xref: /linux/net/core/filter.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 
84 static const struct bpf_func_proto *
85 bpf_sk_base_func_proto(enum bpf_func_id func_id);
86 
87 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
88 {
89 	if (in_compat_syscall()) {
90 		struct compat_sock_fprog f32;
91 
92 		if (len != sizeof(f32))
93 			return -EINVAL;
94 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
95 			return -EFAULT;
96 		memset(dst, 0, sizeof(*dst));
97 		dst->len = f32.len;
98 		dst->filter = compat_ptr(f32.filter);
99 	} else {
100 		if (len != sizeof(*dst))
101 			return -EINVAL;
102 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
103 			return -EFAULT;
104 	}
105 
106 	return 0;
107 }
108 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
109 
110 /**
111  *	sk_filter_trim_cap - run a packet through a socket filter
112  *	@sk: sock associated with &sk_buff
113  *	@skb: buffer to filter
114  *	@cap: limit on how short the eBPF program may trim the packet
115  *
116  * Run the eBPF program and then cut skb->data to correct size returned by
117  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
118  * than pkt_len we keep whole skb->data. This is the socket level
119  * wrapper to bpf_prog_run. It returns 0 if the packet should
120  * be accepted or -EPERM if the packet should be tossed.
121  *
122  */
123 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
124 {
125 	int err;
126 	struct sk_filter *filter;
127 
128 	/*
129 	 * If the skb was allocated from pfmemalloc reserves, only
130 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
131 	 * helping free memory
132 	 */
133 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
134 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
135 		return -ENOMEM;
136 	}
137 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
138 	if (err)
139 		return err;
140 
141 	err = security_sock_rcv_skb(sk, skb);
142 	if (err)
143 		return err;
144 
145 	rcu_read_lock();
146 	filter = rcu_dereference(sk->sk_filter);
147 	if (filter) {
148 		struct sock *save_sk = skb->sk;
149 		unsigned int pkt_len;
150 
151 		skb->sk = sk;
152 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
153 		skb->sk = save_sk;
154 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
155 	}
156 	rcu_read_unlock();
157 
158 	return err;
159 }
160 EXPORT_SYMBOL(sk_filter_trim_cap);
161 
162 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
163 {
164 	return skb_get_poff(skb);
165 }
166 
167 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
168 {
169 	struct nlattr *nla;
170 
171 	if (skb_is_nonlinear(skb))
172 		return 0;
173 
174 	if (skb->len < sizeof(struct nlattr))
175 		return 0;
176 
177 	if (a > skb->len - sizeof(struct nlattr))
178 		return 0;
179 
180 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
181 	if (nla)
182 		return (void *) nla - (void *) skb->data;
183 
184 	return 0;
185 }
186 
187 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
188 {
189 	struct nlattr *nla;
190 
191 	if (skb_is_nonlinear(skb))
192 		return 0;
193 
194 	if (skb->len < sizeof(struct nlattr))
195 		return 0;
196 
197 	if (a > skb->len - sizeof(struct nlattr))
198 		return 0;
199 
200 	nla = (struct nlattr *) &skb->data[a];
201 	if (nla->nla_len > skb->len - a)
202 		return 0;
203 
204 	nla = nla_find_nested(nla, x);
205 	if (nla)
206 		return (void *) nla - (void *) skb->data;
207 
208 	return 0;
209 }
210 
211 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
212 	   data, int, headlen, int, offset)
213 {
214 	u8 tmp, *ptr;
215 	const int len = sizeof(tmp);
216 
217 	if (offset >= 0) {
218 		if (headlen - offset >= len)
219 			return *(u8 *)(data + offset);
220 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
221 			return tmp;
222 	} else {
223 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
224 		if (likely(ptr))
225 			return *(u8 *)ptr;
226 	}
227 
228 	return -EFAULT;
229 }
230 
231 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
232 	   int, offset)
233 {
234 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
235 					 offset);
236 }
237 
238 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
239 	   data, int, headlen, int, offset)
240 {
241 	__be16 tmp, *ptr;
242 	const int len = sizeof(tmp);
243 
244 	if (offset >= 0) {
245 		if (headlen - offset >= len)
246 			return get_unaligned_be16(data + offset);
247 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
248 			return be16_to_cpu(tmp);
249 	} else {
250 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
251 		if (likely(ptr))
252 			return get_unaligned_be16(ptr);
253 	}
254 
255 	return -EFAULT;
256 }
257 
258 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
259 	   int, offset)
260 {
261 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
262 					  offset);
263 }
264 
265 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
266 	   data, int, headlen, int, offset)
267 {
268 	__be32 tmp, *ptr;
269 	const int len = sizeof(tmp);
270 
271 	if (likely(offset >= 0)) {
272 		if (headlen - offset >= len)
273 			return get_unaligned_be32(data + offset);
274 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
275 			return be32_to_cpu(tmp);
276 	} else {
277 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
278 		if (likely(ptr))
279 			return get_unaligned_be32(ptr);
280 	}
281 
282 	return -EFAULT;
283 }
284 
285 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
286 	   int, offset)
287 {
288 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
289 					  offset);
290 }
291 
292 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
293 			      struct bpf_insn *insn_buf)
294 {
295 	struct bpf_insn *insn = insn_buf;
296 
297 	switch (skb_field) {
298 	case SKF_AD_MARK:
299 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
300 
301 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
302 				      offsetof(struct sk_buff, mark));
303 		break;
304 
305 	case SKF_AD_PKTTYPE:
306 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
307 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
308 #ifdef __BIG_ENDIAN_BITFIELD
309 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
310 #endif
311 		break;
312 
313 	case SKF_AD_QUEUE:
314 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
315 
316 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
317 				      offsetof(struct sk_buff, queue_mapping));
318 		break;
319 
320 	case SKF_AD_VLAN_TAG:
321 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
322 
323 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
324 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
325 				      offsetof(struct sk_buff, vlan_tci));
326 		break;
327 	case SKF_AD_VLAN_TAG_PRESENT:
328 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET);
329 		if (PKT_VLAN_PRESENT_BIT)
330 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
331 		if (PKT_VLAN_PRESENT_BIT < 7)
332 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
333 		break;
334 	}
335 
336 	return insn - insn_buf;
337 }
338 
339 static bool convert_bpf_extensions(struct sock_filter *fp,
340 				   struct bpf_insn **insnp)
341 {
342 	struct bpf_insn *insn = *insnp;
343 	u32 cnt;
344 
345 	switch (fp->k) {
346 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
347 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
348 
349 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
350 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
351 				      offsetof(struct sk_buff, protocol));
352 		/* A = ntohs(A) [emitting a nop or swap16] */
353 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
354 		break;
355 
356 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
357 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
358 		insn += cnt - 1;
359 		break;
360 
361 	case SKF_AD_OFF + SKF_AD_IFINDEX:
362 	case SKF_AD_OFF + SKF_AD_HATYPE:
363 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
364 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
365 
366 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
367 				      BPF_REG_TMP, BPF_REG_CTX,
368 				      offsetof(struct sk_buff, dev));
369 		/* if (tmp != 0) goto pc + 1 */
370 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
371 		*insn++ = BPF_EXIT_INSN();
372 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
373 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
374 					    offsetof(struct net_device, ifindex));
375 		else
376 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
377 					    offsetof(struct net_device, type));
378 		break;
379 
380 	case SKF_AD_OFF + SKF_AD_MARK:
381 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
382 		insn += cnt - 1;
383 		break;
384 
385 	case SKF_AD_OFF + SKF_AD_RXHASH:
386 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
387 
388 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
389 				    offsetof(struct sk_buff, hash));
390 		break;
391 
392 	case SKF_AD_OFF + SKF_AD_QUEUE:
393 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
394 		insn += cnt - 1;
395 		break;
396 
397 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
398 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
399 					 BPF_REG_A, BPF_REG_CTX, insn);
400 		insn += cnt - 1;
401 		break;
402 
403 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
404 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
405 					 BPF_REG_A, BPF_REG_CTX, insn);
406 		insn += cnt - 1;
407 		break;
408 
409 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
410 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
411 
412 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
413 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
414 				      offsetof(struct sk_buff, vlan_proto));
415 		/* A = ntohs(A) [emitting a nop or swap16] */
416 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
417 		break;
418 
419 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
420 	case SKF_AD_OFF + SKF_AD_NLATTR:
421 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
422 	case SKF_AD_OFF + SKF_AD_CPU:
423 	case SKF_AD_OFF + SKF_AD_RANDOM:
424 		/* arg1 = CTX */
425 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
426 		/* arg2 = A */
427 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
428 		/* arg3 = X */
429 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
430 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
431 		switch (fp->k) {
432 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
433 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
434 			break;
435 		case SKF_AD_OFF + SKF_AD_NLATTR:
436 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
437 			break;
438 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
439 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_CPU:
442 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
443 			break;
444 		case SKF_AD_OFF + SKF_AD_RANDOM:
445 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
446 			bpf_user_rnd_init_once();
447 			break;
448 		}
449 		break;
450 
451 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
452 		/* A ^= X */
453 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
454 		break;
455 
456 	default:
457 		/* This is just a dummy call to avoid letting the compiler
458 		 * evict __bpf_call_base() as an optimization. Placed here
459 		 * where no-one bothers.
460 		 */
461 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
462 		return false;
463 	}
464 
465 	*insnp = insn;
466 	return true;
467 }
468 
469 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
470 {
471 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
472 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
473 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
474 		      BPF_SIZE(fp->code) == BPF_W;
475 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
476 	const int ip_align = NET_IP_ALIGN;
477 	struct bpf_insn *insn = *insnp;
478 	int offset = fp->k;
479 
480 	if (!indirect &&
481 	    ((unaligned_ok && offset >= 0) ||
482 	     (!unaligned_ok && offset >= 0 &&
483 	      offset + ip_align >= 0 &&
484 	      offset + ip_align % size == 0))) {
485 		bool ldx_off_ok = offset <= S16_MAX;
486 
487 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
488 		if (offset)
489 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
490 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
491 				      size, 2 + endian + (!ldx_off_ok * 2));
492 		if (ldx_off_ok) {
493 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
494 					      BPF_REG_D, offset);
495 		} else {
496 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
497 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
498 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
499 					      BPF_REG_TMP, 0);
500 		}
501 		if (endian)
502 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
503 		*insn++ = BPF_JMP_A(8);
504 	}
505 
506 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
507 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
508 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
509 	if (!indirect) {
510 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
511 	} else {
512 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
513 		if (fp->k)
514 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
515 	}
516 
517 	switch (BPF_SIZE(fp->code)) {
518 	case BPF_B:
519 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
520 		break;
521 	case BPF_H:
522 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
523 		break;
524 	case BPF_W:
525 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
526 		break;
527 	default:
528 		return false;
529 	}
530 
531 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
532 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
533 	*insn   = BPF_EXIT_INSN();
534 
535 	*insnp = insn;
536 	return true;
537 }
538 
539 /**
540  *	bpf_convert_filter - convert filter program
541  *	@prog: the user passed filter program
542  *	@len: the length of the user passed filter program
543  *	@new_prog: allocated 'struct bpf_prog' or NULL
544  *	@new_len: pointer to store length of converted program
545  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
546  *
547  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
548  * style extended BPF (eBPF).
549  * Conversion workflow:
550  *
551  * 1) First pass for calculating the new program length:
552  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
553  *
554  * 2) 2nd pass to remap in two passes: 1st pass finds new
555  *    jump offsets, 2nd pass remapping:
556  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
557  */
558 static int bpf_convert_filter(struct sock_filter *prog, int len,
559 			      struct bpf_prog *new_prog, int *new_len,
560 			      bool *seen_ld_abs)
561 {
562 	int new_flen = 0, pass = 0, target, i, stack_off;
563 	struct bpf_insn *new_insn, *first_insn = NULL;
564 	struct sock_filter *fp;
565 	int *addrs = NULL;
566 	u8 bpf_src;
567 
568 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
569 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
570 
571 	if (len <= 0 || len > BPF_MAXINSNS)
572 		return -EINVAL;
573 
574 	if (new_prog) {
575 		first_insn = new_prog->insnsi;
576 		addrs = kcalloc(len, sizeof(*addrs),
577 				GFP_KERNEL | __GFP_NOWARN);
578 		if (!addrs)
579 			return -ENOMEM;
580 	}
581 
582 do_pass:
583 	new_insn = first_insn;
584 	fp = prog;
585 
586 	/* Classic BPF related prologue emission. */
587 	if (new_prog) {
588 		/* Classic BPF expects A and X to be reset first. These need
589 		 * to be guaranteed to be the first two instructions.
590 		 */
591 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
592 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
593 
594 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
595 		 * In eBPF case it's done by the compiler, here we need to
596 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
597 		 */
598 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
599 		if (*seen_ld_abs) {
600 			/* For packet access in classic BPF, cache skb->data
601 			 * in callee-saved BPF R8 and skb->len - skb->data_len
602 			 * (headlen) in BPF R9. Since classic BPF is read-only
603 			 * on CTX, we only need to cache it once.
604 			 */
605 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
606 						  BPF_REG_D, BPF_REG_CTX,
607 						  offsetof(struct sk_buff, data));
608 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
609 						  offsetof(struct sk_buff, len));
610 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
611 						  offsetof(struct sk_buff, data_len));
612 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
613 		}
614 	} else {
615 		new_insn += 3;
616 	}
617 
618 	for (i = 0; i < len; fp++, i++) {
619 		struct bpf_insn tmp_insns[32] = { };
620 		struct bpf_insn *insn = tmp_insns;
621 
622 		if (addrs)
623 			addrs[i] = new_insn - first_insn;
624 
625 		switch (fp->code) {
626 		/* All arithmetic insns and skb loads map as-is. */
627 		case BPF_ALU | BPF_ADD | BPF_X:
628 		case BPF_ALU | BPF_ADD | BPF_K:
629 		case BPF_ALU | BPF_SUB | BPF_X:
630 		case BPF_ALU | BPF_SUB | BPF_K:
631 		case BPF_ALU | BPF_AND | BPF_X:
632 		case BPF_ALU | BPF_AND | BPF_K:
633 		case BPF_ALU | BPF_OR | BPF_X:
634 		case BPF_ALU | BPF_OR | BPF_K:
635 		case BPF_ALU | BPF_LSH | BPF_X:
636 		case BPF_ALU | BPF_LSH | BPF_K:
637 		case BPF_ALU | BPF_RSH | BPF_X:
638 		case BPF_ALU | BPF_RSH | BPF_K:
639 		case BPF_ALU | BPF_XOR | BPF_X:
640 		case BPF_ALU | BPF_XOR | BPF_K:
641 		case BPF_ALU | BPF_MUL | BPF_X:
642 		case BPF_ALU | BPF_MUL | BPF_K:
643 		case BPF_ALU | BPF_DIV | BPF_X:
644 		case BPF_ALU | BPF_DIV | BPF_K:
645 		case BPF_ALU | BPF_MOD | BPF_X:
646 		case BPF_ALU | BPF_MOD | BPF_K:
647 		case BPF_ALU | BPF_NEG:
648 		case BPF_LD | BPF_ABS | BPF_W:
649 		case BPF_LD | BPF_ABS | BPF_H:
650 		case BPF_LD | BPF_ABS | BPF_B:
651 		case BPF_LD | BPF_IND | BPF_W:
652 		case BPF_LD | BPF_IND | BPF_H:
653 		case BPF_LD | BPF_IND | BPF_B:
654 			/* Check for overloaded BPF extension and
655 			 * directly convert it if found, otherwise
656 			 * just move on with mapping.
657 			 */
658 			if (BPF_CLASS(fp->code) == BPF_LD &&
659 			    BPF_MODE(fp->code) == BPF_ABS &&
660 			    convert_bpf_extensions(fp, &insn))
661 				break;
662 			if (BPF_CLASS(fp->code) == BPF_LD &&
663 			    convert_bpf_ld_abs(fp, &insn)) {
664 				*seen_ld_abs = true;
665 				break;
666 			}
667 
668 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
669 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
670 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
671 				/* Error with exception code on div/mod by 0.
672 				 * For cBPF programs, this was always return 0.
673 				 */
674 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
675 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
676 				*insn++ = BPF_EXIT_INSN();
677 			}
678 
679 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
680 			break;
681 
682 		/* Jump transformation cannot use BPF block macros
683 		 * everywhere as offset calculation and target updates
684 		 * require a bit more work than the rest, i.e. jump
685 		 * opcodes map as-is, but offsets need adjustment.
686 		 */
687 
688 #define BPF_EMIT_JMP							\
689 	do {								\
690 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
691 		s32 off;						\
692 									\
693 		if (target >= len || target < 0)			\
694 			goto err;					\
695 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
696 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
697 		off -= insn - tmp_insns;				\
698 		/* Reject anything not fitting into insn->off. */	\
699 		if (off < off_min || off > off_max)			\
700 			goto err;					\
701 		insn->off = off;					\
702 	} while (0)
703 
704 		case BPF_JMP | BPF_JA:
705 			target = i + fp->k + 1;
706 			insn->code = fp->code;
707 			BPF_EMIT_JMP;
708 			break;
709 
710 		case BPF_JMP | BPF_JEQ | BPF_K:
711 		case BPF_JMP | BPF_JEQ | BPF_X:
712 		case BPF_JMP | BPF_JSET | BPF_K:
713 		case BPF_JMP | BPF_JSET | BPF_X:
714 		case BPF_JMP | BPF_JGT | BPF_K:
715 		case BPF_JMP | BPF_JGT | BPF_X:
716 		case BPF_JMP | BPF_JGE | BPF_K:
717 		case BPF_JMP | BPF_JGE | BPF_X:
718 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
719 				/* BPF immediates are signed, zero extend
720 				 * immediate into tmp register and use it
721 				 * in compare insn.
722 				 */
723 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
724 
725 				insn->dst_reg = BPF_REG_A;
726 				insn->src_reg = BPF_REG_TMP;
727 				bpf_src = BPF_X;
728 			} else {
729 				insn->dst_reg = BPF_REG_A;
730 				insn->imm = fp->k;
731 				bpf_src = BPF_SRC(fp->code);
732 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
733 			}
734 
735 			/* Common case where 'jump_false' is next insn. */
736 			if (fp->jf == 0) {
737 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
738 				target = i + fp->jt + 1;
739 				BPF_EMIT_JMP;
740 				break;
741 			}
742 
743 			/* Convert some jumps when 'jump_true' is next insn. */
744 			if (fp->jt == 0) {
745 				switch (BPF_OP(fp->code)) {
746 				case BPF_JEQ:
747 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
748 					break;
749 				case BPF_JGT:
750 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
751 					break;
752 				case BPF_JGE:
753 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
754 					break;
755 				default:
756 					goto jmp_rest;
757 				}
758 
759 				target = i + fp->jf + 1;
760 				BPF_EMIT_JMP;
761 				break;
762 			}
763 jmp_rest:
764 			/* Other jumps are mapped into two insns: Jxx and JA. */
765 			target = i + fp->jt + 1;
766 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
767 			BPF_EMIT_JMP;
768 			insn++;
769 
770 			insn->code = BPF_JMP | BPF_JA;
771 			target = i + fp->jf + 1;
772 			BPF_EMIT_JMP;
773 			break;
774 
775 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
776 		case BPF_LDX | BPF_MSH | BPF_B: {
777 			struct sock_filter tmp = {
778 				.code	= BPF_LD | BPF_ABS | BPF_B,
779 				.k	= fp->k,
780 			};
781 
782 			*seen_ld_abs = true;
783 
784 			/* X = A */
785 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
786 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
787 			convert_bpf_ld_abs(&tmp, &insn);
788 			insn++;
789 			/* A &= 0xf */
790 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
791 			/* A <<= 2 */
792 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
793 			/* tmp = X */
794 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
795 			/* X = A */
796 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
797 			/* A = tmp */
798 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
799 			break;
800 		}
801 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
802 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
803 		 */
804 		case BPF_RET | BPF_A:
805 		case BPF_RET | BPF_K:
806 			if (BPF_RVAL(fp->code) == BPF_K)
807 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
808 							0, fp->k);
809 			*insn = BPF_EXIT_INSN();
810 			break;
811 
812 		/* Store to stack. */
813 		case BPF_ST:
814 		case BPF_STX:
815 			stack_off = fp->k * 4  + 4;
816 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
817 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
818 					    -stack_off);
819 			/* check_load_and_stores() verifies that classic BPF can
820 			 * load from stack only after write, so tracking
821 			 * stack_depth for ST|STX insns is enough
822 			 */
823 			if (new_prog && new_prog->aux->stack_depth < stack_off)
824 				new_prog->aux->stack_depth = stack_off;
825 			break;
826 
827 		/* Load from stack. */
828 		case BPF_LD | BPF_MEM:
829 		case BPF_LDX | BPF_MEM:
830 			stack_off = fp->k * 4  + 4;
831 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
832 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
833 					    -stack_off);
834 			break;
835 
836 		/* A = K or X = K */
837 		case BPF_LD | BPF_IMM:
838 		case BPF_LDX | BPF_IMM:
839 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
840 					      BPF_REG_A : BPF_REG_X, fp->k);
841 			break;
842 
843 		/* X = A */
844 		case BPF_MISC | BPF_TAX:
845 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
846 			break;
847 
848 		/* A = X */
849 		case BPF_MISC | BPF_TXA:
850 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
851 			break;
852 
853 		/* A = skb->len or X = skb->len */
854 		case BPF_LD | BPF_W | BPF_LEN:
855 		case BPF_LDX | BPF_W | BPF_LEN:
856 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
857 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
858 					    offsetof(struct sk_buff, len));
859 			break;
860 
861 		/* Access seccomp_data fields. */
862 		case BPF_LDX | BPF_ABS | BPF_W:
863 			/* A = *(u32 *) (ctx + K) */
864 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
865 			break;
866 
867 		/* Unknown instruction. */
868 		default:
869 			goto err;
870 		}
871 
872 		insn++;
873 		if (new_prog)
874 			memcpy(new_insn, tmp_insns,
875 			       sizeof(*insn) * (insn - tmp_insns));
876 		new_insn += insn - tmp_insns;
877 	}
878 
879 	if (!new_prog) {
880 		/* Only calculating new length. */
881 		*new_len = new_insn - first_insn;
882 		if (*seen_ld_abs)
883 			*new_len += 4; /* Prologue bits. */
884 		return 0;
885 	}
886 
887 	pass++;
888 	if (new_flen != new_insn - first_insn) {
889 		new_flen = new_insn - first_insn;
890 		if (pass > 2)
891 			goto err;
892 		goto do_pass;
893 	}
894 
895 	kfree(addrs);
896 	BUG_ON(*new_len != new_flen);
897 	return 0;
898 err:
899 	kfree(addrs);
900 	return -EINVAL;
901 }
902 
903 /* Security:
904  *
905  * As we dont want to clear mem[] array for each packet going through
906  * __bpf_prog_run(), we check that filter loaded by user never try to read
907  * a cell if not previously written, and we check all branches to be sure
908  * a malicious user doesn't try to abuse us.
909  */
910 static int check_load_and_stores(const struct sock_filter *filter, int flen)
911 {
912 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
913 	int pc, ret = 0;
914 
915 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
916 
917 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
918 	if (!masks)
919 		return -ENOMEM;
920 
921 	memset(masks, 0xff, flen * sizeof(*masks));
922 
923 	for (pc = 0; pc < flen; pc++) {
924 		memvalid &= masks[pc];
925 
926 		switch (filter[pc].code) {
927 		case BPF_ST:
928 		case BPF_STX:
929 			memvalid |= (1 << filter[pc].k);
930 			break;
931 		case BPF_LD | BPF_MEM:
932 		case BPF_LDX | BPF_MEM:
933 			if (!(memvalid & (1 << filter[pc].k))) {
934 				ret = -EINVAL;
935 				goto error;
936 			}
937 			break;
938 		case BPF_JMP | BPF_JA:
939 			/* A jump must set masks on target */
940 			masks[pc + 1 + filter[pc].k] &= memvalid;
941 			memvalid = ~0;
942 			break;
943 		case BPF_JMP | BPF_JEQ | BPF_K:
944 		case BPF_JMP | BPF_JEQ | BPF_X:
945 		case BPF_JMP | BPF_JGE | BPF_K:
946 		case BPF_JMP | BPF_JGE | BPF_X:
947 		case BPF_JMP | BPF_JGT | BPF_K:
948 		case BPF_JMP | BPF_JGT | BPF_X:
949 		case BPF_JMP | BPF_JSET | BPF_K:
950 		case BPF_JMP | BPF_JSET | BPF_X:
951 			/* A jump must set masks on targets */
952 			masks[pc + 1 + filter[pc].jt] &= memvalid;
953 			masks[pc + 1 + filter[pc].jf] &= memvalid;
954 			memvalid = ~0;
955 			break;
956 		}
957 	}
958 error:
959 	kfree(masks);
960 	return ret;
961 }
962 
963 static bool chk_code_allowed(u16 code_to_probe)
964 {
965 	static const bool codes[] = {
966 		/* 32 bit ALU operations */
967 		[BPF_ALU | BPF_ADD | BPF_K] = true,
968 		[BPF_ALU | BPF_ADD | BPF_X] = true,
969 		[BPF_ALU | BPF_SUB | BPF_K] = true,
970 		[BPF_ALU | BPF_SUB | BPF_X] = true,
971 		[BPF_ALU | BPF_MUL | BPF_K] = true,
972 		[BPF_ALU | BPF_MUL | BPF_X] = true,
973 		[BPF_ALU | BPF_DIV | BPF_K] = true,
974 		[BPF_ALU | BPF_DIV | BPF_X] = true,
975 		[BPF_ALU | BPF_MOD | BPF_K] = true,
976 		[BPF_ALU | BPF_MOD | BPF_X] = true,
977 		[BPF_ALU | BPF_AND | BPF_K] = true,
978 		[BPF_ALU | BPF_AND | BPF_X] = true,
979 		[BPF_ALU | BPF_OR | BPF_K] = true,
980 		[BPF_ALU | BPF_OR | BPF_X] = true,
981 		[BPF_ALU | BPF_XOR | BPF_K] = true,
982 		[BPF_ALU | BPF_XOR | BPF_X] = true,
983 		[BPF_ALU | BPF_LSH | BPF_K] = true,
984 		[BPF_ALU | BPF_LSH | BPF_X] = true,
985 		[BPF_ALU | BPF_RSH | BPF_K] = true,
986 		[BPF_ALU | BPF_RSH | BPF_X] = true,
987 		[BPF_ALU | BPF_NEG] = true,
988 		/* Load instructions */
989 		[BPF_LD | BPF_W | BPF_ABS] = true,
990 		[BPF_LD | BPF_H | BPF_ABS] = true,
991 		[BPF_LD | BPF_B | BPF_ABS] = true,
992 		[BPF_LD | BPF_W | BPF_LEN] = true,
993 		[BPF_LD | BPF_W | BPF_IND] = true,
994 		[BPF_LD | BPF_H | BPF_IND] = true,
995 		[BPF_LD | BPF_B | BPF_IND] = true,
996 		[BPF_LD | BPF_IMM] = true,
997 		[BPF_LD | BPF_MEM] = true,
998 		[BPF_LDX | BPF_W | BPF_LEN] = true,
999 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1000 		[BPF_LDX | BPF_IMM] = true,
1001 		[BPF_LDX | BPF_MEM] = true,
1002 		/* Store instructions */
1003 		[BPF_ST] = true,
1004 		[BPF_STX] = true,
1005 		/* Misc instructions */
1006 		[BPF_MISC | BPF_TAX] = true,
1007 		[BPF_MISC | BPF_TXA] = true,
1008 		/* Return instructions */
1009 		[BPF_RET | BPF_K] = true,
1010 		[BPF_RET | BPF_A] = true,
1011 		/* Jump instructions */
1012 		[BPF_JMP | BPF_JA] = true,
1013 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1014 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1015 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1016 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1017 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1018 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1019 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1020 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1021 	};
1022 
1023 	if (code_to_probe >= ARRAY_SIZE(codes))
1024 		return false;
1025 
1026 	return codes[code_to_probe];
1027 }
1028 
1029 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1030 				unsigned int flen)
1031 {
1032 	if (filter == NULL)
1033 		return false;
1034 	if (flen == 0 || flen > BPF_MAXINSNS)
1035 		return false;
1036 
1037 	return true;
1038 }
1039 
1040 /**
1041  *	bpf_check_classic - verify socket filter code
1042  *	@filter: filter to verify
1043  *	@flen: length of filter
1044  *
1045  * Check the user's filter code. If we let some ugly
1046  * filter code slip through kaboom! The filter must contain
1047  * no references or jumps that are out of range, no illegal
1048  * instructions, and must end with a RET instruction.
1049  *
1050  * All jumps are forward as they are not signed.
1051  *
1052  * Returns 0 if the rule set is legal or -EINVAL if not.
1053  */
1054 static int bpf_check_classic(const struct sock_filter *filter,
1055 			     unsigned int flen)
1056 {
1057 	bool anc_found;
1058 	int pc;
1059 
1060 	/* Check the filter code now */
1061 	for (pc = 0; pc < flen; pc++) {
1062 		const struct sock_filter *ftest = &filter[pc];
1063 
1064 		/* May we actually operate on this code? */
1065 		if (!chk_code_allowed(ftest->code))
1066 			return -EINVAL;
1067 
1068 		/* Some instructions need special checks */
1069 		switch (ftest->code) {
1070 		case BPF_ALU | BPF_DIV | BPF_K:
1071 		case BPF_ALU | BPF_MOD | BPF_K:
1072 			/* Check for division by zero */
1073 			if (ftest->k == 0)
1074 				return -EINVAL;
1075 			break;
1076 		case BPF_ALU | BPF_LSH | BPF_K:
1077 		case BPF_ALU | BPF_RSH | BPF_K:
1078 			if (ftest->k >= 32)
1079 				return -EINVAL;
1080 			break;
1081 		case BPF_LD | BPF_MEM:
1082 		case BPF_LDX | BPF_MEM:
1083 		case BPF_ST:
1084 		case BPF_STX:
1085 			/* Check for invalid memory addresses */
1086 			if (ftest->k >= BPF_MEMWORDS)
1087 				return -EINVAL;
1088 			break;
1089 		case BPF_JMP | BPF_JA:
1090 			/* Note, the large ftest->k might cause loops.
1091 			 * Compare this with conditional jumps below,
1092 			 * where offsets are limited. --ANK (981016)
1093 			 */
1094 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1095 				return -EINVAL;
1096 			break;
1097 		case BPF_JMP | BPF_JEQ | BPF_K:
1098 		case BPF_JMP | BPF_JEQ | BPF_X:
1099 		case BPF_JMP | BPF_JGE | BPF_K:
1100 		case BPF_JMP | BPF_JGE | BPF_X:
1101 		case BPF_JMP | BPF_JGT | BPF_K:
1102 		case BPF_JMP | BPF_JGT | BPF_X:
1103 		case BPF_JMP | BPF_JSET | BPF_K:
1104 		case BPF_JMP | BPF_JSET | BPF_X:
1105 			/* Both conditionals must be safe */
1106 			if (pc + ftest->jt + 1 >= flen ||
1107 			    pc + ftest->jf + 1 >= flen)
1108 				return -EINVAL;
1109 			break;
1110 		case BPF_LD | BPF_W | BPF_ABS:
1111 		case BPF_LD | BPF_H | BPF_ABS:
1112 		case BPF_LD | BPF_B | BPF_ABS:
1113 			anc_found = false;
1114 			if (bpf_anc_helper(ftest) & BPF_ANC)
1115 				anc_found = true;
1116 			/* Ancillary operation unknown or unsupported */
1117 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1118 				return -EINVAL;
1119 		}
1120 	}
1121 
1122 	/* Last instruction must be a RET code */
1123 	switch (filter[flen - 1].code) {
1124 	case BPF_RET | BPF_K:
1125 	case BPF_RET | BPF_A:
1126 		return check_load_and_stores(filter, flen);
1127 	}
1128 
1129 	return -EINVAL;
1130 }
1131 
1132 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1133 				      const struct sock_fprog *fprog)
1134 {
1135 	unsigned int fsize = bpf_classic_proglen(fprog);
1136 	struct sock_fprog_kern *fkprog;
1137 
1138 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1139 	if (!fp->orig_prog)
1140 		return -ENOMEM;
1141 
1142 	fkprog = fp->orig_prog;
1143 	fkprog->len = fprog->len;
1144 
1145 	fkprog->filter = kmemdup(fp->insns, fsize,
1146 				 GFP_KERNEL | __GFP_NOWARN);
1147 	if (!fkprog->filter) {
1148 		kfree(fp->orig_prog);
1149 		return -ENOMEM;
1150 	}
1151 
1152 	return 0;
1153 }
1154 
1155 static void bpf_release_orig_filter(struct bpf_prog *fp)
1156 {
1157 	struct sock_fprog_kern *fprog = fp->orig_prog;
1158 
1159 	if (fprog) {
1160 		kfree(fprog->filter);
1161 		kfree(fprog);
1162 	}
1163 }
1164 
1165 static void __bpf_prog_release(struct bpf_prog *prog)
1166 {
1167 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1168 		bpf_prog_put(prog);
1169 	} else {
1170 		bpf_release_orig_filter(prog);
1171 		bpf_prog_free(prog);
1172 	}
1173 }
1174 
1175 static void __sk_filter_release(struct sk_filter *fp)
1176 {
1177 	__bpf_prog_release(fp->prog);
1178 	kfree(fp);
1179 }
1180 
1181 /**
1182  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1183  *	@rcu: rcu_head that contains the sk_filter to free
1184  */
1185 static void sk_filter_release_rcu(struct rcu_head *rcu)
1186 {
1187 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1188 
1189 	__sk_filter_release(fp);
1190 }
1191 
1192 /**
1193  *	sk_filter_release - release a socket filter
1194  *	@fp: filter to remove
1195  *
1196  *	Remove a filter from a socket and release its resources.
1197  */
1198 static void sk_filter_release(struct sk_filter *fp)
1199 {
1200 	if (refcount_dec_and_test(&fp->refcnt))
1201 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1202 }
1203 
1204 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1205 {
1206 	u32 filter_size = bpf_prog_size(fp->prog->len);
1207 
1208 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1209 	sk_filter_release(fp);
1210 }
1211 
1212 /* try to charge the socket memory if there is space available
1213  * return true on success
1214  */
1215 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1216 {
1217 	u32 filter_size = bpf_prog_size(fp->prog->len);
1218 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1219 
1220 	/* same check as in sock_kmalloc() */
1221 	if (filter_size <= optmem_max &&
1222 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1223 		atomic_add(filter_size, &sk->sk_omem_alloc);
1224 		return true;
1225 	}
1226 	return false;
1227 }
1228 
1229 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1230 {
1231 	if (!refcount_inc_not_zero(&fp->refcnt))
1232 		return false;
1233 
1234 	if (!__sk_filter_charge(sk, fp)) {
1235 		sk_filter_release(fp);
1236 		return false;
1237 	}
1238 	return true;
1239 }
1240 
1241 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1242 {
1243 	struct sock_filter *old_prog;
1244 	struct bpf_prog *old_fp;
1245 	int err, new_len, old_len = fp->len;
1246 	bool seen_ld_abs = false;
1247 
1248 	/* We are free to overwrite insns et al right here as it won't be used at
1249 	 * this point in time anymore internally after the migration to the eBPF
1250 	 * instruction representation.
1251 	 */
1252 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1253 		     sizeof(struct bpf_insn));
1254 
1255 	/* Conversion cannot happen on overlapping memory areas,
1256 	 * so we need to keep the user BPF around until the 2nd
1257 	 * pass. At this time, the user BPF is stored in fp->insns.
1258 	 */
1259 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1260 			   GFP_KERNEL | __GFP_NOWARN);
1261 	if (!old_prog) {
1262 		err = -ENOMEM;
1263 		goto out_err;
1264 	}
1265 
1266 	/* 1st pass: calculate the new program length. */
1267 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1268 				 &seen_ld_abs);
1269 	if (err)
1270 		goto out_err_free;
1271 
1272 	/* Expand fp for appending the new filter representation. */
1273 	old_fp = fp;
1274 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1275 	if (!fp) {
1276 		/* The old_fp is still around in case we couldn't
1277 		 * allocate new memory, so uncharge on that one.
1278 		 */
1279 		fp = old_fp;
1280 		err = -ENOMEM;
1281 		goto out_err_free;
1282 	}
1283 
1284 	fp->len = new_len;
1285 
1286 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1287 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1288 				 &seen_ld_abs);
1289 	if (err)
1290 		/* 2nd bpf_convert_filter() can fail only if it fails
1291 		 * to allocate memory, remapping must succeed. Note,
1292 		 * that at this time old_fp has already been released
1293 		 * by krealloc().
1294 		 */
1295 		goto out_err_free;
1296 
1297 	fp = bpf_prog_select_runtime(fp, &err);
1298 	if (err)
1299 		goto out_err_free;
1300 
1301 	kfree(old_prog);
1302 	return fp;
1303 
1304 out_err_free:
1305 	kfree(old_prog);
1306 out_err:
1307 	__bpf_prog_release(fp);
1308 	return ERR_PTR(err);
1309 }
1310 
1311 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1312 					   bpf_aux_classic_check_t trans)
1313 {
1314 	int err;
1315 
1316 	fp->bpf_func = NULL;
1317 	fp->jited = 0;
1318 
1319 	err = bpf_check_classic(fp->insns, fp->len);
1320 	if (err) {
1321 		__bpf_prog_release(fp);
1322 		return ERR_PTR(err);
1323 	}
1324 
1325 	/* There might be additional checks and transformations
1326 	 * needed on classic filters, f.e. in case of seccomp.
1327 	 */
1328 	if (trans) {
1329 		err = trans(fp->insns, fp->len);
1330 		if (err) {
1331 			__bpf_prog_release(fp);
1332 			return ERR_PTR(err);
1333 		}
1334 	}
1335 
1336 	/* Probe if we can JIT compile the filter and if so, do
1337 	 * the compilation of the filter.
1338 	 */
1339 	bpf_jit_compile(fp);
1340 
1341 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1342 	 * for the optimized interpreter.
1343 	 */
1344 	if (!fp->jited)
1345 		fp = bpf_migrate_filter(fp);
1346 
1347 	return fp;
1348 }
1349 
1350 /**
1351  *	bpf_prog_create - create an unattached filter
1352  *	@pfp: the unattached filter that is created
1353  *	@fprog: the filter program
1354  *
1355  * Create a filter independent of any socket. We first run some
1356  * sanity checks on it to make sure it does not explode on us later.
1357  * If an error occurs or there is insufficient memory for the filter
1358  * a negative errno code is returned. On success the return is zero.
1359  */
1360 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1361 {
1362 	unsigned int fsize = bpf_classic_proglen(fprog);
1363 	struct bpf_prog *fp;
1364 
1365 	/* Make sure new filter is there and in the right amounts. */
1366 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1367 		return -EINVAL;
1368 
1369 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1370 	if (!fp)
1371 		return -ENOMEM;
1372 
1373 	memcpy(fp->insns, fprog->filter, fsize);
1374 
1375 	fp->len = fprog->len;
1376 	/* Since unattached filters are not copied back to user
1377 	 * space through sk_get_filter(), we do not need to hold
1378 	 * a copy here, and can spare us the work.
1379 	 */
1380 	fp->orig_prog = NULL;
1381 
1382 	/* bpf_prepare_filter() already takes care of freeing
1383 	 * memory in case something goes wrong.
1384 	 */
1385 	fp = bpf_prepare_filter(fp, NULL);
1386 	if (IS_ERR(fp))
1387 		return PTR_ERR(fp);
1388 
1389 	*pfp = fp;
1390 	return 0;
1391 }
1392 EXPORT_SYMBOL_GPL(bpf_prog_create);
1393 
1394 /**
1395  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1396  *	@pfp: the unattached filter that is created
1397  *	@fprog: the filter program
1398  *	@trans: post-classic verifier transformation handler
1399  *	@save_orig: save classic BPF program
1400  *
1401  * This function effectively does the same as bpf_prog_create(), only
1402  * that it builds up its insns buffer from user space provided buffer.
1403  * It also allows for passing a bpf_aux_classic_check_t handler.
1404  */
1405 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1406 			      bpf_aux_classic_check_t trans, bool save_orig)
1407 {
1408 	unsigned int fsize = bpf_classic_proglen(fprog);
1409 	struct bpf_prog *fp;
1410 	int err;
1411 
1412 	/* Make sure new filter is there and in the right amounts. */
1413 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1414 		return -EINVAL;
1415 
1416 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1417 	if (!fp)
1418 		return -ENOMEM;
1419 
1420 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1421 		__bpf_prog_free(fp);
1422 		return -EFAULT;
1423 	}
1424 
1425 	fp->len = fprog->len;
1426 	fp->orig_prog = NULL;
1427 
1428 	if (save_orig) {
1429 		err = bpf_prog_store_orig_filter(fp, fprog);
1430 		if (err) {
1431 			__bpf_prog_free(fp);
1432 			return -ENOMEM;
1433 		}
1434 	}
1435 
1436 	/* bpf_prepare_filter() already takes care of freeing
1437 	 * memory in case something goes wrong.
1438 	 */
1439 	fp = bpf_prepare_filter(fp, trans);
1440 	if (IS_ERR(fp))
1441 		return PTR_ERR(fp);
1442 
1443 	*pfp = fp;
1444 	return 0;
1445 }
1446 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1447 
1448 void bpf_prog_destroy(struct bpf_prog *fp)
1449 {
1450 	__bpf_prog_release(fp);
1451 }
1452 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1453 
1454 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1455 {
1456 	struct sk_filter *fp, *old_fp;
1457 
1458 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1459 	if (!fp)
1460 		return -ENOMEM;
1461 
1462 	fp->prog = prog;
1463 
1464 	if (!__sk_filter_charge(sk, fp)) {
1465 		kfree(fp);
1466 		return -ENOMEM;
1467 	}
1468 	refcount_set(&fp->refcnt, 1);
1469 
1470 	old_fp = rcu_dereference_protected(sk->sk_filter,
1471 					   lockdep_sock_is_held(sk));
1472 	rcu_assign_pointer(sk->sk_filter, fp);
1473 
1474 	if (old_fp)
1475 		sk_filter_uncharge(sk, old_fp);
1476 
1477 	return 0;
1478 }
1479 
1480 static
1481 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1482 {
1483 	unsigned int fsize = bpf_classic_proglen(fprog);
1484 	struct bpf_prog *prog;
1485 	int err;
1486 
1487 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1488 		return ERR_PTR(-EPERM);
1489 
1490 	/* Make sure new filter is there and in the right amounts. */
1491 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1492 		return ERR_PTR(-EINVAL);
1493 
1494 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1495 	if (!prog)
1496 		return ERR_PTR(-ENOMEM);
1497 
1498 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1499 		__bpf_prog_free(prog);
1500 		return ERR_PTR(-EFAULT);
1501 	}
1502 
1503 	prog->len = fprog->len;
1504 
1505 	err = bpf_prog_store_orig_filter(prog, fprog);
1506 	if (err) {
1507 		__bpf_prog_free(prog);
1508 		return ERR_PTR(-ENOMEM);
1509 	}
1510 
1511 	/* bpf_prepare_filter() already takes care of freeing
1512 	 * memory in case something goes wrong.
1513 	 */
1514 	return bpf_prepare_filter(prog, NULL);
1515 }
1516 
1517 /**
1518  *	sk_attach_filter - attach a socket filter
1519  *	@fprog: the filter program
1520  *	@sk: the socket to use
1521  *
1522  * Attach the user's filter code. We first run some sanity checks on
1523  * it to make sure it does not explode on us later. If an error
1524  * occurs or there is insufficient memory for the filter a negative
1525  * errno code is returned. On success the return is zero.
