that the second statement is
2053 		 * just protection against buggy protocols.
2054 		 */
2055 		skb_reset_mac_header(skb2);
2056 
2057 		if (skb_network_header(skb2) < skb2->data ||
2058 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060 					     ntohs(skb2->protocol),
2061 					     dev->name);
2062 			skb_reset_network_header(skb2);
2063 		}
2064 
2065 		skb2->transport_header = skb2->network_header;
2066 		skb2->pkt_type = PACKET_OUTGOING;
2067 		pt_prev = ptype;
2068 	}
2069 
2070 	if (ptype_list == &ptype_all) {
2071 		ptype_list = &dev->ptype_all;
2072 		goto again;
2073 	}
2074 out_unlock:
2075 	if (pt_prev) {
2076 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078 		else
2079 			kfree_skb(skb2);
2080 	}
2081 	rcu_read_unlock();
2082 }
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2084 
2085 /**
2086  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087  * @dev: Network device
2088  * @txq: number of queues available
2089  *
2090  * If real_num_tx_queues is changed the tc mappings may no longer be
2091  * valid. To resolve this verify the tc mapping remains valid and if
2092  * not NULL the mapping. With no priorities mapping to this
2093  * offset/count pair it will no longer be used. In the worst case TC0
2094  * is invalid nothing can be done so disable priority mappings. If is
2095  * expected that drivers will fix this mapping if they can before
2096  * calling netif_set_real_num_tx_queues.
2097  */
2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2099 {
2100 	int i;
2101 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102 
2103 	/* If TC0 is invalidated disable TC mapping */
2104 	if (tc->offset + tc->count > txq) {
2105 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106 		dev->num_tc = 0;
2107 		return;
2108 	}
2109 
2110 	/* Invalidated prio to tc mappings set to TC0 */
2111 	for (i = 1; i < TC_BITMASK + 1; i++) {
2112 		int q = netdev_get_prio_tc_map(dev, i);
2113 
2114 		tc = &dev->tc_to_txq[q];
2115 		if (tc->offset + tc->count > txq) {
2116 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117 				i, q);
2118 			netdev_set_prio_tc_map(dev, i, 0);
2119 		}
2120 	}
2121 }
2122 
2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124 {
2125 	if (dev->num_tc) {
2126 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127 		int i;
2128 
2129 		/* walk through the TCs and see if it falls into any of them */
2130 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131 			if ((txq - tc->offset) < tc->count)
2132 				return i;
2133 		}
2134 
2135 		/* didn't find it, just return -1 to indicate no match */
2136 		return -1;
2137 	}
2138 
2139 	return 0;
2140 }
2141 EXPORT_SYMBOL(netdev_txq_to_tc);
2142 
2143 #ifdef CONFIG_XPS
2144 struct static_key xps_needed __read_mostly;
2145 EXPORT_SYMBOL(xps_needed);
2146 struct static_key xps_rxqs_needed __read_mostly;
2147 EXPORT_SYMBOL(xps_rxqs_needed);
2148 static DEFINE_MUTEX(xps_map_mutex);
2149 #define xmap_dereference(P)		\
2150 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151 
2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153 			     int tci, u16 index)
2154 {
2155 	struct xps_map *map = NULL;
2156 	int pos;
2157 
2158 	if (dev_maps)
2159 		map = xmap_dereference(dev_maps->attr_map[tci]);
2160 	if (!map)
2161 		return false;
2162 
2163 	for (pos = map->len; pos--;) {
2164 		if (map->queues[pos] != index)
2165 			continue;
2166 
2167 		if (map->len > 1) {
2168 			map->queues[pos] = map->queues[--map->len];
2169 			break;
2170 		}
2171 
2172 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173 		kfree_rcu(map, rcu);
2174 		return false;
2175 	}
2176 
2177 	return true;
2178 }
2179 
2180 static bool remove_xps_queue_cpu(struct net_device *dev,
2181 				 struct xps_dev_maps *dev_maps,
2182 				 int cpu, u16 offset, u16 count)
2183 {
2184 	int num_tc = dev->num_tc ? : 1;
2185 	bool active = false;
2186 	int tci;
2187 
2188 	for (tci = cpu * num_tc; num_tc--; tci++) {
2189 		int i, j;
2190 
2191 		for (i = count, j = offset; i--; j++) {
2192 			if (!remove_xps_queue(dev_maps, tci, j))
2193 				break;
2194 		}
2195 
2196 		active |= i < 0;
2197 	}
2198 
2199 	return active;
2200 }
2201 
2202 static void reset_xps_maps(struct net_device *dev,
2203 			   struct xps_dev_maps *dev_maps,
2204 			   bool is_rxqs_map)
2205 {
2206 	if (is_rxqs_map) {
2207 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209 	} else {
2210 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211 	}
2212 	static_key_slow_dec_cpuslocked(&xps_needed);
2213 	kfree_rcu(dev_maps, rcu);
2214 }
2215 
2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218 			   u16 offset, u16 count, bool is_rxqs_map)
2219 {
2220 	bool active = false;
2221 	int i, j;
2222 
2223 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224 	     j < nr_ids;)
2225 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226 					       count);
2227 	if (!active)
2228 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2229 
2230 	if (!is_rxqs_map) {
2231 		for (i = offset + (count - 1); count--; i--) {
2232 			netdev_queue_numa_node_write(
2233 				netdev_get_tx_queue(dev, i),
2234 				NUMA_NO_NODE);
2235 		}
2236 	}
2237 }
2238 
2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240 				   u16 count)
2241 {
2242 	const unsigned long *possible_mask = NULL;
2243 	struct xps_dev_maps *dev_maps;
2244 	unsigned int nr_ids;
2245 
2246 	if (!static_key_false(&xps_needed))
2247 		return;
2248 
2249 	cpus_read_lock();
2250 	mutex_lock(&xps_map_mutex);
2251 
2252 	if (static_key_false(&xps_rxqs_needed)) {
2253 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254 		if (dev_maps) {
2255 			nr_ids = dev->num_rx_queues;
2256 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257 				       offset, count, true);
2258 		}
2259 	}
2260 
2261 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2262 	if (!dev_maps)
2263 		goto out_no_maps;
2264 
2265 	if (num_possible_cpus() > 1)
2266 		possible_mask = cpumask_bits(cpu_possible_mask);
2267 	nr_ids = nr_cpu_ids;
2268 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269 		       false);
2270 
2271 out_no_maps:
2272 	mutex_unlock(&xps_map_mutex);
2273 	cpus_read_unlock();
2274 }
2275 
2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277 {
2278 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279 }
2280 
2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282 				      u16 index, bool is_rxqs_map)
2283 {
2284 	struct xps_map *new_map;
2285 	int alloc_len = XPS_MIN_MAP_ALLOC;
2286 	int i, pos;
2287 
2288 	for (pos = 0; map && pos < map->len; pos++) {
2289 		if (map->queues[pos] != index)
2290 			continue;
2291 		return map;
2292 	}
2293 
2294 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295 	if (map) {
2296 		if (pos < map->alloc_len)
2297 			return map;
2298 
2299 		alloc_len = map->alloc_len * 2;
2300 	}
2301 
2302 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303 	 *  map
2304 	 */
2305 	if (is_rxqs_map)
2306 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307 	else
2308 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309 				       cpu_to_node(attr_index));
2310 	if (!new_map)
2311 		return NULL;
2312 
2313 	for (i = 0; i < pos; i++)
2314 		new_map->queues[i] = map->queues[i];
2315 	new_map->alloc_len = alloc_len;
2316 	new_map->len = pos;
2317 
2318 	return new_map;
2319 }
2320 
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323 			  u16 index, bool is_rxqs_map)
2324 {
2325 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327 	int i, j, tci, numa_node_id = -2;
2328 	int maps_sz, num_tc = 1, tc = 0;
2329 	struct xps_map *map, *new_map;
2330 	bool active = false;
2331 	unsigned int nr_ids;
2332 
2333 	if (dev->num_tc) {
2334 		/* Do not allow XPS on subordinate device directly */
2335 		num_tc = dev->num_tc;
2336 		if (num_tc < 0)
2337 			return -EINVAL;
2338 
2339 		/* If queue belongs to subordinate dev use its map */
2340 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341 
2342 		tc = netdev_txq_to_tc(dev, index);
2343 		if (tc < 0)
2344 			return -EINVAL;
2345 	}
2346 
2347 	mutex_lock(&xps_map_mutex);
2348 	if (is_rxqs_map) {
2349 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351 		nr_ids = dev->num_rx_queues;
2352 	} else {
2353 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354 		if (num_possible_cpus() > 1) {
2355 			online_mask = cpumask_bits(cpu_online_mask);
2356 			possible_mask = cpumask_bits(cpu_possible_mask);
2357 		}
2358 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2359 		nr_ids = nr_cpu_ids;
2360 	}
2361 
2362 	if (maps_sz < L1_CACHE_BYTES)
2363 		maps_sz = L1_CACHE_BYTES;
2364 
2365 	/* allocate memory for queue storage */
2366 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367 	     j < nr_ids;) {
2368 		if (!new_dev_maps)
2369 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370 		if (!new_dev_maps) {
2371 			mutex_unlock(&xps_map_mutex);
2372 			return -ENOMEM;
2373 		}
2374 
2375 		tci = j * num_tc + tc;
2376 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377 				 NULL;
2378 
2379 		map = expand_xps_map(map, j, index, is_rxqs_map);
2380 		if (!map)
2381 			goto error;
2382 
2383 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2384 	}
2385 
2386 	if (!new_dev_maps)
2387 		goto out_no_new_maps;
2388 
2389 	if (!dev_maps) {
2390 		/* Increment static keys at most once per type */
2391 		static_key_slow_inc_cpuslocked(&xps_needed);
2392 		if (is_rxqs_map)
2393 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394 	}
2395 
2396 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397 	     j < nr_ids;) {
2398 		/* copy maps belonging to foreign traffic classes */
2399 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400 			/* fill in the new device map from the old device map */
2401 			map = xmap_dereference(dev_maps->attr_map[tci]);
2402 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2403 		}
2404 
2405 		/* We need to explicitly update tci as prevous loop
2406 		 * could break out early if dev_maps is NULL.
2407 		 */
2408 		tci = j * num_tc + tc;
2409 
2410 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2411 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2412 			/* add tx-queue to CPU/rx-queue maps */
2413 			int pos = 0;
2414 
2415 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416 			while ((pos < map->len) && (map->queues[pos] != index))
2417 				pos++;
2418 
2419 			if (pos == map->len)
2420 				map->queues[map->len++] = index;
2421 #ifdef CONFIG_NUMA
2422 			if (!is_rxqs_map) {
2423 				if (numa_node_id == -2)
2424 					numa_node_id = cpu_to_node(j);
2425 				else if (numa_node_id != cpu_to_node(j))
2426 					numa_node_id = -1;
2427 			}
2428 #endif
2429 		} else if (dev_maps) {
2430 			/* fill in the new device map from the old device map */
2431 			map = xmap_dereference(dev_maps->attr_map[tci]);
2432 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2433 		}
2434 
2435 		/* copy maps belonging to foreign traffic classes */
2436 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437 			/* fill in the new device map from the old device map */
2438 			map = xmap_dereference(dev_maps->attr_map[tci]);
2439 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2440 		}
2441 	}
2442 
2443 	if (is_rxqs_map)
2444 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445 	else
2446 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2447 
2448 	/* Cleanup old maps */
2449 	if (!dev_maps)
2450 		goto out_no_old_maps;
2451 
2452 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453 	     j < nr_ids;) {
2454 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456 			map = xmap_dereference(dev_maps->attr_map[tci]);
2457 			if (map && map != new_map)
2458 				kfree_rcu(map, rcu);
2459 		}
2460 	}
2461 
2462 	kfree_rcu(dev_maps, rcu);
2463 
2464 out_no_old_maps:
2465 	dev_maps = new_dev_maps;
2466 	active = true;
2467 
2468 out_no_new_maps:
2469 	if (!is_rxqs_map) {
2470 		/* update Tx queue numa node */
2471 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472 					     (numa_node_id >= 0) ?
2473 					     numa_node_id : NUMA_NO_NODE);
2474 	}
2475 
2476 	if (!dev_maps)
2477 		goto out_no_maps;
2478 
2479 	/* removes tx-queue from unused CPUs/rx-queues */
2480 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481 	     j < nr_ids;) {
2482 		for (i = tc, tci = j * num_tc; i--; tci++)
2483 			active |= remove_xps_queue(dev_maps, tci, index);
2484 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485 		    !netif_attr_test_online(j, online_mask, nr_ids))
2486 			active |= remove_xps_queue(dev_maps, tci, index);
2487 		for (i = num_tc - tc, tci++; --i; tci++)
2488 			active |= remove_xps_queue(dev_maps, tci, index);
2489 	}
2490 
2491 	/* free map if not active */
2492 	if (!active)
2493 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2494 
2495 out_no_maps:
2496 	mutex_unlock(&xps_map_mutex);
2497 
2498 	return 0;
2499 error:
2500 	/* remove any maps that we added */
2501 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502 	     j < nr_ids;) {
2503 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505 			map = dev_maps ?
2506 			      xmap_dereference(dev_maps->attr_map[tci]) :
2507 			      NULL;
2508 			if (new_map && new_map != map)
2509 				kfree(new_map);
2510 		}
2511 	}
2512 
2513 	mutex_unlock(&xps_map_mutex);
2514 
2515 	kfree(new_dev_maps);
2516 	return -ENOMEM;
2517 }
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2519 
2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521 			u16 index)
2522 {
2523 	int ret;
2524 
2525 	cpus_read_lock();
2526 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527 	cpus_read_unlock();
2528 
2529 	return ret;
2530 }
2531 EXPORT_SYMBOL(netif_set_xps_queue);
2532 
2533 #endif
2534 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535 {
2536 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537 
2538 	/* Unbind any subordinate channels */
2539 	while (txq-- != &dev->_tx[0]) {
2540 		if (txq->sb_dev)
2541 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2542 	}
2543 }
2544 
2545 void netdev_reset_tc(struct net_device *dev)
2546 {
2547 #ifdef CONFIG_XPS
2548 	netif_reset_xps_queues_gt(dev, 0);
2549 #endif
2550 	netdev_unbind_all_sb_channels(dev);
2551 
2552 	/* Reset TC configuration of device */
2553 	dev->num_tc = 0;
2554 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556 }
2557 EXPORT_SYMBOL(netdev_reset_tc);
2558 
2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560 {
2561 	if (tc >= dev->num_tc)
2562 		return -EINVAL;
2563 
2564 #ifdef CONFIG_XPS
2565 	netif_reset_xps_queues(dev, offset, count);
2566 #endif
2567 	dev->tc_to_txq[tc].count = count;
2568 	dev->tc_to_txq[tc].offset = offset;
2569 	return 0;
2570 }
2571 EXPORT_SYMBOL(netdev_set_tc_queue);
2572 
2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574 {
2575 	if (num_tc > TC_MAX_QUEUE)
2576 		return -EINVAL;
2577 
2578 #ifdef CONFIG_XPS
2579 	netif_reset_xps_queues_gt(dev, 0);
2580 #endif
2581 	netdev_unbind_all_sb_channels(dev);
2582 
2583 	dev->num_tc = num_tc;
2584 	return 0;
2585 }
2586 EXPORT_SYMBOL(netdev_set_num_tc);
2587 
2588 void netdev_unbind_sb_channel(struct net_device *dev,
2589 			      struct net_device *sb_dev)
2590 {
2591 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592 
2593 #ifdef CONFIG_XPS
2594 	netif_reset_xps_queues_gt(sb_dev, 0);
2595 #endif
2596 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598 
2599 	while (txq-- != &dev->_tx[0]) {
2600 		if (txq->sb_dev == sb_dev)
2601 			txq->sb_dev = NULL;
2602 	}
2603 }
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605 
2606 int netdev_bind_sb_channel_queue(struct net_device *dev,
2607 				 struct net_device *sb_dev,
2608 				 u8 tc, u16 count, u16 offset)
2609 {
2610 	/* Make certain the sb_dev and dev are already configured */
2611 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612 		return -EINVAL;
2613 
2614 	/* We cannot hand out queues we don't have */
2615 	if ((offset + count) > dev->real_num_tx_queues)
2616 		return -EINVAL;
2617 
2618 	/* Record the mapping */
2619 	sb_dev->tc_to_txq[tc].count = count;
2620 	sb_dev->tc_to_txq[tc].offset = offset;
2621 
2622 	/* Provide a way for Tx queue to find the tc_to_txq map or
2623 	 * XPS map for itself.
2624 	 */
2625 	while (count--)
2626 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627 
2628 	return 0;
2629 }
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631 
2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633 {
2634 	/* Do not use a multiqueue device to represent a subordinate channel */
2635 	if (netif_is_multiqueue(dev))
2636 		return -ENODEV;
2637 
2638 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2639 	 * Channel 0 is meant to be "native" mode and used only to represent
2640 	 * the main root device. We allow writing 0 to reset the device back
2641 	 * to normal mode after being used as a subordinate channel.
2642 	 */
2643 	if (channel > S16_MAX)
2644 		return -EINVAL;
2645 
2646 	dev->num_tc = -channel;
2647 
2648 	return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_set_sb_channel);
2651 
2652 /*
2653  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2655  */
2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2657 {
2658 	bool disabling;
2659 	int rc;
2660 
2661 	disabling = txq < dev->real_num_tx_queues;
2662 
2663 	if (txq < 1 || txq > dev->num_tx_queues)
2664 		return -EINVAL;
2665 
2666 	if (dev->reg_state == NETREG_REGISTERED ||
2667 	    dev->reg_state == NETREG_UNREGISTERING) {
2668 		ASSERT_RTNL();
2669 
2670 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671 						  txq);
2672 		if (rc)
2673 			return rc;
2674 
2675 		if (dev->num_tc)
2676 			netif_setup_tc(dev, txq);
2677 
2678 		dev->real_num_tx_queues = txq;
2679 
2680 		if (disabling) {
2681 			synchronize_net();
2682 			qdisc_reset_all_tx_gt(dev, txq);
2683 #ifdef CONFIG_XPS
2684 			netif_reset_xps_queues_gt(dev, txq);
2685 #endif
2686 		}
2687 	} else {
2688 		dev->real_num_tx_queues = txq;
2689 	}
2690 
2691 	return 0;
2692 }
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2694 
2695 #ifdef CONFIG_SYSFS
2696 /**
2697  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2698  *	@dev: Network device
2699  *	@rxq: Actual number of RX queues
2700  *
2701  *	This must be called either with the rtnl_lock held or before
2702  *	registration of the net device.  Returns 0 on success, or a
2703  *	negative error code.  If called before registration, it always
2704  *	succeeds.
2705  */
2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707 {
2708 	int rc;
2709 
2710 	if (rxq < 1 || rxq > dev->num_rx_queues)
2711 		return -EINVAL;
2712 
2713 	if (dev->reg_state == NETREG_REGISTERED) {
2714 		ASSERT_RTNL();
2715 
2716 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717 						  rxq);
2718 		if (rc)
2719 			return rc;
2720 	}
2721 
2722 	dev->real_num_rx_queues = rxq;
2723 	return 0;
2724 }
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726 #endif
2727 
2728 /**
2729  * netif_get_num_default_rss_queues - default number of RSS queues
2730  *
2731  * This routine should set an upper limit on the number of RSS queues
2732  * used by default by multiqueue devices.
2733  */
2734 int netif_get_num_default_rss_queues(void)
2735 {
2736 	return is_kdump_kernel() ?
2737 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2738 }
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740 
2741 static void __netif_reschedule(struct Qdisc *q)
2742 {
2743 	struct softnet_data *sd;
2744 	unsigned long flags;
2745 
2746 	local_irq_save(flags);
2747 	sd = this_cpu_ptr(&softnet_data);
2748 	q->next_sched = NULL;
2749 	*sd->output_queue_tailp = q;
2750 	sd->output_queue_tailp = &q->next_sched;
2751 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752 	local_irq_restore(flags);
2753 }
2754 
2755 void __netif_schedule(struct Qdisc *q)
2756 {
2757 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758 		__netif_reschedule(q);
2759 }
2760 EXPORT_SYMBOL(__netif_schedule);
2761 
2762 struct dev_kfree_skb_cb {
2763 	enum skb_free_reason reason;
2764 };
2765 
2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2767 {
2768 	return (struct dev_kfree_skb_cb *)skb->cb;
2769 }
2770 
2771 void netif_schedule_queue(struct netdev_queue *txq)
2772 {
2773 	rcu_read_lock();
2774 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2776 
2777 		__netif_schedule(q);
2778 	}
2779 	rcu_read_unlock();
2780 }
2781 EXPORT_SYMBOL(netif_schedule_queue);
2782 
2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784 {
2785 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786 		struct Qdisc *q;
2787 
2788 		rcu_read_lock();
2789 		q = rcu_dereference(dev_queue->qdisc);
2790 		__netif_schedule(q);
2791 		rcu_read_unlock();
2792 	}
2793 }
2794 EXPORT_SYMBOL(netif_tx_wake_queue);
2795 
2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2797 {
2798 	unsigned long flags;
2799 
2800 	if (unlikely(!skb))
2801 		return;
2802 
2803 	if (likely(refcount_read(&skb->users) == 1)) {
2804 		smp_rmb();
2805 		refcount_set(&skb->users, 0);
2806 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2807 		return;
2808 	}
2809 	get_kfree_skb_cb(skb)->reason = reason;
2810 	local_irq_save(flags);
2811 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2812 	__this_cpu_write(softnet_data.completion_queue, skb);
2813 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814 	local_irq_restore(flags);
2815 }
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2817 
2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2819 {
2820 	if (in_irq() || irqs_disabled())
2821 		__dev_kfree_skb_irq(skb, reason);
2822 	else
2823 		dev_kfree_skb(skb);
2824 }
2825 EXPORT_SYMBOL(__dev_kfree_skb_any);
2826 
2827 
2828 /**
2829  * netif_device_detach - mark device as removed
2830  * @dev: network device
2831  *
2832  * Mark device as removed from system and therefore no longer available.
2833  */
2834 void netif_device_detach(struct net_device *dev)
2835 {
2836 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837 	    netif_running(dev)) {
2838 		netif_tx_stop_all_queues(dev);
2839 	}
2840 }
2841 EXPORT_SYMBOL(netif_device_detach);
2842 
2843 /**
2844  * netif_device_attach - mark device as attached
2845  * @dev: network device
2846  *
2847  * Mark device as attached from system and restart if needed.
2848  */
2849 void netif_device_attach(struct net_device *dev)
2850 {
2851 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852 	    netif_running(dev)) {
2853 		netif_tx_wake_all_queues(dev);
2854 		__netdev_watchdog_up(dev);
2855 	}
2856 }
2857 EXPORT_SYMBOL(netif_device_attach);
2858 
2859 /*
2860  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861  * to be used as a distribution range.
2862  */
2863 static u16 skb_tx_hash(const struct net_device *dev,
2864 		       const struct net_device *sb_dev,
2865 		       struct sk_buff *skb)
2866 {
2867 	u32 hash;
2868 	u16 qoffset = 0;
2869 	u16 qcount = dev->real_num_tx_queues;
2870 
2871 	if (dev->num_tc) {
2872 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873 
2874 		qoffset = sb_dev->tc_to_txq[tc].offset;
2875 		qcount = sb_dev->tc_to_txq[tc].count;
2876 	}
2877 
2878 	if (skb_rx_queue_recorded(skb)) {
2879 		hash = skb_get_rx_queue(skb);
2880 		while (unlikely(hash >= qcount))
2881 			hash -= qcount;
2882 		return hash + qoffset;
2883 	}
2884 
2885 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886 }
2887 
2888 static void skb_warn_bad_offload(const struct sk_buff *skb)
2889 {
2890 	static const netdev_features_t null_features;
2891 	struct net_device *dev = skb->dev;
2892 	const char *name = "";
2893 
2894 	if (!net_ratelimit())
2895 		return;
2896 
2897 	if (dev) {
2898 		if (dev->dev.parent)
2899 			name = dev_driver_string(dev->dev.parent);
2900 		else
2901 			name = netdev_name(dev);
2902 	}
2903 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2904 	     "gso_type=%d ip_summed=%d\n",
2905 	     name, dev ? &dev->features : &null_features,
2906 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2907 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2908 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2909 }
2910 
2911 /*
2912  * Invalidate hardware checksum when packet is to be mangled, and
2913  * complete checksum manually on outgoing path.
2914  */
2915 int skb_checksum_help(struct sk_buff *skb)
2916 {
2917 	__wsum csum;
2918 	int ret = 0, offset;
2919 
2920 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2921 		goto out_set_summed;
2922 
2923 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2924 		skb_warn_bad_offload(skb);
2925 		return -EINVAL;
2926 	}
2927 
2928 	/* Before computing a checksum, we should make sure no frag could
2929 	 * be modified by an external entity : checksum could be wrong.
2930 	 */
2931 	if (skb_has_shared_frag(skb)) {
2932 		ret = __skb_linearize(skb);
2933 		if (ret)
2934 			goto out;
2935 	}
2936 
2937 	offset = skb_checksum_start_offset(skb);
2938 	BUG_ON(offset >= skb_headlen(skb));
2939 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2940 
2941 	offset += skb->csum_offset;
2942 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2943 
2944 	if (skb_cloned(skb) &&
2945 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2946 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2947 		if (ret)
2948 			goto out;
2949 	}
2950 
2951 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2952 out_set_summed:
2953 	skb->ip_summed = CHECKSUM_NONE;
2954 out:
2955 	return ret;
2956 }
2957 EXPORT_SYMBOL(skb_checksum_help);
2958 
2959 int skb_crc32c_csum_help(struct sk_buff *skb)
2960 {
2961 	__le32 crc32c_csum;
2962 	int ret = 0, offset, start;
2963 
2964 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2965 		goto out;
2966 
2967 	if (unlikely(skb_is_gso(skb)))
2968 		goto out;
2969 
2970 	/* Before computing a checksum, we should make sure no frag could
2971 	 * be modified by an external entity : checksum could be wrong.
2972 	 */
2973 	if (unlikely(skb_has_shared_frag(skb))) {
2974 		ret = __skb_linearize(skb);
2975 		if (ret)
2976 			goto out;
2977 	}
2978 	start = skb_checksum_start_offset(skb);
2979 	offset = start + offsetof(struct sctphdr, checksum);
2980 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2981 		ret = -EINVAL;
2982 		goto out;
2983 	}
2984 	if (skb_cloned(skb) &&
2985 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2986 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2987 		if (ret)
2988 			goto out;
2989 	}
2990 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2991 						  skb->len - start, ~(__u32)0,
2992 						  crc32c_csum_stub));
2993 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2994 	skb->ip_summed = CHECKSUM_NONE;
2995 	skb->csum_not_inet = 0;
2996 out:
2997 	return ret;
2998 }
2999 
3000 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3001 {
3002 	__be16 type = skb->protocol;
3003 
3004 	/* Tunnel gso handlers can set protocol to ethernet. */
3005 	if (type == htons(ETH_P_TEB)) {
3006 		struct ethhdr *eth;
3007 
3008 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3009 			return 0;
3010 
3011 		eth = (struct ethhdr *)skb->data;
3012 		type = eth->h_proto;
3013 	}
3014 
3015 	return __vlan_get_protocol(skb, type, depth);
3016 }
3017 
3018 /**
3019  *	skb_mac_gso_segment - mac layer segmentation handler.
3020  *	@skb: buffer to segment
3021  *	@features: features for the output path (see dev->features)
3022  */
3023 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3024 				    netdev_features_t features)
3025 {
3026 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3027 	struct packet_offload *ptype;
3028 	int vlan_depth = skb->mac_len;
3029 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3030 
3031 	if (unlikely(!type))
3032 		return ERR_PTR(-EINVAL);
3033 
3034 	__skb_pull(skb, vlan_depth);
3035 
3036 	rcu_read_lock();
3037 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3038 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3039 			segs = ptype->callbacks.gso_segment(skb, features);
3040 			break;
3041 		}
3042 	}
3043 	rcu_read_unlock();
3044 
3045 	__skb_push(skb, skb->data - skb_mac_header(skb));
3046 
3047 	return segs;
3048 }
3049 EXPORT_SYMBOL(skb_mac_gso_segment);
3050 
3051 
3052 /* openvswitch calls this on rx path, so we need a different check.
3053  */
3054 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3055 {
3056 	if (tx_path)
3057 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3058 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3059 
3060 	return skb->ip_summed == CHECKSUM_NONE;
3061 }
3062 
3063 /**
3064  *	__skb_gso_segment - Perform segmentation on skb.
3065  *	@skb: buffer to segment
3066  *	@features: features for the output path (see dev->features)
3067  *	@tx_path: whether it is called in TX path
3068  *
3069  *	This function segments the given skb and returns a list of segments.
3070  *
3071  *	It may return NULL if the skb requires no segmentation.  This is
3072  *	only possible when GSO is used for verifying header integrity.
3073  *
3074  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3075  */
3076 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3077 				  netdev_features_t features, bool tx_path)
3078 {
3079 	struct sk_buff *segs;
3080 
3081 	if (unlikely(skb_needs_check(skb, tx_path))) {
3082 		int err;
3083 
3084 		/* We're going to init ->check field in TCP or UDP header */
3085 		err = skb_cow_head(skb, 0);
3086 		if (err < 0)
3087 			return ERR_PTR(err);
3088 	}
3089 
3090 	/* Only report GSO partial support if it will enable us to
3091 	 * support segmentation on this frame without needing additional
3092 	 * work.
