xref: /linux/net/core/filter.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <net/sch_generic.h>
51 #include <net/cls_cgroup.h>
52 #include <net/dst_metadata.h>
53 #include <net/dst.h>
54 #include <net/sock_reuseport.h>
55 #include <net/busy_poll.h>
56 #include <net/tcp.h>
57 #include <net/xfrm.h>
58 #include <net/udp.h>
59 #include <linux/bpf_trace.h>
60 #include <net/xdp_sock.h>
61 #include <linux/inetdevice.h>
62 #include <net/inet_hashtables.h>
63 #include <net/inet6_hashtables.h>
64 #include <net/ip_fib.h>
65 #include <net/nexthop.h>
66 #include <net/flow.h>
67 #include <net/arp.h>
68 #include <net/ipv6.h>
69 #include <net/net_namespace.h>
70 #include <linux/seg6_local.h>
71 #include <net/seg6.h>
72 #include <net/seg6_local.h>
73 #include <net/lwtunnel.h>
74 #include <net/ipv6_stubs.h>
75 #include <net/bpf_sk_storage.h>
76 
77 /**
78  *	sk_filter_trim_cap - run a packet through a socket filter
79  *	@sk: sock associated with &sk_buff
80  *	@skb: buffer to filter
81  *	@cap: limit on how short the eBPF program may trim the packet
82  *
83  * Run the eBPF program and then cut skb->data to correct size returned by
84  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
85  * than pkt_len we keep whole skb->data. This is the socket level
86  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
87  * be accepted or -EPERM if the packet should be tossed.
88  *
89  */
90 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
91 {
92 	int err;
93 	struct sk_filter *filter;
94 
95 	/*
96 	 * If the skb was allocated from pfmemalloc reserves, only
97 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
98 	 * helping free memory
99 	 */
100 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
101 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
102 		return -ENOMEM;
103 	}
104 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
105 	if (err)
106 		return err;
107 
108 	err = security_sock_rcv_skb(sk, skb);
109 	if (err)
110 		return err;
111 
112 	rcu_read_lock();
113 	filter = rcu_dereference(sk->sk_filter);
114 	if (filter) {
115 		struct sock *save_sk = skb->sk;
116 		unsigned int pkt_len;
117 
118 		skb->sk = sk;
119 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
120 		skb->sk = save_sk;
121 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
122 	}
123 	rcu_read_unlock();
124 
125 	return err;
126 }
127 EXPORT_SYMBOL(sk_filter_trim_cap);
128 
129 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
130 {
131 	return skb_get_poff(skb);
132 }
133 
134 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
135 {
136 	struct nlattr *nla;
137 
138 	if (skb_is_nonlinear(skb))
139 		return 0;
140 
141 	if (skb->len < sizeof(struct nlattr))
142 		return 0;
143 
144 	if (a > skb->len - sizeof(struct nlattr))
145 		return 0;
146 
147 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
148 	if (nla)
149 		return (void *) nla - (void *) skb->data;
150 
151 	return 0;
152 }
153 
154 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
155 {
156 	struct nlattr *nla;
157 
158 	if (skb_is_nonlinear(skb))
159 		return 0;
160 
161 	if (skb->len < sizeof(struct nlattr))
162 		return 0;
163 
164 	if (a > skb->len - sizeof(struct nlattr))
165 		return 0;
166 
167 	nla = (struct nlattr *) &skb->data[a];
168 	if (nla->nla_len > skb->len - a)
169 		return 0;
170 
171 	nla = nla_find_nested(nla, x);
172 	if (nla)
173 		return (void *) nla - (void *) skb->data;
174 
175 	return 0;
176 }
177 
178 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
179 	   data, int, headlen, int, offset)
180 {
181 	u8 tmp, *ptr;
182 	const int len = sizeof(tmp);
183 
184 	if (offset >= 0) {
185 		if (headlen - offset >= len)
186 			return *(u8 *)(data + offset);
187 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
188 			return tmp;
189 	} else {
190 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
191 		if (likely(ptr))
192 			return *(u8 *)ptr;
193 	}
194 
195 	return -EFAULT;
196 }
197 
198 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
199 	   int, offset)
200 {
201 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
202 					 offset);
203 }
204 
205 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
206 	   data, int, headlen, int, offset)
207 {
208 	u16 tmp, *ptr;
209 	const int len = sizeof(tmp);
210 
211 	if (offset >= 0) {
212 		if (headlen - offset >= len)
213 			return get_unaligned_be16(data + offset);
214 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
215 			return be16_to_cpu(tmp);
216 	} else {
217 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
218 		if (likely(ptr))
219 			return get_unaligned_be16(ptr);
220 	}
221 
222 	return -EFAULT;
223 }
224 
225 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
226 	   int, offset)
227 {
228 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
229 					  offset);
230 }
231 
232 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
233 	   data, int, headlen, int, offset)
234 {
235 	u32 tmp, *ptr;
236 	const int len = sizeof(tmp);
237 
238 	if (likely(offset >= 0)) {
239 		if (headlen - offset >= len)
240 			return get_unaligned_be32(data + offset);
241 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
242 			return be32_to_cpu(tmp);
243 	} else {
244 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
245 		if (likely(ptr))
246 			return get_unaligned_be32(ptr);
247 	}
248 
249 	return -EFAULT;
250 }
251 
252 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
253 	   int, offset)
254 {
255 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
256 					  offset);
257 }
258 
259 BPF_CALL_0(bpf_get_raw_cpu_id)
260 {
261 	return raw_smp_processor_id();
262 }
263 
264 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
265 	.func		= bpf_get_raw_cpu_id,
266 	.gpl_only	= false,
267 	.ret_type	= RET_INTEGER,
268 };
269 
270 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
271 			      struct bpf_insn *insn_buf)
272 {
273 	struct bpf_insn *insn = insn_buf;
274 
275 	switch (skb_field) {
276 	case SKF_AD_MARK:
277 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
278 
279 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
280 				      offsetof(struct sk_buff, mark));
281 		break;
282 
283 	case SKF_AD_PKTTYPE:
284 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
285 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
286 #ifdef __BIG_ENDIAN_BITFIELD
287 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
288 #endif
289 		break;
290 
291 	case SKF_AD_QUEUE:
292 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
293 
294 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
295 				      offsetof(struct sk_buff, queue_mapping));
296 		break;
297 
298 	case SKF_AD_VLAN_TAG:
299 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
300 
301 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
302 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
303 				      offsetof(struct sk_buff, vlan_tci));
304 		break;
305 	case SKF_AD_VLAN_TAG_PRESENT:
306 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
307 		if (PKT_VLAN_PRESENT_BIT)
308 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
309 		if (PKT_VLAN_PRESENT_BIT < 7)
310 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
311 		break;
312 	}
313 
314 	return insn - insn_buf;
315 }
316 
317 static bool convert_bpf_extensions(struct sock_filter *fp,
318 				   struct bpf_insn **insnp)
319 {
320 	struct bpf_insn *insn = *insnp;
321 	u32 cnt;
322 
323 	switch (fp->k) {
324 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
325 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
326 
327 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
328 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
329 				      offsetof(struct sk_buff, protocol));
330 		/* A = ntohs(A) [emitting a nop or swap16] */
331 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
332 		break;
333 
334 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
335 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
336 		insn += cnt - 1;
337 		break;
338 
339 	case SKF_AD_OFF + SKF_AD_IFINDEX:
340 	case SKF_AD_OFF + SKF_AD_HATYPE:
341 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
342 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
343 
344 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
345 				      BPF_REG_TMP, BPF_REG_CTX,
346 				      offsetof(struct sk_buff, dev));
347 		/* if (tmp != 0) goto pc + 1 */
348 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
349 		*insn++ = BPF_EXIT_INSN();
350 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
351 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
352 					    offsetof(struct net_device, ifindex));
353 		else
354 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
355 					    offsetof(struct net_device, type));
356 		break;
357 
358 	case SKF_AD_OFF + SKF_AD_MARK:
359 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
360 		insn += cnt - 1;
361 		break;
362 
363 	case SKF_AD_OFF + SKF_AD_RXHASH:
364 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
365 
366 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
367 				    offsetof(struct sk_buff, hash));
368 		break;
369 
370 	case SKF_AD_OFF + SKF_AD_QUEUE:
371 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
372 		insn += cnt - 1;
373 		break;
374 
375 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
376 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
377 					 BPF_REG_A, BPF_REG_CTX, insn);
378 		insn += cnt - 1;
379 		break;
380 
381 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
382 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
383 					 BPF_REG_A, BPF_REG_CTX, insn);
384 		insn += cnt - 1;
385 		break;
386 
387 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
388 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
389 
390 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
391 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
392 				      offsetof(struct sk_buff, vlan_proto));
393 		/* A = ntohs(A) [emitting a nop or swap16] */
394 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
395 		break;
396 
397 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
398 	case SKF_AD_OFF + SKF_AD_NLATTR:
399 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
400 	case SKF_AD_OFF + SKF_AD_CPU:
401 	case SKF_AD_OFF + SKF_AD_RANDOM:
402 		/* arg1 = CTX */
403 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
404 		/* arg2 = A */
405 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
406 		/* arg3 = X */
407 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
408 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
409 		switch (fp->k) {
410 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
411 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
412 			break;
413 		case SKF_AD_OFF + SKF_AD_NLATTR:
414 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
415 			break;
416 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
417 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
418 			break;
419 		case SKF_AD_OFF + SKF_AD_CPU:
420 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
421 			break;
422 		case SKF_AD_OFF + SKF_AD_RANDOM:
423 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
424 			bpf_user_rnd_init_once();
425 			break;
426 		}
427 		break;
428 
429 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
430 		/* A ^= X */
431 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
432 		break;
433 
434 	default:
435 		/* This is just a dummy call to avoid letting the compiler
436 		 * evict __bpf_call_base() as an optimization. Placed here
437 		 * where no-one bothers.
438 		 */
439 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
440 		return false;
441 	}
442 
443 	*insnp = insn;
444 	return true;
445 }
446 
447 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
448 {
449 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
450 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
451 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
452 		      BPF_SIZE(fp->code) == BPF_W;
453 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
454 	const int ip_align = NET_IP_ALIGN;
455 	struct bpf_insn *insn = *insnp;
456 	int offset = fp->k;
457 
458 	if (!indirect &&
459 	    ((unaligned_ok && offset >= 0) ||
460 	     (!unaligned_ok && offset >= 0 &&
461 	      offset + ip_align >= 0 &&
462 	      offset + ip_align % size == 0))) {
463 		bool ldx_off_ok = offset <= S16_MAX;
464 
465 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
466 		if (offset)
467 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
468 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
469 				      size, 2 + endian + (!ldx_off_ok * 2));
470 		if (ldx_off_ok) {
471 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
472 					      BPF_REG_D, offset);
473 		} else {
474 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
475 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
476 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
477 					      BPF_REG_TMP, 0);
478 		}
479 		if (endian)
480 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
481 		*insn++ = BPF_JMP_A(8);
482 	}
483 
484 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
485 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
486 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
487 	if (!indirect) {
488 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
489 	} else {
490 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
491 		if (fp->k)
492 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
493 	}
494 
495 	switch (BPF_SIZE(fp->code)) {
496 	case BPF_B:
497 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
498 		break;
499 	case BPF_H:
500 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
501 		break;
502 	case BPF_W:
503 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
504 		break;
505 	default:
506 		return false;
507 	}
508 
509 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
510 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
511 	*insn   = BPF_EXIT_INSN();
512 
513 	*insnp = insn;
514 	return true;
515 }
516 
517 /**
518  *	bpf_convert_filter - convert filter program
519  *	@prog: the user passed filter program
520  *	@len: the length of the user passed filter program
521  *	@new_prog: allocated 'struct bpf_prog' or NULL
522  *	@new_len: pointer to store length of converted program
523  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
524  *
525  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
526  * style extended BPF (eBPF).
527  * Conversion workflow:
528  *
529  * 1) First pass for calculating the new program length:
530  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
531  *
532  * 2) 2nd pass to remap in two passes: 1st pass finds new
533  *    jump offsets, 2nd pass remapping:
534  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
535  */
536 static int bpf_convert_filter(struct sock_filter *prog, int len,
537 			      struct bpf_prog *new_prog, int *new_len,
538 			      bool *seen_ld_abs)
539 {
540 	int new_flen = 0, pass = 0, target, i, stack_off;
541 	struct bpf_insn *new_insn, *first_insn = NULL;
542 	struct sock_filter *fp;
543 	int *addrs = NULL;
544 	u8 bpf_src;
545 
546 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
547 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
548 
549 	if (len <= 0 || len > BPF_MAXINSNS)
550 		return -EINVAL;
551 
552 	if (new_prog) {
553 		first_insn = new_prog->insnsi;
554 		addrs = kcalloc(len, sizeof(*addrs),
555 				GFP_KERNEL | __GFP_NOWARN);
556 		if (!addrs)
557 			return -ENOMEM;
558 	}
559 
560 do_pass:
561 	new_insn = first_insn;
562 	fp = prog;
563 
564 	/* Classic BPF related prologue emission. */
565 	if (new_prog) {
566 		/* Classic BPF expects A and X to be reset first. These need
567 		 * to be guaranteed to be the first two instructions.
568 		 */
569 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
570 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
571 
572 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
573 		 * In eBPF case it's done by the compiler, here we need to
574 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
575 		 */
576 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
577 		if (*seen_ld_abs) {
578 			/* For packet access in classic BPF, cache skb->data
579 			 * in callee-saved BPF R8 and skb->len - skb->data_len
580 			 * (headlen) in BPF R9. Since classic BPF is read-only
581 			 * on CTX, we only need to cache it once.
582 			 */
583 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
584 						  BPF_REG_D, BPF_REG_CTX,
585 						  offsetof(struct sk_buff, data));
586 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
587 						  offsetof(struct sk_buff, len));
588 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
589 						  offsetof(struct sk_buff, data_len));
590 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
591 		}
592 	} else {
593 		new_insn += 3;
594 	}
595 
596 	for (i = 0; i < len; fp++, i++) {
597 		struct bpf_insn tmp_insns[32] = { };
598 		struct bpf_insn *insn = tmp_insns;
599 
600 		if (addrs)
601 			addrs[i] = new_insn - first_insn;
602 
603 		switch (fp->code) {
604 		/* All arithmetic insns and skb loads map as-is. */
605 		case BPF_ALU | BPF_ADD | BPF_X:
606 		case BPF_ALU | BPF_ADD | BPF_K:
607 		case BPF_ALU | BPF_SUB | BPF_X:
608 		case BPF_ALU | BPF_SUB | BPF_K:
609 		case BPF_ALU | BPF_AND | BPF_X:
610 		case BPF_ALU | BPF_AND | BPF_K:
611 		case BPF_ALU | BPF_OR | BPF_X:
612 		case BPF_ALU | BPF_OR | BPF_K:
613 		case BPF_ALU | BPF_LSH | BPF_X:
614 		case BPF_ALU | BPF_LSH | BPF_K:
615 		case BPF_ALU | BPF_RSH | BPF_X:
616 		case BPF_ALU | BPF_RSH | BPF_K:
617 		case BPF_ALU | BPF_XOR | BPF_X:
618 		case BPF_ALU | BPF_XOR | BPF_K:
619 		case BPF_ALU | BPF_MUL | BPF_X:
620 		case BPF_ALU | BPF_MUL | BPF_K:
621 		case BPF_ALU | BPF_DIV | BPF_X:
622 		case BPF_ALU | BPF_DIV | BPF_K:
623 		case BPF_ALU | BPF_MOD | BPF_X:
624 		case BPF_ALU | BPF_MOD | BPF_K:
625 		case BPF_ALU | BPF_NEG:
626 		case BPF_LD | BPF_ABS | BPF_W:
627 		case BPF_LD | BPF_ABS | BPF_H:
628 		case BPF_LD | BPF_ABS | BPF_B:
629 		case BPF_LD | BPF_IND | BPF_W:
630 		case BPF_LD | BPF_IND | BPF_H:
631 		case BPF_LD | BPF_IND | BPF_B:
632 			/* Check for overloaded BPF extension and
633 			 * directly convert it if found, otherwise
634 			 * just move on with mapping.
635 			 */
636 			if (BPF_CLASS(fp->code) == BPF_LD &&
637 			    BPF_MODE(fp->code) == BPF_ABS &&
638 			    convert_bpf_extensions(fp, &insn))
639 				break;
640 			if (BPF_CLASS(fp->code) == BPF_LD &&
641 			    convert_bpf_ld_abs(fp, &insn)) {
642 				*seen_ld_abs = true;
643 				break;
644 			}
645 
646 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
647 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
648 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
649 				/* Error with exception code on div/mod by 0.
650 				 * For cBPF programs, this was always return 0.
651 				 */
652 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
653 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
654 				*insn++ = BPF_EXIT_INSN();
655 			}
656 
657 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
658 			break;
659 
660 		/* Jump transformation cannot use BPF block macros
661 		 * everywhere as offset calculation and target updates
662 		 * require a bit more work than the rest, i.e. jump
663 		 * opcodes map as-is, but offsets need adjustment.
664 		 */
665 
666 #define BPF_EMIT_JMP							\
667 	do {								\
668 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
669 		s32 off;						\
670 									\
671 		if (target >= len || target < 0)			\
672 			goto err;					\
673 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
674 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
675 		off -= insn - tmp_insns;				\
676 		/* Reject anything not fitting into insn->off. */	\
677 		if (off < off_min || off > off_max)			\
678 			goto err;					\
679 		insn->off = off;					\
680 	} while (0)
681 
682 		case BPF_JMP | BPF_JA:
683 			target = i + fp->k + 1;
684 			insn->code = fp->code;
685 			BPF_EMIT_JMP;
686 			break;
687 
688 		case BPF_JMP | BPF_JEQ | BPF_K:
689 		case BPF_JMP | BPF_JEQ | BPF_X:
690 		case BPF_JMP | BPF_JSET | BPF_K:
691 		case BPF_JMP | BPF_JSET | BPF_X:
692 		case BPF_JMP | BPF_JGT | BPF_K:
693 		case BPF_JMP | BPF_JGT | BPF_X:
694 		case BPF_JMP | BPF_JGE | BPF_K:
695 		case BPF_JMP | BPF_JGE | BPF_X:
696 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
697 				/* BPF immediates are signed, zero extend
698 				 * immediate into tmp register and use it
699 				 * in compare insn.
700 				 */
701 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
702 
703 				insn->dst_reg = BPF_REG_A;
704 				insn->src_reg = BPF_REG_TMP;
705 				bpf_src = BPF_X;
706 			} else {
707 				insn->dst_reg = BPF_REG_A;
708 				insn->imm = fp->k;
709 				bpf_src = BPF_SRC(fp->code);
710 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
711 			}
712 
713 			/* Common case where 'jump_false' is next insn. */
714 			if (fp->jf == 0) {
715 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
716 				target = i + fp->jt + 1;
717 				BPF_EMIT_JMP;
718 				break;
719 			}
720 
721 			/* Convert some jumps when 'jump_true' is next insn. */
722 			if (fp->jt == 0) {
723 				switch (BPF_OP(fp->code)) {
724 				case BPF_JEQ:
725 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
726 					break;
727 				case BPF_JGT:
728 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
729 					break;
730 				case BPF_JGE:
731 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
732 					break;
733 				default:
734 					goto jmp_rest;
735 				}
736 
737 				target = i + fp->jf + 1;
738 				BPF_EMIT_JMP;
739 				break;
740 			}
741 jmp_rest:
742 			/* Other jumps are mapped into two insns: Jxx and JA. */
743 			target = i + fp->jt + 1;
744 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
745 			BPF_EMIT_JMP;
746 			insn++;
747 
748 			insn->code = BPF_JMP | BPF_JA;
749 			target = i + fp->jf + 1;
750 			BPF_EMIT_JMP;
751 			break;
752 
753 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
754 		case BPF_LDX | BPF_MSH | BPF_B: {
755 			struct sock_filter tmp = {
756 				.code	= BPF_LD | BPF_ABS | BPF_B,
757 				.k	= fp->k,
758 			};
759 
760 			*seen_ld_abs = true;
761 
762 			/* X = A */
763 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
764 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
765 			convert_bpf_ld_abs(&tmp, &insn);
766 			insn++;
767 			/* A &= 0xf */
768 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
769 			/* A <<= 2 */
770 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
771 			/* tmp = X */
772 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
773 			/* X = A */
774 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
775 			/* A = tmp */
776 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
777 			break;
778 		}
779 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
780 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
781 		 */
782 		case BPF_RET | BPF_A:
783 		case BPF_RET | BPF_K:
784 			if (BPF_RVAL(fp->code) == BPF_K)
785 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
786 							0, fp->k);
787 			*insn = BPF_EXIT_INSN();
788 			break;
789 
790 		/* Store to stack. */
791 		case BPF_ST:
792 		case BPF_STX:
793 			stack_off = fp->k * 4  + 4;
794 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
795 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
796 					    -stack_off);
797 			/* check_load_and_stores() verifies that classic BPF can
798 			 * load from stack only after write, so tracking
799 			 * stack_depth for ST|STX insns is enough
800 			 */
801 			if (new_prog && new_prog->aux->stack_depth < stack_off)
802 				new_prog->aux->stack_depth = stack_off;
803 			break;
804 
805 		/* Load from stack. */
806 		case BPF_LD | BPF_MEM:
807 		case BPF_LDX | BPF_MEM:
808 			stack_off = fp->k * 4  + 4;
809 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
810 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
811 					    -stack_off);
812 			break;
813 
814 		/* A = K or X = K */
815 		case BPF_LD | BPF_IMM:
816 		case BPF_LDX | BPF_IMM:
817 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
818 					      BPF_REG_A : BPF_REG_X, fp->k);
819 			break;
820 
821 		/* X = A */
822 		case BPF_MISC | BPF_TAX:
823 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 			break;
825 
826 		/* A = X */
827 		case BPF_MISC | BPF_TXA:
828 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
829 			break;
830 
831 		/* A = skb->len or X = skb->len */
832 		case BPF_LD | BPF_W | BPF_LEN:
833 		case BPF_LDX | BPF_W | BPF_LEN:
834 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
835 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
836 					    offsetof(struct sk_buff, len));
837 			break;
838 
839 		/* Access seccomp_data fields. */
840 		case BPF_LDX | BPF_ABS | BPF_W:
841 			/* A = *(u32 *) (ctx + K) */
842 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
843 			break;
844 
845 		/* Unknown instruction. */
846 		default:
847 			goto err;
848 		}
849 
850 		insn++;
851 		if (new_prog)
852 			memcpy(new_insn, tmp_insns,
853 			       sizeof(*insn) * (insn - tmp_insns));
854 		new_insn += insn - tmp_insns;
855 	}
856 
857 	if (!new_prog) {
858 		/* Only calculating new length. */
859 		*new_len = new_insn - first_insn;
860 		if (*seen_ld_abs)
861 			*new_len += 4; /* Prologue bits. */
862 		return 0;
863 	}
864 
865 	pass++;
866 	if (new_flen != new_insn - first_insn) {
867 		new_flen = new_insn - first_insn;
868 		if (pass > 2)
869 			goto err;
870 		goto do_pass;
871 	}
872 
873 	kfree(addrs);
874 	BUG_ON(*new_len != new_flen);
875 	return 0;
876 err:
877 	kfree(addrs);
878 	return -EINVAL;
879 }
880 
881 /* Security:
882  *
883  * As we dont want to clear mem[] array for each packet going through
884  * __bpf_prog_run(), we check that filter loaded by user never try to read
885  * a cell if not previously written, and we check all branches to be sure
886  * a malicious user doesn't try to abuse us.
887  */
888 static int check_load_and_stores(const struct sock_filter *filter, int flen)
889 {
890 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
891 	int pc, ret = 0;
892 
893 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
894 
895 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
896 	if (!masks)
897 		return -ENOMEM;
898 
899 	memset(masks, 0xff, flen * sizeof(*masks));
900 
901 	for (pc = 0; pc < flen; pc++) {
902 		memvalid &= masks[pc];
903 
904 		switch (filter[pc].code) {
905 		case BPF_ST:
906 		case BPF_STX:
907 			memvalid |= (1 << filter[pc].k);
908 			break;
909 		case BPF_LD | BPF_MEM:
910 		case BPF_LDX | BPF_MEM:
911 			if (!(memvalid & (1 << filter[pc].k))) {
912 				ret = -EINVAL;
913 				goto error;
914 			}
915 			break;
916 		case BPF_JMP | BPF_JA:
917 			/* A jump must set masks on target */
918 			masks[pc + 1 + filter[pc].k] &= memvalid;
919 			memvalid = ~0;
920 			break;
921 		case BPF_JMP | BPF_JEQ | BPF_K:
922 		case BPF_JMP | BPF_JEQ | BPF_X:
923 		case BPF_JMP | BPF_JGE | BPF_K:
924 		case BPF_JMP | BPF_JGE | BPF_X:
925 		case BPF_JMP | BPF_JGT | BPF_K:
926 		case BPF_JMP | BPF_JGT | BPF_X:
927 		case BPF_JMP | BPF_JSET | BPF_K:
928 		case BPF_JMP | BPF_JSET | BPF_X:
929 			/* A jump must set masks on targets */
930 			masks[pc + 1 + filter[pc].jt] &= memvalid;
931 			masks[pc + 1 + filter[pc].jf] &= memvalid;
932 			memvalid = ~0;
933 			break;
934 		}
935 	}
936 error:
937 	kfree(masks);
938 	return ret;
939 }
940 
941 static bool chk_code_allowed(u16 code_to_probe)
942 {
943 	static const bool codes[] = {
944 		/* 32 bit ALU operations */
945 		[BPF_ALU | BPF_ADD | BPF_K] = true,
946 		[BPF_ALU | BPF_ADD | BPF_X] = true,
947 		[BPF_ALU | BPF_SUB | BPF_K] = true,
948 		[BPF_ALU | BPF_SUB | BPF_X] = true,
949 		[BPF_ALU | BPF_MUL | BPF_K] = true,
950 		[BPF_ALU | BPF_MUL | BPF_X] = true,
951 		[BPF_ALU | BPF_DIV | BPF_K] = true,
952 		[BPF_ALU | BPF_DIV | BPF_X] = true,
953 		[BPF_ALU | BPF_MOD | BPF_K] = true,
954 		[BPF_ALU | BPF_MOD | BPF_X] = true,
955 		[BPF_ALU | BPF_AND | BPF_K] = true,
956 		[BPF_ALU | BPF_AND | BPF_X] = true,
957 		[BPF_ALU | BPF_OR | BPF_K] = true,
958 		[BPF_ALU | BPF_OR | BPF_X] = true,
959 		[BPF_ALU | BPF_XOR | BPF_K] = true,
960 		[BPF_ALU | BPF_XOR | BPF_X] = true,
961 		[BPF_ALU | BPF_LSH | BPF_K] = true,
962 		[BPF_ALU | BPF_LSH | BPF_X] = true,
963 		[BPF_ALU | BPF_RSH | BPF_K] = true,
964 		[BPF_ALU | BPF_RSH | BPF_X] = true,
965 		[BPF_ALU | BPF_NEG] = true,
966 		/* Load instructions */
967 		[BPF_LD | BPF_W | BPF_ABS] = true,
968 		[BPF_LD | BPF_H | BPF_ABS] = true,
969 		[BPF_LD | BPF_B | BPF_ABS] = true,
970 		[BPF_LD | BPF_W | BPF_LEN] = true,
971 		[BPF_LD | BPF_W | BPF_IND] = true,
972 		[BPF_LD | BPF_H | BPF_IND] = true,
973 		[BPF_LD | BPF_B | BPF_IND] = true,
974 		[BPF_LD | BPF_IMM] = true,
975 		[BPF_LD | BPF_MEM] = true,
976 		[BPF_LDX | BPF_W | BPF_LEN] = true,
977 		[BPF_LDX | BPF_B | BPF_MSH] = true,
978 		[BPF_LDX | BPF_IMM] = true,
979 		[BPF_LDX | BPF_MEM] = true,
980 		/* Store instructions */
981 		[BPF_ST] = true,
982 		[BPF_STX] = true,
983 		/* Misc instructions */
984 		[BPF_MISC | BPF_TAX] = true,
985 		[BPF_MISC | BPF_TXA] = true,
986 		/* Return instructions */
987 		[BPF_RET | BPF_K] = true,
988 		[BPF_RET | BPF_A] = true,
989 		/* Jump instructions */
990 		[BPF_JMP | BPF_JA] = true,
991 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
992 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
993 		[BPF_JMP | BPF_JGE | BPF_K] = true,
994 		[BPF_JMP | BPF_JGE | BPF_X] = true,
995 		[BPF_JMP | BPF_JGT | BPF_K] = true,
996 		[BPF_JMP | BPF_JGT | BPF_X] = true,
997 		[BPF_JMP | BPF_JSET | BPF_K] = true,
998 		[BPF_JMP | BPF_JSET | BPF_X] = true,
999 	};
1000 
1001 	if (code_to_probe >= ARRAY_SIZE(codes))
1002 		return false;
1003 
1004 	return codes[code_to_probe];
1005 }
1006 
1007 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008 				unsigned int flen)
1009 {
1010 	if (filter == NULL)
1011 		return false;
1012 	if (flen == 0 || flen > BPF_MAXINSNS)
1013 		return false;
1014 
1015 	return true;
1016 }
1017 
1018 /**
1019  *	bpf_check_classic - verify socket filter code
1020  *	@filter: filter to verify
1021  *	@flen: length of filter
1022  *
1023  * Check the user's filter code. If we let some ugly
1024  * filter code slip through kaboom! The filter must contain
1025  * no references or jumps that are out of range, no illegal
1026  * instructions, and must end with a RET instruction.
1027  *
1028  * All jumps are forward as they are not signed.
1029  *
1030  * Returns 0 if the rule set is legal or -EINVAL if not.
1031  */
1032 static int bpf_check_classic(const struct sock_filter *filter,
1033 			     unsigned int flen)
1034 {
1035 	bool anc_found;
1036 	int pc;
1037 
1038 	/* Check the filter code now */
1039 	for (pc = 0; pc < flen; pc++) {
1040 		const struct sock_filter *ftest = &filter[pc];
1041 
1042 		/* May we actually operate on this code? */
1043 		if (!chk_code_allowed(ftest->code))
1044 			return -EINVAL;
1045 
1046 		/* Some instructions need special checks */
1047 		switch (ftest->code) {
1048 		case BPF_ALU | BPF_DIV | BPF_K:
1049 		case BPF_ALU | BPF_MOD | BPF_K:
1050 			/* Check for division by zero */
1051 			if (ftest->k == 0)
1052 				return -EINVAL;
1053 			break;
1054 		case BPF_ALU | BPF_LSH | BPF_K:
1055 		case BPF_ALU | BPF_RSH | BPF_K:
1056 			if (ftest->k >= 32)
1057 				return -EINVAL;
1058 			break;
1059 		case BPF_LD | BPF_MEM:
1060 		case BPF_LDX | BPF_MEM:
1061 		case BPF_ST:
1062 		case BPF_STX:
1063 			/* Check for invalid memory addresses */
1064 			if (ftest->k >= BPF_MEMWORDS)
1065 				return -EINVAL;
1066 			break;
1067 		case BPF_JMP | BPF_JA:
1068 			/* Note, the large ftest->k might cause loops.
1069 			 * Compare this with conditional jumps below,
1070 			 * where offsets are limited. --ANK (981016)
1071 			 */
1072 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1073 				return -EINVAL;
1074 			break;
1075 		case BPF_JMP | BPF_JEQ | BPF_K:
1076 		case BPF_JMP | BPF_JEQ | BPF_X:
1077 		case BPF_JMP | BPF_JGE | BPF_K:
1078 		case BPF_JMP | BPF_JGE | BPF_X:
1079 		case BPF_JMP | BPF_JGT | BPF_K:
1080 		case BPF_JMP | BPF_JGT | BPF_X:
1081 		case BPF_JMP | BPF_JSET | BPF_K:
1082 		case BPF_JMP | BPF_JSET | BPF_X:
1083 			/* Both conditionals must be safe */
1084 			if (pc + ftest->jt + 1 >= flen ||
1085 			    pc + ftest->jf + 1 >= flen)
1086 				return -EINVAL;
1087 			break;
1088 		case BPF_LD | BPF_W | BPF_ABS:
1089 		case BPF_LD | BPF_H | BPF_ABS:
1090 		case BPF_LD | BPF_B | BPF_ABS:
1091 			anc_found = false;
1092 			if (bpf_anc_helper(ftest) & BPF_ANC)
1093 				anc_found = true;
1094 			/* Ancillary operation unknown or unsupported */
1095 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096 				return -EINVAL;
1097 		}
1098 	}
1099 
1100 	/* Last instruction must be a RET code */
1101 	switch (filter[flen - 1].code) {
1102 	case BPF_RET | BPF_K:
1103 	case BPF_RET | BPF_A:
1104 		return check_load_and_stores(filter, flen);
1105 	}
1106 
1107 	return -EINVAL;
1108 }
1109 
1110 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111 				      const struct sock_fprog *fprog)
1112 {
1113 	unsigned int fsize = bpf_classic_proglen(fprog);
1114 	struct sock_fprog_kern *fkprog;
1115 
1116 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117 	if (!fp->orig_prog)
1118 		return -ENOMEM;
1119 
1120 	fkprog = fp->orig_prog;
1121 	fkprog->len = fprog->len;
1122 
1123 	fkprog->filter = kmemdup(fp->insns, fsize,
1124 				 GFP_KERNEL | __GFP_NOWARN);
1125 	if (!fkprog->filter) {
1126 		kfree(fp->orig_prog);
1127 		return -ENOMEM;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static void bpf_release_orig_filter(struct bpf_prog *fp)
1134 {
1135 	struct sock_fprog_kern *fprog = fp->orig_prog;
1136 
1137 	if (fprog) {
1138 		kfree(fprog->filter);
1139 		kfree(fprog);
1140 	}
1141 }
1142 
1143 static void __bpf_prog_release(struct bpf_prog *prog)
1144 {
1145 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146 		bpf_prog_put(prog);
1147 	} else {
1148 		bpf_release_orig_filter(prog);
1149 		bpf_prog_free(prog);
1150 	}
1151 }
1152 
1153 static void __sk_filter_release(struct sk_filter *fp)
1154 {
1155 	__bpf_prog_release(fp->prog);
1156 	kfree(fp);
1157 }
1158 
1159 /**
1160  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1161  *	@rcu: rcu_head that contains the sk_filter to free
1162  */
1163 static void sk_filter_release_rcu(struct rcu_head *rcu)
1164 {
1165 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166 
1167 	__sk_filter_release(fp);
1168 }
1169 
1170 /**
1171  *	sk_filter_release - release a socket filter
1172  *	@fp: filter to remove
1173  *
1174  *	Remove a filter from a socket and release its resources.