1526  */
1527 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1528 {
1529 	struct bpf_prog *prog = __get_filter(fprog, sk);
1530 	int err;
1531 
1532 	if (IS_ERR(prog))
1533 		return PTR_ERR(prog);
1534 
1535 	err = __sk_attach_prog(prog, sk);
1536 	if (err < 0) {
1537 		__bpf_prog_release(prog);
1538 		return err;
1539 	}
1540 
1541 	return 0;
1542 }
1543 EXPORT_SYMBOL_GPL(sk_attach_filter);
1544 
1545 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1546 {
1547 	struct bpf_prog *prog = __get_filter(fprog, sk);
1548 	int err;
1549 
1550 	if (IS_ERR(prog))
1551 		return PTR_ERR(prog);
1552 
1553 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1554 		err = -ENOMEM;
1555 	else
1556 		err = reuseport_attach_prog(sk, prog);
1557 
1558 	if (err)
1559 		__bpf_prog_release(prog);
1560 
1561 	return err;
1562 }
1563 
1564 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1565 {
1566 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1567 		return ERR_PTR(-EPERM);
1568 
1569 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1570 }
1571 
1572 int sk_attach_bpf(u32 ufd, struct sock *sk)
1573 {
1574 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1575 	int err;
1576 
1577 	if (IS_ERR(prog))
1578 		return PTR_ERR(prog);
1579 
1580 	err = __sk_attach_prog(prog, sk);
1581 	if (err < 0) {
1582 		bpf_prog_put(prog);
1583 		return err;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1590 {
1591 	struct bpf_prog *prog;
1592 	int err;
1593 
1594 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1595 		return -EPERM;
1596 
1597 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1598 	if (PTR_ERR(prog) == -EINVAL)
1599 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1600 	if (IS_ERR(prog))
1601 		return PTR_ERR(prog);
1602 
1603 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1604 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1605 		 * bpf prog (e.g. sockmap).  It depends on the
1606 		 * limitation imposed by bpf_prog_load().
1607 		 * Hence, sysctl_optmem_max is not checked.
1608 		 */
1609 		if ((sk->sk_type != SOCK_STREAM &&
1610 		     sk->sk_type != SOCK_DGRAM) ||
1611 		    (sk->sk_protocol != IPPROTO_UDP &&
1612 		     sk->sk_protocol != IPPROTO_TCP) ||
1613 		    (sk->sk_family != AF_INET &&
1614 		     sk->sk_family != AF_INET6)) {
1615 			err = -ENOTSUPP;
1616 			goto err_prog_put;
1617 		}
1618 	} else {
1619 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1620 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1621 			err = -ENOMEM;
1622 			goto err_prog_put;
1623 		}
1624 	}
1625 
1626 	err = reuseport_attach_prog(sk, prog);
1627 err_prog_put:
1628 	if (err)
1629 		bpf_prog_put(prog);
1630 
1631 	return err;
1632 }
1633 
1634 void sk_reuseport_prog_free(struct bpf_prog *prog)
1635 {
1636 	if (!prog)
1637 		return;
1638 
1639 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1640 		bpf_prog_put(prog);
1641 	else
1642 		bpf_prog_destroy(prog);
1643 }
1644 
1645 struct bpf_scratchpad {
1646 	union {
1647 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1648 		u8     buff[MAX_BPF_STACK];
1649 	};
1650 };
1651 
1652 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1653 
1654 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1655 					  unsigned int write_len)
1656 {
1657 	return skb_ensure_writable(skb, write_len);
1658 }
1659 
1660 static inline int bpf_try_make_writable(struct sk_buff *skb,
1661 					unsigned int write_len)
1662 {
1663 	int err = __bpf_try_make_writable(skb, write_len);
1664 
1665 	bpf_compute_data_pointers(skb);
1666 	return err;
1667 }
1668 
1669 static int bpf_try_make_head_writable(struct sk_buff *skb)
1670 {
1671 	return bpf_try_make_writable(skb, skb_headlen(skb));
1672 }
1673 
1674 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1675 {
1676 	if (skb_at_tc_ingress(skb))
1677 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1678 }
1679 
1680 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1681 {
1682 	if (skb_at_tc_ingress(skb))
1683 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1684 }
1685 
1686 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1687 	   const void *, from, u32, len, u64, flags)
1688 {
1689 	void *ptr;
1690 
1691 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1692 		return -EINVAL;
1693 	if (unlikely(offset > INT_MAX))
1694 		return -EFAULT;
1695 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1696 		return -EFAULT;
1697 
1698 	ptr = skb->data + offset;
1699 	if (flags & BPF_F_RECOMPUTE_CSUM)
1700 		__skb_postpull_rcsum(skb, ptr, len, offset);
1701 
1702 	memcpy(ptr, from, len);
1703 
1704 	if (flags & BPF_F_RECOMPUTE_CSUM)
1705 		__skb_postpush_rcsum(skb, ptr, len, offset);
1706 	if (flags & BPF_F_INVALIDATE_HASH)
1707 		skb_clear_hash(skb);
1708 
1709 	return 0;
1710 }
1711 
1712 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1713 	.func		= bpf_skb_store_bytes,
1714 	.gpl_only	= false,
1715 	.ret_type	= RET_INTEGER,
1716 	.arg1_type	= ARG_PTR_TO_CTX,
1717 	.arg2_type	= ARG_ANYTHING,
1718 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1719 	.arg4_type	= ARG_CONST_SIZE,
1720 	.arg5_type	= ARG_ANYTHING,
1721 };
1722 
1723 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1724 	   void *, to, u32, len)
1725 {
1726 	void *ptr;
1727 
1728 	if (unlikely(offset > INT_MAX))
1729 		goto err_clear;
1730 
1731 	ptr = skb_header_pointer(skb, offset, len, to);
1732 	if (unlikely(!ptr))
1733 		goto err_clear;
1734 	if (ptr != to)
1735 		memcpy(to, ptr, len);
1736 
1737 	return 0;
1738 err_clear:
1739 	memset(to, 0, len);
1740 	return -EFAULT;
1741 }
1742 
1743 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1744 	.func		= bpf_skb_load_bytes,
1745 	.gpl_only	= false,
1746 	.ret_type	= RET_INTEGER,
1747 	.arg1_type	= ARG_PTR_TO_CTX,
1748 	.arg2_type	= ARG_ANYTHING,
1749 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1750 	.arg4_type	= ARG_CONST_SIZE,
1751 };
1752 
1753 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1754 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1755 	   void *, to, u32, len)
1756 {
1757 	void *ptr;
1758 
1759 	if (unlikely(offset > 0xffff))
1760 		goto err_clear;
1761 
1762 	if (unlikely(!ctx->skb))
1763 		goto err_clear;
1764 
1765 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1766 	if (unlikely(!ptr))
1767 		goto err_clear;
1768 	if (ptr != to)
1769 		memcpy(to, ptr, len);
1770 
1771 	return 0;
1772 err_clear:
1773 	memset(to, 0, len);
1774 	return -EFAULT;
1775 }
1776 
1777 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1778 	.func		= bpf_flow_dissector_load_bytes,
1779 	.gpl_only	= false,
1780 	.ret_type	= RET_INTEGER,
1781 	.arg1_type	= ARG_PTR_TO_CTX,
1782 	.arg2_type	= ARG_ANYTHING,
1783 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1784 	.arg4_type	= ARG_CONST_SIZE,
1785 };
1786 
1787 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1788 	   u32, offset, void *, to, u32, len, u32, start_header)
1789 {
1790 	u8 *end = skb_tail_pointer(skb);
1791 	u8 *start, *ptr;
1792 
1793 	if (unlikely(offset > 0xffff))
1794 		goto err_clear;
1795 
1796 	switch (start_header) {
1797 	case BPF_HDR_START_MAC:
1798 		if (unlikely(!skb_mac_header_was_set(skb)))
1799 			goto err_clear;
1800 		start = skb_mac_header(skb);
1801 		break;
1802 	case BPF_HDR_START_NET:
1803 		start = skb_network_header(skb);
1804 		break;
1805 	default:
1806 		goto err_clear;
1807 	}
1808 
1809 	ptr = start + offset;
1810 
1811 	if (likely(ptr + len <= end)) {
1812 		memcpy(to, ptr, len);
1813 		return 0;
1814 	}
1815 
1816 err_clear:
1817 	memset(to, 0, len);
1818 	return -EFAULT;
1819 }
1820 
1821 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1822 	.func		= bpf_skb_load_bytes_relative,
1823 	.gpl_only	= false,
1824 	.ret_type	= RET_INTEGER,
1825 	.arg1_type	= ARG_PTR_TO_CTX,
1826 	.arg2_type	= ARG_ANYTHING,
1827 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1828 	.arg4_type	= ARG_CONST_SIZE,
1829 	.arg5_type	= ARG_ANYTHING,
1830 };
1831 
1832 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1833 {
1834 	/* Idea is the following: should the needed direct read/write
1835 	 * test fail during runtime, we can pull in more data and redo
1836 	 * again, since implicitly, we invalidate previous checks here.
1837 	 *
1838 	 * Or, since we know how much we need to make read/writeable,
1839 	 * this can be done once at the program beginning for direct
1840 	 * access case. By this we overcome limitations of only current
1841 	 * headroom being accessible.
1842 	 */
1843 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1844 }
1845 
1846 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1847 	.func		= bpf_skb_pull_data,
1848 	.gpl_only	= false,
1849 	.ret_type	= RET_INTEGER,
1850 	.arg1_type	= ARG_PTR_TO_CTX,
1851 	.arg2_type	= ARG_ANYTHING,
1852 };
1853 
1854 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1855 {
1856 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1857 }
1858 
1859 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1860 	.func		= bpf_sk_fullsock,
1861 	.gpl_only	= false,
1862 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1863 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1864 };
1865 
1866 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1867 					   unsigned int write_len)
1868 {
1869 	return __bpf_try_make_writable(skb, write_len);
1870 }
1871 
1872 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1873 {
1874 	/* Idea is the following: should the needed direct read/write
1875 	 * test fail during runtime, we can pull in more data and redo
1876 	 * again, since implicitly, we invalidate previous checks here.
1877 	 *
1878 	 * Or, since we know how much we need to make read/writeable,
1879 	 * this can be done once at the program beginning for direct
1880 	 * access case. By this we overcome limitations of only current
1881 	 * headroom being accessible.
1882 	 */
1883 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1884 }
1885 
1886 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1887 	.func		= sk_skb_pull_data,
1888 	.gpl_only	= false,
1889 	.ret_type	= RET_INTEGER,
1890 	.arg1_type	= ARG_PTR_TO_CTX,
1891 	.arg2_type	= ARG_ANYTHING,
1892 };
1893 
1894 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1895 	   u64, from, u64, to, u64, flags)
1896 {
1897 	__sum16 *ptr;
1898 
1899 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1900 		return -EINVAL;
1901 	if (unlikely(offset > 0xffff || offset & 1))
1902 		return -EFAULT;
1903 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1904 		return -EFAULT;
1905 
1906 	ptr = (__sum16 *)(skb->data + offset);
1907 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1908 	case 0:
1909 		if (unlikely(from != 0))
1910 			return -EINVAL;
1911 
1912 		csum_replace_by_diff(ptr, to);
1913 		break;
1914 	case 2:
1915 		csum_replace2(ptr, from, to);
1916 		break;
1917 	case 4:
1918 		csum_replace4(ptr, from, to);
1919 		break;
1920 	default:
1921 		return -EINVAL;
1922 	}
1923 
1924 	return 0;
1925 }
1926 
1927 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1928 	.func		= bpf_l3_csum_replace,
1929 	.gpl_only	= false,
1930 	.ret_type	= RET_INTEGER,
1931 	.arg1_type	= ARG_PTR_TO_CTX,
1932 	.arg2_type	= ARG_ANYTHING,
1933 	.arg3_type	= ARG_ANYTHING,
1934 	.arg4_type	= ARG_ANYTHING,
1935 	.arg5_type	= ARG_ANYTHING,
1936 };
1937 
1938 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1939 	   u64, from, u64, to, u64, flags)
1940 {
1941 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1942 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1943 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1944 	__sum16 *ptr;
1945 
1946 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1947 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1948 		return -EINVAL;
1949 	if (unlikely(offset > 0xffff || offset & 1))
1950 		return -EFAULT;
1951 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1952 		return -EFAULT;
1953 
1954 	ptr = (__sum16 *)(skb->data + offset);
1955 	if (is_mmzero && !do_mforce && !*ptr)
1956 		return 0;
1957 
1958 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1959 	case 0:
1960 		if (unlikely(from != 0))
1961 			return -EINVAL;
1962 
1963 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1964 		break;
1965 	case 2:
1966 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1967 		break;
1968 	case 4:
1969 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1970 		break;
1971 	default:
1972 		return -EINVAL;
1973 	}
1974 
1975 	if (is_mmzero && !*ptr)
1976 		*ptr = CSUM_MANGLED_0;
1977 	return 0;
1978 }
1979 
1980 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1981 	.func		= bpf_l4_csum_replace,
1982 	.gpl_only	= false,
1983 	.ret_type	= RET_INTEGER,
1984 	.arg1_type	= ARG_PTR_TO_CTX,
1985 	.arg2_type	= ARG_ANYTHING,
1986 	.arg3_type	= ARG_ANYTHING,
1987 	.arg4_type	= ARG_ANYTHING,
1988 	.arg5_type	= ARG_ANYTHING,
1989 };
1990 
1991 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1992 	   __be32 *, to, u32, to_size, __wsum, seed)
1993 {
1994 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1995 	u32 diff_size = from_size + to_size;
1996 	int i, j = 0;
1997 
1998 	/* This is quite flexible, some examples:
1999 	 *
2000 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2001 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2002 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2003 	 *
2004 	 * Even for diffing, from_size and to_size don't need to be equal.
2005 	 */
2006 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2007 		     diff_size > sizeof(sp->diff)))
2008 		return -EINVAL;
2009 
2010 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2011 		sp->diff[j] = ~from[i];
2012 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2013 		sp->diff[j] = to[i];
2014 
2015 	return csum_partial(sp->diff, diff_size, seed);
2016 }
2017 
2018 static const struct bpf_func_proto bpf_csum_diff_proto = {
2019 	.func		= bpf_csum_diff,
2020 	.gpl_only	= false,
2021 	.pkt_access	= true,
2022 	.ret_type	= RET_INTEGER,
2023 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2024 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2025 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2026 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2027 	.arg5_type	= ARG_ANYTHING,
2028 };
2029 
2030 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2031 {
2032 	/* The interface is to be used in combination with bpf_csum_diff()
2033 	 * for direct packet writes. csum rotation for alignment as well
2034 	 * as emulating csum_sub() can be done from the eBPF program.
2035 	 */
2036 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2037 		return (skb->csum = csum_add(skb->csum, csum));
2038 
2039 	return -ENOTSUPP;
2040 }
2041 
2042 static const struct bpf_func_proto bpf_csum_update_proto = {
2043 	.func		= bpf_csum_update,
2044 	.gpl_only	= false,
2045 	.ret_type	= RET_INTEGER,
2046 	.arg1_type	= ARG_PTR_TO_CTX,
2047 	.arg2_type	= ARG_ANYTHING,
2048 };
2049 
2050 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2051 {
2052 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2053 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2054 	 * is passed as flags, for example.
2055 	 */
2056 	switch (level) {
2057 	case BPF_CSUM_LEVEL_INC:
2058 		__skb_incr_checksum_unnecessary(skb);
2059 		break;
2060 	case BPF_CSUM_LEVEL_DEC:
2061 		__skb_decr_checksum_unnecessary(skb);
2062 		break;
2063 	case BPF_CSUM_LEVEL_RESET:
2064 		__skb_reset_checksum_unnecessary(skb);
2065 		break;
2066 	case BPF_CSUM_LEVEL_QUERY:
2067 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2068 		       skb->csum_level : -EACCES;
2069 	default:
2070 		return -EINVAL;
2071 	}
2072 
2073 	return 0;
2074 }
2075 
2076 static const struct bpf_func_proto bpf_csum_level_proto = {
2077 	.func		= bpf_csum_level,
2078 	.gpl_only	= false,
2079 	.ret_type	= RET_INTEGER,
2080 	.arg1_type	= ARG_PTR_TO_CTX,
2081 	.arg2_type	= ARG_ANYTHING,
2082 };
2083 
2084 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2085 {
2086 	return dev_forward_skb_nomtu(dev, skb);
2087 }
2088 
2089 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2090 				      struct sk_buff *skb)
2091 {
2092 	int ret = ____dev_forward_skb(dev, skb, false);
2093 
2094 	if (likely(!ret)) {
2095 		skb->dev = dev;
2096 		ret = netif_rx(skb);
2097 	}
2098 
2099 	return ret;
2100 }
2101 
2102 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2103 {
2104 	int ret;
2105 
2106 	if (dev_xmit_recursion()) {
2107 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2108 		kfree_skb(skb);
2109 		return -ENETDOWN;
2110 	}
2111 
2112 	skb->dev = dev;
2113 	skb_clear_tstamp(skb);
2114 
2115 	dev_xmit_recursion_inc();
2116 	ret = dev_queue_xmit(skb);
2117 	dev_xmit_recursion_dec();
2118 
2119 	return ret;
2120 }
2121 
2122 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2123 				 u32 flags)
2124 {
2125 	unsigned int mlen = skb_network_offset(skb);
2126 
2127 	if (mlen) {
2128 		__skb_pull(skb, mlen);
2129 
2130 		/* At ingress, the mac header has already been pulled once.
2131 		 * At egress, skb_pospull_rcsum has to be done in case that
2132 		 * the skb is originated from ingress (i.e. a forwarded skb)
2133 		 * to ensure that rcsum starts at net header.
2134 		 */
2135 		if (!skb_at_tc_ingress(skb))
2136 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2137 	}
2138 	skb_pop_mac_header(skb);
2139 	skb_reset_mac_len(skb);
2140 	return flags & BPF_F_INGRESS ?
2141 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2142 }
2143 
2144 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2145 				 u32 flags)
2146 {
2147 	/* Verify that a link layer header is carried */
2148 	if (unlikely(skb->mac_header >= skb->network_header)) {
2149 		kfree_skb(skb);
2150 		return -ERANGE;
2151 	}
2152 
2153 	bpf_push_mac_rcsum(skb);
2154 	return flags & BPF_F_INGRESS ?
2155 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2156 }
2157 
2158 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2159 			  u32 flags)
2160 {
2161 	if (dev_is_mac_header_xmit(dev))
2162 		return __bpf_redirect_common(skb, dev, flags);
2163 	else
2164 		return __bpf_redirect_no_mac(skb, dev, flags);
2165 }
2166 
2167 #if IS_ENABLED(CONFIG_IPV6)
2168 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2169 			    struct net_device *dev, struct bpf_nh_params *nh)
2170 {
2171 	u32 hh_len = LL_RESERVED_SPACE(dev);
2172 	const struct in6_addr *nexthop;
2173 	struct dst_entry *dst = NULL;
2174 	struct neighbour *neigh;
2175 
2176 	if (dev_xmit_recursion()) {
2177 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2178 		goto out_drop;
2179 	}
2180 
2181 	skb->dev = dev;
2182 	skb_clear_tstamp(skb);
2183 
2184 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2185 		skb = skb_expand_head(skb, hh_len);
2186 		if (!skb)
2187 			return -ENOMEM;
2188 	}
2189 
2190 	rcu_read_lock_bh();
2191 	if (!nh) {
2192 		dst = skb_dst(skb);
2193 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2194 				      &ipv6_hdr(skb)->daddr);
2195 	} else {
2196 		nexthop = &nh->ipv6_nh;
2197 	}
2198 	neigh = ip_neigh_gw6(dev, nexthop);
2199 	if (likely(!IS_ERR(neigh))) {
2200 		int ret;
2201 
2202 		sock_confirm_neigh(skb, neigh);
2203 		dev_xmit_recursion_inc();
2204 		ret = neigh_output(neigh, skb, false);
2205 		dev_xmit_recursion_dec();
2206 		rcu_read_unlock_bh();
2207 		return ret;
2208 	}
2209 	rcu_read_unlock_bh();
2210 	if (dst)
2211 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2212 out_drop:
2213 	kfree_skb(skb);
2214 	return -ENETDOWN;
2215 }
2216 
2217 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2218 				   struct bpf_nh_params *nh)
2219 {
2220 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2221 	struct net *net = dev_net(dev);
2222 	int err, ret = NET_XMIT_DROP;
2223 
2224 	if (!nh) {
2225 		struct dst_entry *dst;
2226 		struct flowi6 fl6 = {
2227 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2228 			.flowi6_mark  = skb->mark,
2229 			.flowlabel    = ip6_flowinfo(ip6h),
2230 			.flowi6_oif   = dev->ifindex,
2231 			.flowi6_proto = ip6h->nexthdr,
2232 			.daddr	      = ip6h->daddr,
2233 			.saddr	      = ip6h->saddr,
2234 		};
2235 
2236 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2237 		if (IS_ERR(dst))
2238 			goto out_drop;
2239 
2240 		skb_dst_set(skb, dst);
2241 	} else if (nh->nh_family != AF_INET6) {
2242 		goto out_drop;
2243 	}
2244 
2245 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2246 	if (unlikely(net_xmit_eval(err)))
2247 		dev->stats.tx_errors++;
2248 	else
2249 		ret = NET_XMIT_SUCCESS;
2250 	goto out_xmit;
2251 out_drop:
2252 	dev->stats.tx_errors++;
2253 	kfree_skb(skb);
2254 out_xmit:
2255 	return ret;
2256 }
2257 #else
2258 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2259 				   struct bpf_nh_params *nh)
2260 {
2261 	kfree_skb(skb);
2262 	return NET_XMIT_DROP;
2263 }
2264 #endif /* CONFIG_IPV6 */
2265 
2266 #if IS_ENABLED(CONFIG_INET)
2267 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2268 			    struct net_device *dev, struct bpf_nh_params *nh)
2269 {
2270 	u32 hh_len = LL_RESERVED_SPACE(dev);
2271 	struct neighbour *neigh;
2272 	bool is_v6gw = false;
2273 
2274 	if (dev_xmit_recursion()) {
2275 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2276 		goto out_drop;
2277 	}
2278 
2279 	skb->dev = dev;
2280 	skb_clear_tstamp(skb);
2281 
2282 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2283 		skb = skb_expand_head(skb, hh_len);
2284 		if (!skb)
2285 			return -ENOMEM;
2286 	}
2287 
2288 	rcu_read_lock_bh();
2289 	if (!nh) {
2290 		struct dst_entry *dst = skb_dst(skb);
2291 		struct rtable *rt = container_of(dst, struct rtable, dst);
2292 
2293 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2294 	} else if (nh->nh_family == AF_INET6) {
2295 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2296 		is_v6gw = true;
2297 	} else if (nh->nh_family == AF_INET) {
2298 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2299 	} else {
2300 		rcu_read_unlock_bh();
2301 		goto out_drop;
2302 	}
2303 
2304 	if (likely(!IS_ERR(neigh))) {
2305 		int ret;
2306 
2307 		sock_confirm_neigh(skb, neigh);
2308 		dev_xmit_recursion_inc();
2309 		ret = neigh_output(neigh, skb, is_v6gw);
2310 		dev_xmit_recursion_dec();
2311 		rcu_read_unlock_bh();
2312 		return ret;
2313 	}
2314 	rcu_read_unlock_bh();
2315 out_drop:
2316 	kfree_skb(skb);
2317 	return -ENETDOWN;
2318 }
2319 
2320 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2321 				   struct bpf_nh_params *nh)
2322 {
2323 	const struct iphdr *ip4h = ip_hdr(skb);
2324 	struct net *net = dev_net(dev);
2325 	int err, ret = NET_XMIT_DROP;
2326 
2327 	if (!nh) {
2328 		struct flowi4 fl4 = {
2329 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2330 			.flowi4_mark  = skb->mark,
2331 			.flowi4_tos   = RT_TOS(ip4h->tos),
2332 			.flowi4_oif   = dev->ifindex,
2333 			.flowi4_proto = ip4h->protocol,
2334 			.daddr	      = ip4h->daddr,
2335 			.saddr	      = ip4h->saddr,
2336 		};
2337 		struct rtable *rt;
2338 
2339 		rt = ip_route_output_flow(net, &fl4, NULL);
2340 		if (IS_ERR(rt))
2341 			goto out_drop;
2342 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2343 			ip_rt_put(rt);
2344 			goto out_drop;
2345 		}
2346 
2347 		skb_dst_set(skb, &rt->dst);
2348 	}
2349 
2350 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2351 	if (unlikely(net_xmit_eval(err)))
2352 		dev->stats.tx_errors++;
2353 	else
2354 		ret = NET_XMIT_SUCCESS;
2355 	goto out_xmit;
2356 out_drop:
2357 	dev->stats.tx_errors++;
2358 	kfree_skb(skb);
2359 out_xmit:
2360 	return ret;
2361 }
2362 #else
2363 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2364 				   struct bpf_nh_params *nh)
2365 {
2366 	kfree_skb(skb);
2367 	return NET_XMIT_DROP;
2368 }
2369 #endif /* CONFIG_INET */
2370 
2371 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2372 				struct bpf_nh_params *nh)
2373 {
2374 	struct ethhdr *ethh = eth_hdr(skb);
2375 
2376 	if (unlikely(skb->mac_header >= skb->network_header))
2377 		goto out;
2378 	bpf_push_mac_rcsum(skb);
2379 	if (is_multicast_ether_addr(ethh->h_dest))
2380 		goto out;
2381 
2382 	skb_pull(skb, sizeof(*ethh));
2383 	skb_unset_mac_header(skb);
2384 	skb_reset_network_header(skb);
2385 
2386 	if (skb->protocol == htons(ETH_P_IP))
2387 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2388 	else if (skb->protocol == htons(ETH_P_IPV6))
2389 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2390 out:
2391 	kfree_skb(skb);
2392 	return -ENOTSUPP;
2393 }
2394 
2395 /* Internal, non-exposed redirect flags. */
2396 enum {
2397 	BPF_F_NEIGH	= (1ULL << 1),
2398 	BPF_F_PEER	= (1ULL << 2),
2399 	BPF_F_NEXTHOP	= (1ULL << 3),
2400 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2401 };
2402 
2403 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2404 {
2405 	struct net_device *dev;
2406 	struct sk_buff *clone;
2407 	int ret;
2408 
2409 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2410 		return -EINVAL;
2411 
2412 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2413 	if (unlikely(!dev))
2414 		return -EINVAL;
2415 
2416 	clone = skb_clone(skb, GFP_ATOMIC);
2417 	if (unlikely(!clone))
2418 		return -ENOMEM;
2419 
2420 	/* For direct write, we need to keep the invariant that the skbs
2421 	 * we're dealing with need to be uncloned. Should uncloning fail
2422 	 * here, we need to free the just generated clone to unclone once
2423 	 * again.
2424 	 */
2425 	ret = bpf_try_make_head_writable(skb);
2426 	if (unlikely(ret)) {
2427 		kfree_skb(clone);
2428 		return -ENOMEM;
2429 	}
2430 
2431 	return __bpf_redirect(clone, dev, flags);
2432 }
2433 
2434 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2435 	.func           = bpf_clone_redirect,
2436 	.gpl_only       = false,
2437 	.ret_type       = RET_INTEGER,
2438 	.arg1_type      = ARG_PTR_TO_CTX,
2439 	.arg2_type      = ARG_ANYTHING,
2440 	.arg3_type      = ARG_ANYTHING,
2441 };
2442 
2443 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2444 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2445 
2446 int skb_do_redirect(struct sk_buff *skb)
2447 {
2448 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2449 	struct net *net = dev_net(skb->dev);
2450 	struct net_device *dev;
2451 	u32 flags = ri->flags;
2452 
2453 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2454 	ri->tgt_index = 0;
2455 	ri->flags = 0;
2456 	if (unlikely(!dev))
2457 		goto out_drop;
2458 	if (flags & BPF_F_PEER) {
2459 		const struct net_device_ops *ops = dev->netdev_ops;
2460 
2461 		if (unlikely(!ops->ndo_get_peer_dev ||
2462 			     !skb_at_tc_ingress(skb)))
2463 			goto out_drop;
2464 		dev = ops->ndo_get_peer_dev(dev);
2465 		if (unlikely(!dev ||
2466 			     !(dev->flags & IFF_UP) ||
2467 			     net_eq(net, dev_net(dev))))
2468 			goto out_drop;
2469 		skb->dev = dev;
2470 		return -EAGAIN;
2471 	}
2472 	return flags & BPF_F_NEIGH ?
2473 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2474 				    &ri->nh : NULL) :
2475 	       __bpf_redirect(skb, dev, flags);
2476 out_drop:
2477 	kfree_skb(skb);
2478 	return -EINVAL;
2479 }
2480 
2481 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2482 {
2483 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2484 
2485 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2486 		return TC_ACT_SHOT;
2487 
2488 	ri->flags = flags;
2489 	ri->tgt_index = ifindex;
2490 
2491 	return TC_ACT_REDIRECT;
2492 }
2493 
2494 static const struct bpf_func_proto bpf_redirect_proto = {
2495 	.func           = bpf_redirect,
2496 	.gpl_only       = false,
2497 	.ret_type       = RET_INTEGER,
2498 	.arg1_type      = ARG_ANYTHING,
2499 	.arg2_type      = ARG_ANYTHING,
2500 };
2501 
2502 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2503 {
2504 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2505 
2506 	if (unlikely(flags))
2507 		return TC_ACT_SHOT;
2508 
2509 	ri->flags = BPF_F_PEER;
2510 	ri->tgt_index = ifindex;
2511 
2512 	return TC_ACT_REDIRECT;
2513 }
2514 
2515 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2516 	.func           = bpf_redirect_peer,
2517 	.gpl_only       = false,
2518 	.ret_type       = RET_INTEGER,
2519 	.arg1_type      = ARG_ANYTHING,
2520 	.arg2_type      = ARG_ANYTHING,
2521 };
2522 
2523 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2524 	   int, plen, u64, flags)
2525 {
2526 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2527 
2528 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2529 		return TC_ACT_SHOT;
2530 
2531 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2532 	ri->tgt_index = ifindex;
2533 
2534 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2535 	if (plen)
2536 		memcpy(&ri->nh, params, sizeof(ri->nh));
2537 
2538 	return TC_ACT_REDIRECT;
2539 }
2540 
2541 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2542 	.func		= bpf_redirect_neigh,
2543 	.gpl_only	= false,
2544 	.ret_type	= RET_INTEGER,
2545 	.arg1_type	= ARG_ANYTHING,
2546 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2547 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2548 	.arg4_type	= ARG_ANYTHING,
2549 };
2550 
2551 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2552 {
2553 	msg->apply_bytes = bytes;
2554 	return 0;
2555 }
2556 
2557 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2558 	.func           = bpf_msg_apply_bytes,
2559 	.gpl_only       = false,
2560 	.ret_type       = RET_INTEGER,
2561 	.arg1_type	= ARG_PTR_TO_CTX,
2562 	.arg2_type      = ARG_ANYTHING,
2563 };
2564 
2565 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2566 {
2567 	msg->cork_bytes = bytes;
2568 	return 0;
2569 }
2570 
2571 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2572 	.func           = bpf_msg_cork_bytes,
2573 	.gpl_only       = false,
2574 	.ret_type       = RET_INTEGER,
2575 	.arg1_type	= ARG_PTR_TO_CTX,
2576 	.arg2_type      = ARG_ANYTHING,
2577 };
2578 
2579 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2580 	   u32, end, u64, flags)
2581 {
2582 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2583 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2584 	struct scatterlist *sge;
2585 	u8 *raw, *to, *from;
2586 	struct page *page;
2587 
2588 	if (unlikely(flags || end <= start))
2589 		return -EINVAL;
2590 
2591 	/* First find the starting scatterlist element */
2592 	i = msg->sg.start;
2593 	do {
2594 		offset += len;
2595 		len = sk_msg_elem(msg, i)->length;
2596 		if (start < offset + len)
2597 			break;
2598 		sk_msg_iter_var_next(i);
2599 	} while (i != msg->sg.end);
2600 
2601 	if (unlikely(start >= offset + len))
2602 		return -EINVAL;
2603 
2604 	first_sge = i;
2605 	/* The start may point into the sg element so we need to also
2606 	 * account for the headroom.
2607 	 */
2608 	bytes_sg_total = start - offset + bytes;
2609 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2610 		goto out;
2611 
2612 	/* At this point we need to linearize multiple scatterlist
2613 	 * elements or a single shared page. Either way we need to
2614 	 * copy into a linear buffer exclusively owned by BPF. Then
2615 	 * place the buffer in the scatterlist and fixup the original
2616 	 * entries by removing the entries now in the linear buffer
2617 	 * and shifting the remaining entries. For now we do not try
2618 	 * to copy partial entries to avoid complexity of running out
2619 	 * of sg_entry slots. The downside is reading a single byte
2620 	 * will copy the entire sg entry.
2621 	 */
2622 	do {
2623 		copy += sk_msg_elem(msg, i)->length;
2624 		sk_msg_iter_var_next(i);
2625 		if (bytes_sg_total <= copy)
2626 			break;
2627 	} while (i != msg->sg.end);
2628 	last_sge = i;
2629 
2630 	if (unlikely(bytes_sg_total > copy))
2631 		return -EINVAL;
2632 
2633 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2634 			   get_order(copy));
2635 	if (unlikely(!page))
2636 		return -ENOMEM;
2637 
2638 	raw = page_address(page);
2639 	i = first_sge;
2640 	do {
2641 		sge = sk_msg_elem(msg, i);
2642 		from = sg_virt(sge);
2643 		len = sge->length;
2644 		to = raw + poffset;
2645 
2646 		memcpy(to, from, len);
2647 		poffset += len;
2648 		sge->length = 0;
2649 		put_page(sg_page(sge));
2650 
2651 		sk_msg_iter_var_next(i);
2652 	} while (i != last_sge);
2653 
2654 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2655 
2656 	/* To repair sg ring we need to shift entries. If we only
2657 	 * had a single entry though we can just replace it and
2658 	 * be done. Otherwise walk the ring and shift the entries.
2659 	 */
2660 	WARN_ON_ONCE(last_sge == first_sge);
2661 	shift = last_sge > first_sge ?
2662 		last_sge - first_sge - 1 :
2663 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2664 	if (!shift)
2665 		goto out;
2666 
2667 	i = first_sge;
2668 	sk_msg_iter_var_next(i);
2669 	do {
2670 		u32 move_from;
2671 
2672 		if (i + shift >= NR_MSG_FRAG_IDS)
2673 			move_from = i + shift - NR_MSG_FRAG_IDS;
2674 		else
2675 			move_from = i + shift;
2676 		if (move_from == msg->sg.end)
2677 			break;
2678 
2679 		msg->sg.data[i] = msg->sg.data[move_from];
2680 		msg->sg.data[move_from].length = 0;
2681 		msg->sg.data[move_from].page_link = 0;
2682 		msg->sg.data[move_from].offset = 0;
2683 		sk_msg_iter_var_next(i);
2684 	} while (1);
2685 
2686 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2687 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2688 		      msg->sg.end - shift;
2689 out:
2690 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2691 	msg->data_end = msg->data + bytes;
2692 	return 0;
2693 }
2694 
2695 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2696 	.func		= bpf_msg_pull_data,
2697 	.gpl_only	= false,
2698 	.ret_type	= RET_INTEGER,
2699 	.arg1_type	= ARG_PTR_TO_CTX,
2700 	.arg2_type	= ARG_ANYTHING,
2701 	.arg3_type	= ARG_ANYTHING,
2702 	.arg4_type	= ARG_ANYTHING,
2703 };
2704 
2705 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2706 	   u32, len, u64, flags)
2707 {
2708 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2709 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2710 	u8 *raw, *to, *from;
2711 	struct page *page;
2712 
2713 	if (unlikely(flags))
2714 		return -EINVAL;
2715 
2716 	if (unlikely(len == 0))
2717 		return 0;
2718 
2719 	/* First find the starting scatterlist element */
2720 	i = msg->sg.start;
2721 	do {
2722 		offset += l;
2723 		l = sk_msg_elem(msg, i)->length;
2724 
2725 		if (start < offset + l)
2726 			break;
2727 		sk_msg_iter_var_next(i);
2728 	} while (i != msg->sg.end);
2729 
2730 	if (start >= offset + l)
2731 		return -EINVAL;
2732 
2733 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2734 
2735 	/* If no space available will fallback to copy, we need at
2736 	 * least one scatterlist elem available to push data into
2737 	 * when start aligns to the beginning of an element or two
2738 	 * when it falls inside an element. We handle the start equals
2739 	 * offset case because its the common case for inserting a
2740 	 * header.
2741 	 */
2742 	if (!space || (space == 1 && start != offset))
2743 		copy = msg->sg.data[i].length;
2744 
2745 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2746 			   get_order(copy + len));
2747 	if (unlikely(!page))
2748 		return -ENOMEM;
2749 
2750 	if (copy) {
2751 		int front, back;
2752 
2753 		raw = page_address(page);
2754 
2755 		psge = sk_msg_elem(msg, i);
2756 		front = start - offset;
2757 		back = psge->length - front;
2758 		from = sg_virt(psge);
2759 
2760 		if (front)
2761 			memcpy(raw, from, front);
2762 
2763 		if (back) {
2764 			from += front;
2765 			to = raw + front + len;
2766 
2767 			memcpy(to, from, back);
2768 		}
2769 
2770 		put_page(sg_page(psge));
2771 	} else if (start - offset) {
2772 		psge = sk_msg_elem(msg, i);
2773 		rsge = sk_msg_elem_cpy(msg, i);
2774 
2775 		psge->length = start - offset;
2776 		rsge.length -= psge->length;
2777 		rsge.offset += start;
2778 
2779 		sk_msg_iter_var_next(i);
2780 		sg_unmark_end(psge);
2781 		sg_unmark_end(&rsge);
2782 		sk_msg_iter_next(msg, end);
2783 	}
2784 
2785 	/* Slot(s) to place newly allocated data */
2786 	new = i;
2787 
2788 	/* Shift one or two slots as needed */
2789 	if (!copy) {
2790 		sge = sk_msg_elem_cpy(msg, i);
2791 
2792 		sk_msg_iter_var_next(i);
2793 		sg_unmark_end(&sge);
2794 		sk_msg_iter_next(msg, end);
2795 
2796 		nsge = sk_msg_elem_cpy(msg, i);
2797 		if (rsge.length) {
2798 			sk_msg_iter_var_next(i);
2799 			nnsge = sk_msg_elem_cpy(msg, i);
2800 		}
2801 
2802 		while (i != msg->sg.end) {
2803 			msg->sg.data[i] = sge;
2804 			sge = nsge;
2805 			sk_msg_iter_var_next(i);
2806 			if (rsge.length) {
2807 				nsge = nnsge;
2808 				nnsge = sk_msg_elem_cpy(msg, i);
2809 			} else {
2810 				nsge = sk_msg_elem_cpy(msg, i);
2811 			}
2812 		}
2813 	}
2814 
2815 	/* Place newly allocated data buffer */
2816 	sk_mem_charge(msg->sk, len);
2817 	msg->sg.size += len;
2818 	__clear_bit(new, msg->sg.copy);
2819 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2820 	if (rsge.length) {
2821 		get_page(sg_page(&rsge));
2822 		sk_msg_iter_var_next(new);
2823 		msg->sg.data[new] = rsge;
2824 	}
2825 
2826 	sk_msg_compute_data_pointers(msg);
2827 	return 0;
2828 }
2829 
2830 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2831 	.func		= bpf_msg_push_data,
2832 	.gpl_only	= false,
2833 	.ret_type	= RET_INTEGER,
2834 	.arg1_type	= ARG_PTR_TO_CTX,
2835 	.arg2_type	= ARG_ANYTHING,
2836 	.arg3_type	= ARG_ANYTHING,
2837 	.arg4_type	= ARG_ANYTHING,
2838 };
2839 
2840 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2841 {
2842 	int prev;
2843 
2844 	do {
2845 		prev = i;
2846 		sk_msg_iter_var_next(i);
2847 		msg->sg.data[prev] = msg->sg.data[i];
2848 	} while (i != msg->sg.end);
2849 
2850 	sk_msg_iter_prev(msg, end);
2851 }
2852 
2853 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2854 {
2855 	struct scatterlist tmp, sge;
2856 
2857 	sk_msg_iter_next(msg, end);
2858 	sge = sk_msg_elem_cpy(msg, i);
2859 	sk_msg_iter_var_next(i);
2860 	tmp = sk_msg_elem_cpy(msg, i);
2861 
2862 	while (i != msg->sg.end) {
2863 		msg->sg.data[i] = sge;
2864 		sk_msg_iter_var_next(i);
2865 		sge = tmp;
2866 		tmp = sk_msg_elem_cpy(msg, i);
2867 	}
2868 }
2869 
2870 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2871 	   u32, len, u64, flags)
2872 {
2873 	u32 i = 0, l = 0, space, offset = 0;
2874 	u64 last = start + len;
2875 	int pop;
2876 
2877 	if (unlikely(flags))
2878 		return -EINVAL;
2879 
2880 	/* First find the starting scatterlist element */
2881 	i = msg->sg.start;
2882 	do {
2883 		offset += l;
2884 		l = sk_msg_elem(msg, i)->length;
2885 
2886 		if (start < offset + l)
2887 			break;
2888 		sk_msg_iter_var_next(i);
2889 	} while (i != msg->sg.end);
2890 
2891 	/* Bounds checks: start and pop must be inside message */
2892 	if (start >= offset + l || last >= msg->sg.size)
2893 		return -EINVAL;
2894 
2895 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2896 
2897 	pop = len;
2898 	/* --------------| offset
2899 	 * -| start      |-------- len -------|
2900 	 *
2901 	 *  |----- a ----|-------- pop -------|----- b ----|
2902 	 *  |______________________________________________| length
2903 	 *
2904 	 *
2905 	 * a:   region at front of scatter element to save
2906 	 * b:   region at back of scatter element to save when length > A + pop
2907 	 * pop: region to pop from element, same as input 'pop' here will be
2908 	 *      decremented below per iteration.
2909 	 *
2910 	 * Two top-level cases to handle when start != offset, first B is non
2911 	 * zero and second B is zero corresponding to when a pop includes more
2912 	 * than one element.
2913 	 *
2914 	 * Then if B is non-zero AND there is no space allocate space and
2915 	 * compact A, B regions into page. If there is space shift ring to
2916 	 * the rigth free'ing the next element in ring to place B, leaving
2917 	 * A untouched except to reduce length.
2918 	 */
2919 	if (start != offset) {
2920 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2921 		int a = start;
2922 		int b = sge->length - pop - a;
2923 
2924 		sk_msg_iter_var_next(i);
2925 
2926 		if (pop < sge->length - a) {
2927 			if (space) {
2928 				sge->length = a;
2929 				sk_msg_shift_right(msg, i);
2930 				nsge = sk_msg_elem(msg, i);
2931 				get_page(sg_page(sge));
2932 				sg_set_page(nsge,
2933 					    sg_page(sge),
2934 					    b, sge->offset + pop + a);
2935 			} else {
2936 				struct page *page, *orig;
2937 				u8 *to, *from;
2938 
2939 				page = alloc_pages(__GFP_NOWARN |
2940 						   __GFP_COMP   | GFP_ATOMIC,
2941 						   get_order(a + b));
2942 				if (unlikely(!page))
2943 					return -ENOMEM;
2944 
2945 				sge->length = a;
2946 				orig = sg_page(sge);
2947 				from = sg_virt(sge);
2948 				to = page_address(page);
2949 				memcpy(to, from, a);
2950 				memcpy(to + a, from + a + pop, b);
2951 				sg_set_page(sge, page, a + b, 0);
2952 				put_page(orig);
2953 			}
2954 			pop = 0;
2955 		} else if (pop >= sge->length - a) {
2956 			pop -= (sge->length - a);
2957 			sge->length = a;
2958 		}
2959 	}
2960 
2961 	/* From above the current layout _must_ be as follows,
2962 	 *
2963 	 * -| offset
2964 	 * -| start
2965 	 *
2966 	 *  |---- pop ---|---------------- b ------------|
2967 	 *  |____________________________________________| length
2968 	 *
2969 	 * Offset and start of the current msg elem are equal because in the
2970 	 * previous case we handled offset != start and either consumed the
2971 	 * entire element and advanced to the next element OR pop == 0.
2972 	 *
2973 	 * Two cases to handle here are first pop is less than the length
2974 	 * leaving some remainder b above. Simply adjust the element's layout
2975 	 * in this case. Or pop >= length of the element so that b = 0. In this
2976 	 * case advance to next element decrementing pop.