3093 	 */
3094 	if (features & NETIF_F_GSO_PARTIAL) {
3095 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3096 		struct net_device *dev = skb->dev;
3097 
3098 		partial_features |= dev->features & dev->gso_partial_features;
3099 		if (!skb_gso_ok(skb, features | partial_features))
3100 			features &= ~NETIF_F_GSO_PARTIAL;
3101 	}
3102 
3103 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3104 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3105 
3106 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3107 	SKB_GSO_CB(skb)->encap_level = 0;
3108 
3109 	skb_reset_mac_header(skb);
3110 	skb_reset_mac_len(skb);
3111 
3112 	segs = skb_mac_gso_segment(skb, features);
3113 
3114 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3115 		skb_warn_bad_offload(skb);
3116 
3117 	return segs;
3118 }
3119 EXPORT_SYMBOL(__skb_gso_segment);
3120 
3121 /* Take action when hardware reception checksum errors are detected. */
3122 #ifdef CONFIG_BUG
3123 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3124 {
3125 	if (net_ratelimit()) {
3126 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3127 		if (dev)
3128 			pr_err("dev features: %pNF\n", &dev->features);
3129 		pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3130 		       skb->len, skb->data_len, skb->pkt_type,
3131 		       skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3132 		       skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3133 		       skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3134 		dump_stack();
3135 	}
3136 }
3137 EXPORT_SYMBOL(netdev_rx_csum_fault);
3138 #endif
3139 
3140 /* XXX: check that highmem exists at all on the given machine. */
3141 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3142 {
3143 #ifdef CONFIG_HIGHMEM
3144 	int i;
3145 
3146 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3147 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3148 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3149 
3150 			if (PageHighMem(skb_frag_page(frag)))
3151 				return 1;
3152 		}
3153 	}
3154 #endif
3155 	return 0;
3156 }
3157 
3158 /* If MPLS offload request, verify we are testing hardware MPLS features
3159  * instead of standard features for the netdev.
3160  */
3161 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3162 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163 					   netdev_features_t features,
3164 					   __be16 type)
3165 {
3166 	if (eth_p_mpls(type))
3167 		features &= skb->dev->mpls_features;
3168 
3169 	return features;
3170 }
3171 #else
3172 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3173 					   netdev_features_t features,
3174 					   __be16 type)
3175 {
3176 	return features;
3177 }
3178 #endif
3179 
3180 static netdev_features_t harmonize_features(struct sk_buff *skb,
3181 	netdev_features_t features)
3182 {
3183 	int tmp;
3184 	__be16 type;
3185 
3186 	type = skb_network_protocol(skb, &tmp);
3187 	features = net_mpls_features(skb, features, type);
3188 
3189 	if (skb->ip_summed != CHECKSUM_NONE &&
3190 	    !can_checksum_protocol(features, type)) {
3191 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3192 	}
3193 	if (illegal_highdma(skb->dev, skb))
3194 		features &= ~NETIF_F_SG;
3195 
3196 	return features;
3197 }
3198 
3199 netdev_features_t passthru_features_check(struct sk_buff *skb,
3200 					  struct net_device *dev,
3201 					  netdev_features_t features)
3202 {
3203 	return features;
3204 }
3205 EXPORT_SYMBOL(passthru_features_check);
3206 
3207 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3208 					     struct net_device *dev,
3209 					     netdev_features_t features)
3210 {
3211 	return vlan_features_check(skb, features);
3212 }
3213 
3214 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3215 					    struct net_device *dev,
3216 					    netdev_features_t features)
3217 {
3218 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3219 
3220 	if (gso_segs > dev->gso_max_segs)
3221 		return features & ~NETIF_F_GSO_MASK;
3222 
3223 	/* Support for GSO partial features requires software
3224 	 * intervention before we can actually process the packets
3225 	 * so we need to strip support for any partial features now
3226 	 * and we can pull them back in after we have partially
3227 	 * segmented the frame.
3228 	 */
3229 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3230 		features &= ~dev->gso_partial_features;
3231 
3232 	/* Make sure to clear the IPv4 ID mangling feature if the
3233 	 * IPv4 header has the potential to be fragmented.
3234 	 */
3235 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3236 		struct iphdr *iph = skb->encapsulation ?
3237 				    inner_ip_hdr(skb) : ip_hdr(skb);
3238 
3239 		if (!(iph->frag_off & htons(IP_DF)))
3240 			features &= ~NETIF_F_TSO_MANGLEID;
3241 	}
3242 
3243 	return features;
3244 }
3245 
3246 netdev_features_t netif_skb_features(struct sk_buff *skb)
3247 {
3248 	struct net_device *dev = skb->dev;
3249 	netdev_features_t features = dev->features;
3250 
3251 	if (skb_is_gso(skb))
3252 		features = gso_features_check(skb, dev, features);
3253 
3254 	/* If encapsulation offload request, verify we are testing
3255 	 * hardware encapsulation features instead of standard
3256 	 * features for the netdev
3257 	 */
3258 	if (skb->encapsulation)
3259 		features &= dev->hw_enc_features;
3260 
3261 	if (skb_vlan_tagged(skb))
3262 		features = netdev_intersect_features(features,
3263 						     dev->vlan_features |
3264 						     NETIF_F_HW_VLAN_CTAG_TX |
3265 						     NETIF_F_HW_VLAN_STAG_TX);
3266 
3267 	if (dev->netdev_ops->ndo_features_check)
3268 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3269 								features);
3270 	else
3271 		features &= dflt_features_check(skb, dev, features);
3272 
3273 	return harmonize_features(skb, features);
3274 }
3275 EXPORT_SYMBOL(netif_skb_features);
3276 
3277 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3278 		    struct netdev_queue *txq, bool more)
3279 {
3280 	unsigned int len;
3281 	int rc;
3282 
3283 	if (dev_nit_active(dev))
3284 		dev_queue_xmit_nit(skb, dev);
3285 
3286 	len = skb->len;
3287 	trace_net_dev_start_xmit(skb, dev);
3288 	rc = netdev_start_xmit(skb, dev, txq, more);
3289 	trace_net_dev_xmit(skb, rc, dev, len);
3290 
3291 	return rc;
3292 }
3293 
3294 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3295 				    struct netdev_queue *txq, int *ret)
3296 {
3297 	struct sk_buff *skb = first;
3298 	int rc = NETDEV_TX_OK;
3299 
3300 	while (skb) {
3301 		struct sk_buff *next = skb->next;
3302 
3303 		skb_mark_not_on_list(skb);
3304 		rc = xmit_one(skb, dev, txq, next != NULL);
3305 		if (unlikely(!dev_xmit_complete(rc))) {
3306 			skb->next = next;
3307 			goto out;
3308 		}
3309 
3310 		skb = next;
3311 		if (netif_tx_queue_stopped(txq) && skb) {
3312 			rc = NETDEV_TX_BUSY;
3313 			break;
3314 		}
3315 	}
3316 
3317 out:
3318 	*ret = rc;
3319 	return skb;
3320 }
3321 
3322 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3323 					  netdev_features_t features)
3324 {
3325 	if (skb_vlan_tag_present(skb) &&
3326 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3327 		skb = __vlan_hwaccel_push_inside(skb);
3328 	return skb;
3329 }
3330 
3331 int skb_csum_hwoffload_help(struct sk_buff *skb,
3332 			    const netdev_features_t features)
3333 {
3334 	if (unlikely(skb->csum_not_inet))
3335 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3336 			skb_crc32c_csum_help(skb);
3337 
3338 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3339 }
3340 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3341 
3342 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3343 {
3344 	netdev_features_t features;
3345 
3346 	features = netif_skb_features(skb);
3347 	skb = validate_xmit_vlan(skb, features);
3348 	if (unlikely(!skb))
3349 		goto out_null;
3350 
3351 	skb = sk_validate_xmit_skb(skb, dev);
3352 	if (unlikely(!skb))
3353 		goto out_null;
3354 
3355 	if (netif_needs_gso(skb, features)) {
3356 		struct sk_buff *segs;
3357 
3358 		segs = skb_gso_segment(skb, features);
3359 		if (IS_ERR(segs)) {
3360 			goto out_kfree_skb;
3361 		} else if (segs) {
3362 			consume_skb(skb);
3363 			skb = segs;
3364 		}
3365 	} else {
3366 		if (skb_needs_linearize(skb, features) &&
3367 		    __skb_linearize(skb))
3368 			goto out_kfree_skb;
3369 
3370 		/* If packet is not checksummed and device does not
3371 		 * support checksumming for this protocol, complete
3372 		 * checksumming here.
3373 		 */
3374 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3375 			if (skb->encapsulation)
3376 				skb_set_inner_transport_header(skb,
3377 							       skb_checksum_start_offset(skb));
3378 			else
3379 				skb_set_transport_header(skb,
3380 							 skb_checksum_start_offset(skb));
3381 			if (skb_csum_hwoffload_help(skb, features))
3382 				goto out_kfree_skb;
3383 		}
3384 	}
3385 
3386 	skb = validate_xmit_xfrm(skb, features, again);
3387 
3388 	return skb;
3389 
3390 out_kfree_skb:
3391 	kfree_skb(skb);
3392 out_null:
3393 	atomic_long_inc(&dev->tx_dropped);
3394 	return NULL;
3395 }
3396 
3397 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3398 {
3399 	struct sk_buff *next, *head = NULL, *tail;
3400 
3401 	for (; skb != NULL; skb = next) {
3402 		next = skb->next;
3403 		skb_mark_not_on_list(skb);
3404 
3405 		/* in case skb wont be segmented, point to itself */
3406 		skb->prev = skb;
3407 
3408 		skb = validate_xmit_skb(skb, dev, again);
3409 		if (!skb)
3410 			continue;
3411 
3412 		if (!head)
3413 			head = skb;
3414 		else
3415 			tail->next = skb;
3416 		/* If skb was segmented, skb->prev points to
3417 		 * the last segment. If not, it still contains skb.
3418 		 */
3419 		tail = skb->prev;
3420 	}
3421 	return head;
3422 }
3423 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3424 
3425 static void qdisc_pkt_len_init(struct sk_buff *skb)
3426 {
3427 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3428 
3429 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3430 
3431 	/* To get more precise estimation of bytes sent on wire,
3432 	 * we add to pkt_len the headers size of all segments
3433 	 */
3434 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3435 		unsigned int hdr_len;
3436 		u16 gso_segs = shinfo->gso_segs;
3437 
3438 		/* mac layer + network layer */
3439 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3440 
3441 		/* + transport layer */
3442 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3443 			const struct tcphdr *th;
3444 			struct tcphdr _tcphdr;
3445 
3446 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3447 						sizeof(_tcphdr), &_tcphdr);
3448 			if (likely(th))
3449 				hdr_len += __tcp_hdrlen(th);
3450 		} else {
3451 			struct udphdr _udphdr;
3452 
3453 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3454 					       sizeof(_udphdr), &_udphdr))
3455 				hdr_len += sizeof(struct udphdr);
3456 		}
3457 
3458 		if (shinfo->gso_type & SKB_GSO_DODGY)
3459 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3460 						shinfo->gso_size);
3461 
3462 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3463 	}
3464 }
3465 
3466 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3467 				 struct net_device *dev,
3468 				 struct netdev_queue *txq)
3469 {
3470 	spinlock_t *root_lock = qdisc_lock(q);
3471 	struct sk_buff *to_free = NULL;
3472 	bool contended;
3473 	int rc;
3474 
3475 	qdisc_calculate_pkt_len(skb, q);
3476 
3477 	if (q->flags & TCQ_F_NOLOCK) {
3478 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3479 			__qdisc_drop(skb, &to_free);
3480 			rc = NET_XMIT_DROP;
3481 		} else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3482 			   qdisc_run_begin(q)) {
3483 			qdisc_bstats_cpu_update(q, skb);
3484 
3485 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3486 				__qdisc_run(q);
3487 
3488 			qdisc_run_end(q);
3489 			rc = NET_XMIT_SUCCESS;
3490 		} else {
3491 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3492 			qdisc_run(q);
3493 		}
3494 
3495 		if (unlikely(to_free))
3496 			kfree_skb_list(to_free);
3497 		return rc;
3498 	}
3499 
3500 	/*
3501 	 * Heuristic to force contended enqueues to serialize on a
3502 	 * separate lock before trying to get qdisc main lock.
3503 	 * This permits qdisc->running owner to get the lock more
3504 	 * often and dequeue packets faster.
3505 	 */
3506 	contended = qdisc_is_running(q);
3507 	if (unlikely(contended))
3508 		spin_lock(&q->busylock);
3509 
3510 	spin_lock(root_lock);
3511 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3512 		__qdisc_drop(skb, &to_free);
3513 		rc = NET_XMIT_DROP;
3514 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3515 		   qdisc_run_begin(q)) {
3516 		/*
3517 		 * This is a work-conserving queue; there are no old skbs
3518 		 * waiting to be sent out; and the qdisc is not running -
3519 		 * xmit the skb directly.
3520 		 */
3521 
3522 		qdisc_bstats_update(q, skb);
3523 
3524 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3525 			if (unlikely(contended)) {
3526 				spin_unlock(&q->busylock);
3527 				contended = false;
3528 			}
3529 			__qdisc_run(q);
3530 		}
3531 
3532 		qdisc_run_end(q);
3533 		rc = NET_XMIT_SUCCESS;
3534 	} else {
3535 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3536 		if (qdisc_run_begin(q)) {
3537 			if (unlikely(contended)) {
3538 				spin_unlock(&q->busylock);
3539 				contended = false;
3540 			}
3541 			__qdisc_run(q);
3542 			qdisc_run_end(q);
3543 		}
3544 	}
3545 	spin_unlock(root_lock);
3546 	if (unlikely(to_free))
3547 		kfree_skb_list(to_free);
3548 	if (unlikely(contended))
3549 		spin_unlock(&q->busylock);
3550 	return rc;
3551 }
3552 
3553 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3554 static void skb_update_prio(struct sk_buff *skb)
3555 {
3556 	const struct netprio_map *map;
3557 	const struct sock *sk;
3558 	unsigned int prioidx;
3559 
3560 	if (skb->priority)
3561 		return;
3562 	map = rcu_dereference_bh(skb->dev->priomap);
3563 	if (!map)
3564 		return;
3565 	sk = skb_to_full_sk(skb);
3566 	if (!sk)
3567 		return;
3568 
3569 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3570 
3571 	if (prioidx < map->priomap_len)
3572 		skb->priority = map->priomap[prioidx];
3573 }
3574 #else
3575 #define skb_update_prio(skb)
3576 #endif
3577 
3578 /**
3579  *	dev_loopback_xmit - loop back @skb
3580  *	@net: network namespace this loopback is happening in
3581  *	@sk:  sk needed to be a netfilter okfn
3582  *	@skb: buffer to transmit
3583  */
3584 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3585 {
3586 	skb_reset_mac_header(skb);
3587 	__skb_pull(skb, skb_network_offset(skb));
3588 	skb->pkt_type = PACKET_LOOPBACK;
3589 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3590 	WARN_ON(!skb_dst(skb));
3591 	skb_dst_force(skb);
3592 	netif_rx_ni(skb);
3593 	return 0;
3594 }
3595 EXPORT_SYMBOL(dev_loopback_xmit);
3596 
3597 #ifdef CONFIG_NET_EGRESS
3598 static struct sk_buff *
3599 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3600 {
3601 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3602 	struct tcf_result cl_res;
3603 
3604 	if (!miniq)
3605 		return skb;
3606 
3607 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3608 	mini_qdisc_bstats_cpu_update(miniq, skb);
3609 
3610 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3611 	case TC_ACT_OK:
3612 	case TC_ACT_RECLASSIFY:
3613 		skb->tc_index = TC_H_MIN(cl_res.classid);
3614 		break;
3615 	case TC_ACT_SHOT:
3616 		mini_qdisc_qstats_cpu_drop(miniq);
3617 		*ret = NET_XMIT_DROP;
3618 		kfree_skb(skb);
3619 		return NULL;
3620 	case TC_ACT_STOLEN:
3621 	case TC_ACT_QUEUED:
3622 	case TC_ACT_TRAP:
3623 		*ret = NET_XMIT_SUCCESS;
3624 		consume_skb(skb);
3625 		return NULL;
3626 	case TC_ACT_REDIRECT:
3627 		/* No need to push/pop skb's mac_header here on egress! */
3628 		skb_do_redirect(skb);
3629 		*ret = NET_XMIT_SUCCESS;
3630 		return NULL;
3631 	default:
3632 		break;
3633 	}
3634 
3635 	return skb;
3636 }
3637 #endif /* CONFIG_NET_EGRESS */
3638 
3639 #ifdef CONFIG_XPS
3640 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3641 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3642 {
3643 	struct xps_map *map;
3644 	int queue_index = -1;
3645 
3646 	if (dev->num_tc) {
3647 		tci *= dev->num_tc;
3648 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3649 	}
3650 
3651 	map = rcu_dereference(dev_maps->attr_map[tci]);
3652 	if (map) {
3653 		if (map->len == 1)
3654 			queue_index = map->queues[0];
3655 		else
3656 			queue_index = map->queues[reciprocal_scale(
3657 						skb_get_hash(skb), map->len)];
3658 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3659 			queue_index = -1;
3660 	}
3661 	return queue_index;
3662 }
3663 #endif
3664 
3665 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3666 			 struct sk_buff *skb)
3667 {
3668 #ifdef CONFIG_XPS
3669 	struct xps_dev_maps *dev_maps;
3670 	struct sock *sk = skb->sk;
3671 	int queue_index = -1;
3672 
3673 	if (!static_key_false(&xps_needed))
3674 		return -1;
3675 
3676 	rcu_read_lock();
3677 	if (!static_key_false(&xps_rxqs_needed))
3678 		goto get_cpus_map;
3679 
3680 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3681 	if (dev_maps) {
3682 		int tci = sk_rx_queue_get(sk);
3683 
3684 		if (tci >= 0 && tci < dev->num_rx_queues)
3685 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3686 							  tci);
3687 	}
3688 
3689 get_cpus_map:
3690 	if (queue_index < 0) {
3691 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3692 		if (dev_maps) {
3693 			unsigned int tci = skb->sender_cpu - 1;
3694 
3695 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3696 							  tci);
3697 		}
3698 	}
3699 	rcu_read_unlock();
3700 
3701 	return queue_index;
3702 #else
3703 	return -1;
3704 #endif
3705 }
3706 
3707 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3708 		     struct net_device *sb_dev)
3709 {
3710 	return 0;
3711 }
3712 EXPORT_SYMBOL(dev_pick_tx_zero);
3713 
3714 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3715 		       struct net_device *sb_dev)
3716 {
3717 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3718 }
3719 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3720 
3721 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3722 		     struct net_device *sb_dev)
3723 {
3724 	struct sock *sk = skb->sk;
3725 	int queue_index = sk_tx_queue_get(sk);
3726 
3727 	sb_dev = sb_dev ? : dev;
3728 
3729 	if (queue_index < 0 || skb->ooo_okay ||
3730 	    queue_index >= dev->real_num_tx_queues) {
3731 		int new_index = get_xps_queue(dev, sb_dev, skb);
3732 
3733 		if (new_index < 0)
3734 			new_index = skb_tx_hash(dev, sb_dev, skb);
3735 
3736 		if (queue_index != new_index && sk &&
3737 		    sk_fullsock(sk) &&
3738 		    rcu_access_pointer(sk->sk_dst_cache))
3739 			sk_tx_queue_set(sk, new_index);
3740 
3741 		queue_index = new_index;
3742 	}
3743 
3744 	return queue_index;
3745 }
3746 EXPORT_SYMBOL(netdev_pick_tx);
3747 
3748 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3749 					 struct sk_buff *skb,
3750 					 struct net_device *sb_dev)
3751 {
3752 	int queue_index = 0;
3753 
3754 #ifdef CONFIG_XPS
3755 	u32 sender_cpu = skb->sender_cpu - 1;
3756 
3757 	if (sender_cpu >= (u32)NR_CPUS)
3758 		skb->sender_cpu = raw_smp_processor_id() + 1;
3759 #endif
3760 
3761 	if (dev->real_num_tx_queues != 1) {
3762 		const struct net_device_ops *ops = dev->netdev_ops;
3763 
3764 		if (ops->ndo_select_queue)
3765 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3766 		else
3767 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
3768 
3769 		queue_index = netdev_cap_txqueue(dev, queue_index);
3770 	}
3771 
3772 	skb_set_queue_mapping(skb, queue_index);
3773 	return netdev_get_tx_queue(dev, queue_index);
3774 }
3775 
3776 /**
3777  *	__dev_queue_xmit - transmit a buffer
3778  *	@skb: buffer to transmit
3779  *	@sb_dev: suboordinate device used for L2 forwarding offload
3780  *
3781  *	Queue a buffer for transmission to a network device. The caller must
3782  *	have set the device and priority and built the buffer before calling
3783  *	this function. The function can be called from an interrupt.
3784  *
3785  *	A negative errno code is returned on a failure. A success does not
3786  *	guarantee the frame will be transmitted as it may be dropped due
3787  *	to congestion or traffic shaping.
3788  *
3789  * -----------------------------------------------------------------------------------
3790  *      I notice this method can also return errors from the queue disciplines,
3791  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3792  *      be positive.
3793  *
3794  *      Regardless of the return value, the skb is consumed, so it is currently
3795  *      difficult to retry a send to this method.  (You can bump the ref count
3796  *      before sending to hold a reference for retry if you are careful.)
3797  *
3798  *      When calling this method, interrupts MUST be enabled.  This is because
3799  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3800  *          --BLG
3801  */
3802 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3803 {
3804 	struct net_device *dev = skb->dev;
3805 	struct netdev_queue *txq;
3806 	struct Qdisc *q;
3807 	int rc = -ENOMEM;
3808 	bool again = false;
3809 
3810 	skb_reset_mac_header(skb);
3811 
3812 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3813 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3814 
3815 	/* Disable soft irqs for various locks below. Also
3816 	 * stops preemption for RCU.
3817 	 */
3818 	rcu_read_lock_bh();
3819 
3820 	skb_update_prio(skb);
3821 
3822 	qdisc_pkt_len_init(skb);
3823 #ifdef CONFIG_NET_CLS_ACT
3824 	skb->tc_at_ingress = 0;
3825 # ifdef CONFIG_NET_EGRESS
3826 	if (static_branch_unlikely(&egress_needed_key)) {
3827 		skb = sch_handle_egress(skb, &rc, dev);
3828 		if (!skb)
3829 			goto out;
3830 	}
3831 # endif
3832 #endif
3833 	/* If device/qdisc don't need skb->dst, release it right now while
3834 	 * its hot in this cpu cache.
3835 	 */
3836 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3837 		skb_dst_drop(skb);
3838 	else
3839 		skb_dst_force(skb);
3840 
3841 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
3842 	q = rcu_dereference_bh(txq->qdisc);
3843 
3844 	trace_net_dev_queue(skb);
3845 	if (q->enqueue) {
3846 		rc = __dev_xmit_skb(skb, q, dev, txq);
3847 		goto out;
3848 	}
3849 
3850 	/* The device has no queue. Common case for software devices:
3851 	 * loopback, all the sorts of tunnels...
3852 
3853 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3854 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3855 	 * counters.)
3856 	 * However, it is possible, that they rely on protection
3857 	 * made by us here.
3858 
3859 	 * Check this and shot the lock. It is not prone from deadlocks.
3860 	 *Either shot noqueue qdisc, it is even simpler 8)
3861 	 */
3862 	if (dev->flags & IFF_UP) {
3863 		int cpu = smp_processor_id(); /* ok because BHs are off */
3864 
3865 		if (txq->xmit_lock_owner != cpu) {
3866 			if (dev_xmit_recursion())
3867 				goto recursion_alert;
3868 
3869 			skb = validate_xmit_skb(skb, dev, &again);
3870 			if (!skb)
3871 				goto out;
3872 
3873 			HARD_TX_LOCK(dev, txq, cpu);
3874 
3875 			if (!netif_xmit_stopped(txq)) {
3876 				dev_xmit_recursion_inc();
3877 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3878 				dev_xmit_recursion_dec();
3879 				if (dev_xmit_complete(rc)) {
3880 					HARD_TX_UNLOCK(dev, txq);
3881 					goto out;
3882 				}
3883 			}
3884 			HARD_TX_UNLOCK(dev, txq);
3885 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3886 					     dev->name);
3887 		} else {
3888 			/* Recursion is detected! It is possible,
3889 			 * unfortunately
3890 			 */
3891 recursion_alert:
3892 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3893 					     dev->name);
3894 		}
3895 	}
3896 
3897 	rc = -ENETDOWN;
3898 	rcu_read_unlock_bh();
3899 
3900 	atomic_long_inc(&dev->tx_dropped);
3901 	kfree_skb_list(skb);
3902 	return rc;
3903 out:
3904 	rcu_read_unlock_bh();
3905 	return rc;
3906 }
3907 
3908 int dev_queue_xmit(struct sk_buff *skb)
3909 {
3910 	return __dev_queue_xmit(skb, NULL);
3911 }
3912 EXPORT_SYMBOL(dev_queue_xmit);
3913 
3914 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3915 {
3916 	return __dev_queue_xmit(skb, sb_dev);
3917 }
3918 EXPORT_SYMBOL(dev_queue_xmit_accel);
3919 
3920 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3921 {
3922 	struct net_device *dev = skb->dev;
3923 	struct sk_buff *orig_skb = skb;
3924 	struct netdev_queue *txq;
3925 	int ret = NETDEV_TX_BUSY;
3926 	bool again = false;
3927 
3928 	if (unlikely(!netif_running(dev) ||
3929 		     !netif_carrier_ok(dev)))
3930 		goto drop;
3931 
3932 	skb = validate_xmit_skb_list(skb, dev, &again);
3933 	if (skb != orig_skb)
3934 		goto drop;
3935 
3936 	skb_set_queue_mapping(skb, queue_id);
3937 	txq = skb_get_tx_queue(dev, skb);
3938 
3939 	local_bh_disable();
3940 
3941 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3942 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3943 		ret = netdev_start_xmit(skb, dev, txq, false);
3944 	HARD_TX_UNLOCK(dev, txq);
3945 
3946 	local_bh_enable();
3947 
3948 	if (!dev_xmit_complete(ret))
3949 		kfree_skb(skb);
3950 
3951 	return ret;
3952 drop:
3953 	atomic_long_inc(&dev->tx_dropped);
3954 	kfree_skb_list(skb);
3955 	return NET_XMIT_DROP;
3956 }
3957 EXPORT_SYMBOL(dev_direct_xmit);
3958 
3959 /*************************************************************************
3960  *			Receiver routines
3961  *************************************************************************/
3962 
3963 int netdev_max_backlog __read_mostly = 1000;
3964 EXPORT_SYMBOL(netdev_max_backlog);
3965 
3966 int netdev_tstamp_prequeue __read_mostly = 1;
3967 int netdev_budget __read_mostly = 300;
3968 unsigned int __read_mostly netdev_budget_usecs = 2000;
3969 int weight_p __read_mostly = 64;           /* old backlog weight */
3970 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3971 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3972 int dev_rx_weight __read_mostly = 64;
3973 int dev_tx_weight __read_mostly = 64;
3974 
3975 /* Called with irq disabled */
3976 static inline void ____napi_schedule(struct softnet_data *sd,
3977 				     struct napi_struct *napi)
3978 {
3979 	list_add_tail(&napi->poll_list, &sd->poll_list);
3980 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3981 }
3982 
3983 #ifdef CONFIG_RPS
3984 
3985 /* One global table that all flow-based protocols share. */
3986 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3987 EXPORT_SYMBOL(rps_sock_flow_table);
3988 u32 rps_cpu_mask __read_mostly;
3989 EXPORT_SYMBOL(rps_cpu_mask);
3990 
3991 struct static_key_false rps_needed __read_mostly;
3992 EXPORT_SYMBOL(rps_needed);
3993 struct static_key_false rfs_needed __read_mostly;
3994 EXPORT_SYMBOL(rfs_needed);
3995 
3996 static struct rps_dev_flow *
3997 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3998 	    struct rps_dev_flow *rflow, u16 next_cpu)
3999 {
4000 	if (next_cpu < nr_cpu_ids) {
4001 #ifdef CONFIG_RFS_ACCEL
4002 		struct netdev_rx_queue *rxqueue;
4003 		struct rps_dev_flow_table *flow_table;
4004 		struct rps_dev_flow *old_rflow;
4005 		u32 flow_id;
4006 		u16 rxq_index;
4007 		int rc;
4008 
4009 		/* Should we steer this flow to a different hardware queue? */
4010 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4011 		    !(dev->features & NETIF_F_NTUPLE))
4012 			goto out;
4013 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4014 		if (rxq_index == skb_get_rx_queue(skb))
4015 			goto out;
4016 
4017 		rxqueue = dev->_rx + rxq_index;
4018 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4019 		if (!flow_table)
4020 			goto out;
4021 		flow_id = skb_get_hash(skb) & flow_table->mask;
4022 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4023 							rxq_index, flow_id);
4024 		if (rc < 0)
4025 			goto out;
4026 		old_rflow = rflow;
4027 		rflow = &flow_table->flows[flow_id];
4028 		rflow->filter = rc;
4029 		if (old_rflow->filter == rflow->filter)
4030 			old_rflow->filter = RPS_NO_FILTER;
4031 	out:
4032 #endif
4033 		rflow->last_qtail =
4034 			per_cpu(softnet_data, next_cpu).input_queue_head;
4035 	}
4036 
4037 	rflow->cpu = next_cpu;
4038 	return rflow;
4039 }
4040 
4041 /*
4042  * get_rps_cpu is called from netif_receive_skb and returns the target
4043  * CPU from the RPS map of the receiving queue for a given skb.
4044  * rcu_read_lock must be held on entry.