1175  */
1176 static void sk_filter_release(struct sk_filter *fp)
1177 {
1178 	if (refcount_dec_and_test(&fp->refcnt))
1179 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1180 }
1181 
1182 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183 {
1184 	u32 filter_size = bpf_prog_size(fp->prog->len);
1185 
1186 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1187 	sk_filter_release(fp);
1188 }
1189 
1190 /* try to charge the socket memory if there is space available
1191  * return true on success
1192  */
1193 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194 {
1195 	u32 filter_size = bpf_prog_size(fp->prog->len);
1196 
1197 	/* same check as in sock_kmalloc() */
1198 	if (filter_size <= sysctl_optmem_max &&
1199 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200 		atomic_add(filter_size, &sk->sk_omem_alloc);
1201 		return true;
1202 	}
1203 	return false;
1204 }
1205 
1206 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207 {
1208 	if (!refcount_inc_not_zero(&fp->refcnt))
1209 		return false;
1210 
1211 	if (!__sk_filter_charge(sk, fp)) {
1212 		sk_filter_release(fp);
1213 		return false;
1214 	}
1215 	return true;
1216 }
1217 
1218 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219 {
1220 	struct sock_filter *old_prog;
1221 	struct bpf_prog *old_fp;
1222 	int err, new_len, old_len = fp->len;
1223 	bool seen_ld_abs = false;
1224 
1225 	/* We are free to overwrite insns et al right here as it
1226 	 * won't be used at this point in time anymore internally
1227 	 * after the migration to the internal BPF instruction
1228 	 * representation.
1229 	 */
1230 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231 		     sizeof(struct bpf_insn));
1232 
1233 	/* Conversion cannot happen on overlapping memory areas,
1234 	 * so we need to keep the user BPF around until the 2nd
1235 	 * pass. At this time, the user BPF is stored in fp->insns.
1236 	 */
1237 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238 			   GFP_KERNEL | __GFP_NOWARN);
1239 	if (!old_prog) {
1240 		err = -ENOMEM;
1241 		goto out_err;
1242 	}
1243 
1244 	/* 1st pass: calculate the new program length. */
1245 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246 				 &seen_ld_abs);
1247 	if (err)
1248 		goto out_err_free;
1249 
1250 	/* Expand fp for appending the new filter representation. */
1251 	old_fp = fp;
1252 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253 	if (!fp) {
1254 		/* The old_fp is still around in case we couldn't
1255 		 * allocate new memory, so uncharge on that one.
1256 		 */
1257 		fp = old_fp;
1258 		err = -ENOMEM;
1259 		goto out_err_free;
1260 	}
1261 
1262 	fp->len = new_len;
1263 
1264 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266 				 &seen_ld_abs);
1267 	if (err)
1268 		/* 2nd bpf_convert_filter() can fail only if it fails
1269 		 * to allocate memory, remapping must succeed. Note,
1270 		 * that at this time old_fp has already been released
1271 		 * by krealloc().
1272 		 */
1273 		goto out_err_free;
1274 
1275 	fp = bpf_prog_select_runtime(fp, &err);
1276 	if (err)
1277 		goto out_err_free;
1278 
1279 	kfree(old_prog);
1280 	return fp;
1281 
1282 out_err_free:
1283 	kfree(old_prog);
1284 out_err:
1285 	__bpf_prog_release(fp);
1286 	return ERR_PTR(err);
1287 }
1288 
1289 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290 					   bpf_aux_classic_check_t trans)
1291 {
1292 	int err;
1293 
1294 	fp->bpf_func = NULL;
1295 	fp->jited = 0;
1296 
1297 	err = bpf_check_classic(fp->insns, fp->len);
1298 	if (err) {
1299 		__bpf_prog_release(fp);
1300 		return ERR_PTR(err);
1301 	}
1302 
1303 	/* There might be additional checks and transformations
1304 	 * needed on classic filters, f.e. in case of seccomp.
1305 	 */
1306 	if (trans) {
1307 		err = trans(fp->insns, fp->len);
1308 		if (err) {
1309 			__bpf_prog_release(fp);
1310 			return ERR_PTR(err);
1311 		}
1312 	}
1313 
1314 	/* Probe if we can JIT compile the filter and if so, do
1315 	 * the compilation of the filter.
1316 	 */
1317 	bpf_jit_compile(fp);
1318 
1319 	/* JIT compiler couldn't process this filter, so do the
1320 	 * internal BPF translation for the optimized interpreter.
1321 	 */
1322 	if (!fp->jited)
1323 		fp = bpf_migrate_filter(fp);
1324 
1325 	return fp;
1326 }
1327 
1328 /**
1329  *	bpf_prog_create - create an unattached filter
1330  *	@pfp: the unattached filter that is created
1331  *	@fprog: the filter program
1332  *
1333  * Create a filter independent of any socket. We first run some
1334  * sanity checks on it to make sure it does not explode on us later.
1335  * If an error occurs or there is insufficient memory for the filter
1336  * a negative errno code is returned. On success the return is zero.
1337  */
1338 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339 {
1340 	unsigned int fsize = bpf_classic_proglen(fprog);
1341 	struct bpf_prog *fp;
1342 
1343 	/* Make sure new filter is there and in the right amounts. */
1344 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345 		return -EINVAL;
1346 
1347 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348 	if (!fp)
1349 		return -ENOMEM;
1350 
1351 	memcpy(fp->insns, fprog->filter, fsize);
1352 
1353 	fp->len = fprog->len;
1354 	/* Since unattached filters are not copied back to user
1355 	 * space through sk_get_filter(), we do not need to hold
1356 	 * a copy here, and can spare us the work.
1357 	 */
1358 	fp->orig_prog = NULL;
1359 
1360 	/* bpf_prepare_filter() already takes care of freeing
1361 	 * memory in case something goes wrong.
1362 	 */
1363 	fp = bpf_prepare_filter(fp, NULL);
1364 	if (IS_ERR(fp))
1365 		return PTR_ERR(fp);
1366 
1367 	*pfp = fp;
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(bpf_prog_create);
1371 
1372 /**
1373  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1374  *	@pfp: the unattached filter that is created
1375  *	@fprog: the filter program
1376  *	@trans: post-classic verifier transformation handler
1377  *	@save_orig: save classic BPF program
1378  *
1379  * This function effectively does the same as bpf_prog_create(), only
1380  * that it builds up its insns buffer from user space provided buffer.
1381  * It also allows for passing a bpf_aux_classic_check_t handler.
1382  */
1383 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384 			      bpf_aux_classic_check_t trans, bool save_orig)
1385 {
1386 	unsigned int fsize = bpf_classic_proglen(fprog);
1387 	struct bpf_prog *fp;
1388 	int err;
1389 
1390 	/* Make sure new filter is there and in the right amounts. */
1391 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392 		return -EINVAL;
1393 
1394 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395 	if (!fp)
1396 		return -ENOMEM;
1397 
1398 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399 		__bpf_prog_free(fp);
1400 		return -EFAULT;
1401 	}
1402 
1403 	fp->len = fprog->len;
1404 	fp->orig_prog = NULL;
1405 
1406 	if (save_orig) {
1407 		err = bpf_prog_store_orig_filter(fp, fprog);
1408 		if (err) {
1409 			__bpf_prog_free(fp);
1410 			return -ENOMEM;
1411 		}
1412 	}
1413 
1414 	/* bpf_prepare_filter() already takes care of freeing
1415 	 * memory in case something goes wrong.
1416 	 */
1417 	fp = bpf_prepare_filter(fp, trans);
1418 	if (IS_ERR(fp))
1419 		return PTR_ERR(fp);
1420 
1421 	*pfp = fp;
1422 	return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425 
1426 void bpf_prog_destroy(struct bpf_prog *fp)
1427 {
1428 	__bpf_prog_release(fp);
1429 }
1430 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431 
1432 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433 {
1434 	struct sk_filter *fp, *old_fp;
1435 
1436 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437 	if (!fp)
1438 		return -ENOMEM;
1439 
1440 	fp->prog = prog;
1441 
1442 	if (!__sk_filter_charge(sk, fp)) {
1443 		kfree(fp);
1444 		return -ENOMEM;
1445 	}
1446 	refcount_set(&fp->refcnt, 1);
1447 
1448 	old_fp = rcu_dereference_protected(sk->sk_filter,
1449 					   lockdep_sock_is_held(sk));
1450 	rcu_assign_pointer(sk->sk_filter, fp);
1451 
1452 	if (old_fp)
1453 		sk_filter_uncharge(sk, old_fp);
1454 
1455 	return 0;
1456 }
1457 
1458 static
1459 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460 {
1461 	unsigned int fsize = bpf_classic_proglen(fprog);
1462 	struct bpf_prog *prog;
1463 	int err;
1464 
1465 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466 		return ERR_PTR(-EPERM);
1467 
1468 	/* Make sure new filter is there and in the right amounts. */
1469 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470 		return ERR_PTR(-EINVAL);
1471 
1472 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473 	if (!prog)
1474 		return ERR_PTR(-ENOMEM);
1475 
1476 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477 		__bpf_prog_free(prog);
1478 		return ERR_PTR(-EFAULT);
1479 	}
1480 
1481 	prog->len = fprog->len;
1482 
1483 	err = bpf_prog_store_orig_filter(prog, fprog);
1484 	if (err) {
1485 		__bpf_prog_free(prog);
1486 		return ERR_PTR(-ENOMEM);
1487 	}
1488 
1489 	/* bpf_prepare_filter() already takes care of freeing
1490 	 * memory in case something goes wrong.
1491 	 */
1492 	return bpf_prepare_filter(prog, NULL);
1493 }
1494 
1495 /**
1496  *	sk_attach_filter - attach a socket filter
1497  *	@fprog: the filter program
1498  *	@sk: the socket to use
1499  *
1500  * Attach the user's filter code. We first run some sanity checks on
1501  * it to make sure it does not explode on us later. If an error
1502  * occurs or there is insufficient memory for the filter a negative
1503  * errno code is returned. On success the return is zero.
1504  */
1505 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506 {
1507 	struct bpf_prog *prog = __get_filter(fprog, sk);
1508 	int err;
1509 
1510 	if (IS_ERR(prog))
1511 		return PTR_ERR(prog);
1512 
1513 	err = __sk_attach_prog(prog, sk);
1514 	if (err < 0) {
1515 		__bpf_prog_release(prog);
1516 		return err;
1517 	}
1518 
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(sk_attach_filter);
1522 
1523 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524 {
1525 	struct bpf_prog *prog = __get_filter(fprog, sk);
1526 	int err;
1527 
1528 	if (IS_ERR(prog))
1529 		return PTR_ERR(prog);
1530 
1531 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532 		err = -ENOMEM;
1533 	else
1534 		err = reuseport_attach_prog(sk, prog);
1535 
1536 	if (err)
1537 		__bpf_prog_release(prog);
1538 
1539 	return err;
1540 }
1541 
1542 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543 {
1544 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545 		return ERR_PTR(-EPERM);
1546 
1547 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548 }
1549 
1550 int sk_attach_bpf(u32 ufd, struct sock *sk)
1551 {
1552 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1553 	int err;
1554 
1555 	if (IS_ERR(prog))
1556 		return PTR_ERR(prog);
1557 
1558 	err = __sk_attach_prog(prog, sk);
1559 	if (err < 0) {
1560 		bpf_prog_put(prog);
1561 		return err;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568 {
1569 	struct bpf_prog *prog;
1570 	int err;
1571 
1572 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573 		return -EPERM;
1574 
1575 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576 	if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1577 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578 	if (IS_ERR(prog))
1579 		return PTR_ERR(prog);
1580 
1581 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583 		 * bpf prog (e.g. sockmap).  It depends on the
1584 		 * limitation imposed by bpf_prog_load().
1585 		 * Hence, sysctl_optmem_max is not checked.
1586 		 */
1587 		if ((sk->sk_type != SOCK_STREAM &&
1588 		     sk->sk_type != SOCK_DGRAM) ||
1589 		    (sk->sk_protocol != IPPROTO_UDP &&
1590 		     sk->sk_protocol != IPPROTO_TCP) ||
1591 		    (sk->sk_family != AF_INET &&
1592 		     sk->sk_family != AF_INET6)) {
1593 			err = -ENOTSUPP;
1594 			goto err_prog_put;
1595 		}
1596 	} else {
1597 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1598 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599 			err = -ENOMEM;
1600 			goto err_prog_put;
1601 		}
1602 	}
1603 
1604 	err = reuseport_attach_prog(sk, prog);
1605 err_prog_put:
1606 	if (err)
1607 		bpf_prog_put(prog);
1608 
1609 	return err;
1610 }
1611 
1612 void sk_reuseport_prog_free(struct bpf_prog *prog)
1613 {
1614 	if (!prog)
1615 		return;
1616 
1617 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618 		bpf_prog_put(prog);
1619 	else
1620 		bpf_prog_destroy(prog);
1621 }
1622 
1623 struct bpf_scratchpad {
1624 	union {
1625 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626 		u8     buff[MAX_BPF_STACK];
1627 	};
1628 };
1629 
1630 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631 
1632 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633 					  unsigned int write_len)
1634 {
1635 	return skb_ensure_writable(skb, write_len);
1636 }
1637 
1638 static inline int bpf_try_make_writable(struct sk_buff *skb,
1639 					unsigned int write_len)
1640 {
1641 	int err = __bpf_try_make_writable(skb, write_len);
1642 
1643 	bpf_compute_data_pointers(skb);
1644 	return err;
1645 }
1646 
1647 static int bpf_try_make_head_writable(struct sk_buff *skb)
1648 {
1649 	return bpf_try_make_writable(skb, skb_headlen(skb));
1650 }
1651 
1652 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653 {
1654 	if (skb_at_tc_ingress(skb))
1655 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656 }
1657 
1658 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659 {
1660 	if (skb_at_tc_ingress(skb))
1661 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662 }
1663 
1664 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665 	   const void *, from, u32, len, u64, flags)
1666 {
1667 	void *ptr;
1668 
1669 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670 		return -EINVAL;
1671 	if (unlikely(offset > 0xffff))
1672 		return -EFAULT;
1673 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674 		return -EFAULT;
1675 
1676 	ptr = skb->data + offset;
1677 	if (flags & BPF_F_RECOMPUTE_CSUM)
1678 		__skb_postpull_rcsum(skb, ptr, len, offset);
1679 
1680 	memcpy(ptr, from, len);
1681 
1682 	if (flags & BPF_F_RECOMPUTE_CSUM)
1683 		__skb_postpush_rcsum(skb, ptr, len, offset);
1684 	if (flags & BPF_F_INVALIDATE_HASH)
1685 		skb_clear_hash(skb);
1686 
1687 	return 0;
1688 }
1689 
1690 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691 	.func		= bpf_skb_store_bytes,
1692 	.gpl_only	= false,
1693 	.ret_type	= RET_INTEGER,
1694 	.arg1_type	= ARG_PTR_TO_CTX,
1695 	.arg2_type	= ARG_ANYTHING,
1696 	.arg3_type	= ARG_PTR_TO_MEM,
1697 	.arg4_type	= ARG_CONST_SIZE,
1698 	.arg5_type	= ARG_ANYTHING,
1699 };
1700 
1701 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702 	   void *, to, u32, len)
1703 {
1704 	void *ptr;
1705 
1706 	if (unlikely(offset > 0xffff))
1707 		goto err_clear;
1708 
1709 	ptr = skb_header_pointer(skb, offset, len, to);
1710 	if (unlikely(!ptr))
1711 		goto err_clear;
1712 	if (ptr != to)
1713 		memcpy(to, ptr, len);
1714 
1715 	return 0;
1716 err_clear:
1717 	memset(to, 0, len);
1718 	return -EFAULT;
1719 }
1720 
1721 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722 	.func		= bpf_skb_load_bytes,
1723 	.gpl_only	= false,
1724 	.ret_type	= RET_INTEGER,
1725 	.arg1_type	= ARG_PTR_TO_CTX,
1726 	.arg2_type	= ARG_ANYTHING,
1727 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1728 	.arg4_type	= ARG_CONST_SIZE,
1729 };
1730 
1731 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1732 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1733 	   void *, to, u32, len)
1734 {
1735 	void *ptr;
1736 
1737 	if (unlikely(offset > 0xffff))
1738 		goto err_clear;
1739 
1740 	if (unlikely(!ctx->skb))
1741 		goto err_clear;
1742 
1743 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1744 	if (unlikely(!ptr))
1745 		goto err_clear;
1746 	if (ptr != to)
1747 		memcpy(to, ptr, len);
1748 
1749 	return 0;
1750 err_clear:
1751 	memset(to, 0, len);
1752 	return -EFAULT;
1753 }
1754 
1755 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1756 	.func		= bpf_flow_dissector_load_bytes,
1757 	.gpl_only	= false,
1758 	.ret_type	= RET_INTEGER,
1759 	.arg1_type	= ARG_PTR_TO_CTX,
1760 	.arg2_type	= ARG_ANYTHING,
1761 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1762 	.arg4_type	= ARG_CONST_SIZE,
1763 };
1764 
1765 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1766 	   u32, offset, void *, to, u32, len, u32, start_header)
1767 {
1768 	u8 *end = skb_tail_pointer(skb);
1769 	u8 *net = skb_network_header(skb);
1770 	u8 *mac = skb_mac_header(skb);
1771 	u8 *ptr;
1772 
1773 	if (unlikely(offset > 0xffff || len > (end - mac)))
1774 		goto err_clear;
1775 
1776 	switch (start_header) {
1777 	case BPF_HDR_START_MAC:
1778 		ptr = mac + offset;
1779 		break;
1780 	case BPF_HDR_START_NET:
1781 		ptr = net + offset;
1782 		break;
1783 	default:
1784 		goto err_clear;
1785 	}
1786 
1787 	if (likely(ptr >= mac && ptr + len <= end)) {
1788 		memcpy(to, ptr, len);
1789 		return 0;
1790 	}
1791 
1792 err_clear:
1793 	memset(to, 0, len);
1794 	return -EFAULT;
1795 }
1796 
1797 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1798 	.func		= bpf_skb_load_bytes_relative,
1799 	.gpl_only	= false,
1800 	.ret_type	= RET_INTEGER,
1801 	.arg1_type	= ARG_PTR_TO_CTX,
1802 	.arg2_type	= ARG_ANYTHING,
1803 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1804 	.arg4_type	= ARG_CONST_SIZE,
1805 	.arg5_type	= ARG_ANYTHING,
1806 };
1807 
1808 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1809 {
1810 	/* Idea is the following: should the needed direct read/write
1811 	 * test fail during runtime, we can pull in more data and redo
1812 	 * again, since implicitly, we invalidate previous checks here.
1813 	 *
1814 	 * Or, since we know how much we need to make read/writeable,
1815 	 * this can be done once at the program beginning for direct
1816 	 * access case. By this we overcome limitations of only current
1817 	 * headroom being accessible.
1818 	 */
1819 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1820 }
1821 
1822 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1823 	.func		= bpf_skb_pull_data,
1824 	.gpl_only	= false,
1825 	.ret_type	= RET_INTEGER,
1826 	.arg1_type	= ARG_PTR_TO_CTX,
1827 	.arg2_type	= ARG_ANYTHING,
1828 };
1829 
1830 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1831 {
1832 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1833 }
1834 
1835 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1836 	.func		= bpf_sk_fullsock,
1837 	.gpl_only	= false,
1838 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1839 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1840 };
1841 
1842 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1843 					   unsigned int write_len)
1844 {
1845 	int err = __bpf_try_make_writable(skb, write_len);
1846 
1847 	bpf_compute_data_end_sk_skb(skb);
1848 	return err;
1849 }
1850 
1851 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853 	/* Idea is the following: should the needed direct read/write
1854 	 * test fail during runtime, we can pull in more data and redo
1855 	 * again, since implicitly, we invalidate previous checks here.
1856 	 *
1857 	 * Or, since we know how much we need to make read/writeable,
1858 	 * this can be done once at the program beginning for direct
1859 	 * access case. By this we overcome limitations of only current
1860 	 * headroom being accessible.
1861 	 */
1862 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864 
1865 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1866 	.func		= sk_skb_pull_data,
1867 	.gpl_only	= false,
1868 	.ret_type	= RET_INTEGER,
1869 	.arg1_type	= ARG_PTR_TO_CTX,
1870 	.arg2_type	= ARG_ANYTHING,
1871 };
1872 
1873 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1874 	   u64, from, u64, to, u64, flags)
1875 {
1876 	__sum16 *ptr;
1877 
1878 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1879 		return -EINVAL;
1880 	if (unlikely(offset > 0xffff || offset & 1))
1881 		return -EFAULT;
1882 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883 		return -EFAULT;
1884 
1885 	ptr = (__sum16 *)(skb->data + offset);
1886 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1887 	case 0:
1888 		if (unlikely(from != 0))
1889 			return -EINVAL;
1890 
1891 		csum_replace_by_diff(ptr, to);
1892 		break;
1893 	case 2:
1894 		csum_replace2(ptr, from, to);
1895 		break;
1896 	case 4:
1897 		csum_replace4(ptr, from, to);
1898 		break;
1899 	default:
1900 		return -EINVAL;
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1907 	.func		= bpf_l3_csum_replace,
1908 	.gpl_only	= false,
1909 	.ret_type	= RET_INTEGER,
1910 	.arg1_type	= ARG_PTR_TO_CTX,
1911 	.arg2_type	= ARG_ANYTHING,
1912 	.arg3_type	= ARG_ANYTHING,
1913 	.arg4_type	= ARG_ANYTHING,
1914 	.arg5_type	= ARG_ANYTHING,
1915 };
1916 
1917 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1918 	   u64, from, u64, to, u64, flags)
1919 {
1920 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1921 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1922 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1923 	__sum16 *ptr;
1924 
1925 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1926 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1927 		return -EINVAL;
1928 	if (unlikely(offset > 0xffff || offset & 1))
1929 		return -EFAULT;
1930 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931 		return -EFAULT;
1932 
1933 	ptr = (__sum16 *)(skb->data + offset);
1934 	if (is_mmzero && !do_mforce && !*ptr)
1935 		return 0;
1936 
1937 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1938 	case 0:
1939 		if (unlikely(from != 0))
1940 			return -EINVAL;
1941 
1942 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1943 		break;
1944 	case 2:
1945 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1946 		break;
1947 	case 4:
1948 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1949 		break;
1950 	default:
1951 		return -EINVAL;
1952 	}
1953 
1954 	if (is_mmzero && !*ptr)
1955 		*ptr = CSUM_MANGLED_0;
1956 	return 0;
1957 }
1958 
1959 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1960 	.func		= bpf_l4_csum_replace,
1961 	.gpl_only	= false,
1962 	.ret_type	= RET_INTEGER,
1963 	.arg1_type	= ARG_PTR_TO_CTX,
1964 	.arg2_type	= ARG_ANYTHING,
1965 	.arg3_type	= ARG_ANYTHING,
1966 	.arg4_type	= ARG_ANYTHING,
1967 	.arg5_type	= ARG_ANYTHING,
1968 };
1969 
1970 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1971 	   __be32 *, to, u32, to_size, __wsum, seed)
1972 {
1973 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1974 	u32 diff_size = from_size + to_size;
1975 	int i, j = 0;
1976 
1977 	/* This is quite flexible, some examples:
1978 	 *
1979 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1980 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1981 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1982 	 *
1983 	 * Even for diffing, from_size and to_size don't need to be equal.
1984 	 */
1985 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1986 		     diff_size > sizeof(sp->diff)))
1987 		return -EINVAL;
1988 
1989 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1990 		sp->diff[j] = ~from[i];
1991 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1992 		sp->diff[j] = to[i];
1993 
1994 	return csum_partial(sp->diff, diff_size, seed);
1995 }
1996 
1997 static const struct bpf_func_proto bpf_csum_diff_proto = {
1998 	.func		= bpf_csum_diff,
1999 	.gpl_only	= false,
2000 	.pkt_access	= true,
2001 	.ret_type	= RET_INTEGER,
2002 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
2003 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2004 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
2005 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2006 	.arg5_type	= ARG_ANYTHING,
2007 };
2008 
2009 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2010 {
2011 	/* The interface is to be used in combination with bpf_csum_diff()
2012 	 * for direct packet writes. csum rotation for alignment as well
2013 	 * as emulating csum_sub() can be done from the eBPF program.
2014 	 */
2015 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2016 		return (skb->csum = csum_add(skb->csum, csum));
2017 
2018 	return -ENOTSUPP;
2019 }
2020 
2021 static const struct bpf_func_proto bpf_csum_update_proto = {
2022 	.func		= bpf_csum_update,
2023 	.gpl_only	= false,
2024 	.ret_type	= RET_INTEGER,
2025 	.arg1_type	= ARG_PTR_TO_CTX,
2026 	.arg2_type	= ARG_ANYTHING,
2027 };
2028 
2029 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2030 {
2031 	return dev_forward_skb(dev, skb);
2032 }
2033 
2034 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2035 				      struct sk_buff *skb)
2036 {
2037 	int ret = ____dev_forward_skb(dev, skb);
2038 
2039 	if (likely(!ret)) {
2040 		skb->dev = dev;
2041 		ret = netif_rx(skb);
2042 	}
2043 
2044 	return ret;
2045 }
2046 
2047 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2048 {
2049 	int ret;
2050 
2051 	if (dev_xmit_recursion()) {
2052 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2053 		kfree_skb(skb);
2054 		return -ENETDOWN;
2055 	}
2056 
2057 	skb->dev = dev;
2058 	skb->tstamp = 0;
2059 
2060 	dev_xmit_recursion_inc();
2061 	ret = dev_queue_xmit(skb);
2062 	dev_xmit_recursion_dec();
2063 
2064 	return ret;
2065 }
2066 
2067 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2068 				 u32 flags)
2069 {
2070 	unsigned int mlen = skb_network_offset(skb);
2071 
2072 	if (mlen) {
2073 		__skb_pull(skb, mlen);
2074 
2075 		/* At ingress, the mac header has already been pulled once.
2076 		 * At egress, skb_pospull_rcsum has to be done in case that
2077 		 * the skb is originated from ingress (i.e. a forwarded skb)
2078 		 * to ensure that rcsum starts at net header.
2079 		 */
2080 		if (!skb_at_tc_ingress(skb))
2081 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2082 	}
2083 	skb_pop_mac_header(skb);
2084 	skb_reset_mac_len(skb);
2085 	return flags & BPF_F_INGRESS ?
2086 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2087 }
2088 
2089 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2090 				 u32 flags)
2091 {
2092 	/* Verify that a link layer header is carried */
2093 	if (unlikely(skb->mac_header >= skb->network_header)) {
2094 		kfree_skb(skb);
2095 		return -ERANGE;
2096 	}
2097 
2098 	bpf_push_mac_rcsum(skb);
2099 	return flags & BPF_F_INGRESS ?
2100 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2101 }
2102 
2103 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2104 			  u32 flags)
2105 {
2106 	if (dev_is_mac_header_xmit(dev))
2107 		return __bpf_redirect_common(skb, dev, flags);
2108 	else
2109 		return __bpf_redirect_no_mac(skb, dev, flags);
2110 }
2111 
2112 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2113 {
2114 	struct net_device *dev;
2115 	struct sk_buff *clone;
2116 	int ret;
2117 
2118 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2119 		return -EINVAL;
2120 
2121 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2122 	if (unlikely(!dev))
2123 		return -EINVAL;
2124 
2125 	clone = skb_clone(skb, GFP_ATOMIC);
2126 	if (unlikely(!clone))
2127 		return -ENOMEM;
2128 
2129 	/* For direct write, we need to keep the invariant that the skbs
2130 	 * we're dealing with need to be uncloned. Should uncloning fail
2131 	 * here, we need to free the just generated clone to unclone once
2132 	 * again.
2133 	 */
2134 	ret = bpf_try_make_head_writable(skb);
2135 	if (unlikely(ret)) {
2136 		kfree_skb(clone);
2137 		return -ENOMEM;
2138 	}
2139 
2140 	return __bpf_redirect(clone, dev, flags);
2141 }
2142 
2143 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2144 	.func           = bpf_clone_redirect,
2145 	.gpl_only       = false,
2146 	.ret_type       = RET_INTEGER,
2147 	.arg1_type      = ARG_PTR_TO_CTX,
2148 	.arg2_type      = ARG_ANYTHING,
2149 	.arg3_type      = ARG_ANYTHING,
2150 };
2151 
2152 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2153 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2154 
2155 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2156 {
2157 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2158 
2159 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2160 		return TC_ACT_SHOT;
2161 
2162 	ri->flags = flags;
2163 	ri->tgt_index = ifindex;
2164 
2165 	return TC_ACT_REDIRECT;
2166 }
2167 
2168 int skb_do_redirect(struct sk_buff *skb)
2169 {
2170 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2171 	struct net_device *dev;
2172 
2173 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2174 	ri->tgt_index = 0;
2175 	if (unlikely(!dev)) {
2176 		kfree_skb(skb);
2177 		return -EINVAL;
2178 	}
2179 
2180 	return __bpf_redirect(skb, dev, ri->flags);
2181 }
2182 
2183 static const struct bpf_func_proto bpf_redirect_proto = {
2184 	.func           = bpf_redirect,
2185 	.gpl_only       = false,
2186 	.ret_type       = RET_INTEGER,
2187 	.arg1_type      = ARG_ANYTHING,
2188 	.arg2_type      = ARG_ANYTHING,
2189 };
2190 
2191 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2192 {
2193 	msg->apply_bytes = bytes;
2194 	return 0;
2195 }
2196 
2197 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2198 	.func           = bpf_msg_apply_bytes,
2199 	.gpl_only       = false,
2200 	.ret_type       = RET_INTEGER,
2201 	.arg1_type	= ARG_PTR_TO_CTX,
2202 	.arg2_type      = ARG_ANYTHING,
2203 };
2204 
2205 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2206 {
2207 	msg->cork_bytes = bytes;
2208 	return 0;
2209 }
2210 
2211 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2212 	.func           = bpf_msg_cork_bytes,
2213 	.gpl_only       = false,
2214 	.ret_type       = RET_INTEGER,
2215 	.arg1_type	= ARG_PTR_TO_CTX,
2216 	.arg2_type      = ARG_ANYTHING,
2217 };
2218 
2219 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2220 	   u32, end, u64, flags)
2221 {
2222 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2223 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2224 	struct scatterlist *sge;
2225 	u8 *raw, *to, *from;
2226 	struct page *page;
2227 
2228 	if (unlikely(flags || end <= start))
2229 		return -EINVAL;
2230 
2231 	/* First find the starting scatterlist element */
2232 	i = msg->sg.start;
2233 	do {
2234 		len = sk_msg_elem(msg, i)->length;
2235 		if (start < offset + len)
2236 			break;
2237 		offset += len;
2238 		sk_msg_iter_var_next(i);
2239 	} while (i != msg->sg.end);
2240 
2241 	if (unlikely(start >= offset + len))
2242 		return -EINVAL;
2243 
2244 	first_sge = i;
2245 	/* The start may point into the sg element so we need to also
2246 	 * account for the headroom.
2247 	 */
2248 	bytes_sg_total = start - offset + bytes;
2249 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2250 		goto out;
2251 
2252 	/* At this point we need to linearize multiple scatterlist
2253 	 * elements or a single shared page. Either way we need to
2254 	 * copy into a linear buffer exclusively owned by BPF. Then
2255 	 * place the buffer in the scatterlist and fixup the original
2256 	 * entries by removing the entries now in the linear buffer
2257 	 * and shifting the remaining entries. For now we do not try
2258 	 * to copy partial entries to avoid complexity of running out
2259 	 * of sg_entry slots. The downside is reading a single byte
2260 	 * will copy the entire sg entry.
2261 	 */
2262 	do {
2263 		copy += sk_msg_elem(msg, i)->length;
2264 		sk_msg_iter_var_next(i);
2265 		if (bytes_sg_total <= copy)
2266 			break;
2267 	} while (i != msg->sg.end);
2268 	last_sge = i;
2269 
2270 	if (unlikely(bytes_sg_total > copy))
2271 		return -EINVAL;
2272 
2273 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2274 			   get_order(copy));
2275 	if (unlikely(!page))
2276 		return -ENOMEM;
2277 
2278 	raw = page_address(page);
2279 	i = first_sge;
2280 	do {
2281 		sge = sk_msg_elem(msg, i);
2282 		from = sg_virt(sge);
2283 		len = sge->length;
2284 		to = raw + poffset;
2285 
2286 		memcpy(to, from, len);
2287 		poffset += len;
2288 		sge->length = 0;
2289 		put_page(sg_page(sge));
2290 
2291 		sk_msg_iter_var_next(i);
2292 	} while (i != last_sge);
2293 
2294 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2295 
2296 	/* To repair sg ring we need to shift entries. If we only
2297 	 * had a single entry though we can just replace it and
2298 	 * be done. Otherwise walk the ring and shift the entries.
2299 	 */
2300 	WARN_ON_ONCE(last_sge == first_sge);
2301 	shift = last_sge > first_sge ?
2302 		last_sge - first_sge - 1 :
2303 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2304 	if (!shift)
2305 		goto out;
2306 
2307 	i = first_sge;
2308 	sk_msg_iter_var_next(i);
2309 	do {
2310 		u32 move_from;
2311 
2312 		if (i + shift >= NR_MSG_FRAG_IDS)
2313 			move_from = i + shift - NR_MSG_FRAG_IDS;
2314 		else
2315 			move_from = i + shift;
2316 		if (move_from == msg->sg.end)
2317 			break;
2318 
2319 		msg->sg.data[i] = msg->sg.data[move_from];
2320 		msg->sg.data[move_from].length = 0;
2321 		msg->sg.data[move_from].page_link = 0;
2322 		msg->sg.data[move_from].offset = 0;
2323 		sk_msg_iter_var_next(i);
2324 	} while (1);
2325 
2326 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2327 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2328 		      msg->sg.end - shift;
2329 out:
2330 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2331 	msg->data_end = msg->data + bytes;
2332 	return 0;
2333 }
2334 
2335 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2336 	.func		= bpf_msg_pull_data,
2337 	.gpl_only	= false,
2338 	.ret_type	= RET_INTEGER,
2339 	.arg1_type	= ARG_PTR_TO_CTX,
2340 	.arg2_type	= ARG_ANYTHING,
2341 	.arg3_type	= ARG_ANYTHING,
2342 	.arg4_type	= ARG_ANYTHING,
2343 };
2344 
2345 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2346 	   u32, len, u64, flags)
2347 {
2348 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2349 	u32 new, i = 0, l, space, copy = 0, offset = 0;
2350 	u8 *raw, *to, *from;
2351 	struct page *page;
2352 
2353 	if (unlikely(flags))
2354 		return -EINVAL;
2355 
2356 	/* First find the starting scatterlist element */
2357 	i = msg->sg.start;
2358 	do {
2359 		l = sk_msg_elem(msg, i)->length;
2360 
2361 		if (start < offset + l)
2362 			break;
2363 		offset += l;
2364 		sk_msg_iter_var_next(i);
2365 	} while (i != msg->sg.end);
2366 
2367 	if (start >= offset + l)
2368 		return -EINVAL;
2369 
2370 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2371 
2372 	/* If no space available will fallback to copy, we need at
2373 	 * least one scatterlist elem available to push data into
2374 	 * when start aligns to the beginning of an element or two
2375 	 * when it falls inside an element. We handle the start equals
2376 	 * offset case because its the common case for inserting a
2377 	 * header.