2977 	 */
2978 	while (pop) {
2979 		struct scatterlist *sge = sk_msg_elem(msg, i);
2980 
2981 		if (pop < sge->length) {
2982 			sge->length -= pop;
2983 			sge->offset += pop;
2984 			pop = 0;
2985 		} else {
2986 			pop -= sge->length;
2987 			sk_msg_shift_left(msg, i);
2988 		}
2989 		sk_msg_iter_var_next(i);
2990 	}
2991 
2992 	sk_mem_uncharge(msg->sk, len - pop);
2993 	msg->sg.size -= (len - pop);
2994 	sk_msg_compute_data_pointers(msg);
2995 	return 0;
2996 }
2997 
2998 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2999 	.func		= bpf_msg_pop_data,
3000 	.gpl_only	= false,
3001 	.ret_type	= RET_INTEGER,
3002 	.arg1_type	= ARG_PTR_TO_CTX,
3003 	.arg2_type	= ARG_ANYTHING,
3004 	.arg3_type	= ARG_ANYTHING,
3005 	.arg4_type	= ARG_ANYTHING,
3006 };
3007 
3008 #ifdef CONFIG_CGROUP_NET_CLASSID
3009 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3010 {
3011 	return __task_get_classid(current);
3012 }
3013 
3014 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3015 	.func		= bpf_get_cgroup_classid_curr,
3016 	.gpl_only	= false,
3017 	.ret_type	= RET_INTEGER,
3018 };
3019 
3020 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3021 {
3022 	struct sock *sk = skb_to_full_sk(skb);
3023 
3024 	if (!sk || !sk_fullsock(sk))
3025 		return 0;
3026 
3027 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3028 }
3029 
3030 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3031 	.func		= bpf_skb_cgroup_classid,
3032 	.gpl_only	= false,
3033 	.ret_type	= RET_INTEGER,
3034 	.arg1_type	= ARG_PTR_TO_CTX,
3035 };
3036 #endif
3037 
3038 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3039 {
3040 	return task_get_classid(skb);
3041 }
3042 
3043 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3044 	.func           = bpf_get_cgroup_classid,
3045 	.gpl_only       = false,
3046 	.ret_type       = RET_INTEGER,
3047 	.arg1_type      = ARG_PTR_TO_CTX,
3048 };
3049 
3050 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3051 {
3052 	return dst_tclassid(skb);
3053 }
3054 
3055 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3056 	.func           = bpf_get_route_realm,
3057 	.gpl_only       = false,
3058 	.ret_type       = RET_INTEGER,
3059 	.arg1_type      = ARG_PTR_TO_CTX,
3060 };
3061 
3062 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3063 {
3064 	/* If skb_clear_hash() was called due to mangling, we can
3065 	 * trigger SW recalculation here. Later access to hash
3066 	 * can then use the inline skb->hash via context directly
3067 	 * instead of calling this helper again.
3068 	 */
3069 	return skb_get_hash(skb);
3070 }
3071 
3072 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3073 	.func		= bpf_get_hash_recalc,
3074 	.gpl_only	= false,
3075 	.ret_type	= RET_INTEGER,
3076 	.arg1_type	= ARG_PTR_TO_CTX,
3077 };
3078 
3079 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3080 {
3081 	/* After all direct packet write, this can be used once for
3082 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3083 	 */
3084 	skb_clear_hash(skb);
3085 	return 0;
3086 }
3087 
3088 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3089 	.func		= bpf_set_hash_invalid,
3090 	.gpl_only	= false,
3091 	.ret_type	= RET_INTEGER,
3092 	.arg1_type	= ARG_PTR_TO_CTX,
3093 };
3094 
3095 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3096 {
3097 	/* Set user specified hash as L4(+), so that it gets returned
3098 	 * on skb_get_hash() call unless BPF prog later on triggers a
3099 	 * skb_clear_hash().
3100 	 */
3101 	__skb_set_sw_hash(skb, hash, true);
3102 	return 0;
3103 }
3104 
3105 static const struct bpf_func_proto bpf_set_hash_proto = {
3106 	.func		= bpf_set_hash,
3107 	.gpl_only	= false,
3108 	.ret_type	= RET_INTEGER,
3109 	.arg1_type	= ARG_PTR_TO_CTX,
3110 	.arg2_type	= ARG_ANYTHING,
3111 };
3112 
3113 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3114 	   u16, vlan_tci)
3115 {
3116 	int ret;
3117 
3118 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3119 		     vlan_proto != htons(ETH_P_8021AD)))
3120 		vlan_proto = htons(ETH_P_8021Q);
3121 
3122 	bpf_push_mac_rcsum(skb);
3123 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3124 	bpf_pull_mac_rcsum(skb);
3125 
3126 	bpf_compute_data_pointers(skb);
3127 	return ret;
3128 }
3129 
3130 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3131 	.func           = bpf_skb_vlan_push,
3132 	.gpl_only       = false,
3133 	.ret_type       = RET_INTEGER,
3134 	.arg1_type      = ARG_PTR_TO_CTX,
3135 	.arg2_type      = ARG_ANYTHING,
3136 	.arg3_type      = ARG_ANYTHING,
3137 };
3138 
3139 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3140 {
3141 	int ret;
3142 
3143 	bpf_push_mac_rcsum(skb);
3144 	ret = skb_vlan_pop(skb);
3145 	bpf_pull_mac_rcsum(skb);
3146 
3147 	bpf_compute_data_pointers(skb);
3148 	return ret;
3149 }
3150 
3151 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3152 	.func           = bpf_skb_vlan_pop,
3153 	.gpl_only       = false,
3154 	.ret_type       = RET_INTEGER,
3155 	.arg1_type      = ARG_PTR_TO_CTX,
3156 };
3157 
3158 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3159 {
3160 	/* Caller already did skb_cow() with len as headroom,
3161 	 * so no need to do it here.
3162 	 */
3163 	skb_push(skb, len);
3164 	memmove(skb->data, skb->data + len, off);
3165 	memset(skb->data + off, 0, len);
3166 
3167 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3168 	 * needed here as it does not change the skb->csum
3169 	 * result for checksum complete when summing over
3170 	 * zeroed blocks.
3171 	 */
3172 	return 0;
3173 }
3174 
3175 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3176 {
3177 	/* skb_ensure_writable() is not needed here, as we're
3178 	 * already working on an uncloned skb.
3179 	 */
3180 	if (unlikely(!pskb_may_pull(skb, off + len)))
3181 		return -ENOMEM;
3182 
3183 	skb_postpull_rcsum(skb, skb->data + off, len);
3184 	memmove(skb->data + len, skb->data, off);
3185 	__skb_pull(skb, len);
3186 
3187 	return 0;
3188 }
3189 
3190 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3191 {
3192 	bool trans_same = skb->transport_header == skb->network_header;
3193 	int ret;
3194 
3195 	/* There's no need for __skb_push()/__skb_pull() pair to
3196 	 * get to the start of the mac header as we're guaranteed
3197 	 * to always start from here under eBPF.
3198 	 */
3199 	ret = bpf_skb_generic_push(skb, off, len);
3200 	if (likely(!ret)) {
3201 		skb->mac_header -= len;
3202 		skb->network_header -= len;
3203 		if (trans_same)
3204 			skb->transport_header = skb->network_header;
3205 	}
3206 
3207 	return ret;
3208 }
3209 
3210 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3211 {
3212 	bool trans_same = skb->transport_header == skb->network_header;
3213 	int ret;
3214 
3215 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3216 	ret = bpf_skb_generic_pop(skb, off, len);
3217 	if (likely(!ret)) {
3218 		skb->mac_header += len;
3219 		skb->network_header += len;
3220 		if (trans_same)
3221 			skb->transport_header = skb->network_header;
3222 	}
3223 
3224 	return ret;
3225 }
3226 
3227 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3228 {
3229 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3230 	u32 off = skb_mac_header_len(skb);
3231 	int ret;
3232 
3233 	ret = skb_cow(skb, len_diff);
3234 	if (unlikely(ret < 0))
3235 		return ret;
3236 
3237 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3238 	if (unlikely(ret < 0))
3239 		return ret;
3240 
3241 	if (skb_is_gso(skb)) {
3242 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3243 
3244 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3245 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3246 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3247 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3248 		}
3249 	}
3250 
3251 	skb->protocol = htons(ETH_P_IPV6);
3252 	skb_clear_hash(skb);
3253 
3254 	return 0;
3255 }
3256 
3257 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3258 {
3259 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3260 	u32 off = skb_mac_header_len(skb);
3261 	int ret;
3262 
3263 	ret = skb_unclone(skb, GFP_ATOMIC);
3264 	if (unlikely(ret < 0))
3265 		return ret;
3266 
3267 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3268 	if (unlikely(ret < 0))
3269 		return ret;
3270 
3271 	if (skb_is_gso(skb)) {
3272 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3273 
3274 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3275 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3276 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3277 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3278 		}
3279 	}
3280 
3281 	skb->protocol = htons(ETH_P_IP);
3282 	skb_clear_hash(skb);
3283 
3284 	return 0;
3285 }
3286 
3287 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3288 {
3289 	__be16 from_proto = skb->protocol;
3290 
3291 	if (from_proto == htons(ETH_P_IP) &&
3292 	      to_proto == htons(ETH_P_IPV6))
3293 		return bpf_skb_proto_4_to_6(skb);
3294 
3295 	if (from_proto == htons(ETH_P_IPV6) &&
3296 	      to_proto == htons(ETH_P_IP))
3297 		return bpf_skb_proto_6_to_4(skb);
3298 
3299 	return -ENOTSUPP;
3300 }
3301 
3302 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3303 	   u64, flags)
3304 {
3305 	int ret;
3306 
3307 	if (unlikely(flags))
3308 		return -EINVAL;
3309 
3310 	/* General idea is that this helper does the basic groundwork
3311 	 * needed for changing the protocol, and eBPF program fills the
3312 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3313 	 * and other helpers, rather than passing a raw buffer here.
3314 	 *
3315 	 * The rationale is to keep this minimal and without a need to
3316 	 * deal with raw packet data. F.e. even if we would pass buffers
3317 	 * here, the program still needs to call the bpf_lX_csum_replace()
3318 	 * helpers anyway. Plus, this way we keep also separation of
3319 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3320 	 * care of stores.
3321 	 *
3322 	 * Currently, additional options and extension header space are
3323 	 * not supported, but flags register is reserved so we can adapt
3324 	 * that. For offloads, we mark packet as dodgy, so that headers
3325 	 * need to be verified first.
3326 	 */
3327 	ret = bpf_skb_proto_xlat(skb, proto);
3328 	bpf_compute_data_pointers(skb);
3329 	return ret;
3330 }
3331 
3332 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3333 	.func		= bpf_skb_change_proto,
3334 	.gpl_only	= false,
3335 	.ret_type	= RET_INTEGER,
3336 	.arg1_type	= ARG_PTR_TO_CTX,
3337 	.arg2_type	= ARG_ANYTHING,
3338 	.arg3_type	= ARG_ANYTHING,
3339 };
3340 
3341 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3342 {
3343 	/* We only allow a restricted subset to be changed for now. */
3344 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3345 		     !skb_pkt_type_ok(pkt_type)))
3346 		return -EINVAL;
3347 
3348 	skb->pkt_type = pkt_type;
3349 	return 0;
3350 }
3351 
3352 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3353 	.func		= bpf_skb_change_type,
3354 	.gpl_only	= false,
3355 	.ret_type	= RET_INTEGER,
3356 	.arg1_type	= ARG_PTR_TO_CTX,
3357 	.arg2_type	= ARG_ANYTHING,
3358 };
3359 
3360 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3361 {
3362 	switch (skb->protocol) {
3363 	case htons(ETH_P_IP):
3364 		return sizeof(struct iphdr);
3365 	case htons(ETH_P_IPV6):
3366 		return sizeof(struct ipv6hdr);
3367 	default:
3368 		return ~0U;
3369 	}
3370 }
3371 
3372 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3373 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3374 
3375 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3376 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3377 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3378 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3379 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3380 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3381 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3382 
3383 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3384 			    u64 flags)
3385 {
3386 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3387 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3388 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3389 	unsigned int gso_type = SKB_GSO_DODGY;
3390 	int ret;
3391 
3392 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3393 		/* udp gso_size delineates datagrams, only allow if fixed */
3394 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3395 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3396 			return -ENOTSUPP;
3397 	}
3398 
3399 	ret = skb_cow_head(skb, len_diff);
3400 	if (unlikely(ret < 0))
3401 		return ret;
3402 
3403 	if (encap) {
3404 		if (skb->protocol != htons(ETH_P_IP) &&
3405 		    skb->protocol != htons(ETH_P_IPV6))
3406 			return -ENOTSUPP;
3407 
3408 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3409 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3410 			return -EINVAL;
3411 
3412 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3413 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3414 			return -EINVAL;
3415 
3416 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3417 		    inner_mac_len < ETH_HLEN)
3418 			return -EINVAL;
3419 
3420 		if (skb->encapsulation)
3421 			return -EALREADY;
3422 
3423 		mac_len = skb->network_header - skb->mac_header;
3424 		inner_net = skb->network_header;
3425 		if (inner_mac_len > len_diff)
3426 			return -EINVAL;
3427 		inner_trans = skb->transport_header;
3428 	}
3429 
3430 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3431 	if (unlikely(ret < 0))
3432 		return ret;
3433 
3434 	if (encap) {
3435 		skb->inner_mac_header = inner_net - inner_mac_len;
3436 		skb->inner_network_header = inner_net;
3437 		skb->inner_transport_header = inner_trans;
3438 
3439 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3440 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3441 		else
3442 			skb_set_inner_protocol(skb, skb->protocol);
3443 
3444 		skb->encapsulation = 1;
3445 		skb_set_network_header(skb, mac_len);
3446 
3447 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3448 			gso_type |= SKB_GSO_UDP_TUNNEL;
3449 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3450 			gso_type |= SKB_GSO_GRE;
3451 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3452 			gso_type |= SKB_GSO_IPXIP6;
3453 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3454 			gso_type |= SKB_GSO_IPXIP4;
3455 
3456 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3457 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3458 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3459 					sizeof(struct ipv6hdr) :
3460 					sizeof(struct iphdr);
3461 
3462 			skb_set_transport_header(skb, mac_len + nh_len);
3463 		}
3464 
3465 		/* Match skb->protocol to new outer l3 protocol */
3466 		if (skb->protocol == htons(ETH_P_IP) &&
3467 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3468 			skb->protocol = htons(ETH_P_IPV6);
3469 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3470 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3471 			skb->protocol = htons(ETH_P_IP);
3472 	}
3473 
3474 	if (skb_is_gso(skb)) {
3475 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3476 
3477 		/* Due to header grow, MSS needs to be downgraded. */
3478 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3479 			skb_decrease_gso_size(shinfo, len_diff);
3480 
3481 		/* Header must be checked, and gso_segs recomputed. */
3482 		shinfo->gso_type |= gso_type;
3483 		shinfo->gso_segs = 0;
3484 	}
3485 
3486 	return 0;
3487 }
3488 
3489 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3490 			      u64 flags)
3491 {
3492 	int ret;
3493 
3494 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3495 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3496 		return -EINVAL;
3497 
3498 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3499 		/* udp gso_size delineates datagrams, only allow if fixed */
3500 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3501 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3502 			return -ENOTSUPP;
3503 	}
3504 
3505 	ret = skb_unclone(skb, GFP_ATOMIC);
3506 	if (unlikely(ret < 0))
3507 		return ret;
3508 
3509 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3510 	if (unlikely(ret < 0))
3511 		return ret;
3512 
3513 	if (skb_is_gso(skb)) {
3514 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3515 
3516 		/* Due to header shrink, MSS can be upgraded. */
3517 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3518 			skb_increase_gso_size(shinfo, len_diff);
3519 
3520 		/* Header must be checked, and gso_segs recomputed. */
3521 		shinfo->gso_type |= SKB_GSO_DODGY;
3522 		shinfo->gso_segs = 0;
3523 	}
3524 
3525 	return 0;
3526 }
3527 
3528 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3529 
3530 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3531 	   u32, mode, u64, flags)
3532 {
3533 	u32 len_diff_abs = abs(len_diff);
3534 	bool shrink = len_diff < 0;
3535 	int ret = 0;
3536 
3537 	if (unlikely(flags || mode))
3538 		return -EINVAL;
3539 	if (unlikely(len_diff_abs > 0xfffU))
3540 		return -EFAULT;
3541 
3542 	if (!shrink) {
3543 		ret = skb_cow(skb, len_diff);
3544 		if (unlikely(ret < 0))
3545 			return ret;
3546 		__skb_push(skb, len_diff_abs);
3547 		memset(skb->data, 0, len_diff_abs);
3548 	} else {
3549 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3550 			return -ENOMEM;
3551 		__skb_pull(skb, len_diff_abs);
3552 	}
3553 	if (tls_sw_has_ctx_rx(skb->sk)) {
3554 		struct strp_msg *rxm = strp_msg(skb);
3555 
3556 		rxm->full_len += len_diff;
3557 	}
3558 	return ret;
3559 }
3560 
3561 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3562 	.func		= sk_skb_adjust_room,
3563 	.gpl_only	= false,
3564 	.ret_type	= RET_INTEGER,
3565 	.arg1_type	= ARG_PTR_TO_CTX,
3566 	.arg2_type	= ARG_ANYTHING,
3567 	.arg3_type	= ARG_ANYTHING,
3568 	.arg4_type	= ARG_ANYTHING,
3569 };
3570 
3571 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3572 	   u32, mode, u64, flags)
3573 {
3574 	u32 len_cur, len_diff_abs = abs(len_diff);
3575 	u32 len_min = bpf_skb_net_base_len(skb);
3576 	u32 len_max = BPF_SKB_MAX_LEN;
3577 	__be16 proto = skb->protocol;
3578 	bool shrink = len_diff < 0;
3579 	u32 off;
3580 	int ret;
3581 
3582 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3583 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3584 		return -EINVAL;
3585 	if (unlikely(len_diff_abs > 0xfffU))
3586 		return -EFAULT;
3587 	if (unlikely(proto != htons(ETH_P_IP) &&
3588 		     proto != htons(ETH_P_IPV6)))
3589 		return -ENOTSUPP;
3590 
3591 	off = skb_mac_header_len(skb);
3592 	switch (mode) {
3593 	case BPF_ADJ_ROOM_NET:
3594 		off += bpf_skb_net_base_len(skb);
3595 		break;
3596 	case BPF_ADJ_ROOM_MAC:
3597 		break;
3598 	default:
3599 		return -ENOTSUPP;
3600 	}
3601 
3602 	len_cur = skb->len - skb_network_offset(skb);
3603 	if ((shrink && (len_diff_abs >= len_cur ||
3604 			len_cur - len_diff_abs < len_min)) ||
3605 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3606 			 !skb_is_gso(skb))))
3607 		return -ENOTSUPP;
3608 
3609 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3610 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3611 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3612 		__skb_reset_checksum_unnecessary(skb);
3613 
3614 	bpf_compute_data_pointers(skb);
3615 	return ret;
3616 }
3617 
3618 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3619 	.func		= bpf_skb_adjust_room,
3620 	.gpl_only	= false,
3621 	.ret_type	= RET_INTEGER,
3622 	.arg1_type	= ARG_PTR_TO_CTX,
3623 	.arg2_type	= ARG_ANYTHING,
3624 	.arg3_type	= ARG_ANYTHING,
3625 	.arg4_type	= ARG_ANYTHING,
3626 };
3627 
3628 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3629 {
3630 	u32 min_len = skb_network_offset(skb);
3631 
3632 	if (skb_transport_header_was_set(skb))
3633 		min_len = skb_transport_offset(skb);
3634 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3635 		min_len = skb_checksum_start_offset(skb) +
3636 			  skb->csum_offset + sizeof(__sum16);
3637 	return min_len;
3638 }
3639 
3640 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3641 {
3642 	unsigned int old_len = skb->len;
3643 	int ret;
3644 
3645 	ret = __skb_grow_rcsum(skb, new_len);
3646 	if (!ret)
3647 		memset(skb->data + old_len, 0, new_len - old_len);
3648 	return ret;
3649 }
3650 
3651 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3652 {
3653 	return __skb_trim_rcsum(skb, new_len);
3654 }
3655 
3656 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3657 					u64 flags)
3658 {
3659 	u32 max_len = BPF_SKB_MAX_LEN;
3660 	u32 min_len = __bpf_skb_min_len(skb);
3661 	int ret;
3662 
3663 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3664 		return -EINVAL;
3665 	if (skb->encapsulation)
3666 		return -ENOTSUPP;
3667 
3668 	/* The basic idea of this helper is that it's performing the
3669 	 * needed work to either grow or trim an skb, and eBPF program
3670 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3671 	 * bpf_lX_csum_replace() and others rather than passing a raw
3672 	 * buffer here. This one is a slow path helper and intended
3673 	 * for replies with control messages.
3674 	 *
3675 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3676 	 * minimal and without protocol specifics so that we are able
3677 	 * to separate concerns as in bpf_skb_store_bytes() should only
3678 	 * be the one responsible for writing buffers.
3679 	 *
3680 	 * It's really expected to be a slow path operation here for
3681 	 * control message replies, so we're implicitly linearizing,
3682 	 * uncloning and drop offloads from the skb by this.
3683 	 */
3684 	ret = __bpf_try_make_writable(skb, skb->len);
3685 	if (!ret) {
3686 		if (new_len > skb->len)
3687 			ret = bpf_skb_grow_rcsum(skb, new_len);
3688 		else if (new_len < skb->len)
3689 			ret = bpf_skb_trim_rcsum(skb, new_len);
3690 		if (!ret && skb_is_gso(skb))
3691 			skb_gso_reset(skb);
3692 	}
3693 	return ret;
3694 }
3695 
3696 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3697 	   u64, flags)
3698 {
3699 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3700 
3701 	bpf_compute_data_pointers(skb);
3702 	return ret;
3703 }
3704 
3705 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3706 	.func		= bpf_skb_change_tail,
3707 	.gpl_only	= false,
3708 	.ret_type	= RET_INTEGER,
3709 	.arg1_type	= ARG_PTR_TO_CTX,
3710 	.arg2_type	= ARG_ANYTHING,
3711 	.arg3_type	= ARG_ANYTHING,
3712 };
3713 
3714 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3715 	   u64, flags)
3716 {
3717 	return __bpf_skb_change_tail(skb, new_len, flags);
3718 }
3719 
3720 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3721 	.func		= sk_skb_change_tail,
3722 	.gpl_only	= false,
3723 	.ret_type	= RET_INTEGER,
3724 	.arg1_type	= ARG_PTR_TO_CTX,
3725 	.arg2_type	= ARG_ANYTHING,
3726 	.arg3_type	= ARG_ANYTHING,
3727 };
3728 
3729 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3730 					u64 flags)
3731 {
3732 	u32 max_len = BPF_SKB_MAX_LEN;
3733 	u32 new_len = skb->len + head_room;
3734 	int ret;
3735 
3736 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3737 		     new_len < skb->len))
3738 		return -EINVAL;
3739 
3740 	ret = skb_cow(skb, head_room);
3741 	if (likely(!ret)) {
3742 		/* Idea for this helper is that we currently only
3743 		 * allow to expand on mac header. This means that
3744 		 * skb->protocol network header, etc, stay as is.
3745 		 * Compared to bpf_skb_change_tail(), we're more
3746 		 * flexible due to not needing to linearize or
3747 		 * reset GSO. Intention for this helper is to be
3748 		 * used by an L3 skb that needs to push mac header
3749 		 * for redirection into L2 device.
3750 		 */
3751 		__skb_push(skb, head_room);
3752 		memset(skb->data, 0, head_room);
3753 		skb_reset_mac_header(skb);
3754 		skb_reset_mac_len(skb);
3755 	}
3756 
3757 	return ret;
3758 }
3759 
3760 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3761 	   u64, flags)
3762 {
3763 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3764 
3765 	bpf_compute_data_pointers(skb);
3766 	return ret;
3767 }
3768 
3769 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3770 	.func		= bpf_skb_change_head,
3771 	.gpl_only	= false,
3772 	.ret_type	= RET_INTEGER,
3773 	.arg1_type	= ARG_PTR_TO_CTX,
3774 	.arg2_type	= ARG_ANYTHING,
3775 	.arg3_type	= ARG_ANYTHING,
3776 };
3777 
3778 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3779 	   u64, flags)
3780 {
3781 	return __bpf_skb_change_head(skb, head_room, flags);
3782 }
3783 
3784 static const struct bpf_func_proto sk_skb_change_head_proto = {
3785 	.func		= sk_skb_change_head,
3786 	.gpl_only	= false,
3787 	.ret_type	= RET_INTEGER,
3788 	.arg1_type	= ARG_PTR_TO_CTX,
3789 	.arg2_type	= ARG_ANYTHING,
3790 	.arg3_type	= ARG_ANYTHING,
3791 };
3792 
3793 BPF_CALL_1(bpf_xdp_get_buff_len, struct  xdp_buff*, xdp)
3794 {
3795 	return xdp_get_buff_len(xdp);
3796 }
3797 
3798 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3799 	.func		= bpf_xdp_get_buff_len,
3800 	.gpl_only	= false,
3801 	.ret_type	= RET_INTEGER,
3802 	.arg1_type	= ARG_PTR_TO_CTX,
3803 };
3804 
3805 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3806 
3807 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3808 	.func		= bpf_xdp_get_buff_len,
3809 	.gpl_only	= false,
3810 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3811 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3812 };
3813 
3814 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3815 {
3816 	return xdp_data_meta_unsupported(xdp) ? 0 :
3817 	       xdp->data - xdp->data_meta;
3818 }
3819 
3820 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3821 {
3822 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3823 	unsigned long metalen = xdp_get_metalen(xdp);
3824 	void *data_start = xdp_frame_end + metalen;
3825 	void *data = xdp->data + offset;
3826 
3827 	if (unlikely(data < data_start ||
3828 		     data > xdp->data_end - ETH_HLEN))
3829 		return -EINVAL;
3830 
3831 	if (metalen)
3832 		memmove(xdp->data_meta + offset,
3833 			xdp->data_meta, metalen);
3834 	xdp->data_meta += offset;
3835 	xdp->data = data;
3836 
3837 	return 0;
3838 }
3839 
3840 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3841 	.func		= bpf_xdp_adjust_head,
3842 	.gpl_only	= false,
3843 	.ret_type	= RET_INTEGER,
3844 	.arg1_type	= ARG_PTR_TO_CTX,
3845 	.arg2_type	= ARG_ANYTHING,
3846 };
3847 
3848 static void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3849 			     void *buf, unsigned long len, bool flush)
3850 {
3851 	unsigned long ptr_len, ptr_off = 0;
3852 	skb_frag_t *next_frag, *end_frag;
3853 	struct skb_shared_info *sinfo;
3854 	void *src, *dst;
3855 	u8 *ptr_buf;
3856 
3857 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3858 		src = flush ? buf : xdp->data + off;
3859 		dst = flush ? xdp->data + off : buf;
3860 		memcpy(dst, src, len);
3861 		return;
3862 	}
3863 
3864 	sinfo = xdp_get_shared_info_from_buff(xdp);
3865 	end_frag = &sinfo->frags[sinfo->nr_frags];
3866 	next_frag = &sinfo->frags[0];
3867 
3868 	ptr_len = xdp->data_end - xdp->data;
3869 	ptr_buf = xdp->data;
3870 
3871 	while (true) {
3872 		if (off < ptr_off + ptr_len) {
3873 			unsigned long copy_off = off - ptr_off;
3874 			unsigned long copy_len = min(len, ptr_len - copy_off);
3875 
3876 			src = flush ? buf : ptr_buf + copy_off;
3877 			dst = flush ? ptr_buf + copy_off : buf;
3878 			memcpy(dst, src, copy_len);
3879 
3880 			off += copy_len;
3881 			len -= copy_len;
3882 			buf += copy_len;
3883 		}
3884 
3885 		if (!len || next_frag == end_frag)
3886 			break;
3887 
3888 		ptr_off += ptr_len;
3889 		ptr_buf = skb_frag_address(next_frag);
3890 		ptr_len = skb_frag_size(next_frag);
3891 		next_frag++;
3892 	}
3893 }
3894 
3895 static void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3896 {
3897 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3898 	u32 size = xdp->data_end - xdp->data;
3899 	void *addr = xdp->data;
3900 	int i;
3901 
3902 	if (unlikely(offset > 0xffff || len > 0xffff))
3903 		return ERR_PTR(-EFAULT);
3904 
3905 	if (offset + len > xdp_get_buff_len(xdp))
3906 		return ERR_PTR(-EINVAL);
3907 
3908 	if (offset < size) /* linear area */
3909 		goto out;
3910 
3911 	offset -= size;
3912 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3913 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3914 
3915 		if  (offset < frag_size) {
3916 			addr = skb_frag_address(&sinfo->frags[i]);
3917 			size = frag_size;
3918 			break;
3919 		}
3920 		offset -= frag_size;
3921 	}
3922 out:
3923 	return offset + len <= size ? addr + offset : NULL;
3924 }
3925 
3926 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3927 	   void *, buf, u32, len)
3928 {
3929 	void *ptr;
3930 
3931 	ptr = bpf_xdp_pointer(xdp, offset, len);
3932 	if (IS_ERR(ptr))
3933 		return PTR_ERR(ptr);
3934 
3935 	if (!ptr)
3936 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3937 	else
3938 		memcpy(buf, ptr, len);
3939 
3940 	return 0;
3941 }
3942 
3943 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3944 	.func		= bpf_xdp_load_bytes,
3945 	.gpl_only	= false,
3946 	.ret_type	= RET_INTEGER,
3947 	.arg1_type	= ARG_PTR_TO_CTX,
3948 	.arg2_type	= ARG_ANYTHING,
3949 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3950 	.arg4_type	= ARG_CONST_SIZE,
3951 };
3952 
3953 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
3954 	   void *, buf, u32, len)
3955 {
3956 	void *ptr;
3957 
3958 	ptr = bpf_xdp_pointer(xdp, offset, len);
3959 	if (IS_ERR(ptr))
3960 		return PTR_ERR(ptr);
3961 
3962 	if (!ptr)
3963 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
3964 	else
3965 		memcpy(ptr, buf, len);
3966 
3967 	return 0;
3968 }
3969 
3970 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
3971 	.func		= bpf_xdp_store_bytes,
3972 	.gpl_only	= false,
3973 	.ret_type	= RET_INTEGER,
3974 	.arg1_type	= ARG_PTR_TO_CTX,
3975 	.arg2_type	= ARG_ANYTHING,
3976 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
3977 	.arg4_type	= ARG_CONST_SIZE,
3978 };
3979 
3980 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
3981 {
3982 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
3983 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
3984 	struct xdp_rxq_info *rxq = xdp->rxq;
3985 	unsigned int tailroom;
3986 
3987 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
3988 		return -EOPNOTSUPP;
3989 
3990 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
3991 	if (unlikely(offset > tailroom))
3992 		return -EINVAL;
3993 
3994 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
3995 	skb_frag_size_add(frag, offset);
3996 	sinfo->xdp_frags_size += offset;
3997 
3998 	return 0;
3999 }
4000 
4001 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4002 {
4003 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4004 	int i, n_frags_free = 0, len_free = 0;
4005 
4006 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4007 		return -EINVAL;
4008 
4009 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4010 		skb_frag_t *frag = &sinfo->frags[i];
4011 		int shrink = min_t(int, offset, skb_frag_size(frag));
4012 
4013 		len_free += shrink;
4014 		offset -= shrink;
4015 
4016 		if (skb_frag_size(frag) == shrink) {
4017 			struct page *page = skb_frag_page(frag);
4018 
4019 			__xdp_return(page_address(page), &xdp->rxq->mem,
4020 				     false, NULL);
4021 			n_frags_free++;
4022 		} else {
4023 			skb_frag_size_sub(frag, shrink);
4024 			break;
4025 		}
4026 	}
4027 	sinfo->nr_frags -= n_frags_free;
4028 	sinfo->xdp_frags_size -= len_free;
4029 
4030 	if (unlikely(!sinfo->nr_frags)) {
4031 		xdp_buff_clear_frags_flag(xdp);
4032 		xdp->data_end -= offset;
4033 	}
4034 
4035 	return 0;
4036 }
4037 
4038 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4039 {
4040 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4041 	void *data_end = xdp->data_end + offset;
4042 
4043 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4044 		if (offset < 0)
4045 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4046 
4047 		return bpf_xdp_frags_increase_tail(xdp, offset);
4048 	}
4049 
4050 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4051 	if (unlikely(data_end > data_hard_end))
4052 		return -EINVAL;
4053 
4054 	/* ALL drivers MUST init xdp->frame_sz, chicken check below */
4055 	if (unlikely(xdp->frame_sz > PAGE_SIZE)) {
4056 		WARN_ONCE(1, "Too BIG xdp->frame_sz = %d\n", xdp->frame_sz);
4057 		return -EINVAL;
4058 	}
4059 
4060 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4061 		return -EINVAL;
4062 
4063 	/* Clear memory area on grow, can contain uninit kernel memory */
4064 	if (offset > 0)
4065 		memset(xdp->data_end, 0, offset);
4066 
4067 	xdp->data_end = data_end;
4068 
4069 	return 0;
4070 }
4071 
4072 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4073 	.func		= bpf_xdp_adjust_tail,
4074 	.gpl_only	= false,
4075 	.ret_type	= RET_INTEGER,
4076 	.arg1_type	= ARG_PTR_TO_CTX,
4077 	.arg2_type	= ARG_ANYTHING,
4078 };
4079 
4080 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4081 {
4082 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4083 	void *meta = xdp->data_meta + offset;
4084 	unsigned long metalen = xdp->data - meta;
4085 
4086 	if (xdp_data_meta_unsupported(xdp))
4087 		return -ENOTSUPP;
4088 	if (unlikely(meta < xdp_frame_end ||
4089 		     meta > xdp->data))
4090 		return -EINVAL;
4091 	if (unlikely(xdp_metalen_invalid(metalen)))
4092 		return -EACCES;
4093 
4094 	xdp->data_meta = meta;
4095 
4096 	return 0;
4097 }
4098 
4099 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4100 	.func		= bpf_xdp_adjust_meta,
4101 	.gpl_only	= false,
4102 	.ret_type	= RET_INTEGER,
4103 	.arg1_type	= ARG_PTR_TO_CTX,
4104 	.arg2_type	= ARG_ANYTHING,
4105 };
4106 
4107 /* XDP_REDIRECT works by a three-step process, implemented in the functions
4108  * below:
4109  *
4110  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4111  *    of the redirect and store it (along with some other metadata) in a per-CPU
4112  *    struct bpf_redirect_info.
4113  *
4114  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4115  *    call xdp_do_redirect() which will use the information in struct
4116  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4117  *    bulk queue structure.
4118  *
4119  * 3. Before exiting its NAPI poll loop, the driver will call xdp_do_flush(),
4120  *    which will flush all the different bulk queues, thus completing the
4121  *    redirect.
4122  *
4123  * Pointers to the map entries will be kept around for this whole sequence of
4124  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4125  * the core code; instead, the RCU protection relies on everything happening
4126  * inside a single NAPI poll sequence, which means it's between a pair of calls
4127  * to local_bh_disable()/local_bh_enable().
4128  *
4129  * The map entries are marked as __rcu and the map code makes sure to
4130  * dereference those pointers with rcu_dereference_check() in a way that works
4131  * for both sections that to hold an rcu_read_lock() and sections that are
4132  * called from NAPI without a separate rcu_read_lock(). The code below does not
4133  * use RCU annotations, but relies on those in the map code.
4134  */
4135 void xdp_do_flush(void)
4136 {
4137 	__dev_flush();
4138 	__cpu_map_flush();
4139 	__xsk_map_flush();
4140 }
4141 EXPORT_SYMBOL_GPL(xdp_do_flush);
4142 
4143 void bpf_clear_redirect_map(struct bpf_map *map)
4144 {
4145 	struct bpf_redirect_info *ri;
4146 	int cpu;
4147 
4148 	for_each_possible_cpu(cpu) {
4149 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4150 		/* Avoid polluting remote cacheline due to writes if
4151 		 * not needed. Once we pass this test, we need the
4152 		 * cmpxchg() to make sure it hasn't been changed in
4153 		 * the meantime by remote CPU.
4154 		 */
4155 		if (unlikely(READ_ONCE(ri->map) == map))
4156 			cmpxchg(&ri->map, map, NULL);
4157 	}
4158 }
4159 
4160 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4161 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4162 
4163 u32 xdp_master_redirect(struct xdp_buff *xdp)
4164 {
4165 	struct net_device *master, *slave;
4166 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4167 
4168 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4169 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4170 	if (slave && slave != xdp->rxq->dev) {
4171 		/* The target device is different from the receiving device, so
4172 		 * redirect it to the new device.
4173 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4174 		 * drivers to unmap the packet from their rx ring.
4175 		 */
4176 		ri->tgt_index = slave->ifindex;
4177 		ri->map_id = INT_MAX;
4178 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4179 		return XDP_REDIRECT;
4180 	}
4181 	return XDP_TX;
4182 }
4183 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4184 
4185 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4186 					struct net_device *dev,
4187 					struct xdp_buff *xdp,
4188 					struct bpf_prog *xdp_prog)
4189 {
4190 	enum bpf_map_type map_type = ri->map_type;
4191 	void *fwd = ri->tgt_value;
4192 	u32 map_id = ri->map_id;
4193 	int err;
4194 
4195 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4196 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4197 
4198 	err = __xsk_map_redirect(fwd, xdp);
4199 	if (unlikely(err))
4200 		goto err;
4201 
4202 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4203 	return 0;
4204 err:
4205 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4206 	return err;
4207 }
4208 
4209 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4210 						   struct net_device *dev,
4211 						   struct xdp_frame *xdpf,
4212 						   struct bpf_prog *xdp_prog)
4213 {
4214 	enum bpf_map_type map_type = ri->map_type;
4215 	void *fwd = ri->tgt_value;
4216 	u32 map_id = ri->map_id;
4217 	struct bpf_map *map;
4218 	int err;
4219 
4220 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4221 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4222 
4223 	if (unlikely(!xdpf)) {
4224 		err = -EOVERFLOW;
4225 		goto err;
4226 	}
4227 
4228 	switch (map_type) {
4229 	case BPF_MAP_TYPE_DEVMAP:
4230 		fallthrough;
4231 	case BPF_MAP_TYPE_DEVMAP_HASH:
4232 		map = READ_ONCE(ri->map);
4233 		if (unlikely(map)) {
4234 			WRITE_ONCE(ri->map, NULL);
4235 			err = dev_map_enqueue_multi(xdpf, dev, map,
4236 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4237 		} else {
4238 			err = dev_map_enqueue(fwd, xdpf, dev);
4239 		}
4240 		break;
4241 	case BPF_MAP_TYPE_CPUMAP:
4242 		err = cpu_map_enqueue(fwd, xdpf, dev);
4243 		break;
4244 	case BPF_MAP_TYPE_UNSPEC:
4245 		if (map_id == INT_MAX) {
4246 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4247 			if (unlikely(!fwd)) {
4248 				err = -EINVAL;
4249 				break;
4250 			}
4251 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4252 			break;
4253 		}
4254 		fallthrough;
4255 	default:
4256 		err = -EBADRQC;
4257 	}
4258 
4259 	if (unlikely(err))
4260 		goto err;
4261 
4262 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4263 	return 0;
4264 err:
4265 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4266 	return err;
4267 }
4268 
4269 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4270 		    struct bpf_prog *xdp_prog)
4271 {
4272 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4273 	enum bpf_map_type map_type = ri->map_type;
4274 
4275 	/* XDP_REDIRECT is not fully supported yet for xdp frags since
4276 	 * not all XDP capable drivers can map non-linear xdp_frame in
4277 	 * ndo_xdp_xmit.
4278 	 */
4279 	if (unlikely(xdp_buff_has_frags(xdp) &&
4280 		     map_type != BPF_MAP_TYPE_CPUMAP))
4281 		return -EOPNOTSUPP;
4282 
4283 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4284 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4285 
4286 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4287 				       xdp_prog);
4288 }
4289 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4290 
4291 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4292 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4293 {
4294 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4295 	enum bpf_map_type map_type = ri->map_type;
4296 
4297 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4298 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4299 
4300 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4301 }
4302 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4303 
4304 static int xdp_do_generic_redirect_map(struct net_device *dev,
4305 				       struct sk_buff *skb,
4306 				       struct xdp_buff *xdp,
4307 				       struct bpf_prog *xdp_prog,
4308 				       void *fwd,
4309 				       enum bpf_map_type map_type, u32 map_id)
4310 {
4311 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4312 	struct bpf_map *map;
4313 	int err;
4314 
4315 	switch (map_type) {
4316 	case BPF_MAP_TYPE_DEVMAP:
4317 		fallthrough;
4318 	case BPF_MAP_TYPE_DEVMAP_HASH:
4319 		map = READ_ONCE(ri->map);
4320 		if (unlikely(map)) {
4321 			WRITE_ONCE(ri->map, NULL);
4322 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4323 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4324 		} else {
4325 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4326 		}
4327 		if (unlikely(err))
4328 			goto err;
4329 		break;
4330 	case BPF_MAP_TYPE_XSKMAP:
4331 		err = xsk_generic_rcv(fwd, xdp);
4332 		if (err)
4333 			goto err;
4334 		consume_skb(skb);
4335 		break;
4336 	case BPF_MAP_TYPE_CPUMAP:
4337 		err = cpu_map_generic_redirect(fwd, skb);
4338 		if (unlikely(err))
4339 			goto err;
4340 		break;
4341 	default:
4342 		err = -EBADRQC;
4343 		goto err;
4344 	}
4345 
4346 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4347 	return 0;
4348 err:
4349 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4350 	return err;
4351 }
4352 
4353 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4354 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4355 {
4356 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4357 	enum bpf_map_type map_type = ri->map_type;
4358 	void *fwd = ri->tgt_value;
4359 	u32 map_id = ri->map_id;
4360 	int err;
4361 
4362 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4363 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4364 
4365 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4366 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4367 		if (unlikely(!fwd)) {
4368 			err = -EINVAL;
4369 			goto err;
4370 		}
4371 
4372 		err = xdp_ok_fwd_dev(fwd, skb->len);
4373 		if (unlikely(err))
4374 			goto err;
4375 
4376 		skb->dev = fwd;
4377 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4378 		generic_xdp_tx(skb, xdp_prog);
4379 		return 0;
4380 	}
4381 
4382 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4383 err:
4384 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4385 	return err;
4386 }
4387 
4388 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4389 {
4390 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4391 
4392 	if (unlikely(flags))
4393 		return XDP_ABORTED;
4394 
4395 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4396 	 * by map_idr) is used for ifindex based XDP redirect.
4397 	 */
4398 	ri->tgt_index = ifindex;
4399 	ri->map_id = INT_MAX;
4400 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4401 
4402 	return XDP_REDIRECT;
4403 }
4404 
4405 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4406 	.func           = bpf_xdp_redirect,
4407 	.gpl_only       = false,
4408 	.ret_type       = RET_INTEGER,
4409 	.arg1_type      = ARG_ANYTHING,
4410 	.arg2_type      = ARG_ANYTHING,
4411 };
4412 
4413 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
4414 	   u64, flags)
4415 {
4416 	return map->ops->map_redirect(map, ifindex, flags);
4417 }
4418 
4419 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4420 	.func           = bpf_xdp_redirect_map,
4421 	.gpl_only       = false,
4422 	.ret_type       = RET_INTEGER,
4423 	.arg1_type      = ARG_CONST_MAP_PTR,
4424 	.arg2_type      = ARG_ANYTHING,
4425 	.arg3_type      = ARG_ANYTHING,
4426 };
4427 
4428 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4429 				  unsigned long off, unsigned long len)
4430 {
4431 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4432 
4433 	if (unlikely(!ptr))
4434 		return len;
4435 	if (ptr != dst_buff)
4436 		memcpy(dst_buff, ptr, len);
4437 
4438 	return 0;
4439 }
4440 
4441 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4442 	   u64, flags, void *, meta, u64, meta_size)
4443 {
4444 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4445 
4446 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4447 		return -EINVAL;
4448 	if (unlikely(!skb || skb_size > skb->len))
4449 		return -EFAULT;
4450 
4451 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4452 				bpf_skb_copy);
4453 }
4454 
4455 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4456 	.func		= bpf_skb_event_output,
4457 	.gpl_only	= true,
4458 	.ret_type	= RET_INTEGER,
4459 	.arg1_type	= ARG_PTR_TO_CTX,
4460 	.arg2_type	= ARG_CONST_MAP_PTR,
4461 	.arg3_type	= ARG_ANYTHING,
4462 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4463 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4464 };
4465 
4466 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4467 
4468 const struct bpf_func_proto bpf_skb_output_proto = {
4469 	.func		= bpf_skb_event_output,
4470 	.gpl_only	= true,
4471 	.ret_type	= RET_INTEGER,
4472 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4473 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4474 	.arg2_type	= ARG_CONST_MAP_PTR,
4475 	.arg3_type	= ARG_ANYTHING,
4476 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4477 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4478 };
4479 
4480 static unsigned short bpf_tunnel_key_af(u64 flags)
4481 {
4482 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4483 }
4484 
4485 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4486 	   u32, size, u64, flags)
4487 {
4488 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4489 	u8 compat[sizeof(struct bpf_tunnel_key)];
4490 	void *to_orig = to;
4491 	int err;
4492 
4493 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4494 					 BPF_F_TUNINFO_FLAGS)))) {
4495 		err = -EINVAL;
4496 		goto err_clear;
4497 	}
4498 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4499 		err = -EPROTO;
4500 		goto err_clear;
4501 	}
4502 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4503 		err = -EINVAL;
4504 		switch (size) {
4505 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4506 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4507 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4508 			goto set_compat;
4509 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4510 			/* Fixup deprecated structure layouts here, so we have
4511 			 * a common path later on.