4045  */
4046 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4047 		       struct rps_dev_flow **rflowp)
4048 {
4049 	const struct rps_sock_flow_table *sock_flow_table;
4050 	struct netdev_rx_queue *rxqueue = dev->_rx;
4051 	struct rps_dev_flow_table *flow_table;
4052 	struct rps_map *map;
4053 	int cpu = -1;
4054 	u32 tcpu;
4055 	u32 hash;
4056 
4057 	if (skb_rx_queue_recorded(skb)) {
4058 		u16 index = skb_get_rx_queue(skb);
4059 
4060 		if (unlikely(index >= dev->real_num_rx_queues)) {
4061 			WARN_ONCE(dev->real_num_rx_queues > 1,
4062 				  "%s received packet on queue %u, but number "
4063 				  "of RX queues is %u\n",
4064 				  dev->name, index, dev->real_num_rx_queues);
4065 			goto done;
4066 		}
4067 		rxqueue += index;
4068 	}
4069 
4070 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4071 
4072 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4073 	map = rcu_dereference(rxqueue->rps_map);
4074 	if (!flow_table && !map)
4075 		goto done;
4076 
4077 	skb_reset_network_header(skb);
4078 	hash = skb_get_hash(skb);
4079 	if (!hash)
4080 		goto done;
4081 
4082 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4083 	if (flow_table && sock_flow_table) {
4084 		struct rps_dev_flow *rflow;
4085 		u32 next_cpu;
4086 		u32 ident;
4087 
4088 		/* First check into global flow table if there is a match */
4089 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4090 		if ((ident ^ hash) & ~rps_cpu_mask)
4091 			goto try_rps;
4092 
4093 		next_cpu = ident & rps_cpu_mask;
4094 
4095 		/* OK, now we know there is a match,
4096 		 * we can look at the local (per receive queue) flow table
4097 		 */
4098 		rflow = &flow_table->flows[hash & flow_table->mask];
4099 		tcpu = rflow->cpu;
4100 
4101 		/*
4102 		 * If the desired CPU (where last recvmsg was done) is
4103 		 * different from current CPU (one in the rx-queue flow
4104 		 * table entry), switch if one of the following holds:
4105 		 *   - Current CPU is unset (>= nr_cpu_ids).
4106 		 *   - Current CPU is offline.
4107 		 *   - The current CPU's queue tail has advanced beyond the
4108 		 *     last packet that was enqueued using this table entry.
4109 		 *     This guarantees that all previous packets for the flow
4110 		 *     have been dequeued, thus preserving in order delivery.
4111 		 */
4112 		if (unlikely(tcpu != next_cpu) &&
4113 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4114 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4115 		      rflow->last_qtail)) >= 0)) {
4116 			tcpu = next_cpu;
4117 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4118 		}
4119 
4120 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4121 			*rflowp = rflow;
4122 			cpu = tcpu;
4123 			goto done;
4124 		}
4125 	}
4126 
4127 try_rps:
4128 
4129 	if (map) {
4130 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4131 		if (cpu_online(tcpu)) {
4132 			cpu = tcpu;
4133 			goto done;
4134 		}
4135 	}
4136 
4137 done:
4138 	return cpu;
4139 }
4140 
4141 #ifdef CONFIG_RFS_ACCEL
4142 
4143 /**
4144  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4145  * @dev: Device on which the filter was set
4146  * @rxq_index: RX queue index
4147  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4148  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4149  *
4150  * Drivers that implement ndo_rx_flow_steer() should periodically call
4151  * this function for each installed filter and remove the filters for
4152  * which it returns %true.
4153  */
4154 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4155 			 u32 flow_id, u16 filter_id)
4156 {
4157 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4158 	struct rps_dev_flow_table *flow_table;
4159 	struct rps_dev_flow *rflow;
4160 	bool expire = true;
4161 	unsigned int cpu;
4162 
4163 	rcu_read_lock();
4164 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4165 	if (flow_table && flow_id <= flow_table->mask) {
4166 		rflow = &flow_table->flows[flow_id];
4167 		cpu = READ_ONCE(rflow->cpu);
4168 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4169 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4170 			   rflow->last_qtail) <
4171 		     (int)(10 * flow_table->mask)))
4172 			expire = false;
4173 	}
4174 	rcu_read_unlock();
4175 	return expire;
4176 }
4177 EXPORT_SYMBOL(rps_may_expire_flow);
4178 
4179 #endif /* CONFIG_RFS_ACCEL */
4180 
4181 /* Called from hardirq (IPI) context */
4182 static void rps_trigger_softirq(void *data)
4183 {
4184 	struct softnet_data *sd = data;
4185 
4186 	____napi_schedule(sd, &sd->backlog);
4187 	sd->received_rps++;
4188 }
4189 
4190 #endif /* CONFIG_RPS */
4191 
4192 /*
4193  * Check if this softnet_data structure is another cpu one
4194  * If yes, queue it to our IPI list and return 1
4195  * If no, return 0
4196  */
4197 static int rps_ipi_queued(struct softnet_data *sd)
4198 {
4199 #ifdef CONFIG_RPS
4200 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4201 
4202 	if (sd != mysd) {
4203 		sd->rps_ipi_next = mysd->rps_ipi_list;
4204 		mysd->rps_ipi_list = sd;
4205 
4206 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4207 		return 1;
4208 	}
4209 #endif /* CONFIG_RPS */
4210 	return 0;
4211 }
4212 
4213 #ifdef CONFIG_NET_FLOW_LIMIT
4214 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4215 #endif
4216 
4217 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4218 {
4219 #ifdef CONFIG_NET_FLOW_LIMIT
4220 	struct sd_flow_limit *fl;
4221 	struct softnet_data *sd;
4222 	unsigned int old_flow, new_flow;
4223 
4224 	if (qlen < (netdev_max_backlog >> 1))
4225 		return false;
4226 
4227 	sd = this_cpu_ptr(&softnet_data);
4228 
4229 	rcu_read_lock();
4230 	fl = rcu_dereference(sd->flow_limit);
4231 	if (fl) {
4232 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4233 		old_flow = fl->history[fl->history_head];
4234 		fl->history[fl->history_head] = new_flow;
4235 
4236 		fl->history_head++;
4237 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4238 
4239 		if (likely(fl->buckets[old_flow]))
4240 			fl->buckets[old_flow]--;
4241 
4242 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4243 			fl->count++;
4244 			rcu_read_unlock();
4245 			return true;
4246 		}
4247 	}
4248 	rcu_read_unlock();
4249 #endif
4250 	return false;
4251 }
4252 
4253 /*
4254  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4255  * queue (may be a remote CPU queue).
4256  */
4257 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4258 			      unsigned int *qtail)
4259 {
4260 	struct softnet_data *sd;
4261 	unsigned long flags;
4262 	unsigned int qlen;
4263 
4264 	sd = &per_cpu(softnet_data, cpu);
4265 
4266 	local_irq_save(flags);
4267 
4268 	rps_lock(sd);
4269 	if (!netif_running(skb->dev))
4270 		goto drop;
4271 	qlen = skb_queue_len(&sd->input_pkt_queue);
4272 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4273 		if (qlen) {
4274 enqueue:
4275 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4276 			input_queue_tail_incr_save(sd, qtail);
4277 			rps_unlock(sd);
4278 			local_irq_restore(flags);
4279 			return NET_RX_SUCCESS;
4280 		}
4281 
4282 		/* Schedule NAPI for backlog device
4283 		 * We can use non atomic operation since we own the queue lock
4284 		 */
4285 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4286 			if (!rps_ipi_queued(sd))
4287 				____napi_schedule(sd, &sd->backlog);
4288 		}
4289 		goto enqueue;
4290 	}
4291 
4292 drop:
4293 	sd->dropped++;
4294 	rps_unlock(sd);
4295 
4296 	local_irq_restore(flags);
4297 
4298 	atomic_long_inc(&skb->dev->rx_dropped);
4299 	kfree_skb(skb);
4300 	return NET_RX_DROP;
4301 }
4302 
4303 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4304 {
4305 	struct net_device *dev = skb->dev;
4306 	struct netdev_rx_queue *rxqueue;
4307 
4308 	rxqueue = dev->_rx;
4309 
4310 	if (skb_rx_queue_recorded(skb)) {
4311 		u16 index = skb_get_rx_queue(skb);
4312 
4313 		if (unlikely(index >= dev->real_num_rx_queues)) {
4314 			WARN_ONCE(dev->real_num_rx_queues > 1,
4315 				  "%s received packet on queue %u, but number "
4316 				  "of RX queues is %u\n",
4317 				  dev->name, index, dev->real_num_rx_queues);
4318 
4319 			return rxqueue; /* Return first rxqueue */
4320 		}
4321 		rxqueue += index;
4322 	}
4323 	return rxqueue;
4324 }
4325 
4326 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4327 				     struct xdp_buff *xdp,
4328 				     struct bpf_prog *xdp_prog)
4329 {
4330 	struct netdev_rx_queue *rxqueue;
4331 	void *orig_data, *orig_data_end;
4332 	u32 metalen, act = XDP_DROP;
4333 	__be16 orig_eth_type;
4334 	struct ethhdr *eth;
4335 	bool orig_bcast;
4336 	int hlen, off;
4337 	u32 mac_len;
4338 
4339 	/* Reinjected packets coming from act_mirred or similar should
4340 	 * not get XDP generic processing.
4341 	 */
4342 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4343 		return XDP_PASS;
4344 
4345 	/* XDP packets must be linear and must have sufficient headroom
4346 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4347 	 * native XDP provides, thus we need to do it here as well.
4348 	 */
4349 	if (skb_is_nonlinear(skb) ||
4350 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4351 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4352 		int troom = skb->tail + skb->data_len - skb->end;
4353 
4354 		/* In case we have to go down the path and also linearize,
4355 		 * then lets do the pskb_expand_head() work just once here.
4356 		 */
4357 		if (pskb_expand_head(skb,
4358 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4359 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4360 			goto do_drop;
4361 		if (skb_linearize(skb))
4362 			goto do_drop;
4363 	}
4364 
4365 	/* The XDP program wants to see the packet starting at the MAC
4366 	 * header.
4367 	 */
4368 	mac_len = skb->data - skb_mac_header(skb);
4369 	hlen = skb_headlen(skb) + mac_len;
4370 	xdp->data = skb->data - mac_len;
4371 	xdp->data_meta = xdp->data;
4372 	xdp->data_end = xdp->data + hlen;
4373 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4374 	orig_data_end = xdp->data_end;
4375 	orig_data = xdp->data;
4376 	eth = (struct ethhdr *)xdp->data;
4377 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4378 	orig_eth_type = eth->h_proto;
4379 
4380 	rxqueue = netif_get_rxqueue(skb);
4381 	xdp->rxq = &rxqueue->xdp_rxq;
4382 
4383 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4384 
4385 	off = xdp->data - orig_data;
4386 	if (off > 0)
4387 		__skb_pull(skb, off);
4388 	else if (off < 0)
4389 		__skb_push(skb, -off);
4390 	skb->mac_header += off;
4391 
4392 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4393 	 * pckt.
4394 	 */
4395 	off = orig_data_end - xdp->data_end;
4396 	if (off != 0) {
4397 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4398 		skb->len -= off;
4399 
4400 	}
4401 
4402 	/* check if XDP changed eth hdr such SKB needs update */
4403 	eth = (struct ethhdr *)xdp->data;
4404 	if ((orig_eth_type != eth->h_proto) ||
4405 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4406 		__skb_push(skb, ETH_HLEN);
4407 		skb->protocol = eth_type_trans(skb, skb->dev);
4408 	}
4409 
4410 	switch (act) {
4411 	case XDP_REDIRECT:
4412 	case XDP_TX:
4413 		__skb_push(skb, mac_len);
4414 		break;
4415 	case XDP_PASS:
4416 		metalen = xdp->data - xdp->data_meta;
4417 		if (metalen)
4418 			skb_metadata_set(skb, metalen);
4419 		break;
4420 	default:
4421 		bpf_warn_invalid_xdp_action(act);
4422 		/* fall through */
4423 	case XDP_ABORTED:
4424 		trace_xdp_exception(skb->dev, xdp_prog, act);
4425 		/* fall through */
4426 	case XDP_DROP:
4427 	do_drop:
4428 		kfree_skb(skb);
4429 		break;
4430 	}
4431 
4432 	return act;
4433 }
4434 
4435 /* When doing generic XDP we have to bypass the qdisc layer and the
4436  * network taps in order to match in-driver-XDP behavior.
4437  */
4438 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4439 {
4440 	struct net_device *dev = skb->dev;
4441 	struct netdev_queue *txq;
4442 	bool free_skb = true;
4443 	int cpu, rc;
4444 
4445 	txq = netdev_core_pick_tx(dev, skb, NULL);
4446 	cpu = smp_processor_id();
4447 	HARD_TX_LOCK(dev, txq, cpu);
4448 	if (!netif_xmit_stopped(txq)) {
4449 		rc = netdev_start_xmit(skb, dev, txq, 0);
4450 		if (dev_xmit_complete(rc))
4451 			free_skb = false;
4452 	}
4453 	HARD_TX_UNLOCK(dev, txq);
4454 	if (free_skb) {
4455 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4456 		kfree_skb(skb);
4457 	}
4458 }
4459 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4460 
4461 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4462 
4463 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4464 {
4465 	if (xdp_prog) {
4466 		struct xdp_buff xdp;
4467 		u32 act;
4468 		int err;
4469 
4470 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4471 		if (act != XDP_PASS) {
4472 			switch (act) {
4473 			case XDP_REDIRECT:
4474 				err = xdp_do_generic_redirect(skb->dev, skb,
4475 							      &xdp, xdp_prog);
4476 				if (err)
4477 					goto out_redir;
4478 				break;
4479 			case XDP_TX:
4480 				generic_xdp_tx(skb, xdp_prog);
4481 				break;
4482 			}
4483 			return XDP_DROP;
4484 		}
4485 	}
4486 	return XDP_PASS;
4487 out_redir:
4488 	kfree_skb(skb);
4489 	return XDP_DROP;
4490 }
4491 EXPORT_SYMBOL_GPL(do_xdp_generic);
4492 
4493 static int netif_rx_internal(struct sk_buff *skb)
4494 {
4495 	int ret;
4496 
4497 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4498 
4499 	trace_netif_rx(skb);
4500 
4501 #ifdef CONFIG_RPS
4502 	if (static_branch_unlikely(&rps_needed)) {
4503 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4504 		int cpu;
4505 
4506 		preempt_disable();
4507 		rcu_read_lock();
4508 
4509 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4510 		if (cpu < 0)
4511 			cpu = smp_processor_id();
4512 
4513 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4514 
4515 		rcu_read_unlock();
4516 		preempt_enable();
4517 	} else
4518 #endif
4519 	{
4520 		unsigned int qtail;
4521 
4522 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4523 		put_cpu();
4524 	}
4525 	return ret;
4526 }
4527 
4528 /**
4529  *	netif_rx	-	post buffer to the network code
4530  *	@skb: buffer to post
4531  *
4532  *	This function receives a packet from a device driver and queues it for
4533  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4534  *	may be dropped during processing for congestion control or by the
4535  *	protocol layers.
4536  *
4537  *	return values:
4538  *	NET_RX_SUCCESS	(no congestion)
4539  *	NET_RX_DROP     (packet was dropped)
4540  *
4541  */
4542 
4543 int netif_rx(struct sk_buff *skb)
4544 {
4545 	int ret;
4546 
4547 	trace_netif_rx_entry(skb);
4548 
4549 	ret = netif_rx_internal(skb);
4550 	trace_netif_rx_exit(ret);
4551 
4552 	return ret;
4553 }
4554 EXPORT_SYMBOL(netif_rx);
4555 
4556 int netif_rx_ni(struct sk_buff *skb)
4557 {
4558 	int err;
4559 
4560 	trace_netif_rx_ni_entry(skb);
4561 
4562 	preempt_disable();
4563 	err = netif_rx_internal(skb);
4564 	if (local_softirq_pending())
4565 		do_softirq();
4566 	preempt_enable();
4567 	trace_netif_rx_ni_exit(err);
4568 
4569 	return err;
4570 }
4571 EXPORT_SYMBOL(netif_rx_ni);
4572 
4573 static __latent_entropy void net_tx_action(struct softirq_action *h)
4574 {
4575 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4576 
4577 	if (sd->completion_queue) {
4578 		struct sk_buff *clist;
4579 
4580 		local_irq_disable();
4581 		clist = sd->completion_queue;
4582 		sd->completion_queue = NULL;
4583 		local_irq_enable();
4584 
4585 		while (clist) {
4586 			struct sk_buff *skb = clist;
4587 
4588 			clist = clist->next;
4589 
4590 			WARN_ON(refcount_read(&skb->users));
4591 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4592 				trace_consume_skb(skb);
4593 			else
4594 				trace_kfree_skb(skb, net_tx_action);
4595 
4596 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4597 				__kfree_skb(skb);
4598 			else
4599 				__kfree_skb_defer(skb);
4600 		}
4601 
4602 		__kfree_skb_flush();
4603 	}
4604 
4605 	if (sd->output_queue) {
4606 		struct Qdisc *head;
4607 
4608 		local_irq_disable();
4609 		head = sd->output_queue;
4610 		sd->output_queue = NULL;
4611 		sd->output_queue_tailp = &sd->output_queue;
4612 		local_irq_enable();
4613 
4614 		while (head) {
4615 			struct Qdisc *q = head;
4616 			spinlock_t *root_lock = NULL;
4617 
4618 			head = head->next_sched;
4619 
4620 			if (!(q->flags & TCQ_F_NOLOCK)) {
4621 				root_lock = qdisc_lock(q);
4622 				spin_lock(root_lock);
4623 			}
4624 			/* We need to make sure head->next_sched is read
4625 			 * before clearing __QDISC_STATE_SCHED
4626 			 */
4627 			smp_mb__before_atomic();
4628 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4629 			qdisc_run(q);
4630 			if (root_lock)
4631 				spin_unlock(root_lock);
4632 		}
4633 	}
4634 
4635 	xfrm_dev_backlog(sd);
4636 }
4637 
4638 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4639 /* This hook is defined here for ATM LANE */
4640 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4641 			     unsigned char *addr) __read_mostly;
4642 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4643 #endif
4644 
4645 static inline struct sk_buff *
4646 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4647 		   struct net_device *orig_dev)
4648 {
4649 #ifdef CONFIG_NET_CLS_ACT
4650 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4651 	struct tcf_result cl_res;
4652 
4653 	/* If there's at least one ingress present somewhere (so
4654 	 * we get here via enabled static key), remaining devices
4655 	 * that are not configured with an ingress qdisc will bail
4656 	 * out here.
4657 	 */
4658 	if (!miniq)
4659 		return skb;
4660 
4661 	if (*pt_prev) {
4662 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4663 		*pt_prev = NULL;
4664 	}
4665 
4666 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4667 	skb->tc_at_ingress = 1;
4668 	mini_qdisc_bstats_cpu_update(miniq, skb);
4669 
4670 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4671 	case TC_ACT_OK:
4672 	case TC_ACT_RECLASSIFY:
4673 		skb->tc_index = TC_H_MIN(cl_res.classid);
4674 		break;
4675 	case TC_ACT_SHOT:
4676 		mini_qdisc_qstats_cpu_drop(miniq);
4677 		kfree_skb(skb);
4678 		return NULL;
4679 	case TC_ACT_STOLEN:
4680 	case TC_ACT_QUEUED:
4681 	case TC_ACT_TRAP:
4682 		consume_skb(skb);
4683 		return NULL;
4684 	case TC_ACT_REDIRECT:
4685 		/* skb_mac_header check was done by cls/act_bpf, so
4686 		 * we can safely push the L2 header back before
4687 		 * redirecting to another netdev
4688 		 */
4689 		__skb_push(skb, skb->mac_len);
4690 		skb_do_redirect(skb);
4691 		return NULL;
4692 	case TC_ACT_REINSERT:
4693 		/* this does not scrub the packet, and updates stats on error */
4694 		skb_tc_reinsert(skb, &cl_res);
4695 		return NULL;
4696 	default:
4697 		break;
4698 	}
4699 #endif /* CONFIG_NET_CLS_ACT */
4700 	return skb;
4701 }
4702 
4703 /**
4704  *	netdev_is_rx_handler_busy - check if receive handler is registered
4705  *	@dev: device to check
4706  *
4707  *	Check if a receive handler is already registered for a given device.
4708  *	Return true if there one.
4709  *
4710  *	The caller must hold the rtnl_mutex.
4711  */
4712 bool netdev_is_rx_handler_busy(struct net_device *dev)
4713 {
4714 	ASSERT_RTNL();
4715 	return dev && rtnl_dereference(dev->rx_handler);
4716 }
4717 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4718 
4719 /**
4720  *	netdev_rx_handler_register - register receive handler
4721  *	@dev: device to register a handler for
4722  *	@rx_handler: receive handler to register
4723  *	@rx_handler_data: data pointer that is used by rx handler
4724  *
4725  *	Register a receive handler for a device. This handler will then be
4726  *	called from __netif_receive_skb. A negative errno code is returned
4727  *	on a failure.
4728  *
4729  *	The caller must hold the rtnl_mutex.
4730  *
4731  *	For a general description of rx_handler, see enum rx_handler_result.
4732  */
4733 int netdev_rx_handler_register(struct net_device *dev,
4734 			       rx_handler_func_t *rx_handler,
4735 			       void *rx_handler_data)
4736 {
4737 	if (netdev_is_rx_handler_busy(dev))
4738 		return -EBUSY;
4739 
4740 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4741 		return -EINVAL;
4742 
4743 	/* Note: rx_handler_data must be set before rx_handler */
4744 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4745 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4746 
4747 	return 0;
4748 }
4749 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4750 
4751 /**
4752  *	netdev_rx_handler_unregister - unregister receive handler
4753  *	@dev: device to unregister a handler from
4754  *
4755  *	Unregister a receive handler from a device.
4756  *
4757  *	The caller must hold the rtnl_mutex.
4758  */
4759 void netdev_rx_handler_unregister(struct net_device *dev)
4760 {
4761 
4762 	ASSERT_RTNL();
4763 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4764 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4765 	 * section has a guarantee to see a non NULL rx_handler_data
4766 	 * as well.
4767 	 */
4768 	synchronize_net();
4769 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4770 }
4771 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4772 
4773 /*
4774  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4775  * the special handling of PFMEMALLOC skbs.
4776  */
4777 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4778 {
4779 	switch (skb->protocol) {
4780 	case htons(ETH_P_ARP):
4781 	case htons(ETH_P_IP):
4782 	case htons(ETH_P_IPV6):
4783 	case htons(ETH_P_8021Q):
4784 	case htons(ETH_P_8021AD):
4785 		return true;
4786 	default:
4787 		return false;
4788 	}
4789 }
4790 
4791 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4792 			     int *ret, struct net_device *orig_dev)
4793 {
4794 #ifdef CONFIG_NETFILTER_INGRESS
4795 	if (nf_hook_ingress_active(skb)) {
4796 		int ingress_retval;
4797 
4798 		if (*pt_prev) {
4799 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4800 			*pt_prev = NULL;
4801 		}
4802 
4803 		rcu_read_lock();
4804 		ingress_retval = nf_hook_ingress(skb);
4805 		rcu_read_unlock();
4806 		return ingress_retval;
4807 	}
4808 #endif /* CONFIG_NETFILTER_INGRESS */
4809 	return 0;
4810 }
4811 
4812 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4813 				    struct packet_type **ppt_prev)
4814 {
4815 	struct packet_type *ptype, *pt_prev;
4816 	rx_handler_func_t *rx_handler;
4817 	struct net_device *orig_dev;
4818 	bool deliver_exact = false;
4819 	int ret = NET_RX_DROP;
4820 	__be16 type;
4821 
4822 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4823 
4824 	trace_netif_receive_skb(skb);
4825 
4826 	orig_dev = skb->dev;
4827 
4828 	skb_reset_network_header(skb);
4829 	if (!skb_transport_header_was_set(skb))
4830 		skb_reset_transport_header(skb);
4831 	skb_reset_mac_len(skb);
4832 
4833 	pt_prev = NULL;
4834 
4835 another_round:
4836 	skb->skb_iif = skb->dev->ifindex;
4837 
4838 	__this_cpu_inc(softnet_data.processed);
4839 
4840 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4841 		int ret2;
4842 
4843 		preempt_disable();
4844 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4845 		preempt_enable();
4846 
4847 		if (ret2 != XDP_PASS)
4848 			return NET_RX_DROP;
4849 		skb_reset_mac_len(skb);
4850 	}
4851 
4852 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4853 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4854 		skb = skb_vlan_untag(skb);
4855 		if (unlikely(!skb))
4856 			goto out;
4857 	}
4858 
4859 	if (skb_skip_tc_classify(skb))
4860 		goto skip_classify;
4861 
4862 	if (pfmemalloc)
4863 		goto skip_taps;
4864 
4865 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4866 		if (pt_prev)
4867 			ret = deliver_skb(skb, pt_prev, orig_dev);
4868 		pt_prev = ptype;
4869 	}
4870 
4871 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4872 		if (pt_prev)
4873 			ret = deliver_skb(skb, pt_prev, orig_dev);
4874 		pt_prev = ptype;
4875 	}
4876 
4877 skip_taps:
4878 #ifdef CONFIG_NET_INGRESS
4879 	if (static_branch_unlikely(&ingress_needed_key)) {
4880 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4881 		if (!skb)
4882 			goto out;
4883 
4884 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4885 			goto out;
4886 	}
4887 #endif
4888 	skb_reset_tc(skb);
4889 skip_classify:
4890 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4891 		goto drop;
4892 
4893 	if (skb_vlan_tag_present(skb)) {
4894 		if (pt_prev) {
4895 			ret = deliver_skb(skb, pt_prev, orig_dev);
4896 			pt_prev = NULL;
4897 		}
4898 		if (vlan_do_receive(&skb))
4899 			goto another_round;
4900 		else if (unlikely(!skb))
4901 			goto out;
4902 	}
4903 
4904 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4905 	if (rx_handler) {
4906 		if (pt_prev) {
4907 			ret = deliver_skb(skb, pt_prev, orig_dev);
4908 			pt_prev = NULL;
4909 		}
4910 		switch (rx_handler(&skb)) {
4911 		case RX_HANDLER_CONSUMED:
4912 			ret = NET_RX_SUCCESS;
4913 			goto out;
4914 		case RX_HANDLER_ANOTHER:
4915 			goto another_round;
4916 		case RX_HANDLER_EXACT:
4917 			deliver_exact = true;
4918 		case RX_HANDLER_PASS:
4919 			break;
4920 		default:
4921 			BUG();
4922 		}
4923 	}
4924 
4925 	if (unlikely(skb_vlan_tag_present(skb))) {
4926 check_vlan_id:
4927 		if (skb_vlan_tag_get_id(skb)) {
4928 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
4929 			 * find vlan device.
4930 			 */
4931 			skb->pkt_type = PACKET_OTHERHOST;
4932 		} else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4933 			   skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4934 			/* Outer header is 802.1P with vlan 0, inner header is
4935 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
4936 			 * not find vlan dev for vlan id 0.
4937 			 */
4938 			__vlan_hwaccel_clear_tag(skb);
4939 			skb = skb_vlan_untag(skb);
4940 			if (unlikely(!skb))
4941 				goto out;
4942 			if (vlan_do_receive(&skb))
4943 				/* After stripping off 802.1P header with vlan 0
4944 				 * vlan dev is found for inner header.
4945 				 */
4946 				goto another_round;
4947 			else if (unlikely(!skb))
4948 				goto out;
4949 			else
4950 				/* We have stripped outer 802.1P vlan 0 header.
4951 				 * But could not find vlan dev.
4952 				 * check again for vlan id to set OTHERHOST.
4953 				 */
4954 				goto check_vlan_id;
4955 		}
4956 		/* Note: we might in the future use prio bits
4957 		 * and set skb->priority like in vlan_do_receive()
4958 		 * For the time being, just ignore Priority Code Point
4959 		 */
4960 		__vlan_hwaccel_clear_tag(skb);
4961 	}
4962 
4963 	type = skb->protocol;
4964 
4965 	/* deliver only exact match when indicated */
4966 	if (likely(!deliver_exact)) {
4967 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4968 				       &ptype_base[ntohs(type) &
4969 						   PTYPE_HASH_MASK]);
4970 	}
4971 
4972 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4973 			       &orig_dev->ptype_specific);
4974 
4975 	if (unlikely(skb->dev != orig_dev)) {
4976 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4977 				       &skb->dev->ptype_specific);
4978 	}
4979 
4980 	if (pt_prev) {
4981 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4982 			goto drop;
4983 		*ppt_prev = pt_prev;
4984 	} else {
4985 drop:
4986 		if (!deliver_exact)
4987 			atomic_long_inc(&skb->dev->rx_dropped);
4988 		else
4989 			atomic_long_inc(&skb->dev->rx_nohandler);
4990 		kfree_skb(skb);
4991 		/* Jamal, now you will not able to escape explaining
4992 		 * me how you were going to use this. :-)
4993 		 */
4994 		ret = NET_RX_DROP;
4995 	}
4996 
4997 out:
4998 	return ret;
4999 }
5000 
5001 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5002 {
5003 	struct net_device *orig_dev = skb->dev;
5004 	struct packet_type *pt_prev = NULL;
5005 	int ret;
5006 
5007 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5008 	if (pt_prev)
5009 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5010 					 skb->dev, pt_prev, orig_dev);
5011 	return ret;
5012 }
5013 
5014 /**
5015  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5016  *	@skb: buffer to process
5017  *
5018  *	More direct receive version of netif_receive_skb().  It should
5019  *	only be used by callers that have a need to skip RPS and Generic XDP.
