xref: /linux/net/core/filter.c (revision db10cb9b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 
85 static const struct bpf_func_proto *
86 bpf_sk_base_func_proto(enum bpf_func_id func_id);
87 
88 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
89 {
90 	if (in_compat_syscall()) {
91 		struct compat_sock_fprog f32;
92 
93 		if (len != sizeof(f32))
94 			return -EINVAL;
95 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
96 			return -EFAULT;
97 		memset(dst, 0, sizeof(*dst));
98 		dst->len = f32.len;
99 		dst->filter = compat_ptr(f32.filter);
100 	} else {
101 		if (len != sizeof(*dst))
102 			return -EINVAL;
103 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
104 			return -EFAULT;
105 	}
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
110 
111 /**
112  *	sk_filter_trim_cap - run a packet through a socket filter
113  *	@sk: sock associated with &sk_buff
114  *	@skb: buffer to filter
115  *	@cap: limit on how short the eBPF program may trim the packet
116  *
117  * Run the eBPF program and then cut skb->data to correct size returned by
118  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
119  * than pkt_len we keep whole skb->data. This is the socket level
120  * wrapper to bpf_prog_run. It returns 0 if the packet should
121  * be accepted or -EPERM if the packet should be tossed.
122  *
123  */
124 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
125 {
126 	int err;
127 	struct sk_filter *filter;
128 
129 	/*
130 	 * If the skb was allocated from pfmemalloc reserves, only
131 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
132 	 * helping free memory
133 	 */
134 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
135 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
136 		return -ENOMEM;
137 	}
138 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
139 	if (err)
140 		return err;
141 
142 	err = security_sock_rcv_skb(sk, skb);
143 	if (err)
144 		return err;
145 
146 	rcu_read_lock();
147 	filter = rcu_dereference(sk->sk_filter);
148 	if (filter) {
149 		struct sock *save_sk = skb->sk;
150 		unsigned int pkt_len;
151 
152 		skb->sk = sk;
153 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
154 		skb->sk = save_sk;
155 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
156 	}
157 	rcu_read_unlock();
158 
159 	return err;
160 }
161 EXPORT_SYMBOL(sk_filter_trim_cap);
162 
163 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
164 {
165 	return skb_get_poff(skb);
166 }
167 
168 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
169 {
170 	struct nlattr *nla;
171 
172 	if (skb_is_nonlinear(skb))
173 		return 0;
174 
175 	if (skb->len < sizeof(struct nlattr))
176 		return 0;
177 
178 	if (a > skb->len - sizeof(struct nlattr))
179 		return 0;
180 
181 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
182 	if (nla)
183 		return (void *) nla - (void *) skb->data;
184 
185 	return 0;
186 }
187 
188 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
189 {
190 	struct nlattr *nla;
191 
192 	if (skb_is_nonlinear(skb))
193 		return 0;
194 
195 	if (skb->len < sizeof(struct nlattr))
196 		return 0;
197 
198 	if (a > skb->len - sizeof(struct nlattr))
199 		return 0;
200 
201 	nla = (struct nlattr *) &skb->data[a];
202 	if (nla->nla_len > skb->len - a)
203 		return 0;
204 
205 	nla = nla_find_nested(nla, x);
206 	if (nla)
207 		return (void *) nla - (void *) skb->data;
208 
209 	return 0;
210 }
211 
212 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
213 	   data, int, headlen, int, offset)
214 {
215 	u8 tmp, *ptr;
216 	const int len = sizeof(tmp);
217 
218 	if (offset >= 0) {
219 		if (headlen - offset >= len)
220 			return *(u8 *)(data + offset);
221 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
222 			return tmp;
223 	} else {
224 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
225 		if (likely(ptr))
226 			return *(u8 *)ptr;
227 	}
228 
229 	return -EFAULT;
230 }
231 
232 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
233 	   int, offset)
234 {
235 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
236 					 offset);
237 }
238 
239 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
240 	   data, int, headlen, int, offset)
241 {
242 	__be16 tmp, *ptr;
243 	const int len = sizeof(tmp);
244 
245 	if (offset >= 0) {
246 		if (headlen - offset >= len)
247 			return get_unaligned_be16(data + offset);
248 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
249 			return be16_to_cpu(tmp);
250 	} else {
251 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
252 		if (likely(ptr))
253 			return get_unaligned_be16(ptr);
254 	}
255 
256 	return -EFAULT;
257 }
258 
259 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
260 	   int, offset)
261 {
262 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
263 					  offset);
264 }
265 
266 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
267 	   data, int, headlen, int, offset)
268 {
269 	__be32 tmp, *ptr;
270 	const int len = sizeof(tmp);
271 
272 	if (likely(offset >= 0)) {
273 		if (headlen - offset >= len)
274 			return get_unaligned_be32(data + offset);
275 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
276 			return be32_to_cpu(tmp);
277 	} else {
278 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
279 		if (likely(ptr))
280 			return get_unaligned_be32(ptr);
281 	}
282 
283 	return -EFAULT;
284 }
285 
286 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
287 	   int, offset)
288 {
289 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
290 					  offset);
291 }
292 
293 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
294 			      struct bpf_insn *insn_buf)
295 {
296 	struct bpf_insn *insn = insn_buf;
297 
298 	switch (skb_field) {
299 	case SKF_AD_MARK:
300 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
301 
302 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
303 				      offsetof(struct sk_buff, mark));
304 		break;
305 
306 	case SKF_AD_PKTTYPE:
307 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
308 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
309 #ifdef __BIG_ENDIAN_BITFIELD
310 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
311 #endif
312 		break;
313 
314 	case SKF_AD_QUEUE:
315 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
316 
317 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
318 				      offsetof(struct sk_buff, queue_mapping));
319 		break;
320 
321 	case SKF_AD_VLAN_TAG:
322 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
323 
324 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
325 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
326 				      offsetof(struct sk_buff, vlan_tci));
327 		break;
328 	case SKF_AD_VLAN_TAG_PRESENT:
329 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
330 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
331 				      offsetof(struct sk_buff, vlan_all));
332 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
333 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
334 		break;
335 	}
336 
337 	return insn - insn_buf;
338 }
339 
340 static bool convert_bpf_extensions(struct sock_filter *fp,
341 				   struct bpf_insn **insnp)
342 {
343 	struct bpf_insn *insn = *insnp;
344 	u32 cnt;
345 
346 	switch (fp->k) {
347 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
348 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
349 
350 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
351 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
352 				      offsetof(struct sk_buff, protocol));
353 		/* A = ntohs(A) [emitting a nop or swap16] */
354 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
355 		break;
356 
357 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
358 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
359 		insn += cnt - 1;
360 		break;
361 
362 	case SKF_AD_OFF + SKF_AD_IFINDEX:
363 	case SKF_AD_OFF + SKF_AD_HATYPE:
364 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
365 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
366 
367 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
368 				      BPF_REG_TMP, BPF_REG_CTX,
369 				      offsetof(struct sk_buff, dev));
370 		/* if (tmp != 0) goto pc + 1 */
371 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
372 		*insn++ = BPF_EXIT_INSN();
373 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
374 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
375 					    offsetof(struct net_device, ifindex));
376 		else
377 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
378 					    offsetof(struct net_device, type));
379 		break;
380 
381 	case SKF_AD_OFF + SKF_AD_MARK:
382 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
383 		insn += cnt - 1;
384 		break;
385 
386 	case SKF_AD_OFF + SKF_AD_RXHASH:
387 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
388 
389 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
390 				    offsetof(struct sk_buff, hash));
391 		break;
392 
393 	case SKF_AD_OFF + SKF_AD_QUEUE:
394 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
395 		insn += cnt - 1;
396 		break;
397 
398 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
399 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
400 					 BPF_REG_A, BPF_REG_CTX, insn);
401 		insn += cnt - 1;
402 		break;
403 
404 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
405 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
406 					 BPF_REG_A, BPF_REG_CTX, insn);
407 		insn += cnt - 1;
408 		break;
409 
410 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
411 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
412 
413 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
414 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
415 				      offsetof(struct sk_buff, vlan_proto));
416 		/* A = ntohs(A) [emitting a nop or swap16] */
417 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
418 		break;
419 
420 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
421 	case SKF_AD_OFF + SKF_AD_NLATTR:
422 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
423 	case SKF_AD_OFF + SKF_AD_CPU:
424 	case SKF_AD_OFF + SKF_AD_RANDOM:
425 		/* arg1 = CTX */
426 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
427 		/* arg2 = A */
428 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
429 		/* arg3 = X */
430 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
431 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
432 		switch (fp->k) {
433 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
434 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
435 			break;
436 		case SKF_AD_OFF + SKF_AD_NLATTR:
437 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
438 			break;
439 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
440 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
441 			break;
442 		case SKF_AD_OFF + SKF_AD_CPU:
443 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
444 			break;
445 		case SKF_AD_OFF + SKF_AD_RANDOM:
446 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
447 			bpf_user_rnd_init_once();
448 			break;
449 		}
450 		break;
451 
452 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
453 		/* A ^= X */
454 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
455 		break;
456 
457 	default:
458 		/* This is just a dummy call to avoid letting the compiler
459 		 * evict __bpf_call_base() as an optimization. Placed here
460 		 * where no-one bothers.
461 		 */
462 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
463 		return false;
464 	}
465 
466 	*insnp = insn;
467 	return true;
468 }
469 
470 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
471 {
472 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
473 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
474 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
475 		      BPF_SIZE(fp->code) == BPF_W;
476 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
477 	const int ip_align = NET_IP_ALIGN;
478 	struct bpf_insn *insn = *insnp;
479 	int offset = fp->k;
480 
481 	if (!indirect &&
482 	    ((unaligned_ok && offset >= 0) ||
483 	     (!unaligned_ok && offset >= 0 &&
484 	      offset + ip_align >= 0 &&
485 	      offset + ip_align % size == 0))) {
486 		bool ldx_off_ok = offset <= S16_MAX;
487 
488 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
489 		if (offset)
490 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
491 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
492 				      size, 2 + endian + (!ldx_off_ok * 2));
493 		if (ldx_off_ok) {
494 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
495 					      BPF_REG_D, offset);
496 		} else {
497 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
498 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
499 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500 					      BPF_REG_TMP, 0);
501 		}
502 		if (endian)
503 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
504 		*insn++ = BPF_JMP_A(8);
505 	}
506 
507 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
508 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
509 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
510 	if (!indirect) {
511 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
512 	} else {
513 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
514 		if (fp->k)
515 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
516 	}
517 
518 	switch (BPF_SIZE(fp->code)) {
519 	case BPF_B:
520 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
521 		break;
522 	case BPF_H:
523 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
524 		break;
525 	case BPF_W:
526 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
527 		break;
528 	default:
529 		return false;
530 	}
531 
532 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
533 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
534 	*insn   = BPF_EXIT_INSN();
535 
536 	*insnp = insn;
537 	return true;
538 }
539 
540 /**
541  *	bpf_convert_filter - convert filter program
542  *	@prog: the user passed filter program
543  *	@len: the length of the user passed filter program
544  *	@new_prog: allocated 'struct bpf_prog' or NULL
545  *	@new_len: pointer to store length of converted program
546  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
547  *
548  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
549  * style extended BPF (eBPF).
550  * Conversion workflow:
551  *
552  * 1) First pass for calculating the new program length:
553  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
554  *
555  * 2) 2nd pass to remap in two passes: 1st pass finds new
556  *    jump offsets, 2nd pass remapping:
557  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
558  */
559 static int bpf_convert_filter(struct sock_filter *prog, int len,
560 			      struct bpf_prog *new_prog, int *new_len,
561 			      bool *seen_ld_abs)
562 {
563 	int new_flen = 0, pass = 0, target, i, stack_off;
564 	struct bpf_insn *new_insn, *first_insn = NULL;
565 	struct sock_filter *fp;
566 	int *addrs = NULL;
567 	u8 bpf_src;
568 
569 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
570 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
571 
572 	if (len <= 0 || len > BPF_MAXINSNS)
573 		return -EINVAL;
574 
575 	if (new_prog) {
576 		first_insn = new_prog->insnsi;
577 		addrs = kcalloc(len, sizeof(*addrs),
578 				GFP_KERNEL | __GFP_NOWARN);
579 		if (!addrs)
580 			return -ENOMEM;
581 	}
582 
583 do_pass:
584 	new_insn = first_insn;
585 	fp = prog;
586 
587 	/* Classic BPF related prologue emission. */
588 	if (new_prog) {
589 		/* Classic BPF expects A and X to be reset first. These need
590 		 * to be guaranteed to be the first two instructions.
591 		 */
592 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
593 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
594 
595 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
596 		 * In eBPF case it's done by the compiler, here we need to
597 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
598 		 */
599 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
600 		if (*seen_ld_abs) {
601 			/* For packet access in classic BPF, cache skb->data
602 			 * in callee-saved BPF R8 and skb->len - skb->data_len
603 			 * (headlen) in BPF R9. Since classic BPF is read-only
604 			 * on CTX, we only need to cache it once.
605 			 */
606 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
607 						  BPF_REG_D, BPF_REG_CTX,
608 						  offsetof(struct sk_buff, data));
609 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
610 						  offsetof(struct sk_buff, len));
611 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
612 						  offsetof(struct sk_buff, data_len));
613 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
614 		}
615 	} else {
616 		new_insn += 3;
617 	}
618 
619 	for (i = 0; i < len; fp++, i++) {
620 		struct bpf_insn tmp_insns[32] = { };
621 		struct bpf_insn *insn = tmp_insns;
622 
623 		if (addrs)
624 			addrs[i] = new_insn - first_insn;
625 
626 		switch (fp->code) {
627 		/* All arithmetic insns and skb loads map as-is. */
628 		case BPF_ALU | BPF_ADD | BPF_X:
629 		case BPF_ALU | BPF_ADD | BPF_K:
630 		case BPF_ALU | BPF_SUB | BPF_X:
631 		case BPF_ALU | BPF_SUB | BPF_K:
632 		case BPF_ALU | BPF_AND | BPF_X:
633 		case BPF_ALU | BPF_AND | BPF_K:
634 		case BPF_ALU | BPF_OR | BPF_X:
635 		case BPF_ALU | BPF_OR | BPF_K:
636 		case BPF_ALU | BPF_LSH | BPF_X:
637 		case BPF_ALU | BPF_LSH | BPF_K:
638 		case BPF_ALU | BPF_RSH | BPF_X:
639 		case BPF_ALU | BPF_RSH | BPF_K:
640 		case BPF_ALU | BPF_XOR | BPF_X:
641 		case BPF_ALU | BPF_XOR | BPF_K:
642 		case BPF_ALU | BPF_MUL | BPF_X:
643 		case BPF_ALU | BPF_MUL | BPF_K:
644 		case BPF_ALU | BPF_DIV | BPF_X:
645 		case BPF_ALU | BPF_DIV | BPF_K:
646 		case BPF_ALU | BPF_MOD | BPF_X:
647 		case BPF_ALU | BPF_MOD | BPF_K:
648 		case BPF_ALU | BPF_NEG:
649 		case BPF_LD | BPF_ABS | BPF_W:
650 		case BPF_LD | BPF_ABS | BPF_H:
651 		case BPF_LD | BPF_ABS | BPF_B:
652 		case BPF_LD | BPF_IND | BPF_W:
653 		case BPF_LD | BPF_IND | BPF_H:
654 		case BPF_LD | BPF_IND | BPF_B:
655 			/* Check for overloaded BPF extension and
656 			 * directly convert it if found, otherwise
657 			 * just move on with mapping.
658 			 */
659 			if (BPF_CLASS(fp->code) == BPF_LD &&
660 			    BPF_MODE(fp->code) == BPF_ABS &&
661 			    convert_bpf_extensions(fp, &insn))
662 				break;
663 			if (BPF_CLASS(fp->code) == BPF_LD &&
664 			    convert_bpf_ld_abs(fp, &insn)) {
665 				*seen_ld_abs = true;
666 				break;
667 			}
668 
669 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
670 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
671 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
672 				/* Error with exception code on div/mod by 0.
673 				 * For cBPF programs, this was always return 0.
674 				 */
675 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
676 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
677 				*insn++ = BPF_EXIT_INSN();
678 			}
679 
680 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
681 			break;
682 
683 		/* Jump transformation cannot use BPF block macros
684 		 * everywhere as offset calculation and target updates
685 		 * require a bit more work than the rest, i.e. jump
686 		 * opcodes map as-is, but offsets need adjustment.
687 		 */
688 
689 #define BPF_EMIT_JMP							\
690 	do {								\
691 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
692 		s32 off;						\
693 									\
694 		if (target >= len || target < 0)			\
695 			goto err;					\
696 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
697 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
698 		off -= insn - tmp_insns;				\
699 		/* Reject anything not fitting into insn->off. */	\
700 		if (off < off_min || off > off_max)			\
701 			goto err;					\
702 		insn->off = off;					\
703 	} while (0)
704 
705 		case BPF_JMP | BPF_JA:
706 			target = i + fp->k + 1;
707 			insn->code = fp->code;
708 			BPF_EMIT_JMP;
709 			break;
710 
711 		case BPF_JMP | BPF_JEQ | BPF_K:
712 		case BPF_JMP | BPF_JEQ | BPF_X:
713 		case BPF_JMP | BPF_JSET | BPF_K:
714 		case BPF_JMP | BPF_JSET | BPF_X:
715 		case BPF_JMP | BPF_JGT | BPF_K:
716 		case BPF_JMP | BPF_JGT | BPF_X:
717 		case BPF_JMP | BPF_JGE | BPF_K:
718 		case BPF_JMP | BPF_JGE | BPF_X:
719 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
720 				/* BPF immediates are signed, zero extend
721 				 * immediate into tmp register and use it
722 				 * in compare insn.
723 				 */
724 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
725 
726 				insn->dst_reg = BPF_REG_A;
727 				insn->src_reg = BPF_REG_TMP;
728 				bpf_src = BPF_X;
729 			} else {
730 				insn->dst_reg = BPF_REG_A;
731 				insn->imm = fp->k;
732 				bpf_src = BPF_SRC(fp->code);
733 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
734 			}
735 
736 			/* Common case where 'jump_false' is next insn. */
737 			if (fp->jf == 0) {
738 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
739 				target = i + fp->jt + 1;
740 				BPF_EMIT_JMP;
741 				break;
742 			}
743 
744 			/* Convert some jumps when 'jump_true' is next insn. */
745 			if (fp->jt == 0) {
746 				switch (BPF_OP(fp->code)) {
747 				case BPF_JEQ:
748 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
749 					break;
750 				case BPF_JGT:
751 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
752 					break;
753 				case BPF_JGE:
754 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
755 					break;
756 				default:
757 					goto jmp_rest;
758 				}
759 
760 				target = i + fp->jf + 1;
761 				BPF_EMIT_JMP;
762 				break;
763 			}
764 jmp_rest:
765 			/* Other jumps are mapped into two insns: Jxx and JA. */
766 			target = i + fp->jt + 1;
767 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
768 			BPF_EMIT_JMP;
769 			insn++;
770 
771 			insn->code = BPF_JMP | BPF_JA;
772 			target = i + fp->jf + 1;
773 			BPF_EMIT_JMP;
774 			break;
775 
776 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
777 		case BPF_LDX | BPF_MSH | BPF_B: {
778 			struct sock_filter tmp = {
779 				.code	= BPF_LD | BPF_ABS | BPF_B,
780 				.k	= fp->k,
781 			};
782 
783 			*seen_ld_abs = true;
784 
785 			/* X = A */
786 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
787 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
788 			convert_bpf_ld_abs(&tmp, &insn);
789 			insn++;
790 			/* A &= 0xf */
791 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
792 			/* A <<= 2 */
793 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
794 			/* tmp = X */
795 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
796 			/* X = A */
797 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
798 			/* A = tmp */
799 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
800 			break;
801 		}
802 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
803 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
804 		 */
805 		case BPF_RET | BPF_A:
806 		case BPF_RET | BPF_K:
807 			if (BPF_RVAL(fp->code) == BPF_K)
808 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
809 							0, fp->k);
810 			*insn = BPF_EXIT_INSN();
811 			break;
812 
813 		/* Store to stack. */
814 		case BPF_ST:
815 		case BPF_STX:
816 			stack_off = fp->k * 4  + 4;
817 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
818 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
819 					    -stack_off);
820 			/* check_load_and_stores() verifies that classic BPF can
821 			 * load from stack only after write, so tracking
822 			 * stack_depth for ST|STX insns is enough
823 			 */
824 			if (new_prog && new_prog->aux->stack_depth < stack_off)
825 				new_prog->aux->stack_depth = stack_off;
826 			break;
827 
828 		/* Load from stack. */
829 		case BPF_LD | BPF_MEM:
830 		case BPF_LDX | BPF_MEM:
831 			stack_off = fp->k * 4  + 4;
832 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
833 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
834 					    -stack_off);
835 			break;
836 
837 		/* A = K or X = K */
838 		case BPF_LD | BPF_IMM:
839 		case BPF_LDX | BPF_IMM:
840 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
841 					      BPF_REG_A : BPF_REG_X, fp->k);
842 			break;
843 
844 		/* X = A */
845 		case BPF_MISC | BPF_TAX:
846 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
847 			break;
848 
849 		/* A = X */
850 		case BPF_MISC | BPF_TXA:
851 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
852 			break;
853 
854 		/* A = skb->len or X = skb->len */
855 		case BPF_LD | BPF_W | BPF_LEN:
856 		case BPF_LDX | BPF_W | BPF_LEN:
857 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
858 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
859 					    offsetof(struct sk_buff, len));
860 			break;
861 
862 		/* Access seccomp_data fields. */
863 		case BPF_LDX | BPF_ABS | BPF_W:
864 			/* A = *(u32 *) (ctx + K) */
865 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
866 			break;
867 
868 		/* Unknown instruction. */
869 		default:
870 			goto err;
871 		}
872 
873 		insn++;
874 		if (new_prog)
875 			memcpy(new_insn, tmp_insns,
876 			       sizeof(*insn) * (insn - tmp_insns));
877 		new_insn += insn - tmp_insns;
878 	}
879 
880 	if (!new_prog) {
881 		/* Only calculating new length. */
882 		*new_len = new_insn - first_insn;
883 		if (*seen_ld_abs)
884 			*new_len += 4; /* Prologue bits. */
885 		return 0;
886 	}
887 
888 	pass++;
889 	if (new_flen != new_insn - first_insn) {
890 		new_flen = new_insn - first_insn;
891 		if (pass > 2)
892 			goto err;
893 		goto do_pass;
894 	}
895 
896 	kfree(addrs);
897 	BUG_ON(*new_len != new_flen);
898 	return 0;
899 err:
900 	kfree(addrs);
901 	return -EINVAL;
902 }
903 
904 /* Security:
905  *
906  * As we dont want to clear mem[] array for each packet going through
907  * __bpf_prog_run(), we check that filter loaded by user never try to read
908  * a cell if not previously written, and we check all branches to be sure
909  * a malicious user doesn't try to abuse us.