4512 			 */
4513 			if (ip_tunnel_info_af(info) != AF_INET)
4514 				goto err_clear;
4515 set_compat:
4516 			to = (struct bpf_tunnel_key *)compat;
4517 			break;
4518 		default:
4519 			goto err_clear;
4520 		}
4521 	}
4522 
4523 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4524 	to->tunnel_tos = info->key.tos;
4525 	to->tunnel_ttl = info->key.ttl;
4526 	if (flags & BPF_F_TUNINFO_FLAGS)
4527 		to->tunnel_flags = info->key.tun_flags;
4528 	else
4529 		to->tunnel_ext = 0;
4530 
4531 	if (flags & BPF_F_TUNINFO_IPV6) {
4532 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4533 		       sizeof(to->remote_ipv6));
4534 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4535 		       sizeof(to->local_ipv6));
4536 		to->tunnel_label = be32_to_cpu(info->key.label);
4537 	} else {
4538 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4539 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4540 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4541 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4542 		to->tunnel_label = 0;
4543 	}
4544 
4545 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4546 		memcpy(to_orig, to, size);
4547 
4548 	return 0;
4549 err_clear:
4550 	memset(to_orig, 0, size);
4551 	return err;
4552 }
4553 
4554 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4555 	.func		= bpf_skb_get_tunnel_key,
4556 	.gpl_only	= false,
4557 	.ret_type	= RET_INTEGER,
4558 	.arg1_type	= ARG_PTR_TO_CTX,
4559 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4560 	.arg3_type	= ARG_CONST_SIZE,
4561 	.arg4_type	= ARG_ANYTHING,
4562 };
4563 
4564 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4565 {
4566 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4567 	int err;
4568 
4569 	if (unlikely(!info ||
4570 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4571 		err = -ENOENT;
4572 		goto err_clear;
4573 	}
4574 	if (unlikely(size < info->options_len)) {
4575 		err = -ENOMEM;
4576 		goto err_clear;
4577 	}
4578 
4579 	ip_tunnel_info_opts_get(to, info);
4580 	if (size > info->options_len)
4581 		memset(to + info->options_len, 0, size - info->options_len);
4582 
4583 	return info->options_len;
4584 err_clear:
4585 	memset(to, 0, size);
4586 	return err;
4587 }
4588 
4589 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4590 	.func		= bpf_skb_get_tunnel_opt,
4591 	.gpl_only	= false,
4592 	.ret_type	= RET_INTEGER,
4593 	.arg1_type	= ARG_PTR_TO_CTX,
4594 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4595 	.arg3_type	= ARG_CONST_SIZE,
4596 };
4597 
4598 static struct metadata_dst __percpu *md_dst;
4599 
4600 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4601 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4602 {
4603 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4604 	u8 compat[sizeof(struct bpf_tunnel_key)];
4605 	struct ip_tunnel_info *info;
4606 
4607 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4608 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
4609 		return -EINVAL;
4610 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4611 		switch (size) {
4612 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4613 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4614 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4615 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4616 			/* Fixup deprecated structure layouts here, so we have
4617 			 * a common path later on.
4618 			 */
4619 			memcpy(compat, from, size);
4620 			memset(compat + size, 0, sizeof(compat) - size);
4621 			from = (const struct bpf_tunnel_key *) compat;
4622 			break;
4623 		default:
4624 			return -EINVAL;
4625 		}
4626 	}
4627 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4628 		     from->tunnel_ext))
4629 		return -EINVAL;
4630 
4631 	skb_dst_drop(skb);
4632 	dst_hold((struct dst_entry *) md);
4633 	skb_dst_set(skb, (struct dst_entry *) md);
4634 
4635 	info = &md->u.tun_info;
4636 	memset(info, 0, sizeof(*info));
4637 	info->mode = IP_TUNNEL_INFO_TX;
4638 
4639 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4640 	if (flags & BPF_F_DONT_FRAGMENT)
4641 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4642 	if (flags & BPF_F_ZERO_CSUM_TX)
4643 		info->key.tun_flags &= ~TUNNEL_CSUM;
4644 	if (flags & BPF_F_SEQ_NUMBER)
4645 		info->key.tun_flags |= TUNNEL_SEQ;
4646 
4647 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4648 	info->key.tos = from->tunnel_tos;
4649 	info->key.ttl = from->tunnel_ttl;
4650 
4651 	if (flags & BPF_F_TUNINFO_IPV6) {
4652 		info->mode |= IP_TUNNEL_INFO_IPV6;
4653 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4654 		       sizeof(from->remote_ipv6));
4655 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4656 		       sizeof(from->local_ipv6));
4657 		info->key.label = cpu_to_be32(from->tunnel_label) &
4658 				  IPV6_FLOWLABEL_MASK;
4659 	} else {
4660 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4661 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4662 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4663 	}
4664 
4665 	return 0;
4666 }
4667 
4668 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4669 	.func		= bpf_skb_set_tunnel_key,
4670 	.gpl_only	= false,
4671 	.ret_type	= RET_INTEGER,
4672 	.arg1_type	= ARG_PTR_TO_CTX,
4673 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4674 	.arg3_type	= ARG_CONST_SIZE,
4675 	.arg4_type	= ARG_ANYTHING,
4676 };
4677 
4678 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4679 	   const u8 *, from, u32, size)
4680 {
4681 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4682 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4683 
4684 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4685 		return -EINVAL;
4686 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4687 		return -ENOMEM;
4688 
4689 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4690 
4691 	return 0;
4692 }
4693 
4694 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4695 	.func		= bpf_skb_set_tunnel_opt,
4696 	.gpl_only	= false,
4697 	.ret_type	= RET_INTEGER,
4698 	.arg1_type	= ARG_PTR_TO_CTX,
4699 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4700 	.arg3_type	= ARG_CONST_SIZE,
4701 };
4702 
4703 static const struct bpf_func_proto *
4704 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4705 {
4706 	if (!md_dst) {
4707 		struct metadata_dst __percpu *tmp;
4708 
4709 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4710 						METADATA_IP_TUNNEL,
4711 						GFP_KERNEL);
4712 		if (!tmp)
4713 			return NULL;
4714 		if (cmpxchg(&md_dst, NULL, tmp))
4715 			metadata_dst_free_percpu(tmp);
4716 	}
4717 
4718 	switch (which) {
4719 	case BPF_FUNC_skb_set_tunnel_key:
4720 		return &bpf_skb_set_tunnel_key_proto;
4721 	case BPF_FUNC_skb_set_tunnel_opt:
4722 		return &bpf_skb_set_tunnel_opt_proto;
4723 	default:
4724 		return NULL;
4725 	}
4726 }
4727 
4728 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4729 	   u32, idx)
4730 {
4731 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4732 	struct cgroup *cgrp;
4733 	struct sock *sk;
4734 
4735 	sk = skb_to_full_sk(skb);
4736 	if (!sk || !sk_fullsock(sk))
4737 		return -ENOENT;
4738 	if (unlikely(idx >= array->map.max_entries))
4739 		return -E2BIG;
4740 
4741 	cgrp = READ_ONCE(array->ptrs[idx]);
4742 	if (unlikely(!cgrp))
4743 		return -EAGAIN;
4744 
4745 	return sk_under_cgroup_hierarchy(sk, cgrp);
4746 }
4747 
4748 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4749 	.func		= bpf_skb_under_cgroup,
4750 	.gpl_only	= false,
4751 	.ret_type	= RET_INTEGER,
4752 	.arg1_type	= ARG_PTR_TO_CTX,
4753 	.arg2_type	= ARG_CONST_MAP_PTR,
4754 	.arg3_type	= ARG_ANYTHING,
4755 };
4756 
4757 #ifdef CONFIG_SOCK_CGROUP_DATA
4758 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4759 {
4760 	struct cgroup *cgrp;
4761 
4762 	sk = sk_to_full_sk(sk);
4763 	if (!sk || !sk_fullsock(sk))
4764 		return 0;
4765 
4766 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4767 	return cgroup_id(cgrp);
4768 }
4769 
4770 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4771 {
4772 	return __bpf_sk_cgroup_id(skb->sk);
4773 }
4774 
4775 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4776 	.func           = bpf_skb_cgroup_id,
4777 	.gpl_only       = false,
4778 	.ret_type       = RET_INTEGER,
4779 	.arg1_type      = ARG_PTR_TO_CTX,
4780 };
4781 
4782 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4783 					      int ancestor_level)
4784 {
4785 	struct cgroup *ancestor;
4786 	struct cgroup *cgrp;
4787 
4788 	sk = sk_to_full_sk(sk);
4789 	if (!sk || !sk_fullsock(sk))
4790 		return 0;
4791 
4792 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4793 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4794 	if (!ancestor)
4795 		return 0;
4796 
4797 	return cgroup_id(ancestor);
4798 }
4799 
4800 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4801 	   ancestor_level)
4802 {
4803 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4804 }
4805 
4806 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4807 	.func           = bpf_skb_ancestor_cgroup_id,
4808 	.gpl_only       = false,
4809 	.ret_type       = RET_INTEGER,
4810 	.arg1_type      = ARG_PTR_TO_CTX,
4811 	.arg2_type      = ARG_ANYTHING,
4812 };
4813 
4814 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4815 {
4816 	return __bpf_sk_cgroup_id(sk);
4817 }
4818 
4819 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4820 	.func           = bpf_sk_cgroup_id,
4821 	.gpl_only       = false,
4822 	.ret_type       = RET_INTEGER,
4823 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4824 };
4825 
4826 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4827 {
4828 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4829 }
4830 
4831 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4832 	.func           = bpf_sk_ancestor_cgroup_id,
4833 	.gpl_only       = false,
4834 	.ret_type       = RET_INTEGER,
4835 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4836 	.arg2_type      = ARG_ANYTHING,
4837 };
4838 #endif
4839 
4840 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4841 				  unsigned long off, unsigned long len)
4842 {
4843 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4844 
4845 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4846 	return 0;
4847 }
4848 
4849 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4850 	   u64, flags, void *, meta, u64, meta_size)
4851 {
4852 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4853 
4854 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4855 		return -EINVAL;
4856 
4857 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4858 		return -EFAULT;
4859 
4860 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4861 				xdp_size, bpf_xdp_copy);
4862 }
4863 
4864 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4865 	.func		= bpf_xdp_event_output,
4866 	.gpl_only	= true,
4867 	.ret_type	= RET_INTEGER,
4868 	.arg1_type	= ARG_PTR_TO_CTX,
4869 	.arg2_type	= ARG_CONST_MAP_PTR,
4870 	.arg3_type	= ARG_ANYTHING,
4871 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4872 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4873 };
4874 
4875 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4876 
4877 const struct bpf_func_proto bpf_xdp_output_proto = {
4878 	.func		= bpf_xdp_event_output,
4879 	.gpl_only	= true,
4880 	.ret_type	= RET_INTEGER,
4881 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4882 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4883 	.arg2_type	= ARG_CONST_MAP_PTR,
4884 	.arg3_type	= ARG_ANYTHING,
4885 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4886 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4887 };
4888 
4889 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4890 {
4891 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4892 }
4893 
4894 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4895 	.func           = bpf_get_socket_cookie,
4896 	.gpl_only       = false,
4897 	.ret_type       = RET_INTEGER,
4898 	.arg1_type      = ARG_PTR_TO_CTX,
4899 };
4900 
4901 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4902 {
4903 	return __sock_gen_cookie(ctx->sk);
4904 }
4905 
4906 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4907 	.func		= bpf_get_socket_cookie_sock_addr,
4908 	.gpl_only	= false,
4909 	.ret_type	= RET_INTEGER,
4910 	.arg1_type	= ARG_PTR_TO_CTX,
4911 };
4912 
4913 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4914 {
4915 	return __sock_gen_cookie(ctx);
4916 }
4917 
4918 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4919 	.func		= bpf_get_socket_cookie_sock,
4920 	.gpl_only	= false,
4921 	.ret_type	= RET_INTEGER,
4922 	.arg1_type	= ARG_PTR_TO_CTX,
4923 };
4924 
4925 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4926 {
4927 	return sk ? sock_gen_cookie(sk) : 0;
4928 }
4929 
4930 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4931 	.func		= bpf_get_socket_ptr_cookie,
4932 	.gpl_only	= false,
4933 	.ret_type	= RET_INTEGER,
4934 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4935 };
4936 
4937 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4938 {
4939 	return __sock_gen_cookie(ctx->sk);
4940 }
4941 
4942 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4943 	.func		= bpf_get_socket_cookie_sock_ops,
4944 	.gpl_only	= false,
4945 	.ret_type	= RET_INTEGER,
4946 	.arg1_type	= ARG_PTR_TO_CTX,
4947 };
4948 
4949 static u64 __bpf_get_netns_cookie(struct sock *sk)
4950 {
4951 	const struct net *net = sk ? sock_net(sk) : &init_net;
4952 
4953 	return net->net_cookie;
4954 }
4955 
4956 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
4957 {
4958 	return __bpf_get_netns_cookie(ctx);
4959 }
4960 
4961 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
4962 	.func		= bpf_get_netns_cookie_sock,
4963 	.gpl_only	= false,
4964 	.ret_type	= RET_INTEGER,
4965 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4966 };
4967 
4968 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4969 {
4970 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4971 }
4972 
4973 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
4974 	.func		= bpf_get_netns_cookie_sock_addr,
4975 	.gpl_only	= false,
4976 	.ret_type	= RET_INTEGER,
4977 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4978 };
4979 
4980 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4981 {
4982 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4983 }
4984 
4985 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
4986 	.func		= bpf_get_netns_cookie_sock_ops,
4987 	.gpl_only	= false,
4988 	.ret_type	= RET_INTEGER,
4989 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
4990 };
4991 
4992 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
4993 {
4994 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
4995 }
4996 
4997 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
4998 	.func		= bpf_get_netns_cookie_sk_msg,
4999 	.gpl_only	= false,
5000 	.ret_type	= RET_INTEGER,
5001 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5002 };
5003 
5004 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5005 {
5006 	struct sock *sk = sk_to_full_sk(skb->sk);
5007 	kuid_t kuid;
5008 
5009 	if (!sk || !sk_fullsock(sk))
5010 		return overflowuid;
5011 	kuid = sock_net_uid(sock_net(sk), sk);
5012 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5013 }
5014 
5015 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5016 	.func           = bpf_get_socket_uid,
5017 	.gpl_only       = false,
5018 	.ret_type       = RET_INTEGER,
5019 	.arg1_type      = ARG_PTR_TO_CTX,
5020 };
5021 
5022 static int sol_socket_sockopt(struct sock *sk, int optname,
5023 			      char *optval, int *optlen,
5024 			      bool getopt)
5025 {
5026 	switch (optname) {
5027 	case SO_REUSEADDR:
5028 	case SO_SNDBUF:
5029 	case SO_RCVBUF:
5030 	case SO_KEEPALIVE:
5031 	case SO_PRIORITY:
5032 	case SO_REUSEPORT:
5033 	case SO_RCVLOWAT:
5034 	case SO_MARK:
5035 	case SO_MAX_PACING_RATE:
5036 	case SO_BINDTOIFINDEX:
5037 	case SO_TXREHASH:
5038 		if (*optlen != sizeof(int))
5039 			return -EINVAL;
5040 		break;
5041 	case SO_BINDTODEVICE:
5042 		break;
5043 	default:
5044 		return -EINVAL;
5045 	}
5046 
5047 	if (getopt) {
5048 		if (optname == SO_BINDTODEVICE)
5049 			return -EINVAL;
5050 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5051 				     KERNEL_SOCKPTR(optval),
5052 				     KERNEL_SOCKPTR(optlen));
5053 	}
5054 
5055 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5056 			     KERNEL_SOCKPTR(optval), *optlen);
5057 }
5058 
5059 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5060 				  char *optval, int optlen)
5061 {
5062 	struct tcp_sock *tp = tcp_sk(sk);
5063 	unsigned long timeout;
5064 	int val;
5065 
5066 	if (optlen != sizeof(int))
5067 		return -EINVAL;
5068 
5069 	val = *(int *)optval;
5070 
5071 	/* Only some options are supported */
5072 	switch (optname) {
5073 	case TCP_BPF_IW:
5074 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5075 			return -EINVAL;
5076 		tcp_snd_cwnd_set(tp, val);
5077 		break;
5078 	case TCP_BPF_SNDCWND_CLAMP:
5079 		if (val <= 0)
5080 			return -EINVAL;
5081 		tp->snd_cwnd_clamp = val;
5082 		tp->snd_ssthresh = val;
5083 		break;
5084 	case TCP_BPF_DELACK_MAX:
5085 		timeout = usecs_to_jiffies(val);
5086 		if (timeout > TCP_DELACK_MAX ||
5087 		    timeout < TCP_TIMEOUT_MIN)
5088 			return -EINVAL;
5089 		inet_csk(sk)->icsk_delack_max = timeout;
5090 		break;
5091 	case TCP_BPF_RTO_MIN:
5092 		timeout = usecs_to_jiffies(val);
5093 		if (timeout > TCP_RTO_MIN ||
5094 		    timeout < TCP_TIMEOUT_MIN)
5095 			return -EINVAL;
5096 		inet_csk(sk)->icsk_rto_min = timeout;
5097 		break;
5098 	default:
5099 		return -EINVAL;
5100 	}
5101 
5102 	return 0;
5103 }
5104 
5105 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5106 				      int *optlen, bool getopt)
5107 {
5108 	struct tcp_sock *tp;
5109 	int ret;
5110 
5111 	if (*optlen < 2)
5112 		return -EINVAL;
5113 
5114 	if (getopt) {
5115 		if (!inet_csk(sk)->icsk_ca_ops)
5116 			return -EINVAL;
5117 		/* BPF expects NULL-terminated tcp-cc string */
5118 		optval[--(*optlen)] = '\0';
5119 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5120 					 KERNEL_SOCKPTR(optval),
5121 					 KERNEL_SOCKPTR(optlen));
5122 	}
5123 
5124 	/* "cdg" is the only cc that alloc a ptr
5125 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5126 	 * overwrite this ptr after switching to cdg.
5127 	 */
5128 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5129 		return -ENOTSUPP;
5130 
5131 	/* It stops this looping
5132 	 *
5133 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5134 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5135 	 *
5136 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5137 	 * in order to break the loop when both .init
5138 	 * are the same bpf prog.
5139 	 *
5140 	 * This applies even the second bpf_setsockopt(tcp_cc)
5141 	 * does not cause a loop.  This limits only the first
5142 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5143 	 * pick a fallback cc (eg. peer does not support ECN)
5144 	 * and the second '.init' cannot fallback to
5145 	 * another.
5146 	 */
5147 	tp = tcp_sk(sk);
5148 	if (tp->bpf_chg_cc_inprogress)
5149 		return -EBUSY;
5150 
5151 	tp->bpf_chg_cc_inprogress = 1;
5152 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5153 				KERNEL_SOCKPTR(optval), *optlen);
5154 	tp->bpf_chg_cc_inprogress = 0;
5155 	return ret;
5156 }
5157 
5158 static int sol_tcp_sockopt(struct sock *sk, int optname,
5159 			   char *optval, int *optlen,
5160 			   bool getopt)
5161 {
5162 	if (sk->sk_prot->setsockopt != tcp_setsockopt)
5163 		return -EINVAL;
5164 
5165 	switch (optname) {
5166 	case TCP_NODELAY:
5167 	case TCP_MAXSEG:
5168 	case TCP_KEEPIDLE:
5169 	case TCP_KEEPINTVL:
5170 	case TCP_KEEPCNT:
5171 	case TCP_SYNCNT:
5172 	case TCP_WINDOW_CLAMP:
5173 	case TCP_THIN_LINEAR_TIMEOUTS:
5174 	case TCP_USER_TIMEOUT:
5175 	case TCP_NOTSENT_LOWAT:
5176 	case TCP_SAVE_SYN:
5177 		if (*optlen != sizeof(int))
5178 			return -EINVAL;
5179 		break;
5180 	case TCP_CONGESTION:
5181 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5182 	case TCP_SAVED_SYN:
5183 		if (*optlen < 1)
5184 			return -EINVAL;
5185 		break;
5186 	default:
5187 		if (getopt)
5188 			return -EINVAL;
5189 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5190 	}
5191 
5192 	if (getopt) {
5193 		if (optname == TCP_SAVED_SYN) {
5194 			struct tcp_sock *tp = tcp_sk(sk);
5195 
5196 			if (!tp->saved_syn ||
5197 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5198 				return -EINVAL;
5199 			memcpy(optval, tp->saved_syn->data, *optlen);
5200 			/* It cannot free tp->saved_syn here because it
5201 			 * does not know if the user space still needs it.
5202 			 */
5203 			return 0;
5204 		}
5205 
5206 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5207 					 KERNEL_SOCKPTR(optval),
5208 					 KERNEL_SOCKPTR(optlen));
5209 	}
5210 
5211 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5212 				 KERNEL_SOCKPTR(optval), *optlen);
5213 }
5214 
5215 static int sol_ip_sockopt(struct sock *sk, int optname,
5216 			  char *optval, int *optlen,
5217 			  bool getopt)
5218 {
5219 	if (sk->sk_family != AF_INET)
5220 		return -EINVAL;
5221 
5222 	switch (optname) {
5223 	case IP_TOS:
5224 		if (*optlen != sizeof(int))
5225 			return -EINVAL;
5226 		break;
5227 	default:
5228 		return -EINVAL;
5229 	}
5230 
5231 	if (getopt)
5232 		return do_ip_getsockopt(sk, SOL_IP, optname,
5233 					KERNEL_SOCKPTR(optval),
5234 					KERNEL_SOCKPTR(optlen));
5235 
5236 	return do_ip_setsockopt(sk, SOL_IP, optname,
5237 				KERNEL_SOCKPTR(optval), *optlen);
5238 }
5239 
5240 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5241 			    char *optval, int *optlen,
5242 			    bool getopt)
5243 {
5244 	if (sk->sk_family != AF_INET6)
5245 		return -EINVAL;
5246 
5247 	switch (optname) {
5248 	case IPV6_TCLASS:
5249 	case IPV6_AUTOFLOWLABEL:
5250 		if (*optlen != sizeof(int))
5251 			return -EINVAL;
5252 		break;
5253 	default:
5254 		return -EINVAL;
5255 	}
5256 
5257 	if (getopt)
5258 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5259 						      KERNEL_SOCKPTR(optval),
5260 						      KERNEL_SOCKPTR(optlen));
5261 
5262 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5263 					      KERNEL_SOCKPTR(optval), *optlen);
5264 }
5265 
5266 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5267 			    char *optval, int optlen)
5268 {
5269 	if (!sk_fullsock(sk))
5270 		return -EINVAL;
5271 
5272 	if (level == SOL_SOCKET)
5273 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5274 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5275 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5276 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5277 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5278 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5279 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5280 
5281 	return -EINVAL;
5282 }
5283 
5284 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5285 			   char *optval, int optlen)
5286 {
5287 	if (sk_fullsock(sk))
5288 		sock_owned_by_me(sk);
5289 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5290 }
5291 
5292 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5293 			    char *optval, int optlen)
5294 {
5295 	int err, saved_optlen = optlen;
5296 
5297 	if (!sk_fullsock(sk)) {
5298 		err = -EINVAL;
5299 		goto done;
5300 	}
5301 
5302 	if (level == SOL_SOCKET)
5303 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5304 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5305 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5306 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5307 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5308 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5309 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5310 	else
5311 		err = -EINVAL;
5312 
5313 done:
5314 	if (err)
5315 		optlen = 0;
5316 	if (optlen < saved_optlen)
5317 		memset(optval + optlen, 0, saved_optlen - optlen);
5318 	return err;
5319 }
5320 
5321 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5322 			   char *optval, int optlen)
5323 {
5324 	if (sk_fullsock(sk))
5325 		sock_owned_by_me(sk);
5326 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5327 }
5328 
5329 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5330 	   int, optname, char *, optval, int, optlen)
5331 {
5332 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5333 }
5334 
5335 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5336 	.func		= bpf_sk_setsockopt,
5337 	.gpl_only	= false,
5338 	.ret_type	= RET_INTEGER,
5339 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5340 	.arg2_type	= ARG_ANYTHING,
5341 	.arg3_type	= ARG_ANYTHING,
5342 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5343 	.arg5_type	= ARG_CONST_SIZE,
5344 };
5345 
5346 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5347 	   int, optname, char *, optval, int, optlen)
5348 {
5349 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5350 }
5351 
5352 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5353 	.func		= bpf_sk_getsockopt,
5354 	.gpl_only	= false,
5355 	.ret_type	= RET_INTEGER,
5356 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5357 	.arg2_type	= ARG_ANYTHING,
5358 	.arg3_type	= ARG_ANYTHING,
5359 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5360 	.arg5_type	= ARG_CONST_SIZE,
5361 };
5362 
5363 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5364 	   int, optname, char *, optval, int, optlen)
5365 {
5366 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5367 }
5368 
5369 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5370 	.func		= bpf_unlocked_sk_setsockopt,
5371 	.gpl_only	= false,
5372 	.ret_type	= RET_INTEGER,
5373 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5374 	.arg2_type	= ARG_ANYTHING,
5375 	.arg3_type	= ARG_ANYTHING,
5376 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5377 	.arg5_type	= ARG_CONST_SIZE,
5378 };
5379 
5380 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5381 	   int, optname, char *, optval, int, optlen)
5382 {
5383 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5384 }
5385 
5386 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5387 	.func		= bpf_unlocked_sk_getsockopt,
5388 	.gpl_only	= false,
5389 	.ret_type	= RET_INTEGER,
5390 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5391 	.arg2_type	= ARG_ANYTHING,
5392 	.arg3_type	= ARG_ANYTHING,
5393 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5394 	.arg5_type	= ARG_CONST_SIZE,
5395 };
5396 
5397 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5398 	   int, level, int, optname, char *, optval, int, optlen)
5399 {
5400 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5401 }
5402 
5403 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5404 	.func		= bpf_sock_addr_setsockopt,
5405 	.gpl_only	= false,
5406 	.ret_type	= RET_INTEGER,
5407 	.arg1_type	= ARG_PTR_TO_CTX,
5408 	.arg2_type	= ARG_ANYTHING,
5409 	.arg3_type	= ARG_ANYTHING,
5410 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5411 	.arg5_type	= ARG_CONST_SIZE,
5412 };
5413 
5414 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5415 	   int, level, int, optname, char *, optval, int, optlen)
5416 {
5417 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5418 }
5419 
5420 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5421 	.func		= bpf_sock_addr_getsockopt,
5422 	.gpl_only	= false,
5423 	.ret_type	= RET_INTEGER,
5424 	.arg1_type	= ARG_PTR_TO_CTX,
5425 	.arg2_type	= ARG_ANYTHING,
5426 	.arg3_type	= ARG_ANYTHING,
5427 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5428 	.arg5_type	= ARG_CONST_SIZE,
5429 };
5430 
5431 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5432 	   int, level, int, optname, char *, optval, int, optlen)
5433 {
5434 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5435 }
5436 
5437 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5438 	.func		= bpf_sock_ops_setsockopt,
5439 	.gpl_only	= false,
5440 	.ret_type	= RET_INTEGER,
5441 	.arg1_type	= ARG_PTR_TO_CTX,
5442 	.arg2_type	= ARG_ANYTHING,
5443 	.arg3_type	= ARG_ANYTHING,
5444 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5445 	.arg5_type	= ARG_CONST_SIZE,
5446 };
5447 
5448 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5449 				int optname, const u8 **start)
5450 {
5451 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5452 	const u8 *hdr_start;
5453 	int ret;
5454 
5455 	if (syn_skb) {
5456 		/* sk is a request_sock here */
5457 
5458 		if (optname == TCP_BPF_SYN) {
5459 			hdr_start = syn_skb->data;
5460 			ret = tcp_hdrlen(syn_skb);
5461 		} else if (optname == TCP_BPF_SYN_IP) {
5462 			hdr_start = skb_network_header(syn_skb);
5463 			ret = skb_network_header_len(syn_skb) +
5464 				tcp_hdrlen(syn_skb);
5465 		} else {
5466 			/* optname == TCP_BPF_SYN_MAC */
5467 			hdr_start = skb_mac_header(syn_skb);
5468 			ret = skb_mac_header_len(syn_skb) +
5469 				skb_network_header_len(syn_skb) +
5470 				tcp_hdrlen(syn_skb);
5471 		}
5472 	} else {
5473 		struct sock *sk = bpf_sock->sk;
5474 		struct saved_syn *saved_syn;
5475 
5476 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5477 			/* synack retransmit. bpf_sock->syn_skb will
5478 			 * not be available.  It has to resort to
5479 			 * saved_syn (if it is saved).
5480 			 */
5481 			saved_syn = inet_reqsk(sk)->saved_syn;
5482 		else
5483 			saved_syn = tcp_sk(sk)->saved_syn;
5484 
5485 		if (!saved_syn)
5486 			return -ENOENT;
5487 
5488 		if (optname == TCP_BPF_SYN) {
5489 			hdr_start = saved_syn->data +
5490 				saved_syn->mac_hdrlen +
5491 				saved_syn->network_hdrlen;
5492 			ret = saved_syn->tcp_hdrlen;
5493 		} else if (optname == TCP_BPF_SYN_IP) {
5494 			hdr_start = saved_syn->data +
5495 				saved_syn->mac_hdrlen;
5496 			ret = saved_syn->network_hdrlen +
5497 				saved_syn->tcp_hdrlen;
5498 		} else {
5499 			/* optname == TCP_BPF_SYN_MAC */
5500 
5501 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5502 			if (!saved_syn->mac_hdrlen)
5503 				return -ENOENT;
5504 
5505 			hdr_start = saved_syn->data;
5506 			ret = saved_syn->mac_hdrlen +
5507 				saved_syn->network_hdrlen +
5508 				saved_syn->tcp_hdrlen;
5509 		}
5510 	}
5511 
5512 	*start = hdr_start;
5513 	return ret;
5514 }
5515 
5516 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5517 	   int, level, int, optname, char *, optval, int, optlen)
5518 {
5519 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5520 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5521 		int ret, copy_len = 0;
5522 		const u8 *start;
5523 
5524 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5525 		if (ret > 0) {
5526 			copy_len = ret;
5527 			if (optlen < copy_len) {
5528 				copy_len = optlen;
5529 				ret = -ENOSPC;
5530 			}
5531 
5532 			memcpy(optval, start, copy_len);
5533 		}
5534 
5535 		/* Zero out unused buffer at the end */
5536 		memset(optval + copy_len, 0, optlen - copy_len);
5537 
5538 		return ret;
5539 	}
5540 
5541 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5542 }
5543 
5544 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5545 	.func		= bpf_sock_ops_getsockopt,
5546 	.gpl_only	= false,
5547 	.ret_type	= RET_INTEGER,
5548 	.arg1_type	= ARG_PTR_TO_CTX,
5549 	.arg2_type	= ARG_ANYTHING,
5550 	.arg3_type	= ARG_ANYTHING,
5551 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5552 	.arg5_type	= ARG_CONST_SIZE,
5553 };
5554 
5555 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5556 	   int, argval)
5557 {
5558 	struct sock *sk = bpf_sock->sk;
5559 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5560 
5561 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5562 		return -EINVAL;
5563 
5564 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5565 
5566 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5567 }
5568 
5569 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5570 	.func		= bpf_sock_ops_cb_flags_set,
5571 	.gpl_only	= false,
5572 	.ret_type	= RET_INTEGER,
5573 	.arg1_type	= ARG_PTR_TO_CTX,
5574 	.arg2_type	= ARG_ANYTHING,
5575 };
5576 
5577 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5578 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5579 
5580 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5581 	   int, addr_len)
5582 {
5583 #ifdef CONFIG_INET
5584 	struct sock *sk = ctx->sk;
5585 	u32 flags = BIND_FROM_BPF;
5586 	int err;
5587 
5588 	err = -EINVAL;
5589 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5590 		return err;
5591 	if (addr->sa_family == AF_INET) {
5592 		if (addr_len < sizeof(struct sockaddr_in))
5593 			return err;
5594 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5595 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5596 		return __inet_bind(sk, addr, addr_len, flags);
5597 #if IS_ENABLED(CONFIG_IPV6)
5598 	} else if (addr->sa_family == AF_INET6) {
5599 		if (addr_len < SIN6_LEN_RFC2133)
5600 			return err;
5601 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5602 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5603 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5604 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5605 		 */
5606 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5607 #endif /* CONFIG_IPV6 */
5608 	}
5609 #endif /* CONFIG_INET */
5610 
5611 	return -EAFNOSUPPORT;
5612 }
5613 
5614 static const struct bpf_func_proto bpf_bind_proto = {
5615 	.func		= bpf_bind,
5616 	.gpl_only	= false,
5617 	.ret_type	= RET_INTEGER,
5618 	.arg1_type	= ARG_PTR_TO_CTX,
5619 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5620 	.arg3_type	= ARG_CONST_SIZE,
5621 };
5622 
5623 #ifdef CONFIG_XFRM
5624 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5625 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5626 {
5627 	const struct sec_path *sp = skb_sec_path(skb);
5628 	const struct xfrm_state *x;
5629 
5630 	if (!sp || unlikely(index >= sp->len || flags))
5631 		goto err_clear;
5632 
5633 	x = sp->xvec[index];
5634 
5635 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5636 		goto err_clear;
5637 
5638 	to->reqid = x->props.reqid;
5639 	to->spi = x->id.spi;
5640 	to->family = x->props.family;
5641 	to->ext = 0;
5642 
5643 	if (to->family == AF_INET6) {
5644 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5645 		       sizeof(to->remote_ipv6));
5646 	} else {
5647 		to->remote_ipv4 = x->props.saddr.a4;
5648 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5649 	}
5650 
5651 	return 0;
5652 err_clear:
5653 	memset(to, 0, size);
5654 	return -EINVAL;
5655 }
5656 
5657 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5658 	.func		= bpf_skb_get_xfrm_state,
5659 	.gpl_only	= false,
5660 	.ret_type	= RET_INTEGER,
5661 	.arg1_type	= ARG_PTR_TO_CTX,
5662 	.arg2_type	= ARG_ANYTHING,
5663 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5664 	.arg4_type	= ARG_CONST_SIZE,
5665 	.arg5_type	= ARG_ANYTHING,
5666 };
5667 #endif
5668 
5669 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5670 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
5671 				  const struct neighbour *neigh,
5672 				  const struct net_device *dev, u32 mtu)
5673 {
5674 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5675 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5676 	params->h_vlan_TCI = 0;
5677 	params->h_vlan_proto = 0;
5678 	if (mtu)
5679 		params->mtu_result = mtu; /* union with tot_len */
5680 
5681 	return 0;
5682 }
5683 #endif
5684 
5685 #if IS_ENABLED(CONFIG_INET)
5686 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5687 			       u32 flags, bool check_mtu)
5688 {
5689 	struct fib_nh_common *nhc;
5690 	struct in_device *in_dev;
5691 	struct neighbour *neigh;
5692 	struct net_device *dev;
5693 	struct fib_result res;
5694 	struct flowi4 fl4;
5695 	u32 mtu = 0;
5696 	int err;
5697 
5698 	dev = dev_get_by_index_rcu(net, params->ifindex);
5699 	if (unlikely(!dev))
5700 		return -ENODEV;
5701 
5702 	/* verify forwarding is enabled on this interface */
5703 	in_dev = __in_dev_get_rcu(dev);
5704 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5705 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5706 
5707 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5708 		fl4.flowi4_iif = 1;
5709 		fl4.flowi4_oif = params->ifindex;
5710 	} else {
5711 		fl4.flowi4_iif = params->ifindex;
5712 		fl4.flowi4_oif = 0;
5713 	}
5714 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5715 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5716 	fl4.flowi4_flags = 0;
5717 
5718 	fl4.flowi4_proto = params->l4_protocol;
5719 	fl4.daddr = params->ipv4_dst;
5720 	fl4.saddr = params->ipv4_src;
5721 	fl4.fl4_sport = params->sport;
5722 	fl4.fl4_dport = params->dport;
5723 	fl4.flowi4_multipath_hash = 0;
5724 
5725 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5726 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5727 		struct fib_table *tb;
5728 
5729 		tb = fib_get_table(net, tbid);
5730 		if (unlikely(!tb))
5731 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5732 
5733 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5734 	} else {
5735 		fl4.flowi4_mark = 0;
5736 		fl4.flowi4_secid = 0;
5737 		fl4.flowi4_tun_key.tun_id = 0;
5738 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5739 
5740 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5741 	}
5742 
5743 	if (err) {
5744 		/* map fib lookup errors to RTN_ type */
5745 		if (err == -EINVAL)
5746 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5747 		if (err == -EHOSTUNREACH)
5748 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5749 		if (err == -EACCES)
5750 			return BPF_FIB_LKUP_RET_PROHIBIT;
5751 
5752 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5753 	}
5754 
5755 	if (res.type != RTN_UNICAST)
5756 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5757 
5758 	if (fib_info_num_path(res.fi) > 1)
5759 		fib_select_path(net, &res, &fl4, NULL);
5760 
5761 	if (check_mtu) {
5762 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5763 		if (params->tot_len > mtu) {
5764 			params->mtu_result = mtu; /* union with tot_len */
5765 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5766 		}
5767 	}
5768 
5769 	nhc = res.nhc;
5770 
5771 	/* do not handle lwt encaps right now */
5772 	if (nhc->nhc_lwtstate)
5773 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5774 
5775 	dev = nhc->nhc_dev;
5776 
5777 	params->rt_metric = res.fi->fib_priority;
5778 	params->ifindex = dev->ifindex;
5779 
5780 	/* xdp and cls_bpf programs are run in RCU-bh so
5781 	 * rcu_read_lock_bh is not needed here
5782 	 */
5783 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5784 		if (nhc->nhc_gw_family)
5785 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5786 
5787 		neigh = __ipv4_neigh_lookup_noref(dev,
5788 						 (__force u32)params->ipv4_dst);
5789 	} else {
5790 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5791 
5792 		params->family = AF_INET6;
5793 		*dst = nhc->nhc_gw.ipv6;
5794 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5795 	}
5796 
5797 	if (!neigh)
5798 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5799 
5800 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5801 }
5802 #endif
5803 
5804 #if IS_ENABLED(CONFIG_IPV6)
5805 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5806 			       u32 flags, bool check_mtu)
5807 {
5808 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5809 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5810 	struct fib6_result res = {};
5811 	struct neighbour *neigh;
5812 	struct net_device *dev;
5813 	struct inet6_dev *idev;
5814 	struct flowi6 fl6;
5815 	int strict = 0;
5816 	int oif, err;
5817 	u32 mtu = 0;
5818 
5819 	/* link local addresses are never forwarded */
5820 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5821 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5822 
5823 	dev = dev_get_by_index_rcu(net, params->ifindex);
5824 	if (unlikely(!dev))
5825 		return -ENODEV;
5826 
5827 	idev = __in6_dev_get_safely(dev);
5828 	if (unlikely(!idev || !idev->cnf.forwarding))
5829 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5830 
5831 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5832 		fl6.flowi6_iif = 1;
5833 		oif = fl6.flowi6_oif = params->ifindex;
5834 	} else {
5835 		oif = fl6.flowi6_iif = params->ifindex;
5836 		fl6.flowi6_oif = 0;
5837 		strict = RT6_LOOKUP_F_HAS_SADDR;
5838 	}
5839 	fl6.flowlabel = params->flowinfo;
5840 	fl6.flowi6_scope = 0;
5841 	fl6.flowi6_flags = 0;
5842 	fl6.mp_hash = 0;
5843 
5844 	fl6.flowi6_proto = params->l4_protocol;
5845 	fl6.daddr = *dst;
5846 	fl6.saddr = *src;
5847 	fl6.fl6_sport = params->sport;
5848 	fl6.fl6_dport = params->dport;
5849 
5850 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5851 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5852 		struct fib6_table *tb;
5853 
5854 		tb = ipv6_stub->fib6_get_table(net, tbid);
5855 		if (unlikely(!tb))
5856 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5857 
5858 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5859 						   strict);
5860 	} else {
5861 		fl6.flowi6_mark = 0;
5862 		fl6.flowi6_secid = 0;
5863 		fl6.flowi6_tun_key.tun_id = 0;
5864 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5865 
5866 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5867 	}
5868 
5869 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5870 		     res.f6i == net->ipv6.fib6_null_entry))
5871 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5872 
5873 	switch (res.fib6_type) {
5874 	/* only unicast is forwarded */
5875 	case RTN_UNICAST:
5876 		break;
5877 	case RTN_BLACKHOLE:
5878 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5879 	case RTN_UNREACHABLE:
5880 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5881 	case RTN_PROHIBIT:
5882 		return BPF_FIB_LKUP_RET_PROHIBIT;
5883 	default:
5884 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5885 	}
5886 
5887 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5888 				    fl6.flowi6_oif != 0, NULL, strict);
5889 
5890 	if (check_mtu) {
5891 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5892 		if (params->tot_len > mtu) {
5893 			params->mtu_result = mtu; /* union with tot_len */
5894 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5895 		}
5896 	}
5897 
5898 	if (res.nh->fib_nh_lws)
5899 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5900 
5901 	if (res.nh->fib_nh_gw_family)
5902 		*dst = res.nh->fib_nh_gw6;
5903 
5904 	dev = res.nh->fib_nh_dev;
5905 	params->rt_metric = res.f6i->fib6_metric;
5906 	params->ifindex = dev->ifindex;
5907 
5908 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5909 	 * not needed here.