5020  *	Caller must also take care of handling if (page_is_)pfmemalloc.
5021  *
5022  *	This function may only be called from softirq context and interrupts
5023  *	should be enabled.
5024  *
5025  *	Return values (usually ignored):
5026  *	NET_RX_SUCCESS: no congestion
5027  *	NET_RX_DROP: packet was dropped
5028  */
5029 int netif_receive_skb_core(struct sk_buff *skb)
5030 {
5031 	int ret;
5032 
5033 	rcu_read_lock();
5034 	ret = __netif_receive_skb_one_core(skb, false);
5035 	rcu_read_unlock();
5036 
5037 	return ret;
5038 }
5039 EXPORT_SYMBOL(netif_receive_skb_core);
5040 
5041 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5042 						  struct packet_type *pt_prev,
5043 						  struct net_device *orig_dev)
5044 {
5045 	struct sk_buff *skb, *next;
5046 
5047 	if (!pt_prev)
5048 		return;
5049 	if (list_empty(head))
5050 		return;
5051 	if (pt_prev->list_func != NULL)
5052 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5053 				   ip_list_rcv, head, pt_prev, orig_dev);
5054 	else
5055 		list_for_each_entry_safe(skb, next, head, list) {
5056 			skb_list_del_init(skb);
5057 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5058 		}
5059 }
5060 
5061 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5062 {
5063 	/* Fast-path assumptions:
5064 	 * - There is no RX handler.
5065 	 * - Only one packet_type matches.
5066 	 * If either of these fails, we will end up doing some per-packet
5067 	 * processing in-line, then handling the 'last ptype' for the whole
5068 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5069 	 * because the 'last ptype' must be constant across the sublist, and all
5070 	 * other ptypes are handled per-packet.
5071 	 */
5072 	/* Current (common) ptype of sublist */
5073 	struct packet_type *pt_curr = NULL;
5074 	/* Current (common) orig_dev of sublist */
5075 	struct net_device *od_curr = NULL;
5076 	struct list_head sublist;
5077 	struct sk_buff *skb, *next;
5078 
5079 	INIT_LIST_HEAD(&sublist);
5080 	list_for_each_entry_safe(skb, next, head, list) {
5081 		struct net_device *orig_dev = skb->dev;
5082 		struct packet_type *pt_prev = NULL;
5083 
5084 		skb_list_del_init(skb);
5085 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5086 		if (!pt_prev)
5087 			continue;
5088 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5089 			/* dispatch old sublist */
5090 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5091 			/* start new sublist */
5092 			INIT_LIST_HEAD(&sublist);
5093 			pt_curr = pt_prev;
5094 			od_curr = orig_dev;
5095 		}
5096 		list_add_tail(&skb->list, &sublist);
5097 	}
5098 
5099 	/* dispatch final sublist */
5100 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5101 }
5102 
5103 static int __netif_receive_skb(struct sk_buff *skb)
5104 {
5105 	int ret;
5106 
5107 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5108 		unsigned int noreclaim_flag;
5109 
5110 		/*
5111 		 * PFMEMALLOC skbs are special, they should
5112 		 * - be delivered to SOCK_MEMALLOC sockets only
5113 		 * - stay away from userspace
5114 		 * - have bounded memory usage
5115 		 *
5116 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5117 		 * context down to all allocation sites.
5118 		 */
5119 		noreclaim_flag = memalloc_noreclaim_save();
5120 		ret = __netif_receive_skb_one_core(skb, true);
5121 		memalloc_noreclaim_restore(noreclaim_flag);
5122 	} else
5123 		ret = __netif_receive_skb_one_core(skb, false);
5124 
5125 	return ret;
5126 }
5127 
5128 static void __netif_receive_skb_list(struct list_head *head)
5129 {
5130 	unsigned long noreclaim_flag = 0;
5131 	struct sk_buff *skb, *next;
5132 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5133 
5134 	list_for_each_entry_safe(skb, next, head, list) {
5135 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5136 			struct list_head sublist;
5137 
5138 			/* Handle the previous sublist */
5139 			list_cut_before(&sublist, head, &skb->list);
5140 			if (!list_empty(&sublist))
5141 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5142 			pfmemalloc = !pfmemalloc;
5143 			/* See comments in __netif_receive_skb */
5144 			if (pfmemalloc)
5145 				noreclaim_flag = memalloc_noreclaim_save();
5146 			else
5147 				memalloc_noreclaim_restore(noreclaim_flag);
5148 		}
5149 	}
5150 	/* Handle the remaining sublist */
5151 	if (!list_empty(head))
5152 		__netif_receive_skb_list_core(head, pfmemalloc);
5153 	/* Restore pflags */
5154 	if (pfmemalloc)
5155 		memalloc_noreclaim_restore(noreclaim_flag);
5156 }
5157 
5158 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5159 {
5160 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5161 	struct bpf_prog *new = xdp->prog;
5162 	int ret = 0;
5163 
5164 	switch (xdp->command) {
5165 	case XDP_SETUP_PROG:
5166 		rcu_assign_pointer(dev->xdp_prog, new);
5167 		if (old)
5168 			bpf_prog_put(old);
5169 
5170 		if (old && !new) {
5171 			static_branch_dec(&generic_xdp_needed_key);
5172 		} else if (new && !old) {
5173 			static_branch_inc(&generic_xdp_needed_key);
5174 			dev_disable_lro(dev);
5175 			dev_disable_gro_hw(dev);
5176 		}
5177 		break;
5178 
5179 	case XDP_QUERY_PROG:
5180 		xdp->prog_id = old ? old->aux->id : 0;
5181 		break;
5182 
5183 	default:
5184 		ret = -EINVAL;
5185 		break;
5186 	}
5187 
5188 	return ret;
5189 }
5190 
5191 static int netif_receive_skb_internal(struct sk_buff *skb)
5192 {
5193 	int ret;
5194 
5195 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5196 
5197 	if (skb_defer_rx_timestamp(skb))
5198 		return NET_RX_SUCCESS;
5199 
5200 	rcu_read_lock();
5201 #ifdef CONFIG_RPS
5202 	if (static_branch_unlikely(&rps_needed)) {
5203 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5204 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5205 
5206 		if (cpu >= 0) {
5207 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5208 			rcu_read_unlock();
5209 			return ret;
5210 		}
5211 	}
5212 #endif
5213 	ret = __netif_receive_skb(skb);
5214 	rcu_read_unlock();
5215 	return ret;
5216 }
5217 
5218 static void netif_receive_skb_list_internal(struct list_head *head)
5219 {
5220 	struct sk_buff *skb, *next;
5221 	struct list_head sublist;
5222 
5223 	INIT_LIST_HEAD(&sublist);
5224 	list_for_each_entry_safe(skb, next, head, list) {
5225 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5226 		skb_list_del_init(skb);
5227 		if (!skb_defer_rx_timestamp(skb))
5228 			list_add_tail(&skb->list, &sublist);
5229 	}
5230 	list_splice_init(&sublist, head);
5231 
5232 	rcu_read_lock();
5233 #ifdef CONFIG_RPS
5234 	if (static_branch_unlikely(&rps_needed)) {
5235 		list_for_each_entry_safe(skb, next, head, list) {
5236 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5237 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5238 
5239 			if (cpu >= 0) {
5240 				/* Will be handled, remove from list */
5241 				skb_list_del_init(skb);
5242 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5243 			}
5244 		}
5245 	}
5246 #endif
5247 	__netif_receive_skb_list(head);
5248 	rcu_read_unlock();
5249 }
5250 
5251 /**
5252  *	netif_receive_skb - process receive buffer from network
5253  *	@skb: buffer to process
5254  *
5255  *	netif_receive_skb() is the main receive data processing function.
5256  *	It always succeeds. The buffer may be dropped during processing
5257  *	for congestion control or by the protocol layers.
5258  *
5259  *	This function may only be called from softirq context and interrupts
5260  *	should be enabled.
5261  *
5262  *	Return values (usually ignored):
5263  *	NET_RX_SUCCESS: no congestion
5264  *	NET_RX_DROP: packet was dropped
5265  */
5266 int netif_receive_skb(struct sk_buff *skb)
5267 {
5268 	int ret;
5269 
5270 	trace_netif_receive_skb_entry(skb);
5271 
5272 	ret = netif_receive_skb_internal(skb);
5273 	trace_netif_receive_skb_exit(ret);
5274 
5275 	return ret;
5276 }
5277 EXPORT_SYMBOL(netif_receive_skb);
5278 
5279 /**
5280  *	netif_receive_skb_list - process many receive buffers from network
5281  *	@head: list of skbs to process.
5282  *
5283  *	Since return value of netif_receive_skb() is normally ignored, and
5284  *	wouldn't be meaningful for a list, this function returns void.
5285  *
5286  *	This function may only be called from softirq context and interrupts
5287  *	should be enabled.
5288  */
5289 void netif_receive_skb_list(struct list_head *head)
5290 {
5291 	struct sk_buff *skb;
5292 
5293 	if (list_empty(head))
5294 		return;
5295 	if (trace_netif_receive_skb_list_entry_enabled()) {
5296 		list_for_each_entry(skb, head, list)
5297 			trace_netif_receive_skb_list_entry(skb);
5298 	}
5299 	netif_receive_skb_list_internal(head);
5300 	trace_netif_receive_skb_list_exit(0);
5301 }
5302 EXPORT_SYMBOL(netif_receive_skb_list);
5303 
5304 DEFINE_PER_CPU(struct work_struct, flush_works);
5305 
5306 /* Network device is going away, flush any packets still pending */
5307 static void flush_backlog(struct work_struct *work)
5308 {
5309 	struct sk_buff *skb, *tmp;
5310 	struct softnet_data *sd;
5311 
5312 	local_bh_disable();
5313 	sd = this_cpu_ptr(&softnet_data);
5314 
5315 	local_irq_disable();
5316 	rps_lock(sd);
5317 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5318 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5319 			__skb_unlink(skb, &sd->input_pkt_queue);
5320 			kfree_skb(skb);
5321 			input_queue_head_incr(sd);
5322 		}
5323 	}
5324 	rps_unlock(sd);
5325 	local_irq_enable();
5326 
5327 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5328 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5329 			__skb_unlink(skb, &sd->process_queue);
5330 			kfree_skb(skb);
5331 			input_queue_head_incr(sd);
5332 		}
5333 	}
5334 	local_bh_enable();
5335 }
5336 
5337 static void flush_all_backlogs(void)
5338 {
5339 	unsigned int cpu;
5340 
5341 	get_online_cpus();
5342 
5343 	for_each_online_cpu(cpu)
5344 		queue_work_on(cpu, system_highpri_wq,
5345 			      per_cpu_ptr(&flush_works, cpu));
5346 
5347 	for_each_online_cpu(cpu)
5348 		flush_work(per_cpu_ptr(&flush_works, cpu));
5349 
5350 	put_online_cpus();
5351 }
5352 
5353 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5354 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5355 static int napi_gro_complete(struct sk_buff *skb)
5356 {
5357 	struct packet_offload *ptype;
5358 	__be16 type = skb->protocol;
5359 	struct list_head *head = &offload_base;
5360 	int err = -ENOENT;
5361 
5362 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5363 
5364 	if (NAPI_GRO_CB(skb)->count == 1) {
5365 		skb_shinfo(skb)->gso_size = 0;
5366 		goto out;
5367 	}
5368 
5369 	rcu_read_lock();
5370 	list_for_each_entry_rcu(ptype, head, list) {
5371 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5372 			continue;
5373 
5374 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5375 					 ipv6_gro_complete, inet_gro_complete,
5376 					 skb, 0);
5377 		break;
5378 	}
5379 	rcu_read_unlock();
5380 
5381 	if (err) {
5382 		WARN_ON(&ptype->list == head);
5383 		kfree_skb(skb);
5384 		return NET_RX_SUCCESS;
5385 	}
5386 
5387 out:
5388 	return netif_receive_skb_internal(skb);
5389 }
5390 
5391 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5392 				   bool flush_old)
5393 {
5394 	struct list_head *head = &napi->gro_hash[index].list;
5395 	struct sk_buff *skb, *p;
5396 
5397 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5398 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5399 			return;
5400 		skb_list_del_init(skb);
5401 		napi_gro_complete(skb);
5402 		napi->gro_hash[index].count--;
5403 	}
5404 
5405 	if (!napi->gro_hash[index].count)
5406 		__clear_bit(index, &napi->gro_bitmask);
5407 }
5408 
5409 /* napi->gro_hash[].list contains packets ordered by age.
5410  * youngest packets at the head of it.
5411  * Complete skbs in reverse order to reduce latencies.
5412  */
5413 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5414 {
5415 	unsigned long bitmask = napi->gro_bitmask;
5416 	unsigned int i, base = ~0U;
5417 
5418 	while ((i = ffs(bitmask)) != 0) {
5419 		bitmask >>= i;
5420 		base += i;
5421 		__napi_gro_flush_chain(napi, base, flush_old);
5422 	}
5423 }
5424 EXPORT_SYMBOL(napi_gro_flush);
5425 
5426 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5427 					  struct sk_buff *skb)
5428 {
5429 	unsigned int maclen = skb->dev->hard_header_len;
5430 	u32 hash = skb_get_hash_raw(skb);
5431 	struct list_head *head;
5432 	struct sk_buff *p;
5433 
5434 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5435 	list_for_each_entry(p, head, list) {
5436 		unsigned long diffs;
5437 
5438 		NAPI_GRO_CB(p)->flush = 0;
5439 
5440 		if (hash != skb_get_hash_raw(p)) {
5441 			NAPI_GRO_CB(p)->same_flow = 0;
5442 			continue;
5443 		}
5444 
5445 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5446 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5447 		if (skb_vlan_tag_present(p))
5448 			diffs |= p->vlan_tci ^ skb->vlan_tci;
5449 		diffs |= skb_metadata_dst_cmp(p, skb);
5450 		diffs |= skb_metadata_differs(p, skb);
5451 		if (maclen == ETH_HLEN)
5452 			diffs |= compare_ether_header(skb_mac_header(p),
5453 						      skb_mac_header(skb));
5454 		else if (!diffs)
5455 			diffs = memcmp(skb_mac_header(p),
5456 				       skb_mac_header(skb),
5457 				       maclen);
5458 		NAPI_GRO_CB(p)->same_flow = !diffs;
5459 	}
5460 
5461 	return head;
5462 }
5463 
5464 static void skb_gro_reset_offset(struct sk_buff *skb)
5465 {
5466 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5467 	const skb_frag_t *frag0 = &pinfo->frags[0];
5468 
5469 	NAPI_GRO_CB(skb)->data_offset = 0;
5470 	NAPI_GRO_CB(skb)->frag0 = NULL;
5471 	NAPI_GRO_CB(skb)->frag0_len = 0;
5472 
5473 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5474 	    pinfo->nr_frags &&
5475 	    !PageHighMem(skb_frag_page(frag0))) {
5476 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5477 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5478 						    skb_frag_size(frag0),
5479 						    skb->end - skb->tail);
5480 	}
5481 }
5482 
5483 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5484 {
5485 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5486 
5487 	BUG_ON(skb->end - skb->tail < grow);
5488 
5489 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5490 
5491 	skb->data_len -= grow;
5492 	skb->tail += grow;
5493 
5494 	pinfo->frags[0].page_offset += grow;
5495 	skb_frag_size_sub(&pinfo->frags[0], grow);
5496 
5497 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5498 		skb_frag_unref(skb, 0);
5499 		memmove(pinfo->frags, pinfo->frags + 1,
5500 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5501 	}
5502 }
5503 
5504 static void gro_flush_oldest(struct list_head *head)
5505 {
5506 	struct sk_buff *oldest;
5507 
5508 	oldest = list_last_entry(head, struct sk_buff, list);
5509 
5510 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5511 	 * impossible.
5512 	 */
5513 	if (WARN_ON_ONCE(!oldest))
5514 		return;
5515 
5516 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5517 	 * SKB to the chain.
5518 	 */
5519 	skb_list_del_init(oldest);
5520 	napi_gro_complete(oldest);
5521 }
5522 
5523 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5524 							   struct sk_buff *));
5525 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5526 							   struct sk_buff *));
5527 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5528 {
5529 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5530 	struct list_head *head = &offload_base;
5531 	struct packet_offload *ptype;
5532 	__be16 type = skb->protocol;
5533 	struct list_head *gro_head;
5534 	struct sk_buff *pp = NULL;
5535 	enum gro_result ret;
5536 	int same_flow;
5537 	int grow;
5538 
5539 	if (netif_elide_gro(skb->dev))
5540 		goto normal;
5541 
5542 	gro_head = gro_list_prepare(napi, skb);
5543 
5544 	rcu_read_lock();
5545 	list_for_each_entry_rcu(ptype, head, list) {
5546 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5547 			continue;
5548 
5549 		skb_set_network_header(skb, skb_gro_offset(skb));
5550 		skb_reset_mac_len(skb);
5551 		NAPI_GRO_CB(skb)->same_flow = 0;
5552 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5553 		NAPI_GRO_CB(skb)->free = 0;
5554 		NAPI_GRO_CB(skb)->encap_mark = 0;
5555 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5556 		NAPI_GRO_CB(skb)->is_fou = 0;
5557 		NAPI_GRO_CB(skb)->is_atomic = 1;
5558 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5559 
5560 		/* Setup for GRO checksum validation */
5561 		switch (skb->ip_summed) {
5562 		case CHECKSUM_COMPLETE:
5563 			NAPI_GRO_CB(skb)->csum = skb->csum;
5564 			NAPI_GRO_CB(skb)->csum_valid = 1;
5565 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5566 			break;
5567 		case CHECKSUM_UNNECESSARY:
5568 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5569 			NAPI_GRO_CB(skb)->csum_valid = 0;
5570 			break;
5571 		default:
5572 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5573 			NAPI_GRO_CB(skb)->csum_valid = 0;
5574 		}
5575 
5576 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5577 					ipv6_gro_receive, inet_gro_receive,
5578 					gro_head, skb);
5579 		break;
5580 	}
5581 	rcu_read_unlock();
5582 
5583 	if (&ptype->list == head)
5584 		goto normal;
5585 
5586 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5587 		ret = GRO_CONSUMED;
5588 		goto ok;
5589 	}
5590 
5591 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5592 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5593 
5594 	if (pp) {
5595 		skb_list_del_init(pp);
5596 		napi_gro_complete(pp);
5597 		napi->gro_hash[hash].count--;
5598 	}
5599 
5600 	if (same_flow)
5601 		goto ok;
5602 
5603 	if (NAPI_GRO_CB(skb)->flush)
5604 		goto normal;
5605 
5606 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5607 		gro_flush_oldest(gro_head);
5608 	} else {
5609 		napi->gro_hash[hash].count++;
5610 	}
5611 	NAPI_GRO_CB(skb)->count = 1;
5612 	NAPI_GRO_CB(skb)->age = jiffies;
5613 	NAPI_GRO_CB(skb)->last = skb;
5614 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5615 	list_add(&skb->list, gro_head);
5616 	ret = GRO_HELD;
5617 
5618 pull:
5619 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5620 	if (grow > 0)
5621 		gro_pull_from_frag0(skb, grow);
5622 ok:
5623 	if (napi->gro_hash[hash].count) {
5624 		if (!test_bit(hash, &napi->gro_bitmask))
5625 			__set_bit(hash, &napi->gro_bitmask);
5626 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5627 		__clear_bit(hash, &napi->gro_bitmask);
5628 	}
5629 
5630 	return ret;
5631 
5632 normal:
5633 	ret = GRO_NORMAL;
5634 	goto pull;
5635 }
5636 
5637 struct packet_offload *gro_find_receive_by_type(__be16 type)
5638 {
5639 	struct list_head *offload_head = &offload_base;
5640 	struct packet_offload *ptype;
5641 
5642 	list_for_each_entry_rcu(ptype, offload_head, list) {
5643 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5644 			continue;
5645 		return ptype;
5646 	}
5647 	return NULL;
5648 }
5649 EXPORT_SYMBOL(gro_find_receive_by_type);
5650 
5651 struct packet_offload *gro_find_complete_by_type(__be16 type)
5652 {
5653 	struct list_head *offload_head = &offload_base;
5654 	struct packet_offload *ptype;
5655 
5656 	list_for_each_entry_rcu(ptype, offload_head, list) {
5657 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5658 			continue;
5659 		return ptype;
5660 	}
5661 	return NULL;
5662 }
5663 EXPORT_SYMBOL(gro_find_complete_by_type);
5664 
5665 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5666 {
5667 	skb_dst_drop(skb);
5668 	secpath_reset(skb);
5669 	kmem_cache_free(skbuff_head_cache, skb);
5670 }
5671 
5672 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5673 {
5674 	switch (ret) {
5675 	case GRO_NORMAL:
5676 		if (netif_receive_skb_internal(skb))
5677 			ret = GRO_DROP;
5678 		break;
5679 
5680 	case GRO_DROP:
5681 		kfree_skb(skb);
5682 		break;
5683 
5684 	case GRO_MERGED_FREE:
5685 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5686 			napi_skb_free_stolen_head(skb);
5687 		else
5688 			__kfree_skb(skb);
5689 		break;
5690 
5691 	case GRO_HELD:
5692 	case GRO_MERGED:
5693 	case GRO_CONSUMED:
5694 		break;
5695 	}
5696 
5697 	return ret;
5698 }
5699 
5700 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5701 {
5702 	gro_result_t ret;
5703 
5704 	skb_mark_napi_id(skb, napi);
5705 	trace_napi_gro_receive_entry(skb);
5706 
5707 	skb_gro_reset_offset(skb);
5708 
5709 	ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5710 	trace_napi_gro_receive_exit(ret);
5711 
5712 	return ret;
5713 }
5714 EXPORT_SYMBOL(napi_gro_receive);
5715 
5716 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5717 {
5718 	if (unlikely(skb->pfmemalloc)) {
5719 		consume_skb(skb);
5720 		return;
5721 	}
5722 	__skb_pull(skb, skb_headlen(skb));
5723 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5724 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5725 	__vlan_hwaccel_clear_tag(skb);
5726 	skb->dev = napi->dev;
5727 	skb->skb_iif = 0;
5728 
5729 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
5730 	skb->pkt_type = PACKET_HOST;
5731 
5732 	skb->encapsulation = 0;
5733 	skb_shinfo(skb)->gso_type = 0;
5734 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5735 	secpath_reset(skb);
5736 
5737 	napi->skb = skb;
5738 }
5739 
5740 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5741 {
5742 	struct sk_buff *skb = napi->skb;
5743 
5744 	if (!skb) {
5745 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5746 		if (skb) {
5747 			napi->skb = skb;
5748 			skb_mark_napi_id(skb, napi);
5749 		}
5750 	}
5751 	return skb;
5752 }
5753 EXPORT_SYMBOL(napi_get_frags);
5754 
5755 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5756 				      struct sk_buff *skb,
5757 				      gro_result_t ret)
5758 {
5759 	switch (ret) {
5760 	case GRO_NORMAL:
5761 	case GRO_HELD:
5762 		__skb_push(skb, ETH_HLEN);
5763 		skb->protocol = eth_type_trans(skb, skb->dev);
5764 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5765 			ret = GRO_DROP;
5766 		break;
5767 
5768 	case GRO_DROP:
5769 		napi_reuse_skb(napi, skb);
5770 		break;
5771 
5772 	case GRO_MERGED_FREE:
5773 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5774 			napi_skb_free_stolen_head(skb);
5775 		else
5776 			napi_reuse_skb(napi, skb);
5777 		break;
5778 
5779 	case GRO_MERGED:
5780 	case GRO_CONSUMED:
5781 		break;
5782 	}
5783 
5784 	return ret;
5785 }
5786 
5787 /* Upper GRO stack assumes network header starts at gro_offset=0
5788  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5789  * We copy ethernet header into skb->data to have a common layout.
5790  */
5791 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5792 {
5793 	struct sk_buff *skb = napi->skb;
5794 	const struct ethhdr *eth;
5795 	unsigned int hlen = sizeof(*eth);
5796 
5797 	napi->skb = NULL;
5798 
5799 	skb_reset_mac_header(skb);
5800 	skb_gro_reset_offset(skb);
5801 
5802 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5803 		eth = skb_gro_header_slow(skb, hlen, 0);
5804 		if (unlikely(!eth)) {
5805 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5806 					     __func__, napi->dev->name);
5807 			napi_reuse_skb(napi, skb);
5808 			return NULL;
5809 		}
5810 	} else {
5811 		eth = (const struct ethhdr *)skb->data;
5812 		gro_pull_from_frag0(skb, hlen);
5813 		NAPI_GRO_CB(skb)->frag0 += hlen;
5814 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5815 	}
5816 	__skb_pull(skb, hlen);
5817 
5818 	/*
5819 	 * This works because the only protocols we care about don't require
5820 	 * special handling.
5821 	 * We'll fix it up properly in napi_frags_finish()
5822 	 */
5823 	skb->protocol = eth->h_proto;
5824 
5825 	return skb;
5826 }
5827 
5828 gro_result_t napi_gro_frags(struct napi_struct *napi)
5829 {
5830 	gro_result_t ret;
5831 	struct sk_buff *skb = napi_frags_skb(napi);
5832 
5833 	if (!skb)
5834 		return GRO_DROP;
5835 
5836 	trace_napi_gro_frags_entry(skb);
5837 
5838 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5839 	trace_napi_gro_frags_exit(ret);
5840 
5841 	return ret;
5842 }
5843 EXPORT_SYMBOL(napi_gro_frags);
5844 
5845 /* Compute the checksum from gro_offset and return the folded value
5846  * after adding in any pseudo checksum.
5847  */
5848 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5849 {
5850 	__wsum wsum;
5851 	__sum16 sum;
5852 
5853 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5854 
5855 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5856 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5857 	/* See comments in __skb_checksum_complete(). */
5858 	if (likely(!sum)) {
5859 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5860 		    !skb->csum_complete_sw)
5861 			netdev_rx_csum_fault(skb->dev, skb);
5862 	}
5863 
5864 	NAPI_GRO_CB(skb)->csum = wsum;
5865 	NAPI_GRO_CB(skb)->csum_valid = 1;
5866 
5867 	return sum;
5868 }
5869 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5870 
5871 static void net_rps_send_ipi(struct softnet_data *remsd)
5872 {
5873 #ifdef CONFIG_RPS
5874 	while (remsd) {
5875 		struct softnet_data *next = remsd->rps_ipi_next;
5876 
5877 		if (cpu_online(remsd->cpu))
5878 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5879 		remsd = next;
5880 	}
5881 #endif
5882 }
5883 
5884 /*
5885  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5886  * Note: called with local irq disabled, but exits with local irq enabled.
5887  */
5888 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5889 {
5890 #ifdef CONFIG_RPS
5891 	struct softnet_data *remsd = sd->rps_ipi_list;
5892 
5893 	if (remsd) {
5894 		sd->rps_ipi_list = NULL;
5895 
5896 		local_irq_enable();
5897 
5898 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5899 		net_rps_send_ipi(remsd);
5900 	} else
5901 #endif
5902 		local_irq_enable();
5903 }
5904 
5905 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5906 {
5907 #ifdef CONFIG_RPS
5908 	return sd->rps_ipi_list != NULL;
5909 #else
5910 	return false;
5911 #endif
5912 }
5913 
5914 static int process_backlog(struct napi_struct *napi, int quota)
5915 {
5916 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5917 	bool again = true;
5918 	int work = 0;
5919 
5920 	/* Check if we have pending ipi, its better to send them now,
5921 	 * not waiting net_rx_action() end.
5922 	 */
5923 	if (sd_has_rps_ipi_waiting(sd)) {
5924 		local_irq_disable();
5925 		net_rps_action_and_irq_enable(sd);
5926 	}
5927 
5928 	napi->weight = dev_rx_weight;
5929 	while (again) {
5930 		struct sk_buff *skb;
5931 
5932 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5933 			rcu_read_lock();
5934 			__netif_receive_skb(skb);
5935 			rcu_read_unlock();
5936 			input_queue_head_incr(sd);
5937 			if (++work >= quota)
5938 				return work;
5939 
5940 		}
5941 
5942 		local_irq_disable();
5943 		rps_lock(sd);
5944 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5945 			/*
5946 			 * Inline a custom version of __napi_complete().
5947 			 * only current cpu owns and manipulates this napi,
5948 			 * and NAPI_STATE_SCHED is the only possible flag set
5949 			 * on backlog.
5950 			 * We can use a plain write instead of clear_bit(),
5951 			 * and we dont need an smp_mb() memory barrier.
5952 			 */
5953 			napi->state = 0;
5954 			again = false;
5955 		} else {
5956 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5957 						   &sd->process_queue);
5958 		}
5959 		rps_unlock(sd);
5960 		local_irq_enable();
5961 	}
5962 
5963 	return work;
5964 }
5965 
5966 /**
5967  * __napi_schedule - schedule for receive
5968  * @n: entry to schedule
5969  *
5970  * The entry's receive function will be scheduled to run.
5971  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5972  */
5973 void __napi_schedule(struct napi_struct *n)
5974 {
5975 	unsigned long flags;
5976 
5977 	local_irq_save(flags);
5978 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5979 	local_irq_restore(flags);
5980 }
5981 EXPORT_SYMBOL(__napi_schedule);
5982 
5983 /**
5984  *	napi_schedule_prep - check if napi can be scheduled
5985  *	@n: napi context
5986  *
5987  * Test if NAPI routine is already running, and if not mark
5988  * it as running.  This is used as a condition variable
5989  * insure only one NAPI poll instance runs.  We also make
5990  * sure there is no pending NAPI disable.