910  */
911 static int check_load_and_stores(const struct sock_filter *filter, int flen)
912 {
913 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
914 	int pc, ret = 0;
915 
916 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
917 
918 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
919 	if (!masks)
920 		return -ENOMEM;
921 
922 	memset(masks, 0xff, flen * sizeof(*masks));
923 
924 	for (pc = 0; pc < flen; pc++) {
925 		memvalid &= masks[pc];
926 
927 		switch (filter[pc].code) {
928 		case BPF_ST:
929 		case BPF_STX:
930 			memvalid |= (1 << filter[pc].k);
931 			break;
932 		case BPF_LD | BPF_MEM:
933 		case BPF_LDX | BPF_MEM:
934 			if (!(memvalid & (1 << filter[pc].k))) {
935 				ret = -EINVAL;
936 				goto error;
937 			}
938 			break;
939 		case BPF_JMP | BPF_JA:
940 			/* A jump must set masks on target */
941 			masks[pc + 1 + filter[pc].k] &= memvalid;
942 			memvalid = ~0;
943 			break;
944 		case BPF_JMP | BPF_JEQ | BPF_K:
945 		case BPF_JMP | BPF_JEQ | BPF_X:
946 		case BPF_JMP | BPF_JGE | BPF_K:
947 		case BPF_JMP | BPF_JGE | BPF_X:
948 		case BPF_JMP | BPF_JGT | BPF_K:
949 		case BPF_JMP | BPF_JGT | BPF_X:
950 		case BPF_JMP | BPF_JSET | BPF_K:
951 		case BPF_JMP | BPF_JSET | BPF_X:
952 			/* A jump must set masks on targets */
953 			masks[pc + 1 + filter[pc].jt] &= memvalid;
954 			masks[pc + 1 + filter[pc].jf] &= memvalid;
955 			memvalid = ~0;
956 			break;
957 		}
958 	}
959 error:
960 	kfree(masks);
961 	return ret;
962 }
963 
964 static bool chk_code_allowed(u16 code_to_probe)
965 {
966 	static const bool codes[] = {
967 		/* 32 bit ALU operations */
968 		[BPF_ALU | BPF_ADD | BPF_K] = true,
969 		[BPF_ALU | BPF_ADD | BPF_X] = true,
970 		[BPF_ALU | BPF_SUB | BPF_K] = true,
971 		[BPF_ALU | BPF_SUB | BPF_X] = true,
972 		[BPF_ALU | BPF_MUL | BPF_K] = true,
973 		[BPF_ALU | BPF_MUL | BPF_X] = true,
974 		[BPF_ALU | BPF_DIV | BPF_K] = true,
975 		[BPF_ALU | BPF_DIV | BPF_X] = true,
976 		[BPF_ALU | BPF_MOD | BPF_K] = true,
977 		[BPF_ALU | BPF_MOD | BPF_X] = true,
978 		[BPF_ALU | BPF_AND | BPF_K] = true,
979 		[BPF_ALU | BPF_AND | BPF_X] = true,
980 		[BPF_ALU | BPF_OR | BPF_K] = true,
981 		[BPF_ALU | BPF_OR | BPF_X] = true,
982 		[BPF_ALU | BPF_XOR | BPF_K] = true,
983 		[BPF_ALU | BPF_XOR | BPF_X] = true,
984 		[BPF_ALU | BPF_LSH | BPF_K] = true,
985 		[BPF_ALU | BPF_LSH | BPF_X] = true,
986 		[BPF_ALU | BPF_RSH | BPF_K] = true,
987 		[BPF_ALU | BPF_RSH | BPF_X] = true,
988 		[BPF_ALU | BPF_NEG] = true,
989 		/* Load instructions */
990 		[BPF_LD | BPF_W | BPF_ABS] = true,
991 		[BPF_LD | BPF_H | BPF_ABS] = true,
992 		[BPF_LD | BPF_B | BPF_ABS] = true,
993 		[BPF_LD | BPF_W | BPF_LEN] = true,
994 		[BPF_LD | BPF_W | BPF_IND] = true,
995 		[BPF_LD | BPF_H | BPF_IND] = true,
996 		[BPF_LD | BPF_B | BPF_IND] = true,
997 		[BPF_LD | BPF_IMM] = true,
998 		[BPF_LD | BPF_MEM] = true,
999 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1000 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1001 		[BPF_LDX | BPF_IMM] = true,
1002 		[BPF_LDX | BPF_MEM] = true,
1003 		/* Store instructions */
1004 		[BPF_ST] = true,
1005 		[BPF_STX] = true,
1006 		/* Misc instructions */
1007 		[BPF_MISC | BPF_TAX] = true,
1008 		[BPF_MISC | BPF_TXA] = true,
1009 		/* Return instructions */
1010 		[BPF_RET | BPF_K] = true,
1011 		[BPF_RET | BPF_A] = true,
1012 		/* Jump instructions */
1013 		[BPF_JMP | BPF_JA] = true,
1014 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1015 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1016 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1017 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1018 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1019 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1020 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1021 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1022 	};
1023 
1024 	if (code_to_probe >= ARRAY_SIZE(codes))
1025 		return false;
1026 
1027 	return codes[code_to_probe];
1028 }
1029 
1030 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1031 				unsigned int flen)
1032 {
1033 	if (filter == NULL)
1034 		return false;
1035 	if (flen == 0 || flen > BPF_MAXINSNS)
1036 		return false;
1037 
1038 	return true;
1039 }
1040 
1041 /**
1042  *	bpf_check_classic - verify socket filter code
1043  *	@filter: filter to verify
1044  *	@flen: length of filter
1045  *
1046  * Check the user's filter code. If we let some ugly
1047  * filter code slip through kaboom! The filter must contain
1048  * no references or jumps that are out of range, no illegal
1049  * instructions, and must end with a RET instruction.
1050  *
1051  * All jumps are forward as they are not signed.
1052  *
1053  * Returns 0 if the rule set is legal or -EINVAL if not.
1054  */
1055 static int bpf_check_classic(const struct sock_filter *filter,
1056 			     unsigned int flen)
1057 {
1058 	bool anc_found;
1059 	int pc;
1060 
1061 	/* Check the filter code now */
1062 	for (pc = 0; pc < flen; pc++) {
1063 		const struct sock_filter *ftest = &filter[pc];
1064 
1065 		/* May we actually operate on this code? */
1066 		if (!chk_code_allowed(ftest->code))
1067 			return -EINVAL;
1068 
1069 		/* Some instructions need special checks */
1070 		switch (ftest->code) {
1071 		case BPF_ALU | BPF_DIV | BPF_K:
1072 		case BPF_ALU | BPF_MOD | BPF_K:
1073 			/* Check for division by zero */
1074 			if (ftest->k == 0)
1075 				return -EINVAL;
1076 			break;
1077 		case BPF_ALU | BPF_LSH | BPF_K:
1078 		case BPF_ALU | BPF_RSH | BPF_K:
1079 			if (ftest->k >= 32)
1080 				return -EINVAL;
1081 			break;
1082 		case BPF_LD | BPF_MEM:
1083 		case BPF_LDX | BPF_MEM:
1084 		case BPF_ST:
1085 		case BPF_STX:
1086 			/* Check for invalid memory addresses */
1087 			if (ftest->k >= BPF_MEMWORDS)
1088 				return -EINVAL;
1089 			break;
1090 		case BPF_JMP | BPF_JA:
1091 			/* Note, the large ftest->k might cause loops.
1092 			 * Compare this with conditional jumps below,
1093 			 * where offsets are limited. --ANK (981016)
1094 			 */
1095 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1096 				return -EINVAL;
1097 			break;
1098 		case BPF_JMP | BPF_JEQ | BPF_K:
1099 		case BPF_JMP | BPF_JEQ | BPF_X:
1100 		case BPF_JMP | BPF_JGE | BPF_K:
1101 		case BPF_JMP | BPF_JGE | BPF_X:
1102 		case BPF_JMP | BPF_JGT | BPF_K:
1103 		case BPF_JMP | BPF_JGT | BPF_X:
1104 		case BPF_JMP | BPF_JSET | BPF_K:
1105 		case BPF_JMP | BPF_JSET | BPF_X:
1106 			/* Both conditionals must be safe */
1107 			if (pc + ftest->jt + 1 >= flen ||
1108 			    pc + ftest->jf + 1 >= flen)
1109 				return -EINVAL;
1110 			break;
1111 		case BPF_LD | BPF_W | BPF_ABS:
1112 		case BPF_LD | BPF_H | BPF_ABS:
1113 		case BPF_LD | BPF_B | BPF_ABS:
1114 			anc_found = false;
1115 			if (bpf_anc_helper(ftest) & BPF_ANC)
1116 				anc_found = true;
1117 			/* Ancillary operation unknown or unsupported */
1118 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1119 				return -EINVAL;
1120 		}
1121 	}
1122 
1123 	/* Last instruction must be a RET code */
1124 	switch (filter[flen - 1].code) {
1125 	case BPF_RET | BPF_K:
1126 	case BPF_RET | BPF_A:
1127 		return check_load_and_stores(filter, flen);
1128 	}
1129 
1130 	return -EINVAL;
1131 }
1132 
1133 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1134 				      const struct sock_fprog *fprog)
1135 {
1136 	unsigned int fsize = bpf_classic_proglen(fprog);
1137 	struct sock_fprog_kern *fkprog;
1138 
1139 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1140 	if (!fp->orig_prog)
1141 		return -ENOMEM;
1142 
1143 	fkprog = fp->orig_prog;
1144 	fkprog->len = fprog->len;
1145 
1146 	fkprog->filter = kmemdup(fp->insns, fsize,
1147 				 GFP_KERNEL | __GFP_NOWARN);
1148 	if (!fkprog->filter) {
1149 		kfree(fp->orig_prog);
1150 		return -ENOMEM;
1151 	}
1152 
1153 	return 0;
1154 }
1155 
1156 static void bpf_release_orig_filter(struct bpf_prog *fp)
1157 {
1158 	struct sock_fprog_kern *fprog = fp->orig_prog;
1159 
1160 	if (fprog) {
1161 		kfree(fprog->filter);
1162 		kfree(fprog);
1163 	}
1164 }
1165 
1166 static void __bpf_prog_release(struct bpf_prog *prog)
1167 {
1168 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1169 		bpf_prog_put(prog);
1170 	} else {
1171 		bpf_release_orig_filter(prog);
1172 		bpf_prog_free(prog);
1173 	}
1174 }
1175 
1176 static void __sk_filter_release(struct sk_filter *fp)
1177 {
1178 	__bpf_prog_release(fp->prog);
1179 	kfree(fp);
1180 }
1181 
1182 /**
1183  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1184  *	@rcu: rcu_head that contains the sk_filter to free
1185  */
1186 static void sk_filter_release_rcu(struct rcu_head *rcu)
1187 {
1188 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1189 
1190 	__sk_filter_release(fp);
1191 }
1192 
1193 /**
1194  *	sk_filter_release - release a socket filter
1195  *	@fp: filter to remove
1196  *
1197  *	Remove a filter from a socket and release its resources.
1198  */
1199 static void sk_filter_release(struct sk_filter *fp)
1200 {
1201 	if (refcount_dec_and_test(&fp->refcnt))
1202 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1203 }
1204 
1205 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1206 {
1207 	u32 filter_size = bpf_prog_size(fp->prog->len);
1208 
1209 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1210 	sk_filter_release(fp);
1211 }
1212 
1213 /* try to charge the socket memory if there is space available
1214  * return true on success
1215  */
1216 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1217 {
1218 	u32 filter_size = bpf_prog_size(fp->prog->len);
1219 	int optmem_max = READ_ONCE(sysctl_optmem_max);
1220 
1221 	/* same check as in sock_kmalloc() */
1222 	if (filter_size <= optmem_max &&
1223 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1224 		atomic_add(filter_size, &sk->sk_omem_alloc);
1225 		return true;
1226 	}
1227 	return false;
1228 }
1229 
1230 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1231 {
1232 	if (!refcount_inc_not_zero(&fp->refcnt))
1233 		return false;
1234 
1235 	if (!__sk_filter_charge(sk, fp)) {
1236 		sk_filter_release(fp);
1237 		return false;
1238 	}
1239 	return true;
1240 }
1241 
1242 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1243 {
1244 	struct sock_filter *old_prog;
1245 	struct bpf_prog *old_fp;
1246 	int err, new_len, old_len = fp->len;
1247 	bool seen_ld_abs = false;
1248 
1249 	/* We are free to overwrite insns et al right here as it won't be used at
1250 	 * this point in time anymore internally after the migration to the eBPF
1251 	 * instruction representation.
1252 	 */
1253 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1254 		     sizeof(struct bpf_insn));
1255 
1256 	/* Conversion cannot happen on overlapping memory areas,
1257 	 * so we need to keep the user BPF around until the 2nd
1258 	 * pass. At this time, the user BPF is stored in fp->insns.
1259 	 */
1260 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1261 			   GFP_KERNEL | __GFP_NOWARN);
1262 	if (!old_prog) {
1263 		err = -ENOMEM;
1264 		goto out_err;
1265 	}
1266 
1267 	/* 1st pass: calculate the new program length. */
1268 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1269 				 &seen_ld_abs);
1270 	if (err)
1271 		goto out_err_free;
1272 
1273 	/* Expand fp for appending the new filter representation. */
1274 	old_fp = fp;
1275 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1276 	if (!fp) {
1277 		/* The old_fp is still around in case we couldn't
1278 		 * allocate new memory, so uncharge on that one.
1279 		 */
1280 		fp = old_fp;
1281 		err = -ENOMEM;
1282 		goto out_err_free;
1283 	}
1284 
1285 	fp->len = new_len;
1286 
1287 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1288 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1289 				 &seen_ld_abs);
1290 	if (err)
1291 		/* 2nd bpf_convert_filter() can fail only if it fails
1292 		 * to allocate memory, remapping must succeed. Note,
1293 		 * that at this time old_fp has already been released
1294 		 * by krealloc().
1295 		 */
1296 		goto out_err_free;
1297 
1298 	fp = bpf_prog_select_runtime(fp, &err);
1299 	if (err)
1300 		goto out_err_free;
1301 
1302 	kfree(old_prog);
1303 	return fp;
1304 
1305 out_err_free:
1306 	kfree(old_prog);
1307 out_err:
1308 	__bpf_prog_release(fp);
1309 	return ERR_PTR(err);
1310 }
1311 
1312 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1313 					   bpf_aux_classic_check_t trans)
1314 {
1315 	int err;
1316 
1317 	fp->bpf_func = NULL;
1318 	fp->jited = 0;
1319 
1320 	err = bpf_check_classic(fp->insns, fp->len);
1321 	if (err) {
1322 		__bpf_prog_release(fp);
1323 		return ERR_PTR(err);
1324 	}
1325 
1326 	/* There might be additional checks and transformations
1327 	 * needed on classic filters, f.e. in case of seccomp.
1328 	 */
1329 	if (trans) {
1330 		err = trans(fp->insns, fp->len);
1331 		if (err) {
1332 			__bpf_prog_release(fp);
1333 			return ERR_PTR(err);
1334 		}
1335 	}
1336 
1337 	/* Probe if we can JIT compile the filter and if so, do
1338 	 * the compilation of the filter.
1339 	 */
1340 	bpf_jit_compile(fp);
1341 
1342 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1343 	 * for the optimized interpreter.
1344 	 */
1345 	if (!fp->jited)
1346 		fp = bpf_migrate_filter(fp);
1347 
1348 	return fp;
1349 }
1350 
1351 /**
1352  *	bpf_prog_create - create an unattached filter
1353  *	@pfp: the unattached filter that is created
1354  *	@fprog: the filter program
1355  *
1356  * Create a filter independent of any socket. We first run some
1357  * sanity checks on it to make sure it does not explode on us later.
1358  * If an error occurs or there is insufficient memory for the filter
1359  * a negative errno code is returned. On success the return is zero.
1360  */
1361 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1362 {
1363 	unsigned int fsize = bpf_classic_proglen(fprog);
1364 	struct bpf_prog *fp;
1365 
1366 	/* Make sure new filter is there and in the right amounts. */
1367 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1368 		return -EINVAL;
1369 
1370 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1371 	if (!fp)
1372 		return -ENOMEM;
1373 
1374 	memcpy(fp->insns, fprog->filter, fsize);
1375 
1376 	fp->len = fprog->len;
1377 	/* Since unattached filters are not copied back to user
1378 	 * space through sk_get_filter(), we do not need to hold
1379 	 * a copy here, and can spare us the work.
1380 	 */
1381 	fp->orig_prog = NULL;
1382 
1383 	/* bpf_prepare_filter() already takes care of freeing
1384 	 * memory in case something goes wrong.
1385 	 */
1386 	fp = bpf_prepare_filter(fp, NULL);
1387 	if (IS_ERR(fp))
1388 		return PTR_ERR(fp);
1389 
1390 	*pfp = fp;
1391 	return 0;
1392 }
1393 EXPORT_SYMBOL_GPL(bpf_prog_create);
1394 
1395 /**
1396  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1397  *	@pfp: the unattached filter that is created
1398  *	@fprog: the filter program
1399  *	@trans: post-classic verifier transformation handler
1400  *	@save_orig: save classic BPF program
1401  *
1402  * This function effectively does the same as bpf_prog_create(), only
1403  * that it builds up its insns buffer from user space provided buffer.
1404  * It also allows for passing a bpf_aux_classic_check_t handler.
1405  */
1406 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1407 			      bpf_aux_classic_check_t trans, bool save_orig)
1408 {
1409 	unsigned int fsize = bpf_classic_proglen(fprog);
1410 	struct bpf_prog *fp;
1411 	int err;
1412 
1413 	/* Make sure new filter is there and in the right amounts. */
1414 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1415 		return -EINVAL;
1416 
1417 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1418 	if (!fp)
1419 		return -ENOMEM;
1420 
1421 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1422 		__bpf_prog_free(fp);
1423 		return -EFAULT;
1424 	}
1425 
1426 	fp->len = fprog->len;
1427 	fp->orig_prog = NULL;
1428 
1429 	if (save_orig) {
1430 		err = bpf_prog_store_orig_filter(fp, fprog);
1431 		if (err) {
1432 			__bpf_prog_free(fp);
1433 			return -ENOMEM;
1434 		}
1435 	}
1436 
1437 	/* bpf_prepare_filter() already takes care of freeing
1438 	 * memory in case something goes wrong.
1439 	 */
1440 	fp = bpf_prepare_filter(fp, trans);
1441 	if (IS_ERR(fp))
1442 		return PTR_ERR(fp);
1443 
1444 	*pfp = fp;
1445 	return 0;
1446 }
1447 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1448 
1449 void bpf_prog_destroy(struct bpf_prog *fp)
1450 {
1451 	__bpf_prog_release(fp);
1452 }
1453 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1454 
1455 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1456 {
1457 	struct sk_filter *fp, *old_fp;
1458 
1459 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1460 	if (!fp)
1461 		return -ENOMEM;
1462 
1463 	fp->prog = prog;
1464 
1465 	if (!__sk_filter_charge(sk, fp)) {
1466 		kfree(fp);
1467 		return -ENOMEM;
1468 	}
1469 	refcount_set(&fp->refcnt, 1);
1470 
1471 	old_fp = rcu_dereference_protected(sk->sk_filter,
1472 					   lockdep_sock_is_held(sk));
1473 	rcu_assign_pointer(sk->sk_filter, fp);
1474 
1475 	if (old_fp)
1476 		sk_filter_uncharge(sk, old_fp);
1477 
1478 	return 0;
1479 }
1480 
1481 static
1482 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1483 {
1484 	unsigned int fsize = bpf_classic_proglen(fprog);
1485 	struct bpf_prog *prog;
1486 	int err;
1487 
1488 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1489 		return ERR_PTR(-EPERM);
1490 
1491 	/* Make sure new filter is there and in the right amounts. */
1492 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1493 		return ERR_PTR(-EINVAL);
1494 
1495 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1496 	if (!prog)
1497 		return ERR_PTR(-ENOMEM);
1498 
1499 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1500 		__bpf_prog_free(prog);
1501 		return ERR_PTR(-EFAULT);
1502 	}
1503 
1504 	prog->len = fprog->len;
1505 
1506 	err = bpf_prog_store_orig_filter(prog, fprog);
1507 	if (err) {
1508 		__bpf_prog_free(prog);
1509 		return ERR_PTR(-ENOMEM);
1510 	}
1511 
1512 	/* bpf_prepare_filter() already takes care of freeing
1513 	 * memory in case something goes wrong.
1514 	 */
1515 	return bpf_prepare_filter(prog, NULL);
1516 }
1517 
1518 /**
1519  *	sk_attach_filter - attach a socket filter
1520  *	@fprog: the filter program
1521  *	@sk: the socket to use
1522  *
1523  * Attach the user's filter code. We first run some sanity checks on
1524  * it to make sure it does not explode on us later. If an error
1525  * occurs or there is insufficient memory for the filter a negative
1526  * errno code is returned. On success the return is zero.
1527  */
1528 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1529 {
1530 	struct bpf_prog *prog = __get_filter(fprog, sk);
1531 	int err;
1532 
1533 	if (IS_ERR(prog))
1534 		return PTR_ERR(prog);
1535 
1536 	err = __sk_attach_prog(prog, sk);
1537 	if (err < 0) {
1538 		__bpf_prog_release(prog);
1539 		return err;
1540 	}
1541 
1542 	return 0;
1543 }
1544 EXPORT_SYMBOL_GPL(sk_attach_filter);
1545 
1546 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1547 {
1548 	struct bpf_prog *prog = __get_filter(fprog, sk);
1549 	int err;
1550 
1551 	if (IS_ERR(prog))
1552 		return PTR_ERR(prog);
1553 
1554 	if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max))
1555 		err = -ENOMEM;
1556 	else
1557 		err = reuseport_attach_prog(sk, prog);
1558 
1559 	if (err)
1560 		__bpf_prog_release(prog);
1561 
1562 	return err;
1563 }
1564 
1565 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1566 {
1567 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1568 		return ERR_PTR(-EPERM);
1569 
1570 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1571 }
1572 
1573 int sk_attach_bpf(u32 ufd, struct sock *sk)
1574 {
1575 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1576 	int err;
1577 
1578 	if (IS_ERR(prog))
1579 		return PTR_ERR(prog);
1580 
1581 	err = __sk_attach_prog(prog, sk);
1582 	if (err < 0) {
1583 		bpf_prog_put(prog);
1584 		return err;
1585 	}
1586 
1587 	return 0;
1588 }
1589 
1590 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1591 {
1592 	struct bpf_prog *prog;
1593 	int err;
1594 
1595 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1596 		return -EPERM;
1597 
1598 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1599 	if (PTR_ERR(prog) == -EINVAL)
1600 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1601 	if (IS_ERR(prog))
1602 		return PTR_ERR(prog);
1603 
1604 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1605 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1606 		 * bpf prog (e.g. sockmap).  It depends on the
1607 		 * limitation imposed by bpf_prog_load().
1608 		 * Hence, sysctl_optmem_max is not checked.