5910 	 */
5911 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
5912 	if (!neigh)
5913 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5914 
5915 	return bpf_fib_set_fwd_params(params, neigh, dev, mtu);
5916 }
5917 #endif
5918 
5919 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
5920 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5921 {
5922 	if (plen < sizeof(*params))
5923 		return -EINVAL;
5924 
5925 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5926 		return -EINVAL;
5927 
5928 	switch (params->family) {
5929 #if IS_ENABLED(CONFIG_INET)
5930 	case AF_INET:
5931 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
5932 					   flags, true);
5933 #endif
5934 #if IS_ENABLED(CONFIG_IPV6)
5935 	case AF_INET6:
5936 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
5937 					   flags, true);
5938 #endif
5939 	}
5940 	return -EAFNOSUPPORT;
5941 }
5942 
5943 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
5944 	.func		= bpf_xdp_fib_lookup,
5945 	.gpl_only	= true,
5946 	.ret_type	= RET_INTEGER,
5947 	.arg1_type      = ARG_PTR_TO_CTX,
5948 	.arg2_type      = ARG_PTR_TO_MEM,
5949 	.arg3_type      = ARG_CONST_SIZE,
5950 	.arg4_type	= ARG_ANYTHING,
5951 };
5952 
5953 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
5954 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
5955 {
5956 	struct net *net = dev_net(skb->dev);
5957 	int rc = -EAFNOSUPPORT;
5958 	bool check_mtu = false;
5959 
5960 	if (plen < sizeof(*params))
5961 		return -EINVAL;
5962 
5963 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
5964 		return -EINVAL;
5965 
5966 	if (params->tot_len)
5967 		check_mtu = true;
5968 
5969 	switch (params->family) {
5970 #if IS_ENABLED(CONFIG_INET)
5971 	case AF_INET:
5972 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
5973 		break;
5974 #endif
5975 #if IS_ENABLED(CONFIG_IPV6)
5976 	case AF_INET6:
5977 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
5978 		break;
5979 #endif
5980 	}
5981 
5982 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
5983 		struct net_device *dev;
5984 
5985 		/* When tot_len isn't provided by user, check skb
5986 		 * against MTU of FIB lookup resulting net_device
5987 		 */
5988 		dev = dev_get_by_index_rcu(net, params->ifindex);
5989 		if (!is_skb_forwardable(dev, skb))
5990 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
5991 
5992 		params->mtu_result = dev->mtu; /* union with tot_len */
5993 	}
5994 
5995 	return rc;
5996 }
5997 
5998 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
5999 	.func		= bpf_skb_fib_lookup,
6000 	.gpl_only	= true,
6001 	.ret_type	= RET_INTEGER,
6002 	.arg1_type      = ARG_PTR_TO_CTX,
6003 	.arg2_type      = ARG_PTR_TO_MEM,
6004 	.arg3_type      = ARG_CONST_SIZE,
6005 	.arg4_type	= ARG_ANYTHING,
6006 };
6007 
6008 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6009 					    u32 ifindex)
6010 {
6011 	struct net *netns = dev_net(dev_curr);
6012 
6013 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6014 	if (ifindex == 0)
6015 		return dev_curr;
6016 
6017 	return dev_get_by_index_rcu(netns, ifindex);
6018 }
6019 
6020 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6021 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6022 {
6023 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6024 	struct net_device *dev = skb->dev;
6025 	int skb_len, dev_len;
6026 	int mtu;
6027 
6028 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6029 		return -EINVAL;
6030 
6031 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6032 		return -EINVAL;
6033 
6034 	dev = __dev_via_ifindex(dev, ifindex);
6035 	if (unlikely(!dev))
6036 		return -ENODEV;
6037 
6038 	mtu = READ_ONCE(dev->mtu);
6039 
6040 	dev_len = mtu + dev->hard_header_len;
6041 
6042 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6043 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6044 
6045 	skb_len += len_diff; /* minus result pass check */
6046 	if (skb_len <= dev_len) {
6047 		ret = BPF_MTU_CHK_RET_SUCCESS;
6048 		goto out;
6049 	}
6050 	/* At this point, skb->len exceed MTU, but as it include length of all
6051 	 * segments, it can still be below MTU.  The SKB can possibly get
6052 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6053 	 * must choose if segs are to be MTU checked.
6054 	 */
6055 	if (skb_is_gso(skb)) {
6056 		ret = BPF_MTU_CHK_RET_SUCCESS;
6057 
6058 		if (flags & BPF_MTU_CHK_SEGS &&
6059 		    !skb_gso_validate_network_len(skb, mtu))
6060 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6061 	}
6062 out:
6063 	/* BPF verifier guarantees valid pointer */
6064 	*mtu_len = mtu;
6065 
6066 	return ret;
6067 }
6068 
6069 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6070 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6071 {
6072 	struct net_device *dev = xdp->rxq->dev;
6073 	int xdp_len = xdp->data_end - xdp->data;
6074 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6075 	int mtu, dev_len;
6076 
6077 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6078 	if (unlikely(flags))
6079 		return -EINVAL;
6080 
6081 	dev = __dev_via_ifindex(dev, ifindex);
6082 	if (unlikely(!dev))
6083 		return -ENODEV;
6084 
6085 	mtu = READ_ONCE(dev->mtu);
6086 
6087 	/* Add L2-header as dev MTU is L3 size */
6088 	dev_len = mtu + dev->hard_header_len;
6089 
6090 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6091 	if (*mtu_len)
6092 		xdp_len = *mtu_len + dev->hard_header_len;
6093 
6094 	xdp_len += len_diff; /* minus result pass check */
6095 	if (xdp_len > dev_len)
6096 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6097 
6098 	/* BPF verifier guarantees valid pointer */
6099 	*mtu_len = mtu;
6100 
6101 	return ret;
6102 }
6103 
6104 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6105 	.func		= bpf_skb_check_mtu,
6106 	.gpl_only	= true,
6107 	.ret_type	= RET_INTEGER,
6108 	.arg1_type      = ARG_PTR_TO_CTX,
6109 	.arg2_type      = ARG_ANYTHING,
6110 	.arg3_type      = ARG_PTR_TO_INT,
6111 	.arg4_type      = ARG_ANYTHING,
6112 	.arg5_type      = ARG_ANYTHING,
6113 };
6114 
6115 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6116 	.func		= bpf_xdp_check_mtu,
6117 	.gpl_only	= true,
6118 	.ret_type	= RET_INTEGER,
6119 	.arg1_type      = ARG_PTR_TO_CTX,
6120 	.arg2_type      = ARG_ANYTHING,
6121 	.arg3_type      = ARG_PTR_TO_INT,
6122 	.arg4_type      = ARG_ANYTHING,
6123 	.arg5_type      = ARG_ANYTHING,
6124 };
6125 
6126 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6127 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6128 {
6129 	int err;
6130 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6131 
6132 	if (!seg6_validate_srh(srh, len, false))
6133 		return -EINVAL;
6134 
6135 	switch (type) {
6136 	case BPF_LWT_ENCAP_SEG6_INLINE:
6137 		if (skb->protocol != htons(ETH_P_IPV6))
6138 			return -EBADMSG;
6139 
6140 		err = seg6_do_srh_inline(skb, srh);
6141 		break;
6142 	case BPF_LWT_ENCAP_SEG6:
6143 		skb_reset_inner_headers(skb);
6144 		skb->encapsulation = 1;
6145 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6146 		break;
6147 	default:
6148 		return -EINVAL;
6149 	}
6150 
6151 	bpf_compute_data_pointers(skb);
6152 	if (err)
6153 		return err;
6154 
6155 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6156 
6157 	return seg6_lookup_nexthop(skb, NULL, 0);
6158 }
6159 #endif /* CONFIG_IPV6_SEG6_BPF */
6160 
6161 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6162 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6163 			     bool ingress)
6164 {
6165 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6166 }
6167 #endif
6168 
6169 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6170 	   u32, len)
6171 {
6172 	switch (type) {
6173 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6174 	case BPF_LWT_ENCAP_SEG6:
6175 	case BPF_LWT_ENCAP_SEG6_INLINE:
6176 		return bpf_push_seg6_encap(skb, type, hdr, len);
6177 #endif
6178 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6179 	case BPF_LWT_ENCAP_IP:
6180 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6181 #endif
6182 	default:
6183 		return -EINVAL;
6184 	}
6185 }
6186 
6187 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6188 	   void *, hdr, u32, len)
6189 {
6190 	switch (type) {
6191 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6192 	case BPF_LWT_ENCAP_IP:
6193 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6194 #endif
6195 	default:
6196 		return -EINVAL;
6197 	}
6198 }
6199 
6200 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6201 	.func		= bpf_lwt_in_push_encap,
6202 	.gpl_only	= false,
6203 	.ret_type	= RET_INTEGER,
6204 	.arg1_type	= ARG_PTR_TO_CTX,
6205 	.arg2_type	= ARG_ANYTHING,
6206 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6207 	.arg4_type	= ARG_CONST_SIZE
6208 };
6209 
6210 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6211 	.func		= bpf_lwt_xmit_push_encap,
6212 	.gpl_only	= false,
6213 	.ret_type	= RET_INTEGER,
6214 	.arg1_type	= ARG_PTR_TO_CTX,
6215 	.arg2_type	= ARG_ANYTHING,
6216 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6217 	.arg4_type	= ARG_CONST_SIZE
6218 };
6219 
6220 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6221 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6222 	   const void *, from, u32, len)
6223 {
6224 	struct seg6_bpf_srh_state *srh_state =
6225 		this_cpu_ptr(&seg6_bpf_srh_states);
6226 	struct ipv6_sr_hdr *srh = srh_state->srh;
6227 	void *srh_tlvs, *srh_end, *ptr;
6228 	int srhoff = 0;
6229 
6230 	if (srh == NULL)
6231 		return -EINVAL;
6232 
6233 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6234 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6235 
6236 	ptr = skb->data + offset;
6237 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6238 		srh_state->valid = false;
6239 	else if (ptr < (void *)&srh->flags ||
6240 		 ptr + len > (void *)&srh->segments)
6241 		return -EFAULT;
6242 
6243 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6244 		return -EFAULT;
6245 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6246 		return -EINVAL;
6247 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6248 
6249 	memcpy(skb->data + offset, from, len);
6250 	return 0;
6251 }
6252 
6253 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6254 	.func		= bpf_lwt_seg6_store_bytes,
6255 	.gpl_only	= false,
6256 	.ret_type	= RET_INTEGER,
6257 	.arg1_type	= ARG_PTR_TO_CTX,
6258 	.arg2_type	= ARG_ANYTHING,
6259 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6260 	.arg4_type	= ARG_CONST_SIZE
6261 };
6262 
6263 static void bpf_update_srh_state(struct sk_buff *skb)
6264 {
6265 	struct seg6_bpf_srh_state *srh_state =
6266 		this_cpu_ptr(&seg6_bpf_srh_states);
6267 	int srhoff = 0;
6268 
6269 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6270 		srh_state->srh = NULL;
6271 	} else {
6272 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6273 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6274 		srh_state->valid = true;
6275 	}
6276 }
6277 
6278 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6279 	   u32, action, void *, param, u32, param_len)
6280 {
6281 	struct seg6_bpf_srh_state *srh_state =
6282 		this_cpu_ptr(&seg6_bpf_srh_states);
6283 	int hdroff = 0;
6284 	int err;
6285 
6286 	switch (action) {
6287 	case SEG6_LOCAL_ACTION_END_X:
6288 		if (!seg6_bpf_has_valid_srh(skb))
6289 			return -EBADMSG;
6290 		if (param_len != sizeof(struct in6_addr))
6291 			return -EINVAL;
6292 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6293 	case SEG6_LOCAL_ACTION_END_T:
6294 		if (!seg6_bpf_has_valid_srh(skb))
6295 			return -EBADMSG;
6296 		if (param_len != sizeof(int))
6297 			return -EINVAL;
6298 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6299 	case SEG6_LOCAL_ACTION_END_DT6:
6300 		if (!seg6_bpf_has_valid_srh(skb))
6301 			return -EBADMSG;
6302 		if (param_len != sizeof(int))
6303 			return -EINVAL;
6304 
6305 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6306 			return -EBADMSG;
6307 		if (!pskb_pull(skb, hdroff))
6308 			return -EBADMSG;
6309 
6310 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6311 		skb_reset_network_header(skb);
6312 		skb_reset_transport_header(skb);
6313 		skb->encapsulation = 0;
6314 
6315 		bpf_compute_data_pointers(skb);
6316 		bpf_update_srh_state(skb);
6317 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6318 	case SEG6_LOCAL_ACTION_END_B6:
6319 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6320 			return -EBADMSG;
6321 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6322 					  param, param_len);
6323 		if (!err)
6324 			bpf_update_srh_state(skb);
6325 
6326 		return err;
6327 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6328 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6329 			return -EBADMSG;
6330 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6331 					  param, param_len);
6332 		if (!err)
6333 			bpf_update_srh_state(skb);
6334 
6335 		return err;
6336 	default:
6337 		return -EINVAL;
6338 	}
6339 }
6340 
6341 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6342 	.func		= bpf_lwt_seg6_action,
6343 	.gpl_only	= false,
6344 	.ret_type	= RET_INTEGER,
6345 	.arg1_type	= ARG_PTR_TO_CTX,
6346 	.arg2_type	= ARG_ANYTHING,
6347 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6348 	.arg4_type	= ARG_CONST_SIZE
6349 };
6350 
6351 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6352 	   s32, len)
6353 {
6354 	struct seg6_bpf_srh_state *srh_state =
6355 		this_cpu_ptr(&seg6_bpf_srh_states);
6356 	struct ipv6_sr_hdr *srh = srh_state->srh;
6357 	void *srh_end, *srh_tlvs, *ptr;
6358 	struct ipv6hdr *hdr;
6359 	int srhoff = 0;
6360 	int ret;
6361 
6362 	if (unlikely(srh == NULL))
6363 		return -EINVAL;
6364 
6365 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6366 			((srh->first_segment + 1) << 4));
6367 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6368 			srh_state->hdrlen);
6369 	ptr = skb->data + offset;
6370 
6371 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6372 		return -EFAULT;
6373 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6374 		return -EFAULT;
6375 
6376 	if (len > 0) {
6377 		ret = skb_cow_head(skb, len);
6378 		if (unlikely(ret < 0))
6379 			return ret;
6380 
6381 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6382 	} else {
6383 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6384 	}
6385 
6386 	bpf_compute_data_pointers(skb);
6387 	if (unlikely(ret < 0))
6388 		return ret;
6389 
6390 	hdr = (struct ipv6hdr *)skb->data;
6391 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6392 
6393 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6394 		return -EINVAL;
6395 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6396 	srh_state->hdrlen += len;
6397 	srh_state->valid = false;
6398 	return 0;
6399 }
6400 
6401 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6402 	.func		= bpf_lwt_seg6_adjust_srh,
6403 	.gpl_only	= false,
6404 	.ret_type	= RET_INTEGER,
6405 	.arg1_type	= ARG_PTR_TO_CTX,
6406 	.arg2_type	= ARG_ANYTHING,
6407 	.arg3_type	= ARG_ANYTHING,
6408 };
6409 #endif /* CONFIG_IPV6_SEG6_BPF */
6410 
6411 #ifdef CONFIG_INET
6412 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6413 			      int dif, int sdif, u8 family, u8 proto)
6414 {
6415 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6416 	bool refcounted = false;
6417 	struct sock *sk = NULL;
6418 
6419 	if (family == AF_INET) {
6420 		__be32 src4 = tuple->ipv4.saddr;
6421 		__be32 dst4 = tuple->ipv4.daddr;
6422 
6423 		if (proto == IPPROTO_TCP)
6424 			sk = __inet_lookup(net, hinfo, NULL, 0,
6425 					   src4, tuple->ipv4.sport,
6426 					   dst4, tuple->ipv4.dport,
6427 					   dif, sdif, &refcounted);
6428 		else
6429 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6430 					       dst4, tuple->ipv4.dport,
6431 					       dif, sdif, &udp_table, NULL);
6432 #if IS_ENABLED(CONFIG_IPV6)
6433 	} else {
6434 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6435 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6436 
6437 		if (proto == IPPROTO_TCP)
6438 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6439 					    src6, tuple->ipv6.sport,
6440 					    dst6, ntohs(tuple->ipv6.dport),
6441 					    dif, sdif, &refcounted);
6442 		else if (likely(ipv6_bpf_stub))
6443 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6444 							    src6, tuple->ipv6.sport,
6445 							    dst6, tuple->ipv6.dport,
6446 							    dif, sdif,
6447 							    &udp_table, NULL);
6448 #endif
6449 	}
6450 
6451 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6452 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6453 		sk = NULL;
6454 	}
6455 	return sk;
6456 }
6457 
6458 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6459  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6460  */
6461 static struct sock *
6462 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6463 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6464 		 u64 flags)
6465 {
6466 	struct sock *sk = NULL;
6467 	struct net *net;
6468 	u8 family;
6469 	int sdif;
6470 
6471 	if (len == sizeof(tuple->ipv4))
6472 		family = AF_INET;
6473 	else if (len == sizeof(tuple->ipv6))
6474 		family = AF_INET6;
6475 	else
6476 		return NULL;
6477 
6478 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6479 		goto out;
6480 
6481 	if (family == AF_INET)
6482 		sdif = inet_sdif(skb);
6483 	else
6484 		sdif = inet6_sdif(skb);
6485 
6486 	if ((s32)netns_id < 0) {
6487 		net = caller_net;
6488 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6489 	} else {
6490 		net = get_net_ns_by_id(caller_net, netns_id);
6491 		if (unlikely(!net))
6492 			goto out;
6493 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6494 		put_net(net);
6495 	}
6496 
6497 out:
6498 	return sk;
6499 }
6500 
6501 static struct sock *
6502 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6503 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6504 		u64 flags)
6505 {
6506 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6507 					   ifindex, proto, netns_id, flags);
6508 
6509 	if (sk) {
6510 		struct sock *sk2 = sk_to_full_sk(sk);
6511 
6512 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6513 		 * sock refcnt is decremented to prevent a request_sock leak.
6514 		 */
6515 		if (!sk_fullsock(sk2))
6516 			sk2 = NULL;
6517 		if (sk2 != sk) {
6518 			sock_gen_put(sk);
6519 			/* Ensure there is no need to bump sk2 refcnt */
6520 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6521 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6522 				return NULL;
6523 			}
6524 			sk = sk2;
6525 		}
6526 	}
6527 
6528 	return sk;
6529 }
6530 
6531 static struct sock *
6532 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6533 	       u8 proto, u64 netns_id, u64 flags)
6534 {
6535 	struct net *caller_net;
6536 	int ifindex;
6537 
6538 	if (skb->dev) {
6539 		caller_net = dev_net(skb->dev);
6540 		ifindex = skb->dev->ifindex;
6541 	} else {
6542 		caller_net = sock_net(skb->sk);
6543 		ifindex = 0;
6544 	}
6545 
6546 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6547 				netns_id, flags);
6548 }
6549 
6550 static struct sock *
6551 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6552 	      u8 proto, u64 netns_id, u64 flags)
6553 {
6554 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6555 					 flags);
6556 
6557 	if (sk) {
6558 		struct sock *sk2 = sk_to_full_sk(sk);
6559 
6560 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6561 		 * sock refcnt is decremented to prevent a request_sock leak.
6562 		 */
6563 		if (!sk_fullsock(sk2))
6564 			sk2 = NULL;
6565 		if (sk2 != sk) {
6566 			sock_gen_put(sk);
6567 			/* Ensure there is no need to bump sk2 refcnt */
6568 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6569 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6570 				return NULL;
6571 			}
6572 			sk = sk2;
6573 		}
6574 	}
6575 
6576 	return sk;
6577 }
6578 
6579 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6580 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6581 {
6582 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6583 					     netns_id, flags);
6584 }
6585 
6586 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6587 	.func		= bpf_skc_lookup_tcp,
6588 	.gpl_only	= false,
6589 	.pkt_access	= true,
6590 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6591 	.arg1_type	= ARG_PTR_TO_CTX,
6592 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6593 	.arg3_type	= ARG_CONST_SIZE,
6594 	.arg4_type	= ARG_ANYTHING,
6595 	.arg5_type	= ARG_ANYTHING,
6596 };
6597 
6598 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6599 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6600 {
6601 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6602 					    netns_id, flags);
6603 }
6604 
6605 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6606 	.func		= bpf_sk_lookup_tcp,
6607 	.gpl_only	= false,
6608 	.pkt_access	= true,
6609 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6610 	.arg1_type	= ARG_PTR_TO_CTX,
6611 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6612 	.arg3_type	= ARG_CONST_SIZE,
6613 	.arg4_type	= ARG_ANYTHING,
6614 	.arg5_type	= ARG_ANYTHING,
6615 };
6616 
6617 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6618 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6619 {
6620 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6621 					    netns_id, flags);
6622 }
6623 
6624 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6625 	.func		= bpf_sk_lookup_udp,
6626 	.gpl_only	= false,
6627 	.pkt_access	= true,
6628 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6629 	.arg1_type	= ARG_PTR_TO_CTX,
6630 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6631 	.arg3_type	= ARG_CONST_SIZE,
6632 	.arg4_type	= ARG_ANYTHING,
6633 	.arg5_type	= ARG_ANYTHING,
6634 };
6635 
6636 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6637 {
6638 	if (sk && sk_is_refcounted(sk))
6639 		sock_gen_put(sk);
6640 	return 0;
6641 }
6642 
6643 static const struct bpf_func_proto bpf_sk_release_proto = {
6644 	.func		= bpf_sk_release,
6645 	.gpl_only	= false,
6646 	.ret_type	= RET_INTEGER,
6647 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6648 };
6649 
6650 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6651 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6652 {
6653 	struct net *caller_net = dev_net(ctx->rxq->dev);
6654 	int ifindex = ctx->rxq->dev->ifindex;
6655 
6656 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6657 					      ifindex, IPPROTO_UDP, netns_id,
6658 					      flags);
6659 }
6660 
6661 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6662 	.func           = bpf_xdp_sk_lookup_udp,
6663 	.gpl_only       = false,
6664 	.pkt_access     = true,
6665 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6666 	.arg1_type      = ARG_PTR_TO_CTX,
6667 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6668 	.arg3_type      = ARG_CONST_SIZE,
6669 	.arg4_type      = ARG_ANYTHING,
6670 	.arg5_type      = ARG_ANYTHING,
6671 };
6672 
6673 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6674 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6675 {
6676 	struct net *caller_net = dev_net(ctx->rxq->dev);
6677 	int ifindex = ctx->rxq->dev->ifindex;
6678 
6679 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6680 					       ifindex, IPPROTO_TCP, netns_id,
6681 					       flags);
6682 }
6683 
6684 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6685 	.func           = bpf_xdp_skc_lookup_tcp,
6686 	.gpl_only       = false,
6687 	.pkt_access     = true,
6688 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6689 	.arg1_type      = ARG_PTR_TO_CTX,
6690 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6691 	.arg3_type      = ARG_CONST_SIZE,
6692 	.arg4_type      = ARG_ANYTHING,
6693 	.arg5_type      = ARG_ANYTHING,
6694 };
6695 
6696 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6697 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6698 {
6699 	struct net *caller_net = dev_net(ctx->rxq->dev);
6700 	int ifindex = ctx->rxq->dev->ifindex;
6701 
6702 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6703 					      ifindex, IPPROTO_TCP, netns_id,
6704 					      flags);
6705 }
6706 
6707 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6708 	.func           = bpf_xdp_sk_lookup_tcp,
6709 	.gpl_only       = false,
6710 	.pkt_access     = true,
6711 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6712 	.arg1_type      = ARG_PTR_TO_CTX,
6713 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6714 	.arg3_type      = ARG_CONST_SIZE,
6715 	.arg4_type      = ARG_ANYTHING,
6716 	.arg5_type      = ARG_ANYTHING,
6717 };
6718 
6719 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6720 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6721 {
6722 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6723 					       sock_net(ctx->sk), 0,
6724 					       IPPROTO_TCP, netns_id, flags);
6725 }
6726 
6727 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6728 	.func		= bpf_sock_addr_skc_lookup_tcp,
6729 	.gpl_only	= false,
6730 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6731 	.arg1_type	= ARG_PTR_TO_CTX,
6732 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6733 	.arg3_type	= ARG_CONST_SIZE,
6734 	.arg4_type	= ARG_ANYTHING,
6735 	.arg5_type	= ARG_ANYTHING,
6736 };
6737 
6738 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6739 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6740 {
6741 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6742 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6743 					      netns_id, flags);
6744 }
6745 
6746 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6747 	.func		= bpf_sock_addr_sk_lookup_tcp,
6748 	.gpl_only	= false,
6749 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6750 	.arg1_type	= ARG_PTR_TO_CTX,
6751 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6752 	.arg3_type	= ARG_CONST_SIZE,
6753 	.arg4_type	= ARG_ANYTHING,
6754 	.arg5_type	= ARG_ANYTHING,
6755 };
6756 
6757 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6758 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6759 {
6760 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6761 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6762 					      netns_id, flags);
6763 }
6764 
6765 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6766 	.func		= bpf_sock_addr_sk_lookup_udp,
6767 	.gpl_only	= false,
6768 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6769 	.arg1_type	= ARG_PTR_TO_CTX,
6770 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6771 	.arg3_type	= ARG_CONST_SIZE,
6772 	.arg4_type	= ARG_ANYTHING,
6773 	.arg5_type	= ARG_ANYTHING,
6774 };
6775 
6776 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6777 				  struct bpf_insn_access_aux *info)
6778 {
6779 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6780 					  icsk_retransmits))
6781 		return false;
6782 
6783 	if (off % size != 0)
6784 		return false;
6785 
6786 	switch (off) {
6787 	case offsetof(struct bpf_tcp_sock, bytes_received):
6788 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6789 		return size == sizeof(__u64);
6790 	default:
6791 		return size == sizeof(__u32);
6792 	}
6793 }
6794 
6795 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6796 				    const struct bpf_insn *si,
6797 				    struct bpf_insn *insn_buf,
6798 				    struct bpf_prog *prog, u32 *target_size)
6799 {
6800 	struct bpf_insn *insn = insn_buf;
6801 
6802 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6803 	do {								\
6804 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6805 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6806 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6807 				      si->dst_reg, si->src_reg,		\
6808 				      offsetof(struct tcp_sock, FIELD)); \
6809 	} while (0)
6810 
6811 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6812 	do {								\
6813 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6814 					  FIELD) >			\
6815 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6816 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6817 					struct inet_connection_sock,	\
6818 					FIELD),				\
6819 				      si->dst_reg, si->src_reg,		\
6820 				      offsetof(				\
6821 					struct inet_connection_sock,	\
6822 					FIELD));			\
6823 	} while (0)
6824 
6825 	if (insn > insn_buf)
6826 		return insn - insn_buf;
6827 
6828 	switch (si->off) {
6829 	case offsetof(struct bpf_tcp_sock, rtt_min):
6830 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
6831 			     sizeof(struct minmax));
6832 		BUILD_BUG_ON(sizeof(struct minmax) <
6833 			     sizeof(struct minmax_sample));
6834 
6835 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6836 				      offsetof(struct tcp_sock, rtt_min) +
6837 				      offsetof(struct minmax_sample, v));
6838 		break;
6839 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
6840 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
6841 		break;
6842 	case offsetof(struct bpf_tcp_sock, srtt_us):
6843 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
6844 		break;
6845 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
6846 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
6847 		break;
6848 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
6849 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
6850 		break;
6851 	case offsetof(struct bpf_tcp_sock, snd_nxt):
6852 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
6853 		break;
6854 	case offsetof(struct bpf_tcp_sock, snd_una):
6855 		BPF_TCP_SOCK_GET_COMMON(snd_una);
6856 		break;
6857 	case offsetof(struct bpf_tcp_sock, mss_cache):
6858 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
6859 		break;
6860 	case offsetof(struct bpf_tcp_sock, ecn_flags):
6861 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
6862 		break;
6863 	case offsetof(struct bpf_tcp_sock, rate_delivered):
6864 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
6865 		break;
6866 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
6867 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
6868 		break;
6869 	case offsetof(struct bpf_tcp_sock, packets_out):
6870 		BPF_TCP_SOCK_GET_COMMON(packets_out);
6871 		break;
6872 	case offsetof(struct bpf_tcp_sock, retrans_out):
6873 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
6874 		break;
6875 	case offsetof(struct bpf_tcp_sock, total_retrans):
6876 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
6877 		break;
6878 	case offsetof(struct bpf_tcp_sock, segs_in):
6879 		BPF_TCP_SOCK_GET_COMMON(segs_in);
6880 		break;
6881 	case offsetof(struct bpf_tcp_sock, data_segs_in):
6882 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
6883 		break;
6884 	case offsetof(struct bpf_tcp_sock, segs_out):
6885 		BPF_TCP_SOCK_GET_COMMON(segs_out);
6886 		break;
6887 	case offsetof(struct bpf_tcp_sock, data_segs_out):
6888 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
6889 		break;
6890 	case offsetof(struct bpf_tcp_sock, lost_out):
6891 		BPF_TCP_SOCK_GET_COMMON(lost_out);
6892 		break;
6893 	case offsetof(struct bpf_tcp_sock, sacked_out):
6894 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
6895 		break;
6896 	case offsetof(struct bpf_tcp_sock, bytes_received):
6897 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
6898 		break;
6899 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6900 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
6901 		break;
6902 	case offsetof(struct bpf_tcp_sock, dsack_dups):
6903 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
6904 		break;
6905 	case offsetof(struct bpf_tcp_sock, delivered):
6906 		BPF_TCP_SOCK_GET_COMMON(delivered);
6907 		break;
6908 	case offsetof(struct bpf_tcp_sock, delivered_ce):
6909 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
6910 		break;
6911 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
6912 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
6913 		break;
6914 	}
6915 
6916 	return insn - insn_buf;
6917 }
6918 
6919 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
6920 {
6921 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
6922 		return (unsigned long)sk;
6923 
6924 	return (unsigned long)NULL;
6925 }
6926 
6927 const struct bpf_func_proto bpf_tcp_sock_proto = {
6928 	.func		= bpf_tcp_sock,
6929 	.gpl_only	= false,
6930 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
6931 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6932 };
6933 
6934 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
6935 {
6936 	sk = sk_to_full_sk(sk);
6937 
6938 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
6939 		return (unsigned long)sk;
6940 
6941 	return (unsigned long)NULL;
6942 }
6943 
6944 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
6945 	.func		= bpf_get_listener_sock,
6946 	.gpl_only	= false,
6947 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6948 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
6949 };
6950 
6951 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
6952 {
6953 	unsigned int iphdr_len;
6954 
6955 	switch (skb_protocol(skb, true)) {
6956 	case cpu_to_be16(ETH_P_IP):
6957 		iphdr_len = sizeof(struct iphdr);
6958 		break;
6959 	case cpu_to_be16(ETH_P_IPV6):
6960 		iphdr_len = sizeof(struct ipv6hdr);
6961 		break;
6962 	default:
6963 		return 0;
6964 	}
6965 
6966 	if (skb_headlen(skb) < iphdr_len)
6967 		return 0;
6968 
6969 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
6970 		return 0;
6971 
6972 	return INET_ECN_set_ce(skb);
6973 }
6974 
6975 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6976 				  struct bpf_insn_access_aux *info)
6977 {
6978 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
6979 		return false;
6980 
6981 	if (off % size != 0)
6982 		return false;
6983 
6984 	switch (off) {
6985 	default:
6986 		return size == sizeof(__u32);
6987 	}
6988 }
6989 
6990 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
6991 				    const struct bpf_insn *si,
6992 				    struct bpf_insn *insn_buf,
6993 				    struct bpf_prog *prog, u32 *target_size)
6994 {
6995 	struct bpf_insn *insn = insn_buf;
6996 
6997 #define BPF_XDP_SOCK_GET(FIELD)						\
6998 	do {								\
6999 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7000 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7001 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7002 				      si->dst_reg, si->src_reg,		\
7003 				      offsetof(struct xdp_sock, FIELD)); \
7004 	} while (0)
7005 
7006 	switch (si->off) {
7007 	case offsetof(struct bpf_xdp_sock, queue_id):
7008 		BPF_XDP_SOCK_GET(queue_id);
7009 		break;
7010 	}
7011 
7012 	return insn - insn_buf;
7013 }
7014 
7015 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7016 	.func           = bpf_skb_ecn_set_ce,
7017 	.gpl_only       = false,
7018 	.ret_type       = RET_INTEGER,
7019 	.arg1_type      = ARG_PTR_TO_CTX,
7020 };
7021 
7022 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7023 	   struct tcphdr *, th, u32, th_len)
7024 {
7025 #ifdef CONFIG_SYN_COOKIES
7026 	u32 cookie;
7027 	int ret;
7028 
7029 	if (unlikely(!sk || th_len < sizeof(*th)))
7030 		return -EINVAL;
7031 
7032 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7033 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7034 		return -EINVAL;
7035 
7036 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7037 		return -EINVAL;
7038 
7039 	if (!th->ack || th->rst || th->syn)
7040 		return -ENOENT;
7041 
7042 	if (unlikely(iph_len < sizeof(struct iphdr)))
7043 		return -EINVAL;
7044 
7045 	if (tcp_synq_no_recent_overflow(sk))
7046 		return -ENOENT;
7047 
7048 	cookie = ntohl(th->ack_seq) - 1;
7049 
7050 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7051 	 * same offset so we can cast to the shorter header (struct iphdr).
7052 	 */
7053 	switch (((struct iphdr *)iph)->version) {
7054 	case 4:
7055 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7056 			return -EINVAL;
7057 
7058 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7059 		break;
7060 
7061 #if IS_BUILTIN(CONFIG_IPV6)
7062 	case 6:
7063 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7064 			return -EINVAL;
7065 
7066 		if (sk->sk_family != AF_INET6)
7067 			return -EINVAL;
7068 
7069 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7070 		break;
7071 #endif /* CONFIG_IPV6 */
7072 
7073 	default:
7074 		return -EPROTONOSUPPORT;
7075 	}
7076 
7077 	if (ret > 0)
7078 		return 0;
7079 
7080 	return -ENOENT;
7081 #else
7082 	return -ENOTSUPP;
7083 #endif
7084 }
7085 
7086 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7087 	.func		= bpf_tcp_check_syncookie,
7088 	.gpl_only	= true,
7089 	.pkt_access	= true,
7090 	.ret_type	= RET_INTEGER,
7091 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7092 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7093 	.arg3_type	= ARG_CONST_SIZE,
7094 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7095 	.arg5_type	= ARG_CONST_SIZE,
7096 };
7097 
7098 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7099 	   struct tcphdr *, th, u32, th_len)
7100 {
7101 #ifdef CONFIG_SYN_COOKIES
7102 	u32 cookie;
7103 	u16 mss;
7104 
7105 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7106 		return -EINVAL;
7107 
7108 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7109 		return -EINVAL;
7110 
7111 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7112 		return -ENOENT;
7113 
7114 	if (!th->syn || th->ack || th->fin || th->rst)
7115 		return -EINVAL;
7116 
7117 	if (unlikely(iph_len < sizeof(struct iphdr)))
7118 		return -EINVAL;
7119 
7120 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7121 	 * same offset so we can cast to the shorter header (struct iphdr).
7122 	 */
7123 	switch (((struct iphdr *)iph)->version) {
7124 	case 4:
7125 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7126 			return -EINVAL;
7127 
7128 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7129 		break;
7130 
7131 #if IS_BUILTIN(CONFIG_IPV6)
7132 	case 6:
7133 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7134 			return -EINVAL;
7135 
7136 		if (sk->sk_family != AF_INET6)
7137 			return -EINVAL;
7138 
7139 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7140 		break;
7141 #endif /* CONFIG_IPV6 */
7142 
7143 	default:
7144 		return -EPROTONOSUPPORT;
7145 	}
7146 	if (mss == 0)
7147 		return -ENOENT;
7148 
7149 	return cookie | ((u64)mss << 32);
7150 #else
7151 	return -EOPNOTSUPP;
7152 #endif /* CONFIG_SYN_COOKIES */
7153 }
7154 
7155 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7156 	.func		= bpf_tcp_gen_syncookie,
7157 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7158 	.pkt_access	= true,
7159 	.ret_type	= RET_INTEGER,
7160 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7161 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7162 	.arg3_type	= ARG_CONST_SIZE,
7163 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7164 	.arg5_type	= ARG_CONST_SIZE,
7165 };
7166 
7167 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7168 {
7169 	if (!sk || flags != 0)
7170 		return -EINVAL;
7171 	if (!skb_at_tc_ingress(skb))
7172 		return -EOPNOTSUPP;
7173 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7174 		return -ENETUNREACH;
7175 	if (unlikely(sk_fullsock(sk) && sk->sk_reuseport))
7176 		return -ESOCKTNOSUPPORT;
7177 	if (sk_is_refcounted(sk) &&
7178 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7179 		return -ENOENT;
7180 
7181 	skb_orphan(skb);
7182 	skb->sk = sk;
7183 	skb->destructor = sock_pfree;
7184 
7185 	return 0;
7186 }
7187 
7188 static const struct bpf_func_proto bpf_sk_assign_proto = {
7189 	.func		= bpf_sk_assign,
7190 	.gpl_only	= false,
7191 	.ret_type	= RET_INTEGER,
7192 	.arg1_type      = ARG_PTR_TO_CTX,
7193 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7194 	.arg3_type	= ARG_ANYTHING,
7195 };
7196 
7197 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7198 				    u8 search_kind, const u8 *magic,
7199 				    u8 magic_len, bool *eol)
7200 {
7201 	u8 kind, kind_len;
7202 
7203 	*eol = false;
7204 
7205 	while (op < opend) {
7206 		kind = op[0];
7207 
7208 		if (kind == TCPOPT_EOL) {
7209 			*eol = true;
7210 			return ERR_PTR(-ENOMSG);
7211 		} else if (kind == TCPOPT_NOP) {
7212 			op++;
7213 			continue;
7214 		}
7215 
7216 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7217 			/* Something is wrong in the received header.
7218 			 * Follow the TCP stack's tcp_parse_options()
7219 			 * and just bail here.
7220 			 */
7221 			return ERR_PTR(-EFAULT);
7222 
7223 		kind_len = op[1];
7224 		if (search_kind == kind) {
7225 			if (!magic_len)
7226 				return op;
7227 
7228 			if (magic_len > kind_len - 2)
7229 				return ERR_PTR(-ENOMSG);
7230 
7231 			if (!memcmp(&op[2], magic, magic_len))
7232 				return op;
7233 		}
7234 
7235 		op += kind_len;
7236 	}
7237 
7238 	return ERR_PTR(-ENOMSG);
7239 }
7240 
7241 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7242 	   void *, search_res, u32, len, u64, flags)
7243 {
7244 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7245 	const u8 *op, *opend, *magic, *search = search_res;
7246 	u8 search_kind, search_len, copy_len, magic_len;
7247 	int ret;
7248 
7249 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7250 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7251 	 * and this helper disallow loading them also.
7252 	 */
7253 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7254 		return -EINVAL;
7255 
7256 	search_kind = search[0];
7257 	search_len = search[1];
7258 
7259 	if (search_len > len || search_kind == TCPOPT_NOP ||
7260 	    search_kind == TCPOPT_EOL)
7261 		return -EINVAL;
7262 
7263 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7264 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7265 		if (search_len != 4 && search_len != 6)
7266 			return -EINVAL;
7267 		magic = &search[2];
7268 		magic_len = search_len - 2;
7269 	} else {
7270 		if (search_len)
7271 			return -EINVAL;
7272 		magic = NULL;
7273 		magic_len = 0;
7274 	}
7275 
7276 	if (load_syn) {
7277 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7278 		if (ret < 0)
7279 			return ret;
7280 
7281 		opend = op + ret;
7282 		op += sizeof(struct tcphdr);
7283 	} else {
7284 		if (!bpf_sock->skb ||
7285 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7286 			/* This bpf_sock->op cannot call this helper */
7287 			return -EPERM;
7288 
7289 		opend = bpf_sock->skb_data_end;
7290 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7291 	}
7292 
7293 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7294 				&eol);
7295 	if (IS_ERR(op))
7296 		return PTR_ERR(op);
7297 
7298 	copy_len = op[1];
7299 	ret = copy_len;
7300 	if (copy_len > len) {
7301 		ret = -ENOSPC;
7302 		copy_len = len;
7303 	}
7304 
7305 	memcpy(search_res, op, copy_len);
7306 	return ret;
7307 }
7308 
7309 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7310 	.func		= bpf_sock_ops_load_hdr_opt,
7311 	.gpl_only	= false,
7312 	.ret_type	= RET_INTEGER,
7313 	.arg1_type	= ARG_PTR_TO_CTX,
7314 	.arg2_type	= ARG_PTR_TO_MEM,
7315 	.arg3_type	= ARG_CONST_SIZE,
7316 	.arg4_type	= ARG_ANYTHING,
7317 };
7318 
7319 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7320 	   const void *, from, u32, len, u64, flags)
7321 {
7322 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7323 	const u8 *op, *new_op, *magic = NULL;
7324 	struct sk_buff *skb;
7325 	bool eol;
7326 
7327 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7328 		return -EPERM;
7329 
7330 	if (len < 2 || flags)
7331 		return -EINVAL;
7332 
7333 	new_op = from;
7334 	new_kind = new_op[0];
7335 	new_kind_len = new_op[1];
7336 
7337 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7338 	    new_kind == TCPOPT_EOL)
7339 		return -EINVAL;
7340 
7341 	if (new_kind_len > bpf_sock->remaining_opt_len)
7342 		return -ENOSPC;
7343 
7344 	/* 253 is another experimental kind */
7345 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7346 		if (new_kind_len < 4)
7347 			return -EINVAL;
7348 		/* Match for the 2 byte magic also.
7349 		 * RFC 6994: the magic could be 2 or 4 bytes.
7350 		 * Hence, matching by 2 byte only is on the
7351 		 * conservative side but it is the right
7352 		 * thing to do for the 'search-for-duplication'
7353 		 * purpose.
7354 		 */
7355 		magic = &new_op[2];
7356 		magic_len = 2;
7357 	}
7358 
7359 	/* Check for duplication */
7360 	skb = bpf_sock->skb;
7361 	op = skb->data + sizeof(struct tcphdr);
7362 	opend = bpf_sock->skb_data_end;
7363 
7364 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7365 				&eol);
7366 	if (!IS_ERR(op))
7367 		return -EEXIST;
7368 
7369 	if (PTR_ERR(op) != -ENOMSG)
7370 		return PTR_ERR(op);
7371 
7372 	if (eol)
7373 		/* The option has been ended.  Treat it as no more
7374 		 * header option can be written.