5991  */
5992 bool napi_schedule_prep(struct napi_struct *n)
5993 {
5994 	unsigned long val, new;
5995 
5996 	do {
5997 		val = READ_ONCE(n->state);
5998 		if (unlikely(val & NAPIF_STATE_DISABLE))
5999 			return false;
6000 		new = val | NAPIF_STATE_SCHED;
6001 
6002 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6003 		 * This was suggested by Alexander Duyck, as compiler
6004 		 * emits better code than :
6005 		 * if (val & NAPIF_STATE_SCHED)
6006 		 *     new |= NAPIF_STATE_MISSED;
6007 		 */
6008 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6009 						   NAPIF_STATE_MISSED;
6010 	} while (cmpxchg(&n->state, val, new) != val);
6011 
6012 	return !(val & NAPIF_STATE_SCHED);
6013 }
6014 EXPORT_SYMBOL(napi_schedule_prep);
6015 
6016 /**
6017  * __napi_schedule_irqoff - schedule for receive
6018  * @n: entry to schedule
6019  *
6020  * Variant of __napi_schedule() assuming hard irqs are masked
6021  */
6022 void __napi_schedule_irqoff(struct napi_struct *n)
6023 {
6024 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6025 }
6026 EXPORT_SYMBOL(__napi_schedule_irqoff);
6027 
6028 bool napi_complete_done(struct napi_struct *n, int work_done)
6029 {
6030 	unsigned long flags, val, new;
6031 
6032 	/*
6033 	 * 1) Don't let napi dequeue from the cpu poll list
6034 	 *    just in case its running on a different cpu.
6035 	 * 2) If we are busy polling, do nothing here, we have
6036 	 *    the guarantee we will be called later.
6037 	 */
6038 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6039 				 NAPIF_STATE_IN_BUSY_POLL)))
6040 		return false;
6041 
6042 	if (n->gro_bitmask) {
6043 		unsigned long timeout = 0;
6044 
6045 		if (work_done)
6046 			timeout = n->dev->gro_flush_timeout;
6047 
6048 		/* When the NAPI instance uses a timeout and keeps postponing
6049 		 * it, we need to bound somehow the time packets are kept in
6050 		 * the GRO layer
6051 		 */
6052 		napi_gro_flush(n, !!timeout);
6053 		if (timeout)
6054 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
6055 				      HRTIMER_MODE_REL_PINNED);
6056 	}
6057 	if (unlikely(!list_empty(&n->poll_list))) {
6058 		/* If n->poll_list is not empty, we need to mask irqs */
6059 		local_irq_save(flags);
6060 		list_del_init(&n->poll_list);
6061 		local_irq_restore(flags);
6062 	}
6063 
6064 	do {
6065 		val = READ_ONCE(n->state);
6066 
6067 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6068 
6069 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6070 
6071 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6072 		 * because we will call napi->poll() one more time.
6073 		 * This C code was suggested by Alexander Duyck to help gcc.
6074 		 */
6075 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6076 						    NAPIF_STATE_SCHED;
6077 	} while (cmpxchg(&n->state, val, new) != val);
6078 
6079 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6080 		__napi_schedule(n);
6081 		return false;
6082 	}
6083 
6084 	return true;
6085 }
6086 EXPORT_SYMBOL(napi_complete_done);
6087 
6088 /* must be called under rcu_read_lock(), as we dont take a reference */
6089 static struct napi_struct *napi_by_id(unsigned int napi_id)
6090 {
6091 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6092 	struct napi_struct *napi;
6093 
6094 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6095 		if (napi->napi_id == napi_id)
6096 			return napi;
6097 
6098 	return NULL;
6099 }
6100 
6101 #if defined(CONFIG_NET_RX_BUSY_POLL)
6102 
6103 #define BUSY_POLL_BUDGET 8
6104 
6105 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6106 {
6107 	int rc;
6108 
6109 	/* Busy polling means there is a high chance device driver hard irq
6110 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6111 	 * set in napi_schedule_prep().
6112 	 * Since we are about to call napi->poll() once more, we can safely
6113 	 * clear NAPI_STATE_MISSED.
6114 	 *
6115 	 * Note: x86 could use a single "lock and ..." instruction
6116 	 * to perform these two clear_bit()
6117 	 */
6118 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6119 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6120 
6121 	local_bh_disable();
6122 
6123 	/* All we really want here is to re-enable device interrupts.
6124 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6125 	 */
6126 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
6127 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6128 	netpoll_poll_unlock(have_poll_lock);
6129 	if (rc == BUSY_POLL_BUDGET)
6130 		__napi_schedule(napi);
6131 	local_bh_enable();
6132 }
6133 
6134 void napi_busy_loop(unsigned int napi_id,
6135 		    bool (*loop_end)(void *, unsigned long),
6136 		    void *loop_end_arg)
6137 {
6138 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6139 	int (*napi_poll)(struct napi_struct *napi, int budget);
6140 	void *have_poll_lock = NULL;
6141 	struct napi_struct *napi;
6142 
6143 restart:
6144 	napi_poll = NULL;
6145 
6146 	rcu_read_lock();
6147 
6148 	napi = napi_by_id(napi_id);
6149 	if (!napi)
6150 		goto out;
6151 
6152 	preempt_disable();
6153 	for (;;) {
6154 		int work = 0;
6155 
6156 		local_bh_disable();
6157 		if (!napi_poll) {
6158 			unsigned long val = READ_ONCE(napi->state);
6159 
6160 			/* If multiple threads are competing for this napi,
6161 			 * we avoid dirtying napi->state as much as we can.
6162 			 */
6163 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6164 				   NAPIF_STATE_IN_BUSY_POLL))
6165 				goto count;
6166 			if (cmpxchg(&napi->state, val,
6167 				    val | NAPIF_STATE_IN_BUSY_POLL |
6168 					  NAPIF_STATE_SCHED) != val)
6169 				goto count;
6170 			have_poll_lock = netpoll_poll_lock(napi);
6171 			napi_poll = napi->poll;
6172 		}
6173 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6174 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6175 count:
6176 		if (work > 0)
6177 			__NET_ADD_STATS(dev_net(napi->dev),
6178 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6179 		local_bh_enable();
6180 
6181 		if (!loop_end || loop_end(loop_end_arg, start_time))
6182 			break;
6183 
6184 		if (unlikely(need_resched())) {
6185 			if (napi_poll)
6186 				busy_poll_stop(napi, have_poll_lock);
6187 			preempt_enable();
6188 			rcu_read_unlock();
6189 			cond_resched();
6190 			if (loop_end(loop_end_arg, start_time))
6191 				return;
6192 			goto restart;
6193 		}
6194 		cpu_relax();
6195 	}
6196 	if (napi_poll)
6197 		busy_poll_stop(napi, have_poll_lock);
6198 	preempt_enable();
6199 out:
6200 	rcu_read_unlock();
6201 }
6202 EXPORT_SYMBOL(napi_busy_loop);
6203 
6204 #endif /* CONFIG_NET_RX_BUSY_POLL */
6205 
6206 static void napi_hash_add(struct napi_struct *napi)
6207 {
6208 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6209 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6210 		return;
6211 
6212 	spin_lock(&napi_hash_lock);
6213 
6214 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6215 	do {
6216 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6217 			napi_gen_id = MIN_NAPI_ID;
6218 	} while (napi_by_id(napi_gen_id));
6219 	napi->napi_id = napi_gen_id;
6220 
6221 	hlist_add_head_rcu(&napi->napi_hash_node,
6222 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6223 
6224 	spin_unlock(&napi_hash_lock);
6225 }
6226 
6227 /* Warning : caller is responsible to make sure rcu grace period
6228  * is respected before freeing memory containing @napi
6229  */
6230 bool napi_hash_del(struct napi_struct *napi)
6231 {
6232 	bool rcu_sync_needed = false;
6233 
6234 	spin_lock(&napi_hash_lock);
6235 
6236 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6237 		rcu_sync_needed = true;
6238 		hlist_del_rcu(&napi->napi_hash_node);
6239 	}
6240 	spin_unlock(&napi_hash_lock);
6241 	return rcu_sync_needed;
6242 }
6243 EXPORT_SYMBOL_GPL(napi_hash_del);
6244 
6245 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6246 {
6247 	struct napi_struct *napi;
6248 
6249 	napi = container_of(timer, struct napi_struct, timer);
6250 
6251 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6252 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6253 	 */
6254 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6255 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6256 		__napi_schedule_irqoff(napi);
6257 
6258 	return HRTIMER_NORESTART;
6259 }
6260 
6261 static void init_gro_hash(struct napi_struct *napi)
6262 {
6263 	int i;
6264 
6265 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6266 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6267 		napi->gro_hash[i].count = 0;
6268 	}
6269 	napi->gro_bitmask = 0;
6270 }
6271 
6272 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6273 		    int (*poll)(struct napi_struct *, int), int weight)
6274 {
6275 	INIT_LIST_HEAD(&napi->poll_list);
6276 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6277 	napi->timer.function = napi_watchdog;
6278 	init_gro_hash(napi);
6279 	napi->skb = NULL;
6280 	napi->poll = poll;
6281 	if (weight > NAPI_POLL_WEIGHT)
6282 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6283 				weight);
6284 	napi->weight = weight;
6285 	list_add(&napi->dev_list, &dev->napi_list);
6286 	napi->dev = dev;
6287 #ifdef CONFIG_NETPOLL
6288 	napi->poll_owner = -1;
6289 #endif
6290 	set_bit(NAPI_STATE_SCHED, &napi->state);
6291 	napi_hash_add(napi);
6292 }
6293 EXPORT_SYMBOL(netif_napi_add);
6294 
6295 void napi_disable(struct napi_struct *n)
6296 {
6297 	might_sleep();
6298 	set_bit(NAPI_STATE_DISABLE, &n->state);
6299 
6300 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6301 		msleep(1);
6302 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6303 		msleep(1);
6304 
6305 	hrtimer_cancel(&n->timer);
6306 
6307 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6308 }
6309 EXPORT_SYMBOL(napi_disable);
6310 
6311 static void flush_gro_hash(struct napi_struct *napi)
6312 {
6313 	int i;
6314 
6315 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6316 		struct sk_buff *skb, *n;
6317 
6318 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6319 			kfree_skb(skb);
6320 		napi->gro_hash[i].count = 0;
6321 	}
6322 }
6323 
6324 /* Must be called in process context */
6325 void netif_napi_del(struct napi_struct *napi)
6326 {
6327 	might_sleep();
6328 	if (napi_hash_del(napi))
6329 		synchronize_net();
6330 	list_del_init(&napi->dev_list);
6331 	napi_free_frags(napi);
6332 
6333 	flush_gro_hash(napi);
6334 	napi->gro_bitmask = 0;
6335 }
6336 EXPORT_SYMBOL(netif_napi_del);
6337 
6338 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6339 {
6340 	void *have;
6341 	int work, weight;
6342 
6343 	list_del_init(&n->poll_list);
6344 
6345 	have = netpoll_poll_lock(n);
6346 
6347 	weight = n->weight;
6348 
6349 	/* This NAPI_STATE_SCHED test is for avoiding a race
6350 	 * with netpoll's poll_napi().  Only the entity which
6351 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6352 	 * actually make the ->poll() call.  Therefore we avoid
6353 	 * accidentally calling ->poll() when NAPI is not scheduled.
6354 	 */
6355 	work = 0;
6356 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6357 		work = n->poll(n, weight);
6358 		trace_napi_poll(n, work, weight);
6359 	}
6360 
6361 	WARN_ON_ONCE(work > weight);
6362 
6363 	if (likely(work < weight))
6364 		goto out_unlock;
6365 
6366 	/* Drivers must not modify the NAPI state if they
6367 	 * consume the entire weight.  In such cases this code
6368 	 * still "owns" the NAPI instance and therefore can
6369 	 * move the instance around on the list at-will.
6370 	 */
6371 	if (unlikely(napi_disable_pending(n))) {
6372 		napi_complete(n);
6373 		goto out_unlock;
6374 	}
6375 
6376 	if (n->gro_bitmask) {
6377 		/* flush too old packets
6378 		 * If HZ < 1000, flush all packets.
6379 		 */
6380 		napi_gro_flush(n, HZ >= 1000);
6381 	}
6382 
6383 	/* Some drivers may have called napi_schedule
6384 	 * prior to exhausting their budget.
6385 	 */
6386 	if (unlikely(!list_empty(&n->poll_list))) {
6387 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6388 			     n->dev ? n->dev->name : "backlog");
6389 		goto out_unlock;
6390 	}
6391 
6392 	list_add_tail(&n->poll_list, repoll);
6393 
6394 out_unlock:
6395 	netpoll_poll_unlock(have);
6396 
6397 	return work;
6398 }
6399 
6400 static __latent_entropy void net_rx_action(struct softirq_action *h)
6401 {
6402 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6403 	unsigned long time_limit = jiffies +
6404 		usecs_to_jiffies(netdev_budget_usecs);
6405 	int budget = netdev_budget;
6406 	LIST_HEAD(list);
6407 	LIST_HEAD(repoll);
6408 
6409 	local_irq_disable();
6410 	list_splice_init(&sd->poll_list, &list);
6411 	local_irq_enable();
6412 
6413 	for (;;) {
6414 		struct napi_struct *n;
6415 
6416 		if (list_empty(&list)) {
6417 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6418 				goto out;
6419 			break;
6420 		}
6421 
6422 		n = list_first_entry(&list, struct napi_struct, poll_list);
6423 		budget -= napi_poll(n, &repoll);
6424 
6425 		/* If softirq window is exhausted then punt.
6426 		 * Allow this to run for 2 jiffies since which will allow
6427 		 * an average latency of 1.5/HZ.
6428 		 */
6429 		if (unlikely(budget <= 0 ||
6430 			     time_after_eq(jiffies, time_limit))) {
6431 			sd->time_squeeze++;
6432 			break;
6433 		}
6434 	}
6435 
6436 	local_irq_disable();
6437 
6438 	list_splice_tail_init(&sd->poll_list, &list);
6439 	list_splice_tail(&repoll, &list);
6440 	list_splice(&list, &sd->poll_list);
6441 	if (!list_empty(&sd->poll_list))
6442 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6443 
6444 	net_rps_action_and_irq_enable(sd);
6445 out:
6446 	__kfree_skb_flush();
6447 }
6448 
6449 struct netdev_adjacent {
6450 	struct net_device *dev;
6451 
6452 	/* upper master flag, there can only be one master device per list */
6453 	bool master;
6454 
6455 	/* counter for the number of times this device was added to us */
6456 	u16 ref_nr;
6457 
6458 	/* private field for the users */
6459 	void *private;
6460 
6461 	struct list_head list;
6462 	struct rcu_head rcu;
6463 };
6464 
6465 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6466 						 struct list_head *adj_list)
6467 {
6468 	struct netdev_adjacent *adj;
6469 
6470 	list_for_each_entry(adj, adj_list, list) {
6471 		if (adj->dev == adj_dev)
6472 			return adj;
6473 	}
6474 	return NULL;
6475 }
6476 
6477 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6478 {
6479 	struct net_device *dev = data;
6480 
6481 	return upper_dev == dev;
6482 }
6483 
6484 /**
6485  * netdev_has_upper_dev - Check if device is linked to an upper device
6486  * @dev: device
6487  * @upper_dev: upper device to check
6488  *
6489  * Find out if a device is linked to specified upper device and return true
6490  * in case it is. Note that this checks only immediate upper device,
6491  * not through a complete stack of devices. The caller must hold the RTNL lock.
6492  */
6493 bool netdev_has_upper_dev(struct net_device *dev,
6494 			  struct net_device *upper_dev)
6495 {
6496 	ASSERT_RTNL();
6497 
6498 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6499 					     upper_dev);
6500 }
6501 EXPORT_SYMBOL(netdev_has_upper_dev);
6502 
6503 /**
6504  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6505  * @dev: device
6506  * @upper_dev: upper device to check
6507  *
6508  * Find out if a device is linked to specified upper device and return true
6509  * in case it is. Note that this checks the entire upper device chain.
6510  * The caller must hold rcu lock.
6511  */
6512 
6513 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6514 				  struct net_device *upper_dev)
6515 {
6516 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6517 					       upper_dev);
6518 }
6519 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6520 
6521 /**
6522  * netdev_has_any_upper_dev - Check if device is linked to some device
6523  * @dev: device
6524  *
6525  * Find out if a device is linked to an upper device and return true in case
6526  * it is. The caller must hold the RTNL lock.
6527  */
6528 bool netdev_has_any_upper_dev(struct net_device *dev)
6529 {
6530 	ASSERT_RTNL();
6531 
6532 	return !list_empty(&dev->adj_list.upper);
6533 }
6534 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6535 
6536 /**
6537  * netdev_master_upper_dev_get - Get master upper device
6538  * @dev: device
6539  *
6540  * Find a master upper device and return pointer to it or NULL in case
6541  * it's not there. The caller must hold the RTNL lock.
6542  */
6543 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6544 {
6545 	struct netdev_adjacent *upper;
6546 
6547 	ASSERT_RTNL();
6548 
6549 	if (list_empty(&dev->adj_list.upper))
6550 		return NULL;
6551 
6552 	upper = list_first_entry(&dev->adj_list.upper,
6553 				 struct netdev_adjacent, list);
6554 	if (likely(upper->master))
6555 		return upper->dev;
6556 	return NULL;
6557 }
6558 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6559 
6560 /**
6561  * netdev_has_any_lower_dev - Check if device is linked to some device
6562  * @dev: device
6563  *
6564  * Find out if a device is linked to a lower device and return true in case
6565  * it is. The caller must hold the RTNL lock.
6566  */
6567 static bool netdev_has_any_lower_dev(struct net_device *dev)
6568 {
6569 	ASSERT_RTNL();
6570 
6571 	return !list_empty(&dev->adj_list.lower);
6572 }
6573 
6574 void *netdev_adjacent_get_private(struct list_head *adj_list)
6575 {
6576 	struct netdev_adjacent *adj;
6577 
6578 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6579 
6580 	return adj->private;
6581 }
6582 EXPORT_SYMBOL(netdev_adjacent_get_private);
6583 
6584 /**
6585  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6586  * @dev: device
6587  * @iter: list_head ** of the current position
6588  *
6589  * Gets the next device from the dev's upper list, starting from iter
6590  * position. The caller must hold RCU read lock.
6591  */
6592 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6593 						 struct list_head **iter)
6594 {
6595 	struct netdev_adjacent *upper;
6596 
6597 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6598 
6599 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6600 
6601 	if (&upper->list == &dev->adj_list.upper)
6602 		return NULL;
6603 
6604 	*iter = &upper->list;
6605 
6606 	return upper->dev;
6607 }
6608 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6609 
6610 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6611 						    struct list_head **iter)
6612 {
6613 	struct netdev_adjacent *upper;
6614 
6615 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6616 
6617 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6618 
6619 	if (&upper->list == &dev->adj_list.upper)
6620 		return NULL;
6621 
6622 	*iter = &upper->list;
6623 
6624 	return upper->dev;
6625 }
6626 
6627 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6628 				  int (*fn)(struct net_device *dev,
6629 					    void *data),
6630 				  void *data)
6631 {
6632 	struct net_device *udev;
6633 	struct list_head *iter;
6634 	int ret;
6635 
6636 	for (iter = &dev->adj_list.upper,
6637 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6638 	     udev;
6639 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6640 		/* first is the upper device itself */
6641 		ret = fn(udev, data);
6642 		if (ret)
6643 			return ret;
6644 
6645 		/* then look at all of its upper devices */
6646 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6647 		if (ret)
6648 			return ret;
6649 	}
6650 
6651 	return 0;
6652 }
6653 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6654 
6655 /**
6656  * netdev_lower_get_next_private - Get the next ->private from the
6657  *				   lower neighbour list
6658  * @dev: device
6659  * @iter: list_head ** of the current position
6660  *
6661  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6662  * list, starting from iter position. The caller must hold either hold the
6663  * RTNL lock or its own locking that guarantees that the neighbour lower
6664  * list will remain unchanged.
6665  */
6666 void *netdev_lower_get_next_private(struct net_device *dev,
6667 				    struct list_head **iter)
6668 {
6669 	struct netdev_adjacent *lower;
6670 
6671 	lower = list_entry(*iter, struct netdev_adjacent, list);
6672 
6673 	if (&lower->list == &dev->adj_list.lower)
6674 		return NULL;
6675 
6676 	*iter = lower->list.next;
6677 
6678 	return lower->private;
6679 }
6680 EXPORT_SYMBOL(netdev_lower_get_next_private);
6681 
6682 /**
6683  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6684  *				       lower neighbour list, RCU
6685  *				       variant
6686  * @dev: device
6687  * @iter: list_head ** of the current position
6688  *
6689  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6690  * list, starting from iter position. The caller must hold RCU read lock.
6691  */
6692 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6693 					struct list_head **iter)
6694 {
6695 	struct netdev_adjacent *lower;
6696 
6697 	WARN_ON_ONCE(!rcu_read_lock_held());
6698 
6699 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6700 
6701 	if (&lower->list == &dev->adj_list.lower)
6702 		return NULL;
6703 
6704 	*iter = &lower->list;
6705 
6706 	return lower->private;
6707 }
6708 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6709 
6710 /**
6711  * netdev_lower_get_next - Get the next device from the lower neighbour
6712  *                         list
6713  * @dev: device
6714  * @iter: list_head ** of the current position
6715  *
6716  * Gets the next netdev_adjacent from the dev's lower neighbour
6717  * list, starting from iter position. The caller must hold RTNL lock or
6718  * its own locking that guarantees that the neighbour lower
6719  * list will remain unchanged.
6720  */
6721 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6722 {
6723 	struct netdev_adjacent *lower;
6724 
6725 	lower = list_entry(*iter, struct netdev_adjacent, list);
6726 
6727 	if (&lower->list == &dev->adj_list.lower)
6728 		return NULL;
6729 
6730 	*iter = lower->list.next;
6731 
6732 	return lower->dev;
6733 }
6734 EXPORT_SYMBOL(netdev_lower_get_next);
6735 
6736 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6737 						struct list_head **iter)
6738 {
6739 	struct netdev_adjacent *lower;
6740 
6741 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6742 
6743 	if (&lower->list == &dev->adj_list.lower)
6744 		return NULL;
6745 
6746 	*iter = &lower->list;
6747 
6748 	return lower->dev;
6749 }
6750 
6751 int netdev_walk_all_lower_dev(struct net_device *dev,
6752 			      int (*fn)(struct net_device *dev,
6753 					void *data),
6754 			      void *data)
6755 {
6756 	struct net_device *ldev;
6757 	struct list_head *iter;
6758 	int ret;
6759 
6760 	for (iter = &dev->adj_list.lower,
6761 	     ldev = netdev_next_lower_dev(dev, &iter);
6762 	     ldev;
6763 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6764 		/* first is the lower device itself */
6765 		ret = fn(ldev, data);
6766 		if (ret)
6767 			return ret;
6768 
6769 		/* then look at all of its lower devices */
6770 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6771 		if (ret)
6772 			return ret;
6773 	}
6774 
6775 	return 0;
6776 }
6777 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6778 
6779 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6780 						    struct list_head **iter)
6781 {
6782 	struct netdev_adjacent *lower;
6783 
6784 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6785 	if (&lower->list == &dev->adj_list.lower)
6786 		return NULL;
6787 
6788 	*iter = &lower->list;
6789 
6790 	return lower->dev;
6791 }
6792 
6793 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6794 				  int (*fn)(struct net_device *dev,
6795 					    void *data),
6796 				  void *data)
6797 {
6798 	struct net_device *ldev;
6799 	struct list_head *iter;
6800 	int ret;
6801 
6802 	for (iter = &dev->adj_list.lower,
6803 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6804 	     ldev;
6805 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6806 		/* first is the lower device itself */
6807 		ret = fn(ldev, data);
6808 		if (ret)
6809 			return ret;
6810 
6811 		/* then look at all of its lower devices */
6812 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6813 		if (ret)
6814 			return ret;
6815 	}
6816 
6817 	return 0;
6818 }
6819 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6820 
6821 /**
6822  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6823  *				       lower neighbour list, RCU
6824  *				       variant
6825  * @dev: device
6826  *
6827  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6828  * list. The caller must hold RCU read lock.
6829  */
6830 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6831 {
6832 	struct netdev_adjacent *lower;
6833 
6834 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6835 			struct netdev_adjacent, list);
6836 	if (lower)
6837 		return lower->private;
6838 	return NULL;
6839 }
6840 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6841 
6842 /**
6843  * netdev_master_upper_dev_get_rcu - Get master upper device
6844  * @dev: device
6845  *
6846  * Find a master upper device and return pointer to it or NULL in case
6847  * it's not there. The caller must hold the RCU read lock.
6848  */
6849 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6850 {
6851 	struct netdev_adjacent *upper;
6852 
6853 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6854 				       struct netdev_adjacent, list);
6855 	if (upper && likely(upper->master))
6856 		return upper->dev;
6857 	return NULL;
6858 }
6859 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6860 
6861 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6862 			      struct net_device *adj_dev,
6863 			      struct list_head *dev_list)
6864 {
6865 	char linkname[IFNAMSIZ+7];
6866 
6867 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6868 		"upper_%s" : "lower_%s", adj_dev->name);
6869 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6870 				 linkname);
6871 }
6872 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6873 			       char *name,
6874 			       struct list_head *dev_list)
6875 {
6876 	char linkname[IFNAMSIZ+7];
6877 
6878 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6879 		"upper_%s" : "lower_%s", name);
6880 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6881 }
6882 
6883 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6884 						 struct net_device *adj_dev,
6885 						 struct list_head *dev_list)
6886 {
6887 	return (dev_list == &dev->adj_list.upper ||
6888 		dev_list == &dev->adj_list.lower) &&
6889 		net_eq(dev_net(dev), dev_net(adj_dev));
6890 }
6891 
6892 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6893 					struct net_device *adj_dev,
6894 					struct list_head *dev_list,
6895 					void *private, bool master)
6896 {
6897 	struct netdev_adjacent *adj;
6898 	int ret;
6899 
6900 	adj = __netdev_find_adj(adj_dev, dev_list);
6901 
6902 	if (adj) {
6903 		adj->ref_nr += 1;
6904 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6905 			 dev->name, adj_dev->name, adj->ref_nr);
6906 
6907 		return 0;
6908 	}
6909 
6910 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6911 	if (!adj)
6912 		return -ENOMEM;
6913 
6914 	adj->dev = adj_dev;
6915 	adj->master = master;
6916 	adj->ref_nr = 1;
6917 	adj->private = private;
6918 	dev_hold(adj_dev);
6919 
6920 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6921 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6922 
6923 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6924 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6925 		if (ret)
6926 			goto free_adj;
6927 	}
6928 
6929 	/* Ensure that master link is always the first item in list. */
6930 	if (master) {
6931 		ret = sysfs_create_link(&(dev->dev.kobj),
6932 					&(adj_dev->dev.kobj), "master");
6933 		if (ret)
6934 			goto remove_symlinks;
6935 
6936 		list_add_rcu(&adj->list, dev_list);
6937 	} else {
6938 		list_add_tail_rcu(&adj->list, dev_list);
6939 	}
6940 
6941 	return 0;
6942 
6943 remove_symlinks:
6944 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6945 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6946 free_adj:
6947 	kfree(adj);
6948 	dev_put(adj_dev);
6949 
6950 	return ret;
6951 }
6952 
6953 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6954 					 struct net_device *adj_dev,
6955 					 u16 ref_nr,
6956 					 struct list_head *dev_list)
6957 {
6958 	struct netdev_adjacent *adj;
6959 
6960 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6961 		 dev->name, adj_dev->name, ref_nr);
6962 
6963 	adj = __netdev_find_adj(adj_dev, dev_list);
6964 
6965 	if (!adj) {
6966 		pr_err("Adjacency does not exist for device %s from %s\n",
6967 		       dev->name, adj_dev->name);
6968 		WARN_ON(1);
6969 		return;
6970 	}
6971 
6972 	if (adj->ref_nr > ref_nr) {
6973 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6974 			 dev->name, adj_dev->name, ref_nr,
6975 			 adj->ref_nr - ref_nr);
6976 		adj->ref_nr -= ref_nr;
6977 		return;
6978 	}
6979 
6980 	if (adj->master)
6981 		sysfs_remove_link(&(dev->dev.kobj), "master");
6982 
6983 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6984 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6985 
6986 	list_del_rcu(&adj->list);
6987 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6988 		 adj_dev->name, dev->name, adj_dev->name);
6989 	dev_put(adj_dev);
6990 	kfree_rcu(adj, rcu);
6991 }
6992 
6993 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6994 					    struct net_device *upper_dev,
6995 					    struct list_head *up_list,
6996 					    struct list_head *down_list,
6997 					    void *private, bool master)
6998 {
6999 	int ret;
7000 
7001 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7002 					   private, master);
7003 	if (ret)
7004 		return ret;
7005 
7006 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7007 					   private, false);
7008 	if (ret) {
7009 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7010 		return ret;
7011 	}
7012 
7013 	return 0;
7014 }
7015 
7016 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7017 					       struct net_device *upper_dev,
7018 					       u16 ref_nr,
7019 					       struct list_head *up_list,
7020 					       struct list_head *down_list)
7021 {
7022 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7023 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7024 }
7025 
7026 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7027 						struct net_device *upper_dev,
7028 						void *private, bool master)
7029 {
7030 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7031 						&dev->adj_list.upper,
7032 						&upper_dev->adj_list.lower,
7033 						private, master);
7034 }
7035 
7036 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7037 						   struct net_device *upper_dev)
7038 {
7039 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7040 					   &dev->adj_list.upper,
7041 					   &upper_dev->adj_list.lower);
7042 }
7043 
7044 static int __netdev_upper_dev_link(struct net_device *dev,
7045 				   struct net_device *upper_dev, bool master,
7046 				   void *upper_priv, void *upper_info,
7047 				   struct netlink_ext_ack *extack)
7048 {
7049 	struct netdev_notifier_changeupper_info changeupper_info = {
7050 		.info = {
7051 			.dev = dev,
7052 			.extack = extack,
7053 		},
7054 		.upper_dev = upper_dev,
7055 		.master = master,
7056 		.linking = true,
7057 		.upper_info = upper_info,
7058 	};
7059 	struct net_device *master_dev;
7060 	int ret = 0;
7061 
7062 	ASSERT_RTNL();
7063 
7064 	if (dev == upper_dev)
7065 		return -EBUSY;
7066 
7067 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7068 	if (netdev_has_upper_dev(upper_dev, dev))
7069 		return -EBUSY;
7070 
7071 	if (!master) {
7072 		if (netdev_has_upper_dev(dev, upper_dev))
7073 			return -EEXIST;
7074 	} else {
7075 		master_dev = netdev_master_upper_dev_get(dev);
7076 		if (master_dev)
7077 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7078 	}
7079 
7080 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7081 					    &changeupper_info.info);
7082 	ret = notifier_to_errno(ret);
7083 	if (ret)
7084 		return ret;
7085 
7086 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7087 						   master);
7088 	if (ret)
7089 		return ret;
7090 
7091 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7092 					    &changeupper_info.info);
7093 	ret = notifier_to_errno(ret);
7094 	if (ret)
7095 		goto rollback;
7096 
7097 	return 0;
7098 
7099 rollback:
7100 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7101 
7102 	return ret;
7103 }
7104 
7105 /**
7106  * netdev_upper_dev_link - Add a link to the upper device
7107  * @dev: device
7108  * @upper_dev: new upper device
7109  * @extack: netlink extended ack
7110  *
7111  * Adds a link to device which is upper to this one. The caller must hold
7112  * the RTNL lock. On a failure a negative errno code is returned.