2378 	 */
2379 	if (!space || (space == 1 && start != offset))
2380 		copy = msg->sg.data[i].length;
2381 
2382 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2383 			   get_order(copy + len));
2384 	if (unlikely(!page))
2385 		return -ENOMEM;
2386 
2387 	if (copy) {
2388 		int front, back;
2389 
2390 		raw = page_address(page);
2391 
2392 		psge = sk_msg_elem(msg, i);
2393 		front = start - offset;
2394 		back = psge->length - front;
2395 		from = sg_virt(psge);
2396 
2397 		if (front)
2398 			memcpy(raw, from, front);
2399 
2400 		if (back) {
2401 			from += front;
2402 			to = raw + front + len;
2403 
2404 			memcpy(to, from, back);
2405 		}
2406 
2407 		put_page(sg_page(psge));
2408 	} else if (start - offset) {
2409 		psge = sk_msg_elem(msg, i);
2410 		rsge = sk_msg_elem_cpy(msg, i);
2411 
2412 		psge->length = start - offset;
2413 		rsge.length -= psge->length;
2414 		rsge.offset += start;
2415 
2416 		sk_msg_iter_var_next(i);
2417 		sg_unmark_end(psge);
2418 		sk_msg_iter_next(msg, end);
2419 	}
2420 
2421 	/* Slot(s) to place newly allocated data */
2422 	new = i;
2423 
2424 	/* Shift one or two slots as needed */
2425 	if (!copy) {
2426 		sge = sk_msg_elem_cpy(msg, i);
2427 
2428 		sk_msg_iter_var_next(i);
2429 		sg_unmark_end(&sge);
2430 		sk_msg_iter_next(msg, end);
2431 
2432 		nsge = sk_msg_elem_cpy(msg, i);
2433 		if (rsge.length) {
2434 			sk_msg_iter_var_next(i);
2435 			nnsge = sk_msg_elem_cpy(msg, i);
2436 		}
2437 
2438 		while (i != msg->sg.end) {
2439 			msg->sg.data[i] = sge;
2440 			sge = nsge;
2441 			sk_msg_iter_var_next(i);
2442 			if (rsge.length) {
2443 				nsge = nnsge;
2444 				nnsge = sk_msg_elem_cpy(msg, i);
2445 			} else {
2446 				nsge = sk_msg_elem_cpy(msg, i);
2447 			}
2448 		}
2449 	}
2450 
2451 	/* Place newly allocated data buffer */
2452 	sk_mem_charge(msg->sk, len);
2453 	msg->sg.size += len;
2454 	__clear_bit(new, &msg->sg.copy);
2455 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2456 	if (rsge.length) {
2457 		get_page(sg_page(&rsge));
2458 		sk_msg_iter_var_next(new);
2459 		msg->sg.data[new] = rsge;
2460 	}
2461 
2462 	sk_msg_compute_data_pointers(msg);
2463 	return 0;
2464 }
2465 
2466 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2467 	.func		= bpf_msg_push_data,
2468 	.gpl_only	= false,
2469 	.ret_type	= RET_INTEGER,
2470 	.arg1_type	= ARG_PTR_TO_CTX,
2471 	.arg2_type	= ARG_ANYTHING,
2472 	.arg3_type	= ARG_ANYTHING,
2473 	.arg4_type	= ARG_ANYTHING,
2474 };
2475 
2476 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2477 {
2478 	int prev;
2479 
2480 	do {
2481 		prev = i;
2482 		sk_msg_iter_var_next(i);
2483 		msg->sg.data[prev] = msg->sg.data[i];
2484 	} while (i != msg->sg.end);
2485 
2486 	sk_msg_iter_prev(msg, end);
2487 }
2488 
2489 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2490 {
2491 	struct scatterlist tmp, sge;
2492 
2493 	sk_msg_iter_next(msg, end);
2494 	sge = sk_msg_elem_cpy(msg, i);
2495 	sk_msg_iter_var_next(i);
2496 	tmp = sk_msg_elem_cpy(msg, i);
2497 
2498 	while (i != msg->sg.end) {
2499 		msg->sg.data[i] = sge;
2500 		sk_msg_iter_var_next(i);
2501 		sge = tmp;
2502 		tmp = sk_msg_elem_cpy(msg, i);
2503 	}
2504 }
2505 
2506 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2507 	   u32, len, u64, flags)
2508 {
2509 	u32 i = 0, l, space, offset = 0;
2510 	u64 last = start + len;
2511 	int pop;
2512 
2513 	if (unlikely(flags))
2514 		return -EINVAL;
2515 
2516 	/* First find the starting scatterlist element */
2517 	i = msg->sg.start;
2518 	do {
2519 		l = sk_msg_elem(msg, i)->length;
2520 
2521 		if (start < offset + l)
2522 			break;
2523 		offset += l;
2524 		sk_msg_iter_var_next(i);
2525 	} while (i != msg->sg.end);
2526 
2527 	/* Bounds checks: start and pop must be inside message */
2528 	if (start >= offset + l || last >= msg->sg.size)
2529 		return -EINVAL;
2530 
2531 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2532 
2533 	pop = len;
2534 	/* --------------| offset
2535 	 * -| start      |-------- len -------|
2536 	 *
2537 	 *  |----- a ----|-------- pop -------|----- b ----|
2538 	 *  |______________________________________________| length
2539 	 *
2540 	 *
2541 	 * a:   region at front of scatter element to save
2542 	 * b:   region at back of scatter element to save when length > A + pop
2543 	 * pop: region to pop from element, same as input 'pop' here will be
2544 	 *      decremented below per iteration.
2545 	 *
2546 	 * Two top-level cases to handle when start != offset, first B is non
2547 	 * zero and second B is zero corresponding to when a pop includes more
2548 	 * than one element.
2549 	 *
2550 	 * Then if B is non-zero AND there is no space allocate space and
2551 	 * compact A, B regions into page. If there is space shift ring to
2552 	 * the rigth free'ing the next element in ring to place B, leaving
2553 	 * A untouched except to reduce length.
2554 	 */
2555 	if (start != offset) {
2556 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2557 		int a = start;
2558 		int b = sge->length - pop - a;
2559 
2560 		sk_msg_iter_var_next(i);
2561 
2562 		if (pop < sge->length - a) {
2563 			if (space) {
2564 				sge->length = a;
2565 				sk_msg_shift_right(msg, i);
2566 				nsge = sk_msg_elem(msg, i);
2567 				get_page(sg_page(sge));
2568 				sg_set_page(nsge,
2569 					    sg_page(sge),
2570 					    b, sge->offset + pop + a);
2571 			} else {
2572 				struct page *page, *orig;
2573 				u8 *to, *from;
2574 
2575 				page = alloc_pages(__GFP_NOWARN |
2576 						   __GFP_COMP   | GFP_ATOMIC,
2577 						   get_order(a + b));
2578 				if (unlikely(!page))
2579 					return -ENOMEM;
2580 
2581 				sge->length = a;
2582 				orig = sg_page(sge);
2583 				from = sg_virt(sge);
2584 				to = page_address(page);
2585 				memcpy(to, from, a);
2586 				memcpy(to + a, from + a + pop, b);
2587 				sg_set_page(sge, page, a + b, 0);
2588 				put_page(orig);
2589 			}
2590 			pop = 0;
2591 		} else if (pop >= sge->length - a) {
2592 			sge->length = a;
2593 			pop -= (sge->length - a);
2594 		}
2595 	}
2596 
2597 	/* From above the current layout _must_ be as follows,
2598 	 *
2599 	 * -| offset
2600 	 * -| start
2601 	 *
2602 	 *  |---- pop ---|---------------- b ------------|
2603 	 *  |____________________________________________| length
2604 	 *
2605 	 * Offset and start of the current msg elem are equal because in the
2606 	 * previous case we handled offset != start and either consumed the
2607 	 * entire element and advanced to the next element OR pop == 0.
2608 	 *
2609 	 * Two cases to handle here are first pop is less than the length
2610 	 * leaving some remainder b above. Simply adjust the element's layout
2611 	 * in this case. Or pop >= length of the element so that b = 0. In this
2612 	 * case advance to next element decrementing pop.
2613 	 */
2614 	while (pop) {
2615 		struct scatterlist *sge = sk_msg_elem(msg, i);
2616 
2617 		if (pop < sge->length) {
2618 			sge->length -= pop;
2619 			sge->offset += pop;
2620 			pop = 0;
2621 		} else {
2622 			pop -= sge->length;
2623 			sk_msg_shift_left(msg, i);
2624 		}
2625 		sk_msg_iter_var_next(i);
2626 	}
2627 
2628 	sk_mem_uncharge(msg->sk, len - pop);
2629 	msg->sg.size -= (len - pop);
2630 	sk_msg_compute_data_pointers(msg);
2631 	return 0;
2632 }
2633 
2634 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2635 	.func		= bpf_msg_pop_data,
2636 	.gpl_only	= false,
2637 	.ret_type	= RET_INTEGER,
2638 	.arg1_type	= ARG_PTR_TO_CTX,
2639 	.arg2_type	= ARG_ANYTHING,
2640 	.arg3_type	= ARG_ANYTHING,
2641 	.arg4_type	= ARG_ANYTHING,
2642 };
2643 
2644 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2645 {
2646 	return task_get_classid(skb);
2647 }
2648 
2649 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2650 	.func           = bpf_get_cgroup_classid,
2651 	.gpl_only       = false,
2652 	.ret_type       = RET_INTEGER,
2653 	.arg1_type      = ARG_PTR_TO_CTX,
2654 };
2655 
2656 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2657 {
2658 	return dst_tclassid(skb);
2659 }
2660 
2661 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2662 	.func           = bpf_get_route_realm,
2663 	.gpl_only       = false,
2664 	.ret_type       = RET_INTEGER,
2665 	.arg1_type      = ARG_PTR_TO_CTX,
2666 };
2667 
2668 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2669 {
2670 	/* If skb_clear_hash() was called due to mangling, we can
2671 	 * trigger SW recalculation here. Later access to hash
2672 	 * can then use the inline skb->hash via context directly
2673 	 * instead of calling this helper again.
2674 	 */
2675 	return skb_get_hash(skb);
2676 }
2677 
2678 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2679 	.func		= bpf_get_hash_recalc,
2680 	.gpl_only	= false,
2681 	.ret_type	= RET_INTEGER,
2682 	.arg1_type	= ARG_PTR_TO_CTX,
2683 };
2684 
2685 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2686 {
2687 	/* After all direct packet write, this can be used once for
2688 	 * triggering a lazy recalc on next skb_get_hash() invocation.
2689 	 */
2690 	skb_clear_hash(skb);
2691 	return 0;
2692 }
2693 
2694 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2695 	.func		= bpf_set_hash_invalid,
2696 	.gpl_only	= false,
2697 	.ret_type	= RET_INTEGER,
2698 	.arg1_type	= ARG_PTR_TO_CTX,
2699 };
2700 
2701 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2702 {
2703 	/* Set user specified hash as L4(+), so that it gets returned
2704 	 * on skb_get_hash() call unless BPF prog later on triggers a
2705 	 * skb_clear_hash().
2706 	 */
2707 	__skb_set_sw_hash(skb, hash, true);
2708 	return 0;
2709 }
2710 
2711 static const struct bpf_func_proto bpf_set_hash_proto = {
2712 	.func		= bpf_set_hash,
2713 	.gpl_only	= false,
2714 	.ret_type	= RET_INTEGER,
2715 	.arg1_type	= ARG_PTR_TO_CTX,
2716 	.arg2_type	= ARG_ANYTHING,
2717 };
2718 
2719 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2720 	   u16, vlan_tci)
2721 {
2722 	int ret;
2723 
2724 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2725 		     vlan_proto != htons(ETH_P_8021AD)))
2726 		vlan_proto = htons(ETH_P_8021Q);
2727 
2728 	bpf_push_mac_rcsum(skb);
2729 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2730 	bpf_pull_mac_rcsum(skb);
2731 
2732 	bpf_compute_data_pointers(skb);
2733 	return ret;
2734 }
2735 
2736 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2737 	.func           = bpf_skb_vlan_push,
2738 	.gpl_only       = false,
2739 	.ret_type       = RET_INTEGER,
2740 	.arg1_type      = ARG_PTR_TO_CTX,
2741 	.arg2_type      = ARG_ANYTHING,
2742 	.arg3_type      = ARG_ANYTHING,
2743 };
2744 
2745 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2746 {
2747 	int ret;
2748 
2749 	bpf_push_mac_rcsum(skb);
2750 	ret = skb_vlan_pop(skb);
2751 	bpf_pull_mac_rcsum(skb);
2752 
2753 	bpf_compute_data_pointers(skb);
2754 	return ret;
2755 }
2756 
2757 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2758 	.func           = bpf_skb_vlan_pop,
2759 	.gpl_only       = false,
2760 	.ret_type       = RET_INTEGER,
2761 	.arg1_type      = ARG_PTR_TO_CTX,
2762 };
2763 
2764 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2765 {
2766 	/* Caller already did skb_cow() with len as headroom,
2767 	 * so no need to do it here.
2768 	 */
2769 	skb_push(skb, len);
2770 	memmove(skb->data, skb->data + len, off);
2771 	memset(skb->data + off, 0, len);
2772 
2773 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2774 	 * needed here as it does not change the skb->csum
2775 	 * result for checksum complete when summing over
2776 	 * zeroed blocks.
2777 	 */
2778 	return 0;
2779 }
2780 
2781 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2782 {
2783 	/* skb_ensure_writable() is not needed here, as we're
2784 	 * already working on an uncloned skb.
2785 	 */
2786 	if (unlikely(!pskb_may_pull(skb, off + len)))
2787 		return -ENOMEM;
2788 
2789 	skb_postpull_rcsum(skb, skb->data + off, len);
2790 	memmove(skb->data + len, skb->data, off);
2791 	__skb_pull(skb, len);
2792 
2793 	return 0;
2794 }
2795 
2796 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2797 {
2798 	bool trans_same = skb->transport_header == skb->network_header;
2799 	int ret;
2800 
2801 	/* There's no need for __skb_push()/__skb_pull() pair to
2802 	 * get to the start of the mac header as we're guaranteed
2803 	 * to always start from here under eBPF.
2804 	 */
2805 	ret = bpf_skb_generic_push(skb, off, len);
2806 	if (likely(!ret)) {
2807 		skb->mac_header -= len;
2808 		skb->network_header -= len;
2809 		if (trans_same)
2810 			skb->transport_header = skb->network_header;
2811 	}
2812 
2813 	return ret;
2814 }
2815 
2816 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2817 {
2818 	bool trans_same = skb->transport_header == skb->network_header;
2819 	int ret;
2820 
2821 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2822 	ret = bpf_skb_generic_pop(skb, off, len);
2823 	if (likely(!ret)) {
2824 		skb->mac_header += len;
2825 		skb->network_header += len;
2826 		if (trans_same)
2827 			skb->transport_header = skb->network_header;
2828 	}
2829 
2830 	return ret;
2831 }
2832 
2833 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2834 {
2835 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2836 	u32 off = skb_mac_header_len(skb);
2837 	int ret;
2838 
2839 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2840 		return -ENOTSUPP;
2841 
2842 	ret = skb_cow(skb, len_diff);
2843 	if (unlikely(ret < 0))
2844 		return ret;
2845 
2846 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2847 	if (unlikely(ret < 0))
2848 		return ret;
2849 
2850 	if (skb_is_gso(skb)) {
2851 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2852 
2853 		/* SKB_GSO_TCPV4 needs to be changed into
2854 		 * SKB_GSO_TCPV6.
2855 		 */
2856 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
2857 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
2858 			shinfo->gso_type |=  SKB_GSO_TCPV6;
2859 		}
2860 
2861 		/* Due to IPv6 header, MSS needs to be downgraded. */
2862 		skb_decrease_gso_size(shinfo, len_diff);
2863 		/* Header must be checked, and gso_segs recomputed. */
2864 		shinfo->gso_type |= SKB_GSO_DODGY;
2865 		shinfo->gso_segs = 0;
2866 	}
2867 
2868 	skb->protocol = htons(ETH_P_IPV6);
2869 	skb_clear_hash(skb);
2870 
2871 	return 0;
2872 }
2873 
2874 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2875 {
2876 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2877 	u32 off = skb_mac_header_len(skb);
2878 	int ret;
2879 
2880 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2881 		return -ENOTSUPP;
2882 
2883 	ret = skb_unclone(skb, GFP_ATOMIC);
2884 	if (unlikely(ret < 0))
2885 		return ret;
2886 
2887 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2888 	if (unlikely(ret < 0))
2889 		return ret;
2890 
2891 	if (skb_is_gso(skb)) {
2892 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2893 
2894 		/* SKB_GSO_TCPV6 needs to be changed into
2895 		 * SKB_GSO_TCPV4.
2896 		 */
2897 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
2898 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
2899 			shinfo->gso_type |=  SKB_GSO_TCPV4;
2900 		}
2901 
2902 		/* Due to IPv4 header, MSS can be upgraded. */
2903 		skb_increase_gso_size(shinfo, len_diff);
2904 		/* Header must be checked, and gso_segs recomputed. */
2905 		shinfo->gso_type |= SKB_GSO_DODGY;
2906 		shinfo->gso_segs = 0;
2907 	}
2908 
2909 	skb->protocol = htons(ETH_P_IP);
2910 	skb_clear_hash(skb);
2911 
2912 	return 0;
2913 }
2914 
2915 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2916 {
2917 	__be16 from_proto = skb->protocol;
2918 
2919 	if (from_proto == htons(ETH_P_IP) &&
2920 	      to_proto == htons(ETH_P_IPV6))
2921 		return bpf_skb_proto_4_to_6(skb);
2922 
2923 	if (from_proto == htons(ETH_P_IPV6) &&
2924 	      to_proto == htons(ETH_P_IP))
2925 		return bpf_skb_proto_6_to_4(skb);
2926 
2927 	return -ENOTSUPP;
2928 }
2929 
2930 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2931 	   u64, flags)
2932 {
2933 	int ret;
2934 
2935 	if (unlikely(flags))
2936 		return -EINVAL;
2937 
2938 	/* General idea is that this helper does the basic groundwork
2939 	 * needed for changing the protocol, and eBPF program fills the
2940 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2941 	 * and other helpers, rather than passing a raw buffer here.
2942 	 *
2943 	 * The rationale is to keep this minimal and without a need to
2944 	 * deal with raw packet data. F.e. even if we would pass buffers
2945 	 * here, the program still needs to call the bpf_lX_csum_replace()
2946 	 * helpers anyway. Plus, this way we keep also separation of
2947 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2948 	 * care of stores.
2949 	 *
2950 	 * Currently, additional options and extension header space are
2951 	 * not supported, but flags register is reserved so we can adapt
2952 	 * that. For offloads, we mark packet as dodgy, so that headers
2953 	 * need to be verified first.
2954 	 */
2955 	ret = bpf_skb_proto_xlat(skb, proto);
2956 	bpf_compute_data_pointers(skb);
2957 	return ret;
2958 }
2959 
2960 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2961 	.func		= bpf_skb_change_proto,
2962 	.gpl_only	= false,
2963 	.ret_type	= RET_INTEGER,
2964 	.arg1_type	= ARG_PTR_TO_CTX,
2965 	.arg2_type	= ARG_ANYTHING,
2966 	.arg3_type	= ARG_ANYTHING,
2967 };
2968 
2969 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2970 {
2971 	/* We only allow a restricted subset to be changed for now. */
2972 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2973 		     !skb_pkt_type_ok(pkt_type)))
2974 		return -EINVAL;
2975 
2976 	skb->pkt_type = pkt_type;
2977 	return 0;
2978 }
2979 
2980 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2981 	.func		= bpf_skb_change_type,
2982 	.gpl_only	= false,
2983 	.ret_type	= RET_INTEGER,
2984 	.arg1_type	= ARG_PTR_TO_CTX,
2985 	.arg2_type	= ARG_ANYTHING,
2986 };
2987 
2988 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2989 {
2990 	switch (skb->protocol) {
2991 	case htons(ETH_P_IP):
2992 		return sizeof(struct iphdr);
2993 	case htons(ETH_P_IPV6):
2994 		return sizeof(struct ipv6hdr);
2995 	default:
2996 		return ~0U;
2997 	}
2998 }
2999 
3000 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3001 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3002 
3003 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3004 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3005 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3006 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3007 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3008 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3009 
3010 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3011 			    u64 flags)
3012 {
3013 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3014 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3015 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3016 	unsigned int gso_type = SKB_GSO_DODGY;
3017 	int ret;
3018 
3019 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3020 		/* udp gso_size delineates datagrams, only allow if fixed */
3021 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3022 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3023 			return -ENOTSUPP;
3024 	}
3025 
3026 	ret = skb_cow_head(skb, len_diff);
3027 	if (unlikely(ret < 0))
3028 		return ret;
3029 
3030 	if (encap) {
3031 		if (skb->protocol != htons(ETH_P_IP) &&
3032 		    skb->protocol != htons(ETH_P_IPV6))
3033 			return -ENOTSUPP;
3034 
3035 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3036 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3037 			return -EINVAL;
3038 
3039 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3040 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3041 			return -EINVAL;
3042 
3043 		if (skb->encapsulation)
3044 			return -EALREADY;
3045 
3046 		mac_len = skb->network_header - skb->mac_header;
3047 		inner_net = skb->network_header;
3048 		if (inner_mac_len > len_diff)
3049 			return -EINVAL;
3050 		inner_trans = skb->transport_header;
3051 	}
3052 
3053 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3054 	if (unlikely(ret < 0))
3055 		return ret;
3056 
3057 	if (encap) {
3058 		skb->inner_mac_header = inner_net - inner_mac_len;
3059 		skb->inner_network_header = inner_net;
3060 		skb->inner_transport_header = inner_trans;
3061 		skb_set_inner_protocol(skb, skb->protocol);
3062 
3063 		skb->encapsulation = 1;
3064 		skb_set_network_header(skb, mac_len);
3065 
3066 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3067 			gso_type |= SKB_GSO_UDP_TUNNEL;
3068 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3069 			gso_type |= SKB_GSO_GRE;
3070 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3071 			gso_type |= SKB_GSO_IPXIP6;
3072 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3073 			gso_type |= SKB_GSO_IPXIP4;
3074 
3075 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3076 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3077 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3078 					sizeof(struct ipv6hdr) :
3079 					sizeof(struct iphdr);
3080 
3081 			skb_set_transport_header(skb, mac_len + nh_len);
3082 		}
3083 
3084 		/* Match skb->protocol to new outer l3 protocol */
3085 		if (skb->protocol == htons(ETH_P_IP) &&
3086 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3087 			skb->protocol = htons(ETH_P_IPV6);
3088 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3089 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3090 			skb->protocol = htons(ETH_P_IP);
3091 	}
3092 
3093 	if (skb_is_gso(skb)) {
3094 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3095 
3096 		/* Due to header grow, MSS needs to be downgraded. */
3097 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3098 			skb_decrease_gso_size(shinfo, len_diff);
3099 
3100 		/* Header must be checked, and gso_segs recomputed. */
3101 		shinfo->gso_type |= gso_type;
3102 		shinfo->gso_segs = 0;
3103 	}
3104 
3105 	return 0;
3106 }
3107 
3108 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3109 			      u64 flags)
3110 {
3111 	int ret;
3112 
3113 	if (flags & ~BPF_F_ADJ_ROOM_FIXED_GSO)
3114 		return -EINVAL;
3115 
3116 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3117 		/* udp gso_size delineates datagrams, only allow if fixed */
3118 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3119 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3120 			return -ENOTSUPP;
3121 	}
3122 
3123 	ret = skb_unclone(skb, GFP_ATOMIC);
3124 	if (unlikely(ret < 0))
3125 		return ret;
3126 
3127 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3128 	if (unlikely(ret < 0))
3129 		return ret;
3130 
3131 	if (skb_is_gso(skb)) {
3132 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3133 
3134 		/* Due to header shrink, MSS can be upgraded. */
3135 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3136 			skb_increase_gso_size(shinfo, len_diff);
3137 
3138 		/* Header must be checked, and gso_segs recomputed. */
3139 		shinfo->gso_type |= SKB_GSO_DODGY;
3140 		shinfo->gso_segs = 0;
3141 	}
3142 
3143 	return 0;
3144 }
3145 
3146 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3147 {
3148 	return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3149 			  SKB_MAX_ALLOC;
3150 }
3151 
3152 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3153 	   u32, mode, u64, flags)
3154 {
3155 	u32 len_cur, len_diff_abs = abs(len_diff);
3156 	u32 len_min = bpf_skb_net_base_len(skb);
3157 	u32 len_max = __bpf_skb_max_len(skb);
3158 	__be16 proto = skb->protocol;
3159 	bool shrink = len_diff < 0;
3160 	u32 off;
3161 	int ret;
3162 
3163 	if (unlikely(flags & ~BPF_F_ADJ_ROOM_MASK))
3164 		return -EINVAL;
3165 	if (unlikely(len_diff_abs > 0xfffU))
3166 		return -EFAULT;
3167 	if (unlikely(proto != htons(ETH_P_IP) &&
3168 		     proto != htons(ETH_P_IPV6)))
3169 		return -ENOTSUPP;
3170 
3171 	off = skb_mac_header_len(skb);
3172 	switch (mode) {
3173 	case BPF_ADJ_ROOM_NET:
3174 		off += bpf_skb_net_base_len(skb);
3175 		break;
3176 	case BPF_ADJ_ROOM_MAC:
3177 		break;
3178 	default:
3179 		return -ENOTSUPP;
3180 	}
3181 
3182 	len_cur = skb->len - skb_network_offset(skb);
3183 	if ((shrink && (len_diff_abs >= len_cur ||
3184 			len_cur - len_diff_abs < len_min)) ||
3185 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3186 			 !skb_is_gso(skb))))
3187 		return -ENOTSUPP;
3188 
3189 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3190 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3191 
3192 	bpf_compute_data_pointers(skb);
3193 	return ret;
3194 }
3195 
3196 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3197 	.func		= bpf_skb_adjust_room,
3198 	.gpl_only	= false,
3199 	.ret_type	= RET_INTEGER,
3200 	.arg1_type	= ARG_PTR_TO_CTX,
3201 	.arg2_type	= ARG_ANYTHING,
3202 	.arg3_type	= ARG_ANYTHING,
3203 	.arg4_type	= ARG_ANYTHING,
3204 };
3205 
3206 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3207 {
3208 	u32 min_len = skb_network_offset(skb);
3209 
3210 	if (skb_transport_header_was_set(skb))
3211 		min_len = skb_transport_offset(skb);
3212 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3213 		min_len = skb_checksum_start_offset(skb) +
3214 			  skb->csum_offset + sizeof(__sum16);
3215 	return min_len;
3216 }
3217 
3218 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3219 {
3220 	unsigned int old_len = skb->len;
3221 	int ret;
3222 
3223 	ret = __skb_grow_rcsum(skb, new_len);
3224 	if (!ret)
3225 		memset(skb->data + old_len, 0, new_len - old_len);
3226 	return ret;
3227 }
3228 
3229 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3230 {
3231 	return __skb_trim_rcsum(skb, new_len);
3232 }
3233 
3234 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3235 					u64 flags)
3236 {
3237 	u32 max_len = __bpf_skb_max_len(skb);
3238 	u32 min_len = __bpf_skb_min_len(skb);
3239 	int ret;
3240 
3241 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3242 		return -EINVAL;
3243 	if (skb->encapsulation)
3244 		return -ENOTSUPP;
3245 
3246 	/* The basic idea of this helper is that it's performing the
3247 	 * needed work to either grow or trim an skb, and eBPF program
3248 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3249 	 * bpf_lX_csum_replace() and others rather than passing a raw
3250 	 * buffer here. This one is a slow path helper and intended
3251 	 * for replies with control messages.
3252 	 *
3253 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3254 	 * minimal and without protocol specifics so that we are able
3255 	 * to separate concerns as in bpf_skb_store_bytes() should only
3256 	 * be the one responsible for writing buffers.
3257 	 *
3258 	 * It's really expected to be a slow path operation here for
3259 	 * control message replies, so we're implicitly linearizing,
3260 	 * uncloning and drop offloads from the skb by this.
3261 	 */
3262 	ret = __bpf_try_make_writable(skb, skb->len);
3263 	if (!ret) {
3264 		if (new_len > skb->len)
3265 			ret = bpf_skb_grow_rcsum(skb, new_len);
3266 		else if (new_len < skb->len)
3267 			ret = bpf_skb_trim_rcsum(skb, new_len);
3268 		if (!ret && skb_is_gso(skb))
3269 			skb_gso_reset(skb);
3270 	}
3271 	return ret;
3272 }
3273 
3274 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3275 	   u64, flags)
3276 {
3277 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3278 
3279 	bpf_compute_data_pointers(skb);
3280 	return ret;
3281 }
3282 
3283 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3284 	.func		= bpf_skb_change_tail,
3285 	.gpl_only	= false,
3286 	.ret_type	= RET_INTEGER,
3287 	.arg1_type	= ARG_PTR_TO_CTX,
3288 	.arg2_type	= ARG_ANYTHING,
3289 	.arg3_type	= ARG_ANYTHING,
3290 };
3291 
3292 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3293 	   u64, flags)
3294 {
3295 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3296 
3297 	bpf_compute_data_end_sk_skb(skb);
3298 	return ret;
3299 }
3300 
3301 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3302 	.func		= sk_skb_change_tail,
3303 	.gpl_only	= false,
3304 	.ret_type	= RET_INTEGER,
3305 	.arg1_type	= ARG_PTR_TO_CTX,
3306 	.arg2_type	= ARG_ANYTHING,
3307 	.arg3_type	= ARG_ANYTHING,
3308 };
3309 
3310 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3311 					u64 flags)
3312 {
3313 	u32 max_len = __bpf_skb_max_len(skb);
3314 	u32 new_len = skb->len + head_room;
3315 	int ret;
3316 
3317 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3318 		     new_len < skb->len))
3319 		return -EINVAL;
3320 
3321 	ret = skb_cow(skb, head_room);
3322 	if (likely(!ret)) {
3323 		/* Idea for this helper is that we currently only
3324 		 * allow to expand on mac header. This means that
3325 		 * skb->protocol network header, etc, stay as is.
3326 		 * Compared to bpf_skb_change_tail(), we're more
3327 		 * flexible due to not needing to linearize or
3328 		 * reset GSO. Intention for this helper is to be
3329 		 * used by an L3 skb that needs to push mac header
3330 		 * for redirection into L2 device.
3331 		 */
3332 		__skb_push(skb, head_room);
3333 		memset(skb->data, 0, head_room);
3334 		skb_reset_mac_header(skb);
3335 	}
3336 
3337 	return ret;
3338 }
3339 
3340 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3341 	   u64, flags)
3342 {
3343 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3344 
3345 	bpf_compute_data_pointers(skb);
3346 	return ret;
3347 }
3348 
3349 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3350 	.func		= bpf_skb_change_head,
3351 	.gpl_only	= false,
3352 	.ret_type	= RET_INTEGER,
3353 	.arg1_type	= ARG_PTR_TO_CTX,
3354 	.arg2_type	= ARG_ANYTHING,
3355 	.arg3_type	= ARG_ANYTHING,
3356 };
3357 
3358 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3359 	   u64, flags)
3360 {
3361 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3362 
3363 	bpf_compute_data_end_sk_skb(skb);
3364 	return ret;
3365 }
3366 
3367 static const struct bpf_func_proto sk_skb_change_head_proto = {
3368 	.func		= sk_skb_change_head,
3369 	.gpl_only	= false,
3370 	.ret_type	= RET_INTEGER,
3371 	.arg1_type	= ARG_PTR_TO_CTX,
3372 	.arg2_type	= ARG_ANYTHING,
3373 	.arg3_type	= ARG_ANYTHING,
3374 };
3375 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3376 {
3377 	return xdp_data_meta_unsupported(xdp) ? 0 :
3378 	       xdp->data - xdp->data_meta;
3379 }
3380 
3381 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3382 {
3383 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3384 	unsigned long metalen = xdp_get_metalen(xdp);
3385 	void *data_start = xdp_frame_end + metalen;
3386 	void *data = xdp->data + offset;
3387 
3388 	if (unlikely(data < data_start ||
3389 		     data > xdp->data_end - ETH_HLEN))
3390 		return -EINVAL;
3391 
3392 	if (metalen)
3393 		memmove(xdp->data_meta + offset,
3394 			xdp->data_meta, metalen);
3395 	xdp->data_meta += offset;
3396 	xdp->data = data;
3397 
3398 	return 0;
3399 }
3400 
3401 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3402 	.func		= bpf_xdp_adjust_head,
3403 	.gpl_only	= false,
3404 	.ret_type	= RET_INTEGER,
3405 	.arg1_type	= ARG_PTR_TO_CTX,
3406 	.arg2_type	= ARG_ANYTHING,
3407 };
3408 
3409 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3410 {
3411 	void *data_end = xdp->data_end + offset;
3412 
3413 	/* only shrinking is allowed for now. */
3414 	if (unlikely(offset >= 0))
3415 		return -EINVAL;
3416 
3417 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3418 		return -EINVAL;
3419 
3420 	xdp->data_end = data_end;
3421 
3422 	return 0;
3423 }
3424 
3425 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3426 	.func		= bpf_xdp_adjust_tail,
3427 	.gpl_only	= false,
3428 	.ret_type	= RET_INTEGER,
3429 	.arg1_type	= ARG_PTR_TO_CTX,
3430 	.arg2_type	= ARG_ANYTHING,
3431 };
3432 
3433 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3434 {
3435 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3436 	void *meta = xdp->data_meta + offset;
3437 	unsigned long metalen = xdp->data - meta;
3438 
3439 	if (xdp_data_meta_unsupported(xdp))
3440 		return -ENOTSUPP;
3441 	if (unlikely(meta < xdp_frame_end ||
3442 		     meta > xdp->data))
3443 		return -EINVAL;
3444 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3445 		     (metalen > 32)))
3446 		return -EACCES;
3447 
3448 	xdp->data_meta = meta;
3449 
3450 	return 0;
3451 }
3452 
3453 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3454 	.func		= bpf_xdp_adjust_meta,
3455 	.gpl_only	= false,
3456 	.ret_type	= RET_INTEGER,
3457 	.arg1_type	= ARG_PTR_TO_CTX,
3458 	.arg2_type	= ARG_ANYTHING,
3459 };
3460 
3461 static int __bpf_tx_xdp(struct net_device *dev,
3462 			struct bpf_map *map,
3463 			struct xdp_buff *xdp,
3464 			u32 index)
3465 {
3466 	struct xdp_frame *xdpf;
3467 	int err, sent;
3468 
3469 	if (!dev->netdev_ops->ndo_xdp_xmit) {
3470 		return -EOPNOTSUPP;
3471 	}
3472 
3473 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3474 	if (unlikely(err))
3475 		return err;
3476 
3477 	xdpf = convert_to_xdp_frame(xdp);
3478 	if (unlikely(!xdpf))
3479 		return -EOVERFLOW;
3480 
3481 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3482 	if (sent <= 0)
3483 		return sent;
3484 	return 0;
3485 }
3486 
3487 static noinline int
3488 xdp_do_redirect_slow(struct net_device *dev, struct xdp_buff *xdp,
3489 		     struct bpf_prog *xdp_prog, struct bpf_redirect_info *ri)
3490 {
3491 	struct net_device *fwd;
3492 	u32 index = ri->tgt_index;
3493 	int err;
3494 
3495 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3496 	ri->tgt_index = 0;
3497 	if (unlikely(!fwd)) {
3498 		err = -EINVAL;
3499 		goto err;
3500 	}
3501 
3502 	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3503 	if (unlikely(err))
3504 		goto err;
3505 
3506 	_trace_xdp_redirect(dev, xdp_prog, index);
3507 	return 0;
3508 err:
3509 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3510 	return err;
3511 }
3512 
3513 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3514 			    struct bpf_map *map,
3515 			    struct xdp_buff *xdp,
3516 			    u32 index)
3517 {
3518 	int err;
3519 
3520 	switch (map->map_type) {
3521 	case BPF_MAP_TYPE_DEVMAP:
3522 	case BPF_MAP_TYPE_DEVMAP_HASH: {
3523 		struct bpf_dtab_netdev *dst = fwd;
3524 
3525 		err = dev_map_enqueue(dst, xdp, dev_rx);
3526 		if (unlikely(err))
3527 			return err;
3528 		break;
3529 	}
3530 	case BPF_MAP_TYPE_CPUMAP: {
3531 		struct bpf_cpu_map_entry *rcpu = fwd;
3532 
3533 		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3534 		if (unlikely(err))
3535 			return err;
3536 		break;
3537 	}
3538 	case BPF_MAP_TYPE_XSKMAP: {
3539 		struct xdp_sock *xs = fwd;
3540 
3541 		err = __xsk_map_redirect(map, xdp, xs);
3542 		return err;
3543 	}
3544 	default:
3545 		break;
3546 	}
3547 	return 0;
3548 }
3549 
3550 void xdp_do_flush_map(void)
3551 {
3552 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3553 	struct bpf_map *map = ri->map_to_flush;
3554 
3555 	ri->map_to_flush = NULL;
3556 	if (map) {
3557 		switch (map->map_type) {
3558 		case BPF_MAP_TYPE_DEVMAP:
3559 		case BPF_MAP_TYPE_DEVMAP_HASH:
3560 			__dev_map_flush(map);
3561 			break;
3562 		case BPF_MAP_TYPE_CPUMAP:
3563 			__cpu_map_flush(map);
3564 			break;
3565 		case BPF_MAP_TYPE_XSKMAP:
3566 			__xsk_map_flush(map);
3567 			break;
3568 		default:
3569 			break;
3570 		}
3571 	}
3572 }
3573 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3574 
3575 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3576 {
3577 	switch (map->map_type) {
3578 	case BPF_MAP_TYPE_DEVMAP:
3579 		return __dev_map_lookup_elem(map, index);
3580 	case BPF_MAP_TYPE_DEVMAP_HASH:
3581 		return __dev_map_hash_lookup_elem(map, index);
3582 	case BPF_MAP_TYPE_CPUMAP:
3583 		return __cpu_map_lookup_elem(map, index);
3584 	case BPF_MAP_TYPE_XSKMAP:
3585 		return __xsk_map_lookup_elem(map, index);
3586 	default:
3587 		return NULL;
3588 	}
3589 }
3590 
3591 void bpf_clear_redirect_map(struct bpf_map *map)
3592 {
3593 	struct bpf_redirect_info *ri;
3594 	int cpu;
3595 
3596 	for_each_possible_cpu(cpu) {
3597 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3598 		/* Avoid polluting remote cacheline due to writes if
3599 		 * not needed. Once we pass this test, we need the
3600 		 * cmpxchg() to make sure it hasn't been changed in
3601 		 * the meantime by remote CPU.