7375 		 */
7376 		return -ENOSPC;
7377 
7378 	/* No duplication found.  Store the header option. */
7379 	memcpy(opend, from, new_kind_len);
7380 
7381 	bpf_sock->remaining_opt_len -= new_kind_len;
7382 	bpf_sock->skb_data_end += new_kind_len;
7383 
7384 	return 0;
7385 }
7386 
7387 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7388 	.func		= bpf_sock_ops_store_hdr_opt,
7389 	.gpl_only	= false,
7390 	.ret_type	= RET_INTEGER,
7391 	.arg1_type	= ARG_PTR_TO_CTX,
7392 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7393 	.arg3_type	= ARG_CONST_SIZE,
7394 	.arg4_type	= ARG_ANYTHING,
7395 };
7396 
7397 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7398 	   u32, len, u64, flags)
7399 {
7400 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7401 		return -EPERM;
7402 
7403 	if (flags || len < 2)
7404 		return -EINVAL;
7405 
7406 	if (len > bpf_sock->remaining_opt_len)
7407 		return -ENOSPC;
7408 
7409 	bpf_sock->remaining_opt_len -= len;
7410 
7411 	return 0;
7412 }
7413 
7414 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7415 	.func		= bpf_sock_ops_reserve_hdr_opt,
7416 	.gpl_only	= false,
7417 	.ret_type	= RET_INTEGER,
7418 	.arg1_type	= ARG_PTR_TO_CTX,
7419 	.arg2_type	= ARG_ANYTHING,
7420 	.arg3_type	= ARG_ANYTHING,
7421 };
7422 
7423 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7424 	   u64, tstamp, u32, tstamp_type)
7425 {
7426 	/* skb_clear_delivery_time() is done for inet protocol */
7427 	if (skb->protocol != htons(ETH_P_IP) &&
7428 	    skb->protocol != htons(ETH_P_IPV6))
7429 		return -EOPNOTSUPP;
7430 
7431 	switch (tstamp_type) {
7432 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7433 		if (!tstamp)
7434 			return -EINVAL;
7435 		skb->tstamp = tstamp;
7436 		skb->mono_delivery_time = 1;
7437 		break;
7438 	case BPF_SKB_TSTAMP_UNSPEC:
7439 		if (tstamp)
7440 			return -EINVAL;
7441 		skb->tstamp = 0;
7442 		skb->mono_delivery_time = 0;
7443 		break;
7444 	default:
7445 		return -EINVAL;
7446 	}
7447 
7448 	return 0;
7449 }
7450 
7451 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7452 	.func           = bpf_skb_set_tstamp,
7453 	.gpl_only       = false,
7454 	.ret_type       = RET_INTEGER,
7455 	.arg1_type      = ARG_PTR_TO_CTX,
7456 	.arg2_type      = ARG_ANYTHING,
7457 	.arg3_type      = ARG_ANYTHING,
7458 };
7459 
7460 #ifdef CONFIG_SYN_COOKIES
7461 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7462 	   struct tcphdr *, th, u32, th_len)
7463 {
7464 	u32 cookie;
7465 	u16 mss;
7466 
7467 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7468 		return -EINVAL;
7469 
7470 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7471 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7472 
7473 	return cookie | ((u64)mss << 32);
7474 }
7475 
7476 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7477 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7478 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7479 	.pkt_access	= true,
7480 	.ret_type	= RET_INTEGER,
7481 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7482 	.arg1_size	= sizeof(struct iphdr),
7483 	.arg2_type	= ARG_PTR_TO_MEM,
7484 	.arg3_type	= ARG_CONST_SIZE,
7485 };
7486 
7487 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7488 	   struct tcphdr *, th, u32, th_len)
7489 {
7490 #if IS_BUILTIN(CONFIG_IPV6)
7491 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7492 		sizeof(struct ipv6hdr);
7493 	u32 cookie;
7494 	u16 mss;
7495 
7496 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7497 		return -EINVAL;
7498 
7499 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7500 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7501 
7502 	return cookie | ((u64)mss << 32);
7503 #else
7504 	return -EPROTONOSUPPORT;
7505 #endif
7506 }
7507 
7508 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7509 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7510 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7511 	.pkt_access	= true,
7512 	.ret_type	= RET_INTEGER,
7513 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7514 	.arg1_size	= sizeof(struct ipv6hdr),
7515 	.arg2_type	= ARG_PTR_TO_MEM,
7516 	.arg3_type	= ARG_CONST_SIZE,
7517 };
7518 
7519 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7520 	   struct tcphdr *, th)
7521 {
7522 	u32 cookie = ntohl(th->ack_seq) - 1;
7523 
7524 	if (__cookie_v4_check(iph, th, cookie) > 0)
7525 		return 0;
7526 
7527 	return -EACCES;
7528 }
7529 
7530 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7531 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7532 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7533 	.pkt_access	= true,
7534 	.ret_type	= RET_INTEGER,
7535 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7536 	.arg1_size	= sizeof(struct iphdr),
7537 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7538 	.arg2_size	= sizeof(struct tcphdr),
7539 };
7540 
7541 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7542 	   struct tcphdr *, th)
7543 {
7544 #if IS_BUILTIN(CONFIG_IPV6)
7545 	u32 cookie = ntohl(th->ack_seq) - 1;
7546 
7547 	if (__cookie_v6_check(iph, th, cookie) > 0)
7548 		return 0;
7549 
7550 	return -EACCES;
7551 #else
7552 	return -EPROTONOSUPPORT;
7553 #endif
7554 }
7555 
7556 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7557 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7558 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7559 	.pkt_access	= true,
7560 	.ret_type	= RET_INTEGER,
7561 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7562 	.arg1_size	= sizeof(struct ipv6hdr),
7563 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7564 	.arg2_size	= sizeof(struct tcphdr),
7565 };
7566 #endif /* CONFIG_SYN_COOKIES */
7567 
7568 #endif /* CONFIG_INET */
7569 
7570 bool bpf_helper_changes_pkt_data(void *func)
7571 {
7572 	if (func == bpf_skb_vlan_push ||
7573 	    func == bpf_skb_vlan_pop ||
7574 	    func == bpf_skb_store_bytes ||
7575 	    func == bpf_skb_change_proto ||
7576 	    func == bpf_skb_change_head ||
7577 	    func == sk_skb_change_head ||
7578 	    func == bpf_skb_change_tail ||
7579 	    func == sk_skb_change_tail ||
7580 	    func == bpf_skb_adjust_room ||
7581 	    func == sk_skb_adjust_room ||
7582 	    func == bpf_skb_pull_data ||
7583 	    func == sk_skb_pull_data ||
7584 	    func == bpf_clone_redirect ||
7585 	    func == bpf_l3_csum_replace ||
7586 	    func == bpf_l4_csum_replace ||
7587 	    func == bpf_xdp_adjust_head ||
7588 	    func == bpf_xdp_adjust_meta ||
7589 	    func == bpf_msg_pull_data ||
7590 	    func == bpf_msg_push_data ||
7591 	    func == bpf_msg_pop_data ||
7592 	    func == bpf_xdp_adjust_tail ||
7593 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7594 	    func == bpf_lwt_seg6_store_bytes ||
7595 	    func == bpf_lwt_seg6_adjust_srh ||
7596 	    func == bpf_lwt_seg6_action ||
7597 #endif
7598 #ifdef CONFIG_INET
7599 	    func == bpf_sock_ops_store_hdr_opt ||
7600 #endif
7601 	    func == bpf_lwt_in_push_encap ||
7602 	    func == bpf_lwt_xmit_push_encap)
7603 		return true;
7604 
7605 	return false;
7606 }
7607 
7608 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7609 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7610 
7611 static const struct bpf_func_proto *
7612 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7613 {
7614 	const struct bpf_func_proto *func_proto;
7615 
7616 	func_proto = cgroup_common_func_proto(func_id, prog);
7617 	if (func_proto)
7618 		return func_proto;
7619 
7620 	func_proto = cgroup_current_func_proto(func_id, prog);
7621 	if (func_proto)
7622 		return func_proto;
7623 
7624 	switch (func_id) {
7625 	case BPF_FUNC_get_socket_cookie:
7626 		return &bpf_get_socket_cookie_sock_proto;
7627 	case BPF_FUNC_get_netns_cookie:
7628 		return &bpf_get_netns_cookie_sock_proto;
7629 	case BPF_FUNC_perf_event_output:
7630 		return &bpf_event_output_data_proto;
7631 	case BPF_FUNC_sk_storage_get:
7632 		return &bpf_sk_storage_get_cg_sock_proto;
7633 	case BPF_FUNC_ktime_get_coarse_ns:
7634 		return &bpf_ktime_get_coarse_ns_proto;
7635 	default:
7636 		return bpf_base_func_proto(func_id);
7637 	}
7638 }
7639 
7640 static const struct bpf_func_proto *
7641 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7642 {
7643 	const struct bpf_func_proto *func_proto;
7644 
7645 	func_proto = cgroup_common_func_proto(func_id, prog);
7646 	if (func_proto)
7647 		return func_proto;
7648 
7649 	func_proto = cgroup_current_func_proto(func_id, prog);
7650 	if (func_proto)
7651 		return func_proto;
7652 
7653 	switch (func_id) {
7654 	case BPF_FUNC_bind:
7655 		switch (prog->expected_attach_type) {
7656 		case BPF_CGROUP_INET4_CONNECT:
7657 		case BPF_CGROUP_INET6_CONNECT:
7658 			return &bpf_bind_proto;
7659 		default:
7660 			return NULL;
7661 		}
7662 	case BPF_FUNC_get_socket_cookie:
7663 		return &bpf_get_socket_cookie_sock_addr_proto;
7664 	case BPF_FUNC_get_netns_cookie:
7665 		return &bpf_get_netns_cookie_sock_addr_proto;
7666 	case BPF_FUNC_perf_event_output:
7667 		return &bpf_event_output_data_proto;
7668 #ifdef CONFIG_INET
7669 	case BPF_FUNC_sk_lookup_tcp:
7670 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7671 	case BPF_FUNC_sk_lookup_udp:
7672 		return &bpf_sock_addr_sk_lookup_udp_proto;
7673 	case BPF_FUNC_sk_release:
7674 		return &bpf_sk_release_proto;
7675 	case BPF_FUNC_skc_lookup_tcp:
7676 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7677 #endif /* CONFIG_INET */
7678 	case BPF_FUNC_sk_storage_get:
7679 		return &bpf_sk_storage_get_proto;
7680 	case BPF_FUNC_sk_storage_delete:
7681 		return &bpf_sk_storage_delete_proto;
7682 	case BPF_FUNC_setsockopt:
7683 		switch (prog->expected_attach_type) {
7684 		case BPF_CGROUP_INET4_BIND:
7685 		case BPF_CGROUP_INET6_BIND:
7686 		case BPF_CGROUP_INET4_CONNECT:
7687 		case BPF_CGROUP_INET6_CONNECT:
7688 		case BPF_CGROUP_UDP4_RECVMSG:
7689 		case BPF_CGROUP_UDP6_RECVMSG:
7690 		case BPF_CGROUP_UDP4_SENDMSG:
7691 		case BPF_CGROUP_UDP6_SENDMSG:
7692 		case BPF_CGROUP_INET4_GETPEERNAME:
7693 		case BPF_CGROUP_INET6_GETPEERNAME:
7694 		case BPF_CGROUP_INET4_GETSOCKNAME:
7695 		case BPF_CGROUP_INET6_GETSOCKNAME:
7696 			return &bpf_sock_addr_setsockopt_proto;
7697 		default:
7698 			return NULL;
7699 		}
7700 	case BPF_FUNC_getsockopt:
7701 		switch (prog->expected_attach_type) {
7702 		case BPF_CGROUP_INET4_BIND:
7703 		case BPF_CGROUP_INET6_BIND:
7704 		case BPF_CGROUP_INET4_CONNECT:
7705 		case BPF_CGROUP_INET6_CONNECT:
7706 		case BPF_CGROUP_UDP4_RECVMSG:
7707 		case BPF_CGROUP_UDP6_RECVMSG:
7708 		case BPF_CGROUP_UDP4_SENDMSG:
7709 		case BPF_CGROUP_UDP6_SENDMSG:
7710 		case BPF_CGROUP_INET4_GETPEERNAME:
7711 		case BPF_CGROUP_INET6_GETPEERNAME:
7712 		case BPF_CGROUP_INET4_GETSOCKNAME:
7713 		case BPF_CGROUP_INET6_GETSOCKNAME:
7714 			return &bpf_sock_addr_getsockopt_proto;
7715 		default:
7716 			return NULL;
7717 		}
7718 	default:
7719 		return bpf_sk_base_func_proto(func_id);
7720 	}
7721 }
7722 
7723 static const struct bpf_func_proto *
7724 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7725 {
7726 	switch (func_id) {
7727 	case BPF_FUNC_skb_load_bytes:
7728 		return &bpf_skb_load_bytes_proto;
7729 	case BPF_FUNC_skb_load_bytes_relative:
7730 		return &bpf_skb_load_bytes_relative_proto;
7731 	case BPF_FUNC_get_socket_cookie:
7732 		return &bpf_get_socket_cookie_proto;
7733 	case BPF_FUNC_get_socket_uid:
7734 		return &bpf_get_socket_uid_proto;
7735 	case BPF_FUNC_perf_event_output:
7736 		return &bpf_skb_event_output_proto;
7737 	default:
7738 		return bpf_sk_base_func_proto(func_id);
7739 	}
7740 }
7741 
7742 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7743 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7744 
7745 static const struct bpf_func_proto *
7746 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7747 {
7748 	const struct bpf_func_proto *func_proto;
7749 
7750 	func_proto = cgroup_common_func_proto(func_id, prog);
7751 	if (func_proto)
7752 		return func_proto;
7753 
7754 	switch (func_id) {
7755 	case BPF_FUNC_sk_fullsock:
7756 		return &bpf_sk_fullsock_proto;
7757 	case BPF_FUNC_sk_storage_get:
7758 		return &bpf_sk_storage_get_proto;
7759 	case BPF_FUNC_sk_storage_delete:
7760 		return &bpf_sk_storage_delete_proto;
7761 	case BPF_FUNC_perf_event_output:
7762 		return &bpf_skb_event_output_proto;
7763 #ifdef CONFIG_SOCK_CGROUP_DATA
7764 	case BPF_FUNC_skb_cgroup_id:
7765 		return &bpf_skb_cgroup_id_proto;
7766 	case BPF_FUNC_skb_ancestor_cgroup_id:
7767 		return &bpf_skb_ancestor_cgroup_id_proto;
7768 	case BPF_FUNC_sk_cgroup_id:
7769 		return &bpf_sk_cgroup_id_proto;
7770 	case BPF_FUNC_sk_ancestor_cgroup_id:
7771 		return &bpf_sk_ancestor_cgroup_id_proto;
7772 #endif
7773 #ifdef CONFIG_INET
7774 	case BPF_FUNC_sk_lookup_tcp:
7775 		return &bpf_sk_lookup_tcp_proto;
7776 	case BPF_FUNC_sk_lookup_udp:
7777 		return &bpf_sk_lookup_udp_proto;
7778 	case BPF_FUNC_sk_release:
7779 		return &bpf_sk_release_proto;
7780 	case BPF_FUNC_skc_lookup_tcp:
7781 		return &bpf_skc_lookup_tcp_proto;
7782 	case BPF_FUNC_tcp_sock:
7783 		return &bpf_tcp_sock_proto;
7784 	case BPF_FUNC_get_listener_sock:
7785 		return &bpf_get_listener_sock_proto;
7786 	case BPF_FUNC_skb_ecn_set_ce:
7787 		return &bpf_skb_ecn_set_ce_proto;
7788 #endif
7789 	default:
7790 		return sk_filter_func_proto(func_id, prog);
7791 	}
7792 }
7793 
7794 static const struct bpf_func_proto *
7795 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7796 {
7797 	switch (func_id) {
7798 	case BPF_FUNC_skb_store_bytes:
7799 		return &bpf_skb_store_bytes_proto;
7800 	case BPF_FUNC_skb_load_bytes:
7801 		return &bpf_skb_load_bytes_proto;
7802 	case BPF_FUNC_skb_load_bytes_relative:
7803 		return &bpf_skb_load_bytes_relative_proto;
7804 	case BPF_FUNC_skb_pull_data:
7805 		return &bpf_skb_pull_data_proto;
7806 	case BPF_FUNC_csum_diff:
7807 		return &bpf_csum_diff_proto;
7808 	case BPF_FUNC_csum_update:
7809 		return &bpf_csum_update_proto;
7810 	case BPF_FUNC_csum_level:
7811 		return &bpf_csum_level_proto;
7812 	case BPF_FUNC_l3_csum_replace:
7813 		return &bpf_l3_csum_replace_proto;
7814 	case BPF_FUNC_l4_csum_replace:
7815 		return &bpf_l4_csum_replace_proto;
7816 	case BPF_FUNC_clone_redirect:
7817 		return &bpf_clone_redirect_proto;
7818 	case BPF_FUNC_get_cgroup_classid:
7819 		return &bpf_get_cgroup_classid_proto;
7820 	case BPF_FUNC_skb_vlan_push:
7821 		return &bpf_skb_vlan_push_proto;
7822 	case BPF_FUNC_skb_vlan_pop:
7823 		return &bpf_skb_vlan_pop_proto;
7824 	case BPF_FUNC_skb_change_proto:
7825 		return &bpf_skb_change_proto_proto;
7826 	case BPF_FUNC_skb_change_type:
7827 		return &bpf_skb_change_type_proto;
7828 	case BPF_FUNC_skb_adjust_room:
7829 		return &bpf_skb_adjust_room_proto;
7830 	case BPF_FUNC_skb_change_tail:
7831 		return &bpf_skb_change_tail_proto;
7832 	case BPF_FUNC_skb_change_head:
7833 		return &bpf_skb_change_head_proto;
7834 	case BPF_FUNC_skb_get_tunnel_key:
7835 		return &bpf_skb_get_tunnel_key_proto;
7836 	case BPF_FUNC_skb_set_tunnel_key:
7837 		return bpf_get_skb_set_tunnel_proto(func_id);
7838 	case BPF_FUNC_skb_get_tunnel_opt:
7839 		return &bpf_skb_get_tunnel_opt_proto;
7840 	case BPF_FUNC_skb_set_tunnel_opt:
7841 		return bpf_get_skb_set_tunnel_proto(func_id);
7842 	case BPF_FUNC_redirect:
7843 		return &bpf_redirect_proto;
7844 	case BPF_FUNC_redirect_neigh:
7845 		return &bpf_redirect_neigh_proto;
7846 	case BPF_FUNC_redirect_peer:
7847 		return &bpf_redirect_peer_proto;
7848 	case BPF_FUNC_get_route_realm:
7849 		return &bpf_get_route_realm_proto;
7850 	case BPF_FUNC_get_hash_recalc:
7851 		return &bpf_get_hash_recalc_proto;
7852 	case BPF_FUNC_set_hash_invalid:
7853 		return &bpf_set_hash_invalid_proto;
7854 	case BPF_FUNC_set_hash:
7855 		return &bpf_set_hash_proto;
7856 	case BPF_FUNC_perf_event_output:
7857 		return &bpf_skb_event_output_proto;
7858 	case BPF_FUNC_get_smp_processor_id:
7859 		return &bpf_get_smp_processor_id_proto;
7860 	case BPF_FUNC_skb_under_cgroup:
7861 		return &bpf_skb_under_cgroup_proto;
7862 	case BPF_FUNC_get_socket_cookie:
7863 		return &bpf_get_socket_cookie_proto;
7864 	case BPF_FUNC_get_socket_uid:
7865 		return &bpf_get_socket_uid_proto;
7866 	case BPF_FUNC_fib_lookup:
7867 		return &bpf_skb_fib_lookup_proto;
7868 	case BPF_FUNC_check_mtu:
7869 		return &bpf_skb_check_mtu_proto;
7870 	case BPF_FUNC_sk_fullsock:
7871 		return &bpf_sk_fullsock_proto;
7872 	case BPF_FUNC_sk_storage_get:
7873 		return &bpf_sk_storage_get_proto;
7874 	case BPF_FUNC_sk_storage_delete:
7875 		return &bpf_sk_storage_delete_proto;
7876 #ifdef CONFIG_XFRM
7877 	case BPF_FUNC_skb_get_xfrm_state:
7878 		return &bpf_skb_get_xfrm_state_proto;
7879 #endif
7880 #ifdef CONFIG_CGROUP_NET_CLASSID
7881 	case BPF_FUNC_skb_cgroup_classid:
7882 		return &bpf_skb_cgroup_classid_proto;
7883 #endif
7884 #ifdef CONFIG_SOCK_CGROUP_DATA
7885 	case BPF_FUNC_skb_cgroup_id:
7886 		return &bpf_skb_cgroup_id_proto;
7887 	case BPF_FUNC_skb_ancestor_cgroup_id:
7888 		return &bpf_skb_ancestor_cgroup_id_proto;
7889 #endif
7890 #ifdef CONFIG_INET
7891 	case BPF_FUNC_sk_lookup_tcp:
7892 		return &bpf_sk_lookup_tcp_proto;
7893 	case BPF_FUNC_sk_lookup_udp:
7894 		return &bpf_sk_lookup_udp_proto;
7895 	case BPF_FUNC_sk_release:
7896 		return &bpf_sk_release_proto;
7897 	case BPF_FUNC_tcp_sock:
7898 		return &bpf_tcp_sock_proto;
7899 	case BPF_FUNC_get_listener_sock:
7900 		return &bpf_get_listener_sock_proto;
7901 	case BPF_FUNC_skc_lookup_tcp:
7902 		return &bpf_skc_lookup_tcp_proto;
7903 	case BPF_FUNC_tcp_check_syncookie:
7904 		return &bpf_tcp_check_syncookie_proto;
7905 	case BPF_FUNC_skb_ecn_set_ce:
7906 		return &bpf_skb_ecn_set_ce_proto;
7907 	case BPF_FUNC_tcp_gen_syncookie:
7908 		return &bpf_tcp_gen_syncookie_proto;
7909 	case BPF_FUNC_sk_assign:
7910 		return &bpf_sk_assign_proto;
7911 	case BPF_FUNC_skb_set_tstamp:
7912 		return &bpf_skb_set_tstamp_proto;
7913 #ifdef CONFIG_SYN_COOKIES
7914 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7915 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7916 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7917 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7918 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7919 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7920 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7921 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7922 #endif
7923 #endif
7924 	default:
7925 		return bpf_sk_base_func_proto(func_id);
7926 	}
7927 }
7928 
7929 static const struct bpf_func_proto *
7930 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7931 {
7932 	switch (func_id) {
7933 	case BPF_FUNC_perf_event_output:
7934 		return &bpf_xdp_event_output_proto;
7935 	case BPF_FUNC_get_smp_processor_id:
7936 		return &bpf_get_smp_processor_id_proto;
7937 	case BPF_FUNC_csum_diff:
7938 		return &bpf_csum_diff_proto;
7939 	case BPF_FUNC_xdp_adjust_head:
7940 		return &bpf_xdp_adjust_head_proto;
7941 	case BPF_FUNC_xdp_adjust_meta:
7942 		return &bpf_xdp_adjust_meta_proto;
7943 	case BPF_FUNC_redirect:
7944 		return &bpf_xdp_redirect_proto;
7945 	case BPF_FUNC_redirect_map:
7946 		return &bpf_xdp_redirect_map_proto;
7947 	case BPF_FUNC_xdp_adjust_tail:
7948 		return &bpf_xdp_adjust_tail_proto;
7949 	case BPF_FUNC_xdp_get_buff_len:
7950 		return &bpf_xdp_get_buff_len_proto;
7951 	case BPF_FUNC_xdp_load_bytes:
7952 		return &bpf_xdp_load_bytes_proto;
7953 	case BPF_FUNC_xdp_store_bytes:
7954 		return &bpf_xdp_store_bytes_proto;
7955 	case BPF_FUNC_fib_lookup:
7956 		return &bpf_xdp_fib_lookup_proto;
7957 	case BPF_FUNC_check_mtu:
7958 		return &bpf_xdp_check_mtu_proto;
7959 #ifdef CONFIG_INET
7960 	case BPF_FUNC_sk_lookup_udp:
7961 		return &bpf_xdp_sk_lookup_udp_proto;
7962 	case BPF_FUNC_sk_lookup_tcp:
7963 		return &bpf_xdp_sk_lookup_tcp_proto;
7964 	case BPF_FUNC_sk_release:
7965 		return &bpf_sk_release_proto;
7966 	case BPF_FUNC_skc_lookup_tcp:
7967 		return &bpf_xdp_skc_lookup_tcp_proto;
7968 	case BPF_FUNC_tcp_check_syncookie:
7969 		return &bpf_tcp_check_syncookie_proto;
7970 	case BPF_FUNC_tcp_gen_syncookie:
7971 		return &bpf_tcp_gen_syncookie_proto;
7972 #ifdef CONFIG_SYN_COOKIES
7973 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
7974 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
7975 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
7976 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
7977 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
7978 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
7979 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
7980 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
7981 #endif
7982 #endif
7983 	default:
7984 		return bpf_sk_base_func_proto(func_id);
7985 	}
7986 }
7987 
7988 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
7989 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
7990 
7991 static const struct bpf_func_proto *
7992 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7993 {
7994 	const struct bpf_func_proto *func_proto;
7995 
7996 	func_proto = cgroup_common_func_proto(func_id, prog);
7997 	if (func_proto)
7998 		return func_proto;
7999 
8000 	switch (func_id) {
8001 	case BPF_FUNC_setsockopt:
8002 		return &bpf_sock_ops_setsockopt_proto;
8003 	case BPF_FUNC_getsockopt:
8004 		return &bpf_sock_ops_getsockopt_proto;
8005 	case BPF_FUNC_sock_ops_cb_flags_set:
8006 		return &bpf_sock_ops_cb_flags_set_proto;
8007 	case BPF_FUNC_sock_map_update:
8008 		return &bpf_sock_map_update_proto;
8009 	case BPF_FUNC_sock_hash_update:
8010 		return &bpf_sock_hash_update_proto;
8011 	case BPF_FUNC_get_socket_cookie:
8012 		return &bpf_get_socket_cookie_sock_ops_proto;
8013 	case BPF_FUNC_perf_event_output:
8014 		return &bpf_event_output_data_proto;
8015 	case BPF_FUNC_sk_storage_get:
8016 		return &bpf_sk_storage_get_proto;
8017 	case BPF_FUNC_sk_storage_delete:
8018 		return &bpf_sk_storage_delete_proto;
8019 	case BPF_FUNC_get_netns_cookie:
8020 		return &bpf_get_netns_cookie_sock_ops_proto;
8021 #ifdef CONFIG_INET
8022 	case BPF_FUNC_load_hdr_opt:
8023 		return &bpf_sock_ops_load_hdr_opt_proto;
8024 	case BPF_FUNC_store_hdr_opt:
8025 		return &bpf_sock_ops_store_hdr_opt_proto;
8026 	case BPF_FUNC_reserve_hdr_opt:
8027 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8028 	case BPF_FUNC_tcp_sock:
8029 		return &bpf_tcp_sock_proto;
8030 #endif /* CONFIG_INET */
8031 	default:
8032 		return bpf_sk_base_func_proto(func_id);
8033 	}
8034 }
8035 
8036 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8037 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8038 
8039 static const struct bpf_func_proto *
8040 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8041 {
8042 	switch (func_id) {
8043 	case BPF_FUNC_msg_redirect_map:
8044 		return &bpf_msg_redirect_map_proto;
8045 	case BPF_FUNC_msg_redirect_hash:
8046 		return &bpf_msg_redirect_hash_proto;
8047 	case BPF_FUNC_msg_apply_bytes:
8048 		return &bpf_msg_apply_bytes_proto;
8049 	case BPF_FUNC_msg_cork_bytes:
8050 		return &bpf_msg_cork_bytes_proto;
8051 	case BPF_FUNC_msg_pull_data:
8052 		return &bpf_msg_pull_data_proto;
8053 	case BPF_FUNC_msg_push_data:
8054 		return &bpf_msg_push_data_proto;
8055 	case BPF_FUNC_msg_pop_data:
8056 		return &bpf_msg_pop_data_proto;
8057 	case BPF_FUNC_perf_event_output:
8058 		return &bpf_event_output_data_proto;
8059 	case BPF_FUNC_get_current_uid_gid:
8060 		return &bpf_get_current_uid_gid_proto;
8061 	case BPF_FUNC_get_current_pid_tgid:
8062 		return &bpf_get_current_pid_tgid_proto;
8063 	case BPF_FUNC_sk_storage_get:
8064 		return &bpf_sk_storage_get_proto;
8065 	case BPF_FUNC_sk_storage_delete:
8066 		return &bpf_sk_storage_delete_proto;
8067 	case BPF_FUNC_get_netns_cookie:
8068 		return &bpf_get_netns_cookie_sk_msg_proto;
8069 #ifdef CONFIG_CGROUPS
8070 	case BPF_FUNC_get_current_cgroup_id:
8071 		return &bpf_get_current_cgroup_id_proto;
8072 	case BPF_FUNC_get_current_ancestor_cgroup_id:
8073 		return &bpf_get_current_ancestor_cgroup_id_proto;
8074 #endif
8075 #ifdef CONFIG_CGROUP_NET_CLASSID
8076 	case BPF_FUNC_get_cgroup_classid:
8077 		return &bpf_get_cgroup_classid_curr_proto;
8078 #endif
8079 	default:
8080 		return bpf_sk_base_func_proto(func_id);
8081 	}
8082 }
8083 
8084 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8085 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8086 
8087 static const struct bpf_func_proto *
8088 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8089 {
8090 	switch (func_id) {
8091 	case BPF_FUNC_skb_store_bytes:
8092 		return &bpf_skb_store_bytes_proto;
8093 	case BPF_FUNC_skb_load_bytes:
8094 		return &bpf_skb_load_bytes_proto;
8095 	case BPF_FUNC_skb_pull_data:
8096 		return &sk_skb_pull_data_proto;
8097 	case BPF_FUNC_skb_change_tail:
8098 		return &sk_skb_change_tail_proto;
8099 	case BPF_FUNC_skb_change_head:
8100 		return &sk_skb_change_head_proto;
8101 	case BPF_FUNC_skb_adjust_room:
8102 		return &sk_skb_adjust_room_proto;
8103 	case BPF_FUNC_get_socket_cookie:
8104 		return &bpf_get_socket_cookie_proto;
8105 	case BPF_FUNC_get_socket_uid:
8106 		return &bpf_get_socket_uid_proto;
8107 	case BPF_FUNC_sk_redirect_map:
8108 		return &bpf_sk_redirect_map_proto;
8109 	case BPF_FUNC_sk_redirect_hash:
8110 		return &bpf_sk_redirect_hash_proto;
8111 	case BPF_FUNC_perf_event_output:
8112 		return &bpf_skb_event_output_proto;
8113 #ifdef CONFIG_INET
8114 	case BPF_FUNC_sk_lookup_tcp:
8115 		return &bpf_sk_lookup_tcp_proto;
8116 	case BPF_FUNC_sk_lookup_udp:
8117 		return &bpf_sk_lookup_udp_proto;
8118 	case BPF_FUNC_sk_release:
8119 		return &bpf_sk_release_proto;
8120 	case BPF_FUNC_skc_lookup_tcp:
8121 		return &bpf_skc_lookup_tcp_proto;
8122 #endif
8123 	default:
8124 		return bpf_sk_base_func_proto(func_id);
8125 	}
8126 }
8127 
8128 static const struct bpf_func_proto *
8129 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8130 {
8131 	switch (func_id) {
8132 	case BPF_FUNC_skb_load_bytes:
8133 		return &bpf_flow_dissector_load_bytes_proto;
8134 	default:
8135 		return bpf_sk_base_func_proto(func_id);
8136 	}
8137 }
8138 
8139 static const struct bpf_func_proto *
8140 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8141 {
8142 	switch (func_id) {
8143 	case BPF_FUNC_skb_load_bytes:
8144 		return &bpf_skb_load_bytes_proto;
8145 	case BPF_FUNC_skb_pull_data:
8146 		return &bpf_skb_pull_data_proto;
8147 	case BPF_FUNC_csum_diff:
8148 		return &bpf_csum_diff_proto;
8149 	case BPF_FUNC_get_cgroup_classid:
8150 		return &bpf_get_cgroup_classid_proto;
8151 	case BPF_FUNC_get_route_realm:
8152 		return &bpf_get_route_realm_proto;
8153 	case BPF_FUNC_get_hash_recalc:
8154 		return &bpf_get_hash_recalc_proto;
8155 	case BPF_FUNC_perf_event_output:
8156 		return &bpf_skb_event_output_proto;
8157 	case BPF_FUNC_get_smp_processor_id:
8158 		return &bpf_get_smp_processor_id_proto;
8159 	case BPF_FUNC_skb_under_cgroup:
8160 		return &bpf_skb_under_cgroup_proto;
8161 	default:
8162 		return bpf_sk_base_func_proto(func_id);
8163 	}
8164 }
8165 
8166 static const struct bpf_func_proto *
8167 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8168 {
8169 	switch (func_id) {
8170 	case BPF_FUNC_lwt_push_encap:
8171 		return &bpf_lwt_in_push_encap_proto;
8172 	default:
8173 		return lwt_out_func_proto(func_id, prog);
8174 	}
8175 }
8176 
8177 static const struct bpf_func_proto *
8178 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8179 {
8180 	switch (func_id) {
8181 	case BPF_FUNC_skb_get_tunnel_key:
8182 		return &bpf_skb_get_tunnel_key_proto;
8183 	case BPF_FUNC_skb_set_tunnel_key:
8184 		return bpf_get_skb_set_tunnel_proto(func_id);
8185 	case BPF_FUNC_skb_get_tunnel_opt:
8186 		return &bpf_skb_get_tunnel_opt_proto;
8187 	case BPF_FUNC_skb_set_tunnel_opt:
8188 		return bpf_get_skb_set_tunnel_proto(func_id);
8189 	case BPF_FUNC_redirect:
8190 		return &bpf_redirect_proto;
8191 	case BPF_FUNC_clone_redirect:
8192 		return &bpf_clone_redirect_proto;
8193 	case BPF_FUNC_skb_change_tail:
8194 		return &bpf_skb_change_tail_proto;
8195 	case BPF_FUNC_skb_change_head:
8196 		return &bpf_skb_change_head_proto;
8197 	case BPF_FUNC_skb_store_bytes:
8198 		return &bpf_skb_store_bytes_proto;
8199 	case BPF_FUNC_csum_update:
8200 		return &bpf_csum_update_proto;
8201 	case BPF_FUNC_csum_level:
8202 		return &bpf_csum_level_proto;
8203 	case BPF_FUNC_l3_csum_replace:
8204 		return &bpf_l3_csum_replace_proto;
8205 	case BPF_FUNC_l4_csum_replace:
8206 		return &bpf_l4_csum_replace_proto;
8207 	case BPF_FUNC_set_hash_invalid:
8208 		return &bpf_set_hash_invalid_proto;
8209 	case BPF_FUNC_lwt_push_encap:
8210 		return &bpf_lwt_xmit_push_encap_proto;
8211 	default:
8212 		return lwt_out_func_proto(func_id, prog);
8213 	}
8214 }
8215 
8216 static const struct bpf_func_proto *
8217 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8218 {
8219 	switch (func_id) {
8220 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8221 	case BPF_FUNC_lwt_seg6_store_bytes:
8222 		return &bpf_lwt_seg6_store_bytes_proto;
8223 	case BPF_FUNC_lwt_seg6_action:
8224 		return &bpf_lwt_seg6_action_proto;
8225 	case BPF_FUNC_lwt_seg6_adjust_srh:
8226 		return &bpf_lwt_seg6_adjust_srh_proto;
8227 #endif
8228 	default:
8229 		return lwt_out_func_proto(func_id, prog);
8230 	}
8231 }
8232 
8233 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8234 				    const struct bpf_prog *prog,
8235 				    struct bpf_insn_access_aux *info)
8236 {
8237 	const int size_default = sizeof(__u32);
8238 
8239 	if (off < 0 || off >= sizeof(struct __sk_buff))
8240 		return false;
8241 
8242 	/* The verifier guarantees that size > 0. */
8243 	if (off % size != 0)
8244 		return false;
8245 
8246 	switch (off) {
8247 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8248 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8249 			return false;
8250 		break;
8251 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8252 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8253 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8254 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8255 	case bpf_ctx_range(struct __sk_buff, data):
8256 	case bpf_ctx_range(struct __sk_buff, data_meta):
8257 	case bpf_ctx_range(struct __sk_buff, data_end):
8258 		if (size != size_default)
8259 			return false;
8260 		break;
8261 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8262 		return false;
8263 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8264 		if (type == BPF_WRITE || size != sizeof(__u64))
8265 			return false;
8266 		break;
8267 	case bpf_ctx_range(struct __sk_buff, tstamp):
8268 		if (size != sizeof(__u64))
8269 			return false;
8270 		break;
8271 	case offsetof(struct __sk_buff, sk):
8272 		if (type == BPF_WRITE || size != sizeof(__u64))
8273 			return false;
8274 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8275 		break;
8276 	case offsetof(struct __sk_buff, tstamp_type):
8277 		return false;
8278 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8279 		/* Explicitly prohibit access to padding in __sk_buff. */
8280 		return false;
8281 	default:
8282 		/* Only narrow read access allowed for now. */
8283 		if (type == BPF_WRITE) {
8284 			if (size != size_default)
8285 				return false;
8286 		} else {
8287 			bpf_ctx_record_field_size(info, size_default);
8288 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8289 				return false;
8290 		}
8291 	}
8292 
8293 	return true;
8294 }
8295 
8296 static bool sk_filter_is_valid_access(int off, int size,
8297 				      enum bpf_access_type type,
8298 				      const struct bpf_prog *prog,
8299 				      struct bpf_insn_access_aux *info)
8300 {
8301 	switch (off) {
8302 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8303 	case bpf_ctx_range(struct __sk_buff, data):
8304 	case bpf_ctx_range(struct __sk_buff, data_meta):
8305 	case bpf_ctx_range(struct __sk_buff, data_end):
8306 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8307 	case bpf_ctx_range(struct __sk_buff, tstamp):
8308 	case bpf_ctx_range(struct __sk_buff, wire_len):
8309 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8310 		return false;
8311 	}
8312 
8313 	if (type == BPF_WRITE) {
8314 		switch (off) {
8315 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8316 			break;
8317 		default:
8318 			return false;
8319 		}
8320 	}
8321 
8322 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8323 }
8324 
8325 static bool cg_skb_is_valid_access(int off, int size,
8326 				   enum bpf_access_type type,
8327 				   const struct bpf_prog *prog,
8328 				   struct bpf_insn_access_aux *info)
8329 {
8330 	switch (off) {
8331 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8332 	case bpf_ctx_range(struct __sk_buff, data_meta):
8333 	case bpf_ctx_range(struct __sk_buff, wire_len):
8334 		return false;
8335 	case bpf_ctx_range(struct __sk_buff, data):
8336 	case bpf_ctx_range(struct __sk_buff, data_end):
8337 		if (!bpf_capable())
8338 			return false;
8339 		break;
8340 	}
8341 
8342 	if (type == BPF_WRITE) {
8343 		switch (off) {
8344 		case bpf_ctx_range(struct __sk_buff, mark):
8345 		case bpf_ctx_range(struct __sk_buff, priority):
8346 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8347 			break;
8348 		case bpf_ctx_range(struct __sk_buff, tstamp):
8349 			if (!bpf_capable())
8350 				return false;
8351 			break;
8352 		default:
8353 			return false;
8354 		}
8355 	}
8356 
8357 	switch (off) {
8358 	case bpf_ctx_range(struct __sk_buff, data):
8359 		info->reg_type = PTR_TO_PACKET;
8360 		break;
8361 	case bpf_ctx_range(struct __sk_buff, data_end):
8362 		info->reg_type = PTR_TO_PACKET_END;
8363 		break;
8364 	}
8365 
8366 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8367 }
8368 
8369 static bool lwt_is_valid_access(int off, int size,
8370 				enum bpf_access_type type,
8371 				const struct bpf_prog *prog,
8372 				struct bpf_insn_access_aux *info)
8373 {
8374 	switch (off) {
8375 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8376 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8377 	case bpf_ctx_range(struct __sk_buff, data_meta):
8378 	case bpf_ctx_range(struct __sk_buff, tstamp):
8379 	case bpf_ctx_range(struct __sk_buff, wire_len):
8380 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8381 		return false;
8382 	}
8383 
8384 	if (type == BPF_WRITE) {
8385 		switch (off) {
8386 		case bpf_ctx_range(struct __sk_buff, mark):
8387 		case bpf_ctx_range(struct __sk_buff, priority):
8388 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8389 			break;
8390 		default:
8391 			return false;
8392 		}
8393 	}
8394 
8395 	switch (off) {
8396 	case bpf_ctx_range(struct __sk_buff, data):
8397 		info->reg_type = PTR_TO_PACKET;
8398 		break;
8399 	case bpf_ctx_range(struct __sk_buff, data_end):
8400 		info->reg_type = PTR_TO_PACKET_END;
8401 		break;
8402 	}
8403 
8404 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8405 }
8406 
8407 /* Attach type specific accesses */
8408 static bool __sock_filter_check_attach_type(int off,
8409 					    enum bpf_access_type access_type,
8410 					    enum bpf_attach_type attach_type)
8411 {
8412 	switch (off) {
8413 	case offsetof(struct bpf_sock, bound_dev_if):
8414 	case offsetof(struct bpf_sock, mark):
8415 	case offsetof(struct bpf_sock, priority):
8416 		switch (attach_type) {
8417 		case BPF_CGROUP_INET_SOCK_CREATE:
8418 		case BPF_CGROUP_INET_SOCK_RELEASE:
8419 			goto full_access;
8420 		default:
8421 			return false;
8422 		}
8423 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8424 		switch (attach_type) {
8425 		case BPF_CGROUP_INET4_POST_BIND:
8426 			goto read_only;
8427 		default:
8428 			return false;
8429 		}
8430 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8431 		switch (attach_type) {
8432 		case BPF_CGROUP_INET6_POST_BIND:
8433 			goto read_only;
8434 		default:
8435 			return false;
8436 		}
8437 	case bpf_ctx_range(struct bpf_sock, src_port):
8438 		switch (attach_type) {
8439 		case BPF_CGROUP_INET4_POST_BIND:
8440 		case BPF_CGROUP_INET6_POST_BIND:
8441 			goto read_only;
8442 		default:
8443 			return false;
8444 		}
8445 	}
8446 read_only:
8447 	return access_type == BPF_READ;
8448 full_access:
8449 	return true;
8450 }
8451 
8452 bool bpf_sock_common_is_valid_access(int off, int size,
8453 				     enum bpf_access_type type,
8454 				     struct bpf_insn_access_aux *info)
8455 {
8456 	switch (off) {
8457 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8458 		return false;
8459 	default:
8460 		return bpf_sock_is_valid_access(off, size, type, info);
8461 	}
8462 }
8463 
8464 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8465 			      struct bpf_insn_access_aux *info)
8466 {
8467 	const int size_default = sizeof(__u32);
8468 	int field_size;
8469 
8470 	if (off < 0 || off >= sizeof(struct bpf_sock))
8471 		return false;
8472 	if (off % size != 0)
8473 		return false;
8474 
8475 	switch (off) {
8476 	case offsetof(struct bpf_sock, state):
8477 	case offsetof(struct bpf_sock, family):
8478 	case offsetof(struct bpf_sock, type):
8479 	case offsetof(struct bpf_sock, protocol):
8480 	case offsetof(struct bpf_sock, src_port):
8481 	case offsetof(struct bpf_sock, rx_queue_mapping):
8482 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8483 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8484 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8485 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8486 		bpf_ctx_record_field_size(info, size_default);
8487 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8488 	case bpf_ctx_range(struct bpf_sock, dst_port):
8489 		field_size = size == size_default ?
8490 			size_default : sizeof_field(struct bpf_sock, dst_port);
8491 		bpf_ctx_record_field_size(info, field_size);
8492 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8493 	case offsetofend(struct bpf_sock, dst_port) ...
8494 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8495 		return false;
8496 	}
8497 
8498 	return size == size_default;
8499 }
8500 
8501 static bool sock_filter_is_valid_access(int off, int size,
8502 					enum bpf_access_type type,
8503 					const struct bpf_prog *prog,
8504 					struct bpf_insn_access_aux *info)
8505 {
8506 	if (!bpf_sock_is_valid_access(off, size, type, info))
8507 		return false;
8508 	return __sock_filter_check_attach_type(off, type,
8509 					       prog->expected_attach_type);
8510 }
8511 
8512 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8513 			     const struct bpf_prog *prog)
8514 {
8515 	/* Neither direct read nor direct write requires any preliminary
8516 	 * action.
8517 	 */
8518 	return 0;
8519 }
8520 
8521 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8522 				const struct bpf_prog *prog, int drop_verdict)
8523 {
8524 	struct bpf_insn *insn = insn_buf;
8525 
8526 	if (!direct_write)
8527 		return 0;
8528 
8529 	/* if (!skb->cloned)
8530 	 *       goto start;
8531 	 *
8532 	 * (Fast-path, otherwise approximation that we might be
8533 	 *  a clone, do the rest in helper.)
8534 	 */
8535 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8536 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8537 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8538 
8539 	/* ret = bpf_skb_pull_data(skb, 0); */
8540 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8541 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8542 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8543 			       BPF_FUNC_skb_pull_data);
8544 	/* if (!ret)
8545 	 *      goto restore;
8546 	 * return TC_ACT_SHOT;
8547 	 */
8548 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8549 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8550 	*insn++ = BPF_EXIT_INSN();
8551 
8552 	/* restore: */
8553 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8554 	/* start: */
8555 	*insn++ = prog->insnsi[0];
8556 
8557 	return insn - insn_buf;
8558 }
8559 
8560 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8561 			  struct bpf_insn *insn_buf)
8562 {
8563 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8564 	struct bpf_insn *insn = insn_buf;
8565 
8566 	if (!indirect) {
8567 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8568 	} else {
8569 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8570 		if (orig->imm)
8571 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8572 	}
8573 	/* We're guaranteed here that CTX is in R6. */
8574 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8575 
8576 	switch (BPF_SIZE(orig->code)) {
8577 	case BPF_B:
8578 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8579 		break;
8580 	case BPF_H:
8581 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8582 		break;
8583 	case BPF_W:
8584 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8585 		break;
8586 	}
8587 
8588 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8589 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8590 	*insn++ = BPF_EXIT_INSN();
8591 
8592 	return insn - insn_buf;
8593 }
8594 
8595 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8596 			       const struct bpf_prog *prog)
8597 {
8598 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8599 }
8600 
8601 static bool tc_cls_act_is_valid_access(int off, int size,
8602 				       enum bpf_access_type type,
8603 				       const struct bpf_prog *prog,
8604 				       struct bpf_insn_access_aux *info)
8605 {
8606 	if (type == BPF_WRITE) {
8607 		switch (off) {
8608 		case bpf_ctx_range(struct __sk_buff, mark):
8609 		case bpf_ctx_range(struct __sk_buff, tc_index):
8610 		case bpf_ctx_range(struct __sk_buff, priority):
8611 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8612 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8613 		case bpf_ctx_range(struct __sk_buff, tstamp):
8614 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8615 			break;
8616 		default:
8617 			return false;
8618 		}
8619 	}
8620 
8621 	switch (off) {
8622 	case bpf_ctx_range(struct __sk_buff, data):
8623 		info->reg_type = PTR_TO_PACKET;
8624 		break;
8625 	case bpf_ctx_range(struct __sk_buff, data_meta):
8626 		info->reg_type = PTR_TO_PACKET_META;
8627 		break;
8628 	case bpf_ctx_range(struct __sk_buff, data_end):
8629 		info->reg_type = PTR_TO_PACKET_END;
8630 		break;
8631 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8632 		return false;
8633 	case offsetof(struct __sk_buff, tstamp_type):
8634 		/* The convert_ctx_access() on reading and writing
8635 		 * __sk_buff->tstamp depends on whether the bpf prog
8636 		 * has used __sk_buff->tstamp_type or not.