7113  * On success the reference counts are adjusted and the function
7114  * returns zero.
7115  */
7116 int netdev_upper_dev_link(struct net_device *dev,
7117 			  struct net_device *upper_dev,
7118 			  struct netlink_ext_ack *extack)
7119 {
7120 	return __netdev_upper_dev_link(dev, upper_dev, false,
7121 				       NULL, NULL, extack);
7122 }
7123 EXPORT_SYMBOL(netdev_upper_dev_link);
7124 
7125 /**
7126  * netdev_master_upper_dev_link - Add a master link to the upper device
7127  * @dev: device
7128  * @upper_dev: new upper device
7129  * @upper_priv: upper device private
7130  * @upper_info: upper info to be passed down via notifier
7131  * @extack: netlink extended ack
7132  *
7133  * Adds a link to device which is upper to this one. In this case, only
7134  * one master upper device can be linked, although other non-master devices
7135  * might be linked as well. The caller must hold the RTNL lock.
7136  * On a failure a negative errno code is returned. On success the reference
7137  * counts are adjusted and the function returns zero.
7138  */
7139 int netdev_master_upper_dev_link(struct net_device *dev,
7140 				 struct net_device *upper_dev,
7141 				 void *upper_priv, void *upper_info,
7142 				 struct netlink_ext_ack *extack)
7143 {
7144 	return __netdev_upper_dev_link(dev, upper_dev, true,
7145 				       upper_priv, upper_info, extack);
7146 }
7147 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7148 
7149 /**
7150  * netdev_upper_dev_unlink - Removes a link to upper device
7151  * @dev: device
7152  * @upper_dev: new upper device
7153  *
7154  * Removes a link to device which is upper to this one. The caller must hold
7155  * the RTNL lock.
7156  */
7157 void netdev_upper_dev_unlink(struct net_device *dev,
7158 			     struct net_device *upper_dev)
7159 {
7160 	struct netdev_notifier_changeupper_info changeupper_info = {
7161 		.info = {
7162 			.dev = dev,
7163 		},
7164 		.upper_dev = upper_dev,
7165 		.linking = false,
7166 	};
7167 
7168 	ASSERT_RTNL();
7169 
7170 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7171 
7172 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7173 				      &changeupper_info.info);
7174 
7175 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7176 
7177 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7178 				      &changeupper_info.info);
7179 }
7180 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7181 
7182 /**
7183  * netdev_bonding_info_change - Dispatch event about slave change
7184  * @dev: device
7185  * @bonding_info: info to dispatch
7186  *
7187  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7188  * The caller must hold the RTNL lock.
7189  */
7190 void netdev_bonding_info_change(struct net_device *dev,
7191 				struct netdev_bonding_info *bonding_info)
7192 {
7193 	struct netdev_notifier_bonding_info info = {
7194 		.info.dev = dev,
7195 	};
7196 
7197 	memcpy(&info.bonding_info, bonding_info,
7198 	       sizeof(struct netdev_bonding_info));
7199 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7200 				      &info.info);
7201 }
7202 EXPORT_SYMBOL(netdev_bonding_info_change);
7203 
7204 static void netdev_adjacent_add_links(struct net_device *dev)
7205 {
7206 	struct netdev_adjacent *iter;
7207 
7208 	struct net *net = dev_net(dev);
7209 
7210 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7211 		if (!net_eq(net, dev_net(iter->dev)))
7212 			continue;
7213 		netdev_adjacent_sysfs_add(iter->dev, dev,
7214 					  &iter->dev->adj_list.lower);
7215 		netdev_adjacent_sysfs_add(dev, iter->dev,
7216 					  &dev->adj_list.upper);
7217 	}
7218 
7219 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7220 		if (!net_eq(net, dev_net(iter->dev)))
7221 			continue;
7222 		netdev_adjacent_sysfs_add(iter->dev, dev,
7223 					  &iter->dev->adj_list.upper);
7224 		netdev_adjacent_sysfs_add(dev, iter->dev,
7225 					  &dev->adj_list.lower);
7226 	}
7227 }
7228 
7229 static void netdev_adjacent_del_links(struct net_device *dev)
7230 {
7231 	struct netdev_adjacent *iter;
7232 
7233 	struct net *net = dev_net(dev);
7234 
7235 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7236 		if (!net_eq(net, dev_net(iter->dev)))
7237 			continue;
7238 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7239 					  &iter->dev->adj_list.lower);
7240 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7241 					  &dev->adj_list.upper);
7242 	}
7243 
7244 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7245 		if (!net_eq(net, dev_net(iter->dev)))
7246 			continue;
7247 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7248 					  &iter->dev->adj_list.upper);
7249 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7250 					  &dev->adj_list.lower);
7251 	}
7252 }
7253 
7254 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7255 {
7256 	struct netdev_adjacent *iter;
7257 
7258 	struct net *net = dev_net(dev);
7259 
7260 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7261 		if (!net_eq(net, dev_net(iter->dev)))
7262 			continue;
7263 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7264 					  &iter->dev->adj_list.lower);
7265 		netdev_adjacent_sysfs_add(iter->dev, dev,
7266 					  &iter->dev->adj_list.lower);
7267 	}
7268 
7269 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7270 		if (!net_eq(net, dev_net(iter->dev)))
7271 			continue;
7272 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7273 					  &iter->dev->adj_list.upper);
7274 		netdev_adjacent_sysfs_add(iter->dev, dev,
7275 					  &iter->dev->adj_list.upper);
7276 	}
7277 }
7278 
7279 void *netdev_lower_dev_get_private(struct net_device *dev,
7280 				   struct net_device *lower_dev)
7281 {
7282 	struct netdev_adjacent *lower;
7283 
7284 	if (!lower_dev)
7285 		return NULL;
7286 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7287 	if (!lower)
7288 		return NULL;
7289 
7290 	return lower->private;
7291 }
7292 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7293 
7294 
7295 int dev_get_nest_level(struct net_device *dev)
7296 {
7297 	struct net_device *lower = NULL;
7298 	struct list_head *iter;
7299 	int max_nest = -1;
7300 	int nest;
7301 
7302 	ASSERT_RTNL();
7303 
7304 	netdev_for_each_lower_dev(dev, lower, iter) {
7305 		nest = dev_get_nest_level(lower);
7306 		if (max_nest < nest)
7307 			max_nest = nest;
7308 	}
7309 
7310 	return max_nest + 1;
7311 }
7312 EXPORT_SYMBOL(dev_get_nest_level);
7313 
7314 /**
7315  * netdev_lower_change - Dispatch event about lower device state change
7316  * @lower_dev: device
7317  * @lower_state_info: state to dispatch
7318  *
7319  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7320  * The caller must hold the RTNL lock.
7321  */
7322 void netdev_lower_state_changed(struct net_device *lower_dev,
7323 				void *lower_state_info)
7324 {
7325 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7326 		.info.dev = lower_dev,
7327 	};
7328 
7329 	ASSERT_RTNL();
7330 	changelowerstate_info.lower_state_info = lower_state_info;
7331 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7332 				      &changelowerstate_info.info);
7333 }
7334 EXPORT_SYMBOL(netdev_lower_state_changed);
7335 
7336 static void dev_change_rx_flags(struct net_device *dev, int flags)
7337 {
7338 	const struct net_device_ops *ops = dev->netdev_ops;
7339 
7340 	if (ops->ndo_change_rx_flags)
7341 		ops->ndo_change_rx_flags(dev, flags);
7342 }
7343 
7344 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7345 {
7346 	unsigned int old_flags = dev->flags;
7347 	kuid_t uid;
7348 	kgid_t gid;
7349 
7350 	ASSERT_RTNL();
7351 
7352 	dev->flags |= IFF_PROMISC;
7353 	dev->promiscuity += inc;
7354 	if (dev->promiscuity == 0) {
7355 		/*
7356 		 * Avoid overflow.
7357 		 * If inc causes overflow, untouch promisc and return error.
7358 		 */
7359 		if (inc < 0)
7360 			dev->flags &= ~IFF_PROMISC;
7361 		else {
7362 			dev->promiscuity -= inc;
7363 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7364 				dev->name);
7365 			return -EOVERFLOW;
7366 		}
7367 	}
7368 	if (dev->flags != old_flags) {
7369 		pr_info("device %s %s promiscuous mode\n",
7370 			dev->name,
7371 			dev->flags & IFF_PROMISC ? "entered" : "left");
7372 		if (audit_enabled) {
7373 			current_uid_gid(&uid, &gid);
7374 			audit_log(audit_context(), GFP_ATOMIC,
7375 				  AUDIT_ANOM_PROMISCUOUS,
7376 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7377 				  dev->name, (dev->flags & IFF_PROMISC),
7378 				  (old_flags & IFF_PROMISC),
7379 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7380 				  from_kuid(&init_user_ns, uid),
7381 				  from_kgid(&init_user_ns, gid),
7382 				  audit_get_sessionid(current));
7383 		}
7384 
7385 		dev_change_rx_flags(dev, IFF_PROMISC);
7386 	}
7387 	if (notify)
7388 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7389 	return 0;
7390 }
7391 
7392 /**
7393  *	dev_set_promiscuity	- update promiscuity count on a device
7394  *	@dev: device
7395  *	@inc: modifier
7396  *
7397  *	Add or remove promiscuity from a device. While the count in the device
7398  *	remains above zero the interface remains promiscuous. Once it hits zero
7399  *	the device reverts back to normal filtering operation. A negative inc
7400  *	value is used to drop promiscuity on the device.
7401  *	Return 0 if successful or a negative errno code on error.
7402  */
7403 int dev_set_promiscuity(struct net_device *dev, int inc)
7404 {
7405 	unsigned int old_flags = dev->flags;
7406 	int err;
7407 
7408 	err = __dev_set_promiscuity(dev, inc, true);
7409 	if (err < 0)
7410 		return err;
7411 	if (dev->flags != old_flags)
7412 		dev_set_rx_mode(dev);
7413 	return err;
7414 }
7415 EXPORT_SYMBOL(dev_set_promiscuity);
7416 
7417 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7418 {
7419 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7420 
7421 	ASSERT_RTNL();
7422 
7423 	dev->flags |= IFF_ALLMULTI;
7424 	dev->allmulti += inc;
7425 	if (dev->allmulti == 0) {
7426 		/*
7427 		 * Avoid overflow.
7428 		 * If inc causes overflow, untouch allmulti and return error.
7429 		 */
7430 		if (inc < 0)
7431 			dev->flags &= ~IFF_ALLMULTI;
7432 		else {
7433 			dev->allmulti -= inc;
7434 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7435 				dev->name);
7436 			return -EOVERFLOW;
7437 		}
7438 	}
7439 	if (dev->flags ^ old_flags) {
7440 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7441 		dev_set_rx_mode(dev);
7442 		if (notify)
7443 			__dev_notify_flags(dev, old_flags,
7444 					   dev->gflags ^ old_gflags);
7445 	}
7446 	return 0;
7447 }
7448 
7449 /**
7450  *	dev_set_allmulti	- update allmulti count on a device
7451  *	@dev: device
7452  *	@inc: modifier
7453  *
7454  *	Add or remove reception of all multicast frames to a device. While the
7455  *	count in the device remains above zero the interface remains listening
7456  *	to all interfaces. Once it hits zero the device reverts back to normal
7457  *	filtering operation. A negative @inc value is used to drop the counter
7458  *	when releasing a resource needing all multicasts.
7459  *	Return 0 if successful or a negative errno code on error.
7460  */
7461 
7462 int dev_set_allmulti(struct net_device *dev, int inc)
7463 {
7464 	return __dev_set_allmulti(dev, inc, true);
7465 }
7466 EXPORT_SYMBOL(dev_set_allmulti);
7467 
7468 /*
7469  *	Upload unicast and multicast address lists to device and
7470  *	configure RX filtering. When the device doesn't support unicast
7471  *	filtering it is put in promiscuous mode while unicast addresses
7472  *	are present.
7473  */
7474 void __dev_set_rx_mode(struct net_device *dev)
7475 {
7476 	const struct net_device_ops *ops = dev->netdev_ops;
7477 
7478 	/* dev_open will call this function so the list will stay sane. */
7479 	if (!(dev->flags&IFF_UP))
7480 		return;
7481 
7482 	if (!netif_device_present(dev))
7483 		return;
7484 
7485 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7486 		/* Unicast addresses changes may only happen under the rtnl,
7487 		 * therefore calling __dev_set_promiscuity here is safe.
7488 		 */
7489 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7490 			__dev_set_promiscuity(dev, 1, false);
7491 			dev->uc_promisc = true;
7492 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7493 			__dev_set_promiscuity(dev, -1, false);
7494 			dev->uc_promisc = false;
7495 		}
7496 	}
7497 
7498 	if (ops->ndo_set_rx_mode)
7499 		ops->ndo_set_rx_mode(dev);
7500 }
7501 
7502 void dev_set_rx_mode(struct net_device *dev)
7503 {
7504 	netif_addr_lock_bh(dev);
7505 	__dev_set_rx_mode(dev);
7506 	netif_addr_unlock_bh(dev);
7507 }
7508 
7509 /**
7510  *	dev_get_flags - get flags reported to userspace
7511  *	@dev: device
7512  *
7513  *	Get the combination of flag bits exported through APIs to userspace.
7514  */
7515 unsigned int dev_get_flags(const struct net_device *dev)
7516 {
7517 	unsigned int flags;
7518 
7519 	flags = (dev->flags & ~(IFF_PROMISC |
7520 				IFF_ALLMULTI |
7521 				IFF_RUNNING |
7522 				IFF_LOWER_UP |
7523 				IFF_DORMANT)) |
7524 		(dev->gflags & (IFF_PROMISC |
7525 				IFF_ALLMULTI));
7526 
7527 	if (netif_running(dev)) {
7528 		if (netif_oper_up(dev))
7529 			flags |= IFF_RUNNING;
7530 		if (netif_carrier_ok(dev))
7531 			flags |= IFF_LOWER_UP;
7532 		if (netif_dormant(dev))
7533 			flags |= IFF_DORMANT;
7534 	}
7535 
7536 	return flags;
7537 }
7538 EXPORT_SYMBOL(dev_get_flags);
7539 
7540 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7541 		       struct netlink_ext_ack *extack)
7542 {
7543 	unsigned int old_flags = dev->flags;
7544 	int ret;
7545 
7546 	ASSERT_RTNL();
7547 
7548 	/*
7549 	 *	Set the flags on our device.
7550 	 */
7551 
7552 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7553 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7554 			       IFF_AUTOMEDIA)) |
7555 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7556 				    IFF_ALLMULTI));
7557 
7558 	/*
7559 	 *	Load in the correct multicast list now the flags have changed.
7560 	 */
7561 
7562 	if ((old_flags ^ flags) & IFF_MULTICAST)
7563 		dev_change_rx_flags(dev, IFF_MULTICAST);
7564 
7565 	dev_set_rx_mode(dev);
7566 
7567 	/*
7568 	 *	Have we downed the interface. We handle IFF_UP ourselves
7569 	 *	according to user attempts to set it, rather than blindly
7570 	 *	setting it.
7571 	 */
7572 
7573 	ret = 0;
7574 	if ((old_flags ^ flags) & IFF_UP) {
7575 		if (old_flags & IFF_UP)
7576 			__dev_close(dev);
7577 		else
7578 			ret = __dev_open(dev, extack);
7579 	}
7580 
7581 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7582 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7583 		unsigned int old_flags = dev->flags;
7584 
7585 		dev->gflags ^= IFF_PROMISC;
7586 
7587 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7588 			if (dev->flags != old_flags)
7589 				dev_set_rx_mode(dev);
7590 	}
7591 
7592 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7593 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7594 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7595 	 */
7596 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7597 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7598 
7599 		dev->gflags ^= IFF_ALLMULTI;
7600 		__dev_set_allmulti(dev, inc, false);
7601 	}
7602 
7603 	return ret;
7604 }
7605 
7606 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7607 			unsigned int gchanges)
7608 {
7609 	unsigned int changes = dev->flags ^ old_flags;
7610 
7611 	if (gchanges)
7612 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7613 
7614 	if (changes & IFF_UP) {
7615 		if (dev->flags & IFF_UP)
7616 			call_netdevice_notifiers(NETDEV_UP, dev);
7617 		else
7618 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7619 	}
7620 
7621 	if (dev->flags & IFF_UP &&
7622 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7623 		struct netdev_notifier_change_info change_info = {
7624 			.info = {
7625 				.dev = dev,
7626 			},
7627 			.flags_changed = changes,
7628 		};
7629 
7630 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7631 	}
7632 }
7633 
7634 /**
7635  *	dev_change_flags - change device settings
7636  *	@dev: device
7637  *	@flags: device state flags
7638  *	@extack: netlink extended ack
7639  *
7640  *	Change settings on device based state flags. The flags are
7641  *	in the userspace exported format.
7642  */
7643 int dev_change_flags(struct net_device *dev, unsigned int flags,
7644 		     struct netlink_ext_ack *extack)
7645 {
7646 	int ret;
7647 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7648 
7649 	ret = __dev_change_flags(dev, flags, extack);
7650 	if (ret < 0)
7651 		return ret;
7652 
7653 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7654 	__dev_notify_flags(dev, old_flags, changes);
7655 	return ret;
7656 }
7657 EXPORT_SYMBOL(dev_change_flags);
7658 
7659 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7660 {
7661 	const struct net_device_ops *ops = dev->netdev_ops;
7662 
7663 	if (ops->ndo_change_mtu)
7664 		return ops->ndo_change_mtu(dev, new_mtu);
7665 
7666 	dev->mtu = new_mtu;
7667 	return 0;
7668 }
7669 EXPORT_SYMBOL(__dev_set_mtu);
7670 
7671 /**
7672  *	dev_set_mtu_ext - Change maximum transfer unit
7673  *	@dev: device
7674  *	@new_mtu: new transfer unit
7675  *	@extack: netlink extended ack
7676  *
7677  *	Change the maximum transfer size of the network device.
7678  */
7679 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7680 		    struct netlink_ext_ack *extack)
7681 {
7682 	int err, orig_mtu;
7683 
7684 	if (new_mtu == dev->mtu)
7685 		return 0;
7686 
7687 	/* MTU must be positive, and in range */
7688 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7689 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7690 		return -EINVAL;
7691 	}
7692 
7693 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7694 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7695 		return -EINVAL;
7696 	}
7697 
7698 	if (!netif_device_present(dev))
7699 		return -ENODEV;
7700 
7701 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7702 	err = notifier_to_errno(err);
7703 	if (err)
7704 		return err;
7705 
7706 	orig_mtu = dev->mtu;
7707 	err = __dev_set_mtu(dev, new_mtu);
7708 
7709 	if (!err) {
7710 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7711 						   orig_mtu);
7712 		err = notifier_to_errno(err);
7713 		if (err) {
7714 			/* setting mtu back and notifying everyone again,
7715 			 * so that they have a chance to revert changes.
7716 			 */
7717 			__dev_set_mtu(dev, orig_mtu);
7718 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7719 						     new_mtu);
7720 		}
7721 	}
7722 	return err;
7723 }
7724 
7725 int dev_set_mtu(struct net_device *dev, int new_mtu)
7726 {
7727 	struct netlink_ext_ack extack;
7728 	int err;
7729 
7730 	memset(&extack, 0, sizeof(extack));
7731 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7732 	if (err && extack._msg)
7733 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7734 	return err;
7735 }
7736 EXPORT_SYMBOL(dev_set_mtu);
7737 
7738 /**
7739  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7740  *	@dev: device
7741  *	@new_len: new tx queue length
7742  */
7743 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7744 {
7745 	unsigned int orig_len = dev->tx_queue_len;
7746 	int res;
7747 
7748 	if (new_len != (unsigned int)new_len)
7749 		return -ERANGE;
7750 
7751 	if (new_len != orig_len) {
7752 		dev->tx_queue_len = new_len;
7753 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7754 		res = notifier_to_errno(res);
7755 		if (res)
7756 			goto err_rollback;
7757 		res = dev_qdisc_change_tx_queue_len(dev);
7758 		if (res)
7759 			goto err_rollback;
7760 	}
7761 
7762 	return 0;
7763 
7764 err_rollback:
7765 	netdev_err(dev, "refused to change device tx_queue_len\n");
7766 	dev->tx_queue_len = orig_len;
7767 	return res;
7768 }
7769 
7770 /**
7771  *	dev_set_group - Change group this device belongs to
7772  *	@dev: device
7773  *	@new_group: group this device should belong to
7774  */
7775 void dev_set_group(struct net_device *dev, int new_group)
7776 {
7777 	dev->group = new_group;
7778 }
7779 EXPORT_SYMBOL(dev_set_group);
7780 
7781 /**
7782  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7783  *	@dev: device
7784  *	@addr: new address
7785  *	@extack: netlink extended ack
7786  */
7787 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7788 			      struct netlink_ext_ack *extack)
7789 {
7790 	struct netdev_notifier_pre_changeaddr_info info = {
7791 		.info.dev = dev,
7792 		.info.extack = extack,
7793 		.dev_addr = addr,
7794 	};
7795 	int rc;
7796 
7797 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7798 	return notifier_to_errno(rc);
7799 }
7800 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7801 
7802 /**
7803  *	dev_set_mac_address - Change Media Access Control Address
7804  *	@dev: device
7805  *	@sa: new address
7806  *	@extack: netlink extended ack
7807  *
7808  *	Change the hardware (MAC) address of the device
7809  */
7810 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7811 			struct netlink_ext_ack *extack)
7812 {
7813 	const struct net_device_ops *ops = dev->netdev_ops;
7814 	int err;
7815 
7816 	if (!ops->ndo_set_mac_address)
7817 		return -EOPNOTSUPP;
7818 	if (sa->sa_family != dev->type)
7819 		return -EINVAL;
7820 	if (!netif_device_present(dev))
7821 		return -ENODEV;
7822 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7823 	if (err)
7824 		return err;
7825 	err = ops->ndo_set_mac_address(dev, sa);
7826 	if (err)
7827 		return err;
7828 	dev->addr_assign_type = NET_ADDR_SET;
7829 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7830 	add_device_randomness(dev->dev_addr, dev->addr_len);
7831 	return 0;
7832 }
7833 EXPORT_SYMBOL(dev_set_mac_address);
7834 
7835 /**
7836  *	dev_change_carrier - Change device carrier
7837  *	@dev: device
7838  *	@new_carrier: new value
7839  *
7840  *	Change device carrier
7841  */
7842 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7843 {
7844 	const struct net_device_ops *ops = dev->netdev_ops;
7845 
7846 	if (!ops->ndo_change_carrier)
7847 		return -EOPNOTSUPP;
7848 	if (!netif_device_present(dev))
7849 		return -ENODEV;
7850 	return ops->ndo_change_carrier(dev, new_carrier);
7851 }
7852 EXPORT_SYMBOL(dev_change_carrier);
7853 
7854 /**
7855  *	dev_get_phys_port_id - Get device physical port ID
7856  *	@dev: device
7857  *	@ppid: port ID
7858  *
7859  *	Get device physical port ID
7860  */
7861 int dev_get_phys_port_id(struct net_device *dev,
7862 			 struct netdev_phys_item_id *ppid)
7863 {
7864 	const struct net_device_ops *ops = dev->netdev_ops;
7865 
7866 	if (!ops->ndo_get_phys_port_id)
7867 		return -EOPNOTSUPP;
7868 	return ops->ndo_get_phys_port_id(dev, ppid);
7869 }
7870 EXPORT_SYMBOL(dev_get_phys_port_id);
7871 
7872 /**
7873  *	dev_get_phys_port_name - Get device physical port name
7874  *	@dev: device
7875  *	@name: port name
7876  *	@len: limit of bytes to copy to name
7877  *
7878  *	Get device physical port name
7879  */
7880 int dev_get_phys_port_name(struct net_device *dev,
7881 			   char *name, size_t len)
7882 {
7883 	const struct net_device_ops *ops = dev->netdev_ops;
7884 	int err;
7885 
7886 	if (ops->ndo_get_phys_port_name) {
7887 		err = ops->ndo_get_phys_port_name(dev, name, len);
7888 		if (err != -EOPNOTSUPP)
7889 			return err;
7890 	}
7891 	return devlink_compat_phys_port_name_get(dev, name, len);
7892 }
7893 EXPORT_SYMBOL(dev_get_phys_port_name);
7894 
7895 /**
7896  *	dev_get_port_parent_id - Get the device's port parent identifier
7897  *	@dev: network device
7898  *	@ppid: pointer to a storage for the port's parent identifier
7899  *	@recurse: allow/disallow recursion to lower devices
7900  *
7901  *	Get the devices's port parent identifier
7902  */
7903 int dev_get_port_parent_id(struct net_device *dev,
7904 			   struct netdev_phys_item_id *ppid,
7905 			   bool recurse)
7906 {
7907 	const struct net_device_ops *ops = dev->netdev_ops;
7908 	struct netdev_phys_item_id first = { };
7909 	struct net_device *lower_dev;
7910 	struct list_head *iter;
7911 	int err;
7912 
7913 	if (ops->ndo_get_port_parent_id) {
7914 		err = ops->ndo_get_port_parent_id(dev, ppid);
7915 		if (err != -EOPNOTSUPP)
7916 			return err;
7917 	}
7918 
7919 	err = devlink_compat_switch_id_get(dev, ppid);
7920 	if (!err || err != -EOPNOTSUPP)
7921 		return err;
7922 
7923 	if (!recurse)
7924 		return -EOPNOTSUPP;
7925 
7926 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
7927 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7928 		if (err)
7929 			break;
7930 		if (!first.id_len)
7931 			first = *ppid;
7932 		else if (memcmp(&first, ppid, sizeof(*ppid)))
7933 			return -ENODATA;
7934 	}
7935 
7936 	return err;
7937 }
7938 EXPORT_SYMBOL(dev_get_port_parent_id);
7939 
7940 /**
7941  *	netdev_port_same_parent_id - Indicate if two network devices have
7942  *	the same port parent identifier
7943  *	@a: first network device
7944  *	@b: second network device
7945  */
7946 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7947 {
7948 	struct netdev_phys_item_id a_id = { };
7949 	struct netdev_phys_item_id b_id = { };
7950 
7951 	if (dev_get_port_parent_id(a, &a_id, true) ||
7952 	    dev_get_port_parent_id(b, &b_id, true))
7953 		return false;
7954 
7955 	return netdev_phys_item_id_same(&a_id, &b_id);
7956 }
7957 EXPORT_SYMBOL(netdev_port_same_parent_id);
7958 
7959 /**
7960  *	dev_change_proto_down - update protocol port state information
7961  *	@dev: device
7962  *	@proto_down: new value
7963  *
7964  *	This info can be used by switch drivers to set the phys state of the
7965  *	port.
7966  */
7967 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7968 {
7969 	const struct net_device_ops *ops = dev->netdev_ops;
7970 
7971 	if (!ops->ndo_change_proto_down)
7972 		return -EOPNOTSUPP;
7973 	if (!netif_device_present(dev))
7974 		return -ENODEV;
7975 	return ops->ndo_change_proto_down(dev, proto_down);
7976 }
7977 EXPORT_SYMBOL(dev_change_proto_down);
7978 
7979 /**
7980  *	dev_change_proto_down_generic - generic implementation for
7981  * 	ndo_change_proto_down that sets carrier according to
7982  * 	proto_down.