3602 		 */
3603 		if (unlikely(READ_ONCE(ri->map) == map))
3604 			cmpxchg(&ri->map, map, NULL);
3605 	}
3606 }
3607 
3608 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3609 			       struct bpf_prog *xdp_prog, struct bpf_map *map,
3610 			       struct bpf_redirect_info *ri)
3611 {
3612 	u32 index = ri->tgt_index;
3613 	void *fwd = ri->tgt_value;
3614 	int err;
3615 
3616 	ri->tgt_index = 0;
3617 	ri->tgt_value = NULL;
3618 	WRITE_ONCE(ri->map, NULL);
3619 
3620 	if (ri->map_to_flush && unlikely(ri->map_to_flush != map))
3621 		xdp_do_flush_map();
3622 
3623 	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3624 	if (unlikely(err))
3625 		goto err;
3626 
3627 	ri->map_to_flush = map;
3628 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3629 	return 0;
3630 err:
3631 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3632 	return err;
3633 }
3634 
3635 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3636 		    struct bpf_prog *xdp_prog)
3637 {
3638 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3639 	struct bpf_map *map = READ_ONCE(ri->map);
3640 
3641 	if (likely(map))
3642 		return xdp_do_redirect_map(dev, xdp, xdp_prog, map, ri);
3643 
3644 	return xdp_do_redirect_slow(dev, xdp, xdp_prog, ri);
3645 }
3646 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3647 
3648 static int xdp_do_generic_redirect_map(struct net_device *dev,
3649 				       struct sk_buff *skb,
3650 				       struct xdp_buff *xdp,
3651 				       struct bpf_prog *xdp_prog,
3652 				       struct bpf_map *map)
3653 {
3654 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3655 	u32 index = ri->tgt_index;
3656 	void *fwd = ri->tgt_value;
3657 	int err = 0;
3658 
3659 	ri->tgt_index = 0;
3660 	ri->tgt_value = NULL;
3661 	WRITE_ONCE(ri->map, NULL);
3662 
3663 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3664 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3665 		struct bpf_dtab_netdev *dst = fwd;
3666 
3667 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
3668 		if (unlikely(err))
3669 			goto err;
3670 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3671 		struct xdp_sock *xs = fwd;
3672 
3673 		err = xsk_generic_rcv(xs, xdp);
3674 		if (err)
3675 			goto err;
3676 		consume_skb(skb);
3677 	} else {
3678 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3679 		err = -EBADRQC;
3680 		goto err;
3681 	}
3682 
3683 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3684 	return 0;
3685 err:
3686 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3687 	return err;
3688 }
3689 
3690 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3691 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3692 {
3693 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3694 	struct bpf_map *map = READ_ONCE(ri->map);
3695 	u32 index = ri->tgt_index;
3696 	struct net_device *fwd;
3697 	int err = 0;
3698 
3699 	if (map)
3700 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3701 						   map);
3702 	ri->tgt_index = 0;
3703 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3704 	if (unlikely(!fwd)) {
3705 		err = -EINVAL;
3706 		goto err;
3707 	}
3708 
3709 	err = xdp_ok_fwd_dev(fwd, skb->len);
3710 	if (unlikely(err))
3711 		goto err;
3712 
3713 	skb->dev = fwd;
3714 	_trace_xdp_redirect(dev, xdp_prog, index);
3715 	generic_xdp_tx(skb, xdp_prog);
3716 	return 0;
3717 err:
3718 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3719 	return err;
3720 }
3721 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3722 
3723 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3724 {
3725 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3726 
3727 	if (unlikely(flags))
3728 		return XDP_ABORTED;
3729 
3730 	ri->flags = flags;
3731 	ri->tgt_index = ifindex;
3732 	ri->tgt_value = NULL;
3733 	WRITE_ONCE(ri->map, NULL);
3734 
3735 	return XDP_REDIRECT;
3736 }
3737 
3738 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3739 	.func           = bpf_xdp_redirect,
3740 	.gpl_only       = false,
3741 	.ret_type       = RET_INTEGER,
3742 	.arg1_type      = ARG_ANYTHING,
3743 	.arg2_type      = ARG_ANYTHING,
3744 };
3745 
3746 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3747 	   u64, flags)
3748 {
3749 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3750 
3751 	/* Lower bits of the flags are used as return code on lookup failure */
3752 	if (unlikely(flags > XDP_TX))
3753 		return XDP_ABORTED;
3754 
3755 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3756 	if (unlikely(!ri->tgt_value)) {
3757 		/* If the lookup fails we want to clear out the state in the
3758 		 * redirect_info struct completely, so that if an eBPF program
3759 		 * performs multiple lookups, the last one always takes
3760 		 * precedence.
3761 		 */
3762 		WRITE_ONCE(ri->map, NULL);
3763 		return flags;
3764 	}
3765 
3766 	ri->flags = flags;
3767 	ri->tgt_index = ifindex;
3768 	WRITE_ONCE(ri->map, map);
3769 
3770 	return XDP_REDIRECT;
3771 }
3772 
3773 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3774 	.func           = bpf_xdp_redirect_map,
3775 	.gpl_only       = false,
3776 	.ret_type       = RET_INTEGER,
3777 	.arg1_type      = ARG_CONST_MAP_PTR,
3778 	.arg2_type      = ARG_ANYTHING,
3779 	.arg3_type      = ARG_ANYTHING,
3780 };
3781 
3782 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3783 				  unsigned long off, unsigned long len)
3784 {
3785 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3786 
3787 	if (unlikely(!ptr))
3788 		return len;
3789 	if (ptr != dst_buff)
3790 		memcpy(dst_buff, ptr, len);
3791 
3792 	return 0;
3793 }
3794 
3795 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3796 	   u64, flags, void *, meta, u64, meta_size)
3797 {
3798 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3799 
3800 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3801 		return -EINVAL;
3802 	if (unlikely(!skb || skb_size > skb->len))
3803 		return -EFAULT;
3804 
3805 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3806 				bpf_skb_copy);
3807 }
3808 
3809 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3810 	.func		= bpf_skb_event_output,
3811 	.gpl_only	= true,
3812 	.ret_type	= RET_INTEGER,
3813 	.arg1_type	= ARG_PTR_TO_CTX,
3814 	.arg2_type	= ARG_CONST_MAP_PTR,
3815 	.arg3_type	= ARG_ANYTHING,
3816 	.arg4_type	= ARG_PTR_TO_MEM,
3817 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3818 };
3819 
3820 static int bpf_skb_output_btf_ids[5];
3821 const struct bpf_func_proto bpf_skb_output_proto = {
3822 	.func		= bpf_skb_event_output,
3823 	.gpl_only	= true,
3824 	.ret_type	= RET_INTEGER,
3825 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3826 	.arg2_type	= ARG_CONST_MAP_PTR,
3827 	.arg3_type	= ARG_ANYTHING,
3828 	.arg4_type	= ARG_PTR_TO_MEM,
3829 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3830 	.btf_id		= bpf_skb_output_btf_ids,
3831 };
3832 
3833 static unsigned short bpf_tunnel_key_af(u64 flags)
3834 {
3835 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3836 }
3837 
3838 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3839 	   u32, size, u64, flags)
3840 {
3841 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3842 	u8 compat[sizeof(struct bpf_tunnel_key)];
3843 	void *to_orig = to;
3844 	int err;
3845 
3846 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3847 		err = -EINVAL;
3848 		goto err_clear;
3849 	}
3850 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3851 		err = -EPROTO;
3852 		goto err_clear;
3853 	}
3854 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3855 		err = -EINVAL;
3856 		switch (size) {
3857 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3858 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3859 			goto set_compat;
3860 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3861 			/* Fixup deprecated structure layouts here, so we have
3862 			 * a common path later on.
3863 			 */
3864 			if (ip_tunnel_info_af(info) != AF_INET)
3865 				goto err_clear;
3866 set_compat:
3867 			to = (struct bpf_tunnel_key *)compat;
3868 			break;
3869 		default:
3870 			goto err_clear;
3871 		}
3872 	}
3873 
3874 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3875 	to->tunnel_tos = info->key.tos;
3876 	to->tunnel_ttl = info->key.ttl;
3877 	to->tunnel_ext = 0;
3878 
3879 	if (flags & BPF_F_TUNINFO_IPV6) {
3880 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3881 		       sizeof(to->remote_ipv6));
3882 		to->tunnel_label = be32_to_cpu(info->key.label);
3883 	} else {
3884 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3885 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3886 		to->tunnel_label = 0;
3887 	}
3888 
3889 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3890 		memcpy(to_orig, to, size);
3891 
3892 	return 0;
3893 err_clear:
3894 	memset(to_orig, 0, size);
3895 	return err;
3896 }
3897 
3898 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3899 	.func		= bpf_skb_get_tunnel_key,
3900 	.gpl_only	= false,
3901 	.ret_type	= RET_INTEGER,
3902 	.arg1_type	= ARG_PTR_TO_CTX,
3903 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3904 	.arg3_type	= ARG_CONST_SIZE,
3905 	.arg4_type	= ARG_ANYTHING,
3906 };
3907 
3908 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3909 {
3910 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3911 	int err;
3912 
3913 	if (unlikely(!info ||
3914 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3915 		err = -ENOENT;
3916 		goto err_clear;
3917 	}
3918 	if (unlikely(size < info->options_len)) {
3919 		err = -ENOMEM;
3920 		goto err_clear;
3921 	}
3922 
3923 	ip_tunnel_info_opts_get(to, info);
3924 	if (size > info->options_len)
3925 		memset(to + info->options_len, 0, size - info->options_len);
3926 
3927 	return info->options_len;
3928 err_clear:
3929 	memset(to, 0, size);
3930 	return err;
3931 }
3932 
3933 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3934 	.func		= bpf_skb_get_tunnel_opt,
3935 	.gpl_only	= false,
3936 	.ret_type	= RET_INTEGER,
3937 	.arg1_type	= ARG_PTR_TO_CTX,
3938 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3939 	.arg3_type	= ARG_CONST_SIZE,
3940 };
3941 
3942 static struct metadata_dst __percpu *md_dst;
3943 
3944 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3945 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3946 {
3947 	struct metadata_dst *md = this_cpu_ptr(md_dst);
3948 	u8 compat[sizeof(struct bpf_tunnel_key)];
3949 	struct ip_tunnel_info *info;
3950 
3951 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3952 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3953 		return -EINVAL;
3954 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3955 		switch (size) {
3956 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3957 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3958 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3959 			/* Fixup deprecated structure layouts here, so we have
3960 			 * a common path later on.
3961 			 */
3962 			memcpy(compat, from, size);
3963 			memset(compat + size, 0, sizeof(compat) - size);
3964 			from = (const struct bpf_tunnel_key *) compat;
3965 			break;
3966 		default:
3967 			return -EINVAL;
3968 		}
3969 	}
3970 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3971 		     from->tunnel_ext))
3972 		return -EINVAL;
3973 
3974 	skb_dst_drop(skb);
3975 	dst_hold((struct dst_entry *) md);
3976 	skb_dst_set(skb, (struct dst_entry *) md);
3977 
3978 	info = &md->u.tun_info;
3979 	memset(info, 0, sizeof(*info));
3980 	info->mode = IP_TUNNEL_INFO_TX;
3981 
3982 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3983 	if (flags & BPF_F_DONT_FRAGMENT)
3984 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3985 	if (flags & BPF_F_ZERO_CSUM_TX)
3986 		info->key.tun_flags &= ~TUNNEL_CSUM;
3987 	if (flags & BPF_F_SEQ_NUMBER)
3988 		info->key.tun_flags |= TUNNEL_SEQ;
3989 
3990 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3991 	info->key.tos = from->tunnel_tos;
3992 	info->key.ttl = from->tunnel_ttl;
3993 
3994 	if (flags & BPF_F_TUNINFO_IPV6) {
3995 		info->mode |= IP_TUNNEL_INFO_IPV6;
3996 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3997 		       sizeof(from->remote_ipv6));
3998 		info->key.label = cpu_to_be32(from->tunnel_label) &
3999 				  IPV6_FLOWLABEL_MASK;
4000 	} else {
4001 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4002 	}
4003 
4004 	return 0;
4005 }
4006 
4007 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4008 	.func		= bpf_skb_set_tunnel_key,
4009 	.gpl_only	= false,
4010 	.ret_type	= RET_INTEGER,
4011 	.arg1_type	= ARG_PTR_TO_CTX,
4012 	.arg2_type	= ARG_PTR_TO_MEM,
4013 	.arg3_type	= ARG_CONST_SIZE,
4014 	.arg4_type	= ARG_ANYTHING,
4015 };
4016 
4017 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4018 	   const u8 *, from, u32, size)
4019 {
4020 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4021 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4022 
4023 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4024 		return -EINVAL;
4025 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4026 		return -ENOMEM;
4027 
4028 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4029 
4030 	return 0;
4031 }
4032 
4033 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4034 	.func		= bpf_skb_set_tunnel_opt,
4035 	.gpl_only	= false,
4036 	.ret_type	= RET_INTEGER,
4037 	.arg1_type	= ARG_PTR_TO_CTX,
4038 	.arg2_type	= ARG_PTR_TO_MEM,
4039 	.arg3_type	= ARG_CONST_SIZE,
4040 };
4041 
4042 static const struct bpf_func_proto *
4043 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4044 {
4045 	if (!md_dst) {
4046 		struct metadata_dst __percpu *tmp;
4047 
4048 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4049 						METADATA_IP_TUNNEL,
4050 						GFP_KERNEL);
4051 		if (!tmp)
4052 			return NULL;
4053 		if (cmpxchg(&md_dst, NULL, tmp))
4054 			metadata_dst_free_percpu(tmp);
4055 	}
4056 
4057 	switch (which) {
4058 	case BPF_FUNC_skb_set_tunnel_key:
4059 		return &bpf_skb_set_tunnel_key_proto;
4060 	case BPF_FUNC_skb_set_tunnel_opt:
4061 		return &bpf_skb_set_tunnel_opt_proto;
4062 	default:
4063 		return NULL;
4064 	}
4065 }
4066 
4067 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4068 	   u32, idx)
4069 {
4070 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4071 	struct cgroup *cgrp;
4072 	struct sock *sk;
4073 
4074 	sk = skb_to_full_sk(skb);
4075 	if (!sk || !sk_fullsock(sk))
4076 		return -ENOENT;
4077 	if (unlikely(idx >= array->map.max_entries))
4078 		return -E2BIG;
4079 
4080 	cgrp = READ_ONCE(array->ptrs[idx]);
4081 	if (unlikely(!cgrp))
4082 		return -EAGAIN;
4083 
4084 	return sk_under_cgroup_hierarchy(sk, cgrp);
4085 }
4086 
4087 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4088 	.func		= bpf_skb_under_cgroup,
4089 	.gpl_only	= false,
4090 	.ret_type	= RET_INTEGER,
4091 	.arg1_type	= ARG_PTR_TO_CTX,
4092 	.arg2_type	= ARG_CONST_MAP_PTR,
4093 	.arg3_type	= ARG_ANYTHING,
4094 };
4095 
4096 #ifdef CONFIG_SOCK_CGROUP_DATA
4097 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4098 {
4099 	struct sock *sk = skb_to_full_sk(skb);
4100 	struct cgroup *cgrp;
4101 
4102 	if (!sk || !sk_fullsock(sk))
4103 		return 0;
4104 
4105 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4106 	return cgroup_id(cgrp);
4107 }
4108 
4109 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4110 	.func           = bpf_skb_cgroup_id,
4111 	.gpl_only       = false,
4112 	.ret_type       = RET_INTEGER,
4113 	.arg1_type      = ARG_PTR_TO_CTX,
4114 };
4115 
4116 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4117 	   ancestor_level)
4118 {
4119 	struct sock *sk = skb_to_full_sk(skb);
4120 	struct cgroup *ancestor;
4121 	struct cgroup *cgrp;
4122 
4123 	if (!sk || !sk_fullsock(sk))
4124 		return 0;
4125 
4126 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4127 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4128 	if (!ancestor)
4129 		return 0;
4130 
4131 	return cgroup_id(ancestor);
4132 }
4133 
4134 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4135 	.func           = bpf_skb_ancestor_cgroup_id,
4136 	.gpl_only       = false,
4137 	.ret_type       = RET_INTEGER,
4138 	.arg1_type      = ARG_PTR_TO_CTX,
4139 	.arg2_type      = ARG_ANYTHING,
4140 };
4141 #endif
4142 
4143 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4144 				  unsigned long off, unsigned long len)
4145 {
4146 	memcpy(dst_buff, src_buff + off, len);
4147 	return 0;
4148 }
4149 
4150 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4151 	   u64, flags, void *, meta, u64, meta_size)
4152 {
4153 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4154 
4155 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4156 		return -EINVAL;
4157 	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4158 		return -EFAULT;
4159 
4160 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4161 				xdp_size, bpf_xdp_copy);
4162 }
4163 
4164 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4165 	.func		= bpf_xdp_event_output,
4166 	.gpl_only	= true,
4167 	.ret_type	= RET_INTEGER,
4168 	.arg1_type	= ARG_PTR_TO_CTX,
4169 	.arg2_type	= ARG_CONST_MAP_PTR,
4170 	.arg3_type	= ARG_ANYTHING,
4171 	.arg4_type	= ARG_PTR_TO_MEM,
4172 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4173 };
4174 
4175 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4176 {
4177 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4178 }
4179 
4180 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4181 	.func           = bpf_get_socket_cookie,
4182 	.gpl_only       = false,
4183 	.ret_type       = RET_INTEGER,
4184 	.arg1_type      = ARG_PTR_TO_CTX,
4185 };
4186 
4187 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4188 {
4189 	return sock_gen_cookie(ctx->sk);
4190 }
4191 
4192 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4193 	.func		= bpf_get_socket_cookie_sock_addr,
4194 	.gpl_only	= false,
4195 	.ret_type	= RET_INTEGER,
4196 	.arg1_type	= ARG_PTR_TO_CTX,
4197 };
4198 
4199 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4200 {
4201 	return sock_gen_cookie(ctx->sk);
4202 }
4203 
4204 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4205 	.func		= bpf_get_socket_cookie_sock_ops,
4206 	.gpl_only	= false,
4207 	.ret_type	= RET_INTEGER,
4208 	.arg1_type	= ARG_PTR_TO_CTX,
4209 };
4210 
4211 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4212 {
4213 	struct sock *sk = sk_to_full_sk(skb->sk);
4214 	kuid_t kuid;
4215 
4216 	if (!sk || !sk_fullsock(sk))
4217 		return overflowuid;
4218 	kuid = sock_net_uid(sock_net(sk), sk);
4219 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4220 }
4221 
4222 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4223 	.func           = bpf_get_socket_uid,
4224 	.gpl_only       = false,
4225 	.ret_type       = RET_INTEGER,
4226 	.arg1_type      = ARG_PTR_TO_CTX,
4227 };
4228 
4229 BPF_CALL_5(bpf_sockopt_event_output, struct bpf_sock_ops_kern *, bpf_sock,
4230 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
4231 {
4232 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4233 		return -EINVAL;
4234 
4235 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4236 }
4237 
4238 static const struct bpf_func_proto bpf_sockopt_event_output_proto =  {
4239 	.func		= bpf_sockopt_event_output,
4240 	.gpl_only       = true,
4241 	.ret_type       = RET_INTEGER,
4242 	.arg1_type      = ARG_PTR_TO_CTX,
4243 	.arg2_type      = ARG_CONST_MAP_PTR,
4244 	.arg3_type      = ARG_ANYTHING,
4245 	.arg4_type      = ARG_PTR_TO_MEM,
4246 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4247 };
4248 
4249 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4250 	   int, level, int, optname, char *, optval, int, optlen)
4251 {
4252 	struct sock *sk = bpf_sock->sk;
4253 	int ret = 0;
4254 	int val;
4255 
4256 	if (!sk_fullsock(sk))
4257 		return -EINVAL;
4258 
4259 	if (level == SOL_SOCKET) {
4260 		if (optlen != sizeof(int))
4261 			return -EINVAL;
4262 		val = *((int *)optval);
4263 
4264 		/* Only some socketops are supported */
4265 		switch (optname) {
4266 		case SO_RCVBUF:
4267 			val = min_t(u32, val, sysctl_rmem_max);
4268 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4269 			WRITE_ONCE(sk->sk_rcvbuf,
4270 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4271 			break;
4272 		case SO_SNDBUF:
4273 			val = min_t(u32, val, sysctl_wmem_max);
4274 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4275 			WRITE_ONCE(sk->sk_sndbuf,
4276 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4277 			break;
4278 		case SO_MAX_PACING_RATE: /* 32bit version */
4279 			if (val != ~0U)
4280 				cmpxchg(&sk->sk_pacing_status,
4281 					SK_PACING_NONE,
4282 					SK_PACING_NEEDED);
4283 			sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4284 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4285 						 sk->sk_max_pacing_rate);
4286 			break;
4287 		case SO_PRIORITY:
4288 			sk->sk_priority = val;
4289 			break;
4290 		case SO_RCVLOWAT:
4291 			if (val < 0)
4292 				val = INT_MAX;
4293 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4294 			break;
4295 		case SO_MARK:
4296 			if (sk->sk_mark != val) {
4297 				sk->sk_mark = val;
4298 				sk_dst_reset(sk);
4299 			}
4300 			break;
4301 		default:
4302 			ret = -EINVAL;
4303 		}
4304 #ifdef CONFIG_INET
4305 	} else if (level == SOL_IP) {
4306 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4307 			return -EINVAL;
4308 
4309 		val = *((int *)optval);
4310 		/* Only some options are supported */
4311 		switch (optname) {
4312 		case IP_TOS:
4313 			if (val < -1 || val > 0xff) {
4314 				ret = -EINVAL;
4315 			} else {
4316 				struct inet_sock *inet = inet_sk(sk);
4317 
4318 				if (val == -1)
4319 					val = 0;
4320 				inet->tos = val;
4321 			}
4322 			break;
4323 		default:
4324 			ret = -EINVAL;
4325 		}
4326 #if IS_ENABLED(CONFIG_IPV6)
4327 	} else if (level == SOL_IPV6) {
4328 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4329 			return -EINVAL;
4330 
4331 		val = *((int *)optval);
4332 		/* Only some options are supported */
4333 		switch (optname) {
4334 		case IPV6_TCLASS:
4335 			if (val < -1 || val > 0xff) {
4336 				ret = -EINVAL;
4337 			} else {
4338 				struct ipv6_pinfo *np = inet6_sk(sk);
4339 
4340 				if (val == -1)
4341 					val = 0;
4342 				np->tclass = val;
4343 			}
4344 			break;
4345 		default:
4346 			ret = -EINVAL;
4347 		}
4348 #endif
4349 	} else if (level == SOL_TCP &&
4350 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4351 		if (optname == TCP_CONGESTION) {
4352 			char name[TCP_CA_NAME_MAX];
4353 			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4354 
4355 			strncpy(name, optval, min_t(long, optlen,
4356 						    TCP_CA_NAME_MAX-1));
4357 			name[TCP_CA_NAME_MAX-1] = 0;
4358 			ret = tcp_set_congestion_control(sk, name, false,
4359 							 reinit, true);
4360 		} else {
4361 			struct tcp_sock *tp = tcp_sk(sk);
4362 
4363 			if (optlen != sizeof(int))
4364 				return -EINVAL;
4365 
4366 			val = *((int *)optval);
4367 			/* Only some options are supported */
4368 			switch (optname) {
4369 			case TCP_BPF_IW:
4370 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4371 					ret = -EINVAL;
4372 				else
4373 					tp->snd_cwnd = val;
4374 				break;
4375 			case TCP_BPF_SNDCWND_CLAMP:
4376 				if (val <= 0) {
4377 					ret = -EINVAL;
4378 				} else {
4379 					tp->snd_cwnd_clamp = val;
4380 					tp->snd_ssthresh = val;
4381 				}
4382 				break;
4383 			case TCP_SAVE_SYN:
4384 				if (val < 0 || val > 1)
4385 					ret = -EINVAL;
4386 				else
4387 					tp->save_syn = val;
4388 				break;
4389 			default:
4390 				ret = -EINVAL;
4391 			}
4392 		}
4393 #endif
4394 	} else {
4395 		ret = -EINVAL;
4396 	}
4397 	return ret;
4398 }
4399 
4400 static const struct bpf_func_proto bpf_setsockopt_proto = {
4401 	.func		= bpf_setsockopt,
4402 	.gpl_only	= false,
4403 	.ret_type	= RET_INTEGER,
4404 	.arg1_type	= ARG_PTR_TO_CTX,
4405 	.arg2_type	= ARG_ANYTHING,
4406 	.arg3_type	= ARG_ANYTHING,
4407 	.arg4_type	= ARG_PTR_TO_MEM,
4408 	.arg5_type	= ARG_CONST_SIZE,
4409 };
4410 
4411 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4412 	   int, level, int, optname, char *, optval, int, optlen)
4413 {
4414 	struct sock *sk = bpf_sock->sk;
4415 
4416 	if (!sk_fullsock(sk))
4417 		goto err_clear;
4418 #ifdef CONFIG_INET
4419 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4420 		struct inet_connection_sock *icsk;
4421 		struct tcp_sock *tp;
4422 
4423 		switch (optname) {
4424 		case TCP_CONGESTION:
4425 			icsk = inet_csk(sk);
4426 
4427 			if (!icsk->icsk_ca_ops || optlen <= 1)
4428 				goto err_clear;
4429 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4430 			optval[optlen - 1] = 0;
4431 			break;
4432 		case TCP_SAVED_SYN:
4433 			tp = tcp_sk(sk);
4434 
4435 			if (optlen <= 0 || !tp->saved_syn ||
4436 			    optlen > tp->saved_syn[0])
4437 				goto err_clear;
4438 			memcpy(optval, tp->saved_syn + 1, optlen);
4439 			break;
4440 		default:
4441 			goto err_clear;
4442 		}
4443 	} else if (level == SOL_IP) {
4444 		struct inet_sock *inet = inet_sk(sk);
4445 
4446 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4447 			goto err_clear;
4448 
4449 		/* Only some options are supported */
4450 		switch (optname) {
4451 		case IP_TOS:
4452 			*((int *)optval) = (int)inet->tos;
4453 			break;
4454 		default:
4455 			goto err_clear;
4456 		}
4457 #if IS_ENABLED(CONFIG_IPV6)
4458 	} else if (level == SOL_IPV6) {
4459 		struct ipv6_pinfo *np = inet6_sk(sk);
4460 
4461 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4462 			goto err_clear;
4463 
4464 		/* Only some options are supported */
4465 		switch (optname) {
4466 		case IPV6_TCLASS:
4467 			*((int *)optval) = (int)np->tclass;
4468 			break;
4469 		default:
4470 			goto err_clear;
4471 		}
4472 #endif
4473 	} else {
4474 		goto err_clear;
4475 	}
4476 	return 0;
4477 #endif
4478 err_clear:
4479 	memset(optval, 0, optlen);
4480 	return -EINVAL;
4481 }
4482 
4483 static const struct bpf_func_proto bpf_getsockopt_proto = {
4484 	.func		= bpf_getsockopt,
4485 	.gpl_only	= false,
4486 	.ret_type	= RET_INTEGER,
4487 	.arg1_type	= ARG_PTR_TO_CTX,
4488 	.arg2_type	= ARG_ANYTHING,
4489 	.arg3_type	= ARG_ANYTHING,
4490 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
4491 	.arg5_type	= ARG_CONST_SIZE,
4492 };
4493 
4494 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4495 	   int, argval)
4496 {
4497 	struct sock *sk = bpf_sock->sk;
4498 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4499 
4500 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4501 		return -EINVAL;
4502 
4503 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4504 
4505 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4506 }
4507 
4508 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4509 	.func		= bpf_sock_ops_cb_flags_set,
4510 	.gpl_only	= false,
4511 	.ret_type	= RET_INTEGER,
4512 	.arg1_type	= ARG_PTR_TO_CTX,
4513 	.arg2_type	= ARG_ANYTHING,
4514 };
4515 
4516 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4517 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4518 
4519 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4520 	   int, addr_len)
4521 {
4522 #ifdef CONFIG_INET
4523 	struct sock *sk = ctx->sk;
4524 	int err;
4525 
4526 	/* Binding to port can be expensive so it's prohibited in the helper.
4527 	 * Only binding to IP is supported.