8637 		 * Thus, we need to set prog->tstamp_type_access
8638 		 * earlier during is_valid_access() here.
8639 		 */
8640 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8641 		return size == sizeof(__u8);
8642 	}
8643 
8644 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8645 }
8646 
8647 DEFINE_MUTEX(nf_conn_btf_access_lock);
8648 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8649 
8650 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log, const struct btf *btf,
8651 			      const struct btf_type *t, int off, int size,
8652 			      enum bpf_access_type atype, u32 *next_btf_id,
8653 			      enum bpf_type_flag *flag);
8654 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8655 
8656 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8657 					const struct btf *btf,
8658 					const struct btf_type *t, int off,
8659 					int size, enum bpf_access_type atype,
8660 					u32 *next_btf_id,
8661 					enum bpf_type_flag *flag)
8662 {
8663 	int ret = -EACCES;
8664 
8665 	if (atype == BPF_READ)
8666 		return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8667 					 flag);
8668 
8669 	mutex_lock(&nf_conn_btf_access_lock);
8670 	if (nfct_btf_struct_access)
8671 		ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8672 	mutex_unlock(&nf_conn_btf_access_lock);
8673 
8674 	return ret;
8675 }
8676 
8677 static bool __is_valid_xdp_access(int off, int size)
8678 {
8679 	if (off < 0 || off >= sizeof(struct xdp_md))
8680 		return false;
8681 	if (off % size != 0)
8682 		return false;
8683 	if (size != sizeof(__u32))
8684 		return false;
8685 
8686 	return true;
8687 }
8688 
8689 static bool xdp_is_valid_access(int off, int size,
8690 				enum bpf_access_type type,
8691 				const struct bpf_prog *prog,
8692 				struct bpf_insn_access_aux *info)
8693 {
8694 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8695 		switch (off) {
8696 		case offsetof(struct xdp_md, egress_ifindex):
8697 			return false;
8698 		}
8699 	}
8700 
8701 	if (type == BPF_WRITE) {
8702 		if (bpf_prog_is_dev_bound(prog->aux)) {
8703 			switch (off) {
8704 			case offsetof(struct xdp_md, rx_queue_index):
8705 				return __is_valid_xdp_access(off, size);
8706 			}
8707 		}
8708 		return false;
8709 	}
8710 
8711 	switch (off) {
8712 	case offsetof(struct xdp_md, data):
8713 		info->reg_type = PTR_TO_PACKET;
8714 		break;
8715 	case offsetof(struct xdp_md, data_meta):
8716 		info->reg_type = PTR_TO_PACKET_META;
8717 		break;
8718 	case offsetof(struct xdp_md, data_end):
8719 		info->reg_type = PTR_TO_PACKET_END;
8720 		break;
8721 	}
8722 
8723 	return __is_valid_xdp_access(off, size);
8724 }
8725 
8726 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8727 {
8728 	const u32 act_max = XDP_REDIRECT;
8729 
8730 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8731 		     act > act_max ? "Illegal" : "Driver unsupported",
8732 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8733 }
8734 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8735 
8736 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8737 				 const struct btf *btf,
8738 				 const struct btf_type *t, int off,
8739 				 int size, enum bpf_access_type atype,
8740 				 u32 *next_btf_id,
8741 				 enum bpf_type_flag *flag)
8742 {
8743 	int ret = -EACCES;
8744 
8745 	if (atype == BPF_READ)
8746 		return btf_struct_access(log, btf, t, off, size, atype, next_btf_id,
8747 					 flag);
8748 
8749 	mutex_lock(&nf_conn_btf_access_lock);
8750 	if (nfct_btf_struct_access)
8751 		ret = nfct_btf_struct_access(log, btf, t, off, size, atype, next_btf_id, flag);
8752 	mutex_unlock(&nf_conn_btf_access_lock);
8753 
8754 	return ret;
8755 }
8756 
8757 static bool sock_addr_is_valid_access(int off, int size,
8758 				      enum bpf_access_type type,
8759 				      const struct bpf_prog *prog,
8760 				      struct bpf_insn_access_aux *info)
8761 {
8762 	const int size_default = sizeof(__u32);
8763 
8764 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8765 		return false;
8766 	if (off % size != 0)
8767 		return false;
8768 
8769 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8770 	 * versa.
8771 	 */
8772 	switch (off) {
8773 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8774 		switch (prog->expected_attach_type) {
8775 		case BPF_CGROUP_INET4_BIND:
8776 		case BPF_CGROUP_INET4_CONNECT:
8777 		case BPF_CGROUP_INET4_GETPEERNAME:
8778 		case BPF_CGROUP_INET4_GETSOCKNAME:
8779 		case BPF_CGROUP_UDP4_SENDMSG:
8780 		case BPF_CGROUP_UDP4_RECVMSG:
8781 			break;
8782 		default:
8783 			return false;
8784 		}
8785 		break;
8786 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8787 		switch (prog->expected_attach_type) {
8788 		case BPF_CGROUP_INET6_BIND:
8789 		case BPF_CGROUP_INET6_CONNECT:
8790 		case BPF_CGROUP_INET6_GETPEERNAME:
8791 		case BPF_CGROUP_INET6_GETSOCKNAME:
8792 		case BPF_CGROUP_UDP6_SENDMSG:
8793 		case BPF_CGROUP_UDP6_RECVMSG:
8794 			break;
8795 		default:
8796 			return false;
8797 		}
8798 		break;
8799 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8800 		switch (prog->expected_attach_type) {
8801 		case BPF_CGROUP_UDP4_SENDMSG:
8802 			break;
8803 		default:
8804 			return false;
8805 		}
8806 		break;
8807 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8808 				msg_src_ip6[3]):
8809 		switch (prog->expected_attach_type) {
8810 		case BPF_CGROUP_UDP6_SENDMSG:
8811 			break;
8812 		default:
8813 			return false;
8814 		}
8815 		break;
8816 	}
8817 
8818 	switch (off) {
8819 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8820 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8821 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8822 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8823 				msg_src_ip6[3]):
8824 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8825 		if (type == BPF_READ) {
8826 			bpf_ctx_record_field_size(info, size_default);
8827 
8828 			if (bpf_ctx_wide_access_ok(off, size,
8829 						   struct bpf_sock_addr,
8830 						   user_ip6))
8831 				return true;
8832 
8833 			if (bpf_ctx_wide_access_ok(off, size,
8834 						   struct bpf_sock_addr,
8835 						   msg_src_ip6))
8836 				return true;
8837 
8838 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8839 				return false;
8840 		} else {
8841 			if (bpf_ctx_wide_access_ok(off, size,
8842 						   struct bpf_sock_addr,
8843 						   user_ip6))
8844 				return true;
8845 
8846 			if (bpf_ctx_wide_access_ok(off, size,
8847 						   struct bpf_sock_addr,
8848 						   msg_src_ip6))
8849 				return true;
8850 
8851 			if (size != size_default)
8852 				return false;
8853 		}
8854 		break;
8855 	case offsetof(struct bpf_sock_addr, sk):
8856 		if (type != BPF_READ)
8857 			return false;
8858 		if (size != sizeof(__u64))
8859 			return false;
8860 		info->reg_type = PTR_TO_SOCKET;
8861 		break;
8862 	default:
8863 		if (type == BPF_READ) {
8864 			if (size != size_default)
8865 				return false;
8866 		} else {
8867 			return false;
8868 		}
8869 	}
8870 
8871 	return true;
8872 }
8873 
8874 static bool sock_ops_is_valid_access(int off, int size,
8875 				     enum bpf_access_type type,
8876 				     const struct bpf_prog *prog,
8877 				     struct bpf_insn_access_aux *info)
8878 {
8879 	const int size_default = sizeof(__u32);
8880 
8881 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
8882 		return false;
8883 
8884 	/* The verifier guarantees that size > 0. */
8885 	if (off % size != 0)
8886 		return false;
8887 
8888 	if (type == BPF_WRITE) {
8889 		switch (off) {
8890 		case offsetof(struct bpf_sock_ops, reply):
8891 		case offsetof(struct bpf_sock_ops, sk_txhash):
8892 			if (size != size_default)
8893 				return false;
8894 			break;
8895 		default:
8896 			return false;
8897 		}
8898 	} else {
8899 		switch (off) {
8900 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
8901 					bytes_acked):
8902 			if (size != sizeof(__u64))
8903 				return false;
8904 			break;
8905 		case offsetof(struct bpf_sock_ops, sk):
8906 			if (size != sizeof(__u64))
8907 				return false;
8908 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
8909 			break;
8910 		case offsetof(struct bpf_sock_ops, skb_data):
8911 			if (size != sizeof(__u64))
8912 				return false;
8913 			info->reg_type = PTR_TO_PACKET;
8914 			break;
8915 		case offsetof(struct bpf_sock_ops, skb_data_end):
8916 			if (size != sizeof(__u64))
8917 				return false;
8918 			info->reg_type = PTR_TO_PACKET_END;
8919 			break;
8920 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
8921 			bpf_ctx_record_field_size(info, size_default);
8922 			return bpf_ctx_narrow_access_ok(off, size,
8923 							size_default);
8924 		default:
8925 			if (size != size_default)
8926 				return false;
8927 			break;
8928 		}
8929 	}
8930 
8931 	return true;
8932 }
8933 
8934 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
8935 			   const struct bpf_prog *prog)
8936 {
8937 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
8938 }
8939 
8940 static bool sk_skb_is_valid_access(int off, int size,
8941 				   enum bpf_access_type type,
8942 				   const struct bpf_prog *prog,
8943 				   struct bpf_insn_access_aux *info)
8944 {
8945 	switch (off) {
8946 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8947 	case bpf_ctx_range(struct __sk_buff, data_meta):
8948 	case bpf_ctx_range(struct __sk_buff, tstamp):
8949 	case bpf_ctx_range(struct __sk_buff, wire_len):
8950 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8951 		return false;
8952 	}
8953 
8954 	if (type == BPF_WRITE) {
8955 		switch (off) {
8956 		case bpf_ctx_range(struct __sk_buff, tc_index):
8957 		case bpf_ctx_range(struct __sk_buff, priority):
8958 			break;
8959 		default:
8960 			return false;
8961 		}
8962 	}
8963 
8964 	switch (off) {
8965 	case bpf_ctx_range(struct __sk_buff, mark):
8966 		return false;
8967 	case bpf_ctx_range(struct __sk_buff, data):
8968 		info->reg_type = PTR_TO_PACKET;
8969 		break;
8970 	case bpf_ctx_range(struct __sk_buff, data_end):
8971 		info->reg_type = PTR_TO_PACKET_END;
8972 		break;
8973 	}
8974 
8975 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8976 }
8977 
8978 static bool sk_msg_is_valid_access(int off, int size,
8979 				   enum bpf_access_type type,
8980 				   const struct bpf_prog *prog,
8981 				   struct bpf_insn_access_aux *info)
8982 {
8983 	if (type == BPF_WRITE)
8984 		return false;
8985 
8986 	if (off % size != 0)
8987 		return false;
8988 
8989 	switch (off) {
8990 	case offsetof(struct sk_msg_md, data):
8991 		info->reg_type = PTR_TO_PACKET;
8992 		if (size != sizeof(__u64))
8993 			return false;
8994 		break;
8995 	case offsetof(struct sk_msg_md, data_end):
8996 		info->reg_type = PTR_TO_PACKET_END;
8997 		if (size != sizeof(__u64))
8998 			return false;
8999 		break;
9000 	case offsetof(struct sk_msg_md, sk):
9001 		if (size != sizeof(__u64))
9002 			return false;
9003 		info->reg_type = PTR_TO_SOCKET;
9004 		break;
9005 	case bpf_ctx_range(struct sk_msg_md, family):
9006 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9007 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9008 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9009 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9010 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9011 	case bpf_ctx_range(struct sk_msg_md, local_port):
9012 	case bpf_ctx_range(struct sk_msg_md, size):
9013 		if (size != sizeof(__u32))
9014 			return false;
9015 		break;
9016 	default:
9017 		return false;
9018 	}
9019 	return true;
9020 }
9021 
9022 static bool flow_dissector_is_valid_access(int off, int size,
9023 					   enum bpf_access_type type,
9024 					   const struct bpf_prog *prog,
9025 					   struct bpf_insn_access_aux *info)
9026 {
9027 	const int size_default = sizeof(__u32);
9028 
9029 	if (off < 0 || off >= sizeof(struct __sk_buff))
9030 		return false;
9031 
9032 	if (type == BPF_WRITE)
9033 		return false;
9034 
9035 	switch (off) {
9036 	case bpf_ctx_range(struct __sk_buff, data):
9037 		if (size != size_default)
9038 			return false;
9039 		info->reg_type = PTR_TO_PACKET;
9040 		return true;
9041 	case bpf_ctx_range(struct __sk_buff, data_end):
9042 		if (size != size_default)
9043 			return false;
9044 		info->reg_type = PTR_TO_PACKET_END;
9045 		return true;
9046 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9047 		if (size != sizeof(__u64))
9048 			return false;
9049 		info->reg_type = PTR_TO_FLOW_KEYS;
9050 		return true;
9051 	default:
9052 		return false;
9053 	}
9054 }
9055 
9056 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9057 					     const struct bpf_insn *si,
9058 					     struct bpf_insn *insn_buf,
9059 					     struct bpf_prog *prog,
9060 					     u32 *target_size)
9061 
9062 {
9063 	struct bpf_insn *insn = insn_buf;
9064 
9065 	switch (si->off) {
9066 	case offsetof(struct __sk_buff, data):
9067 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9068 				      si->dst_reg, si->src_reg,
9069 				      offsetof(struct bpf_flow_dissector, data));
9070 		break;
9071 
9072 	case offsetof(struct __sk_buff, data_end):
9073 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9074 				      si->dst_reg, si->src_reg,
9075 				      offsetof(struct bpf_flow_dissector, data_end));
9076 		break;
9077 
9078 	case offsetof(struct __sk_buff, flow_keys):
9079 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9080 				      si->dst_reg, si->src_reg,
9081 				      offsetof(struct bpf_flow_dissector, flow_keys));
9082 		break;
9083 	}
9084 
9085 	return insn - insn_buf;
9086 }
9087 
9088 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9089 						     struct bpf_insn *insn)
9090 {
9091 	__u8 value_reg = si->dst_reg;
9092 	__u8 skb_reg = si->src_reg;
9093 	/* AX is needed because src_reg and dst_reg could be the same */
9094 	__u8 tmp_reg = BPF_REG_AX;
9095 
9096 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9097 			      PKT_VLAN_PRESENT_OFFSET);
9098 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9099 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9100 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9101 	*insn++ = BPF_JMP_A(1);
9102 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9103 
9104 	return insn;
9105 }
9106 
9107 static struct bpf_insn *bpf_convert_shinfo_access(const struct bpf_insn *si,
9108 						  struct bpf_insn *insn)
9109 {
9110 	/* si->dst_reg = skb_shinfo(SKB); */
9111 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9112 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9113 			      BPF_REG_AX, si->src_reg,
9114 			      offsetof(struct sk_buff, end));
9115 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9116 			      si->dst_reg, si->src_reg,
9117 			      offsetof(struct sk_buff, head));
9118 	*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
9119 #else
9120 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9121 			      si->dst_reg, si->src_reg,
9122 			      offsetof(struct sk_buff, end));
9123 #endif
9124 
9125 	return insn;
9126 }
9127 
9128 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9129 						const struct bpf_insn *si,
9130 						struct bpf_insn *insn)
9131 {
9132 	__u8 value_reg = si->dst_reg;
9133 	__u8 skb_reg = si->src_reg;
9134 
9135 #ifdef CONFIG_NET_CLS_ACT
9136 	/* If the tstamp_type is read,
9137 	 * the bpf prog is aware the tstamp could have delivery time.
9138 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9139 	 */
9140 	if (!prog->tstamp_type_access) {
9141 		/* AX is needed because src_reg and dst_reg could be the same */
9142 		__u8 tmp_reg = BPF_REG_AX;
9143 
9144 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9145 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9146 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9147 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9148 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9149 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9150 		 * read 0 as the (rcv) timestamp.
9151 		 */
9152 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9153 		*insn++ = BPF_JMP_A(1);
9154 	}
9155 #endif
9156 
9157 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9158 			      offsetof(struct sk_buff, tstamp));
9159 	return insn;
9160 }
9161 
9162 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9163 						 const struct bpf_insn *si,
9164 						 struct bpf_insn *insn)
9165 {
9166 	__u8 value_reg = si->src_reg;
9167 	__u8 skb_reg = si->dst_reg;
9168 
9169 #ifdef CONFIG_NET_CLS_ACT
9170 	/* If the tstamp_type is read,
9171 	 * the bpf prog is aware the tstamp could have delivery time.
9172 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9173 	 * Otherwise, writing at ingress will have to clear the
9174 	 * mono_delivery_time bit also.
9175 	 */
9176 	if (!prog->tstamp_type_access) {
9177 		__u8 tmp_reg = BPF_REG_AX;
9178 
9179 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, PKT_VLAN_PRESENT_OFFSET);
9180 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9181 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9182 		/* goto <store> */
9183 		*insn++ = BPF_JMP_A(2);
9184 		/* <clear>: mono_delivery_time */
9185 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9186 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, PKT_VLAN_PRESENT_OFFSET);
9187 	}
9188 #endif
9189 
9190 	/* <store>: skb->tstamp = tstamp */
9191 	*insn++ = BPF_STX_MEM(BPF_DW, skb_reg, value_reg,
9192 			      offsetof(struct sk_buff, tstamp));
9193 	return insn;
9194 }
9195 
9196 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9197 				  const struct bpf_insn *si,
9198 				  struct bpf_insn *insn_buf,
9199 				  struct bpf_prog *prog, u32 *target_size)
9200 {
9201 	struct bpf_insn *insn = insn_buf;
9202 	int off;
9203 
9204 	switch (si->off) {
9205 	case offsetof(struct __sk_buff, len):
9206 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9207 				      bpf_target_off(struct sk_buff, len, 4,
9208 						     target_size));
9209 		break;
9210 
9211 	case offsetof(struct __sk_buff, protocol):
9212 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9213 				      bpf_target_off(struct sk_buff, protocol, 2,
9214 						     target_size));
9215 		break;
9216 
9217 	case offsetof(struct __sk_buff, vlan_proto):
9218 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9219 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9220 						     target_size));
9221 		break;
9222 
9223 	case offsetof(struct __sk_buff, priority):
9224 		if (type == BPF_WRITE)
9225 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9226 					      bpf_target_off(struct sk_buff, priority, 4,
9227 							     target_size));
9228 		else
9229 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9230 					      bpf_target_off(struct sk_buff, priority, 4,
9231 							     target_size));
9232 		break;
9233 
9234 	case offsetof(struct __sk_buff, ingress_ifindex):
9235 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9236 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9237 						     target_size));
9238 		break;
9239 
9240 	case offsetof(struct __sk_buff, ifindex):
9241 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9242 				      si->dst_reg, si->src_reg,
9243 				      offsetof(struct sk_buff, dev));
9244 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9245 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9246 				      bpf_target_off(struct net_device, ifindex, 4,
9247 						     target_size));
9248 		break;
9249 
9250 	case offsetof(struct __sk_buff, hash):
9251 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9252 				      bpf_target_off(struct sk_buff, hash, 4,
9253 						     target_size));
9254 		break;
9255 
9256 	case offsetof(struct __sk_buff, mark):
9257 		if (type == BPF_WRITE)
9258 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9259 					      bpf_target_off(struct sk_buff, mark, 4,
9260 							     target_size));
9261 		else
9262 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9263 					      bpf_target_off(struct sk_buff, mark, 4,
9264 							     target_size));
9265 		break;
9266 
9267 	case offsetof(struct __sk_buff, pkt_type):
9268 		*target_size = 1;
9269 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9270 				      PKT_TYPE_OFFSET);
9271 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9272 #ifdef __BIG_ENDIAN_BITFIELD
9273 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9274 #endif
9275 		break;
9276 
9277 	case offsetof(struct __sk_buff, queue_mapping):
9278 		if (type == BPF_WRITE) {
9279 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9280 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9281 					      bpf_target_off(struct sk_buff,
9282 							     queue_mapping,
9283 							     2, target_size));
9284 		} else {
9285 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9286 					      bpf_target_off(struct sk_buff,
9287 							     queue_mapping,
9288 							     2, target_size));
9289 		}
9290 		break;
9291 
9292 	case offsetof(struct __sk_buff, vlan_present):
9293 		*target_size = 1;
9294 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9295 				      PKT_VLAN_PRESENT_OFFSET);
9296 		if (PKT_VLAN_PRESENT_BIT)
9297 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
9298 		if (PKT_VLAN_PRESENT_BIT < 7)
9299 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
9300 		break;
9301 
9302 	case offsetof(struct __sk_buff, vlan_tci):
9303 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9304 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9305 						     target_size));
9306 		break;
9307 
9308 	case offsetof(struct __sk_buff, cb[0]) ...
9309 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9310 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9311 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9312 			      offsetof(struct qdisc_skb_cb, data)) %
9313 			     sizeof(__u64));
9314 
9315 		prog->cb_access = 1;
9316 		off  = si->off;
9317 		off -= offsetof(struct __sk_buff, cb[0]);
9318 		off += offsetof(struct sk_buff, cb);
9319 		off += offsetof(struct qdisc_skb_cb, data);
9320 		if (type == BPF_WRITE)
9321 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
9322 					      si->src_reg, off);
9323 		else
9324 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9325 					      si->src_reg, off);
9326 		break;
9327 
9328 	case offsetof(struct __sk_buff, tc_classid):
9329 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9330 
9331 		off  = si->off;
9332 		off -= offsetof(struct __sk_buff, tc_classid);
9333 		off += offsetof(struct sk_buff, cb);
9334 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9335 		*target_size = 2;
9336 		if (type == BPF_WRITE)
9337 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
9338 					      si->src_reg, off);
9339 		else
9340 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9341 					      si->src_reg, off);
9342 		break;
9343 
9344 	case offsetof(struct __sk_buff, data):
9345 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9346 				      si->dst_reg, si->src_reg,
9347 				      offsetof(struct sk_buff, data));
9348 		break;
9349 
9350 	case offsetof(struct __sk_buff, data_meta):
9351 		off  = si->off;
9352 		off -= offsetof(struct __sk_buff, data_meta);
9353 		off += offsetof(struct sk_buff, cb);
9354 		off += offsetof(struct bpf_skb_data_end, data_meta);
9355 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9356 				      si->src_reg, off);
9357 		break;
9358 
9359 	case offsetof(struct __sk_buff, data_end):
9360 		off  = si->off;
9361 		off -= offsetof(struct __sk_buff, data_end);
9362 		off += offsetof(struct sk_buff, cb);
9363 		off += offsetof(struct bpf_skb_data_end, data_end);
9364 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9365 				      si->src_reg, off);
9366 		break;
9367 
9368 	case offsetof(struct __sk_buff, tc_index):
9369 #ifdef CONFIG_NET_SCHED
9370 		if (type == BPF_WRITE)
9371 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
9372 					      bpf_target_off(struct sk_buff, tc_index, 2,
9373 							     target_size));
9374 		else
9375 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9376 					      bpf_target_off(struct sk_buff, tc_index, 2,
9377 							     target_size));
9378 #else
9379 		*target_size = 2;
9380 		if (type == BPF_WRITE)
9381 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9382 		else
9383 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9384 #endif
9385 		break;
9386 
9387 	case offsetof(struct __sk_buff, napi_id):
9388 #if defined(CONFIG_NET_RX_BUSY_POLL)
9389 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9390 				      bpf_target_off(struct sk_buff, napi_id, 4,
9391 						     target_size));
9392 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9393 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9394 #else
9395 		*target_size = 4;
9396 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9397 #endif
9398 		break;
9399 	case offsetof(struct __sk_buff, family):
9400 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9401 
9402 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9403 				      si->dst_reg, si->src_reg,
9404 				      offsetof(struct sk_buff, sk));
9405 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9406 				      bpf_target_off(struct sock_common,
9407 						     skc_family,
9408 						     2, target_size));
9409 		break;
9410 	case offsetof(struct __sk_buff, remote_ip4):
9411 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9412 
9413 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9414 				      si->dst_reg, si->src_reg,
9415 				      offsetof(struct sk_buff, sk));
9416 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9417 				      bpf_target_off(struct sock_common,
9418 						     skc_daddr,
9419 						     4, target_size));
9420 		break;
9421 	case offsetof(struct __sk_buff, local_ip4):
9422 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9423 					  skc_rcv_saddr) != 4);
9424 
9425 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9426 				      si->dst_reg, si->src_reg,
9427 				      offsetof(struct sk_buff, sk));
9428 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9429 				      bpf_target_off(struct sock_common,
9430 						     skc_rcv_saddr,
9431 						     4, target_size));
9432 		break;
9433 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9434 	     offsetof(struct __sk_buff, remote_ip6[3]):
9435 #if IS_ENABLED(CONFIG_IPV6)
9436 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9437 					  skc_v6_daddr.s6_addr32[0]) != 4);
9438 
9439 		off = si->off;
9440 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9441 
9442 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9443 				      si->dst_reg, si->src_reg,
9444 				      offsetof(struct sk_buff, sk));
9445 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9446 				      offsetof(struct sock_common,
9447 					       skc_v6_daddr.s6_addr32[0]) +
9448 				      off);
9449 #else
9450 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9451 #endif
9452 		break;
9453 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9454 	     offsetof(struct __sk_buff, local_ip6[3]):
9455 #if IS_ENABLED(CONFIG_IPV6)
9456 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9457 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9458 
9459 		off = si->off;
9460 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9461 
9462 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9463 				      si->dst_reg, si->src_reg,
9464 				      offsetof(struct sk_buff, sk));
9465 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9466 				      offsetof(struct sock_common,
9467 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9468 				      off);
9469 #else
9470 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9471 #endif
9472 		break;
9473 
9474 	case offsetof(struct __sk_buff, remote_port):
9475 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9476 
9477 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9478 				      si->dst_reg, si->src_reg,
9479 				      offsetof(struct sk_buff, sk));
9480 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9481 				      bpf_target_off(struct sock_common,
9482 						     skc_dport,
9483 						     2, target_size));
9484 #ifndef __BIG_ENDIAN_BITFIELD
9485 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9486 #endif
9487 		break;
9488 
9489 	case offsetof(struct __sk_buff, local_port):
9490 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9491 
9492 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9493 				      si->dst_reg, si->src_reg,
9494 				      offsetof(struct sk_buff, sk));
9495 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9496 				      bpf_target_off(struct sock_common,
9497 						     skc_num, 2, target_size));
9498 		break;
9499 
9500 	case offsetof(struct __sk_buff, tstamp):
9501 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9502 
9503 		if (type == BPF_WRITE)
9504 			insn = bpf_convert_tstamp_write(prog, si, insn);
9505 		else
9506 			insn = bpf_convert_tstamp_read(prog, si, insn);
9507 		break;
9508 
9509 	case offsetof(struct __sk_buff, tstamp_type):
9510 		insn = bpf_convert_tstamp_type_read(si, insn);
9511 		break;
9512 
9513 	case offsetof(struct __sk_buff, gso_segs):
9514 		insn = bpf_convert_shinfo_access(si, insn);
9515 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9516 				      si->dst_reg, si->dst_reg,
9517 				      bpf_target_off(struct skb_shared_info,
9518 						     gso_segs, 2,
9519 						     target_size));
9520 		break;
9521 	case offsetof(struct __sk_buff, gso_size):
9522 		insn = bpf_convert_shinfo_access(si, insn);
9523 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9524 				      si->dst_reg, si->dst_reg,
9525 				      bpf_target_off(struct skb_shared_info,
9526 						     gso_size, 2,
9527 						     target_size));
9528 		break;
9529 	case offsetof(struct __sk_buff, wire_len):
9530 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9531 
9532 		off = si->off;
9533 		off -= offsetof(struct __sk_buff, wire_len);
9534 		off += offsetof(struct sk_buff, cb);
9535 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9536 		*target_size = 4;
9537 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9538 		break;
9539 
9540 	case offsetof(struct __sk_buff, sk):
9541 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9542 				      si->dst_reg, si->src_reg,
9543 				      offsetof(struct sk_buff, sk));
9544 		break;
9545 	case offsetof(struct __sk_buff, hwtstamp):
9546 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9547 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9548 
9549 		insn = bpf_convert_shinfo_access(si, insn);
9550 		*insn++ = BPF_LDX_MEM(BPF_DW,
9551 				      si->dst_reg, si->dst_reg,
9552 				      bpf_target_off(struct skb_shared_info,
9553 						     hwtstamps, 8,
9554 						     target_size));
9555 		break;
9556 	}
9557 
9558 	return insn - insn_buf;
9559 }
9560 
9561 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9562 				const struct bpf_insn *si,
9563 				struct bpf_insn *insn_buf,
9564 				struct bpf_prog *prog, u32 *target_size)
9565 {
9566 	struct bpf_insn *insn = insn_buf;
9567 	int off;
9568 
9569 	switch (si->off) {
9570 	case offsetof(struct bpf_sock, bound_dev_if):
9571 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9572 
9573 		if (type == BPF_WRITE)
9574 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9575 					offsetof(struct sock, sk_bound_dev_if));
9576 		else
9577 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9578 				      offsetof(struct sock, sk_bound_dev_if));
9579 		break;
9580 
9581 	case offsetof(struct bpf_sock, mark):
9582 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9583 
9584 		if (type == BPF_WRITE)
9585 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9586 					offsetof(struct sock, sk_mark));
9587 		else
9588 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9589 				      offsetof(struct sock, sk_mark));
9590 		break;
9591 
9592 	case offsetof(struct bpf_sock, priority):
9593 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9594 
9595 		if (type == BPF_WRITE)
9596 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
9597 					offsetof(struct sock, sk_priority));
9598 		else
9599 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9600 				      offsetof(struct sock, sk_priority));
9601 		break;
9602 
9603 	case offsetof(struct bpf_sock, family):
9604 		*insn++ = BPF_LDX_MEM(
9605 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9606 			si->dst_reg, si->src_reg,
9607 			bpf_target_off(struct sock_common,
9608 				       skc_family,
9609 				       sizeof_field(struct sock_common,
9610 						    skc_family),
9611 				       target_size));
9612 		break;
9613 
9614 	case offsetof(struct bpf_sock, type):
9615 		*insn++ = BPF_LDX_MEM(
9616 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9617 			si->dst_reg, si->src_reg,
9618 			bpf_target_off(struct sock, sk_type,
9619 				       sizeof_field(struct sock, sk_type),
9620 				       target_size));
9621 		break;
9622 
9623 	case offsetof(struct bpf_sock, protocol):
9624 		*insn++ = BPF_LDX_MEM(
9625 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9626 			si->dst_reg, si->src_reg,
9627 			bpf_target_off(struct sock, sk_protocol,
9628 				       sizeof_field(struct sock, sk_protocol),
9629 				       target_size));
9630 		break;
9631 
9632 	case offsetof(struct bpf_sock, src_ip4):
9633 		*insn++ = BPF_LDX_MEM(
9634 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9635 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9636 				       sizeof_field(struct sock_common,
9637 						    skc_rcv_saddr),
9638 				       target_size));
9639 		break;
9640 
9641 	case offsetof(struct bpf_sock, dst_ip4):
9642 		*insn++ = BPF_LDX_MEM(
9643 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9644 			bpf_target_off(struct sock_common, skc_daddr,
9645 				       sizeof_field(struct sock_common,
9646 						    skc_daddr),
9647 				       target_size));
9648 		break;
9649 
9650 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9651 #if IS_ENABLED(CONFIG_IPV6)
9652 		off = si->off;
9653 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9654 		*insn++ = BPF_LDX_MEM(
9655 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9656 			bpf_target_off(
9657 				struct sock_common,
9658 				skc_v6_rcv_saddr.s6_addr32[0],
9659 				sizeof_field(struct sock_common,
9660 					     skc_v6_rcv_saddr.s6_addr32[0]),
9661 				target_size) + off);
9662 #else
9663 		(void)off;
9664 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9665 #endif
9666 		break;
9667 
9668 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9669 #if IS_ENABLED(CONFIG_IPV6)
9670 		off = si->off;
9671 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9672 		*insn++ = BPF_LDX_MEM(
9673 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9674 			bpf_target_off(struct sock_common,
9675 				       skc_v6_daddr.s6_addr32[0],
9676 				       sizeof_field(struct sock_common,
9677 						    skc_v6_daddr.s6_addr32[0]),
9678 				       target_size) + off);
9679 #else
9680 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9681 		*target_size = 4;
9682 #endif
9683 		break;
9684 
9685 	case offsetof(struct bpf_sock, src_port):
9686 		*insn++ = BPF_LDX_MEM(
9687 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9688 			si->dst_reg, si->src_reg,
9689 			bpf_target_off(struct sock_common, skc_num,
9690 				       sizeof_field(struct sock_common,
9691 						    skc_num),
9692 				       target_size));
9693 		break;
9694 
9695 	case offsetof(struct bpf_sock, dst_port):
9696 		*insn++ = BPF_LDX_MEM(
9697 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9698 			si->dst_reg, si->src_reg,
9699 			bpf_target_off(struct sock_common, skc_dport,
9700 				       sizeof_field(struct sock_common,
9701 						    skc_dport),
9702 				       target_size));
9703 		break;
9704 
9705 	case offsetof(struct bpf_sock, state):
9706 		*insn++ = BPF_LDX_MEM(
9707 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9708 			si->dst_reg, si->src_reg,
9709 			bpf_target_off(struct sock_common, skc_state,
9710 				       sizeof_field(struct sock_common,
9711 						    skc_state),
9712 				       target_size));
9713 		break;
9714 	case offsetof(struct bpf_sock, rx_queue_mapping):
9715 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9716 		*insn++ = BPF_LDX_MEM(
9717 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9718 			si->dst_reg, si->src_reg,
9719 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9720 				       sizeof_field(struct sock,
9721 						    sk_rx_queue_mapping),
9722 				       target_size));
9723 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9724 				      1);
9725 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9726 #else
9727 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9728 		*target_size = 2;
9729 #endif
9730 		break;
9731 	}
9732 
9733 	return insn - insn_buf;
9734 }
9735 
9736 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9737 					 const struct bpf_insn *si,
9738 					 struct bpf_insn *insn_buf,
9739 					 struct bpf_prog *prog, u32 *target_size)
9740 {
9741 	struct bpf_insn *insn = insn_buf;
9742 
9743 	switch (si->off) {
9744 	case offsetof(struct __sk_buff, ifindex):
9745 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9746 				      si->dst_reg, si->src_reg,
9747 				      offsetof(struct sk_buff, dev));
9748 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9749 				      bpf_target_off(struct net_device, ifindex, 4,
9750 						     target_size));
9751 		break;
9752 	default:
9753 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9754 					      target_size);
9755 	}
9756 
9757 	return insn - insn_buf;
9758 }
9759 
9760 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9761 				  const struct bpf_insn *si,
9762 				  struct bpf_insn *insn_buf,
9763 				  struct bpf_prog *prog, u32 *target_size)
9764 {
9765 	struct bpf_insn *insn = insn_buf;
9766 
9767 	switch (si->off) {
9768 	case offsetof(struct xdp_md, data):
9769 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9770 				      si->dst_reg, si->src_reg,
9771 				      offsetof(struct xdp_buff, data));
9772 		break;
9773 	case offsetof(struct xdp_md, data_meta):
9774 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9775 				      si->dst_reg, si->src_reg,
9776 				      offsetof(struct xdp_buff, data_meta));
9777 		break;
9778 	case offsetof(struct xdp_md, data_end):
9779 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9780 				      si->dst_reg, si->src_reg,
9781 				      offsetof(struct xdp_buff, data_end));
9782 		break;
9783 	case offsetof(struct xdp_md, ingress_ifindex):
9784 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9785 				      si->dst_reg, si->src_reg,
9786 				      offsetof(struct xdp_buff, rxq));
9787 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9788 				      si->dst_reg, si->dst_reg,
9789 				      offsetof(struct xdp_rxq_info, dev));
9790 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9791 				      offsetof(struct net_device, ifindex));
9792 		break;
9793 	case offsetof(struct xdp_md, rx_queue_index):
9794 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9795 				      si->dst_reg, si->src_reg,
9796 				      offsetof(struct xdp_buff, rxq));
9797 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9798 				      offsetof(struct xdp_rxq_info,
9799 					       queue_index));
9800 		break;
9801 	case offsetof(struct xdp_md, egress_ifindex):
9802 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9803 				      si->dst_reg, si->src_reg,
9804 				      offsetof(struct xdp_buff, txq));
9805 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9806 				      si->dst_reg, si->dst_reg,
9807 				      offsetof(struct xdp_txq_info, dev));
9808 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9809 				      offsetof(struct net_device, ifindex));
9810 		break;
9811 	}
9812 
9813 	return insn - insn_buf;
9814 }
9815 
9816 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9817  * context Structure, F is Field in context structure that contains a pointer
9818  * to Nested Structure of type NS that has the field NF.
9819  *
9820  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9821  * sure that SIZE is not greater than actual size of S.F.NF.
9822  *
9823  * If offset OFF is provided, the load happens from that offset relative to
9824  * offset of NF.
9825  */
9826 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
9827 	do {								       \
9828 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
9829 				      si->src_reg, offsetof(S, F));	       \
9830 		*insn++ = BPF_LDX_MEM(					       \
9831 			SIZE, si->dst_reg, si->dst_reg,			       \
9832 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9833 				       target_size)			       \
9834 				+ OFF);					       \
9835 	} while (0)
9836 
9837 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
9838 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
9839 					     BPF_FIELD_SIZEOF(NS, NF), 0)
9840 
9841 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
9842  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
9843  *
9844  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
9845  * "register" since two registers available in convert_ctx_access are not
9846  * enough: we can't override neither SRC, since it contains value to store, nor
9847  * DST since it contains pointer to context that may be used by later
9848  * instructions. But we need a temporary place to save pointer to nested
9849  * structure whose field we want to store to.
9850  */
9851 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
9852 	do {								       \
9853 		int tmp_reg = BPF_REG_9;				       \
9854 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9855 			--tmp_reg;					       \
9856 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
9857 			--tmp_reg;					       \
9858 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
9859 				      offsetof(S, TF));			       \
9860 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
9861 				      si->dst_reg, offsetof(S, F));	       \
9862 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
9863 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
9864 				       target_size)			       \
9865 				+ OFF);					       \
9866 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
9867 				      offsetof(S, TF));			       \
9868 	} while (0)
9869 
9870 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
9871 						      TF)		       \
9872 	do {								       \
9873 		if (type == BPF_WRITE) {				       \
9874 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
9875 							 OFF, TF);	       \
9876 		} else {						       \
9877 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
9878 				S, NS, F, NF, SIZE, OFF);  \
9879 		}							       \
9880 	} while (0)
9881 
9882 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
9883 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
9884 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
9885 
9886 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
9887 					const struct bpf_insn *si,
9888 					struct bpf_insn *insn_buf,
9889 					struct bpf_prog *prog, u32 *target_size)
9890 {
9891 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
9892 	struct bpf_insn *insn = insn_buf;
9893 
9894 	switch (si->off) {
9895 	case offsetof(struct bpf_sock_addr, user_family):
9896 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9897 					    struct sockaddr, uaddr, sa_family);
9898 		break;
9899 
9900 	case offsetof(struct bpf_sock_addr, user_ip4):
9901 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9902 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
9903 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
9904 		break;
9905 
9906 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9907 		off = si->off;
9908 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
9909 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9910 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9911 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
9912 			tmp_reg);
9913 		break;
9914 
9915 	case offsetof(struct bpf_sock_addr, user_port):
9916 		/* To get port we need to know sa_family first and then treat
9917 		 * sockaddr as either sockaddr_in or sockaddr_in6.
9918 		 * Though we can simplify since port field has same offset and
9919 		 * size in both structures.
9920 		 * Here we check this invariant and use just one of the
9921 		 * structures if it's true.
9922 		 */
9923 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
9924 			     offsetof(struct sockaddr_in6, sin6_port));
9925 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
9926 			     sizeof_field(struct sockaddr_in6, sin6_port));
9927 		/* Account for sin6_port being smaller than user_port. */
9928 		port_size = min(port_size, BPF_LDST_BYTES(si));
9929 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9930 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
9931 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
9932 		break;
9933 
9934 	case offsetof(struct bpf_sock_addr, family):
9935 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9936 					    struct sock, sk, sk_family);
9937 		break;
9938 
9939 	case offsetof(struct bpf_sock_addr, type):
9940 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9941 					    struct sock, sk, sk_type);
9942 		break;
9943 
9944 	case offsetof(struct bpf_sock_addr, protocol):
9945 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
9946 					    struct sock, sk, sk_protocol);
9947 		break;
9948 
9949 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
9950 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
9951 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9952 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
9953 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
9954 		break;
9955 
9956 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9957 				msg_src_ip6[3]):
9958 		off = si->off;
9959 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
9960 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
9961 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
9962 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
9963 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
9964 		break;
9965 	case offsetof(struct bpf_sock_addr, sk):
9966 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
9967 				      si->dst_reg, si->src_reg,
9968 				      offsetof(struct bpf_sock_addr_kern, sk));
9969 		break;
9970 	}
9971 
9972 	return insn - insn_buf;
9973 }
9974 
9975 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
9976 				       const struct bpf_insn *si,
9977 				       struct bpf_insn *insn_buf,
9978 				       struct bpf_prog *prog,
9979 				       u32 *target_size)
9980 {
9981 	struct bpf_insn *insn = insn_buf;
9982 	int off;
9983 
9984 /* Helper macro for adding read access to tcp_sock or sock fields. */
9985 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
9986 	do {								      \
9987 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
9988 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
9989 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
9990 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9991 			reg--;						      \
9992 		if (si->dst_reg == reg || si->src_reg == reg)		      \
9993 			reg--;						      \
9994 		if (si->dst_reg == si->src_reg) {			      \
9995 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
9996 					  offsetof(struct bpf_sock_ops_kern,  \
9997 					  temp));			      \
9998 			fullsock_reg = reg;				      \
9999 			jmp += 2;					      \
10000 		}							      \
10001 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10002 						struct bpf_sock_ops_kern,     \
10003 						is_fullsock),		      \
10004 				      fullsock_reg, si->src_reg,	      \
10005 				      offsetof(struct bpf_sock_ops_kern,      \
10006 					       is_fullsock));		      \
10007 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10008 		if (si->dst_reg == si->src_reg)				      \
10009 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10010 				      offsetof(struct bpf_sock_ops_kern,      \
10011 				      temp));				      \
10012 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10013 						struct bpf_sock_ops_kern, sk),\
10014 				      si->dst_reg, si->src_reg,		      \
10015 				      offsetof(struct bpf_sock_ops_kern, sk));\
10016 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10017 						       OBJ_FIELD),	      \
10018 				      si->dst_reg, si->dst_reg,		      \
10019 				      offsetof(OBJ, OBJ_FIELD));	      \
10020 		if (si->dst_reg == si->src_reg)	{			      \
10021 			*insn++ = BPF_JMP_A(1);				      \
10022 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10023 				      offsetof(struct bpf_sock_ops_kern,      \
10024 				      temp));				      \
10025 		}							      \
10026 	} while (0)
10027 
10028 #define SOCK_OPS_GET_SK()							      \
10029 	do {								      \
10030 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10031 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10032 			reg--;						      \
10033 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10034 			reg--;						      \
10035 		if (si->dst_reg == si->src_reg) {			      \
10036 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10037 					  offsetof(struct bpf_sock_ops_kern,  \
10038 					  temp));			      \
10039 			fullsock_reg = reg;				      \
10040 			jmp += 2;					      \
10041 		}							      \
10042 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10043 						struct bpf_sock_ops_kern,     \
10044 						is_fullsock),		      \
10045 				      fullsock_reg, si->src_reg,	      \
10046 				      offsetof(struct bpf_sock_ops_kern,      \
10047 					       is_fullsock));		      \
10048 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10049 		if (si->dst_reg == si->src_reg)				      \
10050 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10051 				      offsetof(struct bpf_sock_ops_kern,      \
10052 				      temp));				      \
10053 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10054 						struct bpf_sock_ops_kern, sk),\
10055 				      si->dst_reg, si->src_reg,		      \
10056 				      offsetof(struct bpf_sock_ops_kern, sk));\
10057 		if (si->dst_reg == si->src_reg)	{			      \
10058 			*insn++ = BPF_JMP_A(1);				      \
10059 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10060 				      offsetof(struct bpf_sock_ops_kern,      \
10061 				      temp));				      \
10062 		}							      \
10063 	} while (0)
10064 
10065 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10066 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10067 
10068 /* Helper macro for adding write access to tcp_sock or sock fields.