7983  *
7984  *	@dev: device
7985  *	@proto_down: new value
7986  */
7987 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7988 {
7989 	if (proto_down)
7990 		netif_carrier_off(dev);
7991 	else
7992 		netif_carrier_on(dev);
7993 	dev->proto_down = proto_down;
7994 	return 0;
7995 }
7996 EXPORT_SYMBOL(dev_change_proto_down_generic);
7997 
7998 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7999 		    enum bpf_netdev_command cmd)
8000 {
8001 	struct netdev_bpf xdp;
8002 
8003 	if (!bpf_op)
8004 		return 0;
8005 
8006 	memset(&xdp, 0, sizeof(xdp));
8007 	xdp.command = cmd;
8008 
8009 	/* Query must always succeed. */
8010 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8011 
8012 	return xdp.prog_id;
8013 }
8014 
8015 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8016 			   struct netlink_ext_ack *extack, u32 flags,
8017 			   struct bpf_prog *prog)
8018 {
8019 	struct netdev_bpf xdp;
8020 
8021 	memset(&xdp, 0, sizeof(xdp));
8022 	if (flags & XDP_FLAGS_HW_MODE)
8023 		xdp.command = XDP_SETUP_PROG_HW;
8024 	else
8025 		xdp.command = XDP_SETUP_PROG;
8026 	xdp.extack = extack;
8027 	xdp.flags = flags;
8028 	xdp.prog = prog;
8029 
8030 	return bpf_op(dev, &xdp);
8031 }
8032 
8033 static void dev_xdp_uninstall(struct net_device *dev)
8034 {
8035 	struct netdev_bpf xdp;
8036 	bpf_op_t ndo_bpf;
8037 
8038 	/* Remove generic XDP */
8039 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8040 
8041 	/* Remove from the driver */
8042 	ndo_bpf = dev->netdev_ops->ndo_bpf;
8043 	if (!ndo_bpf)
8044 		return;
8045 
8046 	memset(&xdp, 0, sizeof(xdp));
8047 	xdp.command = XDP_QUERY_PROG;
8048 	WARN_ON(ndo_bpf(dev, &xdp));
8049 	if (xdp.prog_id)
8050 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8051 					NULL));
8052 
8053 	/* Remove HW offload */
8054 	memset(&xdp, 0, sizeof(xdp));
8055 	xdp.command = XDP_QUERY_PROG_HW;
8056 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8057 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8058 					NULL));
8059 }
8060 
8061 /**
8062  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
8063  *	@dev: device
8064  *	@extack: netlink extended ack
8065  *	@fd: new program fd or negative value to clear
8066  *	@flags: xdp-related flags
8067  *
8068  *	Set or clear a bpf program for a device
8069  */
8070 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8071 		      int fd, u32 flags)
8072 {
8073 	const struct net_device_ops *ops = dev->netdev_ops;
8074 	enum bpf_netdev_command query;
8075 	struct bpf_prog *prog = NULL;
8076 	bpf_op_t bpf_op, bpf_chk;
8077 	bool offload;
8078 	int err;
8079 
8080 	ASSERT_RTNL();
8081 
8082 	offload = flags & XDP_FLAGS_HW_MODE;
8083 	query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8084 
8085 	bpf_op = bpf_chk = ops->ndo_bpf;
8086 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8087 		NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8088 		return -EOPNOTSUPP;
8089 	}
8090 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8091 		bpf_op = generic_xdp_install;
8092 	if (bpf_op == bpf_chk)
8093 		bpf_chk = generic_xdp_install;
8094 
8095 	if (fd >= 0) {
8096 		if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8097 			NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8098 			return -EEXIST;
8099 		}
8100 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8101 		    __dev_xdp_query(dev, bpf_op, query)) {
8102 			NL_SET_ERR_MSG(extack, "XDP program already attached");
8103 			return -EBUSY;
8104 		}
8105 
8106 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8107 					     bpf_op == ops->ndo_bpf);
8108 		if (IS_ERR(prog))
8109 			return PTR_ERR(prog);
8110 
8111 		if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8112 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8113 			bpf_prog_put(prog);
8114 			return -EINVAL;
8115 		}
8116 	}
8117 
8118 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8119 	if (err < 0 && prog)
8120 		bpf_prog_put(prog);
8121 
8122 	return err;
8123 }
8124 
8125 /**
8126  *	dev_new_index	-	allocate an ifindex
8127  *	@net: the applicable net namespace
8128  *
8129  *	Returns a suitable unique value for a new device interface
8130  *	number.  The caller must hold the rtnl semaphore or the
8131  *	dev_base_lock to be sure it remains unique.
8132  */
8133 static int dev_new_index(struct net *net)
8134 {
8135 	int ifindex = net->ifindex;
8136 
8137 	for (;;) {
8138 		if (++ifindex <= 0)
8139 			ifindex = 1;
8140 		if (!__dev_get_by_index(net, ifindex))
8141 			return net->ifindex = ifindex;
8142 	}
8143 }
8144 
8145 /* Delayed registration/unregisteration */
8146 static LIST_HEAD(net_todo_list);
8147 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8148 
8149 static void net_set_todo(struct net_device *dev)
8150 {
8151 	list_add_tail(&dev->todo_list, &net_todo_list);
8152 	dev_net(dev)->dev_unreg_count++;
8153 }
8154 
8155 static void rollback_registered_many(struct list_head *head)
8156 {
8157 	struct net_device *dev, *tmp;
8158 	LIST_HEAD(close_head);
8159 
8160 	BUG_ON(dev_boot_phase);
8161 	ASSERT_RTNL();
8162 
8163 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8164 		/* Some devices call without registering
8165 		 * for initialization unwind. Remove those
8166 		 * devices and proceed with the remaining.
8167 		 */
8168 		if (dev->reg_state == NETREG_UNINITIALIZED) {
8169 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8170 				 dev->name, dev);
8171 
8172 			WARN_ON(1);
8173 			list_del(&dev->unreg_list);
8174 			continue;
8175 		}
8176 		dev->dismantle = true;
8177 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
8178 	}
8179 
8180 	/* If device is running, close it first. */
8181 	list_for_each_entry(dev, head, unreg_list)
8182 		list_add_tail(&dev->close_list, &close_head);
8183 	dev_close_many(&close_head, true);
8184 
8185 	list_for_each_entry(dev, head, unreg_list) {
8186 		/* And unlink it from device chain. */
8187 		unlist_netdevice(dev);
8188 
8189 		dev->reg_state = NETREG_UNREGISTERING;
8190 	}
8191 	flush_all_backlogs();
8192 
8193 	synchronize_net();
8194 
8195 	list_for_each_entry(dev, head, unreg_list) {
8196 		struct sk_buff *skb = NULL;
8197 
8198 		/* Shutdown queueing discipline. */
8199 		dev_shutdown(dev);
8200 
8201 		dev_xdp_uninstall(dev);
8202 
8203 		/* Notify protocols, that we are about to destroy
8204 		 * this device. They should clean all the things.
8205 		 */
8206 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8207 
8208 		if (!dev->rtnl_link_ops ||
8209 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8210 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8211 						     GFP_KERNEL, NULL, 0);
8212 
8213 		/*
8214 		 *	Flush the unicast and multicast chains
8215 		 */
8216 		dev_uc_flush(dev);
8217 		dev_mc_flush(dev);
8218 
8219 		if (dev->netdev_ops->ndo_uninit)
8220 			dev->netdev_ops->ndo_uninit(dev);
8221 
8222 		if (skb)
8223 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8224 
8225 		/* Notifier chain MUST detach us all upper devices. */
8226 		WARN_ON(netdev_has_any_upper_dev(dev));
8227 		WARN_ON(netdev_has_any_lower_dev(dev));
8228 
8229 		/* Remove entries from kobject tree */
8230 		netdev_unregister_kobject(dev);
8231 #ifdef CONFIG_XPS
8232 		/* Remove XPS queueing entries */
8233 		netif_reset_xps_queues_gt(dev, 0);
8234 #endif
8235 	}
8236 
8237 	synchronize_net();
8238 
8239 	list_for_each_entry(dev, head, unreg_list)
8240 		dev_put(dev);
8241 }
8242 
8243 static void rollback_registered(struct net_device *dev)
8244 {
8245 	LIST_HEAD(single);
8246 
8247 	list_add(&dev->unreg_list, &single);
8248 	rollback_registered_many(&single);
8249 	list_del(&single);
8250 }
8251 
8252 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8253 	struct net_device *upper, netdev_features_t features)
8254 {
8255 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8256 	netdev_features_t feature;
8257 	int feature_bit;
8258 
8259 	for_each_netdev_feature(upper_disables, feature_bit) {
8260 		feature = __NETIF_F_BIT(feature_bit);
8261 		if (!(upper->wanted_features & feature)
8262 		    && (features & feature)) {
8263 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8264 				   &feature, upper->name);
8265 			features &= ~feature;
8266 		}
8267 	}
8268 
8269 	return features;
8270 }
8271 
8272 static void netdev_sync_lower_features(struct net_device *upper,
8273 	struct net_device *lower, netdev_features_t features)
8274 {
8275 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8276 	netdev_features_t feature;
8277 	int feature_bit;
8278 
8279 	for_each_netdev_feature(upper_disables, feature_bit) {
8280 		feature = __NETIF_F_BIT(feature_bit);
8281 		if (!(features & feature) && (lower->features & feature)) {
8282 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8283 				   &feature, lower->name);
8284 			lower->wanted_features &= ~feature;
8285 			netdev_update_features(lower);
8286 
8287 			if (unlikely(lower->features & feature))
8288 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8289 					    &feature, lower->name);
8290 		}
8291 	}
8292 }
8293 
8294 static netdev_features_t netdev_fix_features(struct net_device *dev,
8295 	netdev_features_t features)
8296 {
8297 	/* Fix illegal checksum combinations */
8298 	if ((features & NETIF_F_HW_CSUM) &&
8299 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8300 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8301 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8302 	}
8303 
8304 	/* TSO requires that SG is present as well. */
8305 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8306 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8307 		features &= ~NETIF_F_ALL_TSO;
8308 	}
8309 
8310 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8311 					!(features & NETIF_F_IP_CSUM)) {
8312 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8313 		features &= ~NETIF_F_TSO;
8314 		features &= ~NETIF_F_TSO_ECN;
8315 	}
8316 
8317 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8318 					 !(features & NETIF_F_IPV6_CSUM)) {
8319 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8320 		features &= ~NETIF_F_TSO6;
8321 	}
8322 
8323 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8324 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8325 		features &= ~NETIF_F_TSO_MANGLEID;
8326 
8327 	/* TSO ECN requires that TSO is present as well. */
8328 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8329 		features &= ~NETIF_F_TSO_ECN;
8330 
8331 	/* Software GSO depends on SG. */
8332 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8333 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8334 		features &= ~NETIF_F_GSO;
8335 	}
8336 
8337 	/* GSO partial features require GSO partial be set */
8338 	if ((features & dev->gso_partial_features) &&
8339 	    !(features & NETIF_F_GSO_PARTIAL)) {
8340 		netdev_dbg(dev,
8341 			   "Dropping partially supported GSO features since no GSO partial.\n");
8342 		features &= ~dev->gso_partial_features;
8343 	}
8344 
8345 	if (!(features & NETIF_F_RXCSUM)) {
8346 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8347 		 * successfully merged by hardware must also have the
8348 		 * checksum verified by hardware.  If the user does not
8349 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8350 		 */
8351 		if (features & NETIF_F_GRO_HW) {
8352 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8353 			features &= ~NETIF_F_GRO_HW;
8354 		}
8355 	}
8356 
8357 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8358 	if (features & NETIF_F_RXFCS) {
8359 		if (features & NETIF_F_LRO) {
8360 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8361 			features &= ~NETIF_F_LRO;
8362 		}
8363 
8364 		if (features & NETIF_F_GRO_HW) {
8365 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8366 			features &= ~NETIF_F_GRO_HW;
8367 		}
8368 	}
8369 
8370 	return features;
8371 }
8372 
8373 int __netdev_update_features(struct net_device *dev)
8374 {
8375 	struct net_device *upper, *lower;
8376 	netdev_features_t features;
8377 	struct list_head *iter;
8378 	int err = -1;
8379 
8380 	ASSERT_RTNL();
8381 
8382 	features = netdev_get_wanted_features(dev);
8383 
8384 	if (dev->netdev_ops->ndo_fix_features)
8385 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8386 
8387 	/* driver might be less strict about feature dependencies */
8388 	features = netdev_fix_features(dev, features);
8389 
8390 	/* some features can't be enabled if they're off an an upper device */
8391 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8392 		features = netdev_sync_upper_features(dev, upper, features);
8393 
8394 	if (dev->features == features)
8395 		goto sync_lower;
8396 
8397 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8398 		&dev->features, &features);
8399 
8400 	if (dev->netdev_ops->ndo_set_features)
8401 		err = dev->netdev_ops->ndo_set_features(dev, features);
8402 	else
8403 		err = 0;
8404 
8405 	if (unlikely(err < 0)) {
8406 		netdev_err(dev,
8407 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8408 			err, &features, &dev->features);
8409 		/* return non-0 since some features might have changed and
8410 		 * it's better to fire a spurious notification than miss it
8411 		 */
8412 		return -1;
8413 	}
8414 
8415 sync_lower:
8416 	/* some features must be disabled on lower devices when disabled
8417 	 * on an upper device (think: bonding master or bridge)
8418 	 */
8419 	netdev_for_each_lower_dev(dev, lower, iter)
8420 		netdev_sync_lower_features(dev, lower, features);
8421 
8422 	if (!err) {
8423 		netdev_features_t diff = features ^ dev->features;
8424 
8425 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8426 			/* udp_tunnel_{get,drop}_rx_info both need
8427 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8428 			 * device, or they won't do anything.
8429 			 * Thus we need to update dev->features
8430 			 * *before* calling udp_tunnel_get_rx_info,
8431 			 * but *after* calling udp_tunnel_drop_rx_info.
8432 			 */
8433 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8434 				dev->features = features;
8435 				udp_tunnel_get_rx_info(dev);
8436 			} else {
8437 				udp_tunnel_drop_rx_info(dev);
8438 			}
8439 		}
8440 
8441 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8442 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8443 				dev->features = features;
8444 				err |= vlan_get_rx_ctag_filter_info(dev);
8445 			} else {
8446 				vlan_drop_rx_ctag_filter_info(dev);
8447 			}
8448 		}
8449 
8450 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8451 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8452 				dev->features = features;
8453 				err |= vlan_get_rx_stag_filter_info(dev);
8454 			} else {
8455 				vlan_drop_rx_stag_filter_info(dev);
8456 			}
8457 		}
8458 
8459 		dev->features = features;
8460 	}
8461 
8462 	return err < 0 ? 0 : 1;
8463 }
8464 
8465 /**
8466  *	netdev_update_features - recalculate device features
8467  *	@dev: the device to check
8468  *
8469  *	Recalculate dev->features set and send notifications if it
8470  *	has changed. Should be called after driver or hardware dependent
8471  *	conditions might have changed that influence the features.
8472  */
8473 void netdev_update_features(struct net_device *dev)
8474 {
8475 	if (__netdev_update_features(dev))
8476 		netdev_features_change(dev);
8477 }
8478 EXPORT_SYMBOL(netdev_update_features);
8479 
8480 /**
8481  *	netdev_change_features - recalculate device features
8482  *	@dev: the device to check
8483  *
8484  *	Recalculate dev->features set and send notifications even
8485  *	if they have not changed. Should be called instead of
8486  *	netdev_update_features() if also dev->vlan_features might
8487  *	have changed to allow the changes to be propagated to stacked
8488  *	VLAN devices.
8489  */
8490 void netdev_change_features(struct net_device *dev)
8491 {
8492 	__netdev_update_features(dev);
8493 	netdev_features_change(dev);
8494 }
8495 EXPORT_SYMBOL(netdev_change_features);
8496 
8497 /**
8498  *	netif_stacked_transfer_operstate -	transfer operstate
8499  *	@rootdev: the root or lower level device to transfer state from
8500  *	@dev: the device to transfer operstate to
8501  *
8502  *	Transfer operational state from root to device. This is normally
8503  *	called when a stacking relationship exists between the root
8504  *	device and the device(a leaf device).
8505  */
8506 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8507 					struct net_device *dev)
8508 {
8509 	if (rootdev->operstate == IF_OPER_DORMANT)
8510 		netif_dormant_on(dev);
8511 	else
8512 		netif_dormant_off(dev);
8513 
8514 	if (netif_carrier_ok(rootdev))
8515 		netif_carrier_on(dev);
8516 	else
8517 		netif_carrier_off(dev);
8518 }
8519 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8520 
8521 static int netif_alloc_rx_queues(struct net_device *dev)
8522 {
8523 	unsigned int i, count = dev->num_rx_queues;
8524 	struct netdev_rx_queue *rx;
8525 	size_t sz = count * sizeof(*rx);
8526 	int err = 0;
8527 
8528 	BUG_ON(count < 1);
8529 
8530 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8531 	if (!rx)
8532 		return -ENOMEM;
8533 
8534 	dev->_rx = rx;
8535 
8536 	for (i = 0; i < count; i++) {
8537 		rx[i].dev = dev;
8538 
8539 		/* XDP RX-queue setup */
8540 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8541 		if (err < 0)
8542 			goto err_rxq_info;
8543 	}
8544 	return 0;
8545 
8546 err_rxq_info:
8547 	/* Rollback successful reg's and free other resources */
8548 	while (i--)
8549 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8550 	kvfree(dev->_rx);
8551 	dev->_rx = NULL;
8552 	return err;
8553 }
8554 
8555 static void netif_free_rx_queues(struct net_device *dev)
8556 {
8557 	unsigned int i, count = dev->num_rx_queues;
8558 
8559 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8560 	if (!dev->_rx)
8561 		return;
8562 
8563 	for (i = 0; i < count; i++)
8564 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8565 
8566 	kvfree(dev->_rx);
8567 }
8568 
8569 static void netdev_init_one_queue(struct net_device *dev,
8570 				  struct netdev_queue *queue, void *_unused)
8571 {
8572 	/* Initialize queue lock */
8573 	spin_lock_init(&queue->_xmit_lock);
8574 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8575 	queue->xmit_lock_owner = -1;
8576 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8577 	queue->dev = dev;
8578 #ifdef CONFIG_BQL
8579 	dql_init(&queue->dql, HZ);
8580 #endif
8581 }
8582 
8583 static void netif_free_tx_queues(struct net_device *dev)
8584 {
8585 	kvfree(dev->_tx);
8586 }
8587 
8588 static int netif_alloc_netdev_queues(struct net_device *dev)
8589 {
8590 	unsigned int count = dev->num_tx_queues;
8591 	struct netdev_queue *tx;
8592 	size_t sz = count * sizeof(*tx);
8593 
8594 	if (count < 1 || count > 0xffff)
8595 		return -EINVAL;
8596 
8597 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8598 	if (!tx)
8599 		return -ENOMEM;
8600 
8601 	dev->_tx = tx;
8602 
8603 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8604 	spin_lock_init(&dev->tx_global_lock);
8605 
8606 	return 0;
8607 }
8608 
8609 void netif_tx_stop_all_queues(struct net_device *dev)
8610 {
8611 	unsigned int i;
8612 
8613 	for (i = 0; i < dev->num_tx_queues; i++) {
8614 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8615 
8616 		netif_tx_stop_queue(txq);
8617 	}
8618 }
8619 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8620 
8621 /**
8622  *	register_netdevice	- register a network device
8623  *	@dev: device to register
8624  *
8625  *	Take a completed network device structure and add it to the kernel
8626  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8627  *	chain. 0 is returned on success. A negative errno code is returned
8628  *	on a failure to set up the device, or if the name is a duplicate.
8629  *
8630  *	Callers must hold the rtnl semaphore. You may want
8631  *	register_netdev() instead of this.
8632  *
8633  *	BUGS:
8634  *	The locking appears insufficient to guarantee two parallel registers
8635  *	will not get the same name.
8636  */
8637 
8638 int register_netdevice(struct net_device *dev)
8639 {
8640 	int ret;
8641 	struct net *net = dev_net(dev);
8642 
8643 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8644 		     NETDEV_FEATURE_COUNT);
8645 	BUG_ON(dev_boot_phase);
8646 	ASSERT_RTNL();
8647 
8648 	might_sleep();
8649 
8650 	/* When net_device's are persistent, this will be fatal. */
8651 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8652 	BUG_ON(!net);
8653 
8654 	spin_lock_init(&dev->addr_list_lock);
8655 	netdev_set_addr_lockdep_class(dev);
8656 
8657 	ret = dev_get_valid_name(net, dev, dev->name);
8658 	if (ret < 0)
8659 		goto out;
8660 
8661 	/* Init, if this function is available */
8662 	if (dev->netdev_ops->ndo_init) {
8663 		ret = dev->netdev_ops->ndo_init(dev);
8664 		if (ret) {
8665 			if (ret > 0)
8666 				ret = -EIO;
8667 			goto out;
8668 		}
8669 	}
8670 
8671 	if (((dev->hw_features | dev->features) &
8672 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8673 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8674 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8675 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8676 		ret = -EINVAL;
8677 		goto err_uninit;
8678 	}
8679 
8680 	ret = -EBUSY;
8681 	if (!dev->ifindex)
8682 		dev->ifindex = dev_new_index(net);
8683 	else if (__dev_get_by_index(net, dev->ifindex))
8684 		goto err_uninit;
8685 
8686 	/* Transfer changeable features to wanted_features and enable
8687 	 * software offloads (GSO and GRO).
8688 	 */
8689 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8690 	dev->features |= NETIF_F_SOFT_FEATURES;
8691 
8692 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8693 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8694 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8695 	}
8696 
8697 	dev->wanted_features = dev->features & dev->hw_features;
8698 
8699 	if (!(dev->flags & IFF_LOOPBACK))
8700 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8701 
8702 	/* If IPv4 TCP segmentation offload is supported we should also
8703 	 * allow the device to enable segmenting the frame with the option
8704 	 * of ignoring a static IP ID value.  This doesn't enable the
8705 	 * feature itself but allows the user to enable it later.
8706 	 */
8707 	if (dev->hw_features & NETIF_F_TSO)
8708 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8709 	if (dev->vlan_features & NETIF_F_TSO)
8710 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8711 	if (dev->mpls_features & NETIF_F_TSO)
8712 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8713 	if (dev->hw_enc_features & NETIF_F_TSO)
8714 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8715 
8716 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8717 	 */
8718 	dev->vlan_features |= NETIF_F_HIGHDMA;
8719 
8720 	/* Make NETIF_F_SG inheritable to tunnel devices.
8721 	 */
8722 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8723 
8724 	/* Make NETIF_F_SG inheritable to MPLS.
8725 	 */
8726 	dev->mpls_features |= NETIF_F_SG;
8727 
8728 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8729 	ret = notifier_to_errno(ret);
8730 	if (ret)
8731 		goto err_uninit;
8732 
8733 	ret = netdev_register_kobject(dev);
8734 	if (ret)
8735 		goto err_uninit;
8736 	dev->reg_state = NETREG_REGISTERED;
8737 
8738 	__netdev_update_features(dev);
8739 
8740 	/*
8741 	 *	Default initial state at registry is that the
8742 	 *	device is present.
8743 	 */
8744 
8745 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8746 
8747 	linkwatch_init_dev(dev);
8748 
8749 	dev_init_scheduler(dev);
8750 	dev_hold(dev);
8751 	list_netdevice(dev);
8752 	add_device_randomness(dev->dev_addr, dev->addr_len);
8753 
8754 	/* If the device has permanent device address, driver should
8755 	 * set dev_addr and also addr_assign_type should be set to
8756 	 * NET_ADDR_PERM (default value).
8757 	 */
8758 	if (dev->addr_assign_type == NET_ADDR_PERM)
8759 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8760 
8761 	/* Notify protocols, that a new device appeared. */
8762 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8763 	ret = notifier_to_errno(ret);
8764 	if (ret) {
8765 		rollback_registered(dev);
8766 		dev->reg_state = NETREG_UNREGISTERED;
8767 	}
8768 	/*
8769 	 *	Prevent userspace races by waiting until the network
8770 	 *	device is fully setup before sending notifications.
8771 	 */
8772 	if (!dev->rtnl_link_ops ||
8773 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8774 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8775 
8776 out:
8777 	return ret;
8778 
8779 err_uninit:
8780 	if (dev->netdev_ops->ndo_uninit)
8781 		dev->netdev_ops->ndo_uninit(dev);
8782 	if (dev->priv_destructor)
8783 		dev->priv_destructor(dev);
8784 	goto out;
8785 }
8786 EXPORT_SYMBOL(register_netdevice);
8787 
8788 /**
8789  *	init_dummy_netdev	- init a dummy network device for NAPI
8790  *	@dev: device to init
8791  *
8792  *	This takes a network device structure and initialize the minimum
8793  *	amount of fields so it can be used to schedule NAPI polls without
8794  *	registering a full blown interface. This is to be used by drivers
8795  *	that need to tie several hardware interfaces to a single NAPI
8796  *	poll scheduler due to HW limitations.
8797  */
8798 int init_dummy_netdev(struct net_device *dev)
8799 {
8800 	/* Clear everything. Note we don't initialize spinlocks
8801 	 * are they aren't supposed to be taken by any of the
8802 	 * NAPI code and this dummy netdev is supposed to be
8803 	 * only ever used for NAPI polls
8804 	 */
8805 	memset(dev, 0, sizeof(struct net_device));
8806 
8807 	/* make sure we BUG if trying to hit standard
8808 	 * register/unregister code path
8809 	 */
8810 	dev->reg_state = NETREG_DUMMY;
8811 
8812 	/* NAPI wants this */
8813 	INIT_LIST_HEAD(&dev->napi_list);
8814 
8815 	/* a dummy interface is started by default */
8816 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8817 	set_bit(__LINK_STATE_START, &dev->state);
8818 
8819 	/* napi_busy_loop stats accounting wants this */
8820 	dev_net_set(dev, &init_net);
8821 
8822 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8823 	 * because users of this 'device' dont need to change
8824 	 * its refcount.
8825 	 */
8826 
8827 	return 0;
8828 }
8829 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8830 
8831 
8832 /**
8833  *	register_netdev	- register a network device
8834  *	@dev: device to register
8835  *
8836  *	Take a completed network device structure and add it to the kernel
8837  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8838  *	chain. 0 is returned on success. A negative errno code is returned
8839  *	on a failure to set up the device, or if the name is a duplicate.
8840  *
8841  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8842  *	and expands the device name if you passed a format string to
8843  *	alloc_netdev.
8844  */
8845 int register_netdev(struct net_device *dev)
8846 {
8847 	int err;
8848 
8849 	if (rtnl_lock_killable())
8850 		return -EINTR;
8851 	err = register_netdevice(dev);
8852 	rtnl_unlock();
8853 	return err;
8854 }
8855 EXPORT_SYMBOL(register_netdev);
8856 
8857 int netdev_refcnt_read(const struct net_device *dev)
8858 {
8859 	int i, refcnt = 0;
8860 
8861 	for_each_possible_cpu(i)
8862 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8863 	return refcnt;
8864 }
8865 EXPORT_SYMBOL(netdev_refcnt_read);
8866 
8867 /**
8868  * netdev_wait_allrefs - wait until all references are gone.
8869  * @dev: target net_device
8870  *
8871  * This is called when unregistering network devices.
8872  *
8873  * Any protocol or device that holds a reference should register
8874  * for netdevice notification, and cleanup and put back the
8875  * reference if they receive an UNREGISTER event.
8876  * We can get stuck here if buggy protocols don't correctly
8877  * call dev_put.
8878  */
8879 static void netdev_wait_allrefs(struct net_device *dev)
8880 {
8881 	unsigned long rebroadcast_time, warning_time;
8882 	int refcnt;
8883 
8884 	linkwatch_forget_dev(dev);
8885 
8886 	rebroadcast_time = warning_time = jiffies;
8887 	refcnt = netdev_refcnt_read(dev);
8888 
8889 	while (refcnt != 0) {
8890 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8891 			rtnl_lock();
8892 
8893 			/* Rebroadcast unregister notification */
8894 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8895 
8896 			__rtnl_unlock();
8897 			rcu_barrier();
8898 			rtnl_lock();
8899 
8900 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8901 				     &dev->state)) {
8902 				/* We must not have linkwatch events
8903 				 * pending on unregister. If this
8904 				 * happens, we simply run the queue
8905 				 * unscheduled, resulting in a noop
8906 				 * for this device.
8907 				 */
8908 				linkwatch_run_queue();
8909 			}
8910 
8911 			__rtnl_unlock();
8912 
8913 			rebroadcast_time = jiffies;
8914 		}
8915 
8916 		msleep(250);
8917 
8918 		refcnt = netdev_refcnt_read(dev);
8919 
8920 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8921 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8922 				 dev->name, refcnt);
8923 			warning_time = jiffies;
8924 		}
8925 	}
8926 }
8927 
8928 /* The sequence is:
8929  *
8930  *	rtnl_lock();
8931  *	...
8932  *	register_netdevice(x1);
8933  *	register_netdevice(x2);
8934  *	...
8935  *	unregister_netdevice(y1);
8936  *	unregister_netdevice(y2);
8937  *      ...
8938  *	rtnl_unlock();
8939  *	free_netdev(y1);
8940  *	free_netdev(y2);
8941  *
8942  * We are invoked by rtnl_unlock().
8943  * This allows us to deal with problems:
8944  * 1) We can delete sysfs objects which invoke hotplug
8945  *    without deadlocking with linkwatch via keventd.
8946  * 2) Since we run with the RTNL semaphore not held, we can sleep
8947  *    safely in order to wait for the netdev refcnt to drop to zero.
8948  *
8949  * We must not return until all unregister events added during
8950  * the interval the lock was held have been completed.