4528 	 */
4529 	err = -EINVAL;
4530 	if (addr_len < offsetofend(struct sockaddr, sa_family))
4531 		return err;
4532 	if (addr->sa_family == AF_INET) {
4533 		if (addr_len < sizeof(struct sockaddr_in))
4534 			return err;
4535 		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4536 			return err;
4537 		return __inet_bind(sk, addr, addr_len, true, false);
4538 #if IS_ENABLED(CONFIG_IPV6)
4539 	} else if (addr->sa_family == AF_INET6) {
4540 		if (addr_len < SIN6_LEN_RFC2133)
4541 			return err;
4542 		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4543 			return err;
4544 		/* ipv6_bpf_stub cannot be NULL, since it's called from
4545 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4546 		 */
4547 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4548 #endif /* CONFIG_IPV6 */
4549 	}
4550 #endif /* CONFIG_INET */
4551 
4552 	return -EAFNOSUPPORT;
4553 }
4554 
4555 static const struct bpf_func_proto bpf_bind_proto = {
4556 	.func		= bpf_bind,
4557 	.gpl_only	= false,
4558 	.ret_type	= RET_INTEGER,
4559 	.arg1_type	= ARG_PTR_TO_CTX,
4560 	.arg2_type	= ARG_PTR_TO_MEM,
4561 	.arg3_type	= ARG_CONST_SIZE,
4562 };
4563 
4564 #ifdef CONFIG_XFRM
4565 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4566 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
4567 {
4568 	const struct sec_path *sp = skb_sec_path(skb);
4569 	const struct xfrm_state *x;
4570 
4571 	if (!sp || unlikely(index >= sp->len || flags))
4572 		goto err_clear;
4573 
4574 	x = sp->xvec[index];
4575 
4576 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4577 		goto err_clear;
4578 
4579 	to->reqid = x->props.reqid;
4580 	to->spi = x->id.spi;
4581 	to->family = x->props.family;
4582 	to->ext = 0;
4583 
4584 	if (to->family == AF_INET6) {
4585 		memcpy(to->remote_ipv6, x->props.saddr.a6,
4586 		       sizeof(to->remote_ipv6));
4587 	} else {
4588 		to->remote_ipv4 = x->props.saddr.a4;
4589 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4590 	}
4591 
4592 	return 0;
4593 err_clear:
4594 	memset(to, 0, size);
4595 	return -EINVAL;
4596 }
4597 
4598 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4599 	.func		= bpf_skb_get_xfrm_state,
4600 	.gpl_only	= false,
4601 	.ret_type	= RET_INTEGER,
4602 	.arg1_type	= ARG_PTR_TO_CTX,
4603 	.arg2_type	= ARG_ANYTHING,
4604 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4605 	.arg4_type	= ARG_CONST_SIZE,
4606 	.arg5_type	= ARG_ANYTHING,
4607 };
4608 #endif
4609 
4610 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4611 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4612 				  const struct neighbour *neigh,
4613 				  const struct net_device *dev)
4614 {
4615 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
4616 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4617 	params->h_vlan_TCI = 0;
4618 	params->h_vlan_proto = 0;
4619 	params->ifindex = dev->ifindex;
4620 
4621 	return 0;
4622 }
4623 #endif
4624 
4625 #if IS_ENABLED(CONFIG_INET)
4626 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4627 			       u32 flags, bool check_mtu)
4628 {
4629 	struct fib_nh_common *nhc;
4630 	struct in_device *in_dev;
4631 	struct neighbour *neigh;
4632 	struct net_device *dev;
4633 	struct fib_result res;
4634 	struct flowi4 fl4;
4635 	int err;
4636 	u32 mtu;
4637 
4638 	dev = dev_get_by_index_rcu(net, params->ifindex);
4639 	if (unlikely(!dev))
4640 		return -ENODEV;
4641 
4642 	/* verify forwarding is enabled on this interface */
4643 	in_dev = __in_dev_get_rcu(dev);
4644 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4645 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4646 
4647 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4648 		fl4.flowi4_iif = 1;
4649 		fl4.flowi4_oif = params->ifindex;
4650 	} else {
4651 		fl4.flowi4_iif = params->ifindex;
4652 		fl4.flowi4_oif = 0;
4653 	}
4654 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4655 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4656 	fl4.flowi4_flags = 0;
4657 
4658 	fl4.flowi4_proto = params->l4_protocol;
4659 	fl4.daddr = params->ipv4_dst;
4660 	fl4.saddr = params->ipv4_src;
4661 	fl4.fl4_sport = params->sport;
4662 	fl4.fl4_dport = params->dport;
4663 
4664 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4665 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4666 		struct fib_table *tb;
4667 
4668 		tb = fib_get_table(net, tbid);
4669 		if (unlikely(!tb))
4670 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4671 
4672 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4673 	} else {
4674 		fl4.flowi4_mark = 0;
4675 		fl4.flowi4_secid = 0;
4676 		fl4.flowi4_tun_key.tun_id = 0;
4677 		fl4.flowi4_uid = sock_net_uid(net, NULL);
4678 
4679 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4680 	}
4681 
4682 	if (err) {
4683 		/* map fib lookup errors to RTN_ type */
4684 		if (err == -EINVAL)
4685 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4686 		if (err == -EHOSTUNREACH)
4687 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4688 		if (err == -EACCES)
4689 			return BPF_FIB_LKUP_RET_PROHIBIT;
4690 
4691 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4692 	}
4693 
4694 	if (res.type != RTN_UNICAST)
4695 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4696 
4697 	if (fib_info_num_path(res.fi) > 1)
4698 		fib_select_path(net, &res, &fl4, NULL);
4699 
4700 	if (check_mtu) {
4701 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4702 		if (params->tot_len > mtu)
4703 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4704 	}
4705 
4706 	nhc = res.nhc;
4707 
4708 	/* do not handle lwt encaps right now */
4709 	if (nhc->nhc_lwtstate)
4710 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4711 
4712 	dev = nhc->nhc_dev;
4713 
4714 	params->rt_metric = res.fi->fib_priority;
4715 
4716 	/* xdp and cls_bpf programs are run in RCU-bh so
4717 	 * rcu_read_lock_bh is not needed here
4718 	 */
4719 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
4720 		if (nhc->nhc_gw_family)
4721 			params->ipv4_dst = nhc->nhc_gw.ipv4;
4722 
4723 		neigh = __ipv4_neigh_lookup_noref(dev,
4724 						 (__force u32)params->ipv4_dst);
4725 	} else {
4726 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4727 
4728 		params->family = AF_INET6;
4729 		*dst = nhc->nhc_gw.ipv6;
4730 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4731 	}
4732 
4733 	if (!neigh)
4734 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4735 
4736 	return bpf_fib_set_fwd_params(params, neigh, dev);
4737 }
4738 #endif
4739 
4740 #if IS_ENABLED(CONFIG_IPV6)
4741 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4742 			       u32 flags, bool check_mtu)
4743 {
4744 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4745 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4746 	struct fib6_result res = {};
4747 	struct neighbour *neigh;
4748 	struct net_device *dev;
4749 	struct inet6_dev *idev;
4750 	struct flowi6 fl6;
4751 	int strict = 0;
4752 	int oif, err;
4753 	u32 mtu;
4754 
4755 	/* link local addresses are never forwarded */
4756 	if (rt6_need_strict(dst) || rt6_need_strict(src))
4757 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4758 
4759 	dev = dev_get_by_index_rcu(net, params->ifindex);
4760 	if (unlikely(!dev))
4761 		return -ENODEV;
4762 
4763 	idev = __in6_dev_get_safely(dev);
4764 	if (unlikely(!idev || !idev->cnf.forwarding))
4765 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4766 
4767 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4768 		fl6.flowi6_iif = 1;
4769 		oif = fl6.flowi6_oif = params->ifindex;
4770 	} else {
4771 		oif = fl6.flowi6_iif = params->ifindex;
4772 		fl6.flowi6_oif = 0;
4773 		strict = RT6_LOOKUP_F_HAS_SADDR;
4774 	}
4775 	fl6.flowlabel = params->flowinfo;
4776 	fl6.flowi6_scope = 0;
4777 	fl6.flowi6_flags = 0;
4778 	fl6.mp_hash = 0;
4779 
4780 	fl6.flowi6_proto = params->l4_protocol;
4781 	fl6.daddr = *dst;
4782 	fl6.saddr = *src;
4783 	fl6.fl6_sport = params->sport;
4784 	fl6.fl6_dport = params->dport;
4785 
4786 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4787 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4788 		struct fib6_table *tb;
4789 
4790 		tb = ipv6_stub->fib6_get_table(net, tbid);
4791 		if (unlikely(!tb))
4792 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4793 
4794 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4795 						   strict);
4796 	} else {
4797 		fl6.flowi6_mark = 0;
4798 		fl6.flowi6_secid = 0;
4799 		fl6.flowi6_tun_key.tun_id = 0;
4800 		fl6.flowi6_uid = sock_net_uid(net, NULL);
4801 
4802 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4803 	}
4804 
4805 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4806 		     res.f6i == net->ipv6.fib6_null_entry))
4807 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4808 
4809 	switch (res.fib6_type) {
4810 	/* only unicast is forwarded */
4811 	case RTN_UNICAST:
4812 		break;
4813 	case RTN_BLACKHOLE:
4814 		return BPF_FIB_LKUP_RET_BLACKHOLE;
4815 	case RTN_UNREACHABLE:
4816 		return BPF_FIB_LKUP_RET_UNREACHABLE;
4817 	case RTN_PROHIBIT:
4818 		return BPF_FIB_LKUP_RET_PROHIBIT;
4819 	default:
4820 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4821 	}
4822 
4823 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
4824 				    fl6.flowi6_oif != 0, NULL, strict);
4825 
4826 	if (check_mtu) {
4827 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
4828 		if (params->tot_len > mtu)
4829 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4830 	}
4831 
4832 	if (res.nh->fib_nh_lws)
4833 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4834 
4835 	if (res.nh->fib_nh_gw_family)
4836 		*dst = res.nh->fib_nh_gw6;
4837 
4838 	dev = res.nh->fib_nh_dev;
4839 	params->rt_metric = res.f6i->fib6_metric;
4840 
4841 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4842 	 * not needed here.
4843 	 */
4844 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4845 	if (!neigh)
4846 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4847 
4848 	return bpf_fib_set_fwd_params(params, neigh, dev);
4849 }
4850 #endif
4851 
4852 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4853 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4854 {
4855 	if (plen < sizeof(*params))
4856 		return -EINVAL;
4857 
4858 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4859 		return -EINVAL;
4860 
4861 	switch (params->family) {
4862 #if IS_ENABLED(CONFIG_INET)
4863 	case AF_INET:
4864 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4865 					   flags, true);
4866 #endif
4867 #if IS_ENABLED(CONFIG_IPV6)
4868 	case AF_INET6:
4869 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4870 					   flags, true);
4871 #endif
4872 	}
4873 	return -EAFNOSUPPORT;
4874 }
4875 
4876 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4877 	.func		= bpf_xdp_fib_lookup,
4878 	.gpl_only	= true,
4879 	.ret_type	= RET_INTEGER,
4880 	.arg1_type      = ARG_PTR_TO_CTX,
4881 	.arg2_type      = ARG_PTR_TO_MEM,
4882 	.arg3_type      = ARG_CONST_SIZE,
4883 	.arg4_type	= ARG_ANYTHING,
4884 };
4885 
4886 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4887 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4888 {
4889 	struct net *net = dev_net(skb->dev);
4890 	int rc = -EAFNOSUPPORT;
4891 
4892 	if (plen < sizeof(*params))
4893 		return -EINVAL;
4894 
4895 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4896 		return -EINVAL;
4897 
4898 	switch (params->family) {
4899 #if IS_ENABLED(CONFIG_INET)
4900 	case AF_INET:
4901 		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4902 		break;
4903 #endif
4904 #if IS_ENABLED(CONFIG_IPV6)
4905 	case AF_INET6:
4906 		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4907 		break;
4908 #endif
4909 	}
4910 
4911 	if (!rc) {
4912 		struct net_device *dev;
4913 
4914 		dev = dev_get_by_index_rcu(net, params->ifindex);
4915 		if (!is_skb_forwardable(dev, skb))
4916 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4917 	}
4918 
4919 	return rc;
4920 }
4921 
4922 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4923 	.func		= bpf_skb_fib_lookup,
4924 	.gpl_only	= true,
4925 	.ret_type	= RET_INTEGER,
4926 	.arg1_type      = ARG_PTR_TO_CTX,
4927 	.arg2_type      = ARG_PTR_TO_MEM,
4928 	.arg3_type      = ARG_CONST_SIZE,
4929 	.arg4_type	= ARG_ANYTHING,
4930 };
4931 
4932 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4933 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4934 {
4935 	int err;
4936 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4937 
4938 	if (!seg6_validate_srh(srh, len))
4939 		return -EINVAL;
4940 
4941 	switch (type) {
4942 	case BPF_LWT_ENCAP_SEG6_INLINE:
4943 		if (skb->protocol != htons(ETH_P_IPV6))
4944 			return -EBADMSG;
4945 
4946 		err = seg6_do_srh_inline(skb, srh);
4947 		break;
4948 	case BPF_LWT_ENCAP_SEG6:
4949 		skb_reset_inner_headers(skb);
4950 		skb->encapsulation = 1;
4951 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4952 		break;
4953 	default:
4954 		return -EINVAL;
4955 	}
4956 
4957 	bpf_compute_data_pointers(skb);
4958 	if (err)
4959 		return err;
4960 
4961 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4962 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4963 
4964 	return seg6_lookup_nexthop(skb, NULL, 0);
4965 }
4966 #endif /* CONFIG_IPV6_SEG6_BPF */
4967 
4968 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4969 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
4970 			     bool ingress)
4971 {
4972 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
4973 }
4974 #endif
4975 
4976 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4977 	   u32, len)
4978 {
4979 	switch (type) {
4980 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4981 	case BPF_LWT_ENCAP_SEG6:
4982 	case BPF_LWT_ENCAP_SEG6_INLINE:
4983 		return bpf_push_seg6_encap(skb, type, hdr, len);
4984 #endif
4985 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4986 	case BPF_LWT_ENCAP_IP:
4987 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
4988 #endif
4989 	default:
4990 		return -EINVAL;
4991 	}
4992 }
4993 
4994 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
4995 	   void *, hdr, u32, len)
4996 {
4997 	switch (type) {
4998 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4999 	case BPF_LWT_ENCAP_IP:
5000 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
5001 #endif
5002 	default:
5003 		return -EINVAL;
5004 	}
5005 }
5006 
5007 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
5008 	.func		= bpf_lwt_in_push_encap,
5009 	.gpl_only	= false,
5010 	.ret_type	= RET_INTEGER,
5011 	.arg1_type	= ARG_PTR_TO_CTX,
5012 	.arg2_type	= ARG_ANYTHING,
5013 	.arg3_type	= ARG_PTR_TO_MEM,
5014 	.arg4_type	= ARG_CONST_SIZE
5015 };
5016 
5017 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
5018 	.func		= bpf_lwt_xmit_push_encap,
5019 	.gpl_only	= false,
5020 	.ret_type	= RET_INTEGER,
5021 	.arg1_type	= ARG_PTR_TO_CTX,
5022 	.arg2_type	= ARG_ANYTHING,
5023 	.arg3_type	= ARG_PTR_TO_MEM,
5024 	.arg4_type	= ARG_CONST_SIZE
5025 };
5026 
5027 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5028 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5029 	   const void *, from, u32, len)
5030 {
5031 	struct seg6_bpf_srh_state *srh_state =
5032 		this_cpu_ptr(&seg6_bpf_srh_states);
5033 	struct ipv6_sr_hdr *srh = srh_state->srh;
5034 	void *srh_tlvs, *srh_end, *ptr;
5035 	int srhoff = 0;
5036 
5037 	if (srh == NULL)
5038 		return -EINVAL;
5039 
5040 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5041 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5042 
5043 	ptr = skb->data + offset;
5044 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
5045 		srh_state->valid = false;
5046 	else if (ptr < (void *)&srh->flags ||
5047 		 ptr + len > (void *)&srh->segments)
5048 		return -EFAULT;
5049 
5050 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
5051 		return -EFAULT;
5052 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5053 		return -EINVAL;
5054 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5055 
5056 	memcpy(skb->data + offset, from, len);
5057 	return 0;
5058 }
5059 
5060 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5061 	.func		= bpf_lwt_seg6_store_bytes,
5062 	.gpl_only	= false,
5063 	.ret_type	= RET_INTEGER,
5064 	.arg1_type	= ARG_PTR_TO_CTX,
5065 	.arg2_type	= ARG_ANYTHING,
5066 	.arg3_type	= ARG_PTR_TO_MEM,
5067 	.arg4_type	= ARG_CONST_SIZE
5068 };
5069 
5070 static void bpf_update_srh_state(struct sk_buff *skb)
5071 {
5072 	struct seg6_bpf_srh_state *srh_state =
5073 		this_cpu_ptr(&seg6_bpf_srh_states);
5074 	int srhoff = 0;
5075 
5076 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5077 		srh_state->srh = NULL;
5078 	} else {
5079 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5080 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5081 		srh_state->valid = true;
5082 	}
5083 }
5084 
5085 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5086 	   u32, action, void *, param, u32, param_len)
5087 {
5088 	struct seg6_bpf_srh_state *srh_state =
5089 		this_cpu_ptr(&seg6_bpf_srh_states);
5090 	int hdroff = 0;
5091 	int err;
5092 
5093 	switch (action) {
5094 	case SEG6_LOCAL_ACTION_END_X:
5095 		if (!seg6_bpf_has_valid_srh(skb))
5096 			return -EBADMSG;
5097 		if (param_len != sizeof(struct in6_addr))
5098 			return -EINVAL;
5099 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5100 	case SEG6_LOCAL_ACTION_END_T:
5101 		if (!seg6_bpf_has_valid_srh(skb))
5102 			return -EBADMSG;
5103 		if (param_len != sizeof(int))
5104 			return -EINVAL;
5105 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5106 	case SEG6_LOCAL_ACTION_END_DT6:
5107 		if (!seg6_bpf_has_valid_srh(skb))
5108 			return -EBADMSG;
5109 		if (param_len != sizeof(int))
5110 			return -EINVAL;
5111 
5112 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5113 			return -EBADMSG;
5114 		if (!pskb_pull(skb, hdroff))
5115 			return -EBADMSG;
5116 
5117 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5118 		skb_reset_network_header(skb);
5119 		skb_reset_transport_header(skb);
5120 		skb->encapsulation = 0;
5121 
5122 		bpf_compute_data_pointers(skb);
5123 		bpf_update_srh_state(skb);
5124 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5125 	case SEG6_LOCAL_ACTION_END_B6:
5126 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5127 			return -EBADMSG;
5128 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5129 					  param, param_len);
5130 		if (!err)
5131 			bpf_update_srh_state(skb);
5132 
5133 		return err;
5134 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5135 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5136 			return -EBADMSG;
5137 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5138 					  param, param_len);
5139 		if (!err)
5140 			bpf_update_srh_state(skb);
5141 
5142 		return err;
5143 	default:
5144 		return -EINVAL;
5145 	}
5146 }
5147 
5148 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5149 	.func		= bpf_lwt_seg6_action,
5150 	.gpl_only	= false,
5151 	.ret_type	= RET_INTEGER,
5152 	.arg1_type	= ARG_PTR_TO_CTX,
5153 	.arg2_type	= ARG_ANYTHING,
5154 	.arg3_type	= ARG_PTR_TO_MEM,
5155 	.arg4_type	= ARG_CONST_SIZE
5156 };
5157 
5158 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5159 	   s32, len)
5160 {
5161 	struct seg6_bpf_srh_state *srh_state =
5162 		this_cpu_ptr(&seg6_bpf_srh_states);
5163 	struct ipv6_sr_hdr *srh = srh_state->srh;
5164 	void *srh_end, *srh_tlvs, *ptr;
5165 	struct ipv6hdr *hdr;
5166 	int srhoff = 0;
5167 	int ret;
5168 
5169 	if (unlikely(srh == NULL))
5170 		return -EINVAL;
5171 
5172 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5173 			((srh->first_segment + 1) << 4));
5174 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5175 			srh_state->hdrlen);
5176 	ptr = skb->data + offset;
5177 
5178 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5179 		return -EFAULT;
5180 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5181 		return -EFAULT;
5182 
5183 	if (len > 0) {
5184 		ret = skb_cow_head(skb, len);
5185 		if (unlikely(ret < 0))
5186 			return ret;
5187 
5188 		ret = bpf_skb_net_hdr_push(skb, offset, len);
5189 	} else {
5190 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5191 	}
5192 
5193 	bpf_compute_data_pointers(skb);
5194 	if (unlikely(ret < 0))
5195 		return ret;
5196 
5197 	hdr = (struct ipv6hdr *)skb->data;
5198 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5199 
5200 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5201 		return -EINVAL;
5202 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5203 	srh_state->hdrlen += len;
5204 	srh_state->valid = false;
5205 	return 0;
5206 }
5207 
5208 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5209 	.func		= bpf_lwt_seg6_adjust_srh,
5210 	.gpl_only	= false,
5211 	.ret_type	= RET_INTEGER,
5212 	.arg1_type	= ARG_PTR_TO_CTX,
5213 	.arg2_type	= ARG_ANYTHING,
5214 	.arg3_type	= ARG_ANYTHING,
5215 };
5216 #endif /* CONFIG_IPV6_SEG6_BPF */
5217 
5218 #ifdef CONFIG_INET
5219 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5220 			      int dif, int sdif, u8 family, u8 proto)
5221 {
5222 	bool refcounted = false;
5223 	struct sock *sk = NULL;
5224 
5225 	if (family == AF_INET) {
5226 		__be32 src4 = tuple->ipv4.saddr;
5227 		__be32 dst4 = tuple->ipv4.daddr;
5228 
5229 		if (proto == IPPROTO_TCP)
5230 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5231 					   src4, tuple->ipv4.sport,
5232 					   dst4, tuple->ipv4.dport,
5233 					   dif, sdif, &refcounted);
5234 		else
5235 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5236 					       dst4, tuple->ipv4.dport,
5237 					       dif, sdif, &udp_table, NULL);
5238 #if IS_ENABLED(CONFIG_IPV6)
5239 	} else {
5240 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5241 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5242 
5243 		if (proto == IPPROTO_TCP)
5244 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5245 					    src6, tuple->ipv6.sport,
5246 					    dst6, ntohs(tuple->ipv6.dport),
5247 					    dif, sdif, &refcounted);
5248 		else if (likely(ipv6_bpf_stub))
5249 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5250 							    src6, tuple->ipv6.sport,
5251 							    dst6, tuple->ipv6.dport,
5252 							    dif, sdif,
5253 							    &udp_table, NULL);
5254 #endif
5255 	}
5256 
5257 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5258 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5259 		sk = NULL;
5260 	}
5261 	return sk;
5262 }
5263 
5264 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5265  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5266  * Returns the socket as an 'unsigned long' to simplify the casting in the
5267  * callers to satisfy BPF_CALL declarations.
5268  */
5269 static struct sock *
5270 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5271 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5272 		 u64 flags)
5273 {
5274 	struct sock *sk = NULL;
5275 	u8 family = AF_UNSPEC;
5276 	struct net *net;
5277 	int sdif;
5278 
5279 	if (len == sizeof(tuple->ipv4))
5280 		family = AF_INET;
5281 	else if (len == sizeof(tuple->ipv6))
5282 		family = AF_INET6;
5283 	else
5284 		return NULL;
5285 
5286 	if (unlikely(family == AF_UNSPEC || flags ||
5287 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5288 		goto out;
5289 
5290 	if (family == AF_INET)
5291 		sdif = inet_sdif(skb);
5292 	else
5293 		sdif = inet6_sdif(skb);
5294 
5295 	if ((s32)netns_id < 0) {
5296 		net = caller_net;
5297 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5298 	} else {
5299 		net = get_net_ns_by_id(caller_net, netns_id);
5300 		if (unlikely(!net))
5301 			goto out;
5302 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5303 		put_net(net);
5304 	}
5305 
5306 out:
5307 	return sk;
5308 }
5309 
5310 static struct sock *
5311 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5312 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5313 		u64 flags)
5314 {
5315 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5316 					   ifindex, proto, netns_id, flags);
5317 
5318 	if (sk) {
5319 		sk = sk_to_full_sk(sk);
5320 		if (!sk_fullsock(sk)) {
5321 			if (!sock_flag(sk, SOCK_RCU_FREE))
5322 				sock_gen_put(sk);
5323 			return NULL;
5324 		}
5325 	}
5326 
5327 	return sk;
5328 }
5329 
5330 static struct sock *
5331 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5332 	       u8 proto, u64 netns_id, u64 flags)
5333 {
5334 	struct net *caller_net;
5335 	int ifindex;
5336 
5337 	if (skb->dev) {
5338 		caller_net = dev_net(skb->dev);
5339 		ifindex = skb->dev->ifindex;
5340 	} else {
5341 		caller_net = sock_net(skb->sk);
5342 		ifindex = 0;
5343 	}
5344 
5345 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5346 				netns_id, flags);
5347 }
5348 
5349 static struct sock *
5350 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5351 	      u8 proto, u64 netns_id, u64 flags)
5352 {
5353 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5354 					 flags);
5355 
5356 	if (sk) {
5357 		sk = sk_to_full_sk(sk);
5358 		if (!sk_fullsock(sk)) {
5359 			if (!sock_flag(sk, SOCK_RCU_FREE))
5360 				sock_gen_put(sk);
5361 			return NULL;
5362 		}
5363 	}
5364 
5365 	return sk;
5366 }
5367 
5368 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5369 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5370 {
5371 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5372 					     netns_id, flags);
5373 }
5374 
5375 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5376 	.func		= bpf_skc_lookup_tcp,
5377 	.gpl_only	= false,
5378 	.pkt_access	= true,
5379 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5380 	.arg1_type	= ARG_PTR_TO_CTX,
5381 	.arg2_type	= ARG_PTR_TO_MEM,
5382 	.arg3_type	= ARG_CONST_SIZE,
5383 	.arg4_type	= ARG_ANYTHING,
5384 	.arg5_type	= ARG_ANYTHING,
5385 };
5386 
5387 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5388 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5389 {
5390 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5391 					    netns_id, flags);
5392 }
5393 
5394 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5395 	.func		= bpf_sk_lookup_tcp,
5396 	.gpl_only	= false,
5397 	.pkt_access	= true,
5398 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5399 	.arg1_type	= ARG_PTR_TO_CTX,
5400 	.arg2_type	= ARG_PTR_TO_MEM,
5401 	.arg3_type	= ARG_CONST_SIZE,
5402 	.arg4_type	= ARG_ANYTHING,
5403 	.arg5_type	= ARG_ANYTHING,
5404 };
5405 
5406 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5407 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5408 {
5409 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5410 					    netns_id, flags);
5411 }
5412 
5413 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5414 	.func		= bpf_sk_lookup_udp,
5415 	.gpl_only	= false,
5416 	.pkt_access	= true,
5417 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5418 	.arg1_type	= ARG_PTR_TO_CTX,
5419 	.arg2_type	= ARG_PTR_TO_MEM,
5420 	.arg3_type	= ARG_CONST_SIZE,
5421 	.arg4_type	= ARG_ANYTHING,
5422 	.arg5_type	= ARG_ANYTHING,
5423 };
5424 
5425 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5426 {
5427 	if (!sock_flag(sk, SOCK_RCU_FREE))
5428 		sock_gen_put(sk);
5429 	return 0;
5430 }
5431 
5432 static const struct bpf_func_proto bpf_sk_release_proto = {
5433 	.func		= bpf_sk_release,
5434 	.gpl_only	= false,
5435 	.ret_type	= RET_INTEGER,
5436 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5437 };
5438 
5439 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5440 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5441 {
5442 	struct net *caller_net = dev_net(ctx->rxq->dev);
5443 	int ifindex = ctx->rxq->dev->ifindex;
5444 
5445 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5446 					      ifindex, IPPROTO_UDP, netns_id,
5447 					      flags);
5448 }
5449 
5450 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5451 	.func           = bpf_xdp_sk_lookup_udp,
5452 	.gpl_only       = false,
5453 	.pkt_access     = true,
5454 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5455 	.arg1_type      = ARG_PTR_TO_CTX,
5456 	.arg2_type      = ARG_PTR_TO_MEM,
5457 	.arg3_type      = ARG_CONST_SIZE,
5458 	.arg4_type      = ARG_ANYTHING,
5459 	.arg5_type      = ARG_ANYTHING,
5460 };
5461 
5462 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5463 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5464 {
5465 	struct net *caller_net = dev_net(ctx->rxq->dev);
5466 	int ifindex = ctx->rxq->dev->ifindex;
5467 
5468 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5469 					       ifindex, IPPROTO_TCP, netns_id,
5470 					       flags);
5471 }
5472 
5473 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5474 	.func           = bpf_xdp_skc_lookup_tcp,
5475 	.gpl_only       = false,
5476 	.pkt_access     = true,
5477 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5478 	.arg1_type      = ARG_PTR_TO_CTX,
5479 	.arg2_type      = ARG_PTR_TO_MEM,
5480 	.arg3_type      = ARG_CONST_SIZE,
5481 	.arg4_type      = ARG_ANYTHING,
5482 	.arg5_type      = ARG_ANYTHING,
5483 };
5484 
5485 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5486 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5487 {
5488 	struct net *caller_net = dev_net(ctx->rxq->dev);
5489 	int ifindex = ctx->rxq->dev->ifindex;
5490 
5491 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5492 					      ifindex, IPPROTO_TCP, netns_id,
5493 					      flags);
5494 }
5495 
5496 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5497 	.func           = bpf_xdp_sk_lookup_tcp,
5498 	.gpl_only       = false,
5499 	.pkt_access     = true,
5500 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5501 	.arg1_type      = ARG_PTR_TO_CTX,
5502 	.arg2_type      = ARG_PTR_TO_MEM,
5503 	.arg3_type      = ARG_CONST_SIZE,
5504 	.arg4_type      = ARG_ANYTHING,
5505 	.arg5_type      = ARG_ANYTHING,
5506 };
5507 
5508 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5509 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5510 {
5511 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5512 					       sock_net(ctx->sk), 0,
5513 					       IPPROTO_TCP, netns_id, flags);
5514 }
5515 
5516 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5517 	.func		= bpf_sock_addr_skc_lookup_tcp,
5518 	.gpl_only	= false,
5519 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5520 	.arg1_type	= ARG_PTR_TO_CTX,
5521 	.arg2_type	= ARG_PTR_TO_MEM,
5522 	.arg3_type	= ARG_CONST_SIZE,
5523 	.arg4_type	= ARG_ANYTHING,
5524 	.arg5_type	= ARG_ANYTHING,
5525 };
5526 
5527 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5528 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5529 {
5530 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5531 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
5532 					      netns_id, flags);
5533 }
5534 
5535 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5536 	.func		= bpf_sock_addr_sk_lookup_tcp,
5537 	.gpl_only	= false,
5538 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5539 	.arg1_type	= ARG_PTR_TO_CTX,
5540 	.arg2_type	= ARG_PTR_TO_MEM,
5541 	.arg3_type	= ARG_CONST_SIZE,
5542 	.arg4_type	= ARG_ANYTHING,
5543 	.arg5_type	= ARG_ANYTHING,
5544 };
5545 
5546 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5547 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5548 {
5549 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5550 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
5551 					      netns_id, flags);
5552 }
5553 
5554 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5555 	.func		= bpf_sock_addr_sk_lookup_udp,
5556 	.gpl_only	= false,
5557 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5558 	.arg1_type	= ARG_PTR_TO_CTX,
5559 	.arg2_type	= ARG_PTR_TO_MEM,
5560 	.arg3_type	= ARG_CONST_SIZE,
5561 	.arg4_type	= ARG_ANYTHING,
5562 	.arg5_type	= ARG_ANYTHING,
5563 };
5564 
5565 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5566 				  struct bpf_insn_access_aux *info)
5567 {
5568 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5569 					  icsk_retransmits))
5570 		return false;
5571 
5572 	if (off % size != 0)
5573 		return false;
5574 
5575 	switch (off) {
5576 	case offsetof(struct bpf_tcp_sock, bytes_received):
5577 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5578 		return size == sizeof(__u64);
5579 	default:
5580 		return size == sizeof(__u32);
5581 	}
5582 }
5583 
5584 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5585 				    const struct bpf_insn *si,
5586 				    struct bpf_insn *insn_buf,
5587 				    struct bpf_prog *prog, u32 *target_size)
5588 {
5589 	struct bpf_insn *insn = insn_buf;
5590 
5591 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
5592 	do {								\
5593 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
5594 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
5595 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5596 				      si->dst_reg, si->src_reg,		\
5597 				      offsetof(struct tcp_sock, FIELD)); \
5598 	} while (0)
5599 
5600 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
5601 	do {								\
5602 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
5603 					  FIELD) >			\
5604 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
5605 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
5606 					struct inet_connection_sock,	\
5607 					FIELD),				\
5608 				      si->dst_reg, si->src_reg,		\
5609 				      offsetof(				\
5610 					struct inet_connection_sock,	\
5611 					FIELD));			\
5612 	} while (0)
5613 
5614 	if (insn > insn_buf)
5615 		return insn - insn_buf;
5616 
5617 	switch (si->off) {
5618 	case offsetof(struct bpf_tcp_sock, rtt_min):
5619 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
5620 			     sizeof(struct minmax));
5621 		BUILD_BUG_ON(sizeof(struct minmax) <
5622 			     sizeof(struct minmax_sample));
5623 
5624 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5625 				      offsetof(struct tcp_sock, rtt_min) +
5626 				      offsetof(struct minmax_sample, v));
5627 		break;
5628 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
5629 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5630 		break;
5631 	case offsetof(struct bpf_tcp_sock, srtt_us):
5632 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
5633 		break;
5634 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5635 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5636 		break;
5637 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
5638 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5639 		break;
5640 	case offsetof(struct bpf_tcp_sock, snd_nxt):
5641 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5642 		break;
5643 	case offsetof(struct bpf_tcp_sock, snd_una):
5644 		BPF_TCP_SOCK_GET_COMMON(snd_una);
5645 		break;
5646 	case offsetof(struct bpf_tcp_sock, mss_cache):
5647 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
5648 		break;
5649 	case offsetof(struct bpf_tcp_sock, ecn_flags):
5650 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5651 		break;
5652 	case offsetof(struct bpf_tcp_sock, rate_delivered):
5653 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5654 		break;
5655 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
5656 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5657 		break;
5658 	case offsetof(struct bpf_tcp_sock, packets_out):
5659 		BPF_TCP_SOCK_GET_COMMON(packets_out);
5660 		break;
5661 	case offsetof(struct bpf_tcp_sock, retrans_out):
5662 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
5663 		break;
5664 	case offsetof(struct bpf_tcp_sock, total_retrans):
5665 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
5666 		break;
5667 	case offsetof(struct bpf_tcp_sock, segs_in):
5668 		BPF_TCP_SOCK_GET_COMMON(segs_in);
5669 		break;
5670 	case offsetof(struct bpf_tcp_sock, data_segs_in):
5671 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5672 		break;
5673 	case offsetof(struct bpf_tcp_sock, segs_out):
5674 		BPF_TCP_SOCK_GET_COMMON(segs_out);
5675 		break;
5676 	case offsetof(struct bpf_tcp_sock, data_segs_out):
5677 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5678 		break;
5679 	case offsetof(struct bpf_tcp_sock, lost_out):
5680 		BPF_TCP_SOCK_GET_COMMON(lost_out);
5681 		break;
5682 	case offsetof(struct bpf_tcp_sock, sacked_out):
5683 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
5684 		break;
5685 	case offsetof(struct bpf_tcp_sock, bytes_received):
5686 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
5687 		break;
5688 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5689 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5690 		break;
5691 	case offsetof(struct bpf_tcp_sock, dsack_dups):
5692 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5693 		break;
5694 	case offsetof(struct bpf_tcp_sock, delivered):
5695 		BPF_TCP_SOCK_GET_COMMON(delivered);
5696 		break;
5697 	case offsetof(struct bpf_tcp_sock, delivered_ce):
5698 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5699 		break;
5700 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5701 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5702 		break;
5703 	}
5704 
5705 	return insn - insn_buf;
5706 }
5707 
5708 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5709 {
5710 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5711 		return (unsigned long)sk;
5712 
5713 	return (unsigned long)NULL;
5714 }
5715 
5716 const struct bpf_func_proto bpf_tcp_sock_proto = {
5717 	.func		= bpf_tcp_sock,
5718 	.gpl_only	= false,
5719 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
5720 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5721 };
5722 
5723 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5724 {
5725 	sk = sk_to_full_sk(sk);
5726 
5727 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5728 		return (unsigned long)sk;
5729 
5730 	return (unsigned long)NULL;
5731 }
5732 
5733 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5734 	.func		= bpf_get_listener_sock,
5735 	.gpl_only	= false,
5736 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5737 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5738 };
5739 
5740 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5741 {
5742 	unsigned int iphdr_len;
5743 
5744 	if (skb->protocol == cpu_to_be16(ETH_P_IP))
5745 		iphdr_len = sizeof(struct iphdr);
5746 	else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5747 		iphdr_len = sizeof(struct ipv6hdr);
5748 	else
5749 		return 0;
5750 
5751 	if (skb_headlen(skb) < iphdr_len)
5752 		return 0;
5753 
5754 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5755 		return 0;
5756 
5757 	return INET_ECN_set_ce(skb);
5758 }
5759 
5760 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5761 				  struct bpf_insn_access_aux *info)
5762 {
5763 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5764 		return false;
5765 
5766 	if (off % size != 0)
5767 		return false;
5768 
5769 	switch (off) {
5770 	default:
5771 		return size == sizeof(__u32);
5772 	}
5773 }
5774 
5775 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5776 				    const struct bpf_insn *si,
5777 				    struct bpf_insn *insn_buf,
5778 				    struct bpf_prog *prog, u32 *target_size)
5779 {
5780 	struct bpf_insn *insn = insn_buf;
5781 
5782 #define BPF_XDP_SOCK_GET(FIELD)						\
5783 	do {								\
5784 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
5785 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
5786 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5787 				      si->dst_reg, si->src_reg,		\
5788 				      offsetof(struct xdp_sock, FIELD)); \
5789 	} while (0)
5790 
5791 	switch (si->off) {
5792 	case offsetof(struct bpf_xdp_sock, queue_id):
5793 		BPF_XDP_SOCK_GET(queue_id);
5794 		break;
5795 	}
5796 
5797 	return insn - insn_buf;
5798 }
5799 
5800 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5801 	.func           = bpf_skb_ecn_set_ce,
5802 	.gpl_only       = false,
5803 	.ret_type       = RET_INTEGER,
5804 	.arg1_type      = ARG_PTR_TO_CTX,
5805 };
5806 
5807 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5808 	   struct tcphdr *, th, u32, th_len)
5809 {
5810 #ifdef CONFIG_SYN_COOKIES
5811 	u32 cookie;
5812 	int ret;
5813 
5814 	if (unlikely(th_len < sizeof(*th)))
5815 		return -EINVAL;
5816 
5817 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5818 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5819 		return -EINVAL;
5820 
5821 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5822 		return -EINVAL;
5823 
5824 	if (!th->ack || th->rst || th->syn)
5825 		return -ENOENT;
5826 
5827 	if (tcp_synq_no_recent_overflow(sk))
5828 		return -ENOENT;
5829 
5830 	cookie = ntohl(th->ack_seq) - 1;
5831 
5832 	switch (sk->sk_family) {
5833 	case AF_INET:
5834 		if (unlikely(iph_len < sizeof(struct iphdr)))
5835 			return -EINVAL;
5836 
5837 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
5838 		break;
5839 
5840 #if IS_BUILTIN(CONFIG_IPV6)
5841 	case AF_INET6:
5842 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5843 			return -EINVAL;
5844 
5845 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
5846 		break;
5847 #endif /* CONFIG_IPV6 */
5848 
5849 	default:
5850 		return -EPROTONOSUPPORT;
5851 	}
5852 
5853 	if (ret > 0)
5854 		return 0;
5855 
5856 	return -ENOENT;
5857 #else
5858 	return -ENOTSUPP;
5859 #endif
5860 }
5861 
5862 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
5863 	.func		= bpf_tcp_check_syncookie,
5864 	.gpl_only	= true,
5865 	.pkt_access	= true,
5866 	.ret_type	= RET_INTEGER,
5867 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5868 	.arg2_type	= ARG_PTR_TO_MEM,
5869 	.arg3_type	= ARG_CONST_SIZE,
5870 	.arg4_type	= ARG_PTR_TO_MEM,
5871 	.arg5_type	= ARG_CONST_SIZE,
5872 };
5873 
5874 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5875 	   struct tcphdr *, th, u32, th_len)
5876 {
5877 #ifdef CONFIG_SYN_COOKIES
5878 	u32 cookie;
5879 	u16 mss;
5880 
5881 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
5882 		return -EINVAL;
5883 
5884 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5885 		return -EINVAL;
5886 
5887 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5888 		return -ENOENT;
5889 
5890 	if (!th->syn || th->ack || th->fin || th->rst)
5891 		return -EINVAL;
5892 
5893 	if (unlikely(iph_len < sizeof(struct iphdr)))
5894 		return -EINVAL;
5895 
5896 	/* Both struct iphdr and struct ipv6hdr have the version field at the
5897 	 * same offset so we can cast to the shorter header (struct iphdr).