1609 		 */
1610 		if ((sk->sk_type != SOCK_STREAM &&
1611 		     sk->sk_type != SOCK_DGRAM) ||
1612 		    (sk->sk_protocol != IPPROTO_UDP &&
1613 		     sk->sk_protocol != IPPROTO_TCP) ||
1614 		    (sk->sk_family != AF_INET &&
1615 		     sk->sk_family != AF_INET6)) {
1616 			err = -ENOTSUPP;
1617 			goto err_prog_put;
1618 		}
1619 	} else {
1620 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1621 		if (bpf_prog_size(prog->len) > READ_ONCE(sysctl_optmem_max)) {
1622 			err = -ENOMEM;
1623 			goto err_prog_put;
1624 		}
1625 	}
1626 
1627 	err = reuseport_attach_prog(sk, prog);
1628 err_prog_put:
1629 	if (err)
1630 		bpf_prog_put(prog);
1631 
1632 	return err;
1633 }
1634 
1635 void sk_reuseport_prog_free(struct bpf_prog *prog)
1636 {
1637 	if (!prog)
1638 		return;
1639 
1640 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1641 		bpf_prog_put(prog);
1642 	else
1643 		bpf_prog_destroy(prog);
1644 }
1645 
1646 struct bpf_scratchpad {
1647 	union {
1648 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1649 		u8     buff[MAX_BPF_STACK];
1650 	};
1651 };
1652 
1653 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1654 
1655 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1656 					  unsigned int write_len)
1657 {
1658 	return skb_ensure_writable(skb, write_len);
1659 }
1660 
1661 static inline int bpf_try_make_writable(struct sk_buff *skb,
1662 					unsigned int write_len)
1663 {
1664 	int err = __bpf_try_make_writable(skb, write_len);
1665 
1666 	bpf_compute_data_pointers(skb);
1667 	return err;
1668 }
1669 
1670 static int bpf_try_make_head_writable(struct sk_buff *skb)
1671 {
1672 	return bpf_try_make_writable(skb, skb_headlen(skb));
1673 }
1674 
1675 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1676 {
1677 	if (skb_at_tc_ingress(skb))
1678 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1679 }
1680 
1681 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1682 {
1683 	if (skb_at_tc_ingress(skb))
1684 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1685 }
1686 
1687 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1688 	   const void *, from, u32, len, u64, flags)
1689 {
1690 	void *ptr;
1691 
1692 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1693 		return -EINVAL;
1694 	if (unlikely(offset > INT_MAX))
1695 		return -EFAULT;
1696 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1697 		return -EFAULT;
1698 
1699 	ptr = skb->data + offset;
1700 	if (flags & BPF_F_RECOMPUTE_CSUM)
1701 		__skb_postpull_rcsum(skb, ptr, len, offset);
1702 
1703 	memcpy(ptr, from, len);
1704 
1705 	if (flags & BPF_F_RECOMPUTE_CSUM)
1706 		__skb_postpush_rcsum(skb, ptr, len, offset);
1707 	if (flags & BPF_F_INVALIDATE_HASH)
1708 		skb_clear_hash(skb);
1709 
1710 	return 0;
1711 }
1712 
1713 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1714 	.func		= bpf_skb_store_bytes,
1715 	.gpl_only	= false,
1716 	.ret_type	= RET_INTEGER,
1717 	.arg1_type	= ARG_PTR_TO_CTX,
1718 	.arg2_type	= ARG_ANYTHING,
1719 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1720 	.arg4_type	= ARG_CONST_SIZE,
1721 	.arg5_type	= ARG_ANYTHING,
1722 };
1723 
1724 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1725 			  u32 len, u64 flags)
1726 {
1727 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1728 }
1729 
1730 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1731 	   void *, to, u32, len)
1732 {
1733 	void *ptr;
1734 
1735 	if (unlikely(offset > INT_MAX))
1736 		goto err_clear;
1737 
1738 	ptr = skb_header_pointer(skb, offset, len, to);
1739 	if (unlikely(!ptr))
1740 		goto err_clear;
1741 	if (ptr != to)
1742 		memcpy(to, ptr, len);
1743 
1744 	return 0;
1745 err_clear:
1746 	memset(to, 0, len);
1747 	return -EFAULT;
1748 }
1749 
1750 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1751 	.func		= bpf_skb_load_bytes,
1752 	.gpl_only	= false,
1753 	.ret_type	= RET_INTEGER,
1754 	.arg1_type	= ARG_PTR_TO_CTX,
1755 	.arg2_type	= ARG_ANYTHING,
1756 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1757 	.arg4_type	= ARG_CONST_SIZE,
1758 };
1759 
1760 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1761 {
1762 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1763 }
1764 
1765 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1766 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1767 	   void *, to, u32, len)
1768 {
1769 	void *ptr;
1770 
1771 	if (unlikely(offset > 0xffff))
1772 		goto err_clear;
1773 
1774 	if (unlikely(!ctx->skb))
1775 		goto err_clear;
1776 
1777 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1778 	if (unlikely(!ptr))
1779 		goto err_clear;
1780 	if (ptr != to)
1781 		memcpy(to, ptr, len);
1782 
1783 	return 0;
1784 err_clear:
1785 	memset(to, 0, len);
1786 	return -EFAULT;
1787 }
1788 
1789 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1790 	.func		= bpf_flow_dissector_load_bytes,
1791 	.gpl_only	= false,
1792 	.ret_type	= RET_INTEGER,
1793 	.arg1_type	= ARG_PTR_TO_CTX,
1794 	.arg2_type	= ARG_ANYTHING,
1795 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1796 	.arg4_type	= ARG_CONST_SIZE,
1797 };
1798 
1799 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1800 	   u32, offset, void *, to, u32, len, u32, start_header)
1801 {
1802 	u8 *end = skb_tail_pointer(skb);
1803 	u8 *start, *ptr;
1804 
1805 	if (unlikely(offset > 0xffff))
1806 		goto err_clear;
1807 
1808 	switch (start_header) {
1809 	case BPF_HDR_START_MAC:
1810 		if (unlikely(!skb_mac_header_was_set(skb)))
1811 			goto err_clear;
1812 		start = skb_mac_header(skb);
1813 		break;
1814 	case BPF_HDR_START_NET:
1815 		start = skb_network_header(skb);
1816 		break;
1817 	default:
1818 		goto err_clear;
1819 	}
1820 
1821 	ptr = start + offset;
1822 
1823 	if (likely(ptr + len <= end)) {
1824 		memcpy(to, ptr, len);
1825 		return 0;
1826 	}
1827 
1828 err_clear:
1829 	memset(to, 0, len);
1830 	return -EFAULT;
1831 }
1832 
1833 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1834 	.func		= bpf_skb_load_bytes_relative,
1835 	.gpl_only	= false,
1836 	.ret_type	= RET_INTEGER,
1837 	.arg1_type	= ARG_PTR_TO_CTX,
1838 	.arg2_type	= ARG_ANYTHING,
1839 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1840 	.arg4_type	= ARG_CONST_SIZE,
1841 	.arg5_type	= ARG_ANYTHING,
1842 };
1843 
1844 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1845 {
1846 	/* Idea is the following: should the needed direct read/write
1847 	 * test fail during runtime, we can pull in more data and redo
1848 	 * again, since implicitly, we invalidate previous checks here.
1849 	 *
1850 	 * Or, since we know how much we need to make read/writeable,
1851 	 * this can be done once at the program beginning for direct
1852 	 * access case. By this we overcome limitations of only current
1853 	 * headroom being accessible.
1854 	 */
1855 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1856 }
1857 
1858 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1859 	.func		= bpf_skb_pull_data,
1860 	.gpl_only	= false,
1861 	.ret_type	= RET_INTEGER,
1862 	.arg1_type	= ARG_PTR_TO_CTX,
1863 	.arg2_type	= ARG_ANYTHING,
1864 };
1865 
1866 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1867 {
1868 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1869 }
1870 
1871 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1872 	.func		= bpf_sk_fullsock,
1873 	.gpl_only	= false,
1874 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1875 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1876 };
1877 
1878 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1879 					   unsigned int write_len)
1880 {
1881 	return __bpf_try_make_writable(skb, write_len);
1882 }
1883 
1884 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1885 {
1886 	/* Idea is the following: should the needed direct read/write
1887 	 * test fail during runtime, we can pull in more data and redo
1888 	 * again, since implicitly, we invalidate previous checks here.
1889 	 *
1890 	 * Or, since we know how much we need to make read/writeable,
1891 	 * this can be done once at the program beginning for direct
1892 	 * access case. By this we overcome limitations of only current
1893 	 * headroom being accessible.
1894 	 */
1895 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1896 }
1897 
1898 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1899 	.func		= sk_skb_pull_data,
1900 	.gpl_only	= false,
1901 	.ret_type	= RET_INTEGER,
1902 	.arg1_type	= ARG_PTR_TO_CTX,
1903 	.arg2_type	= ARG_ANYTHING,
1904 };
1905 
1906 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1907 	   u64, from, u64, to, u64, flags)
1908 {
1909 	__sum16 *ptr;
1910 
1911 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1912 		return -EINVAL;
1913 	if (unlikely(offset > 0xffff || offset & 1))
1914 		return -EFAULT;
1915 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1916 		return -EFAULT;
1917 
1918 	ptr = (__sum16 *)(skb->data + offset);
1919 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1920 	case 0:
1921 		if (unlikely(from != 0))
1922 			return -EINVAL;
1923 
1924 		csum_replace_by_diff(ptr, to);
1925 		break;
1926 	case 2:
1927 		csum_replace2(ptr, from, to);
1928 		break;
1929 	case 4:
1930 		csum_replace4(ptr, from, to);
1931 		break;
1932 	default:
1933 		return -EINVAL;
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1940 	.func		= bpf_l3_csum_replace,
1941 	.gpl_only	= false,
1942 	.ret_type	= RET_INTEGER,
1943 	.arg1_type	= ARG_PTR_TO_CTX,
1944 	.arg2_type	= ARG_ANYTHING,
1945 	.arg3_type	= ARG_ANYTHING,
1946 	.arg4_type	= ARG_ANYTHING,
1947 	.arg5_type	= ARG_ANYTHING,
1948 };
1949 
1950 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1951 	   u64, from, u64, to, u64, flags)
1952 {
1953 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1954 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1955 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1956 	__sum16 *ptr;
1957 
1958 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1959 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1960 		return -EINVAL;
1961 	if (unlikely(offset > 0xffff || offset & 1))
1962 		return -EFAULT;
1963 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1964 		return -EFAULT;
1965 
1966 	ptr = (__sum16 *)(skb->data + offset);
1967 	if (is_mmzero && !do_mforce && !*ptr)
1968 		return 0;
1969 
1970 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1971 	case 0:
1972 		if (unlikely(from != 0))
1973 			return -EINVAL;
1974 
1975 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1976 		break;
1977 	case 2:
1978 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1979 		break;
1980 	case 4:
1981 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1982 		break;
1983 	default:
1984 		return -EINVAL;
1985 	}
1986 
1987 	if (is_mmzero && !*ptr)
1988 		*ptr = CSUM_MANGLED_0;
1989 	return 0;
1990 }
1991 
1992 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1993 	.func		= bpf_l4_csum_replace,
1994 	.gpl_only	= false,
1995 	.ret_type	= RET_INTEGER,
1996 	.arg1_type	= ARG_PTR_TO_CTX,
1997 	.arg2_type	= ARG_ANYTHING,
1998 	.arg3_type	= ARG_ANYTHING,
1999 	.arg4_type	= ARG_ANYTHING,
2000 	.arg5_type	= ARG_ANYTHING,
2001 };
2002 
2003 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2004 	   __be32 *, to, u32, to_size, __wsum, seed)
2005 {
2006 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2007 	u32 diff_size = from_size + to_size;
2008 	int i, j = 0;
2009 
2010 	/* This is quite flexible, some examples:
2011 	 *
2012 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2013 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2014 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2015 	 *
2016 	 * Even for diffing, from_size and to_size don't need to be equal.
2017 	 */
2018 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2019 		     diff_size > sizeof(sp->diff)))
2020 		return -EINVAL;
2021 
2022 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2023 		sp->diff[j] = ~from[i];
2024 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2025 		sp->diff[j] = to[i];
2026 
2027 	return csum_partial(sp->diff, diff_size, seed);
2028 }
2029 
2030 static const struct bpf_func_proto bpf_csum_diff_proto = {
2031 	.func		= bpf_csum_diff,
2032 	.gpl_only	= false,
2033 	.pkt_access	= true,
2034 	.ret_type	= RET_INTEGER,
2035 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2036 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2037 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2038 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2039 	.arg5_type	= ARG_ANYTHING,
2040 };
2041 
2042 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2043 {
2044 	/* The interface is to be used in combination with bpf_csum_diff()
2045 	 * for direct packet writes. csum rotation for alignment as well
2046 	 * as emulating csum_sub() can be done from the eBPF program.
2047 	 */
2048 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2049 		return (skb->csum = csum_add(skb->csum, csum));
2050 
2051 	return -ENOTSUPP;
2052 }
2053 
2054 static const struct bpf_func_proto bpf_csum_update_proto = {
2055 	.func		= bpf_csum_update,
2056 	.gpl_only	= false,
2057 	.ret_type	= RET_INTEGER,
2058 	.arg1_type	= ARG_PTR_TO_CTX,
2059 	.arg2_type	= ARG_ANYTHING,
2060 };
2061 
2062 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2063 {
2064 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2065 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2066 	 * is passed as flags, for example.
2067 	 */
2068 	switch (level) {
2069 	case BPF_CSUM_LEVEL_INC:
2070 		__skb_incr_checksum_unnecessary(skb);
2071 		break;
2072 	case BPF_CSUM_LEVEL_DEC:
2073 		__skb_decr_checksum_unnecessary(skb);
2074 		break;
2075 	case BPF_CSUM_LEVEL_RESET:
2076 		__skb_reset_checksum_unnecessary(skb);
2077 		break;
2078 	case BPF_CSUM_LEVEL_QUERY:
2079 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2080 		       skb->csum_level : -EACCES;
2081 	default:
2082 		return -EINVAL;
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 static const struct bpf_func_proto bpf_csum_level_proto = {
2089 	.func		= bpf_csum_level,
2090 	.gpl_only	= false,
2091 	.ret_type	= RET_INTEGER,
2092 	.arg1_type	= ARG_PTR_TO_CTX,
2093 	.arg2_type	= ARG_ANYTHING,
2094 };
2095 
2096 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2097 {
2098 	return dev_forward_skb_nomtu(dev, skb);
2099 }
2100 
2101 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2102 				      struct sk_buff *skb)
2103 {
2104 	int ret = ____dev_forward_skb(dev, skb, false);
2105 
2106 	if (likely(!ret)) {
2107 		skb->dev = dev;
2108 		ret = netif_rx(skb);
2109 	}
2110 
2111 	return ret;
2112 }
2113 
2114 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2115 {
2116 	int ret;
2117 
2118 	if (dev_xmit_recursion()) {
2119 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2120 		kfree_skb(skb);
2121 		return -ENETDOWN;
2122 	}
2123 
2124 	skb->dev = dev;
2125 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2126 	skb_clear_tstamp(skb);
2127 
2128 	dev_xmit_recursion_inc();
2129 	ret = dev_queue_xmit(skb);
2130 	dev_xmit_recursion_dec();
2131 
2132 	return ret;
2133 }
2134 
2135 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2136 				 u32 flags)
2137 {
2138 	unsigned int mlen = skb_network_offset(skb);
2139 
2140 	if (unlikely(skb->len <= mlen)) {
2141 		kfree_skb(skb);
2142 		return -ERANGE;
2143 	}
2144 
2145 	if (mlen) {
2146 		__skb_pull(skb, mlen);
2147 
2148 		/* At ingress, the mac header has already been pulled once.
2149 		 * At egress, skb_pospull_rcsum has to be done in case that
2150 		 * the skb is originated from ingress (i.e. a forwarded skb)
2151 		 * to ensure that rcsum starts at net header.
2152 		 */
2153 		if (!skb_at_tc_ingress(skb))
2154 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2155 	}
2156 	skb_pop_mac_header(skb);
2157 	skb_reset_mac_len(skb);
2158 	return flags & BPF_F_INGRESS ?
2159 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2160 }
2161 
2162 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2163 				 u32 flags)
2164 {
2165 	/* Verify that a link layer header is carried */
2166 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2167 		kfree_skb(skb);
2168 		return -ERANGE;
2169 	}
2170 
2171 	bpf_push_mac_rcsum(skb);
2172 	return flags & BPF_F_INGRESS ?
2173 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2174 }
2175 
2176 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2177 			  u32 flags)
2178 {
2179 	if (dev_is_mac_header_xmit(dev))
2180 		return __bpf_redirect_common(skb, dev, flags);
2181 	else
2182 		return __bpf_redirect_no_mac(skb, dev, flags);
2183 }
2184 
2185 #if IS_ENABLED(CONFIG_IPV6)
2186 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2187 			    struct net_device *dev, struct bpf_nh_params *nh)
2188 {
2189 	u32 hh_len = LL_RESERVED_SPACE(dev);
2190 	const struct in6_addr *nexthop;
2191 	struct dst_entry *dst = NULL;
2192 	struct neighbour *neigh;
2193 
2194 	if (dev_xmit_recursion()) {
2195 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2196 		goto out_drop;
2197 	}
2198 
2199 	skb->dev = dev;
2200 	skb_clear_tstamp(skb);
2201 
2202 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2203 		skb = skb_expand_head(skb, hh_len);
2204 		if (!skb)
2205 			return -ENOMEM;
2206 	}
2207 
2208 	rcu_read_lock();
2209 	if (!nh) {
2210 		dst = skb_dst(skb);
2211 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2212 				      &ipv6_hdr(skb)->daddr);
2213 	} else {
2214 		nexthop = &nh->ipv6_nh;
2215 	}
2216 	neigh = ip_neigh_gw6(dev, nexthop);
2217 	if (likely(!IS_ERR(neigh))) {
2218 		int ret;
2219 
2220 		sock_confirm_neigh(skb, neigh);
2221 		local_bh_disable();
2222 		dev_xmit_recursion_inc();
2223 		ret = neigh_output(neigh, skb, false);
2224 		dev_xmit_recursion_dec();
2225 		local_bh_enable();
2226 		rcu_read_unlock();
2227 		return ret;
2228 	}
2229 	rcu_read_unlock_bh();
2230 	if (dst)
2231 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2232 out_drop:
2233 	kfree_skb(skb);
2234 	return -ENETDOWN;
2235 }
2236 
2237 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2238 				   struct bpf_nh_params *nh)
2239 {
2240 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2241 	struct net *net = dev_net(dev);
2242 	int err, ret = NET_XMIT_DROP;
2243 
2244 	if (!nh) {
2245 		struct dst_entry *dst;
2246 		struct flowi6 fl6 = {
2247 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2248 			.flowi6_mark  = skb->mark,
2249 			.flowlabel    = ip6_flowinfo(ip6h),
2250 			.flowi6_oif   = dev->ifindex,
2251 			.flowi6_proto = ip6h->nexthdr,
2252 			.daddr	      = ip6h->daddr,
2253 			.saddr	      = ip6h->saddr,
2254 		};
2255 
2256 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2257 		if (IS_ERR(dst))
2258 			goto out_drop;
2259 
2260 		skb_dst_set(skb, dst);
2261 	} else if (nh->nh_family != AF_INET6) {
2262 		goto out_drop;
2263 	}
2264 
2265 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2266 	if (unlikely(net_xmit_eval(err)))
2267 		dev->stats.tx_errors++;
2268 	else
2269 		ret = NET_XMIT_SUCCESS;
2270 	goto out_xmit;
2271 out_drop:
2272 	dev->stats.tx_errors++;
2273 	kfree_skb(skb);
2274 out_xmit:
2275 	return ret;
2276 }
2277 #else
2278 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2279 				   struct bpf_nh_params *nh)
2280 {
2281 	kfree_skb(skb);
2282 	return NET_XMIT_DROP;
2283 }
2284 #endif /* CONFIG_IPV6 */
2285 
2286 #if IS_ENABLED(CONFIG_INET)
2287 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2288 			    struct net_device *dev, struct bpf_nh_params *nh)
2289 {
2290 	u32 hh_len = LL_RESERVED_SPACE(dev);
2291 	struct neighbour *neigh;
2292 	bool is_v6gw = false;
2293 
2294 	if (dev_xmit_recursion()) {
2295 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2296 		goto out_drop;
2297 	}
2298 
2299 	skb->dev = dev;
2300 	skb_clear_tstamp(skb);
2301 
2302 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2303 		skb = skb_expand_head(skb, hh_len);
2304 		if (!skb)
2305 			return -ENOMEM;
2306 	}
2307 
2308 	rcu_read_lock();
2309 	if (!nh) {
2310 		struct dst_entry *dst = skb_dst(skb);
2311 		struct rtable *rt = container_of(dst, struct rtable, dst);
2312 
2313 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2314 	} else if (nh->nh_family == AF_INET6) {
2315 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2316 		is_v6gw = true;
2317 	} else if (nh->nh_family == AF_INET) {
2318 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2319 	} else {
2320 		rcu_read_unlock();
2321 		goto out_drop;
2322 	}
2323 
2324 	if (likely(!IS_ERR(neigh))) {
2325 		int ret;
2326 
2327 		sock_confirm_neigh(skb, neigh);
2328 		local_bh_disable();
2329 		dev_xmit_recursion_inc();
2330 		ret = neigh_output(neigh, skb, is_v6gw);
2331 		dev_xmit_recursion_dec();
2332 		local_bh_enable();
2333 		rcu_read_unlock();
2334 		return ret;
2335 	}
2336 	rcu_read_unlock();
2337 out_drop:
2338 	kfree_skb(skb);
2339 	return -ENETDOWN;
2340 }
2341 
2342 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2343 				   struct bpf_nh_params *nh)
2344 {
2345 	const struct iphdr *ip4h = ip_hdr(skb);
2346 	struct net *net = dev_net(dev);
2347 	int err, ret = NET_XMIT_DROP;
2348 
2349 	if (!nh) {
2350 		struct flowi4 fl4 = {
2351 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2352 			.flowi4_mark  = skb->mark,
2353 			.flowi4_tos   = RT_TOS(ip4h->tos),
2354 			.flowi4_oif   = dev->ifindex,
2355 			.flowi4_proto = ip4h->protocol,
2356 			.daddr	      = ip4h->daddr,
2357 			.saddr	      = ip4h->saddr,
2358 		};
2359 		struct rtable *rt;
2360 
2361 		rt = ip_route_output_flow(net, &fl4, NULL);
2362 		if (IS_ERR(rt))
2363 			goto out_drop;
2364 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2365 			ip_rt_put(rt);
2366 			goto out_drop;
2367 		}
2368 
2369 		skb_dst_set(skb, &rt->dst);
2370 	}
2371 
2372 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2373 	if (unlikely(net_xmit_eval(err)))
2374 		dev->stats.tx_errors++;
2375 	else
2376 		ret = NET_XMIT_SUCCESS;
2377 	goto out_xmit;
2378 out_drop:
2379 	dev->stats.tx_errors++;
2380 	kfree_skb(skb);
2381 out_xmit:
2382 	return ret;
2383 }
2384 #else
2385 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2386 				   struct bpf_nh_params *nh)
2387 {
2388 	kfree_skb(skb);
2389 	return NET_XMIT_DROP;
2390 }
2391 #endif /* CONFIG_INET */
2392 
2393 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2394 				struct bpf_nh_params *nh)
2395 {
2396 	struct ethhdr *ethh = eth_hdr(skb);
2397 
2398 	if (unlikely(skb->mac_header >= skb->network_header))
2399 		goto out;
2400 	bpf_push_mac_rcsum(skb);
2401 	if (is_multicast_ether_addr(ethh->h_dest))
2402 		goto out;
2403 
2404 	skb_pull(skb, sizeof(*ethh));
2405 	skb_unset_mac_header(skb);
2406 	skb_reset_network_header(skb);
2407 
2408 	if (skb->protocol == htons(ETH_P_IP))
2409 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2410 	else if (skb->protocol == htons(ETH_P_IPV6))
2411 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2412 out:
2413 	kfree_skb(skb);
2414 	return -ENOTSUPP;
2415 }
2416 
2417 /* Internal, non-exposed redirect flags. */
2418 enum {
2419 	BPF_F_NEIGH	= (1ULL << 1),
2420 	BPF_F_PEER	= (1ULL << 2),
2421 	BPF_F_NEXTHOP	= (1ULL << 3),
2422 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2423 };
2424 
2425 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2426 {
2427 	struct net_device *dev;
2428 	struct sk_buff *clone;
2429 	int ret;
2430 
2431 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2432 		return -EINVAL;
2433 
2434 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2435 	if (unlikely(!dev))
2436 		return -EINVAL;
2437 
2438 	clone = skb_clone(skb, GFP_ATOMIC);
2439 	if (unlikely(!clone))
2440 		return -ENOMEM;
2441 
2442 	/* For direct write, we need to keep the invariant that the skbs
2443 	 * we're dealing with need to be uncloned. Should uncloning fail
2444 	 * here, we need to free the just generated clone to unclone once
2445 	 * again.