8951  */
8952 void netdev_run_todo(void)
8953 {
8954 	struct list_head list;
8955 
8956 	/* Snapshot list, allow later requests */
8957 	list_replace_init(&net_todo_list, &list);
8958 
8959 	__rtnl_unlock();
8960 
8961 
8962 	/* Wait for rcu callbacks to finish before next phase */
8963 	if (!list_empty(&list))
8964 		rcu_barrier();
8965 
8966 	while (!list_empty(&list)) {
8967 		struct net_device *dev
8968 			= list_first_entry(&list, struct net_device, todo_list);
8969 		list_del(&dev->todo_list);
8970 
8971 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8972 			pr_err("network todo '%s' but state %d\n",
8973 			       dev->name, dev->reg_state);
8974 			dump_stack();
8975 			continue;
8976 		}
8977 
8978 		dev->reg_state = NETREG_UNREGISTERED;
8979 
8980 		netdev_wait_allrefs(dev);
8981 
8982 		/* paranoia */
8983 		BUG_ON(netdev_refcnt_read(dev));
8984 		BUG_ON(!list_empty(&dev->ptype_all));
8985 		BUG_ON(!list_empty(&dev->ptype_specific));
8986 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8987 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8988 #if IS_ENABLED(CONFIG_DECNET)
8989 		WARN_ON(dev->dn_ptr);
8990 #endif
8991 		if (dev->priv_destructor)
8992 			dev->priv_destructor(dev);
8993 		if (dev->needs_free_netdev)
8994 			free_netdev(dev);
8995 
8996 		/* Report a network device has been unregistered */
8997 		rtnl_lock();
8998 		dev_net(dev)->dev_unreg_count--;
8999 		__rtnl_unlock();
9000 		wake_up(&netdev_unregistering_wq);
9001 
9002 		/* Free network device */
9003 		kobject_put(&dev->dev.kobj);
9004 	}
9005 }
9006 
9007 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9008  * all the same fields in the same order as net_device_stats, with only
9009  * the type differing, but rtnl_link_stats64 may have additional fields
9010  * at the end for newer counters.
9011  */
9012 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9013 			     const struct net_device_stats *netdev_stats)
9014 {
9015 #if BITS_PER_LONG == 64
9016 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9017 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9018 	/* zero out counters that only exist in rtnl_link_stats64 */
9019 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
9020 	       sizeof(*stats64) - sizeof(*netdev_stats));
9021 #else
9022 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9023 	const unsigned long *src = (const unsigned long *)netdev_stats;
9024 	u64 *dst = (u64 *)stats64;
9025 
9026 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9027 	for (i = 0; i < n; i++)
9028 		dst[i] = src[i];
9029 	/* zero out counters that only exist in rtnl_link_stats64 */
9030 	memset((char *)stats64 + n * sizeof(u64), 0,
9031 	       sizeof(*stats64) - n * sizeof(u64));
9032 #endif
9033 }
9034 EXPORT_SYMBOL(netdev_stats_to_stats64);
9035 
9036 /**
9037  *	dev_get_stats	- get network device statistics
9038  *	@dev: device to get statistics from
9039  *	@storage: place to store stats
9040  *
9041  *	Get network statistics from device. Return @storage.
9042  *	The device driver may provide its own method by setting
9043  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9044  *	otherwise the internal statistics structure is used.
9045  */
9046 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9047 					struct rtnl_link_stats64 *storage)
9048 {
9049 	const struct net_device_ops *ops = dev->netdev_ops;
9050 
9051 	if (ops->ndo_get_stats64) {
9052 		memset(storage, 0, sizeof(*storage));
9053 		ops->ndo_get_stats64(dev, storage);
9054 	} else if (ops->ndo_get_stats) {
9055 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9056 	} else {
9057 		netdev_stats_to_stats64(storage, &dev->stats);
9058 	}
9059 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9060 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9061 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9062 	return storage;
9063 }
9064 EXPORT_SYMBOL(dev_get_stats);
9065 
9066 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9067 {
9068 	struct netdev_queue *queue = dev_ingress_queue(dev);
9069 
9070 #ifdef CONFIG_NET_CLS_ACT
9071 	if (queue)
9072 		return queue;
9073 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9074 	if (!queue)
9075 		return NULL;
9076 	netdev_init_one_queue(dev, queue, NULL);
9077 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9078 	queue->qdisc_sleeping = &noop_qdisc;
9079 	rcu_assign_pointer(dev->ingress_queue, queue);
9080 #endif
9081 	return queue;
9082 }
9083 
9084 static const struct ethtool_ops default_ethtool_ops;
9085 
9086 void netdev_set_default_ethtool_ops(struct net_device *dev,
9087 				    const struct ethtool_ops *ops)
9088 {
9089 	if (dev->ethtool_ops == &default_ethtool_ops)
9090 		dev->ethtool_ops = ops;
9091 }
9092 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9093 
9094 void netdev_freemem(struct net_device *dev)
9095 {
9096 	char *addr = (char *)dev - dev->padded;
9097 
9098 	kvfree(addr);
9099 }
9100 
9101 /**
9102  * alloc_netdev_mqs - allocate network device
9103  * @sizeof_priv: size of private data to allocate space for
9104  * @name: device name format string
9105  * @name_assign_type: origin of device name
9106  * @setup: callback to initialize device
9107  * @txqs: the number of TX subqueues to allocate
9108  * @rxqs: the number of RX subqueues to allocate
9109  *
9110  * Allocates a struct net_device with private data area for driver use
9111  * and performs basic initialization.  Also allocates subqueue structs
9112  * for each queue on the device.
9113  */
9114 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9115 		unsigned char name_assign_type,
9116 		void (*setup)(struct net_device *),
9117 		unsigned int txqs, unsigned int rxqs)
9118 {
9119 	struct net_device *dev;
9120 	unsigned int alloc_size;
9121 	struct net_device *p;
9122 
9123 	BUG_ON(strlen(name) >= sizeof(dev->name));
9124 
9125 	if (txqs < 1) {
9126 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9127 		return NULL;
9128 	}
9129 
9130 	if (rxqs < 1) {
9131 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9132 		return NULL;
9133 	}
9134 
9135 	alloc_size = sizeof(struct net_device);
9136 	if (sizeof_priv) {
9137 		/* ensure 32-byte alignment of private area */
9138 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9139 		alloc_size += sizeof_priv;
9140 	}
9141 	/* ensure 32-byte alignment of whole construct */
9142 	alloc_size += NETDEV_ALIGN - 1;
9143 
9144 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9145 	if (!p)
9146 		return NULL;
9147 
9148 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
9149 	dev->padded = (char *)dev - (char *)p;
9150 
9151 	dev->pcpu_refcnt = alloc_percpu(int);
9152 	if (!dev->pcpu_refcnt)
9153 		goto free_dev;
9154 
9155 	if (dev_addr_init(dev))
9156 		goto free_pcpu;
9157 
9158 	dev_mc_init(dev);
9159 	dev_uc_init(dev);
9160 
9161 	dev_net_set(dev, &init_net);
9162 
9163 	dev->gso_max_size = GSO_MAX_SIZE;
9164 	dev->gso_max_segs = GSO_MAX_SEGS;
9165 
9166 	INIT_LIST_HEAD(&dev->napi_list);
9167 	INIT_LIST_HEAD(&dev->unreg_list);
9168 	INIT_LIST_HEAD(&dev->close_list);
9169 	INIT_LIST_HEAD(&dev->link_watch_list);
9170 	INIT_LIST_HEAD(&dev->adj_list.upper);
9171 	INIT_LIST_HEAD(&dev->adj_list.lower);
9172 	INIT_LIST_HEAD(&dev->ptype_all);
9173 	INIT_LIST_HEAD(&dev->ptype_specific);
9174 #ifdef CONFIG_NET_SCHED
9175 	hash_init(dev->qdisc_hash);
9176 #endif
9177 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9178 	setup(dev);
9179 
9180 	if (!dev->tx_queue_len) {
9181 		dev->priv_flags |= IFF_NO_QUEUE;
9182 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9183 	}
9184 
9185 	dev->num_tx_queues = txqs;
9186 	dev->real_num_tx_queues = txqs;
9187 	if (netif_alloc_netdev_queues(dev))
9188 		goto free_all;
9189 
9190 	dev->num_rx_queues = rxqs;
9191 	dev->real_num_rx_queues = rxqs;
9192 	if (netif_alloc_rx_queues(dev))
9193 		goto free_all;
9194 
9195 	strcpy(dev->name, name);
9196 	dev->name_assign_type = name_assign_type;
9197 	dev->group = INIT_NETDEV_GROUP;
9198 	if (!dev->ethtool_ops)
9199 		dev->ethtool_ops = &default_ethtool_ops;
9200 
9201 	nf_hook_ingress_init(dev);
9202 
9203 	return dev;
9204 
9205 free_all:
9206 	free_netdev(dev);
9207 	return NULL;
9208 
9209 free_pcpu:
9210 	free_percpu(dev->pcpu_refcnt);
9211 free_dev:
9212 	netdev_freemem(dev);
9213 	return NULL;
9214 }
9215 EXPORT_SYMBOL(alloc_netdev_mqs);
9216 
9217 /**
9218  * free_netdev - free network device
9219  * @dev: device
9220  *
9221  * This function does the last stage of destroying an allocated device
9222  * interface. The reference to the device object is released. If this
9223  * is the last reference then it will be freed.Must be called in process
9224  * context.
9225  */
9226 void free_netdev(struct net_device *dev)
9227 {
9228 	struct napi_struct *p, *n;
9229 
9230 	might_sleep();
9231 	netif_free_tx_queues(dev);
9232 	netif_free_rx_queues(dev);
9233 
9234 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9235 
9236 	/* Flush device addresses */
9237 	dev_addr_flush(dev);
9238 
9239 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9240 		netif_napi_del(p);
9241 
9242 	free_percpu(dev->pcpu_refcnt);
9243 	dev->pcpu_refcnt = NULL;
9244 
9245 	/*  Compatibility with error handling in drivers */
9246 	if (dev->reg_state == NETREG_UNINITIALIZED) {
9247 		netdev_freemem(dev);
9248 		return;
9249 	}
9250 
9251 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9252 	dev->reg_state = NETREG_RELEASED;
9253 
9254 	/* will free via device release */
9255 	put_device(&dev->dev);
9256 }
9257 EXPORT_SYMBOL(free_netdev);
9258 
9259 /**
9260  *	synchronize_net -  Synchronize with packet receive processing
9261  *
9262  *	Wait for packets currently being received to be done.
9263  *	Does not block later packets from starting.
9264  */
9265 void synchronize_net(void)
9266 {
9267 	might_sleep();
9268 	if (rtnl_is_locked())
9269 		synchronize_rcu_expedited();
9270 	else
9271 		synchronize_rcu();
9272 }
9273 EXPORT_SYMBOL(synchronize_net);
9274 
9275 /**
9276  *	unregister_netdevice_queue - remove device from the kernel
9277  *	@dev: device
9278  *	@head: list
9279  *
9280  *	This function shuts down a device interface and removes it
9281  *	from the kernel tables.
9282  *	If head not NULL, device is queued to be unregistered later.
9283  *
9284  *	Callers must hold the rtnl semaphore.  You may want
9285  *	unregister_netdev() instead of this.
9286  */
9287 
9288 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9289 {
9290 	ASSERT_RTNL();
9291 
9292 	if (head) {
9293 		list_move_tail(&dev->unreg_list, head);
9294 	} else {
9295 		rollback_registered(dev);
9296 		/* Finish processing unregister after unlock */
9297 		net_set_todo(dev);
9298 	}
9299 }
9300 EXPORT_SYMBOL(unregister_netdevice_queue);
9301 
9302 /**
9303  *	unregister_netdevice_many - unregister many devices
9304  *	@head: list of devices
9305  *
9306  *  Note: As most callers use a stack allocated list_head,
9307  *  we force a list_del() to make sure stack wont be corrupted later.
9308  */
9309 void unregister_netdevice_many(struct list_head *head)
9310 {
9311 	struct net_device *dev;
9312 
9313 	if (!list_empty(head)) {
9314 		rollback_registered_many(head);
9315 		list_for_each_entry(dev, head, unreg_list)
9316 			net_set_todo(dev);
9317 		list_del(head);
9318 	}
9319 }
9320 EXPORT_SYMBOL(unregister_netdevice_many);
9321 
9322 /**
9323  *	unregister_netdev - remove device from the kernel
9324  *	@dev: device
9325  *
9326  *	This function shuts down a device interface and removes it
9327  *	from the kernel tables.
9328  *
9329  *	This is just a wrapper for unregister_netdevice that takes
9330  *	the rtnl semaphore.  In general you want to use this and not
9331  *	unregister_netdevice.
9332  */
9333 void unregister_netdev(struct net_device *dev)
9334 {
9335 	rtnl_lock();
9336 	unregister_netdevice(dev);
9337 	rtnl_unlock();
9338 }
9339 EXPORT_SYMBOL(unregister_netdev);
9340 
9341 /**
9342  *	dev_change_net_namespace - move device to different nethost namespace
9343  *	@dev: device
9344  *	@net: network namespace
9345  *	@pat: If not NULL name pattern to try if the current device name
9346  *	      is already taken in the destination network namespace.
9347  *
9348  *	This function shuts down a device interface and moves it
9349  *	to a new network namespace. On success 0 is returned, on
9350  *	a failure a netagive errno code is returned.
9351  *
9352  *	Callers must hold the rtnl semaphore.
9353  */
9354 
9355 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9356 {
9357 	int err, new_nsid, new_ifindex;
9358 
9359 	ASSERT_RTNL();
9360 
9361 	/* Don't allow namespace local devices to be moved. */
9362 	err = -EINVAL;
9363 	if (dev->features & NETIF_F_NETNS_LOCAL)
9364 		goto out;
9365 
9366 	/* Ensure the device has been registrered */
9367 	if (dev->reg_state != NETREG_REGISTERED)
9368 		goto out;
9369 
9370 	/* Get out if there is nothing todo */
9371 	err = 0;
9372 	if (net_eq(dev_net(dev), net))
9373 		goto out;
9374 
9375 	/* Pick the destination device name, and ensure
9376 	 * we can use it in the destination network namespace.
9377 	 */
9378 	err = -EEXIST;
9379 	if (__dev_get_by_name(net, dev->name)) {
9380 		/* We get here if we can't use the current device name */
9381 		if (!pat)
9382 			goto out;
9383 		err = dev_get_valid_name(net, dev, pat);
9384 		if (err < 0)
9385 			goto out;
9386 	}
9387 
9388 	/*
9389 	 * And now a mini version of register_netdevice unregister_netdevice.
9390 	 */
9391 
9392 	/* If device is running close it first. */
9393 	dev_close(dev);
9394 
9395 	/* And unlink it from device chain */
9396 	unlist_netdevice(dev);
9397 
9398 	synchronize_net();
9399 
9400 	/* Shutdown queueing discipline. */
9401 	dev_shutdown(dev);
9402 
9403 	/* Notify protocols, that we are about to destroy
9404 	 * this device. They should clean all the things.
9405 	 *
9406 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9407 	 * This is wanted because this way 8021q and macvlan know
9408 	 * the device is just moving and can keep their slaves up.
9409 	 */
9410 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9411 	rcu_barrier();
9412 
9413 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9414 	/* If there is an ifindex conflict assign a new one */
9415 	if (__dev_get_by_index(net, dev->ifindex))
9416 		new_ifindex = dev_new_index(net);
9417 	else
9418 		new_ifindex = dev->ifindex;
9419 
9420 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9421 			    new_ifindex);
9422 
9423 	/*
9424 	 *	Flush the unicast and multicast chains
9425 	 */
9426 	dev_uc_flush(dev);
9427 	dev_mc_flush(dev);
9428 
9429 	/* Send a netdev-removed uevent to the old namespace */
9430 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9431 	netdev_adjacent_del_links(dev);
9432 
9433 	/* Actually switch the network namespace */
9434 	dev_net_set(dev, net);
9435 	dev->ifindex = new_ifindex;
9436 
9437 	/* Send a netdev-add uevent to the new namespace */
9438 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9439 	netdev_adjacent_add_links(dev);
9440 
9441 	/* Fixup kobjects */
9442 	err = device_rename(&dev->dev, dev->name);
9443 	WARN_ON(err);
9444 
9445 	/* Add the device back in the hashes */
9446 	list_netdevice(dev);
9447 
9448 	/* Notify protocols, that a new device appeared. */
9449 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9450 
9451 	/*
9452 	 *	Prevent userspace races by waiting until the network
9453 	 *	device is fully setup before sending notifications.
9454 	 */
9455 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9456 
9457 	synchronize_net();
9458 	err = 0;
9459 out:
9460 	return err;
9461 }
9462 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9463 
9464 static int dev_cpu_dead(unsigned int oldcpu)
9465 {
9466 	struct sk_buff **list_skb;
9467 	struct sk_buff *skb;
9468 	unsigned int cpu;
9469 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9470 
9471 	local_irq_disable();
9472 	cpu = smp_processor_id();
9473 	sd = &per_cpu(softnet_data, cpu);
9474 	oldsd = &per_cpu(softnet_data, oldcpu);
9475 
9476 	/* Find end of our completion_queue. */
9477 	list_skb = &sd->completion_queue;
9478 	while (*list_skb)
9479 		list_skb = &(*list_skb)->next;
9480 	/* Append completion queue from offline CPU. */
9481 	*list_skb = oldsd->completion_queue;
9482 	oldsd->completion_queue = NULL;
9483 
9484 	/* Append output queue from offline CPU. */
9485 	if (oldsd->output_queue) {
9486 		*sd->output_queue_tailp = oldsd->output_queue;
9487 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9488 		oldsd->output_queue = NULL;
9489 		oldsd->output_queue_tailp = &oldsd->output_queue;
9490 	}
9491 	/* Append NAPI poll list from offline CPU, with one exception :
9492 	 * process_backlog() must be called by cpu owning percpu backlog.
9493 	 * We properly handle process_queue & input_pkt_queue later.
9494 	 */
9495 	while (!list_empty(&oldsd->poll_list)) {
9496 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9497 							    struct napi_struct,
9498 							    poll_list);
9499 
9500 		list_del_init(&napi->poll_list);
9501 		if (napi->poll == process_backlog)
9502 			napi->state = 0;
9503 		else
9504 			____napi_schedule(sd, napi);
9505 	}
9506 
9507 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9508 	local_irq_enable();
9509 
9510 #ifdef CONFIG_RPS
9511 	remsd = oldsd->rps_ipi_list;
9512 	oldsd->rps_ipi_list = NULL;
9513 #endif
9514 	/* send out pending IPI's on offline CPU */
9515 	net_rps_send_ipi(remsd);
9516 
9517 	/* Process offline CPU's input_pkt_queue */
9518 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9519 		netif_rx_ni(skb);
9520 		input_queue_head_incr(oldsd);
9521 	}
9522 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9523 		netif_rx_ni(skb);
9524 		input_queue_head_incr(oldsd);
9525 	}
9526 
9527 	return 0;
9528 }
9529 
9530 /**
9531  *	netdev_increment_features - increment feature set by one
9532  *	@all: current feature set
9533  *	@one: new feature set
9534  *	@mask: mask feature set
9535  *
9536  *	Computes a new feature set after adding a device with feature set
9537  *	@one to the master device with current feature set @all.  Will not
9538  *	enable anything that is off in @mask. Returns the new feature set.
9539  */
9540 netdev_features_t netdev_increment_features(netdev_features_t all,
9541 	netdev_features_t one, netdev_features_t mask)
9542 {
9543 	if (mask & NETIF_F_HW_CSUM)
9544 		mask |= NETIF_F_CSUM_MASK;
9545 	mask |= NETIF_F_VLAN_CHALLENGED;
9546 
9547 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9548 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9549 
9550 	/* If one device supports hw checksumming, set for all. */
9551 	if (all & NETIF_F_HW_CSUM)
9552 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9553 
9554 	return all;
9555 }
9556 EXPORT_SYMBOL(netdev_increment_features);
9557 
9558 static struct hlist_head * __net_init netdev_create_hash(void)
9559 {
9560 	int i;
9561 	struct hlist_head *hash;
9562 
9563 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9564 	if (hash != NULL)
9565 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9566 			INIT_HLIST_HEAD(&hash[i]);
9567 
9568 	return hash;
9569 }
9570 
9571 /* Initialize per network namespace state */
9572 static int __net_init netdev_init(struct net *net)
9573 {
9574 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9575 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9576 
9577 	if (net != &init_net)
9578 		INIT_LIST_HEAD(&net->dev_base_head);
9579 
9580 	net->dev_name_head = netdev_create_hash();
9581 	if (net->dev_name_head == NULL)
9582 		goto err_name;
9583 
9584 	net->dev_index_head = netdev_create_hash();
9585 	if (net->dev_index_head == NULL)
9586 		goto err_idx;
9587 
9588 	return 0;
9589 
9590 err_idx:
9591 	kfree(net->dev_name_head);
9592 err_name:
9593 	return -ENOMEM;
9594 }
9595 
9596 /**
9597  *	netdev_drivername - network driver for the device
9598  *	@dev: network device
9599  *
9600  *	Determine network driver for device.
9601  */
9602 const char *netdev_drivername(const struct net_device *dev)
9603 {
9604 	const struct device_driver *driver;
9605 	const struct device *parent;
9606 	const char *empty = "";
9607 
9608 	parent = dev->dev.parent;
9609 	if (!parent)
9610 		return empty;
9611 
9612 	driver = parent->driver;
9613 	if (driver && driver->name)
9614 		return driver->name;
9615 	return empty;
9616 }
9617 
9618 static void __netdev_printk(const char *level, const struct net_device *dev,
9619 			    struct va_format *vaf)
9620 {
9621 	if (dev && dev->dev.parent) {
9622 		dev_printk_emit(level[1] - '0',
9623 				dev->dev.parent,
9624 				"%s %s %s%s: %pV",
9625 				dev_driver_string(dev->dev.parent),
9626 				dev_name(dev->dev.parent),
9627 				netdev_name(dev), netdev_reg_state(dev),
9628 				vaf);
9629 	} else if (dev) {
9630 		printk("%s%s%s: %pV",
9631 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9632 	} else {
9633 		printk("%s(NULL net_device): %pV", level, vaf);
9634 	}
9635 }
9636 
9637 void netdev_printk(const char *level, const struct net_device *dev,
9638 		   const char *format, ...)
9639 {
9640 	struct va_format vaf;
9641 	va_list args;
9642 
9643 	va_start(args, format);
9644 
9645 	vaf.fmt = format;
9646 	vaf.va = &args;
9647 
9648 	__netdev_printk(level, dev, &vaf);
9649 
9650 	va_end(args);
9651 }
9652 EXPORT_SYMBOL(netdev_printk);
9653 
9654 #define define_netdev_printk_level(func, level)			\
9655 void func(const struct net_device *dev, const char *fmt, ...)	\
9656 {								\
9657 	struct va_format vaf;					\
9658 	va_list args;						\
9659 								\
9660 	va_start(args, fmt);					\
9661 								\
9662 	vaf.fmt = fmt;						\
9663 	vaf.va = &args;						\
9664 								\
9665 	__netdev_printk(level, dev, &vaf);			\
9666 								\
9667 	va_end(args);						\
9668 }								\
9669 EXPORT_SYMBOL(func);
9670 
9671 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9672 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9673 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9674 define_netdev_printk_level(netdev_err, KERN_ERR);
9675 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9676 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9677 define_netdev_printk_level(netdev_info, KERN_INFO);
9678 
9679 static void __net_exit netdev_exit(struct net *net)
9680 {
9681 	kfree(net->dev_name_head);
9682 	kfree(net->dev_index_head);
9683 	if (net != &init_net)
9684 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9685 }
9686 
9687 static struct pernet_operations __net_initdata netdev_net_ops = {
9688 	.init = netdev_init,
9689 	.exit = netdev_exit,
9690 };
9691 
9692 static void __net_exit default_device_exit(struct net *net)
9693 {
9694 	struct net_device *dev, *aux;
9695 	/*
9696 	 * Push all migratable network devices back to the
9697 	 * initial network namespace
9698 	 */
9699 	rtnl_lock();
9700 	for_each_netdev_safe(net, dev, aux) {
9701 		int err;
9702 		char fb_name[IFNAMSIZ];
9703 
9704 		/* Ignore unmoveable devices (i.e. loopback) */
9705 		if (dev->features & NETIF_F_NETNS_LOCAL)
9706 			continue;
9707 
9708 		/* Leave virtual devices for the generic cleanup */
9709 		if (dev->rtnl_link_ops)
9710 			continue;
9711 
9712 		/* Push remaining network devices to init_net */
9713 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9714 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9715 		if (err) {
9716 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9717 				 __func__, dev->name, err);
9718 			BUG();
9719 		}
9720 	}
9721 	rtnl_unlock();
9722 }
9723 
9724 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9725 {
9726 	/* Return with the rtnl_lock held when there are no network
9727 	 * devices unregistering in any network namespace in net_list.
9728 	 */
9729 	struct net *net;
9730 	bool unregistering;
9731 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9732 
9733 	add_wait_queue(&netdev_unregistering_wq, &wait);
9734 	for (;;) {
9735 		unregistering = false;
9736 		rtnl_lock();
9737 		list_for_each_entry(net, net_list, exit_list) {
9738 			if (net->dev_unreg_count > 0) {
9739 				unregistering = true;
9740 				break;
9741 			}
9742 		}
9743 		if (!unregistering)
9744 			break;
9745 		__rtnl_unlock();
9746 
9747 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9748 	}
9749 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9750 }
9751 
9752 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9753 {
9754 	/* At exit all network devices most be removed from a network
9755 	 * namespace.  Do this in the reverse order of registration.
9756 	 * Do this across as many network namespaces as possible to
9757 	 * improve batching efficiency.
9758 	 */
9759 	struct net_device *dev;
9760 	struct net *net;
9761 	LIST_HEAD(dev_kill_list);
9762 
9763 	/* To prevent network device cleanup code from dereferencing
9764 	 * loopback devices or network devices that have been freed
9765 	 * wait here for all pending unregistrations to complete,
9766 	 * before unregistring the loopback device and allowing the
9767 	 * network namespace be freed.
9768 	 *
9769 	 * The netdev todo list containing all network devices
9770 	 * unregistrations that happen in default_device_exit_batch
9771 	 * will run in the rtnl_unlock() at the end of
9772 	 * default_device_exit_batch.
9773 	 */
9774 	rtnl_lock_unregistering(net_list);
9775 	list_for_each_entry(net, net_list, exit_list) {
9776 		for_each_netdev_reverse(net, dev) {
9777 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9778 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9779 			else
9780 				unregister_netdevice_queue(dev, &dev_kill_list);
9781 		}
9782 	}
9783 	unregister_netdevice_many(&dev_kill_list);
9784 	rtnl_unlock();
9785 }
9786 
9787 static struct pernet_operations __net_initdata default_device_ops = {
9788 	.exit = default_device_exit,
9789 	.exit_batch = default_device_exit_batch,
9790 };
9791 
9792 /*
9793  *	Initialize the DEV module. At boot time this walks the device list and
9794  *	unhooks any devices that fail to initialise (normally hardware not
9795  *	present) and leaves us with a valid list of present and active devices.
9796  *
9797  */
9798 
9799 /*
9800  *       This is called single threaded during boot, so no need
9801  *       to take the rtnl semaphore.
9802  */
9803 static int __init net_dev_init(void)
9804 {
9805 	int i, rc = -ENOMEM;
9806 
9807 	BUG_ON(!dev_boot_phase);
9808 
9809 	if (dev_proc_init())
9810 		goto out;
9811 
9812 	if (netdev_kobject_init())
9813 		goto out;
9814 
9815 	INIT_LIST_HEAD(&ptype_all);
9816 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9817 		INIT_LIST_HEAD(&ptype_base[i]);
9818 
9819 	INIT_LIST_HEAD(&offload_base);
9820 
9821 	if (register_pernet_subsys(&netdev_net_ops))
9822 		goto out;
9823 
9824 	/*
9825 	 *	Initialise the packet receive queues.
9826 	 */
9827 
9828 	for_each_possible_cpu(i) {
9829 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9830 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9831 
9832 		INIT_WORK(flush, flush_backlog);
9833 
9834 		skb_queue_head_init(&sd->input_pkt_queue);
9835 		skb_queue_head_init(&sd->process_queue);
9836 #ifdef CONFIG_XFRM_OFFLOAD
9837 		skb_queue_head_init(&sd->xfrm_backlog);
9838 #endif
9839 		INIT_LIST_HEAD(&sd->poll_list);
9840 		sd->output_queue_tailp = &sd->output_queue;
9841 #ifdef CONFIG_RPS
9842 		sd->csd.func = rps_trigger_softirq;
9843 		sd->csd.info = sd;
9844 		sd->cpu = i;
9845 #endif
9846 
9847 		init_gro_hash(&sd->backlog);
9848 		sd->backlog.poll = process_backlog;
9849 		sd->backlog.weight = weight_p;
9850 	}
9851 
9852 	dev_boot_phase = 0;
9853 
9854 	/* The loopback device is special if any other network devices
9855 	 * is present in a network namespace the loopback device must
9856 	 * be present. Since we now dynamically allocate and free the
9857 	 * loopback device ensure this invariant is maintained by
9858 	 * keeping the loopback device as the first device on the
9859 	 * list of network devices.  Ensuring the loopback devices
9860 	 * is the first device that appears and the last network device
9861 	 * that disappears.
9862 	 */
9863 	if (register_pernet_device(&loopback_net_ops))
9864 		goto out;
9865 
9866 	if (register_pernet_device(&default_device_ops))
9867 		goto out;
9868 
9869 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9870 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9871 
9872 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9873 				       NULL, dev_cpu_dead);
9874 	WARN_ON(rc < 0);
9875 	rc = 0;
9876 out:
9877 	return rc;
9878 }
9879 
9880 subsys_initcall(net_dev_init);
9881