5898 	 */
5899 	switch (((struct iphdr *)iph)->version) {
5900 	case 4:
5901 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
5902 			return -EINVAL;
5903 
5904 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
5905 		break;
5906 
5907 #if IS_BUILTIN(CONFIG_IPV6)
5908 	case 6:
5909 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5910 			return -EINVAL;
5911 
5912 		if (sk->sk_family != AF_INET6)
5913 			return -EINVAL;
5914 
5915 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
5916 		break;
5917 #endif /* CONFIG_IPV6 */
5918 
5919 	default:
5920 		return -EPROTONOSUPPORT;
5921 	}
5922 	if (mss == 0)
5923 		return -ENOENT;
5924 
5925 	return cookie | ((u64)mss << 32);
5926 #else
5927 	return -EOPNOTSUPP;
5928 #endif /* CONFIG_SYN_COOKIES */
5929 }
5930 
5931 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
5932 	.func		= bpf_tcp_gen_syncookie,
5933 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
5934 	.pkt_access	= true,
5935 	.ret_type	= RET_INTEGER,
5936 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5937 	.arg2_type	= ARG_PTR_TO_MEM,
5938 	.arg3_type	= ARG_CONST_SIZE,
5939 	.arg4_type	= ARG_PTR_TO_MEM,
5940 	.arg5_type	= ARG_CONST_SIZE,
5941 };
5942 
5943 #endif /* CONFIG_INET */
5944 
5945 bool bpf_helper_changes_pkt_data(void *func)
5946 {
5947 	if (func == bpf_skb_vlan_push ||
5948 	    func == bpf_skb_vlan_pop ||
5949 	    func == bpf_skb_store_bytes ||
5950 	    func == bpf_skb_change_proto ||
5951 	    func == bpf_skb_change_head ||
5952 	    func == sk_skb_change_head ||
5953 	    func == bpf_skb_change_tail ||
5954 	    func == sk_skb_change_tail ||
5955 	    func == bpf_skb_adjust_room ||
5956 	    func == bpf_skb_pull_data ||
5957 	    func == sk_skb_pull_data ||
5958 	    func == bpf_clone_redirect ||
5959 	    func == bpf_l3_csum_replace ||
5960 	    func == bpf_l4_csum_replace ||
5961 	    func == bpf_xdp_adjust_head ||
5962 	    func == bpf_xdp_adjust_meta ||
5963 	    func == bpf_msg_pull_data ||
5964 	    func == bpf_msg_push_data ||
5965 	    func == bpf_msg_pop_data ||
5966 	    func == bpf_xdp_adjust_tail ||
5967 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5968 	    func == bpf_lwt_seg6_store_bytes ||
5969 	    func == bpf_lwt_seg6_adjust_srh ||
5970 	    func == bpf_lwt_seg6_action ||
5971 #endif
5972 	    func == bpf_lwt_in_push_encap ||
5973 	    func == bpf_lwt_xmit_push_encap)
5974 		return true;
5975 
5976 	return false;
5977 }
5978 
5979 static const struct bpf_func_proto *
5980 bpf_base_func_proto(enum bpf_func_id func_id)
5981 {
5982 	switch (func_id) {
5983 	case BPF_FUNC_map_lookup_elem:
5984 		return &bpf_map_lookup_elem_proto;
5985 	case BPF_FUNC_map_update_elem:
5986 		return &bpf_map_update_elem_proto;
5987 	case BPF_FUNC_map_delete_elem:
5988 		return &bpf_map_delete_elem_proto;
5989 	case BPF_FUNC_map_push_elem:
5990 		return &bpf_map_push_elem_proto;
5991 	case BPF_FUNC_map_pop_elem:
5992 		return &bpf_map_pop_elem_proto;
5993 	case BPF_FUNC_map_peek_elem:
5994 		return &bpf_map_peek_elem_proto;
5995 	case BPF_FUNC_get_prandom_u32:
5996 		return &bpf_get_prandom_u32_proto;
5997 	case BPF_FUNC_get_smp_processor_id:
5998 		return &bpf_get_raw_smp_processor_id_proto;
5999 	case BPF_FUNC_get_numa_node_id:
6000 		return &bpf_get_numa_node_id_proto;
6001 	case BPF_FUNC_tail_call:
6002 		return &bpf_tail_call_proto;
6003 	case BPF_FUNC_ktime_get_ns:
6004 		return &bpf_ktime_get_ns_proto;
6005 	default:
6006 		break;
6007 	}
6008 
6009 	if (!capable(CAP_SYS_ADMIN))
6010 		return NULL;
6011 
6012 	switch (func_id) {
6013 	case BPF_FUNC_spin_lock:
6014 		return &bpf_spin_lock_proto;
6015 	case BPF_FUNC_spin_unlock:
6016 		return &bpf_spin_unlock_proto;
6017 	case BPF_FUNC_trace_printk:
6018 		return bpf_get_trace_printk_proto();
6019 	default:
6020 		return NULL;
6021 	}
6022 }
6023 
6024 static const struct bpf_func_proto *
6025 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6026 {
6027 	switch (func_id) {
6028 	/* inet and inet6 sockets are created in a process
6029 	 * context so there is always a valid uid/gid
6030 	 */
6031 	case BPF_FUNC_get_current_uid_gid:
6032 		return &bpf_get_current_uid_gid_proto;
6033 	case BPF_FUNC_get_local_storage:
6034 		return &bpf_get_local_storage_proto;
6035 	default:
6036 		return bpf_base_func_proto(func_id);
6037 	}
6038 }
6039 
6040 static const struct bpf_func_proto *
6041 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6042 {
6043 	switch (func_id) {
6044 	/* inet and inet6 sockets are created in a process
6045 	 * context so there is always a valid uid/gid
6046 	 */
6047 	case BPF_FUNC_get_current_uid_gid:
6048 		return &bpf_get_current_uid_gid_proto;
6049 	case BPF_FUNC_bind:
6050 		switch (prog->expected_attach_type) {
6051 		case BPF_CGROUP_INET4_CONNECT:
6052 		case BPF_CGROUP_INET6_CONNECT:
6053 			return &bpf_bind_proto;
6054 		default:
6055 			return NULL;
6056 		}
6057 	case BPF_FUNC_get_socket_cookie:
6058 		return &bpf_get_socket_cookie_sock_addr_proto;
6059 	case BPF_FUNC_get_local_storage:
6060 		return &bpf_get_local_storage_proto;
6061 #ifdef CONFIG_INET
6062 	case BPF_FUNC_sk_lookup_tcp:
6063 		return &bpf_sock_addr_sk_lookup_tcp_proto;
6064 	case BPF_FUNC_sk_lookup_udp:
6065 		return &bpf_sock_addr_sk_lookup_udp_proto;
6066 	case BPF_FUNC_sk_release:
6067 		return &bpf_sk_release_proto;
6068 	case BPF_FUNC_skc_lookup_tcp:
6069 		return &bpf_sock_addr_skc_lookup_tcp_proto;
6070 #endif /* CONFIG_INET */
6071 	case BPF_FUNC_sk_storage_get:
6072 		return &bpf_sk_storage_get_proto;
6073 	case BPF_FUNC_sk_storage_delete:
6074 		return &bpf_sk_storage_delete_proto;
6075 	default:
6076 		return bpf_base_func_proto(func_id);
6077 	}
6078 }
6079 
6080 static const struct bpf_func_proto *
6081 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6082 {
6083 	switch (func_id) {
6084 	case BPF_FUNC_skb_load_bytes:
6085 		return &bpf_skb_load_bytes_proto;
6086 	case BPF_FUNC_skb_load_bytes_relative:
6087 		return &bpf_skb_load_bytes_relative_proto;
6088 	case BPF_FUNC_get_socket_cookie:
6089 		return &bpf_get_socket_cookie_proto;
6090 	case BPF_FUNC_get_socket_uid:
6091 		return &bpf_get_socket_uid_proto;
6092 	case BPF_FUNC_perf_event_output:
6093 		return &bpf_skb_event_output_proto;
6094 	default:
6095 		return bpf_base_func_proto(func_id);
6096 	}
6097 }
6098 
6099 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6100 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6101 
6102 static const struct bpf_func_proto *
6103 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6104 {
6105 	switch (func_id) {
6106 	case BPF_FUNC_get_local_storage:
6107 		return &bpf_get_local_storage_proto;
6108 	case BPF_FUNC_sk_fullsock:
6109 		return &bpf_sk_fullsock_proto;
6110 	case BPF_FUNC_sk_storage_get:
6111 		return &bpf_sk_storage_get_proto;
6112 	case BPF_FUNC_sk_storage_delete:
6113 		return &bpf_sk_storage_delete_proto;
6114 	case BPF_FUNC_perf_event_output:
6115 		return &bpf_skb_event_output_proto;
6116 #ifdef CONFIG_SOCK_CGROUP_DATA
6117 	case BPF_FUNC_skb_cgroup_id:
6118 		return &bpf_skb_cgroup_id_proto;
6119 #endif
6120 #ifdef CONFIG_INET
6121 	case BPF_FUNC_tcp_sock:
6122 		return &bpf_tcp_sock_proto;
6123 	case BPF_FUNC_get_listener_sock:
6124 		return &bpf_get_listener_sock_proto;
6125 	case BPF_FUNC_skb_ecn_set_ce:
6126 		return &bpf_skb_ecn_set_ce_proto;
6127 #endif
6128 	default:
6129 		return sk_filter_func_proto(func_id, prog);
6130 	}
6131 }
6132 
6133 static const struct bpf_func_proto *
6134 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6135 {
6136 	switch (func_id) {
6137 	case BPF_FUNC_skb_store_bytes:
6138 		return &bpf_skb_store_bytes_proto;
6139 	case BPF_FUNC_skb_load_bytes:
6140 		return &bpf_skb_load_bytes_proto;
6141 	case BPF_FUNC_skb_load_bytes_relative:
6142 		return &bpf_skb_load_bytes_relative_proto;
6143 	case BPF_FUNC_skb_pull_data:
6144 		return &bpf_skb_pull_data_proto;
6145 	case BPF_FUNC_csum_diff:
6146 		return &bpf_csum_diff_proto;
6147 	case BPF_FUNC_csum_update:
6148 		return &bpf_csum_update_proto;
6149 	case BPF_FUNC_l3_csum_replace:
6150 		return &bpf_l3_csum_replace_proto;
6151 	case BPF_FUNC_l4_csum_replace:
6152 		return &bpf_l4_csum_replace_proto;
6153 	case BPF_FUNC_clone_redirect:
6154 		return &bpf_clone_redirect_proto;
6155 	case BPF_FUNC_get_cgroup_classid:
6156 		return &bpf_get_cgroup_classid_proto;
6157 	case BPF_FUNC_skb_vlan_push:
6158 		return &bpf_skb_vlan_push_proto;
6159 	case BPF_FUNC_skb_vlan_pop:
6160 		return &bpf_skb_vlan_pop_proto;
6161 	case BPF_FUNC_skb_change_proto:
6162 		return &bpf_skb_change_proto_proto;
6163 	case BPF_FUNC_skb_change_type:
6164 		return &bpf_skb_change_type_proto;
6165 	case BPF_FUNC_skb_adjust_room:
6166 		return &bpf_skb_adjust_room_proto;
6167 	case BPF_FUNC_skb_change_tail:
6168 		return &bpf_skb_change_tail_proto;
6169 	case BPF_FUNC_skb_get_tunnel_key:
6170 		return &bpf_skb_get_tunnel_key_proto;
6171 	case BPF_FUNC_skb_set_tunnel_key:
6172 		return bpf_get_skb_set_tunnel_proto(func_id);
6173 	case BPF_FUNC_skb_get_tunnel_opt:
6174 		return &bpf_skb_get_tunnel_opt_proto;
6175 	case BPF_FUNC_skb_set_tunnel_opt:
6176 		return bpf_get_skb_set_tunnel_proto(func_id);
6177 	case BPF_FUNC_redirect:
6178 		return &bpf_redirect_proto;
6179 	case BPF_FUNC_get_route_realm:
6180 		return &bpf_get_route_realm_proto;
6181 	case BPF_FUNC_get_hash_recalc:
6182 		return &bpf_get_hash_recalc_proto;
6183 	case BPF_FUNC_set_hash_invalid:
6184 		return &bpf_set_hash_invalid_proto;
6185 	case BPF_FUNC_set_hash:
6186 		return &bpf_set_hash_proto;
6187 	case BPF_FUNC_perf_event_output:
6188 		return &bpf_skb_event_output_proto;
6189 	case BPF_FUNC_get_smp_processor_id:
6190 		return &bpf_get_smp_processor_id_proto;
6191 	case BPF_FUNC_skb_under_cgroup:
6192 		return &bpf_skb_under_cgroup_proto;
6193 	case BPF_FUNC_get_socket_cookie:
6194 		return &bpf_get_socket_cookie_proto;
6195 	case BPF_FUNC_get_socket_uid:
6196 		return &bpf_get_socket_uid_proto;
6197 	case BPF_FUNC_fib_lookup:
6198 		return &bpf_skb_fib_lookup_proto;
6199 	case BPF_FUNC_sk_fullsock:
6200 		return &bpf_sk_fullsock_proto;
6201 	case BPF_FUNC_sk_storage_get:
6202 		return &bpf_sk_storage_get_proto;
6203 	case BPF_FUNC_sk_storage_delete:
6204 		return &bpf_sk_storage_delete_proto;
6205 #ifdef CONFIG_XFRM
6206 	case BPF_FUNC_skb_get_xfrm_state:
6207 		return &bpf_skb_get_xfrm_state_proto;
6208 #endif
6209 #ifdef CONFIG_SOCK_CGROUP_DATA
6210 	case BPF_FUNC_skb_cgroup_id:
6211 		return &bpf_skb_cgroup_id_proto;
6212 	case BPF_FUNC_skb_ancestor_cgroup_id:
6213 		return &bpf_skb_ancestor_cgroup_id_proto;
6214 #endif
6215 #ifdef CONFIG_INET
6216 	case BPF_FUNC_sk_lookup_tcp:
6217 		return &bpf_sk_lookup_tcp_proto;
6218 	case BPF_FUNC_sk_lookup_udp:
6219 		return &bpf_sk_lookup_udp_proto;
6220 	case BPF_FUNC_sk_release:
6221 		return &bpf_sk_release_proto;
6222 	case BPF_FUNC_tcp_sock:
6223 		return &bpf_tcp_sock_proto;
6224 	case BPF_FUNC_get_listener_sock:
6225 		return &bpf_get_listener_sock_proto;
6226 	case BPF_FUNC_skc_lookup_tcp:
6227 		return &bpf_skc_lookup_tcp_proto;
6228 	case BPF_FUNC_tcp_check_syncookie:
6229 		return &bpf_tcp_check_syncookie_proto;
6230 	case BPF_FUNC_skb_ecn_set_ce:
6231 		return &bpf_skb_ecn_set_ce_proto;
6232 	case BPF_FUNC_tcp_gen_syncookie:
6233 		return &bpf_tcp_gen_syncookie_proto;
6234 #endif
6235 	default:
6236 		return bpf_base_func_proto(func_id);
6237 	}
6238 }
6239 
6240 static const struct bpf_func_proto *
6241 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6242 {
6243 	switch (func_id) {
6244 	case BPF_FUNC_perf_event_output:
6245 		return &bpf_xdp_event_output_proto;
6246 	case BPF_FUNC_get_smp_processor_id:
6247 		return &bpf_get_smp_processor_id_proto;
6248 	case BPF_FUNC_csum_diff:
6249 		return &bpf_csum_diff_proto;
6250 	case BPF_FUNC_xdp_adjust_head:
6251 		return &bpf_xdp_adjust_head_proto;
6252 	case BPF_FUNC_xdp_adjust_meta:
6253 		return &bpf_xdp_adjust_meta_proto;
6254 	case BPF_FUNC_redirect:
6255 		return &bpf_xdp_redirect_proto;
6256 	case BPF_FUNC_redirect_map:
6257 		return &bpf_xdp_redirect_map_proto;
6258 	case BPF_FUNC_xdp_adjust_tail:
6259 		return &bpf_xdp_adjust_tail_proto;
6260 	case BPF_FUNC_fib_lookup:
6261 		return &bpf_xdp_fib_lookup_proto;
6262 #ifdef CONFIG_INET
6263 	case BPF_FUNC_sk_lookup_udp:
6264 		return &bpf_xdp_sk_lookup_udp_proto;
6265 	case BPF_FUNC_sk_lookup_tcp:
6266 		return &bpf_xdp_sk_lookup_tcp_proto;
6267 	case BPF_FUNC_sk_release:
6268 		return &bpf_sk_release_proto;
6269 	case BPF_FUNC_skc_lookup_tcp:
6270 		return &bpf_xdp_skc_lookup_tcp_proto;
6271 	case BPF_FUNC_tcp_check_syncookie:
6272 		return &bpf_tcp_check_syncookie_proto;
6273 	case BPF_FUNC_tcp_gen_syncookie:
6274 		return &bpf_tcp_gen_syncookie_proto;
6275 #endif
6276 	default:
6277 		return bpf_base_func_proto(func_id);
6278 	}
6279 }
6280 
6281 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6282 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6283 
6284 static const struct bpf_func_proto *
6285 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6286 {
6287 	switch (func_id) {
6288 	case BPF_FUNC_setsockopt:
6289 		return &bpf_setsockopt_proto;
6290 	case BPF_FUNC_getsockopt:
6291 		return &bpf_getsockopt_proto;
6292 	case BPF_FUNC_sock_ops_cb_flags_set:
6293 		return &bpf_sock_ops_cb_flags_set_proto;
6294 	case BPF_FUNC_sock_map_update:
6295 		return &bpf_sock_map_update_proto;
6296 	case BPF_FUNC_sock_hash_update:
6297 		return &bpf_sock_hash_update_proto;
6298 	case BPF_FUNC_get_socket_cookie:
6299 		return &bpf_get_socket_cookie_sock_ops_proto;
6300 	case BPF_FUNC_get_local_storage:
6301 		return &bpf_get_local_storage_proto;
6302 	case BPF_FUNC_perf_event_output:
6303 		return &bpf_sockopt_event_output_proto;
6304 	case BPF_FUNC_sk_storage_get:
6305 		return &bpf_sk_storage_get_proto;
6306 	case BPF_FUNC_sk_storage_delete:
6307 		return &bpf_sk_storage_delete_proto;
6308 #ifdef CONFIG_INET
6309 	case BPF_FUNC_tcp_sock:
6310 		return &bpf_tcp_sock_proto;
6311 #endif /* CONFIG_INET */
6312 	default:
6313 		return bpf_base_func_proto(func_id);
6314 	}
6315 }
6316 
6317 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6318 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6319 
6320 static const struct bpf_func_proto *
6321 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6322 {
6323 	switch (func_id) {
6324 	case BPF_FUNC_msg_redirect_map:
6325 		return &bpf_msg_redirect_map_proto;
6326 	case BPF_FUNC_msg_redirect_hash:
6327 		return &bpf_msg_redirect_hash_proto;
6328 	case BPF_FUNC_msg_apply_bytes:
6329 		return &bpf_msg_apply_bytes_proto;
6330 	case BPF_FUNC_msg_cork_bytes:
6331 		return &bpf_msg_cork_bytes_proto;
6332 	case BPF_FUNC_msg_pull_data:
6333 		return &bpf_msg_pull_data_proto;
6334 	case BPF_FUNC_msg_push_data:
6335 		return &bpf_msg_push_data_proto;
6336 	case BPF_FUNC_msg_pop_data:
6337 		return &bpf_msg_pop_data_proto;
6338 	default:
6339 		return bpf_base_func_proto(func_id);
6340 	}
6341 }
6342 
6343 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6344 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6345 
6346 static const struct bpf_func_proto *
6347 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6348 {
6349 	switch (func_id) {
6350 	case BPF_FUNC_skb_store_bytes:
6351 		return &bpf_skb_store_bytes_proto;
6352 	case BPF_FUNC_skb_load_bytes:
6353 		return &bpf_skb_load_bytes_proto;
6354 	case BPF_FUNC_skb_pull_data:
6355 		return &sk_skb_pull_data_proto;
6356 	case BPF_FUNC_skb_change_tail:
6357 		return &sk_skb_change_tail_proto;
6358 	case BPF_FUNC_skb_change_head:
6359 		return &sk_skb_change_head_proto;
6360 	case BPF_FUNC_get_socket_cookie:
6361 		return &bpf_get_socket_cookie_proto;
6362 	case BPF_FUNC_get_socket_uid:
6363 		return &bpf_get_socket_uid_proto;
6364 	case BPF_FUNC_sk_redirect_map:
6365 		return &bpf_sk_redirect_map_proto;
6366 	case BPF_FUNC_sk_redirect_hash:
6367 		return &bpf_sk_redirect_hash_proto;
6368 	case BPF_FUNC_perf_event_output:
6369 		return &bpf_skb_event_output_proto;
6370 #ifdef CONFIG_INET
6371 	case BPF_FUNC_sk_lookup_tcp:
6372 		return &bpf_sk_lookup_tcp_proto;
6373 	case BPF_FUNC_sk_lookup_udp:
6374 		return &bpf_sk_lookup_udp_proto;
6375 	case BPF_FUNC_sk_release:
6376 		return &bpf_sk_release_proto;
6377 	case BPF_FUNC_skc_lookup_tcp:
6378 		return &bpf_skc_lookup_tcp_proto;
6379 #endif
6380 	default:
6381 		return bpf_base_func_proto(func_id);
6382 	}
6383 }
6384 
6385 static const struct bpf_func_proto *
6386 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6387 {
6388 	switch (func_id) {
6389 	case BPF_FUNC_skb_load_bytes:
6390 		return &bpf_flow_dissector_load_bytes_proto;
6391 	default:
6392 		return bpf_base_func_proto(func_id);
6393 	}
6394 }
6395 
6396 static const struct bpf_func_proto *
6397 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6398 {
6399 	switch (func_id) {
6400 	case BPF_FUNC_skb_load_bytes:
6401 		return &bpf_skb_load_bytes_proto;
6402 	case BPF_FUNC_skb_pull_data:
6403 		return &bpf_skb_pull_data_proto;
6404 	case BPF_FUNC_csum_diff:
6405 		return &bpf_csum_diff_proto;
6406 	case BPF_FUNC_get_cgroup_classid:
6407 		return &bpf_get_cgroup_classid_proto;
6408 	case BPF_FUNC_get_route_realm:
6409 		return &bpf_get_route_realm_proto;
6410 	case BPF_FUNC_get_hash_recalc:
6411 		return &bpf_get_hash_recalc_proto;
6412 	case BPF_FUNC_perf_event_output:
6413 		return &bpf_skb_event_output_proto;
6414 	case BPF_FUNC_get_smp_processor_id:
6415 		return &bpf_get_smp_processor_id_proto;
6416 	case BPF_FUNC_skb_under_cgroup:
6417 		return &bpf_skb_under_cgroup_proto;
6418 	default:
6419 		return bpf_base_func_proto(func_id);
6420 	}
6421 }
6422 
6423 static const struct bpf_func_proto *
6424 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6425 {
6426 	switch (func_id) {
6427 	case BPF_FUNC_lwt_push_encap:
6428 		return &bpf_lwt_in_push_encap_proto;
6429 	default:
6430 		return lwt_out_func_proto(func_id, prog);
6431 	}
6432 }
6433 
6434 static const struct bpf_func_proto *
6435 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6436 {
6437 	switch (func_id) {
6438 	case BPF_FUNC_skb_get_tunnel_key:
6439 		return &bpf_skb_get_tunnel_key_proto;
6440 	case BPF_FUNC_skb_set_tunnel_key:
6441 		return bpf_get_skb_set_tunnel_proto(func_id);
6442 	case BPF_FUNC_skb_get_tunnel_opt:
6443 		return &bpf_skb_get_tunnel_opt_proto;
6444 	case BPF_FUNC_skb_set_tunnel_opt:
6445 		return bpf_get_skb_set_tunnel_proto(func_id);
6446 	case BPF_FUNC_redirect:
6447 		return &bpf_redirect_proto;
6448 	case BPF_FUNC_clone_redirect:
6449 		return &bpf_clone_redirect_proto;
6450 	case BPF_FUNC_skb_change_tail:
6451 		return &bpf_skb_change_tail_proto;
6452 	case BPF_FUNC_skb_change_head:
6453 		return &bpf_skb_change_head_proto;
6454 	case BPF_FUNC_skb_store_bytes:
6455 		return &bpf_skb_store_bytes_proto;
6456 	case BPF_FUNC_csum_update:
6457 		return &bpf_csum_update_proto;
6458 	case BPF_FUNC_l3_csum_replace:
6459 		return &bpf_l3_csum_replace_proto;
6460 	case BPF_FUNC_l4_csum_replace:
6461 		return &bpf_l4_csum_replace_proto;
6462 	case BPF_FUNC_set_hash_invalid:
6463 		return &bpf_set_hash_invalid_proto;
6464 	case BPF_FUNC_lwt_push_encap:
6465 		return &bpf_lwt_xmit_push_encap_proto;
6466 	default:
6467 		return lwt_out_func_proto(func_id, prog);
6468 	}
6469 }
6470 
6471 static const struct bpf_func_proto *
6472 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6473 {
6474 	switch (func_id) {
6475 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6476 	case BPF_FUNC_lwt_seg6_store_bytes:
6477 		return &bpf_lwt_seg6_store_bytes_proto;
6478 	case BPF_FUNC_lwt_seg6_action:
6479 		return &bpf_lwt_seg6_action_proto;
6480 	case BPF_FUNC_lwt_seg6_adjust_srh:
6481 		return &bpf_lwt_seg6_adjust_srh_proto;
6482 #endif
6483 	default:
6484 		return lwt_out_func_proto(func_id, prog);
6485 	}
6486 }
6487 
6488 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6489 				    const struct bpf_prog *prog,
6490 				    struct bpf_insn_access_aux *info)
6491 {
6492 	const int size_default = sizeof(__u32);
6493 
6494 	if (off < 0 || off >= sizeof(struct __sk_buff))
6495 		return false;
6496 
6497 	/* The verifier guarantees that size > 0. */
6498 	if (off % size != 0)
6499 		return false;
6500 
6501 	switch (off) {
6502 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6503 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
6504 			return false;
6505 		break;
6506 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6507 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6508 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6509 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6510 	case bpf_ctx_range(struct __sk_buff, data):
6511 	case bpf_ctx_range(struct __sk_buff, data_meta):
6512 	case bpf_ctx_range(struct __sk_buff, data_end):
6513 		if (size != size_default)
6514 			return false;
6515 		break;
6516 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6517 		return false;
6518 	case bpf_ctx_range(struct __sk_buff, tstamp):
6519 		if (size != sizeof(__u64))
6520 			return false;
6521 		break;
6522 	case offsetof(struct __sk_buff, sk):
6523 		if (type == BPF_WRITE || size != sizeof(__u64))
6524 			return false;
6525 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6526 		break;
6527 	default:
6528 		/* Only narrow read access allowed for now. */
6529 		if (type == BPF_WRITE) {
6530 			if (size != size_default)
6531 				return false;
6532 		} else {
6533 			bpf_ctx_record_field_size(info, size_default);
6534 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6535 				return false;
6536 		}
6537 	}
6538 
6539 	return true;
6540 }
6541 
6542 static bool sk_filter_is_valid_access(int off, int size,
6543 				      enum bpf_access_type type,
6544 				      const struct bpf_prog *prog,
6545 				      struct bpf_insn_access_aux *info)
6546 {
6547 	switch (off) {
6548 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6549 	case bpf_ctx_range(struct __sk_buff, data):
6550 	case bpf_ctx_range(struct __sk_buff, data_meta):
6551 	case bpf_ctx_range(struct __sk_buff, data_end):
6552 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6553 	case bpf_ctx_range(struct __sk_buff, tstamp):
6554 	case bpf_ctx_range(struct __sk_buff, wire_len):
6555 		return false;
6556 	}
6557 
6558 	if (type == BPF_WRITE) {
6559 		switch (off) {
6560 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6561 			break;
6562 		default:
6563 			return false;
6564 		}
6565 	}
6566 
6567 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6568 }
6569 
6570 static bool cg_skb_is_valid_access(int off, int size,
6571 				   enum bpf_access_type type,
6572 				   const struct bpf_prog *prog,
6573 				   struct bpf_insn_access_aux *info)
6574 {
6575 	switch (off) {
6576 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6577 	case bpf_ctx_range(struct __sk_buff, data_meta):
6578 	case bpf_ctx_range(struct __sk_buff, wire_len):
6579 		return false;
6580 	case bpf_ctx_range(struct __sk_buff, data):
6581 	case bpf_ctx_range(struct __sk_buff, data_end):
6582 		if (!capable(CAP_SYS_ADMIN))
6583 			return false;
6584 		break;
6585 	}
6586 
6587 	if (type == BPF_WRITE) {
6588 		switch (off) {
6589 		case bpf_ctx_range(struct __sk_buff, mark):
6590 		case bpf_ctx_range(struct __sk_buff, priority):
6591 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6592 			break;
6593 		case bpf_ctx_range(struct __sk_buff, tstamp):
6594 			if (!capable(CAP_SYS_ADMIN))
6595 				return false;
6596 			break;
6597 		default:
6598 			return false;
6599 		}
6600 	}
6601 
6602 	switch (off) {
6603 	case bpf_ctx_range(struct __sk_buff, data):
6604 		info->reg_type = PTR_TO_PACKET;
6605 		break;
6606 	case bpf_ctx_range(struct __sk_buff, data_end):
6607 		info->reg_type = PTR_TO_PACKET_END;
6608 		break;
6609 	}
6610 
6611 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6612 }
6613 
6614 static bool lwt_is_valid_access(int off, int size,
6615 				enum bpf_access_type type,
6616 				const struct bpf_prog *prog,
6617 				struct bpf_insn_access_aux *info)
6618 {
6619 	switch (off) {
6620 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6621 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6622 	case bpf_ctx_range(struct __sk_buff, data_meta):
6623 	case bpf_ctx_range(struct __sk_buff, tstamp):
6624 	case bpf_ctx_range(struct __sk_buff, wire_len):
6625 		return false;
6626 	}
6627 
6628 	if (type == BPF_WRITE) {
6629 		switch (off) {
6630 		case bpf_ctx_range(struct __sk_buff, mark):
6631 		case bpf_ctx_range(struct __sk_buff, priority):
6632 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6633 			break;
6634 		default:
6635 			return false;
6636 		}
6637 	}
6638 
6639 	switch (off) {
6640 	case bpf_ctx_range(struct __sk_buff, data):
6641 		info->reg_type = PTR_TO_PACKET;
6642 		break;
6643 	case bpf_ctx_range(struct __sk_buff, data_end):
6644 		info->reg_type = PTR_TO_PACKET_END;
6645 		break;
6646 	}
6647 
6648 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6649 }
6650 
6651 /* Attach type specific accesses */
6652 static bool __sock_filter_check_attach_type(int off,
6653 					    enum bpf_access_type access_type,
6654 					    enum bpf_attach_type attach_type)
6655 {
6656 	switch (off) {
6657 	case offsetof(struct bpf_sock, bound_dev_if):
6658 	case offsetof(struct bpf_sock, mark):
6659 	case offsetof(struct bpf_sock, priority):
6660 		switch (attach_type) {
6661 		case BPF_CGROUP_INET_SOCK_CREATE:
6662 			goto full_access;
6663 		default:
6664 			return false;
6665 		}
6666 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6667 		switch (attach_type) {
6668 		case BPF_CGROUP_INET4_POST_BIND:
6669 			goto read_only;
6670 		default:
6671 			return false;
6672 		}
6673 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6674 		switch (attach_type) {
6675 		case BPF_CGROUP_INET6_POST_BIND:
6676 			goto read_only;
6677 		default:
6678 			return false;
6679 		}
6680 	case bpf_ctx_range(struct bpf_sock, src_port):
6681 		switch (attach_type) {
6682 		case BPF_CGROUP_INET4_POST_BIND:
6683 		case BPF_CGROUP_INET6_POST_BIND:
6684 			goto read_only;
6685 		default:
6686 			return false;
6687 		}
6688 	}
6689 read_only:
6690 	return access_type == BPF_READ;
6691 full_access:
6692 	return true;
6693 }
6694 
6695 bool bpf_sock_common_is_valid_access(int off, int size,
6696 				     enum bpf_access_type type,
6697 				     struct bpf_insn_access_aux *info)
6698 {
6699 	switch (off) {
6700 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
6701 		return false;
6702 	default:
6703 		return bpf_sock_is_valid_access(off, size, type, info);
6704 	}
6705 }
6706 
6707 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6708 			      struct bpf_insn_access_aux *info)
6709 {
6710 	const int size_default = sizeof(__u32);
6711 
6712 	if (off < 0 || off >= sizeof(struct bpf_sock))
6713 		return false;
6714 	if (off % size != 0)
6715 		return false;
6716 
6717 	switch (off) {
6718 	case offsetof(struct bpf_sock, state):
6719 	case offsetof(struct bpf_sock, family):
6720 	case offsetof(struct bpf_sock, type):
6721 	case offsetof(struct bpf_sock, protocol):
6722 	case offsetof(struct bpf_sock, dst_port):
6723 	case offsetof(struct bpf_sock, src_port):
6724 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6725 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6726 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
6727 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6728 		bpf_ctx_record_field_size(info, size_default);
6729 		return bpf_ctx_narrow_access_ok(off, size, size_default);
6730 	}
6731 
6732 	return size == size_default;
6733 }
6734 
6735 static bool sock_filter_is_valid_access(int off, int size,
6736 					enum bpf_access_type type,
6737 					const struct bpf_prog *prog,
6738 					struct bpf_insn_access_aux *info)
6739 {
6740 	if (!bpf_sock_is_valid_access(off, size, type, info))
6741 		return false;
6742 	return __sock_filter_check_attach_type(off, type,
6743 					       prog->expected_attach_type);
6744 }
6745 
6746 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6747 			     const struct bpf_prog *prog)
6748 {
6749 	/* Neither direct read nor direct write requires any preliminary
6750 	 * action.