2446 	 */
2447 	ret = bpf_try_make_head_writable(skb);
2448 	if (unlikely(ret)) {
2449 		kfree_skb(clone);
2450 		return -ENOMEM;
2451 	}
2452 
2453 	return __bpf_redirect(clone, dev, flags);
2454 }
2455 
2456 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2457 	.func           = bpf_clone_redirect,
2458 	.gpl_only       = false,
2459 	.ret_type       = RET_INTEGER,
2460 	.arg1_type      = ARG_PTR_TO_CTX,
2461 	.arg2_type      = ARG_ANYTHING,
2462 	.arg3_type      = ARG_ANYTHING,
2463 };
2464 
2465 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2466 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2467 
2468 int skb_do_redirect(struct sk_buff *skb)
2469 {
2470 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2471 	struct net *net = dev_net(skb->dev);
2472 	struct net_device *dev;
2473 	u32 flags = ri->flags;
2474 
2475 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2476 	ri->tgt_index = 0;
2477 	ri->flags = 0;
2478 	if (unlikely(!dev))
2479 		goto out_drop;
2480 	if (flags & BPF_F_PEER) {
2481 		const struct net_device_ops *ops = dev->netdev_ops;
2482 
2483 		if (unlikely(!ops->ndo_get_peer_dev ||
2484 			     !skb_at_tc_ingress(skb)))
2485 			goto out_drop;
2486 		dev = ops->ndo_get_peer_dev(dev);
2487 		if (unlikely(!dev ||
2488 			     !(dev->flags & IFF_UP) ||
2489 			     net_eq(net, dev_net(dev))))
2490 			goto out_drop;
2491 		skb->dev = dev;
2492 		return -EAGAIN;
2493 	}
2494 	return flags & BPF_F_NEIGH ?
2495 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2496 				    &ri->nh : NULL) :
2497 	       __bpf_redirect(skb, dev, flags);
2498 out_drop:
2499 	kfree_skb(skb);
2500 	return -EINVAL;
2501 }
2502 
2503 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2504 {
2505 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2506 
2507 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2508 		return TC_ACT_SHOT;
2509 
2510 	ri->flags = flags;
2511 	ri->tgt_index = ifindex;
2512 
2513 	return TC_ACT_REDIRECT;
2514 }
2515 
2516 static const struct bpf_func_proto bpf_redirect_proto = {
2517 	.func           = bpf_redirect,
2518 	.gpl_only       = false,
2519 	.ret_type       = RET_INTEGER,
2520 	.arg1_type      = ARG_ANYTHING,
2521 	.arg2_type      = ARG_ANYTHING,
2522 };
2523 
2524 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2525 {
2526 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2527 
2528 	if (unlikely(flags))
2529 		return TC_ACT_SHOT;
2530 
2531 	ri->flags = BPF_F_PEER;
2532 	ri->tgt_index = ifindex;
2533 
2534 	return TC_ACT_REDIRECT;
2535 }
2536 
2537 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2538 	.func           = bpf_redirect_peer,
2539 	.gpl_only       = false,
2540 	.ret_type       = RET_INTEGER,
2541 	.arg1_type      = ARG_ANYTHING,
2542 	.arg2_type      = ARG_ANYTHING,
2543 };
2544 
2545 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2546 	   int, plen, u64, flags)
2547 {
2548 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2549 
2550 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2551 		return TC_ACT_SHOT;
2552 
2553 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2554 	ri->tgt_index = ifindex;
2555 
2556 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2557 	if (plen)
2558 		memcpy(&ri->nh, params, sizeof(ri->nh));
2559 
2560 	return TC_ACT_REDIRECT;
2561 }
2562 
2563 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2564 	.func		= bpf_redirect_neigh,
2565 	.gpl_only	= false,
2566 	.ret_type	= RET_INTEGER,
2567 	.arg1_type	= ARG_ANYTHING,
2568 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2569 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2570 	.arg4_type	= ARG_ANYTHING,
2571 };
2572 
2573 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2574 {
2575 	msg->apply_bytes = bytes;
2576 	return 0;
2577 }
2578 
2579 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2580 	.func           = bpf_msg_apply_bytes,
2581 	.gpl_only       = false,
2582 	.ret_type       = RET_INTEGER,
2583 	.arg1_type	= ARG_PTR_TO_CTX,
2584 	.arg2_type      = ARG_ANYTHING,
2585 };
2586 
2587 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2588 {
2589 	msg->cork_bytes = bytes;
2590 	return 0;
2591 }
2592 
2593 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2594 	.func           = bpf_msg_cork_bytes,
2595 	.gpl_only       = false,
2596 	.ret_type       = RET_INTEGER,
2597 	.arg1_type	= ARG_PTR_TO_CTX,
2598 	.arg2_type      = ARG_ANYTHING,
2599 };
2600 
2601 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2602 	   u32, end, u64, flags)
2603 {
2604 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2605 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2606 	struct scatterlist *sge;
2607 	u8 *raw, *to, *from;
2608 	struct page *page;
2609 
2610 	if (unlikely(flags || end <= start))
2611 		return -EINVAL;
2612 
2613 	/* First find the starting scatterlist element */
2614 	i = msg->sg.start;
2615 	do {
2616 		offset += len;
2617 		len = sk_msg_elem(msg, i)->length;
2618 		if (start < offset + len)
2619 			break;
2620 		sk_msg_iter_var_next(i);
2621 	} while (i != msg->sg.end);
2622 
2623 	if (unlikely(start >= offset + len))
2624 		return -EINVAL;
2625 
2626 	first_sge = i;
2627 	/* The start may point into the sg element so we need to also
2628 	 * account for the headroom.
2629 	 */
2630 	bytes_sg_total = start - offset + bytes;
2631 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2632 		goto out;
2633 
2634 	/* At this point we need to linearize multiple scatterlist
2635 	 * elements or a single shared page. Either way we need to
2636 	 * copy into a linear buffer exclusively owned by BPF. Then
2637 	 * place the buffer in the scatterlist and fixup the original
2638 	 * entries by removing the entries now in the linear buffer
2639 	 * and shifting the remaining entries. For now we do not try
2640 	 * to copy partial entries to avoid complexity of running out
2641 	 * of sg_entry slots. The downside is reading a single byte
2642 	 * will copy the entire sg entry.
2643 	 */
2644 	do {
2645 		copy += sk_msg_elem(msg, i)->length;
2646 		sk_msg_iter_var_next(i);
2647 		if (bytes_sg_total <= copy)
2648 			break;
2649 	} while (i != msg->sg.end);
2650 	last_sge = i;
2651 
2652 	if (unlikely(bytes_sg_total > copy))
2653 		return -EINVAL;
2654 
2655 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2656 			   get_order(copy));
2657 	if (unlikely(!page))
2658 		return -ENOMEM;
2659 
2660 	raw = page_address(page);
2661 	i = first_sge;
2662 	do {
2663 		sge = sk_msg_elem(msg, i);
2664 		from = sg_virt(sge);
2665 		len = sge->length;
2666 		to = raw + poffset;
2667 
2668 		memcpy(to, from, len);
2669 		poffset += len;
2670 		sge->length = 0;
2671 		put_page(sg_page(sge));
2672 
2673 		sk_msg_iter_var_next(i);
2674 	} while (i != last_sge);
2675 
2676 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2677 
2678 	/* To repair sg ring we need to shift entries. If we only
2679 	 * had a single entry though we can just replace it and
2680 	 * be done. Otherwise walk the ring and shift the entries.
2681 	 */
2682 	WARN_ON_ONCE(last_sge == first_sge);
2683 	shift = last_sge > first_sge ?
2684 		last_sge - first_sge - 1 :
2685 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2686 	if (!shift)
2687 		goto out;
2688 
2689 	i = first_sge;
2690 	sk_msg_iter_var_next(i);
2691 	do {
2692 		u32 move_from;
2693 
2694 		if (i + shift >= NR_MSG_FRAG_IDS)
2695 			move_from = i + shift - NR_MSG_FRAG_IDS;
2696 		else
2697 			move_from = i + shift;
2698 		if (move_from == msg->sg.end)
2699 			break;
2700 
2701 		msg->sg.data[i] = msg->sg.data[move_from];
2702 		msg->sg.data[move_from].length = 0;
2703 		msg->sg.data[move_from].page_link = 0;
2704 		msg->sg.data[move_from].offset = 0;
2705 		sk_msg_iter_var_next(i);
2706 	} while (1);
2707 
2708 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2709 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2710 		      msg->sg.end - shift;
2711 out:
2712 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2713 	msg->data_end = msg->data + bytes;
2714 	return 0;
2715 }
2716 
2717 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2718 	.func		= bpf_msg_pull_data,
2719 	.gpl_only	= false,
2720 	.ret_type	= RET_INTEGER,
2721 	.arg1_type	= ARG_PTR_TO_CTX,
2722 	.arg2_type	= ARG_ANYTHING,
2723 	.arg3_type	= ARG_ANYTHING,
2724 	.arg4_type	= ARG_ANYTHING,
2725 };
2726 
2727 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2728 	   u32, len, u64, flags)
2729 {
2730 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2731 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2732 	u8 *raw, *to, *from;
2733 	struct page *page;
2734 
2735 	if (unlikely(flags))
2736 		return -EINVAL;
2737 
2738 	if (unlikely(len == 0))
2739 		return 0;
2740 
2741 	/* First find the starting scatterlist element */
2742 	i = msg->sg.start;
2743 	do {
2744 		offset += l;
2745 		l = sk_msg_elem(msg, i)->length;
2746 
2747 		if (start < offset + l)
2748 			break;
2749 		sk_msg_iter_var_next(i);
2750 	} while (i != msg->sg.end);
2751 
2752 	if (start >= offset + l)
2753 		return -EINVAL;
2754 
2755 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2756 
2757 	/* If no space available will fallback to copy, we need at
2758 	 * least one scatterlist elem available to push data into
2759 	 * when start aligns to the beginning of an element or two
2760 	 * when it falls inside an element. We handle the start equals
2761 	 * offset case because its the common case for inserting a
2762 	 * header.
2763 	 */
2764 	if (!space || (space == 1 && start != offset))
2765 		copy = msg->sg.data[i].length;
2766 
2767 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2768 			   get_order(copy + len));
2769 	if (unlikely(!page))
2770 		return -ENOMEM;
2771 
2772 	if (copy) {
2773 		int front, back;
2774 
2775 		raw = page_address(page);
2776 
2777 		psge = sk_msg_elem(msg, i);
2778 		front = start - offset;
2779 		back = psge->length - front;
2780 		from = sg_virt(psge);
2781 
2782 		if (front)
2783 			memcpy(raw, from, front);
2784 
2785 		if (back) {
2786 			from += front;
2787 			to = raw + front + len;
2788 
2789 			memcpy(to, from, back);
2790 		}
2791 
2792 		put_page(sg_page(psge));
2793 	} else if (start - offset) {
2794 		psge = sk_msg_elem(msg, i);
2795 		rsge = sk_msg_elem_cpy(msg, i);
2796 
2797 		psge->length = start - offset;
2798 		rsge.length -= psge->length;
2799 		rsge.offset += start;
2800 
2801 		sk_msg_iter_var_next(i);
2802 		sg_unmark_end(psge);
2803 		sg_unmark_end(&rsge);
2804 		sk_msg_iter_next(msg, end);
2805 	}
2806 
2807 	/* Slot(s) to place newly allocated data */
2808 	new = i;
2809 
2810 	/* Shift one or two slots as needed */
2811 	if (!copy) {
2812 		sge = sk_msg_elem_cpy(msg, i);
2813 
2814 		sk_msg_iter_var_next(i);
2815 		sg_unmark_end(&sge);
2816 		sk_msg_iter_next(msg, end);
2817 
2818 		nsge = sk_msg_elem_cpy(msg, i);
2819 		if (rsge.length) {
2820 			sk_msg_iter_var_next(i);
2821 			nnsge = sk_msg_elem_cpy(msg, i);
2822 		}
2823 
2824 		while (i != msg->sg.end) {
2825 			msg->sg.data[i] = sge;
2826 			sge = nsge;
2827 			sk_msg_iter_var_next(i);
2828 			if (rsge.length) {
2829 				nsge = nnsge;
2830 				nnsge = sk_msg_elem_cpy(msg, i);
2831 			} else {
2832 				nsge = sk_msg_elem_cpy(msg, i);
2833 			}
2834 		}
2835 	}
2836 
2837 	/* Place newly allocated data buffer */
2838 	sk_mem_charge(msg->sk, len);
2839 	msg->sg.size += len;
2840 	__clear_bit(new, msg->sg.copy);
2841 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2842 	if (rsge.length) {
2843 		get_page(sg_page(&rsge));
2844 		sk_msg_iter_var_next(new);
2845 		msg->sg.data[new] = rsge;
2846 	}
2847 
2848 	sk_msg_compute_data_pointers(msg);
2849 	return 0;
2850 }
2851 
2852 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2853 	.func		= bpf_msg_push_data,
2854 	.gpl_only	= false,
2855 	.ret_type	= RET_INTEGER,
2856 	.arg1_type	= ARG_PTR_TO_CTX,
2857 	.arg2_type	= ARG_ANYTHING,
2858 	.arg3_type	= ARG_ANYTHING,
2859 	.arg4_type	= ARG_ANYTHING,
2860 };
2861 
2862 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2863 {
2864 	int prev;
2865 
2866 	do {
2867 		prev = i;
2868 		sk_msg_iter_var_next(i);
2869 		msg->sg.data[prev] = msg->sg.data[i];
2870 	} while (i != msg->sg.end);
2871 
2872 	sk_msg_iter_prev(msg, end);
2873 }
2874 
2875 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2876 {
2877 	struct scatterlist tmp, sge;
2878 
2879 	sk_msg_iter_next(msg, end);
2880 	sge = sk_msg_elem_cpy(msg, i);
2881 	sk_msg_iter_var_next(i);
2882 	tmp = sk_msg_elem_cpy(msg, i);
2883 
2884 	while (i != msg->sg.end) {
2885 		msg->sg.data[i] = sge;
2886 		sk_msg_iter_var_next(i);
2887 		sge = tmp;
2888 		tmp = sk_msg_elem_cpy(msg, i);
2889 	}
2890 }
2891 
2892 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2893 	   u32, len, u64, flags)
2894 {
2895 	u32 i = 0, l = 0, space, offset = 0;
2896 	u64 last = start + len;
2897 	int pop;
2898 
2899 	if (unlikely(flags))
2900 		return -EINVAL;
2901 
2902 	/* First find the starting scatterlist element */
2903 	i = msg->sg.start;
2904 	do {
2905 		offset += l;
2906 		l = sk_msg_elem(msg, i)->length;
2907 
2908 		if (start < offset + l)
2909 			break;
2910 		sk_msg_iter_var_next(i);
2911 	} while (i != msg->sg.end);
2912 
2913 	/* Bounds checks: start and pop must be inside message */
2914 	if (start >= offset + l || last >= msg->sg.size)
2915 		return -EINVAL;
2916 
2917 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2918 
2919 	pop = len;
2920 	/* --------------| offset
2921 	 * -| start      |-------- len -------|
2922 	 *
2923 	 *  |----- a ----|-------- pop -------|----- b ----|
2924 	 *  |______________________________________________| length
2925 	 *
2926 	 *
2927 	 * a:   region at front of scatter element to save
2928 	 * b:   region at back of scatter element to save when length > A + pop
2929 	 * pop: region to pop from element, same as input 'pop' here will be
2930 	 *      decremented below per iteration.
2931 	 *
2932 	 * Two top-level cases to handle when start != offset, first B is non
2933 	 * zero and second B is zero corresponding to when a pop includes more
2934 	 * than one element.
2935 	 *
2936 	 * Then if B is non-zero AND there is no space allocate space and
2937 	 * compact A, B regions into page. If there is space shift ring to
2938 	 * the rigth free'ing the next element in ring to place B, leaving
2939 	 * A untouched except to reduce length.
2940 	 */
2941 	if (start != offset) {
2942 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2943 		int a = start;
2944 		int b = sge->length - pop - a;
2945 
2946 		sk_msg_iter_var_next(i);
2947 
2948 		if (pop < sge->length - a) {
2949 			if (space) {
2950 				sge->length = a;
2951 				sk_msg_shift_right(msg, i);
2952 				nsge = sk_msg_elem(msg, i);
2953 				get_page(sg_page(sge));
2954 				sg_set_page(nsge,
2955 					    sg_page(sge),
2956 					    b, sge->offset + pop + a);
2957 			} else {
2958 				struct page *page, *orig;
2959 				u8 *to, *from;
2960 
2961 				page = alloc_pages(__GFP_NOWARN |
2962 						   __GFP_COMP   | GFP_ATOMIC,
2963 						   get_order(a + b));
2964 				if (unlikely(!page))
2965 					return -ENOMEM;
2966 
2967 				sge->length = a;
2968 				orig = sg_page(sge);
2969 				from = sg_virt(sge);
2970 				to = page_address(page);
2971 				memcpy(to, from, a);
2972 				memcpy(to + a, from + a + pop, b);
2973 				sg_set_page(sge, page, a + b, 0);
2974 				put_page(orig);
2975 			}
2976 			pop = 0;
2977 		} else if (pop >= sge->length - a) {
2978 			pop -= (sge->length - a);
2979 			sge->length = a;
2980 		}
2981 	}
2982 
2983 	/* From above the current layout _must_ be as follows,
2984 	 *
2985 	 * -| offset
2986 	 * -| start
2987 	 *
2988 	 *  |---- pop ---|---------------- b ------------|
2989 	 *  |____________________________________________| length
2990 	 *
2991 	 * Offset and start of the current msg elem are equal because in the
2992 	 * previous case we handled offset != start and either consumed the
2993 	 * entire element and advanced to the next element OR pop == 0.
2994 	 *
2995 	 * Two cases to handle here are first pop is less than the length
2996 	 * leaving some remainder b above. Simply adjust the element's layout
2997 	 * in this case. Or pop >= length of the element so that b = 0. In this
2998 	 * case advance to next element decrementing pop.
2999 	 */
3000 	while (pop) {
3001 		struct scatterlist *sge = sk_msg_elem(msg, i);
3002 
3003 		if (pop < sge->length) {
3004 			sge->length -= pop;
3005 			sge->offset += pop;
3006 			pop = 0;
3007 		} else {
3008 			pop -= sge->length;
3009 			sk_msg_shift_left(msg, i);
3010 		}
3011 		sk_msg_iter_var_next(i);
3012 	}
3013 
3014 	sk_mem_uncharge(msg->sk, len - pop);
3015 	msg->sg.size -= (len - pop);
3016 	sk_msg_compute_data_pointers(msg);
3017 	return 0;
3018 }
3019 
3020 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3021 	.func		= bpf_msg_pop_data,
3022 	.gpl_only	= false,
3023 	.ret_type	= RET_INTEGER,
3024 	.arg1_type	= ARG_PTR_TO_CTX,
3025 	.arg2_type	= ARG_ANYTHING,
3026 	.arg3_type	= ARG_ANYTHING,
3027 	.arg4_type	= ARG_ANYTHING,
3028 };
3029 
3030 #ifdef CONFIG_CGROUP_NET_CLASSID
3031 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3032 {
3033 	return __task_get_classid(current);
3034 }
3035 
3036 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3037 	.func		= bpf_get_cgroup_classid_curr,
3038 	.gpl_only	= false,
3039 	.ret_type	= RET_INTEGER,
3040 };
3041 
3042 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3043 {
3044 	struct sock *sk = skb_to_full_sk(skb);
3045 
3046 	if (!sk || !sk_fullsock(sk))
3047 		return 0;
3048 
3049 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3050 }
3051 
3052 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3053 	.func		= bpf_skb_cgroup_classid,
3054 	.gpl_only	= false,
3055 	.ret_type	= RET_INTEGER,
3056 	.arg1_type	= ARG_PTR_TO_CTX,
3057 };
3058 #endif
3059 
3060 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3061 {
3062 	return task_get_classid(skb);
3063 }
3064 
3065 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3066 	.func           = bpf_get_cgroup_classid,
3067 	.gpl_only       = false,
3068 	.ret_type       = RET_INTEGER,
3069 	.arg1_type      = ARG_PTR_TO_CTX,
3070 };
3071 
3072 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3073 {
3074 	return dst_tclassid(skb);
3075 }
3076 
3077 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3078 	.func           = bpf_get_route_realm,
3079 	.gpl_only       = false,
3080 	.ret_type       = RET_INTEGER,
3081 	.arg1_type      = ARG_PTR_TO_CTX,
3082 };
3083 
3084 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3085 {
3086 	/* If skb_clear_hash() was called due to mangling, we can
3087 	 * trigger SW recalculation here. Later access to hash
3088 	 * can then use the inline skb->hash via context directly
3089 	 * instead of calling this helper again.
3090 	 */
3091 	return skb_get_hash(skb);
3092 }
3093 
3094 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3095 	.func		= bpf_get_hash_recalc,
3096 	.gpl_only	= false,
3097 	.ret_type	= RET_INTEGER,
3098 	.arg1_type	= ARG_PTR_TO_CTX,
3099 };
3100 
3101 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3102 {
3103 	/* After all direct packet write, this can be used once for
3104 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3105 	 */
3106 	skb_clear_hash(skb);
3107 	return 0;
3108 }
3109 
3110 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3111 	.func		= bpf_set_hash_invalid,
3112 	.gpl_only	= false,
3113 	.ret_type	= RET_INTEGER,
3114 	.arg1_type	= ARG_PTR_TO_CTX,
3115 };
3116 
3117 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3118 {
3119 	/* Set user specified hash as L4(+), so that it gets returned
3120 	 * on skb_get_hash() call unless BPF prog later on triggers a
3121 	 * skb_clear_hash().