10069  * The macro is called with two registers, dst_reg which contains a pointer
10070  * to ctx (context) and src_reg which contains the value that should be
10071  * stored. However, we need an additional register since we cannot overwrite
10072  * dst_reg because it may be used later in the program.
10073  * Instead we "borrow" one of the other register. We first save its value
10074  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10075  * it at the end of the macro.
10076  */
10077 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10078 	do {								      \
10079 		int reg = BPF_REG_9;					      \
10080 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10081 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10082 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10083 			reg--;						      \
10084 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10085 			reg--;						      \
10086 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10087 				      offsetof(struct bpf_sock_ops_kern,      \
10088 					       temp));			      \
10089 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10090 						struct bpf_sock_ops_kern,     \
10091 						is_fullsock),		      \
10092 				      reg, si->dst_reg,			      \
10093 				      offsetof(struct bpf_sock_ops_kern,      \
10094 					       is_fullsock));		      \
10095 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10096 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10097 						struct bpf_sock_ops_kern, sk),\
10098 				      reg, si->dst_reg,			      \
10099 				      offsetof(struct bpf_sock_ops_kern, sk));\
10100 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
10101 				      reg, si->src_reg,			      \
10102 				      offsetof(OBJ, OBJ_FIELD));	      \
10103 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10104 				      offsetof(struct bpf_sock_ops_kern,      \
10105 					       temp));			      \
10106 	} while (0)
10107 
10108 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10109 	do {								      \
10110 		if (TYPE == BPF_WRITE)					      \
10111 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10112 		else							      \
10113 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10114 	} while (0)
10115 
10116 	if (insn > insn_buf)
10117 		return insn - insn_buf;
10118 
10119 	switch (si->off) {
10120 	case offsetof(struct bpf_sock_ops, op):
10121 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10122 						       op),
10123 				      si->dst_reg, si->src_reg,
10124 				      offsetof(struct bpf_sock_ops_kern, op));
10125 		break;
10126 
10127 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10128 	     offsetof(struct bpf_sock_ops, replylong[3]):
10129 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10130 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10131 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10132 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10133 		off = si->off;
10134 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10135 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10136 		if (type == BPF_WRITE)
10137 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
10138 					      off);
10139 		else
10140 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10141 					      off);
10142 		break;
10143 
10144 	case offsetof(struct bpf_sock_ops, family):
10145 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10146 
10147 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10148 					      struct bpf_sock_ops_kern, sk),
10149 				      si->dst_reg, si->src_reg,
10150 				      offsetof(struct bpf_sock_ops_kern, sk));
10151 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10152 				      offsetof(struct sock_common, skc_family));
10153 		break;
10154 
10155 	case offsetof(struct bpf_sock_ops, remote_ip4):
10156 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10157 
10158 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10159 						struct bpf_sock_ops_kern, sk),
10160 				      si->dst_reg, si->src_reg,
10161 				      offsetof(struct bpf_sock_ops_kern, sk));
10162 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10163 				      offsetof(struct sock_common, skc_daddr));
10164 		break;
10165 
10166 	case offsetof(struct bpf_sock_ops, local_ip4):
10167 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10168 					  skc_rcv_saddr) != 4);
10169 
10170 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10171 					      struct bpf_sock_ops_kern, sk),
10172 				      si->dst_reg, si->src_reg,
10173 				      offsetof(struct bpf_sock_ops_kern, sk));
10174 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10175 				      offsetof(struct sock_common,
10176 					       skc_rcv_saddr));
10177 		break;
10178 
10179 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10180 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10181 #if IS_ENABLED(CONFIG_IPV6)
10182 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10183 					  skc_v6_daddr.s6_addr32[0]) != 4);
10184 
10185 		off = si->off;
10186 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10187 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10188 						struct bpf_sock_ops_kern, sk),
10189 				      si->dst_reg, si->src_reg,
10190 				      offsetof(struct bpf_sock_ops_kern, sk));
10191 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10192 				      offsetof(struct sock_common,
10193 					       skc_v6_daddr.s6_addr32[0]) +
10194 				      off);
10195 #else
10196 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10197 #endif
10198 		break;
10199 
10200 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10201 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10202 #if IS_ENABLED(CONFIG_IPV6)
10203 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10204 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10205 
10206 		off = si->off;
10207 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10208 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10209 						struct bpf_sock_ops_kern, sk),
10210 				      si->dst_reg, si->src_reg,
10211 				      offsetof(struct bpf_sock_ops_kern, sk));
10212 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10213 				      offsetof(struct sock_common,
10214 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10215 				      off);
10216 #else
10217 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10218 #endif
10219 		break;
10220 
10221 	case offsetof(struct bpf_sock_ops, remote_port):
10222 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10223 
10224 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10225 						struct bpf_sock_ops_kern, sk),
10226 				      si->dst_reg, si->src_reg,
10227 				      offsetof(struct bpf_sock_ops_kern, sk));
10228 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10229 				      offsetof(struct sock_common, skc_dport));
10230 #ifndef __BIG_ENDIAN_BITFIELD
10231 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10232 #endif
10233 		break;
10234 
10235 	case offsetof(struct bpf_sock_ops, local_port):
10236 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10237 
10238 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10239 						struct bpf_sock_ops_kern, sk),
10240 				      si->dst_reg, si->src_reg,
10241 				      offsetof(struct bpf_sock_ops_kern, sk));
10242 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10243 				      offsetof(struct sock_common, skc_num));
10244 		break;
10245 
10246 	case offsetof(struct bpf_sock_ops, is_fullsock):
10247 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10248 						struct bpf_sock_ops_kern,
10249 						is_fullsock),
10250 				      si->dst_reg, si->src_reg,
10251 				      offsetof(struct bpf_sock_ops_kern,
10252 					       is_fullsock));
10253 		break;
10254 
10255 	case offsetof(struct bpf_sock_ops, state):
10256 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10257 
10258 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10259 						struct bpf_sock_ops_kern, sk),
10260 				      si->dst_reg, si->src_reg,
10261 				      offsetof(struct bpf_sock_ops_kern, sk));
10262 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10263 				      offsetof(struct sock_common, skc_state));
10264 		break;
10265 
10266 	case offsetof(struct bpf_sock_ops, rtt_min):
10267 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10268 			     sizeof(struct minmax));
10269 		BUILD_BUG_ON(sizeof(struct minmax) <
10270 			     sizeof(struct minmax_sample));
10271 
10272 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10273 						struct bpf_sock_ops_kern, sk),
10274 				      si->dst_reg, si->src_reg,
10275 				      offsetof(struct bpf_sock_ops_kern, sk));
10276 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10277 				      offsetof(struct tcp_sock, rtt_min) +
10278 				      sizeof_field(struct minmax_sample, t));
10279 		break;
10280 
10281 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10282 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10283 				   struct tcp_sock);
10284 		break;
10285 
10286 	case offsetof(struct bpf_sock_ops, sk_txhash):
10287 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10288 					  struct sock, type);
10289 		break;
10290 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10291 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10292 		break;
10293 	case offsetof(struct bpf_sock_ops, srtt_us):
10294 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10295 		break;
10296 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10297 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10298 		break;
10299 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10300 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10301 		break;
10302 	case offsetof(struct bpf_sock_ops, snd_nxt):
10303 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10304 		break;
10305 	case offsetof(struct bpf_sock_ops, snd_una):
10306 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10307 		break;
10308 	case offsetof(struct bpf_sock_ops, mss_cache):
10309 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10310 		break;
10311 	case offsetof(struct bpf_sock_ops, ecn_flags):
10312 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10313 		break;
10314 	case offsetof(struct bpf_sock_ops, rate_delivered):
10315 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10316 		break;
10317 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10318 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10319 		break;
10320 	case offsetof(struct bpf_sock_ops, packets_out):
10321 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10322 		break;
10323 	case offsetof(struct bpf_sock_ops, retrans_out):
10324 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10325 		break;
10326 	case offsetof(struct bpf_sock_ops, total_retrans):
10327 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10328 		break;
10329 	case offsetof(struct bpf_sock_ops, segs_in):
10330 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10331 		break;
10332 	case offsetof(struct bpf_sock_ops, data_segs_in):
10333 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10334 		break;
10335 	case offsetof(struct bpf_sock_ops, segs_out):
10336 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10337 		break;
10338 	case offsetof(struct bpf_sock_ops, data_segs_out):
10339 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10340 		break;
10341 	case offsetof(struct bpf_sock_ops, lost_out):
10342 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10343 		break;
10344 	case offsetof(struct bpf_sock_ops, sacked_out):
10345 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10346 		break;
10347 	case offsetof(struct bpf_sock_ops, bytes_received):
10348 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10349 		break;
10350 	case offsetof(struct bpf_sock_ops, bytes_acked):
10351 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10352 		break;
10353 	case offsetof(struct bpf_sock_ops, sk):
10354 		SOCK_OPS_GET_SK();
10355 		break;
10356 	case offsetof(struct bpf_sock_ops, skb_data_end):
10357 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10358 						       skb_data_end),
10359 				      si->dst_reg, si->src_reg,
10360 				      offsetof(struct bpf_sock_ops_kern,
10361 					       skb_data_end));
10362 		break;
10363 	case offsetof(struct bpf_sock_ops, skb_data):
10364 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10365 						       skb),
10366 				      si->dst_reg, si->src_reg,
10367 				      offsetof(struct bpf_sock_ops_kern,
10368 					       skb));
10369 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10370 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10371 				      si->dst_reg, si->dst_reg,
10372 				      offsetof(struct sk_buff, data));
10373 		break;
10374 	case offsetof(struct bpf_sock_ops, skb_len):
10375 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10376 						       skb),
10377 				      si->dst_reg, si->src_reg,
10378 				      offsetof(struct bpf_sock_ops_kern,
10379 					       skb));
10380 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10381 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10382 				      si->dst_reg, si->dst_reg,
10383 				      offsetof(struct sk_buff, len));
10384 		break;
10385 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10386 		off = offsetof(struct sk_buff, cb);
10387 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10388 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10389 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10390 						       skb),
10391 				      si->dst_reg, si->src_reg,
10392 				      offsetof(struct bpf_sock_ops_kern,
10393 					       skb));
10394 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10395 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10396 						       tcp_flags),
10397 				      si->dst_reg, si->dst_reg, off);
10398 		break;
10399 	}
10400 	return insn - insn_buf;
10401 }
10402 
10403 /* data_end = skb->data + skb_headlen() */
10404 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10405 						    struct bpf_insn *insn)
10406 {
10407 	int reg;
10408 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10409 			   offsetof(struct sk_skb_cb, temp_reg);
10410 
10411 	if (si->src_reg == si->dst_reg) {
10412 		/* We need an extra register, choose and save a register. */
10413 		reg = BPF_REG_9;
10414 		if (si->src_reg == reg || si->dst_reg == reg)
10415 			reg--;
10416 		if (si->src_reg == reg || si->dst_reg == reg)
10417 			reg--;
10418 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10419 	} else {
10420 		reg = si->dst_reg;
10421 	}
10422 
10423 	/* reg = skb->data */
10424 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10425 			      reg, si->src_reg,
10426 			      offsetof(struct sk_buff, data));
10427 	/* AX = skb->len */
10428 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10429 			      BPF_REG_AX, si->src_reg,
10430 			      offsetof(struct sk_buff, len));
10431 	/* reg = skb->data + skb->len */
10432 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10433 	/* AX = skb->data_len */
10434 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10435 			      BPF_REG_AX, si->src_reg,
10436 			      offsetof(struct sk_buff, data_len));
10437 
10438 	/* reg = skb->data + skb->len - skb->data_len */
10439 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10440 
10441 	if (si->src_reg == si->dst_reg) {
10442 		/* Restore the saved register */
10443 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10444 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10445 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10446 	}
10447 
10448 	return insn;
10449 }
10450 
10451 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10452 				     const struct bpf_insn *si,
10453 				     struct bpf_insn *insn_buf,
10454 				     struct bpf_prog *prog, u32 *target_size)
10455 {
10456 	struct bpf_insn *insn = insn_buf;
10457 	int off;
10458 
10459 	switch (si->off) {
10460 	case offsetof(struct __sk_buff, data_end):
10461 		insn = bpf_convert_data_end_access(si, insn);
10462 		break;
10463 	case offsetof(struct __sk_buff, cb[0]) ...
10464 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10465 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10466 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10467 			      offsetof(struct sk_skb_cb, data)) %
10468 			     sizeof(__u64));
10469 
10470 		prog->cb_access = 1;
10471 		off  = si->off;
10472 		off -= offsetof(struct __sk_buff, cb[0]);
10473 		off += offsetof(struct sk_buff, cb);
10474 		off += offsetof(struct sk_skb_cb, data);
10475 		if (type == BPF_WRITE)
10476 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
10477 					      si->src_reg, off);
10478 		else
10479 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10480 					      si->src_reg, off);
10481 		break;
10482 
10483 
10484 	default:
10485 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10486 					      target_size);
10487 	}
10488 
10489 	return insn - insn_buf;
10490 }
10491 
10492 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10493 				     const struct bpf_insn *si,
10494 				     struct bpf_insn *insn_buf,
10495 				     struct bpf_prog *prog, u32 *target_size)
10496 {
10497 	struct bpf_insn *insn = insn_buf;
10498 #if IS_ENABLED(CONFIG_IPV6)
10499 	int off;
10500 #endif
10501 
10502 	/* convert ctx uses the fact sg element is first in struct */
10503 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10504 
10505 	switch (si->off) {
10506 	case offsetof(struct sk_msg_md, data):
10507 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10508 				      si->dst_reg, si->src_reg,
10509 				      offsetof(struct sk_msg, data));
10510 		break;
10511 	case offsetof(struct sk_msg_md, data_end):
10512 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10513 				      si->dst_reg, si->src_reg,
10514 				      offsetof(struct sk_msg, data_end));
10515 		break;
10516 	case offsetof(struct sk_msg_md, family):
10517 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10518 
10519 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10520 					      struct sk_msg, sk),
10521 				      si->dst_reg, si->src_reg,
10522 				      offsetof(struct sk_msg, sk));
10523 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10524 				      offsetof(struct sock_common, skc_family));
10525 		break;
10526 
10527 	case offsetof(struct sk_msg_md, remote_ip4):
10528 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10529 
10530 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10531 						struct sk_msg, sk),
10532 				      si->dst_reg, si->src_reg,
10533 				      offsetof(struct sk_msg, sk));
10534 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10535 				      offsetof(struct sock_common, skc_daddr));
10536 		break;
10537 
10538 	case offsetof(struct sk_msg_md, local_ip4):
10539 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10540 					  skc_rcv_saddr) != 4);
10541 
10542 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10543 					      struct sk_msg, sk),
10544 				      si->dst_reg, si->src_reg,
10545 				      offsetof(struct sk_msg, sk));
10546 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10547 				      offsetof(struct sock_common,
10548 					       skc_rcv_saddr));
10549 		break;
10550 
10551 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10552 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10553 #if IS_ENABLED(CONFIG_IPV6)
10554 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10555 					  skc_v6_daddr.s6_addr32[0]) != 4);
10556 
10557 		off = si->off;
10558 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10559 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10560 						struct sk_msg, sk),
10561 				      si->dst_reg, si->src_reg,
10562 				      offsetof(struct sk_msg, sk));
10563 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10564 				      offsetof(struct sock_common,
10565 					       skc_v6_daddr.s6_addr32[0]) +
10566 				      off);
10567 #else
10568 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10569 #endif
10570 		break;
10571 
10572 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10573 	     offsetof(struct sk_msg_md, local_ip6[3]):
10574 #if IS_ENABLED(CONFIG_IPV6)
10575 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10576 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10577 
10578 		off = si->off;
10579 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10580 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10581 						struct sk_msg, sk),
10582 				      si->dst_reg, si->src_reg,
10583 				      offsetof(struct sk_msg, sk));
10584 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10585 				      offsetof(struct sock_common,
10586 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10587 				      off);
10588 #else
10589 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10590 #endif
10591 		break;
10592 
10593 	case offsetof(struct sk_msg_md, remote_port):
10594 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10595 
10596 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10597 						struct sk_msg, sk),
10598 				      si->dst_reg, si->src_reg,
10599 				      offsetof(struct sk_msg, sk));
10600 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10601 				      offsetof(struct sock_common, skc_dport));
10602 #ifndef __BIG_ENDIAN_BITFIELD
10603 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10604 #endif
10605 		break;
10606 
10607 	case offsetof(struct sk_msg_md, local_port):
10608 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10609 
10610 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10611 						struct sk_msg, sk),
10612 				      si->dst_reg, si->src_reg,
10613 				      offsetof(struct sk_msg, sk));
10614 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10615 				      offsetof(struct sock_common, skc_num));
10616 		break;
10617 
10618 	case offsetof(struct sk_msg_md, size):
10619 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10620 				      si->dst_reg, si->src_reg,
10621 				      offsetof(struct sk_msg_sg, size));
10622 		break;
10623 
10624 	case offsetof(struct sk_msg_md, sk):
10625 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10626 				      si->dst_reg, si->src_reg,
10627 				      offsetof(struct sk_msg, sk));
10628 		break;
10629 	}
10630 
10631 	return insn - insn_buf;
10632 }
10633 
10634 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10635 	.get_func_proto		= sk_filter_func_proto,
10636 	.is_valid_access	= sk_filter_is_valid_access,
10637 	.convert_ctx_access	= bpf_convert_ctx_access,
10638 	.gen_ld_abs		= bpf_gen_ld_abs,
10639 };
10640 
10641 const struct bpf_prog_ops sk_filter_prog_ops = {
10642 	.test_run		= bpf_prog_test_run_skb,
10643 };
10644 
10645 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10646 	.get_func_proto		= tc_cls_act_func_proto,
10647 	.is_valid_access	= tc_cls_act_is_valid_access,
10648 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10649 	.gen_prologue		= tc_cls_act_prologue,
10650 	.gen_ld_abs		= bpf_gen_ld_abs,
10651 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10652 };
10653 
10654 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10655 	.test_run		= bpf_prog_test_run_skb,
10656 };
10657 
10658 const struct bpf_verifier_ops xdp_verifier_ops = {
10659 	.get_func_proto		= xdp_func_proto,
10660 	.is_valid_access	= xdp_is_valid_access,
10661 	.convert_ctx_access	= xdp_convert_ctx_access,
10662 	.gen_prologue		= bpf_noop_prologue,
10663 	.btf_struct_access	= xdp_btf_struct_access,
10664 };
10665 
10666 const struct bpf_prog_ops xdp_prog_ops = {
10667 	.test_run		= bpf_prog_test_run_xdp,
10668 };
10669 
10670 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10671 	.get_func_proto		= cg_skb_func_proto,
10672 	.is_valid_access	= cg_skb_is_valid_access,
10673 	.convert_ctx_access	= bpf_convert_ctx_access,
10674 };
10675 
10676 const struct bpf_prog_ops cg_skb_prog_ops = {
10677 	.test_run		= bpf_prog_test_run_skb,
10678 };
10679 
10680 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10681 	.get_func_proto		= lwt_in_func_proto,
10682 	.is_valid_access	= lwt_is_valid_access,
10683 	.convert_ctx_access	= bpf_convert_ctx_access,
10684 };
10685 
10686 const struct bpf_prog_ops lwt_in_prog_ops = {
10687 	.test_run		= bpf_prog_test_run_skb,
10688 };
10689 
10690 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10691 	.get_func_proto		= lwt_out_func_proto,
10692 	.is_valid_access	= lwt_is_valid_access,
10693 	.convert_ctx_access	= bpf_convert_ctx_access,
10694 };
10695 
10696 const struct bpf_prog_ops lwt_out_prog_ops = {
10697 	.test_run		= bpf_prog_test_run_skb,
10698 };
10699 
10700 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10701 	.get_func_proto		= lwt_xmit_func_proto,
10702 	.is_valid_access	= lwt_is_valid_access,
10703 	.convert_ctx_access	= bpf_convert_ctx_access,
10704 	.gen_prologue		= tc_cls_act_prologue,
10705 };
10706 
10707 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10708 	.test_run		= bpf_prog_test_run_skb,
10709 };
10710 
10711 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10712 	.get_func_proto		= lwt_seg6local_func_proto,
10713 	.is_valid_access	= lwt_is_valid_access,
10714 	.convert_ctx_access	= bpf_convert_ctx_access,
10715 };
10716 
10717 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10718 	.test_run		= bpf_prog_test_run_skb,
10719 };
10720 
10721 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10722 	.get_func_proto		= sock_filter_func_proto,
10723 	.is_valid_access	= sock_filter_is_valid_access,
10724 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10725 };
10726 
10727 const struct bpf_prog_ops cg_sock_prog_ops = {
10728 };
10729 
10730 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10731 	.get_func_proto		= sock_addr_func_proto,
10732 	.is_valid_access	= sock_addr_is_valid_access,
10733 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10734 };
10735 
10736 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10737 };
10738 
10739 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10740 	.get_func_proto		= sock_ops_func_proto,
10741 	.is_valid_access	= sock_ops_is_valid_access,
10742 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10743 };
10744 
10745 const struct bpf_prog_ops sock_ops_prog_ops = {
10746 };
10747 
10748 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10749 	.get_func_proto		= sk_skb_func_proto,
10750 	.is_valid_access	= sk_skb_is_valid_access,
10751 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10752 	.gen_prologue		= sk_skb_prologue,
10753 };
10754 
10755 const struct bpf_prog_ops sk_skb_prog_ops = {
10756 };
10757 
10758 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10759 	.get_func_proto		= sk_msg_func_proto,
10760 	.is_valid_access	= sk_msg_is_valid_access,
10761 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10762 	.gen_prologue		= bpf_noop_prologue,
10763 };
10764 
10765 const struct bpf_prog_ops sk_msg_prog_ops = {
10766 };
10767 
10768 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10769 	.get_func_proto		= flow_dissector_func_proto,
10770 	.is_valid_access	= flow_dissector_is_valid_access,
10771 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10772 };
10773 
10774 const struct bpf_prog_ops flow_dissector_prog_ops = {
10775 	.test_run		= bpf_prog_test_run_flow_dissector,
10776 };
10777 
10778 int sk_detach_filter(struct sock *sk)
10779 {
10780 	int ret = -ENOENT;
10781 	struct sk_filter *filter;
10782 
10783 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10784 		return -EPERM;
10785 
10786 	filter = rcu_dereference_protected(sk->sk_filter,
10787 					   lockdep_sock_is_held(sk));
10788 	if (filter) {
10789 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10790 		sk_filter_uncharge(sk, filter);
10791 		ret = 0;
10792 	}
10793 
10794 	return ret;
10795 }
10796 EXPORT_SYMBOL_GPL(sk_detach_filter);
10797 
10798 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10799 {
10800 	struct sock_fprog_kern *fprog;
10801 	struct sk_filter *filter;
10802 	int ret = 0;
10803 
10804 	sockopt_lock_sock(sk);
10805 	filter = rcu_dereference_protected(sk->sk_filter,
10806 					   lockdep_sock_is_held(sk));
10807 	if (!filter)
10808 		goto out;
10809 
10810 	/* We're copying the filter that has been originally attached,
10811 	 * so no conversion/decode needed anymore. eBPF programs that
10812 	 * have no original program cannot be dumped through this.
10813 	 */
10814 	ret = -EACCES;
10815 	fprog = filter->prog->orig_prog;
10816 	if (!fprog)
10817 		goto out;
10818 
10819 	ret = fprog->len;
10820 	if (!len)
10821 		/* User space only enquires number of filter blocks. */
10822 		goto out;
10823 
10824 	ret = -EINVAL;
10825 	if (len < fprog->len)
10826 		goto out;
10827 
10828 	ret = -EFAULT;
10829 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
10830 		goto out;
10831 
10832 	/* Instead of bytes, the API requests to return the number
10833 	 * of filter blocks.
10834 	 */
10835 	ret = fprog->len;
10836 out:
10837 	sockopt_release_sock(sk);
10838 	return ret;
10839 }
10840 
10841 #ifdef CONFIG_INET
10842 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
10843 				    struct sock_reuseport *reuse,
10844 				    struct sock *sk, struct sk_buff *skb,
10845 				    struct sock *migrating_sk,
10846 				    u32 hash)
10847 {
10848 	reuse_kern->skb = skb;
10849 	reuse_kern->sk = sk;
10850 	reuse_kern->selected_sk = NULL;
10851 	reuse_kern->migrating_sk = migrating_sk;
10852 	reuse_kern->data_end = skb->data + skb_headlen(skb);
10853 	reuse_kern->hash = hash;
10854 	reuse_kern->reuseport_id = reuse->reuseport_id;
10855 	reuse_kern->bind_inany = reuse->bind_inany;
10856 }
10857 
10858 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
10859 				  struct bpf_prog *prog, struct sk_buff *skb,
10860 				  struct sock *migrating_sk,
10861 				  u32 hash)
10862 {
10863 	struct sk_reuseport_kern reuse_kern;
10864 	enum sk_action action;
10865 
10866 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
10867 	action = bpf_prog_run(prog, &reuse_kern);
10868 
10869 	if (action == SK_PASS)
10870 		return reuse_kern.selected_sk;
10871 	else
10872 		return ERR_PTR(-ECONNREFUSED);
10873 }
10874 
10875 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
10876 	   struct bpf_map *, map, void *, key, u32, flags)
10877 {
10878 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
10879 	struct sock_reuseport *reuse;
10880 	struct sock *selected_sk;
10881 
10882 	selected_sk = map->ops->map_lookup_elem(map, key);
10883 	if (!selected_sk)
10884 		return -ENOENT;
10885 
10886 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
10887 	if (!reuse) {
10888 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
10889 		if (sk_is_refcounted(selected_sk))
10890 			sock_put(selected_sk);
10891 
10892 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
10893 		 * The only (!reuse) case here is - the sk has already been
10894 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
10895 		 *
10896 		 * Other maps (e.g. sock_map) do not provide this guarantee and
10897 		 * the sk may never be in the reuseport group to begin with.
10898 		 */
10899 		return is_sockarray ? -ENOENT : -EINVAL;
10900 	}
10901 
10902 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
10903 		struct sock *sk = reuse_kern->sk;
10904 
10905 		if (sk->sk_protocol != selected_sk->sk_protocol)
10906 			return -EPROTOTYPE;
10907 		else if (sk->sk_family != selected_sk->sk_family)
10908 			return -EAFNOSUPPORT;
10909 
10910 		/* Catch all. Likely bound to a different sockaddr. */
10911 		return -EBADFD;
10912 	}
10913 
10914 	reuse_kern->selected_sk = selected_sk;
10915 
10916 	return 0;
10917 }
10918 
10919 static const struct bpf_func_proto sk_select_reuseport_proto = {
10920 	.func           = sk_select_reuseport,
10921 	.gpl_only       = false,
10922 	.ret_type       = RET_INTEGER,
10923 	.arg1_type	= ARG_PTR_TO_CTX,
10924 	.arg2_type      = ARG_CONST_MAP_PTR,
10925 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
10926 	.arg4_type	= ARG_ANYTHING,
10927 };
10928 
10929 BPF_CALL_4(sk_reuseport_load_bytes,
10930 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10931 	   void *, to, u32, len)
10932 {
10933 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
10934 }
10935 
10936 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
10937 	.func		= sk_reuseport_load_bytes,
10938 	.gpl_only	= false,
10939 	.ret_type	= RET_INTEGER,
10940 	.arg1_type	= ARG_PTR_TO_CTX,
10941 	.arg2_type	= ARG_ANYTHING,
10942 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10943 	.arg4_type	= ARG_CONST_SIZE,
10944 };
10945 
10946 BPF_CALL_5(sk_reuseport_load_bytes_relative,
10947 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
10948 	   void *, to, u32, len, u32, start_header)
10949 {
10950 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
10951 					       len, start_header);
10952 }
10953 
10954 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
10955 	.func		= sk_reuseport_load_bytes_relative,
10956 	.gpl_only	= false,
10957 	.ret_type	= RET_INTEGER,
10958 	.arg1_type	= ARG_PTR_TO_CTX,
10959 	.arg2_type	= ARG_ANYTHING,
10960 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
10961 	.arg4_type	= ARG_CONST_SIZE,
10962 	.arg5_type	= ARG_ANYTHING,
10963 };
10964 
10965 static const struct bpf_func_proto *
10966 sk_reuseport_func_proto(enum bpf_func_id func_id,
10967 			const struct bpf_prog *prog)
10968 {
10969 	switch (func_id) {
10970 	case BPF_FUNC_sk_select_reuseport:
10971 		return &sk_select_reuseport_proto;
10972 	case BPF_FUNC_skb_load_bytes:
10973 		return &sk_reuseport_load_bytes_proto;
10974 	case BPF_FUNC_skb_load_bytes_relative:
10975 		return &sk_reuseport_load_bytes_relative_proto;
10976 	case BPF_FUNC_get_socket_cookie:
10977 		return &bpf_get_socket_ptr_cookie_proto;
10978 	case BPF_FUNC_ktime_get_coarse_ns:
10979 		return &bpf_ktime_get_coarse_ns_proto;
10980 	default:
10981 		return bpf_base_func_proto(func_id);
10982 	}
10983 }
10984 
10985 static bool
10986 sk_reuseport_is_valid_access(int off, int size,
10987 			     enum bpf_access_type type,
10988 			     const struct bpf_prog *prog,
10989 			     struct bpf_insn_access_aux *info)
10990 {
10991 	const u32 size_default = sizeof(__u32);
10992 
10993 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
10994 	    off % size || type != BPF_READ)
10995 		return false;
10996 
10997 	switch (off) {
10998 	case offsetof(struct sk_reuseport_md, data):
10999 		info->reg_type = PTR_TO_PACKET;
11000 		return size == sizeof(__u64);
11001 
11002 	case offsetof(struct sk_reuseport_md, data_end):
11003 		info->reg_type = PTR_TO_PACKET_END;
11004 		return size == sizeof(__u64);
11005 
11006 	case offsetof(struct sk_reuseport_md, hash):
11007 		return size == size_default;
11008 
11009 	case offsetof(struct sk_reuseport_md, sk):
11010 		info->reg_type = PTR_TO_SOCKET;
11011 		return size == sizeof(__u64);
11012 
11013 	case offsetof(struct sk_reuseport_md, migrating_sk):
11014 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11015 		return size == sizeof(__u64);
11016 
11017 	/* Fields that allow narrowing */
11018 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11019 		if (size < sizeof_field(struct sk_buff, protocol))
11020 			return false;
11021 		fallthrough;
11022 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11023 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11024 	case bpf_ctx_range(struct sk_reuseport_md, len):
11025 		bpf_ctx_record_field_size(info, size_default);
11026 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11027 
11028 	default:
11029 		return false;
11030 	}
11031 }
11032 
11033 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11034 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11035 			      si->dst_reg, si->src_reg,			\
11036 			      bpf_target_off(struct sk_reuseport_kern, F, \
11037 					     sizeof_field(struct sk_reuseport_kern, F), \
11038 					     target_size));		\
11039 	})
11040 
11041 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11042 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11043 				    struct sk_buff,			\
11044 				    skb,				\
11045 				    SKB_FIELD)
11046 
11047 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11048 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11049 				    struct sock,			\
11050 				    sk,					\
11051 				    SK_FIELD)
11052 
11053 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11054 					   const struct bpf_insn *si,
11055 					   struct bpf_insn *insn_buf,
11056 					   struct bpf_prog *prog,
11057 					   u32 *target_size)
11058 {
11059 	struct bpf_insn *insn = insn_buf;
11060 
11061 	switch (si->off) {
11062 	case offsetof(struct sk_reuseport_md, data):
11063 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11064 		break;
11065 
11066 	case offsetof(struct sk_reuseport_md, len):
11067 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11068 		break;
11069 
11070 	case offsetof(struct sk_reuseport_md, eth_protocol):
11071 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11072 		break;
11073 
11074 	case offsetof(struct sk_reuseport_md, ip_protocol):
11075 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11076 		break;
11077 
11078 	case offsetof(struct sk_reuseport_md, data_end):
11079 		SK_REUSEPORT_LOAD_FIELD(data_end);
11080 		break;
11081 
11082 	case offsetof(struct sk_reuseport_md, hash):
11083 		SK_REUSEPORT_LOAD_FIELD(hash);
11084 		break;
11085 
11086 	case offsetof(struct sk_reuseport_md, bind_inany):
11087 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11088 		break;
11089 
11090 	case offsetof(struct sk_reuseport_md, sk):
11091 		SK_REUSEPORT_LOAD_FIELD(sk);
11092 		break;
11093 
11094 	case offsetof(struct sk_reuseport_md, migrating_sk):
11095 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11096 		break;
11097 	}
11098 
11099 	return insn - insn_buf;
11100 }
11101 
11102 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11103 	.get_func_proto		= sk_reuseport_func_proto,
11104 	.is_valid_access	= sk_reuseport_is_valid_access,
11105 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11106 };
11107 
11108 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11109 };
11110 
11111 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11112 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11113 
11114 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11115 	   struct sock *, sk, u64, flags)
11116 {
11117 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11118 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11119 		return -EINVAL;
11120 	if (unlikely(sk && sk_is_refcounted(sk)))
11121 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11122 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11123 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11124 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11125 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11126 
11127 	/* Check if socket is suitable for packet L3/L4 protocol */
11128 	if (sk && sk->sk_protocol != ctx->protocol)
11129 		return -EPROTOTYPE;
11130 	if (sk && sk->sk_family != ctx->family &&
11131 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11132 		return -EAFNOSUPPORT;
11133 
11134 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11135 		return -EEXIST;
11136 
11137 	/* Select socket as lookup result */
11138 	ctx->selected_sk = sk;
11139 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11140 	return 0;
11141 }
11142 
11143 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11144 	.func		= bpf_sk_lookup_assign,
11145 	.gpl_only	= false,
11146 	.ret_type	= RET_INTEGER,
11147 	.arg1_type	= ARG_PTR_TO_CTX,
11148 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11149 	.arg3_type	= ARG_ANYTHING,
11150 };
11151 
11152 static const struct bpf_func_proto *
11153 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11154 {
11155 	switch (func_id) {
11156 	case BPF_FUNC_perf_event_output:
11157 		return &bpf_event_output_data_proto;
11158 	case BPF_FUNC_sk_assign:
11159 		return &bpf_sk_lookup_assign_proto;
11160 	case BPF_FUNC_sk_release:
11161 		return &bpf_sk_release_proto;
11162 	default:
11163 		return bpf_sk_base_func_proto(func_id);
11164 	}
11165 }
11166 
11167 static bool sk_lookup_is_valid_access(int off, int size,
11168 				      enum bpf_access_type type,
11169 				      const struct bpf_prog *prog,
11170 				      struct bpf_insn_access_aux *info)
11171 {
11172 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11173 		return false;
11174 	if (off % size != 0)
11175 		return false;
11176 	if (type != BPF_READ)
11177 		return false;
11178 
11179 	switch (off) {
11180 	case offsetof(struct bpf_sk_lookup, sk):
11181 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11182 		return size == sizeof(__u64);
11183 
11184 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11185 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11186 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11187 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11188 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11189 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11190 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11191 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11192 		bpf_ctx_record_field_size(info, sizeof(__u32));
11193 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11194 
11195 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11196 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11197 		if (size == sizeof(__u32))
11198 			return true;
11199 		bpf_ctx_record_field_size(info, sizeof(__be16));
11200 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11201 
11202 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11203 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11204 		/* Allow access to zero padding for backward compatibility */
11205 		bpf_ctx_record_field_size(info, sizeof(__u16));
11206 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11207 
11208 	default:
11209 		return false;
11210 	}
11211 }
11212 
11213 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11214 					const struct bpf_insn *si,
11215 					struct bpf_insn *insn_buf,
11216 					struct bpf_prog *prog,
11217 					u32 *target_size)
11218 {
11219 	struct bpf_insn *insn = insn_buf;
11220 
11221 	switch (si->off) {
11222 	case offsetof(struct bpf_sk_lookup, sk):
11223 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11224 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11225 		break;
11226 
11227 	case offsetof(struct bpf_sk_lookup, family):
11228 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11229 				      bpf_target_off(struct bpf_sk_lookup_kern,
11230 						     family, 2, target_size));
11231 		break;
11232 
11233 	case offsetof(struct bpf_sk_lookup, protocol):
11234 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11235 				      bpf_target_off(struct bpf_sk_lookup_kern,
11236 						     protocol, 2, target_size));
11237 		break;
11238 
11239 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11240 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11241 				      bpf_target_off(struct bpf_sk_lookup_kern,
11242 						     v4.saddr, 4, target_size));
11243 		break;
11244 
11245 	case offsetof(struct bpf_sk_lookup, local_ip4):
11246 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11247 				      bpf_target_off(struct bpf_sk_lookup_kern,
11248 						     v4.daddr, 4, target_size));
11249 		break;
11250 
11251 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11252 				remote_ip6[0], remote_ip6[3]): {
11253 #if IS_ENABLED(CONFIG_IPV6)
11254 		int off = si->off;
11255 
11256 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11257 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11258 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11259 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11260 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11261 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11262 #else
11263 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11264 #endif
11265 		break;
11266 	}
11267 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11268 				local_ip6[0], local_ip6[3]): {
11269 #if IS_ENABLED(CONFIG_IPV6)
11270 		int off = si->off;
11271 
11272 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11273 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11274 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11275 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11276 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11277 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11278 #else
11279 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11280 #endif
11281 		break;
11282 	}
11283 	case offsetof(struct bpf_sk_lookup, remote_port):
11284 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11285 				      bpf_target_off(struct bpf_sk_lookup_kern,
11286 						     sport, 2, target_size));
11287 		break;
11288 
11289 	case offsetofend(struct bpf_sk_lookup, remote_port):
11290 		*target_size = 2;
11291 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11292 		break;
11293 
11294 	case offsetof(struct bpf_sk_lookup, local_port):
11295 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11296 				      bpf_target_off(struct bpf_sk_lookup_kern,
11297 						     dport, 2, target_size));
11298 		break;
11299 
11300 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11301 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11302 				      bpf_target_off(struct bpf_sk_lookup_kern,
11303 						     ingress_ifindex, 4, target_size));
11304 		break;
11305 	}
11306 
11307 	return insn - insn_buf;
11308 }
11309 
11310 const struct bpf_prog_ops sk_lookup_prog_ops = {
11311 	.test_run = bpf_prog_test_run_sk_lookup,
11312 };
11313 
11314 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11315 	.get_func_proto		= sk_lookup_func_proto,
11316 	.is_valid_access	= sk_lookup_is_valid_access,
11317 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11318 };
11319 
11320 #endif /* CONFIG_INET */
11321 
11322 DEFINE_BPF_DISPATCHER(xdp)
11323 
11324 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11325 {
11326 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11327 }
11328 
11329 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11330 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11331 BTF_SOCK_TYPE_xxx
11332 #undef BTF_SOCK_TYPE
11333 
11334 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11335 {
11336 	/* tcp6_sock type is not generated in dwarf and hence btf,
11337 	 * trigger an explicit type generation here.
11338 	 */
11339 	BTF_TYPE_EMIT(struct tcp6_sock);
11340 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11341 	    sk->sk_family == AF_INET6)
11342 		return (unsigned long)sk;
11343 
11344 	return (unsigned long)NULL;
11345 }
11346 
11347 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11348 	.func			= bpf_skc_to_tcp6_sock,
11349 	.gpl_only		= false,
11350 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11351 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11352 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11353 };
11354 
11355 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11356 {
11357 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11358 		return (unsigned long)sk;
11359 
11360 	return (unsigned long)NULL;
11361 }
11362 
11363 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11364 	.func			= bpf_skc_to_tcp_sock,
11365 	.gpl_only		= false,
11366 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11367 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11368 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11369 };
11370 
11371 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11372 {
11373 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11374 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11375 	 */
11376 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11377 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11378 
11379 #ifdef CONFIG_INET
11380 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11381 		return (unsigned long)sk;
11382 #endif
11383 
11384 #if IS_BUILTIN(CONFIG_IPV6)
11385 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11386 		return (unsigned long)sk;
11387 #endif
11388 
11389 	return (unsigned long)NULL;
11390 }
11391 
11392 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11393 	.func			= bpf_skc_to_tcp_timewait_sock,
11394 	.gpl_only		= false,
11395 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11396 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11397 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11398 };
11399 
11400 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11401 {
11402 #ifdef CONFIG_INET
11403 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11404 		return (unsigned long)sk;
11405 #endif
11406 
11407 #if IS_BUILTIN(CONFIG_IPV6)
11408 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11409 		return (unsigned long)sk;
11410 #endif
11411 
11412 	return (unsigned long)NULL;
11413 }
11414 
11415 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11416 	.func			= bpf_skc_to_tcp_request_sock,
11417 	.gpl_only		= false,
11418 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11419 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11420 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11421 };
11422 
11423 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11424 {
11425 	/* udp6_sock type is not generated in dwarf and hence btf,
11426 	 * trigger an explicit type generation here.
11427 	 */
11428 	BTF_TYPE_EMIT(struct udp6_sock);
11429 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11430 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11431 		return (unsigned long)sk;
11432 
11433 	return (unsigned long)NULL;
11434 }
11435 
11436 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11437 	.func			= bpf_skc_to_udp6_sock,
11438 	.gpl_only		= false,
11439 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11440 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11441 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11442 };
11443 
11444 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11445 {
11446 	/* unix_sock type is not generated in dwarf and hence btf,
11447 	 * trigger an explicit type generation here.
11448 	 */
11449 	BTF_TYPE_EMIT(struct unix_sock);
11450 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11451 		return (unsigned long)sk;
11452 
11453 	return (unsigned long)NULL;
11454 }
11455 
11456 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11457 	.func			= bpf_skc_to_unix_sock,
11458 	.gpl_only		= false,
11459 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11460 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11461 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11462 };
11463 
11464 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11465 {
11466 	BTF_TYPE_EMIT(struct mptcp_sock);
11467 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11468 }
11469 
11470 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11471 	.func		= bpf_skc_to_mptcp_sock,
11472 	.gpl_only	= false,
11473 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11474 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11475 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11476 };
11477 
11478 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11479 {
11480 	return (unsigned long)sock_from_file(file);
11481 }
11482 
11483 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11484 BTF_ID(struct, socket)
11485 BTF_ID(struct, file)
11486 
11487 const struct bpf_func_proto bpf_sock_from_file_proto = {
11488 	.func		= bpf_sock_from_file,
11489 	.gpl_only	= false,
11490 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11491 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11492 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11493 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11494 };
11495 
11496 static const struct bpf_func_proto *
11497 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11498 {
11499 	const struct bpf_func_proto *func;
11500 
11501 	switch (func_id) {
11502 	case BPF_FUNC_skc_to_tcp6_sock:
11503 		func = &bpf_skc_to_tcp6_sock_proto;
11504 		break;
11505 	case BPF_FUNC_skc_to_tcp_sock:
11506 		func = &bpf_skc_to_tcp_sock_proto;
11507 		break;
11508 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11509 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11510 		break;
11511 	case BPF_FUNC_skc_to_tcp_request_sock:
11512 		func = &bpf_skc_to_tcp_request_sock_proto;
11513 		break;
11514 	case BPF_FUNC_skc_to_udp6_sock:
11515 		func = &bpf_skc_to_udp6_sock_proto;
11516 		break;
11517 	case BPF_FUNC_skc_to_unix_sock:
11518 		func = &bpf_skc_to_unix_sock_proto;
11519 		break;
11520 	case BPF_FUNC_skc_to_mptcp_sock:
11521 		func = &bpf_skc_to_mptcp_sock_proto;
11522 		break;
11523 	case BPF_FUNC_ktime_get_coarse_ns:
11524 		return &bpf_ktime_get_coarse_ns_proto;
11525 	default:
11526 		return bpf_base_func_proto(func_id);
11527 	}
11528 
11529 	if (!perfmon_capable())
11530 		return NULL;
11531 
11532 	return func;
11533 }
11534