6751 	 */
6752 	return 0;
6753 }
6754 
6755 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6756 				const struct bpf_prog *prog, int drop_verdict)
6757 {
6758 	struct bpf_insn *insn = insn_buf;
6759 
6760 	if (!direct_write)
6761 		return 0;
6762 
6763 	/* if (!skb->cloned)
6764 	 *       goto start;
6765 	 *
6766 	 * (Fast-path, otherwise approximation that we might be
6767 	 *  a clone, do the rest in helper.)
6768 	 */
6769 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6770 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6771 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6772 
6773 	/* ret = bpf_skb_pull_data(skb, 0); */
6774 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6775 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6776 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6777 			       BPF_FUNC_skb_pull_data);
6778 	/* if (!ret)
6779 	 *      goto restore;
6780 	 * return TC_ACT_SHOT;
6781 	 */
6782 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6783 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6784 	*insn++ = BPF_EXIT_INSN();
6785 
6786 	/* restore: */
6787 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6788 	/* start: */
6789 	*insn++ = prog->insnsi[0];
6790 
6791 	return insn - insn_buf;
6792 }
6793 
6794 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6795 			  struct bpf_insn *insn_buf)
6796 {
6797 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
6798 	struct bpf_insn *insn = insn_buf;
6799 
6800 	/* We're guaranteed here that CTX is in R6. */
6801 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6802 	if (!indirect) {
6803 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6804 	} else {
6805 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6806 		if (orig->imm)
6807 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6808 	}
6809 
6810 	switch (BPF_SIZE(orig->code)) {
6811 	case BPF_B:
6812 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6813 		break;
6814 	case BPF_H:
6815 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6816 		break;
6817 	case BPF_W:
6818 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6819 		break;
6820 	}
6821 
6822 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6823 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6824 	*insn++ = BPF_EXIT_INSN();
6825 
6826 	return insn - insn_buf;
6827 }
6828 
6829 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6830 			       const struct bpf_prog *prog)
6831 {
6832 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6833 }
6834 
6835 static bool tc_cls_act_is_valid_access(int off, int size,
6836 				       enum bpf_access_type type,
6837 				       const struct bpf_prog *prog,
6838 				       struct bpf_insn_access_aux *info)
6839 {
6840 	if (type == BPF_WRITE) {
6841 		switch (off) {
6842 		case bpf_ctx_range(struct __sk_buff, mark):
6843 		case bpf_ctx_range(struct __sk_buff, tc_index):
6844 		case bpf_ctx_range(struct __sk_buff, priority):
6845 		case bpf_ctx_range(struct __sk_buff, tc_classid):
6846 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6847 		case bpf_ctx_range(struct __sk_buff, tstamp):
6848 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
6849 			break;
6850 		default:
6851 			return false;
6852 		}
6853 	}
6854 
6855 	switch (off) {
6856 	case bpf_ctx_range(struct __sk_buff, data):
6857 		info->reg_type = PTR_TO_PACKET;
6858 		break;
6859 	case bpf_ctx_range(struct __sk_buff, data_meta):
6860 		info->reg_type = PTR_TO_PACKET_META;
6861 		break;
6862 	case bpf_ctx_range(struct __sk_buff, data_end):
6863 		info->reg_type = PTR_TO_PACKET_END;
6864 		break;
6865 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6866 		return false;
6867 	}
6868 
6869 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6870 }
6871 
6872 static bool __is_valid_xdp_access(int off, int size)
6873 {
6874 	if (off < 0 || off >= sizeof(struct xdp_md))
6875 		return false;
6876 	if (off % size != 0)
6877 		return false;
6878 	if (size != sizeof(__u32))
6879 		return false;
6880 
6881 	return true;
6882 }
6883 
6884 static bool xdp_is_valid_access(int off, int size,
6885 				enum bpf_access_type type,
6886 				const struct bpf_prog *prog,
6887 				struct bpf_insn_access_aux *info)
6888 {
6889 	if (type == BPF_WRITE) {
6890 		if (bpf_prog_is_dev_bound(prog->aux)) {
6891 			switch (off) {
6892 			case offsetof(struct xdp_md, rx_queue_index):
6893 				return __is_valid_xdp_access(off, size);
6894 			}
6895 		}
6896 		return false;
6897 	}
6898 
6899 	switch (off) {
6900 	case offsetof(struct xdp_md, data):
6901 		info->reg_type = PTR_TO_PACKET;
6902 		break;
6903 	case offsetof(struct xdp_md, data_meta):
6904 		info->reg_type = PTR_TO_PACKET_META;
6905 		break;
6906 	case offsetof(struct xdp_md, data_end):
6907 		info->reg_type = PTR_TO_PACKET_END;
6908 		break;
6909 	}
6910 
6911 	return __is_valid_xdp_access(off, size);
6912 }
6913 
6914 void bpf_warn_invalid_xdp_action(u32 act)
6915 {
6916 	const u32 act_max = XDP_REDIRECT;
6917 
6918 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6919 		  act > act_max ? "Illegal" : "Driver unsupported",
6920 		  act);
6921 }
6922 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6923 
6924 static bool sock_addr_is_valid_access(int off, int size,
6925 				      enum bpf_access_type type,
6926 				      const struct bpf_prog *prog,
6927 				      struct bpf_insn_access_aux *info)
6928 {
6929 	const int size_default = sizeof(__u32);
6930 
6931 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6932 		return false;
6933 	if (off % size != 0)
6934 		return false;
6935 
6936 	/* Disallow access to IPv6 fields from IPv4 contex and vise
6937 	 * versa.
6938 	 */
6939 	switch (off) {
6940 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6941 		switch (prog->expected_attach_type) {
6942 		case BPF_CGROUP_INET4_BIND:
6943 		case BPF_CGROUP_INET4_CONNECT:
6944 		case BPF_CGROUP_UDP4_SENDMSG:
6945 		case BPF_CGROUP_UDP4_RECVMSG:
6946 			break;
6947 		default:
6948 			return false;
6949 		}
6950 		break;
6951 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6952 		switch (prog->expected_attach_type) {
6953 		case BPF_CGROUP_INET6_BIND:
6954 		case BPF_CGROUP_INET6_CONNECT:
6955 		case BPF_CGROUP_UDP6_SENDMSG:
6956 		case BPF_CGROUP_UDP6_RECVMSG:
6957 			break;
6958 		default:
6959 			return false;
6960 		}
6961 		break;
6962 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6963 		switch (prog->expected_attach_type) {
6964 		case BPF_CGROUP_UDP4_SENDMSG:
6965 			break;
6966 		default:
6967 			return false;
6968 		}
6969 		break;
6970 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6971 				msg_src_ip6[3]):
6972 		switch (prog->expected_attach_type) {
6973 		case BPF_CGROUP_UDP6_SENDMSG:
6974 			break;
6975 		default:
6976 			return false;
6977 		}
6978 		break;
6979 	}
6980 
6981 	switch (off) {
6982 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6983 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6984 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6985 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6986 				msg_src_ip6[3]):
6987 		if (type == BPF_READ) {
6988 			bpf_ctx_record_field_size(info, size_default);
6989 
6990 			if (bpf_ctx_wide_access_ok(off, size,
6991 						   struct bpf_sock_addr,
6992 						   user_ip6))
6993 				return true;
6994 
6995 			if (bpf_ctx_wide_access_ok(off, size,
6996 						   struct bpf_sock_addr,
6997 						   msg_src_ip6))
6998 				return true;
6999 
7000 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
7001 				return false;
7002 		} else {
7003 			if (bpf_ctx_wide_access_ok(off, size,
7004 						   struct bpf_sock_addr,
7005 						   user_ip6))
7006 				return true;
7007 
7008 			if (bpf_ctx_wide_access_ok(off, size,
7009 						   struct bpf_sock_addr,
7010 						   msg_src_ip6))
7011 				return true;
7012 
7013 			if (size != size_default)
7014 				return false;
7015 		}
7016 		break;
7017 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
7018 		if (size != size_default)
7019 			return false;
7020 		break;
7021 	case offsetof(struct bpf_sock_addr, sk):
7022 		if (type != BPF_READ)
7023 			return false;
7024 		if (size != sizeof(__u64))
7025 			return false;
7026 		info->reg_type = PTR_TO_SOCKET;
7027 		break;
7028 	default:
7029 		if (type == BPF_READ) {
7030 			if (size != size_default)
7031 				return false;
7032 		} else {
7033 			return false;
7034 		}
7035 	}
7036 
7037 	return true;
7038 }
7039 
7040 static bool sock_ops_is_valid_access(int off, int size,
7041 				     enum bpf_access_type type,
7042 				     const struct bpf_prog *prog,
7043 				     struct bpf_insn_access_aux *info)
7044 {
7045 	const int size_default = sizeof(__u32);
7046 
7047 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
7048 		return false;
7049 
7050 	/* The verifier guarantees that size > 0. */
7051 	if (off % size != 0)
7052 		return false;
7053 
7054 	if (type == BPF_WRITE) {
7055 		switch (off) {
7056 		case offsetof(struct bpf_sock_ops, reply):
7057 		case offsetof(struct bpf_sock_ops, sk_txhash):
7058 			if (size != size_default)
7059 				return false;
7060 			break;
7061 		default:
7062 			return false;
7063 		}
7064 	} else {
7065 		switch (off) {
7066 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
7067 					bytes_acked):
7068 			if (size != sizeof(__u64))
7069 				return false;
7070 			break;
7071 		case offsetof(struct bpf_sock_ops, sk):
7072 			if (size != sizeof(__u64))
7073 				return false;
7074 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
7075 			break;
7076 		default:
7077 			if (size != size_default)
7078 				return false;
7079 			break;
7080 		}
7081 	}
7082 
7083 	return true;
7084 }
7085 
7086 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
7087 			   const struct bpf_prog *prog)
7088 {
7089 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
7090 }
7091 
7092 static bool sk_skb_is_valid_access(int off, int size,
7093 				   enum bpf_access_type type,
7094 				   const struct bpf_prog *prog,
7095 				   struct bpf_insn_access_aux *info)
7096 {
7097 	switch (off) {
7098 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7099 	case bpf_ctx_range(struct __sk_buff, data_meta):
7100 	case bpf_ctx_range(struct __sk_buff, tstamp):
7101 	case bpf_ctx_range(struct __sk_buff, wire_len):
7102 		return false;
7103 	}
7104 
7105 	if (type == BPF_WRITE) {
7106 		switch (off) {
7107 		case bpf_ctx_range(struct __sk_buff, tc_index):
7108 		case bpf_ctx_range(struct __sk_buff, priority):
7109 			break;
7110 		default:
7111 			return false;
7112 		}
7113 	}
7114 
7115 	switch (off) {
7116 	case bpf_ctx_range(struct __sk_buff, mark):
7117 		return false;
7118 	case bpf_ctx_range(struct __sk_buff, data):
7119 		info->reg_type = PTR_TO_PACKET;
7120 		break;
7121 	case bpf_ctx_range(struct __sk_buff, data_end):
7122 		info->reg_type = PTR_TO_PACKET_END;
7123 		break;
7124 	}
7125 
7126 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7127 }
7128 
7129 static bool sk_msg_is_valid_access(int off, int size,
7130 				   enum bpf_access_type type,
7131 				   const struct bpf_prog *prog,
7132 				   struct bpf_insn_access_aux *info)
7133 {
7134 	if (type == BPF_WRITE)
7135 		return false;
7136 
7137 	if (off % size != 0)
7138 		return false;
7139 
7140 	switch (off) {
7141 	case offsetof(struct sk_msg_md, data):
7142 		info->reg_type = PTR_TO_PACKET;
7143 		if (size != sizeof(__u64))
7144 			return false;
7145 		break;
7146 	case offsetof(struct sk_msg_md, data_end):
7147 		info->reg_type = PTR_TO_PACKET_END;
7148 		if (size != sizeof(__u64))
7149 			return false;
7150 		break;
7151 	case bpf_ctx_range(struct sk_msg_md, family):
7152 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7153 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
7154 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7155 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7156 	case bpf_ctx_range(struct sk_msg_md, remote_port):
7157 	case bpf_ctx_range(struct sk_msg_md, local_port):
7158 	case bpf_ctx_range(struct sk_msg_md, size):
7159 		if (size != sizeof(__u32))
7160 			return false;
7161 		break;
7162 	default:
7163 		return false;
7164 	}
7165 	return true;
7166 }
7167 
7168 static bool flow_dissector_is_valid_access(int off, int size,
7169 					   enum bpf_access_type type,
7170 					   const struct bpf_prog *prog,
7171 					   struct bpf_insn_access_aux *info)
7172 {
7173 	const int size_default = sizeof(__u32);
7174 
7175 	if (off < 0 || off >= sizeof(struct __sk_buff))
7176 		return false;
7177 
7178 	if (type == BPF_WRITE)
7179 		return false;
7180 
7181 	switch (off) {
7182 	case bpf_ctx_range(struct __sk_buff, data):
7183 		if (size != size_default)
7184 			return false;
7185 		info->reg_type = PTR_TO_PACKET;
7186 		return true;
7187 	case bpf_ctx_range(struct __sk_buff, data_end):
7188 		if (size != size_default)
7189 			return false;
7190 		info->reg_type = PTR_TO_PACKET_END;
7191 		return true;
7192 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7193 		if (size != sizeof(__u64))
7194 			return false;
7195 		info->reg_type = PTR_TO_FLOW_KEYS;
7196 		return true;
7197 	default:
7198 		return false;
7199 	}
7200 }
7201 
7202 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7203 					     const struct bpf_insn *si,
7204 					     struct bpf_insn *insn_buf,
7205 					     struct bpf_prog *prog,
7206 					     u32 *target_size)
7207 
7208 {
7209 	struct bpf_insn *insn = insn_buf;
7210 
7211 	switch (si->off) {
7212 	case offsetof(struct __sk_buff, data):
7213 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7214 				      si->dst_reg, si->src_reg,
7215 				      offsetof(struct bpf_flow_dissector, data));
7216 		break;
7217 
7218 	case offsetof(struct __sk_buff, data_end):
7219 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7220 				      si->dst_reg, si->src_reg,
7221 				      offsetof(struct bpf_flow_dissector, data_end));
7222 		break;
7223 
7224 	case offsetof(struct __sk_buff, flow_keys):
7225 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7226 				      si->dst_reg, si->src_reg,
7227 				      offsetof(struct bpf_flow_dissector, flow_keys));
7228 		break;
7229 	}
7230 
7231 	return insn - insn_buf;
7232 }
7233 
7234 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7235 				  const struct bpf_insn *si,
7236 				  struct bpf_insn *insn_buf,
7237 				  struct bpf_prog *prog, u32 *target_size)
7238 {
7239 	struct bpf_insn *insn = insn_buf;
7240 	int off;
7241 
7242 	switch (si->off) {
7243 	case offsetof(struct __sk_buff, len):
7244 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7245 				      bpf_target_off(struct sk_buff, len, 4,
7246 						     target_size));
7247 		break;
7248 
7249 	case offsetof(struct __sk_buff, protocol):
7250 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7251 				      bpf_target_off(struct sk_buff, protocol, 2,
7252 						     target_size));
7253 		break;
7254 
7255 	case offsetof(struct __sk_buff, vlan_proto):
7256 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7257 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
7258 						     target_size));
7259 		break;
7260 
7261 	case offsetof(struct __sk_buff, priority):
7262 		if (type == BPF_WRITE)
7263 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7264 					      bpf_target_off(struct sk_buff, priority, 4,
7265 							     target_size));
7266 		else
7267 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7268 					      bpf_target_off(struct sk_buff, priority, 4,
7269 							     target_size));
7270 		break;
7271 
7272 	case offsetof(struct __sk_buff, ingress_ifindex):
7273 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7274 				      bpf_target_off(struct sk_buff, skb_iif, 4,
7275 						     target_size));
7276 		break;
7277 
7278 	case offsetof(struct __sk_buff, ifindex):
7279 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7280 				      si->dst_reg, si->src_reg,
7281 				      offsetof(struct sk_buff, dev));
7282 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7283 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7284 				      bpf_target_off(struct net_device, ifindex, 4,
7285 						     target_size));
7286 		break;
7287 
7288 	case offsetof(struct __sk_buff, hash):
7289 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7290 				      bpf_target_off(struct sk_buff, hash, 4,
7291 						     target_size));
7292 		break;
7293 
7294 	case offsetof(struct __sk_buff, mark):
7295 		if (type == BPF_WRITE)
7296 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7297 					      bpf_target_off(struct sk_buff, mark, 4,
7298 							     target_size));
7299 		else
7300 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7301 					      bpf_target_off(struct sk_buff, mark, 4,
7302 							     target_size));
7303 		break;
7304 
7305 	case offsetof(struct __sk_buff, pkt_type):
7306 		*target_size = 1;
7307 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7308 				      PKT_TYPE_OFFSET());
7309 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7310 #ifdef __BIG_ENDIAN_BITFIELD
7311 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7312 #endif
7313 		break;
7314 
7315 	case offsetof(struct __sk_buff, queue_mapping):
7316 		if (type == BPF_WRITE) {
7317 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7318 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7319 					      bpf_target_off(struct sk_buff,
7320 							     queue_mapping,
7321 							     2, target_size));
7322 		} else {
7323 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7324 					      bpf_target_off(struct sk_buff,
7325 							     queue_mapping,
7326 							     2, target_size));
7327 		}
7328 		break;
7329 
7330 	case offsetof(struct __sk_buff, vlan_present):
7331 		*target_size = 1;
7332 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7333 				      PKT_VLAN_PRESENT_OFFSET());
7334 		if (PKT_VLAN_PRESENT_BIT)
7335 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7336 		if (PKT_VLAN_PRESENT_BIT < 7)
7337 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7338 		break;
7339 
7340 	case offsetof(struct __sk_buff, vlan_tci):
7341 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7342 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
7343 						     target_size));
7344 		break;
7345 
7346 	case offsetof(struct __sk_buff, cb[0]) ...
7347 	     offsetofend(struct __sk_buff, cb[4]) - 1:
7348 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
7349 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7350 			      offsetof(struct qdisc_skb_cb, data)) %
7351 			     sizeof(__u64));
7352 
7353 		prog->cb_access = 1;
7354 		off  = si->off;
7355 		off -= offsetof(struct __sk_buff, cb[0]);
7356 		off += offsetof(struct sk_buff, cb);
7357 		off += offsetof(struct qdisc_skb_cb, data);
7358 		if (type == BPF_WRITE)
7359 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7360 					      si->src_reg, off);
7361 		else
7362 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7363 					      si->src_reg, off);
7364 		break;
7365 
7366 	case offsetof(struct __sk_buff, tc_classid):
7367 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
7368 
7369 		off  = si->off;
7370 		off -= offsetof(struct __sk_buff, tc_classid);
7371 		off += offsetof(struct sk_buff, cb);
7372 		off += offsetof(struct qdisc_skb_cb, tc_classid);
7373 		*target_size = 2;
7374 		if (type == BPF_WRITE)
7375 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7376 					      si->src_reg, off);
7377 		else
7378 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7379 					      si->src_reg, off);
7380 		break;
7381 
7382 	case offsetof(struct __sk_buff, data):
7383 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7384 				      si->dst_reg, si->src_reg,
7385 				      offsetof(struct sk_buff, data));
7386 		break;
7387 
7388 	case offsetof(struct __sk_buff, data_meta):
7389 		off  = si->off;
7390 		off -= offsetof(struct __sk_buff, data_meta);
7391 		off += offsetof(struct sk_buff, cb);
7392 		off += offsetof(struct bpf_skb_data_end, data_meta);
7393 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7394 				      si->src_reg, off);
7395 		break;
7396 
7397 	case offsetof(struct __sk_buff, data_end):
7398 		off  = si->off;
7399 		off -= offsetof(struct __sk_buff, data_end);
7400 		off += offsetof(struct sk_buff, cb);
7401 		off += offsetof(struct bpf_skb_data_end, data_end);
7402 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7403 				      si->src_reg, off);
7404 		break;
7405 
7406 	case offsetof(struct __sk_buff, tc_index):
7407 #ifdef CONFIG_NET_SCHED
7408 		if (type == BPF_WRITE)
7409 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7410 					      bpf_target_off(struct sk_buff, tc_index, 2,
7411 							     target_size));
7412 		else
7413 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7414 					      bpf_target_off(struct sk_buff, tc_index, 2,
7415 							     target_size));
7416 #else
7417 		*target_size = 2;
7418 		if (type == BPF_WRITE)
7419 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7420 		else
7421 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7422 #endif
7423 		break;
7424 
7425 	case offsetof(struct __sk_buff, napi_id):
7426 #if defined(CONFIG_NET_RX_BUSY_POLL)
7427 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7428 				      bpf_target_off(struct sk_buff, napi_id, 4,
7429 						     target_size));
7430 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7431 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7432 #else
7433 		*target_size = 4;
7434 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7435 #endif
7436 		break;
7437 	case offsetof(struct __sk_buff, family):
7438 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7439 
7440 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7441 				      si->dst_reg, si->src_reg,
7442 				      offsetof(struct sk_buff, sk));
7443 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7444 				      bpf_target_off(struct sock_common,
7445 						     skc_family,
7446 						     2, target_size));
7447 		break;
7448 	case offsetof(struct __sk_buff, remote_ip4):
7449 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
7450 
7451 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7452 				      si->dst_reg, si->src_reg,
7453 				      offsetof(struct sk_buff, sk));
7454 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7455 				      bpf_target_off(struct sock_common,
7456 						     skc_daddr,
7457 						     4, target_size));
7458 		break;
7459 	case offsetof(struct __sk_buff, local_ip4):
7460 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7461 					  skc_rcv_saddr) != 4);
7462 
7463 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7464 				      si->dst_reg, si->src_reg,
7465 				      offsetof(struct sk_buff, sk));
7466 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7467 				      bpf_target_off(struct sock_common,
7468 						     skc_rcv_saddr,
7469 						     4, target_size));
7470 		break;
7471 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
7472 	     offsetof(struct __sk_buff, remote_ip6[3]):
7473 #if IS_ENABLED(CONFIG_IPV6)
7474 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7475 					  skc_v6_daddr.s6_addr32[0]) != 4);
7476 
7477 		off = si->off;
7478 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
7479 
7480 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7481 				      si->dst_reg, si->src_reg,
7482 				      offsetof(struct sk_buff, sk));
7483 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7484 				      offsetof(struct sock_common,
7485 					       skc_v6_daddr.s6_addr32[0]) +
7486 				      off);
7487 #else
7488 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7489 #endif
7490 		break;
7491 	case offsetof(struct __sk_buff, local_ip6[0]) ...
7492 	     offsetof(struct __sk_buff, local_ip6[3]):
7493 #if IS_ENABLED(CONFIG_IPV6)
7494 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7495 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7496 
7497 		off = si->off;
7498 		off -= offsetof(struct __sk_buff, local_ip6[0]);
7499 
7500 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7501 				      si->dst_reg, si->src_reg,
7502 				      offsetof(struct sk_buff, sk));
7503 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7504 				      offsetof(struct sock_common,
7505 					       skc_v6_rcv_saddr.s6_addr32[0]) +
7506 				      off);
7507 #else
7508 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7509 #endif
7510 		break;
7511 
7512 	case offsetof(struct __sk_buff, remote_port):
7513 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
7514 
7515 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7516 				      si->dst_reg, si->src_reg,
7517 				      offsetof(struct sk_buff, sk));
7518 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7519 				      bpf_target_off(struct sock_common,
7520 						     skc_dport,
7521 						     2, target_size));
7522 #ifndef __BIG_ENDIAN_BITFIELD
7523 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7524 #endif
7525 		break;
7526 
7527 	case offsetof(struct __sk_buff, local_port):
7528 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
7529 
7530 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7531 				      si->dst_reg, si->src_reg,
7532 				      offsetof(struct sk_buff, sk));
7533 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7534 				      bpf_target_off(struct sock_common,
7535 						     skc_num, 2, target_size));
7536 		break;
7537 
7538 	case offsetof(struct __sk_buff, tstamp):
7539 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
7540 
7541 		if (type == BPF_WRITE)
7542 			*insn++ = BPF_STX_MEM(BPF_DW,
7543 					      si->dst_reg, si->src_reg,
7544 					      bpf_target_off(struct sk_buff,
7545 							     tstamp, 8,
7546 							     target_size));
7547 		else
7548 			*insn++ = BPF_LDX_MEM(BPF_DW,
7549 					      si->dst_reg, si->src_reg,
7550 					      bpf_target_off(struct sk_buff,
7551 							     tstamp, 8,
7552 							     target_size));
7553 		break;
7554 
7555 	case offsetof(struct __sk_buff, gso_segs):
7556 		/* si->dst_reg = skb_shinfo(SKB); */
7557 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7558 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7559 				      BPF_REG_AX, si->src_reg,
7560 				      offsetof(struct sk_buff, end));
7561 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7562 				      si->dst_reg, si->src_reg,
7563 				      offsetof(struct sk_buff, head));
7564 		*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7565 #else
7566 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7567 				      si->dst_reg, si->src_reg,
7568 				      offsetof(struct sk_buff, end));
7569 #endif
7570 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7571 				      si->dst_reg, si->dst_reg,
7572 				      bpf_target_off(struct skb_shared_info,
7573 						     gso_segs, 2,
7574 						     target_size));
7575 		break;
7576 	case offsetof(struct __sk_buff, wire_len):
7577 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
7578 
7579 		off = si->off;
7580 		off -= offsetof(struct __sk_buff, wire_len);
7581 		off += offsetof(struct sk_buff, cb);
7582 		off += offsetof(struct qdisc_skb_cb, pkt_len);
7583 		*target_size = 4;
7584 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7585 		break;
7586 
7587 	case offsetof(struct __sk_buff, sk):
7588 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7589 				      si->dst_reg, si->src_reg,
7590 				      offsetof(struct sk_buff, sk));
7591 		break;
7592 	}
7593 
7594 	return insn - insn_buf;
7595 }
7596 
7597 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7598 				const struct bpf_insn *si,
7599 				struct bpf_insn *insn_buf,
7600 				struct bpf_prog *prog, u32 *target_size)
7601 {
7602 	struct bpf_insn *insn = insn_buf;
7603 	int off;
7604 
7605 	switch (si->off) {
7606 	case offsetof(struct bpf_sock, bound_dev_if):
7607 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
7608 
7609 		if (type == BPF_WRITE)
7610 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7611 					offsetof(struct sock, sk_bound_dev_if));
7612 		else
7613 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7614 				      offsetof(struct sock, sk_bound_dev_if));
7615 		break;
7616 
7617 	case offsetof(struct bpf_sock, mark):
7618 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
7619 
7620 		if (type == BPF_WRITE)
7621 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7622 					offsetof(struct sock, sk_mark));
7623 		else
7624 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7625 				      offsetof(struct sock, sk_mark));
7626 		break;
7627 
7628 	case offsetof(struct bpf_sock, priority):
7629 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
7630 
7631 		if (type == BPF_WRITE)
7632 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7633 					offsetof(struct sock, sk_priority));
7634 		else
7635 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7636 				      offsetof(struct sock, sk_priority));
7637 		break;
7638 
7639 	case offsetof(struct bpf_sock, family):
7640 		*insn++ = BPF_LDX_MEM(
7641 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7642 			si->dst_reg, si->src_reg,
7643 			bpf_target_off(struct sock_common,
7644 				       skc_family,
7645 				       sizeof_field(struct sock_common,
7646 						    skc_family),
7647 				       target_size));
7648 		break;
7649 
7650 	case offsetof(struct bpf_sock, type):
7651 		BUILD_BUG_ON(HWEIGHT32(SK_FL_TYPE_MASK) != BITS_PER_BYTE * 2);
7652 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7653 				      offsetof(struct sock, __sk_flags_offset));
7654 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7655 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7656 		*target_size = 2;
7657 		break;
7658 
7659 	case offsetof(struct bpf_sock, protocol):
7660 		BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7661 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7662 				      offsetof(struct sock, __sk_flags_offset));
7663 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7664 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
7665 		*target_size = 1;
7666 		break;
7667 
7668 	case offsetof(struct bpf_sock, src_ip4):
7669 		*insn++ = BPF_LDX_MEM(
7670 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7671 			bpf_target_off(struct sock_common, skc_rcv_saddr,
7672 				       sizeof_field(struct sock_common,
7673 						    skc_rcv_saddr),
7674 				       target_size));
7675 		break;
7676 
7677 	case offsetof(struct bpf_sock, dst_ip4):
7678 		*insn++ = BPF_LDX_MEM(
7679 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7680 			bpf_target_off(struct sock_common, skc_daddr,
7681 				       sizeof_field(struct sock_common,
7682 						    skc_daddr),
7683 				       target_size));
7684 		break;
7685 
7686 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7687 #if IS_ENABLED(CONFIG_IPV6)
7688 		off = si->off;
7689 		off -= offsetof(struct bpf_sock, src_ip6[0]);
7690 		*insn++ = BPF_LDX_MEM(
7691 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7692 			bpf_target_off(
7693 				struct sock_common,
7694 				skc_v6_rcv_saddr.s6_addr32[0],
7695 				sizeof_field(struct sock_common,
7696 					     skc_v6_rcv_saddr.s6_addr32[0]),
7697 				target_size) + off);
7698 #else
7699 		(void)off;
7700 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7701 #endif
7702 		break;
7703 
7704 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7705 #if IS_ENABLED(CONFIG_IPV6)
7706 		off = si->off;
7707 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
7708 		*insn++ = BPF_LDX_MEM(
7709 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7710 			bpf_target_off(struct sock_common,
7711 				       skc_v6_daddr.s6_addr32[0],
7712 				       sizeof_field(struct sock_common,
7713 						    skc_v6_daddr.s6_addr32[0]),
7714 				       target_size) + off);
7715 #else
7716 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7717 		*target_size = 4;
7718 #endif
7719 		break;
7720 
7721 	case offsetof(struct bpf_sock, src_port):
7722 		*insn++ = BPF_LDX_MEM(
7723 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7724 			si->dst_reg, si->src_reg,
7725 			bpf_target_off(struct sock_common, skc_num,
7726 				       sizeof_field(struct sock_common,
7727 						    skc_num),
7728 				       target_size));
7729 		break;
7730 
7731 	case offsetof(struct bpf_sock, dst_port):
7732 		*insn++ = BPF_LDX_MEM(
7733 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7734 			si->dst_reg, si->src_reg,
7735 			bpf_target_off(struct sock_common, skc_dport,
7736 				       sizeof_field(struct sock_common,
7737 						    skc_dport),
7738 				       target_size));
7739 		break;
7740 
7741 	case offsetof(struct bpf_sock, state):
7742 		*insn++ = BPF_LDX_MEM(
7743 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7744 			si->dst_reg, si->src_reg,
7745 			bpf_target_off(struct sock_common, skc_state,
7746 				       sizeof_field(struct sock_common,
7747 						    skc_state),
7748 				       target_size));
7749 		break;
7750 	}
7751 
7752 	return insn - insn_buf;
7753 }
7754 
7755 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7756 					 const struct bpf_insn *si,
7757 					 struct bpf_insn *insn_buf,
7758 					 struct bpf_prog *prog, u32 *target_size)
7759 {
7760 	struct bpf_insn *insn = insn_buf;
7761 
7762 	switch (si->off) {
7763 	case offsetof(struct __sk_buff, ifindex):
7764 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7765 				      si->dst_reg, si->src_reg,
7766 				      offsetof(struct sk_buff, dev));
7767 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7768 				      bpf_target_off(struct net_device, ifindex, 4,
7769 						     target_size));
7770 		break;
7771 	default:
7772 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
7773 					      target_size);
7774 	}
7775 
7776 	return insn - insn_buf;
7777 }
7778 
7779 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
7780 				  const struct bpf_insn *si,
7781 				  struct bpf_insn *insn_buf,
7782 				  struct bpf_prog *prog, u32 *target_size)
7783 {
7784 	struct bpf_insn *insn = insn_buf;
7785 
7786 	switch (si->off) {
7787 	case offsetof(struct xdp_md, data):
7788 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
7789 				      si->dst_reg, si->src_reg,
7790 				      offsetof(struct xdp_buff, data));
7791 		break;
7792 	case offsetof(struct xdp_md, data_meta):
7793 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
7794 				      si->dst_reg, si->src_reg,
7795 				      offsetof(struct xdp_buff, data_meta));
7796 		break;
7797 	case offsetof(struct xdp_md, data_end):
7798 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
7799 				      si->dst_reg, si->src_reg,
7800 				      offsetof(struct xdp_buff, data_end));
7801 		break;
7802 	case offsetof(struct xdp_md, ingress_ifindex):
7803 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7804 				      si->dst_reg, si->src_reg,
7805 				      offsetof(struct xdp_buff, rxq));
7806 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
7807 				      si->dst_reg, si->dst_reg,
7808 				      offsetof(struct xdp_rxq_info, dev));
7809 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7810 				      offsetof(struct net_device, ifindex));
7811 		break;
7812 	case offsetof(struct xdp_md, rx_queue_index):
7813 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7814 				      si->dst_reg, si->src_reg,
7815 				      offsetof(struct xdp_buff, rxq));
7816 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7817 				      offsetof(struct xdp_rxq_info,
7818 					       queue_index));
7819 		break;
7820 	}
7821 
7822 	return insn - insn_buf;
7823 }
7824 
7825 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
7826  * context Structure, F is Field in context structure that contains a pointer
7827  * to Nested Structure of type NS that has the field NF.
7828  *
7829  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
7830  * sure that SIZE is not greater than actual size of S.F.NF.
7831  *
7832  * If offset OFF is provided, the load happens from that offset relative to
7833  * offset of NF.