3122 	 */
3123 	__skb_set_sw_hash(skb, hash, true);
3124 	return 0;
3125 }
3126 
3127 static const struct bpf_func_proto bpf_set_hash_proto = {
3128 	.func		= bpf_set_hash,
3129 	.gpl_only	= false,
3130 	.ret_type	= RET_INTEGER,
3131 	.arg1_type	= ARG_PTR_TO_CTX,
3132 	.arg2_type	= ARG_ANYTHING,
3133 };
3134 
3135 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3136 	   u16, vlan_tci)
3137 {
3138 	int ret;
3139 
3140 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3141 		     vlan_proto != htons(ETH_P_8021AD)))
3142 		vlan_proto = htons(ETH_P_8021Q);
3143 
3144 	bpf_push_mac_rcsum(skb);
3145 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3146 	bpf_pull_mac_rcsum(skb);
3147 
3148 	bpf_compute_data_pointers(skb);
3149 	return ret;
3150 }
3151 
3152 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3153 	.func           = bpf_skb_vlan_push,
3154 	.gpl_only       = false,
3155 	.ret_type       = RET_INTEGER,
3156 	.arg1_type      = ARG_PTR_TO_CTX,
3157 	.arg2_type      = ARG_ANYTHING,
3158 	.arg3_type      = ARG_ANYTHING,
3159 };
3160 
3161 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3162 {
3163 	int ret;
3164 
3165 	bpf_push_mac_rcsum(skb);
3166 	ret = skb_vlan_pop(skb);
3167 	bpf_pull_mac_rcsum(skb);
3168 
3169 	bpf_compute_data_pointers(skb);
3170 	return ret;
3171 }
3172 
3173 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3174 	.func           = bpf_skb_vlan_pop,
3175 	.gpl_only       = false,
3176 	.ret_type       = RET_INTEGER,
3177 	.arg1_type      = ARG_PTR_TO_CTX,
3178 };
3179 
3180 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3181 {
3182 	/* Caller already did skb_cow() with len as headroom,
3183 	 * so no need to do it here.
3184 	 */
3185 	skb_push(skb, len);
3186 	memmove(skb->data, skb->data + len, off);
3187 	memset(skb->data + off, 0, len);
3188 
3189 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3190 	 * needed here as it does not change the skb->csum
3191 	 * result for checksum complete when summing over
3192 	 * zeroed blocks.
3193 	 */
3194 	return 0;
3195 }
3196 
3197 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3198 {
3199 	void *old_data;
3200 
3201 	/* skb_ensure_writable() is not needed here, as we're
3202 	 * already working on an uncloned skb.
3203 	 */
3204 	if (unlikely(!pskb_may_pull(skb, off + len)))
3205 		return -ENOMEM;
3206 
3207 	old_data = skb->data;
3208 	__skb_pull(skb, len);
3209 	skb_postpull_rcsum(skb, old_data + off, len);
3210 	memmove(skb->data, old_data, off);
3211 
3212 	return 0;
3213 }
3214 
3215 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3216 {
3217 	bool trans_same = skb->transport_header == skb->network_header;
3218 	int ret;
3219 
3220 	/* There's no need for __skb_push()/__skb_pull() pair to
3221 	 * get to the start of the mac header as we're guaranteed
3222 	 * to always start from here under eBPF.
3223 	 */
3224 	ret = bpf_skb_generic_push(skb, off, len);
3225 	if (likely(!ret)) {
3226 		skb->mac_header -= len;
3227 		skb->network_header -= len;
3228 		if (trans_same)
3229 			skb->transport_header = skb->network_header;
3230 	}
3231 
3232 	return ret;
3233 }
3234 
3235 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3236 {
3237 	bool trans_same = skb->transport_header == skb->network_header;
3238 	int ret;
3239 
3240 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3241 	ret = bpf_skb_generic_pop(skb, off, len);
3242 	if (likely(!ret)) {
3243 		skb->mac_header += len;
3244 		skb->network_header += len;
3245 		if (trans_same)
3246 			skb->transport_header = skb->network_header;
3247 	}
3248 
3249 	return ret;
3250 }
3251 
3252 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3253 {
3254 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3255 	u32 off = skb_mac_header_len(skb);
3256 	int ret;
3257 
3258 	ret = skb_cow(skb, len_diff);
3259 	if (unlikely(ret < 0))
3260 		return ret;
3261 
3262 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3263 	if (unlikely(ret < 0))
3264 		return ret;
3265 
3266 	if (skb_is_gso(skb)) {
3267 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3268 
3269 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3270 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3271 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3272 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3273 		}
3274 	}
3275 
3276 	skb->protocol = htons(ETH_P_IPV6);
3277 	skb_clear_hash(skb);
3278 
3279 	return 0;
3280 }
3281 
3282 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3283 {
3284 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3285 	u32 off = skb_mac_header_len(skb);
3286 	int ret;
3287 
3288 	ret = skb_unclone(skb, GFP_ATOMIC);
3289 	if (unlikely(ret < 0))
3290 		return ret;
3291 
3292 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3293 	if (unlikely(ret < 0))
3294 		return ret;
3295 
3296 	if (skb_is_gso(skb)) {
3297 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3298 
3299 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3300 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3301 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3302 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3303 		}
3304 	}
3305 
3306 	skb->protocol = htons(ETH_P_IP);
3307 	skb_clear_hash(skb);
3308 
3309 	return 0;
3310 }
3311 
3312 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3313 {
3314 	__be16 from_proto = skb->protocol;
3315 
3316 	if (from_proto == htons(ETH_P_IP) &&
3317 	      to_proto == htons(ETH_P_IPV6))
3318 		return bpf_skb_proto_4_to_6(skb);
3319 
3320 	if (from_proto == htons(ETH_P_IPV6) &&
3321 	      to_proto == htons(ETH_P_IP))
3322 		return bpf_skb_proto_6_to_4(skb);
3323 
3324 	return -ENOTSUPP;
3325 }
3326 
3327 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3328 	   u64, flags)
3329 {
3330 	int ret;
3331 
3332 	if (unlikely(flags))
3333 		return -EINVAL;
3334 
3335 	/* General idea is that this helper does the basic groundwork
3336 	 * needed for changing the protocol, and eBPF program fills the
3337 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3338 	 * and other helpers, rather than passing a raw buffer here.
3339 	 *
3340 	 * The rationale is to keep this minimal and without a need to
3341 	 * deal with raw packet data. F.e. even if we would pass buffers
3342 	 * here, the program still needs to call the bpf_lX_csum_replace()
3343 	 * helpers anyway. Plus, this way we keep also separation of
3344 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3345 	 * care of stores.
3346 	 *
3347 	 * Currently, additional options and extension header space are
3348 	 * not supported, but flags register is reserved so we can adapt
3349 	 * that. For offloads, we mark packet as dodgy, so that headers
3350 	 * need to be verified first.
3351 	 */
3352 	ret = bpf_skb_proto_xlat(skb, proto);
3353 	bpf_compute_data_pointers(skb);
3354 	return ret;
3355 }
3356 
3357 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3358 	.func		= bpf_skb_change_proto,
3359 	.gpl_only	= false,
3360 	.ret_type	= RET_INTEGER,
3361 	.arg1_type	= ARG_PTR_TO_CTX,
3362 	.arg2_type	= ARG_ANYTHING,
3363 	.arg3_type	= ARG_ANYTHING,
3364 };
3365 
3366 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3367 {
3368 	/* We only allow a restricted subset to be changed for now. */
3369 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3370 		     !skb_pkt_type_ok(pkt_type)))
3371 		return -EINVAL;
3372 
3373 	skb->pkt_type = pkt_type;
3374 	return 0;
3375 }
3376 
3377 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3378 	.func		= bpf_skb_change_type,
3379 	.gpl_only	= false,
3380 	.ret_type	= RET_INTEGER,
3381 	.arg1_type	= ARG_PTR_TO_CTX,
3382 	.arg2_type	= ARG_ANYTHING,
3383 };
3384 
3385 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3386 {
3387 	switch (skb->protocol) {
3388 	case htons(ETH_P_IP):
3389 		return sizeof(struct iphdr);
3390 	case htons(ETH_P_IPV6):
3391 		return sizeof(struct ipv6hdr);
3392 	default:
3393 		return ~0U;
3394 	}
3395 }
3396 
3397 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3398 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3399 
3400 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3401 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3402 
3403 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3404 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3405 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3406 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3407 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3408 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3409 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3410 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3411 
3412 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3413 			    u64 flags)
3414 {
3415 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3416 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3417 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3418 	unsigned int gso_type = SKB_GSO_DODGY;
3419 	int ret;
3420 
3421 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3422 		/* udp gso_size delineates datagrams, only allow if fixed */
3423 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3424 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3425 			return -ENOTSUPP;
3426 	}
3427 
3428 	ret = skb_cow_head(skb, len_diff);
3429 	if (unlikely(ret < 0))
3430 		return ret;
3431 
3432 	if (encap) {
3433 		if (skb->protocol != htons(ETH_P_IP) &&
3434 		    skb->protocol != htons(ETH_P_IPV6))
3435 			return -ENOTSUPP;
3436 
3437 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3438 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3439 			return -EINVAL;
3440 
3441 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3442 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3443 			return -EINVAL;
3444 
3445 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3446 		    inner_mac_len < ETH_HLEN)
3447 			return -EINVAL;
3448 
3449 		if (skb->encapsulation)
3450 			return -EALREADY;
3451 
3452 		mac_len = skb->network_header - skb->mac_header;
3453 		inner_net = skb->network_header;
3454 		if (inner_mac_len > len_diff)
3455 			return -EINVAL;
3456 		inner_trans = skb->transport_header;
3457 	}
3458 
3459 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3460 	if (unlikely(ret < 0))
3461 		return ret;
3462 
3463 	if (encap) {
3464 		skb->inner_mac_header = inner_net - inner_mac_len;
3465 		skb->inner_network_header = inner_net;
3466 		skb->inner_transport_header = inner_trans;
3467 
3468 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3469 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3470 		else
3471 			skb_set_inner_protocol(skb, skb->protocol);
3472 
3473 		skb->encapsulation = 1;
3474 		skb_set_network_header(skb, mac_len);
3475 
3476 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3477 			gso_type |= SKB_GSO_UDP_TUNNEL;
3478 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3479 			gso_type |= SKB_GSO_GRE;
3480 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3481 			gso_type |= SKB_GSO_IPXIP6;
3482 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3483 			gso_type |= SKB_GSO_IPXIP4;
3484 
3485 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3486 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3487 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3488 					sizeof(struct ipv6hdr) :
3489 					sizeof(struct iphdr);
3490 
3491 			skb_set_transport_header(skb, mac_len + nh_len);
3492 		}
3493 
3494 		/* Match skb->protocol to new outer l3 protocol */
3495 		if (skb->protocol == htons(ETH_P_IP) &&
3496 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3497 			skb->protocol = htons(ETH_P_IPV6);
3498 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3499 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3500 			skb->protocol = htons(ETH_P_IP);
3501 	}
3502 
3503 	if (skb_is_gso(skb)) {
3504 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3505 
3506 		/* Due to header grow, MSS needs to be downgraded. */
3507 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3508 			skb_decrease_gso_size(shinfo, len_diff);
3509 
3510 		/* Header must be checked, and gso_segs recomputed. */
3511 		shinfo->gso_type |= gso_type;
3512 		shinfo->gso_segs = 0;
3513 	}
3514 
3515 	return 0;
3516 }
3517 
3518 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3519 			      u64 flags)
3520 {
3521 	int ret;
3522 
3523 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3524 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3525 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3526 		return -EINVAL;
3527 
3528 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3529 		/* udp gso_size delineates datagrams, only allow if fixed */
3530 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3531 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3532 			return -ENOTSUPP;
3533 	}
3534 
3535 	ret = skb_unclone(skb, GFP_ATOMIC);
3536 	if (unlikely(ret < 0))
3537 		return ret;
3538 
3539 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3540 	if (unlikely(ret < 0))
3541 		return ret;
3542 
3543 	/* Match skb->protocol to new outer l3 protocol */
3544 	if (skb->protocol == htons(ETH_P_IP) &&
3545 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3546 		skb->protocol = htons(ETH_P_IPV6);
3547 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3548 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3549 		skb->protocol = htons(ETH_P_IP);
3550 
3551 	if (skb_is_gso(skb)) {
3552 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3553 
3554 		/* Due to header shrink, MSS can be upgraded. */
3555 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3556 			skb_increase_gso_size(shinfo, len_diff);
3557 
3558 		/* Header must be checked, and gso_segs recomputed. */
3559 		shinfo->gso_type |= SKB_GSO_DODGY;
3560 		shinfo->gso_segs = 0;
3561 	}
3562 
3563 	return 0;
3564 }
3565 
3566 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3567 
3568 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3569 	   u32, mode, u64, flags)
3570 {
3571 	u32 len_diff_abs = abs(len_diff);
3572 	bool shrink = len_diff < 0;
3573 	int ret = 0;
3574 
3575 	if (unlikely(flags || mode))
3576 		return -EINVAL;
3577 	if (unlikely(len_diff_abs > 0xfffU))
3578 		return -EFAULT;
3579 
3580 	if (!shrink) {
3581 		ret = skb_cow(skb, len_diff);
3582 		if (unlikely(ret < 0))
3583 			return ret;
3584 		__skb_push(skb, len_diff_abs);
3585 		memset(skb->data, 0, len_diff_abs);
3586 	} else {
3587 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3588 			return -ENOMEM;
3589 		__skb_pull(skb, len_diff_abs);
3590 	}
3591 	if (tls_sw_has_ctx_rx(skb->sk)) {
3592 		struct strp_msg *rxm = strp_msg(skb);
3593 
3594 		rxm->full_len += len_diff;
3595 	}
3596 	return ret;
3597 }
3598 
3599 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3600 	.func		= sk_skb_adjust_room,
3601 	.gpl_only	= false,
3602 	.ret_type	= RET_INTEGER,
3603 	.arg1_type	= ARG_PTR_TO_CTX,
3604 	.arg2_type	= ARG_ANYTHING,
3605 	.arg3_type	= ARG_ANYTHING,
3606 	.arg4_type	= ARG_ANYTHING,
3607 };
3608 
3609 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3610 	   u32, mode, u64, flags)
3611 {
3612 	u32 len_cur, len_diff_abs = abs(len_diff);
3613 	u32 len_min = bpf_skb_net_base_len(skb);
3614 	u32 len_max = BPF_SKB_MAX_LEN;
3615 	__be16 proto = skb->protocol;
3616 	bool shrink = len_diff < 0;
3617 	u32 off;
3618 	int ret;
3619 
3620 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3621 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3622 		return -EINVAL;
3623 	if (unlikely(len_diff_abs > 0xfffU))
3624 		return -EFAULT;
3625 	if (unlikely(proto != htons(ETH_P_IP) &&
3626 		     proto != htons(ETH_P_IPV6)))
3627 		return -ENOTSUPP;
3628 
3629 	off = skb_mac_header_len(skb);
3630 	switch (mode) {
3631 	case BPF_ADJ_ROOM_NET:
3632 		off += bpf_skb_net_base_len(skb);
3633 		break;
3634 	case BPF_ADJ_ROOM_MAC:
3635 		break;
3636 	default:
3637 		return -ENOTSUPP;
3638 	}
3639 
3640 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3641 		if (!shrink)
3642 			return -EINVAL;
3643 
3644 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3645 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3646 			len_min = sizeof(struct iphdr);
3647 			break;
3648 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3649 			len_min = sizeof(struct ipv6hdr);
3650 			break;
3651 		default:
3652 			return -EINVAL;
3653 		}
3654 	}
3655 
3656 	len_cur = skb->len - skb_network_offset(skb);
3657 	if ((shrink && (len_diff_abs >= len_cur ||
3658 			len_cur - len_diff_abs < len_min)) ||
3659 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3660 			 !skb_is_gso(skb))))
3661 		return -ENOTSUPP;
3662 
3663 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3664 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3665 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3666 		__skb_reset_checksum_unnecessary(skb);
3667 
3668 	bpf_compute_data_pointers(skb);
3669 	return ret;
3670 }
3671 
3672 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3673 	.func		= bpf_skb_adjust_room,
3674 	.gpl_only	= false,
3675 	.ret_type	= RET_INTEGER,
3676 	.arg1_type	= ARG_PTR_TO_CTX,
3677 	.arg2_type	= ARG_ANYTHING,
3678 	.arg3_type	= ARG_ANYTHING,
3679 	.arg4_type	= ARG_ANYTHING,
3680 };
3681 
3682 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3683 {
3684 	u32 min_len = skb_network_offset(skb);
3685 
3686 	if (skb_transport_header_was_set(skb))
3687 		min_len = skb_transport_offset(skb);
3688 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3689 		min_len = skb_checksum_start_offset(skb) +
3690 			  skb->csum_offset + sizeof(__sum16);
3691 	return min_len;
3692 }
3693 
3694 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3695 {
3696 	unsigned int old_len = skb->len;
3697 	int ret;
3698 
3699 	ret = __skb_grow_rcsum(skb, new_len);
3700 	if (!ret)
3701 		memset(skb->data + old_len, 0, new_len - old_len);
3702 	return ret;
3703 }
3704 
3705 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3706 {
3707 	return __skb_trim_rcsum(skb, new_len);
3708 }
3709 
3710 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3711 					u64 flags)
3712 {
3713 	u32 max_len = BPF_SKB_MAX_LEN;
3714 	u32 min_len = __bpf_skb_min_len(skb);
3715 	int ret;
3716 
3717 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3718 		return -EINVAL;
3719 	if (skb->encapsulation)
3720 		return -ENOTSUPP;
3721 
3722 	/* The basic idea of this helper is that it's performing the
3723 	 * needed work to either grow or trim an skb, and eBPF program
3724 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3725 	 * bpf_lX_csum_replace() and others rather than passing a raw
3726 	 * buffer here. This one is a slow path helper and intended
3727 	 * for replies with control messages.
3728 	 *
3729 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3730 	 * minimal and without protocol specifics so that we are able
3731 	 * to separate concerns as in bpf_skb_store_bytes() should only
3732 	 * be the one responsible for writing buffers.
3733 	 *
3734 	 * It's really expected to be a slow path operation here for
3735 	 * control message replies, so we're implicitly linearizing,
3736 	 * uncloning and drop offloads from the skb by this.
3737 	 */
3738 	ret = __bpf_try_make_writable(skb, skb->len);
3739 	if (!ret) {
3740 		if (new_len > skb->len)
3741 			ret = bpf_skb_grow_rcsum(skb, new_len);
3742 		else if (new_len < skb->len)
3743 			ret = bpf_skb_trim_rcsum(skb, new_len);
3744 		if (!ret && skb_is_gso(skb))
3745 			skb_gso_reset(skb);
3746 	}
3747 	return ret;
3748 }
3749 
3750 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3751 	   u64, flags)
3752 {
3753 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3754 
3755 	bpf_compute_data_pointers(skb);
3756 	return ret;
3757 }
3758 
3759 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3760 	.func		= bpf_skb_change_tail,
3761 	.gpl_only	= false,
3762 	.ret_type	= RET_INTEGER,
3763 	.arg1_type	= ARG_PTR_TO_CTX,
3764 	.arg2_type	= ARG_ANYTHING,
3765 	.arg3_type	= ARG_ANYTHING,
3766 };
3767 
3768 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3769 	   u64, flags)
3770 {
3771 	return __bpf_skb_change_tail(skb, new_len, flags);
3772 }
3773 
3774 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3775 	.func		= sk_skb_change_tail,
3776 	.gpl_only	= false,
3777 	.ret_type	= RET_INTEGER,
3778 	.arg1_type	= ARG_PTR_TO_CTX,
3779 	.arg2_type	= ARG_ANYTHING,
3780 	.arg3_type	= ARG_ANYTHING,
3781 };
3782 
3783 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3784 					u64 flags)
3785 {
3786 	u32 max_len = BPF_SKB_MAX_LEN;
3787 	u32 new_len = skb->len + head_room;
3788 	int ret;
3789 
3790 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3791 		     new_len < skb->len))
3792 		return -EINVAL;
3793 
3794 	ret = skb_cow(skb, head_room);
3795 	if (likely(!ret)) {
3796 		/* Idea for this helper is that we currently only
3797 		 * allow to expand on mac header. This means that
3798 		 * skb->protocol network header, etc, stay as is.
3799 		 * Compared to bpf_skb_change_tail(), we're more
3800 		 * flexible due to not needing to linearize or
3801 		 * reset GSO. Intention for this helper is to be
3802 		 * used by an L3 skb that needs to push mac header
3803 		 * for redirection into L2 device.