7834  */
7835 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
7836 	do {								       \
7837 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
7838 				      si->src_reg, offsetof(S, F));	       \
7839 		*insn++ = BPF_LDX_MEM(					       \
7840 			SIZE, si->dst_reg, si->dst_reg,			       \
7841 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
7842 				       target_size)			       \
7843 				+ OFF);					       \
7844 	} while (0)
7845 
7846 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
7847 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
7848 					     BPF_FIELD_SIZEOF(NS, NF), 0)
7849 
7850 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
7851  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
7852  *
7853  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
7854  * "register" since two registers available in convert_ctx_access are not
7855  * enough: we can't override neither SRC, since it contains value to store, nor
7856  * DST since it contains pointer to context that may be used by later
7857  * instructions. But we need a temporary place to save pointer to nested
7858  * structure whose field we want to store to.
7859  */
7860 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
7861 	do {								       \
7862 		int tmp_reg = BPF_REG_9;				       \
7863 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
7864 			--tmp_reg;					       \
7865 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
7866 			--tmp_reg;					       \
7867 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
7868 				      offsetof(S, TF));			       \
7869 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
7870 				      si->dst_reg, offsetof(S, F));	       \
7871 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
7872 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
7873 				       target_size)			       \
7874 				+ OFF);					       \
7875 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
7876 				      offsetof(S, TF));			       \
7877 	} while (0)
7878 
7879 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
7880 						      TF)		       \
7881 	do {								       \
7882 		if (type == BPF_WRITE) {				       \
7883 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
7884 							 OFF, TF);	       \
7885 		} else {						       \
7886 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
7887 				S, NS, F, NF, SIZE, OFF);  \
7888 		}							       \
7889 	} while (0)
7890 
7891 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
7892 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
7893 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
7894 
7895 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
7896 					const struct bpf_insn *si,
7897 					struct bpf_insn *insn_buf,
7898 					struct bpf_prog *prog, u32 *target_size)
7899 {
7900 	struct bpf_insn *insn = insn_buf;
7901 	int off;
7902 
7903 	switch (si->off) {
7904 	case offsetof(struct bpf_sock_addr, user_family):
7905 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7906 					    struct sockaddr, uaddr, sa_family);
7907 		break;
7908 
7909 	case offsetof(struct bpf_sock_addr, user_ip4):
7910 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7911 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
7912 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
7913 		break;
7914 
7915 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7916 		off = si->off;
7917 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
7918 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7919 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
7920 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
7921 			tmp_reg);
7922 		break;
7923 
7924 	case offsetof(struct bpf_sock_addr, user_port):
7925 		/* To get port we need to know sa_family first and then treat
7926 		 * sockaddr as either sockaddr_in or sockaddr_in6.
7927 		 * Though we can simplify since port field has same offset and
7928 		 * size in both structures.
7929 		 * Here we check this invariant and use just one of the
7930 		 * structures if it's true.
7931 		 */
7932 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7933 			     offsetof(struct sockaddr_in6, sin6_port));
7934 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
7935 			     sizeof_field(struct sockaddr_in6, sin6_port));
7936 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
7937 						     struct sockaddr_in6, uaddr,
7938 						     sin6_port, tmp_reg);
7939 		break;
7940 
7941 	case offsetof(struct bpf_sock_addr, family):
7942 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7943 					    struct sock, sk, sk_family);
7944 		break;
7945 
7946 	case offsetof(struct bpf_sock_addr, type):
7947 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7948 			struct bpf_sock_addr_kern, struct sock, sk,
7949 			__sk_flags_offset, BPF_W, 0);
7950 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7951 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7952 		break;
7953 
7954 	case offsetof(struct bpf_sock_addr, protocol):
7955 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7956 			struct bpf_sock_addr_kern, struct sock, sk,
7957 			__sk_flags_offset, BPF_W, 0);
7958 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7959 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7960 					SK_FL_PROTO_SHIFT);
7961 		break;
7962 
7963 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
7964 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
7965 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7966 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
7967 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
7968 		break;
7969 
7970 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7971 				msg_src_ip6[3]):
7972 		off = si->off;
7973 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
7974 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
7975 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7976 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
7977 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
7978 		break;
7979 	case offsetof(struct bpf_sock_addr, sk):
7980 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
7981 				      si->dst_reg, si->src_reg,
7982 				      offsetof(struct bpf_sock_addr_kern, sk));
7983 		break;
7984 	}
7985 
7986 	return insn - insn_buf;
7987 }
7988 
7989 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
7990 				       const struct bpf_insn *si,
7991 				       struct bpf_insn *insn_buf,
7992 				       struct bpf_prog *prog,
7993 				       u32 *target_size)
7994 {
7995 	struct bpf_insn *insn = insn_buf;
7996 	int off;
7997 
7998 /* Helper macro for adding read access to tcp_sock or sock fields. */
7999 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
8000 	do {								      \
8001 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
8002 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8003 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8004 						struct bpf_sock_ops_kern,     \
8005 						is_fullsock),		      \
8006 				      si->dst_reg, si->src_reg,		      \
8007 				      offsetof(struct bpf_sock_ops_kern,      \
8008 					       is_fullsock));		      \
8009 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
8010 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8011 						struct bpf_sock_ops_kern, sk),\
8012 				      si->dst_reg, si->src_reg,		      \
8013 				      offsetof(struct bpf_sock_ops_kern, sk));\
8014 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
8015 						       OBJ_FIELD),	      \
8016 				      si->dst_reg, si->dst_reg,		      \
8017 				      offsetof(OBJ, OBJ_FIELD));	      \
8018 	} while (0)
8019 
8020 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
8021 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
8022 
8023 /* Helper macro for adding write access to tcp_sock or sock fields.
8024  * The macro is called with two registers, dst_reg which contains a pointer
8025  * to ctx (context) and src_reg which contains the value that should be
8026  * stored. However, we need an additional register since we cannot overwrite
8027  * dst_reg because it may be used later in the program.
8028  * Instead we "borrow" one of the other register. We first save its value
8029  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
8030  * it at the end of the macro.
8031  */
8032 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
8033 	do {								      \
8034 		int reg = BPF_REG_9;					      \
8035 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
8036 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
8037 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8038 			reg--;						      \
8039 		if (si->dst_reg == reg || si->src_reg == reg)		      \
8040 			reg--;						      \
8041 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
8042 				      offsetof(struct bpf_sock_ops_kern,      \
8043 					       temp));			      \
8044 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8045 						struct bpf_sock_ops_kern,     \
8046 						is_fullsock),		      \
8047 				      reg, si->dst_reg,			      \
8048 				      offsetof(struct bpf_sock_ops_kern,      \
8049 					       is_fullsock));		      \
8050 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
8051 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
8052 						struct bpf_sock_ops_kern, sk),\
8053 				      reg, si->dst_reg,			      \
8054 				      offsetof(struct bpf_sock_ops_kern, sk));\
8055 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
8056 				      reg, si->src_reg,			      \
8057 				      offsetof(OBJ, OBJ_FIELD));	      \
8058 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
8059 				      offsetof(struct bpf_sock_ops_kern,      \
8060 					       temp));			      \
8061 	} while (0)
8062 
8063 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
8064 	do {								      \
8065 		if (TYPE == BPF_WRITE)					      \
8066 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
8067 		else							      \
8068 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
8069 	} while (0)
8070 
8071 	if (insn > insn_buf)
8072 		return insn - insn_buf;
8073 
8074 	switch (si->off) {
8075 	case offsetof(struct bpf_sock_ops, op) ...
8076 	     offsetof(struct bpf_sock_ops, replylong[3]):
8077 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, op) !=
8078 			     sizeof_field(struct bpf_sock_ops_kern, op));
8079 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
8080 			     sizeof_field(struct bpf_sock_ops_kern, reply));
8081 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
8082 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
8083 		off = si->off;
8084 		off -= offsetof(struct bpf_sock_ops, op);
8085 		off += offsetof(struct bpf_sock_ops_kern, op);
8086 		if (type == BPF_WRITE)
8087 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
8088 					      off);
8089 		else
8090 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
8091 					      off);
8092 		break;
8093 
8094 	case offsetof(struct bpf_sock_ops, family):
8095 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8096 
8097 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8098 					      struct bpf_sock_ops_kern, sk),
8099 				      si->dst_reg, si->src_reg,
8100 				      offsetof(struct bpf_sock_ops_kern, sk));
8101 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8102 				      offsetof(struct sock_common, skc_family));
8103 		break;
8104 
8105 	case offsetof(struct bpf_sock_ops, remote_ip4):
8106 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8107 
8108 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8109 						struct bpf_sock_ops_kern, sk),
8110 				      si->dst_reg, si->src_reg,
8111 				      offsetof(struct bpf_sock_ops_kern, sk));
8112 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8113 				      offsetof(struct sock_common, skc_daddr));
8114 		break;
8115 
8116 	case offsetof(struct bpf_sock_ops, local_ip4):
8117 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8118 					  skc_rcv_saddr) != 4);
8119 
8120 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8121 					      struct bpf_sock_ops_kern, sk),
8122 				      si->dst_reg, si->src_reg,
8123 				      offsetof(struct bpf_sock_ops_kern, sk));
8124 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8125 				      offsetof(struct sock_common,
8126 					       skc_rcv_saddr));
8127 		break;
8128 
8129 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8130 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
8131 #if IS_ENABLED(CONFIG_IPV6)
8132 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8133 					  skc_v6_daddr.s6_addr32[0]) != 4);
8134 
8135 		off = si->off;
8136 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8137 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8138 						struct bpf_sock_ops_kern, sk),
8139 				      si->dst_reg, si->src_reg,
8140 				      offsetof(struct bpf_sock_ops_kern, sk));
8141 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8142 				      offsetof(struct sock_common,
8143 					       skc_v6_daddr.s6_addr32[0]) +
8144 				      off);
8145 #else
8146 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8147 #endif
8148 		break;
8149 
8150 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8151 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
8152 #if IS_ENABLED(CONFIG_IPV6)
8153 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8154 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8155 
8156 		off = si->off;
8157 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8158 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8159 						struct bpf_sock_ops_kern, sk),
8160 				      si->dst_reg, si->src_reg,
8161 				      offsetof(struct bpf_sock_ops_kern, sk));
8162 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8163 				      offsetof(struct sock_common,
8164 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8165 				      off);
8166 #else
8167 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8168 #endif
8169 		break;
8170 
8171 	case offsetof(struct bpf_sock_ops, remote_port):
8172 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8173 
8174 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8175 						struct bpf_sock_ops_kern, sk),
8176 				      si->dst_reg, si->src_reg,
8177 				      offsetof(struct bpf_sock_ops_kern, sk));
8178 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8179 				      offsetof(struct sock_common, skc_dport));
8180 #ifndef __BIG_ENDIAN_BITFIELD
8181 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8182 #endif
8183 		break;
8184 
8185 	case offsetof(struct bpf_sock_ops, local_port):
8186 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8187 
8188 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8189 						struct bpf_sock_ops_kern, sk),
8190 				      si->dst_reg, si->src_reg,
8191 				      offsetof(struct bpf_sock_ops_kern, sk));
8192 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8193 				      offsetof(struct sock_common, skc_num));
8194 		break;
8195 
8196 	case offsetof(struct bpf_sock_ops, is_fullsock):
8197 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8198 						struct bpf_sock_ops_kern,
8199 						is_fullsock),
8200 				      si->dst_reg, si->src_reg,
8201 				      offsetof(struct bpf_sock_ops_kern,
8202 					       is_fullsock));
8203 		break;
8204 
8205 	case offsetof(struct bpf_sock_ops, state):
8206 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
8207 
8208 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8209 						struct bpf_sock_ops_kern, sk),
8210 				      si->dst_reg, si->src_reg,
8211 				      offsetof(struct bpf_sock_ops_kern, sk));
8212 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8213 				      offsetof(struct sock_common, skc_state));
8214 		break;
8215 
8216 	case offsetof(struct bpf_sock_ops, rtt_min):
8217 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
8218 			     sizeof(struct minmax));
8219 		BUILD_BUG_ON(sizeof(struct minmax) <
8220 			     sizeof(struct minmax_sample));
8221 
8222 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8223 						struct bpf_sock_ops_kern, sk),
8224 				      si->dst_reg, si->src_reg,
8225 				      offsetof(struct bpf_sock_ops_kern, sk));
8226 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8227 				      offsetof(struct tcp_sock, rtt_min) +
8228 				      sizeof_field(struct minmax_sample, t));
8229 		break;
8230 
8231 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8232 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8233 				   struct tcp_sock);
8234 		break;
8235 
8236 	case offsetof(struct bpf_sock_ops, sk_txhash):
8237 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8238 					  struct sock, type);
8239 		break;
8240 	case offsetof(struct bpf_sock_ops, snd_cwnd):
8241 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8242 		break;
8243 	case offsetof(struct bpf_sock_ops, srtt_us):
8244 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8245 		break;
8246 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
8247 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8248 		break;
8249 	case offsetof(struct bpf_sock_ops, rcv_nxt):
8250 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8251 		break;
8252 	case offsetof(struct bpf_sock_ops, snd_nxt):
8253 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8254 		break;
8255 	case offsetof(struct bpf_sock_ops, snd_una):
8256 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8257 		break;
8258 	case offsetof(struct bpf_sock_ops, mss_cache):
8259 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8260 		break;
8261 	case offsetof(struct bpf_sock_ops, ecn_flags):
8262 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8263 		break;
8264 	case offsetof(struct bpf_sock_ops, rate_delivered):
8265 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8266 		break;
8267 	case offsetof(struct bpf_sock_ops, rate_interval_us):
8268 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8269 		break;
8270 	case offsetof(struct bpf_sock_ops, packets_out):
8271 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8272 		break;
8273 	case offsetof(struct bpf_sock_ops, retrans_out):
8274 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8275 		break;
8276 	case offsetof(struct bpf_sock_ops, total_retrans):
8277 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8278 		break;
8279 	case offsetof(struct bpf_sock_ops, segs_in):
8280 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8281 		break;
8282 	case offsetof(struct bpf_sock_ops, data_segs_in):
8283 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8284 		break;
8285 	case offsetof(struct bpf_sock_ops, segs_out):
8286 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8287 		break;
8288 	case offsetof(struct bpf_sock_ops, data_segs_out):
8289 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8290 		break;
8291 	case offsetof(struct bpf_sock_ops, lost_out):
8292 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8293 		break;
8294 	case offsetof(struct bpf_sock_ops, sacked_out):
8295 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8296 		break;
8297 	case offsetof(struct bpf_sock_ops, bytes_received):
8298 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8299 		break;
8300 	case offsetof(struct bpf_sock_ops, bytes_acked):
8301 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8302 		break;
8303 	case offsetof(struct bpf_sock_ops, sk):
8304 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8305 						struct bpf_sock_ops_kern,
8306 						is_fullsock),
8307 				      si->dst_reg, si->src_reg,
8308 				      offsetof(struct bpf_sock_ops_kern,
8309 					       is_fullsock));
8310 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8311 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8312 						struct bpf_sock_ops_kern, sk),
8313 				      si->dst_reg, si->src_reg,
8314 				      offsetof(struct bpf_sock_ops_kern, sk));
8315 		break;
8316 	}
8317 	return insn - insn_buf;
8318 }
8319 
8320 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8321 				     const struct bpf_insn *si,
8322 				     struct bpf_insn *insn_buf,
8323 				     struct bpf_prog *prog, u32 *target_size)
8324 {
8325 	struct bpf_insn *insn = insn_buf;
8326 	int off;
8327 
8328 	switch (si->off) {
8329 	case offsetof(struct __sk_buff, data_end):
8330 		off  = si->off;
8331 		off -= offsetof(struct __sk_buff, data_end);
8332 		off += offsetof(struct sk_buff, cb);
8333 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
8334 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8335 				      si->src_reg, off);
8336 		break;
8337 	default:
8338 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8339 					      target_size);
8340 	}
8341 
8342 	return insn - insn_buf;
8343 }
8344 
8345 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8346 				     const struct bpf_insn *si,
8347 				     struct bpf_insn *insn_buf,
8348 				     struct bpf_prog *prog, u32 *target_size)
8349 {
8350 	struct bpf_insn *insn = insn_buf;
8351 #if IS_ENABLED(CONFIG_IPV6)
8352 	int off;
8353 #endif
8354 
8355 	/* convert ctx uses the fact sg element is first in struct */
8356 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8357 
8358 	switch (si->off) {
8359 	case offsetof(struct sk_msg_md, data):
8360 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8361 				      si->dst_reg, si->src_reg,
8362 				      offsetof(struct sk_msg, data));
8363 		break;
8364 	case offsetof(struct sk_msg_md, data_end):
8365 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8366 				      si->dst_reg, si->src_reg,
8367 				      offsetof(struct sk_msg, data_end));
8368 		break;
8369 	case offsetof(struct sk_msg_md, family):
8370 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8371 
8372 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8373 					      struct sk_msg, sk),
8374 				      si->dst_reg, si->src_reg,
8375 				      offsetof(struct sk_msg, sk));
8376 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8377 				      offsetof(struct sock_common, skc_family));
8378 		break;
8379 
8380 	case offsetof(struct sk_msg_md, remote_ip4):
8381 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8382 
8383 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8384 						struct sk_msg, sk),
8385 				      si->dst_reg, si->src_reg,
8386 				      offsetof(struct sk_msg, sk));
8387 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8388 				      offsetof(struct sock_common, skc_daddr));
8389 		break;
8390 
8391 	case offsetof(struct sk_msg_md, local_ip4):
8392 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8393 					  skc_rcv_saddr) != 4);
8394 
8395 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8396 					      struct sk_msg, sk),
8397 				      si->dst_reg, si->src_reg,
8398 				      offsetof(struct sk_msg, sk));
8399 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8400 				      offsetof(struct sock_common,
8401 					       skc_rcv_saddr));
8402 		break;
8403 
8404 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8405 	     offsetof(struct sk_msg_md, remote_ip6[3]):
8406 #if IS_ENABLED(CONFIG_IPV6)
8407 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8408 					  skc_v6_daddr.s6_addr32[0]) != 4);
8409 
8410 		off = si->off;
8411 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8412 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8413 						struct sk_msg, sk),
8414 				      si->dst_reg, si->src_reg,
8415 				      offsetof(struct sk_msg, sk));
8416 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8417 				      offsetof(struct sock_common,
8418 					       skc_v6_daddr.s6_addr32[0]) +
8419 				      off);
8420 #else
8421 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8422 #endif
8423 		break;
8424 
8425 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
8426 	     offsetof(struct sk_msg_md, local_ip6[3]):
8427 #if IS_ENABLED(CONFIG_IPV6)
8428 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8429 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8430 
8431 		off = si->off;
8432 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
8433 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8434 						struct sk_msg, sk),
8435 				      si->dst_reg, si->src_reg,
8436 				      offsetof(struct sk_msg, sk));
8437 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8438 				      offsetof(struct sock_common,
8439 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8440 				      off);
8441 #else
8442 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8443 #endif
8444 		break;
8445 
8446 	case offsetof(struct sk_msg_md, remote_port):
8447 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8448 
8449 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8450 						struct sk_msg, sk),
8451 				      si->dst_reg, si->src_reg,
8452 				      offsetof(struct sk_msg, sk));
8453 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8454 				      offsetof(struct sock_common, skc_dport));
8455 #ifndef __BIG_ENDIAN_BITFIELD
8456 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8457 #endif
8458 		break;
8459 
8460 	case offsetof(struct sk_msg_md, local_port):
8461 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8462 
8463 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8464 						struct sk_msg, sk),
8465 				      si->dst_reg, si->src_reg,
8466 				      offsetof(struct sk_msg, sk));
8467 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8468 				      offsetof(struct sock_common, skc_num));
8469 		break;
8470 
8471 	case offsetof(struct sk_msg_md, size):
8472 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8473 				      si->dst_reg, si->src_reg,
8474 				      offsetof(struct sk_msg_sg, size));
8475 		break;
8476 	}
8477 
8478 	return insn - insn_buf;
8479 }
8480 
8481 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8482 	.get_func_proto		= sk_filter_func_proto,
8483 	.is_valid_access	= sk_filter_is_valid_access,
8484 	.convert_ctx_access	= bpf_convert_ctx_access,
8485 	.gen_ld_abs		= bpf_gen_ld_abs,
8486 };
8487 
8488 const struct bpf_prog_ops sk_filter_prog_ops = {
8489 	.test_run		= bpf_prog_test_run_skb,
8490 };
8491 
8492 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8493 	.get_func_proto		= tc_cls_act_func_proto,
8494 	.is_valid_access	= tc_cls_act_is_valid_access,
8495 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
8496 	.gen_prologue		= tc_cls_act_prologue,
8497 	.gen_ld_abs		= bpf_gen_ld_abs,
8498 };
8499 
8500 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8501 	.test_run		= bpf_prog_test_run_skb,
8502 };
8503 
8504 const struct bpf_verifier_ops xdp_verifier_ops = {
8505 	.get_func_proto		= xdp_func_proto,
8506 	.is_valid_access	= xdp_is_valid_access,
8507 	.convert_ctx_access	= xdp_convert_ctx_access,
8508 	.gen_prologue		= bpf_noop_prologue,
8509 };
8510 
8511 const struct bpf_prog_ops xdp_prog_ops = {
8512 	.test_run		= bpf_prog_test_run_xdp,
8513 };
8514 
8515 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8516 	.get_func_proto		= cg_skb_func_proto,
8517 	.is_valid_access	= cg_skb_is_valid_access,
8518 	.convert_ctx_access	= bpf_convert_ctx_access,
8519 };
8520 
8521 const struct bpf_prog_ops cg_skb_prog_ops = {
8522 	.test_run		= bpf_prog_test_run_skb,
8523 };
8524 
8525 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8526 	.get_func_proto		= lwt_in_func_proto,
8527 	.is_valid_access	= lwt_is_valid_access,
8528 	.convert_ctx_access	= bpf_convert_ctx_access,
8529 };
8530 
8531 const struct bpf_prog_ops lwt_in_prog_ops = {
8532 	.test_run		= bpf_prog_test_run_skb,
8533 };
8534 
8535 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8536 	.get_func_proto		= lwt_out_func_proto,
8537 	.is_valid_access	= lwt_is_valid_access,
8538 	.convert_ctx_access	= bpf_convert_ctx_access,
8539 };
8540 
8541 const struct bpf_prog_ops lwt_out_prog_ops = {
8542 	.test_run		= bpf_prog_test_run_skb,
8543 };
8544 
8545 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8546 	.get_func_proto		= lwt_xmit_func_proto,
8547 	.is_valid_access	= lwt_is_valid_access,
8548 	.convert_ctx_access	= bpf_convert_ctx_access,
8549 	.gen_prologue		= tc_cls_act_prologue,
8550 };
8551 
8552 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8553 	.test_run		= bpf_prog_test_run_skb,
8554 };
8555 
8556 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8557 	.get_func_proto		= lwt_seg6local_func_proto,
8558 	.is_valid_access	= lwt_is_valid_access,
8559 	.convert_ctx_access	= bpf_convert_ctx_access,
8560 };
8561 
8562 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8563 	.test_run		= bpf_prog_test_run_skb,
8564 };
8565 
8566 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8567 	.get_func_proto		= sock_filter_func_proto,
8568 	.is_valid_access	= sock_filter_is_valid_access,
8569 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
8570 };
8571 
8572 const struct bpf_prog_ops cg_sock_prog_ops = {
8573 };
8574 
8575 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8576 	.get_func_proto		= sock_addr_func_proto,
8577 	.is_valid_access	= sock_addr_is_valid_access,
8578 	.convert_ctx_access	= sock_addr_convert_ctx_access,
8579 };
8580 
8581 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8582 };
8583 
8584 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8585 	.get_func_proto		= sock_ops_func_proto,
8586 	.is_valid_access	= sock_ops_is_valid_access,
8587 	.convert_ctx_access	= sock_ops_convert_ctx_access,
8588 };
8589 
8590 const struct bpf_prog_ops sock_ops_prog_ops = {
8591 };
8592 
8593 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8594 	.get_func_proto		= sk_skb_func_proto,
8595 	.is_valid_access	= sk_skb_is_valid_access,
8596 	.convert_ctx_access	= sk_skb_convert_ctx_access,
8597 	.gen_prologue		= sk_skb_prologue,
8598 };
8599 
8600 const struct bpf_prog_ops sk_skb_prog_ops = {
8601 };
8602 
8603 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8604 	.get_func_proto		= sk_msg_func_proto,
8605 	.is_valid_access	= sk_msg_is_valid_access,
8606 	.convert_ctx_access	= sk_msg_convert_ctx_access,
8607 	.gen_prologue		= bpf_noop_prologue,
8608 };
8609 
8610 const struct bpf_prog_ops sk_msg_prog_ops = {
8611 };
8612 
8613 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8614 	.get_func_proto		= flow_dissector_func_proto,
8615 	.is_valid_access	= flow_dissector_is_valid_access,
8616 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
8617 };
8618 
8619 const struct bpf_prog_ops flow_dissector_prog_ops = {
8620 	.test_run		= bpf_prog_test_run_flow_dissector,
8621 };
8622 
8623 int sk_detach_filter(struct sock *sk)
8624 {
8625 	int ret = -ENOENT;
8626 	struct sk_filter *filter;
8627 
8628 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
8629 		return -EPERM;
8630 
8631 	filter = rcu_dereference_protected(sk->sk_filter,
8632 					   lockdep_sock_is_held(sk));
8633 	if (filter) {
8634 		RCU_INIT_POINTER(sk->sk_filter, NULL);
8635 		sk_filter_uncharge(sk, filter);
8636 		ret = 0;
8637 	}
8638 
8639 	return ret;
8640 }
8641 EXPORT_SYMBOL_GPL(sk_detach_filter);
8642 
8643 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8644 		  unsigned int len)
8645 {
8646 	struct sock_fprog_kern *fprog;
8647 	struct sk_filter *filter;
8648 	int ret = 0;
8649 
8650 	lock_sock(sk);
8651 	filter = rcu_dereference_protected(sk->sk_filter,
8652 					   lockdep_sock_is_held(sk));
8653 	if (!filter)
8654 		goto out;
8655 
8656 	/* We're copying the filter that has been originally attached,
8657 	 * so no conversion/decode needed anymore. eBPF programs that
8658 	 * have no original program cannot be dumped through this.
8659 	 */
8660 	ret = -EACCES;
8661 	fprog = filter->prog->orig_prog;
8662 	if (!fprog)
8663 		goto out;
8664 
8665 	ret = fprog->len;
8666 	if (!len)
8667 		/* User space only enquires number of filter blocks. */
8668 		goto out;
8669 
8670 	ret = -EINVAL;
8671 	if (len < fprog->len)
8672 		goto out;
8673 
8674 	ret = -EFAULT;
8675 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8676 		goto out;
8677 
8678 	/* Instead of bytes, the API requests to return the number
8679 	 * of filter blocks.
8680 	 */
8681 	ret = fprog->len;
8682 out:
8683 	release_sock(sk);
8684 	return ret;
8685 }
8686 
8687 #ifdef CONFIG_INET
8688 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8689 				    struct sock_reuseport *reuse,
8690 				    struct sock *sk, struct sk_buff *skb,
8691 				    u32 hash)
8692 {
8693 	reuse_kern->skb = skb;
8694 	reuse_kern->sk = sk;
8695 	reuse_kern->selected_sk = NULL;
8696 	reuse_kern->data_end = skb->data + skb_headlen(skb);
8697 	reuse_kern->hash = hash;
8698 	reuse_kern->reuseport_id = reuse->reuseport_id;
8699 	reuse_kern->bind_inany = reuse->bind_inany;
8700 }
8701 
8702 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8703 				  struct bpf_prog *prog, struct sk_buff *skb,
8704 				  u32 hash)
8705 {
8706 	struct sk_reuseport_kern reuse_kern;
8707 	enum sk_action action;
8708 
8709 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8710 	action = BPF_PROG_RUN(prog, &reuse_kern);
8711 
8712 	if (action == SK_PASS)
8713 		return reuse_kern.selected_sk;
8714 	else
8715 		return ERR_PTR(-ECONNREFUSED);
8716 }
8717 
8718 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8719 	   struct bpf_map *, map, void *, key, u32, flags)
8720 {
8721 	struct sock_reuseport *reuse;
8722 	struct sock *selected_sk;
8723 
8724 	selected_sk = map->ops->map_lookup_elem(map, key);
8725 	if (!selected_sk)
8726 		return -ENOENT;
8727 
8728 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8729 	if (!reuse)
8730 		/* selected_sk is unhashed (e.g. by close()) after the
8731 		 * above map_lookup_elem().  Treat selected_sk has already
8732 		 * been removed from the map.
8733 		 */
8734 		return -ENOENT;
8735 
8736 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8737 		struct sock *sk;
8738 
8739 		if (unlikely(!reuse_kern->reuseport_id))
8740 			/* There is a small race between adding the
8741 			 * sk to the map and setting the
8742 			 * reuse_kern->reuseport_id.
8743 			 * Treat it as the sk has not been added to
8744 			 * the bpf map yet.
8745 			 */
8746 			return -ENOENT;
8747 
8748 		sk = reuse_kern->sk;
8749 		if (sk->sk_protocol != selected_sk->sk_protocol)
8750 			return -EPROTOTYPE;
8751 		else if (sk->sk_family != selected_sk->sk_family)
8752 			return -EAFNOSUPPORT;
8753 
8754 		/* Catch all. Likely bound to a different sockaddr. */
8755 		return -EBADFD;
8756 	}
8757 
8758 	reuse_kern->selected_sk = selected_sk;
8759 
8760 	return 0;
8761 }
8762 
8763 static const struct bpf_func_proto sk_select_reuseport_proto = {
8764 	.func           = sk_select_reuseport,
8765 	.gpl_only       = false,
8766 	.ret_type       = RET_INTEGER,
8767 	.arg1_type	= ARG_PTR_TO_CTX,
8768 	.arg2_type      = ARG_CONST_MAP_PTR,
8769 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
8770 	.arg4_type	= ARG_ANYTHING,
8771 };
8772 
8773 BPF_CALL_4(sk_reuseport_load_bytes,
8774 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8775 	   void *, to, u32, len)
8776 {
8777 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
8778 }
8779 
8780 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
8781 	.func		= sk_reuseport_load_bytes,
8782 	.gpl_only	= false,
8783 	.ret_type	= RET_INTEGER,
8784 	.arg1_type	= ARG_PTR_TO_CTX,
8785 	.arg2_type	= ARG_ANYTHING,
8786 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
8787 	.arg4_type	= ARG_CONST_SIZE,
8788 };
8789 
8790 BPF_CALL_5(sk_reuseport_load_bytes_relative,
8791 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8792 	   void *, to, u32, len, u32, start_header)
8793 {
8794 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
8795 					       len, start_header);
8796 }
8797 
8798 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
8799 	.func		= sk_reuseport_load_bytes_relative,
8800 	.gpl_only	= false,
8801 	.ret_type	= RET_INTEGER,
8802 	.arg1_type	= ARG_PTR_TO_CTX,
8803 	.arg2_type	= ARG_ANYTHING,
8804 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
8805 	.arg4_type	= ARG_CONST_SIZE,
8806 	.arg5_type	= ARG_ANYTHING,
8807 };
8808 
8809 static const struct bpf_func_proto *
8810 sk_reuseport_func_proto(enum bpf_func_id func_id,
8811 			const struct bpf_prog *prog)
8812 {
8813 	switch (func_id) {
8814 	case BPF_FUNC_sk_select_reuseport:
8815 		return &sk_select_reuseport_proto;
8816 	case BPF_FUNC_skb_load_bytes:
8817 		return &sk_reuseport_load_bytes_proto;
8818 	case BPF_FUNC_skb_load_bytes_relative:
8819 		return &sk_reuseport_load_bytes_relative_proto;
8820 	default:
8821 		return bpf_base_func_proto(func_id);
8822 	}
8823 }
8824 
8825 static bool
8826 sk_reuseport_is_valid_access(int off, int size,
8827 			     enum bpf_access_type type,
8828 			     const struct bpf_prog *prog,
8829 			     struct bpf_insn_access_aux *info)
8830 {
8831 	const u32 size_default = sizeof(__u32);
8832 
8833 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
8834 	    off % size || type != BPF_READ)
8835 		return false;
8836 
8837 	switch (off) {
8838 	case offsetof(struct sk_reuseport_md, data):
8839 		info->reg_type = PTR_TO_PACKET;
8840 		return size == sizeof(__u64);
8841 
8842 	case offsetof(struct sk_reuseport_md, data_end):
8843 		info->reg_type = PTR_TO_PACKET_END;
8844 		return size == sizeof(__u64);
8845 
8846 	case offsetof(struct sk_reuseport_md, hash):
8847 		return size == size_default;
8848 
8849 	/* Fields that allow narrowing */
8850 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
8851 		if (size < sizeof_field(struct sk_buff, protocol))
8852 			return false;
8853 		/* fall through */
8854 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
8855 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
8856 	case bpf_ctx_range(struct sk_reuseport_md, len):
8857 		bpf_ctx_record_field_size(info, size_default);
8858 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8859 
8860 	default:
8861 		return false;
8862 	}
8863 }
8864 
8865 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
8866 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8867 			      si->dst_reg, si->src_reg,			\
8868 			      bpf_target_off(struct sk_reuseport_kern, F, \
8869 					     sizeof_field(struct sk_reuseport_kern, F), \
8870 					     target_size));		\
8871 	})
8872 
8873 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
8874 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
8875 				    struct sk_buff,			\
8876 				    skb,				\
8877 				    SKB_FIELD)
8878 
8879 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
8880 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,	\
8881 					     struct sock,		\
8882 					     sk,			\
8883 					     SK_FIELD, BPF_SIZE, EXTRA_OFF)
8884 
8885 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
8886 					   const struct bpf_insn *si,
8887 					   struct bpf_insn *insn_buf,
8888 					   struct bpf_prog *prog,
8889 					   u32 *target_size)
8890 {
8891 	struct bpf_insn *insn = insn_buf;
8892 
8893 	switch (si->off) {
8894 	case offsetof(struct sk_reuseport_md, data):
8895 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
8896 		break;
8897 
8898 	case offsetof(struct sk_reuseport_md, len):
8899 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
8900 		break;
8901 
8902 	case offsetof(struct sk_reuseport_md, eth_protocol):
8903 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
8904 		break;
8905 
8906 	case offsetof(struct sk_reuseport_md, ip_protocol):
8907 		BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
8908 		SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
8909 						    BPF_W, 0);
8910 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
8911 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
8912 					SK_FL_PROTO_SHIFT);
8913 		/* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
8914 		 * aware.  No further narrowing or masking is needed.
8915 		 */
8916 		*target_size = 1;
8917 		break;
8918 
8919 	case offsetof(struct sk_reuseport_md, data_end):
8920 		SK_REUSEPORT_LOAD_FIELD(data_end);
8921 		break;
8922 
8923 	case offsetof(struct sk_reuseport_md, hash):
8924 		SK_REUSEPORT_LOAD_FIELD(hash);
8925 		break;
8926 
8927 	case offsetof(struct sk_reuseport_md, bind_inany):
8928 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
8929 		break;
8930 	}
8931 
8932 	return insn - insn_buf;
8933 }
8934 
8935 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8936 	.get_func_proto		= sk_reuseport_func_proto,
8937 	.is_valid_access	= sk_reuseport_is_valid_access,
8938 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
8939 };
8940 
8941 const struct bpf_prog_ops sk_reuseport_prog_ops = {
8942 };
8943 #endif /* CONFIG_INET */
8944