3804 		 */
3805 		__skb_push(skb, head_room);
3806 		memset(skb->data, 0, head_room);
3807 		skb_reset_mac_header(skb);
3808 		skb_reset_mac_len(skb);
3809 	}
3810 
3811 	return ret;
3812 }
3813 
3814 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3815 	   u64, flags)
3816 {
3817 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3818 
3819 	bpf_compute_data_pointers(skb);
3820 	return ret;
3821 }
3822 
3823 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3824 	.func		= bpf_skb_change_head,
3825 	.gpl_only	= false,
3826 	.ret_type	= RET_INTEGER,
3827 	.arg1_type	= ARG_PTR_TO_CTX,
3828 	.arg2_type	= ARG_ANYTHING,
3829 	.arg3_type	= ARG_ANYTHING,
3830 };
3831 
3832 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3833 	   u64, flags)
3834 {
3835 	return __bpf_skb_change_head(skb, head_room, flags);
3836 }
3837 
3838 static const struct bpf_func_proto sk_skb_change_head_proto = {
3839 	.func		= sk_skb_change_head,
3840 	.gpl_only	= false,
3841 	.ret_type	= RET_INTEGER,
3842 	.arg1_type	= ARG_PTR_TO_CTX,
3843 	.arg2_type	= ARG_ANYTHING,
3844 	.arg3_type	= ARG_ANYTHING,
3845 };
3846 
3847 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3848 {
3849 	return xdp_get_buff_len(xdp);
3850 }
3851 
3852 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3853 	.func		= bpf_xdp_get_buff_len,
3854 	.gpl_only	= false,
3855 	.ret_type	= RET_INTEGER,
3856 	.arg1_type	= ARG_PTR_TO_CTX,
3857 };
3858 
3859 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3860 
3861 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3862 	.func		= bpf_xdp_get_buff_len,
3863 	.gpl_only	= false,
3864 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3865 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3866 };
3867 
3868 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3869 {
3870 	return xdp_data_meta_unsupported(xdp) ? 0 :
3871 	       xdp->data - xdp->data_meta;
3872 }
3873 
3874 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3875 {
3876 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3877 	unsigned long metalen = xdp_get_metalen(xdp);
3878 	void *data_start = xdp_frame_end + metalen;
3879 	void *data = xdp->data + offset;
3880 
3881 	if (unlikely(data < data_start ||
3882 		     data > xdp->data_end - ETH_HLEN))
3883 		return -EINVAL;
3884 
3885 	if (metalen)
3886 		memmove(xdp->data_meta + offset,
3887 			xdp->data_meta, metalen);
3888 	xdp->data_meta += offset;
3889 	xdp->data = data;
3890 
3891 	return 0;
3892 }
3893 
3894 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3895 	.func		= bpf_xdp_adjust_head,
3896 	.gpl_only	= false,
3897 	.ret_type	= RET_INTEGER,
3898 	.arg1_type	= ARG_PTR_TO_CTX,
3899 	.arg2_type	= ARG_ANYTHING,
3900 };
3901 
3902 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3903 		      void *buf, unsigned long len, bool flush)
3904 {
3905 	unsigned long ptr_len, ptr_off = 0;
3906 	skb_frag_t *next_frag, *end_frag;
3907 	struct skb_shared_info *sinfo;
3908 	void *src, *dst;
3909 	u8 *ptr_buf;
3910 
3911 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3912 		src = flush ? buf : xdp->data + off;
3913 		dst = flush ? xdp->data + off : buf;
3914 		memcpy(dst, src, len);
3915 		return;
3916 	}
3917 
3918 	sinfo = xdp_get_shared_info_from_buff(xdp);
3919 	end_frag = &sinfo->frags[sinfo->nr_frags];
3920 	next_frag = &sinfo->frags[0];
3921 
3922 	ptr_len = xdp->data_end - xdp->data;
3923 	ptr_buf = xdp->data;
3924 
3925 	while (true) {
3926 		if (off < ptr_off + ptr_len) {
3927 			unsigned long copy_off = off - ptr_off;
3928 			unsigned long copy_len = min(len, ptr_len - copy_off);
3929 
3930 			src = flush ? buf : ptr_buf + copy_off;
3931 			dst = flush ? ptr_buf + copy_off : buf;
3932 			memcpy(dst, src, copy_len);
3933 
3934 			off += copy_len;
3935 			len -= copy_len;
3936 			buf += copy_len;
3937 		}
3938 
3939 		if (!len || next_frag == end_frag)
3940 			break;
3941 
3942 		ptr_off += ptr_len;
3943 		ptr_buf = skb_frag_address(next_frag);
3944 		ptr_len = skb_frag_size(next_frag);
3945 		next_frag++;
3946 	}
3947 }
3948 
3949 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3950 {
3951 	u32 size = xdp->data_end - xdp->data;
3952 	struct skb_shared_info *sinfo;
3953 	void *addr = xdp->data;
3954 	int i;
3955 
3956 	if (unlikely(offset > 0xffff || len > 0xffff))
3957 		return ERR_PTR(-EFAULT);
3958 
3959 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
3960 		return ERR_PTR(-EINVAL);
3961 
3962 	if (likely(offset < size)) /* linear area */
3963 		goto out;
3964 
3965 	sinfo = xdp_get_shared_info_from_buff(xdp);
3966 	offset -= size;
3967 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
3968 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
3969 
3970 		if  (offset < frag_size) {
3971 			addr = skb_frag_address(&sinfo->frags[i]);
3972 			size = frag_size;
3973 			break;
3974 		}
3975 		offset -= frag_size;
3976 	}
3977 out:
3978 	return offset + len <= size ? addr + offset : NULL;
3979 }
3980 
3981 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
3982 	   void *, buf, u32, len)
3983 {
3984 	void *ptr;
3985 
3986 	ptr = bpf_xdp_pointer(xdp, offset, len);
3987 	if (IS_ERR(ptr))
3988 		return PTR_ERR(ptr);
3989 
3990 	if (!ptr)
3991 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
3992 	else
3993 		memcpy(buf, ptr, len);
3994 
3995 	return 0;
3996 }
3997 
3998 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
3999 	.func		= bpf_xdp_load_bytes,
4000 	.gpl_only	= false,
4001 	.ret_type	= RET_INTEGER,
4002 	.arg1_type	= ARG_PTR_TO_CTX,
4003 	.arg2_type	= ARG_ANYTHING,
4004 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4005 	.arg4_type	= ARG_CONST_SIZE,
4006 };
4007 
4008 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4009 {
4010 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4011 }
4012 
4013 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4014 	   void *, buf, u32, len)
4015 {
4016 	void *ptr;
4017 
4018 	ptr = bpf_xdp_pointer(xdp, offset, len);
4019 	if (IS_ERR(ptr))
4020 		return PTR_ERR(ptr);
4021 
4022 	if (!ptr)
4023 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4024 	else
4025 		memcpy(ptr, buf, len);
4026 
4027 	return 0;
4028 }
4029 
4030 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4031 	.func		= bpf_xdp_store_bytes,
4032 	.gpl_only	= false,
4033 	.ret_type	= RET_INTEGER,
4034 	.arg1_type	= ARG_PTR_TO_CTX,
4035 	.arg2_type	= ARG_ANYTHING,
4036 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4037 	.arg4_type	= ARG_CONST_SIZE,
4038 };
4039 
4040 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4041 {
4042 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4043 }
4044 
4045 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4046 {
4047 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4048 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4049 	struct xdp_rxq_info *rxq = xdp->rxq;
4050 	unsigned int tailroom;
4051 
4052 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4053 		return -EOPNOTSUPP;
4054 
4055 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4056 	if (unlikely(offset > tailroom))
4057 		return -EINVAL;
4058 
4059 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4060 	skb_frag_size_add(frag, offset);
4061 	sinfo->xdp_frags_size += offset;
4062 
4063 	return 0;
4064 }
4065 
4066 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4067 {
4068 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4069 	int i, n_frags_free = 0, len_free = 0;
4070 
4071 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4072 		return -EINVAL;
4073 
4074 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4075 		skb_frag_t *frag = &sinfo->frags[i];
4076 		int shrink = min_t(int, offset, skb_frag_size(frag));
4077 
4078 		len_free += shrink;
4079 		offset -= shrink;
4080 
4081 		if (skb_frag_size(frag) == shrink) {
4082 			struct page *page = skb_frag_page(frag);
4083 
4084 			__xdp_return(page_address(page), &xdp->rxq->mem,
4085 				     false, NULL);
4086 			n_frags_free++;
4087 		} else {
4088 			skb_frag_size_sub(frag, shrink);
4089 			break;
4090 		}
4091 	}
4092 	sinfo->nr_frags -= n_frags_free;
4093 	sinfo->xdp_frags_size -= len_free;
4094 
4095 	if (unlikely(!sinfo->nr_frags)) {
4096 		xdp_buff_clear_frags_flag(xdp);
4097 		xdp->data_end -= offset;
4098 	}
4099 
4100 	return 0;
4101 }
4102 
4103 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4104 {
4105 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4106 	void *data_end = xdp->data_end + offset;
4107 
4108 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4109 		if (offset < 0)
4110 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4111 
4112 		return bpf_xdp_frags_increase_tail(xdp, offset);
4113 	}
4114 
4115 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4116 	if (unlikely(data_end > data_hard_end))
4117 		return -EINVAL;
4118 
4119 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4120 		return -EINVAL;
4121 
4122 	/* Clear memory area on grow, can contain uninit kernel memory */
4123 	if (offset > 0)
4124 		memset(xdp->data_end, 0, offset);
4125 
4126 	xdp->data_end = data_end;
4127 
4128 	return 0;
4129 }
4130 
4131 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4132 	.func		= bpf_xdp_adjust_tail,
4133 	.gpl_only	= false,
4134 	.ret_type	= RET_INTEGER,
4135 	.arg1_type	= ARG_PTR_TO_CTX,
4136 	.arg2_type	= ARG_ANYTHING,
4137 };
4138 
4139 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4140 {
4141 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4142 	void *meta = xdp->data_meta + offset;
4143 	unsigned long metalen = xdp->data - meta;
4144 
4145 	if (xdp_data_meta_unsupported(xdp))
4146 		return -ENOTSUPP;
4147 	if (unlikely(meta < xdp_frame_end ||
4148 		     meta > xdp->data))
4149 		return -EINVAL;
4150 	if (unlikely(xdp_metalen_invalid(metalen)))
4151 		return -EACCES;
4152 
4153 	xdp->data_meta = meta;
4154 
4155 	return 0;
4156 }
4157 
4158 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4159 	.func		= bpf_xdp_adjust_meta,
4160 	.gpl_only	= false,
4161 	.ret_type	= RET_INTEGER,
4162 	.arg1_type	= ARG_PTR_TO_CTX,
4163 	.arg2_type	= ARG_ANYTHING,
4164 };
4165 
4166 /**
4167  * DOC: xdp redirect
4168  *
4169  * XDP_REDIRECT works by a three-step process, implemented in the functions
4170  * below:
4171  *
4172  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4173  *    of the redirect and store it (along with some other metadata) in a per-CPU
4174  *    struct bpf_redirect_info.
4175  *
4176  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4177  *    call xdp_do_redirect() which will use the information in struct
4178  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4179  *    bulk queue structure.
4180  *
4181  * 3. Before exiting its NAPI poll loop, the driver will call
4182  *    xdp_do_flush(), which will flush all the different bulk queues,
4183  *    thus completing the redirect. Note that xdp_do_flush() must be
4184  *    called before napi_complete_done() in the driver, as the
4185  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4186  *    through to the xdp_do_flush() call for RCU protection of all
4187  *    in-kernel data structures.
4188  */
4189 /*
4190  * Pointers to the map entries will be kept around for this whole sequence of
4191  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4192  * the core code; instead, the RCU protection relies on everything happening
4193  * inside a single NAPI poll sequence, which means it's between a pair of calls
4194  * to local_bh_disable()/local_bh_enable().
4195  *
4196  * The map entries are marked as __rcu and the map code makes sure to
4197  * dereference those pointers with rcu_dereference_check() in a way that works
4198  * for both sections that to hold an rcu_read_lock() and sections that are
4199  * called from NAPI without a separate rcu_read_lock(). The code below does not
4200  * use RCU annotations, but relies on those in the map code.
4201  */
4202 void xdp_do_flush(void)
4203 {
4204 	__dev_flush();
4205 	__cpu_map_flush();
4206 	__xsk_map_flush();
4207 }
4208 EXPORT_SYMBOL_GPL(xdp_do_flush);
4209 
4210 void bpf_clear_redirect_map(struct bpf_map *map)
4211 {
4212 	struct bpf_redirect_info *ri;
4213 	int cpu;
4214 
4215 	for_each_possible_cpu(cpu) {
4216 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4217 		/* Avoid polluting remote cacheline due to writes if
4218 		 * not needed. Once we pass this test, we need the
4219 		 * cmpxchg() to make sure it hasn't been changed in
4220 		 * the meantime by remote CPU.
4221 		 */
4222 		if (unlikely(READ_ONCE(ri->map) == map))
4223 			cmpxchg(&ri->map, map, NULL);
4224 	}
4225 }
4226 
4227 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4228 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4229 
4230 u32 xdp_master_redirect(struct xdp_buff *xdp)
4231 {
4232 	struct net_device *master, *slave;
4233 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4234 
4235 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4236 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4237 	if (slave && slave != xdp->rxq->dev) {
4238 		/* The target device is different from the receiving device, so
4239 		 * redirect it to the new device.
4240 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4241 		 * drivers to unmap the packet from their rx ring.
4242 		 */
4243 		ri->tgt_index = slave->ifindex;
4244 		ri->map_id = INT_MAX;
4245 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4246 		return XDP_REDIRECT;
4247 	}
4248 	return XDP_TX;
4249 }
4250 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4251 
4252 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4253 					struct net_device *dev,
4254 					struct xdp_buff *xdp,
4255 					struct bpf_prog *xdp_prog)
4256 {
4257 	enum bpf_map_type map_type = ri->map_type;
4258 	void *fwd = ri->tgt_value;
4259 	u32 map_id = ri->map_id;
4260 	int err;
4261 
4262 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4263 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4264 
4265 	err = __xsk_map_redirect(fwd, xdp);
4266 	if (unlikely(err))
4267 		goto err;
4268 
4269 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4270 	return 0;
4271 err:
4272 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4273 	return err;
4274 }
4275 
4276 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4277 						   struct net_device *dev,
4278 						   struct xdp_frame *xdpf,
4279 						   struct bpf_prog *xdp_prog)
4280 {
4281 	enum bpf_map_type map_type = ri->map_type;
4282 	void *fwd = ri->tgt_value;
4283 	u32 map_id = ri->map_id;
4284 	struct bpf_map *map;
4285 	int err;
4286 
4287 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4288 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4289 
4290 	if (unlikely(!xdpf)) {
4291 		err = -EOVERFLOW;
4292 		goto err;
4293 	}
4294 
4295 	switch (map_type) {
4296 	case BPF_MAP_TYPE_DEVMAP:
4297 		fallthrough;
4298 	case BPF_MAP_TYPE_DEVMAP_HASH:
4299 		map = READ_ONCE(ri->map);
4300 		if (unlikely(map)) {
4301 			WRITE_ONCE(ri->map, NULL);
4302 			err = dev_map_enqueue_multi(xdpf, dev, map,
4303 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4304 		} else {
4305 			err = dev_map_enqueue(fwd, xdpf, dev);
4306 		}
4307 		break;
4308 	case BPF_MAP_TYPE_CPUMAP:
4309 		err = cpu_map_enqueue(fwd, xdpf, dev);
4310 		break;
4311 	case BPF_MAP_TYPE_UNSPEC:
4312 		if (map_id == INT_MAX) {
4313 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4314 			if (unlikely(!fwd)) {
4315 				err = -EINVAL;
4316 				break;
4317 			}
4318 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4319 			break;
4320 		}
4321 		fallthrough;
4322 	default:
4323 		err = -EBADRQC;
4324 	}
4325 
4326 	if (unlikely(err))
4327 		goto err;
4328 
4329 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4330 	return 0;
4331 err:
4332 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4333 	return err;
4334 }
4335 
4336 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4337 		    struct bpf_prog *xdp_prog)
4338 {
4339 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4340 	enum bpf_map_type map_type = ri->map_type;
4341 
4342 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4343 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4344 
4345 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4346 				       xdp_prog);
4347 }
4348 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4349 
4350 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4351 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4352 {
4353 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4354 	enum bpf_map_type map_type = ri->map_type;
4355 
4356 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4357 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4358 
4359 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4360 }
4361 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4362 
4363 static int xdp_do_generic_redirect_map(struct net_device *dev,
4364 				       struct sk_buff *skb,
4365 				       struct xdp_buff *xdp,
4366 				       struct bpf_prog *xdp_prog,
4367 				       void *fwd,
4368 				       enum bpf_map_type map_type, u32 map_id)
4369 {
4370 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4371 	struct bpf_map *map;
4372 	int err;
4373 
4374 	switch (map_type) {
4375 	case BPF_MAP_TYPE_DEVMAP:
4376 		fallthrough;
4377 	case BPF_MAP_TYPE_DEVMAP_HASH:
4378 		map = READ_ONCE(ri->map);
4379 		if (unlikely(map)) {
4380 			WRITE_ONCE(ri->map, NULL);
4381 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4382 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4383 		} else {
4384 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4385 		}
4386 		if (unlikely(err))
4387 			goto err;
4388 		break;
4389 	case BPF_MAP_TYPE_XSKMAP:
4390 		err = xsk_generic_rcv(fwd, xdp);
4391 		if (err)
4392 			goto err;
4393 		consume_skb(skb);
4394 		break;
4395 	case BPF_MAP_TYPE_CPUMAP:
4396 		err = cpu_map_generic_redirect(fwd, skb);
4397 		if (unlikely(err))
4398 			goto err;
4399 		break;
4400 	default:
4401 		err = -EBADRQC;
4402 		goto err;
4403 	}
4404 
4405 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4406 	return 0;
4407 err:
4408 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4409 	return err;
4410 }
4411 
4412 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4413 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4414 {
4415 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4416 	enum bpf_map_type map_type = ri->map_type;
4417 	void *fwd = ri->tgt_value;
4418 	u32 map_id = ri->map_id;
4419 	int err;
4420 
4421 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4422 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4423 
4424 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4425 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4426 		if (unlikely(!fwd)) {
4427 			err = -EINVAL;
4428 			goto err;
4429 		}
4430 
4431 		err = xdp_ok_fwd_dev(fwd, skb->len);
4432 		if (unlikely(err))
4433 			goto err;
4434 
4435 		skb->dev = fwd;
4436 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4437 		generic_xdp_tx(skb, xdp_prog);
4438 		return 0;
4439 	}
4440 
4441 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4442 err:
4443 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4444 	return err;
4445 }
4446 
4447 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4448 {
4449 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4450 
4451 	if (unlikely(flags))
4452 		return XDP_ABORTED;
4453 
4454 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4455 	 * by map_idr) is used for ifindex based XDP redirect.
4456 	 */
4457 	ri->tgt_index = ifindex;
4458 	ri->map_id = INT_MAX;
4459 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4460 
4461 	return XDP_REDIRECT;
4462 }
4463 
4464 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4465 	.func           = bpf_xdp_redirect,
4466 	.gpl_only       = false,
4467 	.ret_type       = RET_INTEGER,
4468 	.arg1_type      = ARG_ANYTHING,
4469 	.arg2_type      = ARG_ANYTHING,
4470 };
4471 
4472 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4473 	   u64, flags)
4474 {
4475 	return map->ops->map_redirect(map, key, flags);
4476 }
4477 
4478 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4479 	.func           = bpf_xdp_redirect_map,
4480 	.gpl_only       = false,
4481 	.ret_type       = RET_INTEGER,
4482 	.arg1_type      = ARG_CONST_MAP_PTR,
4483 	.arg2_type      = ARG_ANYTHING,
4484 	.arg3_type      = ARG_ANYTHING,
4485 };
4486 
4487 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4488 				  unsigned long off, unsigned long len)
4489 {
4490 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4491 
4492 	if (unlikely(!ptr))
4493 		return len;
4494 	if (ptr != dst_buff)
4495 		memcpy(dst_buff, ptr, len);
4496 
4497 	return 0;
4498 }
4499 
4500 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4501 	   u64, flags, void *, meta, u64, meta_size)
4502 {
4503 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4504 
4505 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4506 		return -EINVAL;
4507 	if (unlikely(!skb || skb_size > skb->len))
4508 		return -EFAULT;
4509 
4510 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4511 				bpf_skb_copy);
4512 }
4513 
4514 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4515 	.func		= bpf_skb_event_output,
4516 	.gpl_only	= true,
4517 	.ret_type	= RET_INTEGER,
4518 	.arg1_type	= ARG_PTR_TO_CTX,
4519 	.arg2_type	= ARG_CONST_MAP_PTR,
4520 	.arg3_type	= ARG_ANYTHING,
4521 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4522 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4523 };
4524 
4525 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4526 
4527 const struct bpf_func_proto bpf_skb_output_proto = {
4528 	.func		= bpf_skb_event_output,
4529 	.gpl_only	= true,
4530 	.ret_type	= RET_INTEGER,
4531 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4532 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4533 	.arg2_type	= ARG_CONST_MAP_PTR,
4534 	.arg3_type	= ARG_ANYTHING,
4535 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4536 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4537 };
4538 
4539 static unsigned short bpf_tunnel_key_af(u64 flags)
4540 {
4541 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4542 }
4543 
4544 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4545 	   u32, size, u64, flags)
4546 {
4547 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4548 	u8 compat[sizeof(struct bpf_tunnel_key)];
4549 	void *to_orig = to;
4550 	int err;
4551 
4552 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4553 					 BPF_F_TUNINFO_FLAGS)))) {
4554 		err = -EINVAL;
4555 		goto err_clear;
4556 	}
4557 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4558 		err = -EPROTO;
4559 		goto err_clear;
4560 	}
4561 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4562 		err = -EINVAL;
4563 		switch (size) {
4564 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4565 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4566 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4567 			goto set_compat;
4568 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4569 			/* Fixup deprecated structure layouts here, so we have
4570 			 * a common path later on.
4571 			 */
4572 			if (ip_tunnel_info_af(info) != AF_INET)
4573 				goto err_clear;
4574 set_compat:
4575 			to = (struct bpf_tunnel_key *)compat;
4576 			break;
4577 		default:
4578 			goto err_clear;
4579 		}
4580 	}
4581 
4582 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4583 	to->tunnel_tos = info->key.tos;
4584 	to->tunnel_ttl = info->key.ttl;
4585 	if (flags & BPF_F_TUNINFO_FLAGS)
4586 		to->tunnel_flags = info->key.tun_flags;
4587 	else
4588 		to->tunnel_ext = 0;
4589 
4590 	if (flags & BPF_F_TUNINFO_IPV6) {
4591 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4592 		       sizeof(to->remote_ipv6));
4593 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4594 		       sizeof(to->local_ipv6));
4595 		to->tunnel_label = be32_to_cpu(info->key.label);
4596 	} else {
4597 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4598 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4599 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4600 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4601 		to->tunnel_label = 0;
4602 	}
4603 
4604 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4605 		memcpy(to_orig, to, size);
4606 
4607 	return 0;
4608 err_clear:
4609 	memset(to_orig, 0, size);
4610 	return err;
4611 }
4612 
4613 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4614 	.func		= bpf_skb_get_tunnel_key,
4615 	.gpl_only	= false,
4616 	.ret_type	= RET_INTEGER,
4617 	.arg1_type	= ARG_PTR_TO_CTX,
4618 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4619 	.arg3_type	= ARG_CONST_SIZE,
4620 	.arg4_type	= ARG_ANYTHING,
4621 };
4622 
4623 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4624 {
4625 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4626 	int err;
4627 
4628 	if (unlikely(!info ||
4629 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4630 		err = -ENOENT;
4631 		goto err_clear;
4632 	}
4633 	if (unlikely(size < info->options_len)) {
4634 		err = -ENOMEM;
4635 		goto err_clear;
4636 	}
4637 
4638 	ip_tunnel_info_opts_get(to, info);
4639 	if (size > info->options_len)
4640 		memset(to + info->options_len, 0, size - info->options_len);
4641 
4642 	return info->options_len;
4643 err_clear:
4644 	memset(to, 0, size);
4645 	return err;
4646 }
4647 
4648 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4649 	.func		= bpf_skb_get_tunnel_opt,
4650 	.gpl_only	= false,
4651 	.ret_type	= RET_INTEGER,
4652 	.arg1_type	= ARG_PTR_TO_CTX,
4653 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4654 	.arg3_type	= ARG_CONST_SIZE,
4655 };
4656 
4657 static struct metadata_dst __percpu *md_dst;
4658 
4659 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4660 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4661 {
4662 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4663 	u8 compat[sizeof(struct bpf_tunnel_key)];
4664 	struct ip_tunnel_info *info;
4665 
4666 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4667 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4668 			       BPF_F_NO_TUNNEL_KEY)))
4669 		return -EINVAL;
4670 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4671 		switch (size) {
4672 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4673 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4674 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4675 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4676 			/* Fixup deprecated structure layouts here, so we have
4677 			 * a common path later on.
4678 			 */
4679 			memcpy(compat, from, size);
4680 			memset(compat + size, 0, sizeof(compat) - size);
4681 			from = (const struct bpf_tunnel_key *) compat;
4682 			break;
4683 		default:
4684 			return -EINVAL;
4685 		}
4686 	}
4687 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4688 		     from->tunnel_ext))
4689 		return -EINVAL;
4690 
4691 	skb_dst_drop(skb);
4692 	dst_hold((struct dst_entry *) md);
4693 	skb_dst_set(skb, (struct dst_entry *) md);
4694 
4695 	info = &md->u.tun_info;
4696 	memset(info, 0, sizeof(*info));
4697 	info->mode = IP_TUNNEL_INFO_TX;
4698 
4699 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4700 	if (flags & BPF_F_DONT_FRAGMENT)
4701 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4702 	if (flags & BPF_F_ZERO_CSUM_TX)
4703 		info->key.tun_flags &= ~TUNNEL_CSUM;
4704 	if (flags & BPF_F_SEQ_NUMBER)
4705 		info->key.tun_flags |= TUNNEL_SEQ;
4706 	if (flags & BPF_F_NO_TUNNEL_KEY)
4707 		info->key.tun_flags &= ~TUNNEL_KEY;
4708 
4709 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4710 	info->key.tos = from->tunnel_tos;
4711 	info->key.ttl = from->tunnel_ttl;
4712 
4713 	if (flags & BPF_F_TUNINFO_IPV6) {
4714 		info->mode |= IP_TUNNEL_INFO_IPV6;
4715 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4716 		       sizeof(from->remote_ipv6));
4717 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4718 		       sizeof(from->local_ipv6));
4719 		info->key.label = cpu_to_be32(from->tunnel_label) &
4720 				  IPV6_FLOWLABEL_MASK;
4721 	} else {
4722 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4723 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4724 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4725 	}
4726 
4727 	return 0;
4728 }
4729 
4730 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4731 	.func		= bpf_skb_set_tunnel_key,
4732 	.gpl_only	= false,
4733 	.ret_type	= RET_INTEGER,
4734 	.arg1_type	= ARG_PTR_TO_CTX,
4735 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4736 	.arg3_type	= ARG_CONST_SIZE,
4737 	.arg4_type	= ARG_ANYTHING,
4738 };
4739 
4740 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4741 	   const u8 *, from, u32, size)
4742 {
4743 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4744 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4745 
4746 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4747 		return -EINVAL;
4748 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4749 		return -ENOMEM;
4750 
4751 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4752 
4753 	return 0;
4754 }
4755 
4756 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4757 	.func		= bpf_skb_set_tunnel_opt,
4758 	.gpl_only	= false,
4759 	.ret_type	= RET_INTEGER,
4760 	.arg1_type	= ARG_PTR_TO_CTX,
4761 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4762 	.arg3_type	= ARG_CONST_SIZE,
4763 };
4764 
4765 static const struct bpf_func_proto *
4766 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4767 {
4768 	if (!md_dst) {
4769 		struct metadata_dst __percpu *tmp;
4770 
4771 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4772 						METADATA_IP_TUNNEL,
4773 						GFP_KERNEL);
4774 		if (!tmp)
4775 			return NULL;
4776 		if (cmpxchg(&md_dst, NULL, tmp))
4777 			metadata_dst_free_percpu(tmp);
4778 	}
4779 
4780 	switch (which) {
4781 	case BPF_FUNC_skb_set_tunnel_key:
4782 		return &bpf_skb_set_tunnel_key_proto;
4783 	case BPF_FUNC_skb_set_tunnel_opt:
4784 		return &bpf_skb_set_tunnel_opt_proto;
4785 	default:
4786 		return NULL;
4787 	}
4788 }
4789 
4790 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4791 	   u32, idx)
4792 {
4793 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4794 	struct cgroup *cgrp;
4795 	struct sock *sk;
4796 
4797 	sk = skb_to_full_sk(skb);
4798 	if (!sk || !sk_fullsock(sk))
4799 		return -ENOENT;
4800 	if (unlikely(idx >= array->map.max_entries))
4801 		return -E2BIG;
4802 
4803 	cgrp = READ_ONCE(array->ptrs[idx]);
4804 	if (unlikely(!cgrp))
4805 		return -EAGAIN;
4806 
4807 	return sk_under_cgroup_hierarchy(sk, cgrp);
4808 }
4809 
4810 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4811 	.func		= bpf_skb_under_cgroup,
4812 	.gpl_only	= false,
4813 	.ret_type	= RET_INTEGER,
4814 	.arg1_type	= ARG_PTR_TO_CTX,
4815 	.arg2_type	= ARG_CONST_MAP_PTR,
4816 	.arg3_type	= ARG_ANYTHING,
4817 };
4818 
4819 #ifdef CONFIG_SOCK_CGROUP_DATA
4820 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4821 {
4822 	struct cgroup *cgrp;
4823 
4824 	sk = sk_to_full_sk(sk);
4825 	if (!sk || !sk_fullsock(sk))
4826 		return 0;
4827 
4828 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4829 	return cgroup_id(cgrp);
4830 }
4831 
4832 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4833 {
4834 	return __bpf_sk_cgroup_id(skb->sk);
4835 }
4836 
4837 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4838 	.func           = bpf_skb_cgroup_id,
4839 	.gpl_only       = false,
4840 	.ret_type       = RET_INTEGER,
4841 	.arg1_type      = ARG_PTR_TO_CTX,
4842 };
4843 
4844 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4845 					      int ancestor_level)
4846 {
4847 	struct cgroup *ancestor;
4848 	struct cgroup *cgrp;
4849 
4850 	sk = sk_to_full_sk(sk);
4851 	if (!sk || !sk_fullsock(sk))
4852 		return 0;
4853 
4854 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4855 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4856 	if (!ancestor)
4857 		return 0;
4858 
4859 	return cgroup_id(ancestor);
4860 }
4861 
4862 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4863 	   ancestor_level)
4864 {
4865 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4866 }
4867 
4868 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4869 	.func           = bpf_skb_ancestor_cgroup_id,
4870 	.gpl_only       = false,
4871 	.ret_type       = RET_INTEGER,
4872 	.arg1_type      = ARG_PTR_TO_CTX,
4873 	.arg2_type      = ARG_ANYTHING,
4874 };
4875 
4876 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4877 {
4878 	return __bpf_sk_cgroup_id(sk);
4879 }
4880 
4881 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4882 	.func           = bpf_sk_cgroup_id,
4883 	.gpl_only       = false,
4884 	.ret_type       = RET_INTEGER,
4885 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4886 };
4887 
4888 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4889 {
4890 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4891 }
4892 
4893 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4894 	.func           = bpf_sk_ancestor_cgroup_id,
4895 	.gpl_only       = false,
4896 	.ret_type       = RET_INTEGER,
4897 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4898 	.arg2_type      = ARG_ANYTHING,
4899 };
4900 #endif
4901 
4902 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4903 				  unsigned long off, unsigned long len)
4904 {
4905 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4906 
4907 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4908 	return 0;
4909 }
4910 
4911 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4912 	   u64, flags, void *, meta, u64, meta_size)
4913 {
4914 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4915 
4916 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4917 		return -EINVAL;
4918 
4919 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4920 		return -EFAULT;
4921 
4922 	return bpf_event_output(map, flags, meta, meta_size, xdp,
4923 				xdp_size, bpf_xdp_copy);
4924 }
4925 
4926 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4927 	.func		= bpf_xdp_event_output,
4928 	.gpl_only	= true,
4929 	.ret_type	= RET_INTEGER,
4930 	.arg1_type	= ARG_PTR_TO_CTX,
4931 	.arg2_type	= ARG_CONST_MAP_PTR,
4932 	.arg3_type	= ARG_ANYTHING,
4933 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4934 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4935 };
4936 
4937 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
4938 
4939 const struct bpf_func_proto bpf_xdp_output_proto = {
4940 	.func		= bpf_xdp_event_output,
4941 	.gpl_only	= true,
4942 	.ret_type	= RET_INTEGER,
4943 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4944 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
4945 	.arg2_type	= ARG_CONST_MAP_PTR,
4946 	.arg3_type	= ARG_ANYTHING,
4947 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4948 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4949 };
4950 
4951 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4952 {
4953 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
4954 }
4955 
4956 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4957 	.func           = bpf_get_socket_cookie,
4958 	.gpl_only       = false,
4959 	.ret_type       = RET_INTEGER,
4960 	.arg1_type      = ARG_PTR_TO_CTX,
4961 };
4962 
4963 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4964 {
4965 	return __sock_gen_cookie(ctx->sk);
4966 }
4967 
4968 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4969 	.func		= bpf_get_socket_cookie_sock_addr,
4970 	.gpl_only	= false,
4971 	.ret_type	= RET_INTEGER,
4972 	.arg1_type	= ARG_PTR_TO_CTX,
4973 };
4974 
4975 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
4976 {
4977 	return __sock_gen_cookie(ctx);
4978 }
4979 
4980 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
4981 	.func		= bpf_get_socket_cookie_sock,
4982 	.gpl_only	= false,
4983 	.ret_type	= RET_INTEGER,
4984 	.arg1_type	= ARG_PTR_TO_CTX,
4985 };
4986 
4987 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
4988 {
4989 	return sk ? sock_gen_cookie(sk) : 0;
4990 }
4991 
4992 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
4993 	.func		= bpf_get_socket_ptr_cookie,
4994 	.gpl_only	= false,
4995 	.ret_type	= RET_INTEGER,
4996 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
4997 };
4998 
4999 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5000 {
5001 	return __sock_gen_cookie(ctx->sk);
5002 }
5003 
5004 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5005 	.func		= bpf_get_socket_cookie_sock_ops,
5006 	.gpl_only	= false,
5007 	.ret_type	= RET_INTEGER,
5008 	.arg1_type	= ARG_PTR_TO_CTX,
5009 };
5010 
5011 static u64 __bpf_get_netns_cookie(struct sock *sk)
5012 {
5013 	const struct net *net = sk ? sock_net(sk) : &init_net;
5014 
5015 	return net->net_cookie;
5016 }
5017 
5018 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5019 {
5020 	return __bpf_get_netns_cookie(ctx);
5021 }
5022 
5023 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5024 	.func		= bpf_get_netns_cookie_sock,
5025 	.gpl_only	= false,
5026 	.ret_type	= RET_INTEGER,
5027 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5028 };
5029 
5030 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5031 {
5032 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5033 }
5034 
5035 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5036 	.func		= bpf_get_netns_cookie_sock_addr,
5037 	.gpl_only	= false,
5038 	.ret_type	= RET_INTEGER,
5039 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5040 };
5041 
5042 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5043 {
5044 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5045 }
5046 
5047 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5048 	.func		= bpf_get_netns_cookie_sock_ops,
5049 	.gpl_only	= false,
5050 	.ret_type	= RET_INTEGER,
5051 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5052 };
5053 
5054 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5055 {
5056 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5057 }
5058 
5059 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5060 	.func		= bpf_get_netns_cookie_sk_msg,
5061 	.gpl_only	= false,
5062 	.ret_type	= RET_INTEGER,
5063 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5064 };
5065 
5066 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5067 {
5068 	struct sock *sk = sk_to_full_sk(skb->sk);
5069 	kuid_t kuid;
5070 
5071 	if (!sk || !sk_fullsock(sk))
5072 		return overflowuid;
5073 	kuid = sock_net_uid(sock_net(sk), sk);
5074 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5075 }
5076 
5077 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5078 	.func           = bpf_get_socket_uid,
5079 	.gpl_only       = false,
5080 	.ret_type       = RET_INTEGER,
5081 	.arg1_type      = ARG_PTR_TO_CTX,
5082 };
5083 
5084 static int sol_socket_sockopt(struct sock *sk, int optname,
5085 			      char *optval, int *optlen,
5086 			      bool getopt)
5087 {
5088 	switch (optname) {
5089 	case SO_REUSEADDR:
5090 	case SO_SNDBUF:
5091 	case SO_RCVBUF:
5092 	case SO_KEEPALIVE:
5093 	case SO_PRIORITY:
5094 	case SO_REUSEPORT:
5095 	case SO_RCVLOWAT:
5096 	case SO_MARK:
5097 	case SO_MAX_PACING_RATE:
5098 	case SO_BINDTOIFINDEX:
5099 	case SO_TXREHASH:
5100 		if (*optlen != sizeof(int))
5101 			return -EINVAL;
5102 		break;
5103 	case SO_BINDTODEVICE:
5104 		break;
5105 	default:
5106 		return -EINVAL;
5107 	}
5108 
5109 	if (getopt) {
5110 		if (optname == SO_BINDTODEVICE)
5111 			return -EINVAL;
5112 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5113 				     KERNEL_SOCKPTR(optval),
5114 				     KERNEL_SOCKPTR(optlen));
5115 	}
5116 
5117 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5118 			     KERNEL_SOCKPTR(optval), *optlen);
5119 }
5120 
5121 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5122 				  char *optval, int optlen)
5123 {
5124 	struct tcp_sock *tp = tcp_sk(sk);
5125 	unsigned long timeout;
5126 	int val;
5127 
5128 	if (optlen != sizeof(int))
5129 		return -EINVAL;
5130 
5131 	val = *(int *)optval;
5132 
5133 	/* Only some options are supported */
5134 	switch (optname) {
5135 	case TCP_BPF_IW:
5136 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5137 			return -EINVAL;
5138 		tcp_snd_cwnd_set(tp, val);
5139 		break;
5140 	case TCP_BPF_SNDCWND_CLAMP:
5141 		if (val <= 0)
5142 			return -EINVAL;
5143 		tp->snd_cwnd_clamp = val;
5144 		tp->snd_ssthresh = val;
5145 		break;
5146 	case TCP_BPF_DELACK_MAX:
5147 		timeout = usecs_to_jiffies(val);
5148 		if (timeout > TCP_DELACK_MAX ||
5149 		    timeout < TCP_TIMEOUT_MIN)
5150 			return -EINVAL;
5151 		inet_csk(sk)->icsk_delack_max = timeout;
5152 		break;
5153 	case TCP_BPF_RTO_MIN:
5154 		timeout = usecs_to_jiffies(val);
5155 		if (timeout > TCP_RTO_MIN ||
5156 		    timeout < TCP_TIMEOUT_MIN)
5157 			return -EINVAL;
5158 		inet_csk(sk)->icsk_rto_min = timeout;
5159 		break;
5160 	default:
5161 		return -EINVAL;
5162 	}
5163 
5164 	return 0;
5165 }
5166 
5167 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5168 				      int *optlen, bool getopt)
5169 {
5170 	struct tcp_sock *tp;
5171 	int ret;
5172 
5173 	if (*optlen < 2)
5174 		return -EINVAL;
5175 
5176 	if (getopt) {
5177 		if (!inet_csk(sk)->icsk_ca_ops)
5178 			return -EINVAL;
5179 		/* BPF expects NULL-terminated tcp-cc string */
5180 		optval[--(*optlen)] = '\0';
5181 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5182 					 KERNEL_SOCKPTR(optval),
5183 					 KERNEL_SOCKPTR(optlen));
5184 	}
5185 
5186 	/* "cdg" is the only cc that alloc a ptr
5187 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5188 	 * overwrite this ptr after switching to cdg.
5189 	 */
5190 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5191 		return -ENOTSUPP;
5192 
5193 	/* It stops this looping
5194 	 *
5195 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5196 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5197 	 *
5198 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5199 	 * in order to break the loop when both .init
5200 	 * are the same bpf prog.
5201 	 *
5202 	 * This applies even the second bpf_setsockopt(tcp_cc)
5203 	 * does not cause a loop.  This limits only the first
5204 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5205 	 * pick a fallback cc (eg. peer does not support ECN)
5206 	 * and the second '.init' cannot fallback to
5207 	 * another.
5208 	 */
5209 	tp = tcp_sk(sk);
5210 	if (tp->bpf_chg_cc_inprogress)
5211 		return -EBUSY;
5212 
5213 	tp->bpf_chg_cc_inprogress = 1;
5214 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5215 				KERNEL_SOCKPTR(optval), *optlen);
5216 	tp->bpf_chg_cc_inprogress = 0;
5217 	return ret;
5218 }
5219 
5220 static int sol_tcp_sockopt(struct sock *sk, int optname,
5221 			   char *optval, int *optlen,
5222 			   bool getopt)
5223 {
5224 	if (sk->sk_protocol != IPPROTO_TCP)
5225 		return -EINVAL;
5226 
5227 	switch (optname) {
5228 	case TCP_NODELAY:
5229 	case TCP_MAXSEG:
5230 	case TCP_KEEPIDLE:
5231 	case TCP_KEEPINTVL:
5232 	case TCP_KEEPCNT:
5233 	case TCP_SYNCNT:
5234 	case TCP_WINDOW_CLAMP:
5235 	case TCP_THIN_LINEAR_TIMEOUTS:
5236 	case TCP_USER_TIMEOUT:
5237 	case TCP_NOTSENT_LOWAT:
5238 	case TCP_SAVE_SYN:
5239 		if (*optlen != sizeof(int))
5240 			return -EINVAL;
5241 		break;
5242 	case TCP_CONGESTION:
5243 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5244 	case TCP_SAVED_SYN:
5245 		if (*optlen < 1)
5246 			return -EINVAL;
5247 		break;
5248 	default:
5249 		if (getopt)
5250 			return -EINVAL;
5251 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5252 	}
5253 
5254 	if (getopt) {
5255 		if (optname == TCP_SAVED_SYN) {
5256 			struct tcp_sock *tp = tcp_sk(sk);
5257 
5258 			if (!tp->saved_syn ||
5259 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5260 				return -EINVAL;
5261 			memcpy(optval, tp->saved_syn->data, *optlen);
5262 			/* It cannot free tp->saved_syn here because it
5263 			 * does not know if the user space still needs it.
5264 			 */
5265 			return 0;
5266 		}
5267 
5268 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5269 					 KERNEL_SOCKPTR(optval),
5270 					 KERNEL_SOCKPTR(optlen));
5271 	}
5272 
5273 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5274 				 KERNEL_SOCKPTR(optval), *optlen);
5275 }
5276 
5277 static int sol_ip_sockopt(struct sock *sk, int optname,
5278 			  char *optval, int *optlen,
5279 			  bool getopt)
5280 {
5281 	if (sk->sk_family != AF_INET)
5282 		return -EINVAL;
5283 
5284 	switch (optname) {
5285 	case IP_TOS:
5286 		if (*optlen != sizeof(int))
5287 			return -EINVAL;
5288 		break;
5289 	default:
5290 		return -EINVAL;
5291 	}
5292 
5293 	if (getopt)
5294 		return do_ip_getsockopt(sk, SOL_IP, optname,
5295 					KERNEL_SOCKPTR(optval),
5296 					KERNEL_SOCKPTR(optlen));
5297 
5298 	return do_ip_setsockopt(sk, SOL_IP, optname,
5299 				KERNEL_SOCKPTR(optval), *optlen);
5300 }
5301 
5302 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5303 			    char *optval, int *optlen,
5304 			    bool getopt)
5305 {
5306 	if (sk->sk_family != AF_INET6)
5307 		return -EINVAL;
5308 
5309 	switch (optname) {
5310 	case IPV6_TCLASS:
5311 	case IPV6_AUTOFLOWLABEL:
5312 		if (*optlen != sizeof(int))
5313 			return -EINVAL;
5314 		break;
5315 	default:
5316 		return -EINVAL;
5317 	}
5318 
5319 	if (getopt)
5320 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5321 						      KERNEL_SOCKPTR(optval),
5322 						      KERNEL_SOCKPTR(optlen));
5323 
5324 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5325 					      KERNEL_SOCKPTR(optval), *optlen);
5326 }
5327 
5328 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5329 			    char *optval, int optlen)
5330 {
5331 	if (!sk_fullsock(sk))
5332 		return -EINVAL;
5333 
5334 	if (level == SOL_SOCKET)
5335 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5336 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5337 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5338 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5339 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5340 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5341 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5342 
5343 	return -EINVAL;
5344 }
5345 
5346 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5347 			   char *optval, int optlen)
5348 {
5349 	if (sk_fullsock(sk))
5350 		sock_owned_by_me(sk);
5351 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5352 }
5353 
5354 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5355 			    char *optval, int optlen)
5356 {
5357 	int err, saved_optlen = optlen;
5358 
5359 	if (!sk_fullsock(sk)) {
5360 		err = -EINVAL;
5361 		goto done;
5362 	}
5363 
5364 	if (level == SOL_SOCKET)
5365 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5366 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5367 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5368 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5369 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5370 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5371 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5372 	else
5373 		err = -EINVAL;
5374 
5375 done:
5376 	if (err)
5377 		optlen = 0;
5378 	if (optlen < saved_optlen)
5379 		memset(optval + optlen, 0, saved_optlen - optlen);
5380 	return err;
5381 }
5382 
5383 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5384 			   char *optval, int optlen)
5385 {
5386 	if (sk_fullsock(sk))
5387 		sock_owned_by_me(sk);
5388 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5389 }
5390 
5391 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5392 	   int, optname, char *, optval, int, optlen)
5393 {
5394 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5395 }
5396 
5397 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5398 	.func		= bpf_sk_setsockopt,
5399 	.gpl_only	= false,
5400 	.ret_type	= RET_INTEGER,
5401 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5402 	.arg2_type	= ARG_ANYTHING,
5403 	.arg3_type	= ARG_ANYTHING,
5404 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5405 	.arg5_type	= ARG_CONST_SIZE,
5406 };
5407 
5408 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5409 	   int, optname, char *, optval, int, optlen)
5410 {
5411 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5412 }
5413 
5414 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5415 	.func		= bpf_sk_getsockopt,
5416 	.gpl_only	= false,
5417 	.ret_type	= RET_INTEGER,
5418 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5419 	.arg2_type	= ARG_ANYTHING,
5420 	.arg3_type	= ARG_ANYTHING,
5421 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5422 	.arg5_type	= ARG_CONST_SIZE,
5423 };
5424 
5425 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5426 	   int, optname, char *, optval, int, optlen)
5427 {
5428 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5429 }
5430 
5431 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5432 	.func		= bpf_unlocked_sk_setsockopt,
5433 	.gpl_only	= false,
5434 	.ret_type	= RET_INTEGER,
5435 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5436 	.arg2_type	= ARG_ANYTHING,
5437 	.arg3_type	= ARG_ANYTHING,
5438 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5439 	.arg5_type	= ARG_CONST_SIZE,
5440 };
5441 
5442 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5443 	   int, optname, char *, optval, int, optlen)
5444 {
5445 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5446 }
5447 
5448 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5449 	.func		= bpf_unlocked_sk_getsockopt,
5450 	.gpl_only	= false,
5451 	.ret_type	= RET_INTEGER,
5452 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5453 	.arg2_type	= ARG_ANYTHING,
5454 	.arg3_type	= ARG_ANYTHING,
5455 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5456 	.arg5_type	= ARG_CONST_SIZE,
5457 };
5458 
5459 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5460 	   int, level, int, optname, char *, optval, int, optlen)
5461 {
5462 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5463 }
5464 
5465 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5466 	.func		= bpf_sock_addr_setsockopt,
5467 	.gpl_only	= false,
5468 	.ret_type	= RET_INTEGER,
5469 	.arg1_type	= ARG_PTR_TO_CTX,
5470 	.arg2_type	= ARG_ANYTHING,
5471 	.arg3_type	= ARG_ANYTHING,
5472 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5473 	.arg5_type	= ARG_CONST_SIZE,
5474 };
5475 
5476 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5477 	   int, level, int, optname, char *, optval, int, optlen)
5478 {
5479 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5480 }
5481 
5482 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5483 	.func		= bpf_sock_addr_getsockopt,
5484 	.gpl_only	= false,
5485 	.ret_type	= RET_INTEGER,
5486 	.arg1_type	= ARG_PTR_TO_CTX,
5487 	.arg2_type	= ARG_ANYTHING,
5488 	.arg3_type	= ARG_ANYTHING,
5489 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5490 	.arg5_type	= ARG_CONST_SIZE,
5491 };
5492 
5493 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5494 	   int, level, int, optname, char *, optval, int, optlen)
5495 {
5496 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5497 }
5498 
5499 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5500 	.func		= bpf_sock_ops_setsockopt,
5501 	.gpl_only	= false,
5502 	.ret_type	= RET_INTEGER,
5503 	.arg1_type	= ARG_PTR_TO_CTX,
5504 	.arg2_type	= ARG_ANYTHING,
5505 	.arg3_type	= ARG_ANYTHING,
5506 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5507 	.arg5_type	= ARG_CONST_SIZE,
5508 };
5509 
5510 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5511 				int optname, const u8 **start)
5512 {
5513 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5514 	const u8 *hdr_start;
5515 	int ret;
5516 
5517 	if (syn_skb) {
5518 		/* sk is a request_sock here */
5519 
5520 		if (optname == TCP_BPF_SYN) {
5521 			hdr_start = syn_skb->data;
5522 			ret = tcp_hdrlen(syn_skb);
5523 		} else if (optname == TCP_BPF_SYN_IP) {
5524 			hdr_start = skb_network_header(syn_skb);
5525 			ret = skb_network_header_len(syn_skb) +
5526 				tcp_hdrlen(syn_skb);
5527 		} else {
5528 			/* optname == TCP_BPF_SYN_MAC */
5529 			hdr_start = skb_mac_header(syn_skb);
5530 			ret = skb_mac_header_len(syn_skb) +
5531 				skb_network_header_len(syn_skb) +
5532 				tcp_hdrlen(syn_skb);
5533 		}
5534 	} else {
5535 		struct sock *sk = bpf_sock->sk;
5536 		struct saved_syn *saved_syn;
5537 
5538 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5539 			/* synack retransmit. bpf_sock->syn_skb will
5540 			 * not be available.  It has to resort to
5541 			 * saved_syn (if it is saved).
5542 			 */
5543 			saved_syn = inet_reqsk(sk)->saved_syn;
5544 		else
5545 			saved_syn = tcp_sk(sk)->saved_syn;
5546 
5547 		if (!saved_syn)
5548 			return -ENOENT;
5549 
5550 		if (optname == TCP_BPF_SYN) {
5551 			hdr_start = saved_syn->data +
5552 				saved_syn->mac_hdrlen +
5553 				saved_syn->network_hdrlen;
5554 			ret = saved_syn->tcp_hdrlen;
5555 		} else if (optname == TCP_BPF_SYN_IP) {
5556 			hdr_start = saved_syn->data +
5557 				saved_syn->mac_hdrlen;
5558 			ret = saved_syn->network_hdrlen +
5559 				saved_syn->tcp_hdrlen;
5560 		} else {
5561 			/* optname == TCP_BPF_SYN_MAC */
5562 
5563 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5564 			if (!saved_syn->mac_hdrlen)
5565 				return -ENOENT;
5566 
5567 			hdr_start = saved_syn->data;
5568 			ret = saved_syn->mac_hdrlen +
5569 				saved_syn->network_hdrlen +
5570 				saved_syn->tcp_hdrlen;
5571 		}
5572 	}
5573 
5574 	*start = hdr_start;
5575 	return ret;
5576 }
5577 
5578 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5579 	   int, level, int, optname, char *, optval, int, optlen)
5580 {
5581 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5582 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5583 		int ret, copy_len = 0;
5584 		const u8 *start;
5585 
5586 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5587 		if (ret > 0) {
5588 			copy_len = ret;
5589 			if (optlen < copy_len) {
5590 				copy_len = optlen;
5591 				ret = -ENOSPC;
5592 			}
5593 
5594 			memcpy(optval, start, copy_len);
5595 		}
5596 
5597 		/* Zero out unused buffer at the end */
5598 		memset(optval + copy_len, 0, optlen - copy_len);
5599 
5600 		return ret;
5601 	}
5602 
5603 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5604 }
5605 
5606 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5607 	.func		= bpf_sock_ops_getsockopt,
5608 	.gpl_only	= false,
5609 	.ret_type	= RET_INTEGER,
5610 	.arg1_type	= ARG_PTR_TO_CTX,
5611 	.arg2_type	= ARG_ANYTHING,
5612 	.arg3_type	= ARG_ANYTHING,
5613 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5614 	.arg5_type	= ARG_CONST_SIZE,
5615 };
5616 
5617 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5618 	   int, argval)
5619 {
5620 	struct sock *sk = bpf_sock->sk;
5621 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5622 
5623 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5624 		return -EINVAL;
5625 
5626 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5627 
5628 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5629 }
5630 
5631 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5632 	.func		= bpf_sock_ops_cb_flags_set,
5633 	.gpl_only	= false,
5634 	.ret_type	= RET_INTEGER,
5635 	.arg1_type	= ARG_PTR_TO_CTX,
5636 	.arg2_type	= ARG_ANYTHING,
5637 };
5638 
5639 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5640 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5641 
5642 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5643 	   int, addr_len)
5644 {
5645 #ifdef CONFIG_INET
5646 	struct sock *sk = ctx->sk;
5647 	u32 flags = BIND_FROM_BPF;
5648 	int err;
5649 
5650 	err = -EINVAL;
5651 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5652 		return err;
5653 	if (addr->sa_family == AF_INET) {
5654 		if (addr_len < sizeof(struct sockaddr_in))
5655 			return err;
5656 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5657 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5658 		return __inet_bind(sk, addr, addr_len, flags);
5659 #if IS_ENABLED(CONFIG_IPV6)
5660 	} else if (addr->sa_family == AF_INET6) {
5661 		if (addr_len < SIN6_LEN_RFC2133)
5662 			return err;
5663 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5664 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5665 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5666 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5667 		 */
5668 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5669 #endif /* CONFIG_IPV6 */
5670 	}
5671 #endif /* CONFIG_INET */
5672 
5673 	return -EAFNOSUPPORT;
5674 }
5675 
5676 static const struct bpf_func_proto bpf_bind_proto = {
5677 	.func		= bpf_bind,
5678 	.gpl_only	= false,
5679 	.ret_type	= RET_INTEGER,
5680 	.arg1_type	= ARG_PTR_TO_CTX,
5681 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5682 	.arg3_type	= ARG_CONST_SIZE,
5683 };
5684 
5685 #ifdef CONFIG_XFRM
5686 
5687 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5688     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5689 
5690 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5691 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5692 
5693 #endif
5694 
5695 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5696 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5697 {
5698 	const struct sec_path *sp = skb_sec_path(skb);
5699 	const struct xfrm_state *x;
5700 
5701 	if (!sp || unlikely(index >= sp->len || flags))
5702 		goto err_clear;
5703 
5704 	x = sp->xvec[index];
5705 
5706 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5707 		goto err_clear;
5708 
5709 	to->reqid = x->props.reqid;
5710 	to->spi = x->id.spi;
5711 	to->family = x->props.family;
5712 	to->ext = 0;
5713 
5714 	if (to->family == AF_INET6) {
5715 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5716 		       sizeof(to->remote_ipv6));
5717 	} else {
5718 		to->remote_ipv4 = x->props.saddr.a4;
5719 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5720 	}
5721 
5722 	return 0;
5723 err_clear:
5724 	memset(to, 0, size);
5725 	return -EINVAL;
5726 }
5727 
5728 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5729 	.func		= bpf_skb_get_xfrm_state,
5730 	.gpl_only	= false,
5731 	.ret_type	= RET_INTEGER,
5732 	.arg1_type	= ARG_PTR_TO_CTX,
5733 	.arg2_type	= ARG_ANYTHING,
5734 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5735 	.arg4_type	= ARG_CONST_SIZE,
5736 	.arg5_type	= ARG_ANYTHING,
5737 };
5738 #endif
5739 
5740 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5741 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5742 {
5743 	params->h_vlan_TCI = 0;
5744 	params->h_vlan_proto = 0;
5745 	if (mtu)
5746 		params->mtu_result = mtu; /* union with tot_len */
5747 
5748 	return 0;
5749 }
5750 #endif
5751 
5752 #if IS_ENABLED(CONFIG_INET)
5753 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5754 			       u32 flags, bool check_mtu)
5755 {
5756 	struct fib_nh_common *nhc;
5757 	struct in_device *in_dev;
5758 	struct neighbour *neigh;
5759 	struct net_device *dev;
5760 	struct fib_result res;
5761 	struct flowi4 fl4;
5762 	u32 mtu = 0;
5763 	int err;
5764 
5765 	dev = dev_get_by_index_rcu(net, params->ifindex);
5766 	if (unlikely(!dev))
5767 		return -ENODEV;
5768 
5769 	/* verify forwarding is enabled on this interface */
5770 	in_dev = __in_dev_get_rcu(dev);
5771 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5772 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5773 
5774 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5775 		fl4.flowi4_iif = 1;
5776 		fl4.flowi4_oif = params->ifindex;
5777 	} else {
5778 		fl4.flowi4_iif = params->ifindex;
5779 		fl4.flowi4_oif = 0;
5780 	}
5781 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5782 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5783 	fl4.flowi4_flags = 0;
5784 
5785 	fl4.flowi4_proto = params->l4_protocol;
5786 	fl4.daddr = params->ipv4_dst;
5787 	fl4.saddr = params->ipv4_src;
5788 	fl4.fl4_sport = params->sport;
5789 	fl4.fl4_dport = params->dport;
5790 	fl4.flowi4_multipath_hash = 0;
5791 
5792 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5793 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5794 		struct fib_table *tb;
5795 
5796 		if (flags & BPF_FIB_LOOKUP_TBID) {
5797 			tbid = params->tbid;
5798 			/* zero out for vlan output */
5799 			params->tbid = 0;
5800 		}
5801 
5802 		tb = fib_get_table(net, tbid);
5803 		if (unlikely(!tb))
5804 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5805 
5806 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5807 	} else {
5808 		fl4.flowi4_mark = 0;
5809 		fl4.flowi4_secid = 0;
5810 		fl4.flowi4_tun_key.tun_id = 0;
5811 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5812 
5813 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5814 	}
5815 
5816 	if (err) {
5817 		/* map fib lookup errors to RTN_ type */
5818 		if (err == -EINVAL)
5819 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5820 		if (err == -EHOSTUNREACH)
5821 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5822 		if (err == -EACCES)
5823 			return BPF_FIB_LKUP_RET_PROHIBIT;
5824 
5825 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5826 	}
5827 
5828 	if (res.type != RTN_UNICAST)
5829 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5830 
5831 	if (fib_info_num_path(res.fi) > 1)
5832 		fib_select_path(net, &res, &fl4, NULL);
5833 
5834 	if (check_mtu) {
5835 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5836 		if (params->tot_len > mtu) {
5837 			params->mtu_result = mtu; /* union with tot_len */
5838 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5839 		}
5840 	}
5841 
5842 	nhc = res.nhc;
5843 
5844 	/* do not handle lwt encaps right now */
5845 	if (nhc->nhc_lwtstate)
5846 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5847 
5848 	dev = nhc->nhc_dev;
5849 
5850 	params->rt_metric = res.fi->fib_priority;
5851 	params->ifindex = dev->ifindex;
5852 
5853 	/* xdp and cls_bpf programs are run in RCU-bh so
5854 	 * rcu_read_lock_bh is not needed here
5855 	 */
5856 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5857 		if (nhc->nhc_gw_family)
5858 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5859 	} else {
5860 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5861 
5862 		params->family = AF_INET6;
5863 		*dst = nhc->nhc_gw.ipv6;
5864 	}
5865 
5866 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5867 		goto set_fwd_params;
5868 
5869 	if (likely(nhc->nhc_gw_family != AF_INET6))
5870 		neigh = __ipv4_neigh_lookup_noref(dev,
5871 						  (__force u32)params->ipv4_dst);
5872 	else
5873 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5874 
5875 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5876 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5877 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5878 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5879 
5880 set_fwd_params:
5881 	return bpf_fib_set_fwd_params(params, mtu);
5882 }
5883 #endif
5884 
5885 #if IS_ENABLED(CONFIG_IPV6)
5886 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5887 			       u32 flags, bool check_mtu)
5888 {
5889 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5890 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5891 	struct fib6_result res = {};
5892 	struct neighbour *neigh;
5893 	struct net_device *dev;
5894 	struct inet6_dev *idev;
5895 	struct flowi6 fl6;
5896 	int strict = 0;
5897 	int oif, err;
5898 	u32 mtu = 0;
5899 
5900 	/* link local addresses are never forwarded */
5901 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5902 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5903 
5904 	dev = dev_get_by_index_rcu(net, params->ifindex);
5905 	if (unlikely(!dev))
5906 		return -ENODEV;
5907 
5908 	idev = __in6_dev_get_safely(dev);
5909 	if (unlikely(!idev || !idev->cnf.forwarding))
5910 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5911 
5912 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5913 		fl6.flowi6_iif = 1;
5914 		oif = fl6.flowi6_oif = params->ifindex;
5915 	} else {
5916 		oif = fl6.flowi6_iif = params->ifindex;
5917 		fl6.flowi6_oif = 0;
5918 		strict = RT6_LOOKUP_F_HAS_SADDR;
5919 	}
5920 	fl6.flowlabel = params->flowinfo;
5921 	fl6.flowi6_scope = 0;
5922 	fl6.flowi6_flags = 0;
5923 	fl6.mp_hash = 0;
5924 
5925 	fl6.flowi6_proto = params->l4_protocol;
5926 	fl6.daddr = *dst;
5927 	fl6.saddr = *src;
5928 	fl6.fl6_sport = params->sport;
5929 	fl6.fl6_dport = params->dport;
5930 
5931 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5932 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5933 		struct fib6_table *tb;
5934 
5935 		if (flags & BPF_FIB_LOOKUP_TBID) {
5936 			tbid = params->tbid;
5937 			/* zero out for vlan output */
5938 			params->tbid = 0;
5939 		}
5940 
5941 		tb = ipv6_stub->fib6_get_table(net, tbid);
5942 		if (unlikely(!tb))
5943 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5944 
5945 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
5946 						   strict);
5947 	} else {
5948 		fl6.flowi6_mark = 0;
5949 		fl6.flowi6_secid = 0;
5950 		fl6.flowi6_tun_key.tun_id = 0;
5951 		fl6.flowi6_uid = sock_net_uid(net, NULL);
5952 
5953 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
5954 	}
5955 
5956 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
5957 		     res.f6i == net->ipv6.fib6_null_entry))
5958 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5959 
5960 	switch (res.fib6_type) {
5961 	/* only unicast is forwarded */
5962 	case RTN_UNICAST:
5963 		break;
5964 	case RTN_BLACKHOLE:
5965 		return BPF_FIB_LKUP_RET_BLACKHOLE;
5966 	case RTN_UNREACHABLE:
5967 		return BPF_FIB_LKUP_RET_UNREACHABLE;
5968 	case RTN_PROHIBIT:
5969 		return BPF_FIB_LKUP_RET_PROHIBIT;
5970 	default:
5971 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5972 	}
5973 
5974 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
5975 				    fl6.flowi6_oif != 0, NULL, strict);
5976 
5977 	if (check_mtu) {
5978 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
5979 		if (params->tot_len > mtu) {
5980 			params->mtu_result = mtu; /* union with tot_len */
5981 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5982 		}
5983 	}
5984 
5985 	if (res.nh->fib_nh_lws)
5986 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5987 
5988 	if (res.nh->fib_nh_gw_family)
5989 		*dst = res.nh->fib_nh_gw6;
5990 
5991 	dev = res.nh->fib_nh_dev;
5992 	params->rt_metric = res.f6i->fib6_metric;
5993 	params->ifindex = dev->ifindex;
5994 
5995 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5996 		goto set_fwd_params;
5997 
5998 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
5999 	 * not needed here.
6000 	 */
6001 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6002 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6003 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6004 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6005 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6006 
6007 set_fwd_params:
6008 	return bpf_fib_set_fwd_params(params, mtu);
6009 }
6010 #endif
6011 
6012 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6013 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID)
6014 
6015 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6016 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6017 {
6018 	if (plen < sizeof(*params))
6019 		return -EINVAL;
6020 
6021 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6022 		return -EINVAL;
6023 
6024 	switch (params->family) {
6025 #if IS_ENABLED(CONFIG_INET)
6026 	case AF_INET:
6027 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6028 					   flags, true);
6029 #endif
6030 #if IS_ENABLED(CONFIG_IPV6)
6031 	case AF_INET6:
6032 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6033 					   flags, true);
6034 #endif
6035 	}
6036 	return -EAFNOSUPPORT;
6037 }
6038 
6039 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6040 	.func		= bpf_xdp_fib_lookup,
6041 	.gpl_only	= true,
6042 	.ret_type	= RET_INTEGER,
6043 	.arg1_type      = ARG_PTR_TO_CTX,
6044 	.arg2_type      = ARG_PTR_TO_MEM,
6045 	.arg3_type      = ARG_CONST_SIZE,
6046 	.arg4_type	= ARG_ANYTHING,
6047 };
6048 
6049 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6050 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6051 {
6052 	struct net *net = dev_net(skb->dev);
6053 	int rc = -EAFNOSUPPORT;
6054 	bool check_mtu = false;
6055 
6056 	if (plen < sizeof(*params))
6057 		return -EINVAL;
6058 
6059 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6060 		return -EINVAL;
6061 
6062 	if (params->tot_len)
6063 		check_mtu = true;
6064 
6065 	switch (params->family) {
6066 #if IS_ENABLED(CONFIG_INET)
6067 	case AF_INET:
6068 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6069 		break;
6070 #endif
6071 #if IS_ENABLED(CONFIG_IPV6)
6072 	case AF_INET6:
6073 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6074 		break;
6075 #endif
6076 	}
6077 
6078 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6079 		struct net_device *dev;
6080 
6081 		/* When tot_len isn't provided by user, check skb
6082 		 * against MTU of FIB lookup resulting net_device
6083 		 */
6084 		dev = dev_get_by_index_rcu(net, params->ifindex);
6085 		if (!is_skb_forwardable(dev, skb))
6086 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6087 
6088 		params->mtu_result = dev->mtu; /* union with tot_len */
6089 	}
6090 
6091 	return rc;
6092 }
6093 
6094 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6095 	.func		= bpf_skb_fib_lookup,
6096 	.gpl_only	= true,
6097 	.ret_type	= RET_INTEGER,
6098 	.arg1_type      = ARG_PTR_TO_CTX,
6099 	.arg2_type      = ARG_PTR_TO_MEM,
6100 	.arg3_type      = ARG_CONST_SIZE,
6101 	.arg4_type	= ARG_ANYTHING,
6102 };
6103 
6104 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6105 					    u32 ifindex)
6106 {
6107 	struct net *netns = dev_net(dev_curr);
6108 
6109 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6110 	if (ifindex == 0)
6111 		return dev_curr;
6112 
6113 	return dev_get_by_index_rcu(netns, ifindex);
6114 }
6115 
6116 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6117 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6118 {
6119 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6120 	struct net_device *dev = skb->dev;
6121 	int skb_len, dev_len;
6122 	int mtu;
6123 
6124 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6125 		return -EINVAL;
6126 
6127 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6128 		return -EINVAL;
6129 
6130 	dev = __dev_via_ifindex(dev, ifindex);
6131 	if (unlikely(!dev))
6132 		return -ENODEV;
6133 
6134 	mtu = READ_ONCE(dev->mtu);
6135 
6136 	dev_len = mtu + dev->hard_header_len;
6137 
6138 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6139 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6140 
6141 	skb_len += len_diff; /* minus result pass check */
6142 	if (skb_len <= dev_len) {
6143 		ret = BPF_MTU_CHK_RET_SUCCESS;
6144 		goto out;
6145 	}
6146 	/* At this point, skb->len exceed MTU, but as it include length of all
6147 	 * segments, it can still be below MTU.  The SKB can possibly get
6148 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6149 	 * must choose if segs are to be MTU checked.
6150 	 */
6151 	if (skb_is_gso(skb)) {
6152 		ret = BPF_MTU_CHK_RET_SUCCESS;
6153 
6154 		if (flags & BPF_MTU_CHK_SEGS &&
6155 		    !skb_gso_validate_network_len(skb, mtu))
6156 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6157 	}
6158 out:
6159 	/* BPF verifier guarantees valid pointer */
6160 	*mtu_len = mtu;
6161 
6162 	return ret;
6163 }
6164 
6165 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6166 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6167 {
6168 	struct net_device *dev = xdp->rxq->dev;
6169 	int xdp_len = xdp->data_end - xdp->data;
6170 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6171 	int mtu, dev_len;
6172 
6173 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6174 	if (unlikely(flags))
6175 		return -EINVAL;
6176 
6177 	dev = __dev_via_ifindex(dev, ifindex);
6178 	if (unlikely(!dev))
6179 		return -ENODEV;
6180 
6181 	mtu = READ_ONCE(dev->mtu);
6182 
6183 	/* Add L2-header as dev MTU is L3 size */
6184 	dev_len = mtu + dev->hard_header_len;
6185 
6186 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6187 	if (*mtu_len)
6188 		xdp_len = *mtu_len + dev->hard_header_len;
6189 
6190 	xdp_len += len_diff; /* minus result pass check */
6191 	if (xdp_len > dev_len)
6192 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6193 
6194 	/* BPF verifier guarantees valid pointer */
6195 	*mtu_len = mtu;
6196 
6197 	return ret;
6198 }
6199 
6200 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6201 	.func		= bpf_skb_check_mtu,
6202 	.gpl_only	= true,
6203 	.ret_type	= RET_INTEGER,
6204 	.arg1_type      = ARG_PTR_TO_CTX,
6205 	.arg2_type      = ARG_ANYTHING,
6206 	.arg3_type      = ARG_PTR_TO_INT,
6207 	.arg4_type      = ARG_ANYTHING,
6208 	.arg5_type      = ARG_ANYTHING,
6209 };
6210 
6211 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6212 	.func		= bpf_xdp_check_mtu,
6213 	.gpl_only	= true,
6214 	.ret_type	= RET_INTEGER,
6215 	.arg1_type      = ARG_PTR_TO_CTX,
6216 	.arg2_type      = ARG_ANYTHING,
6217 	.arg3_type      = ARG_PTR_TO_INT,
6218 	.arg4_type      = ARG_ANYTHING,
6219 	.arg5_type      = ARG_ANYTHING,
6220 };
6221 
6222 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6223 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6224 {
6225 	int err;
6226 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6227 
6228 	if (!seg6_validate_srh(srh, len, false))
6229 		return -EINVAL;
6230 
6231 	switch (type) {
6232 	case BPF_LWT_ENCAP_SEG6_INLINE:
6233 		if (skb->protocol != htons(ETH_P_IPV6))
6234 			return -EBADMSG;
6235 
6236 		err = seg6_do_srh_inline(skb, srh);
6237 		break;
6238 	case BPF_LWT_ENCAP_SEG6:
6239 		skb_reset_inner_headers(skb);
6240 		skb->encapsulation = 1;
6241 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6242 		break;
6243 	default:
6244 		return -EINVAL;
6245 	}
6246 
6247 	bpf_compute_data_pointers(skb);
6248 	if (err)
6249 		return err;
6250 
6251 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6252 
6253 	return seg6_lookup_nexthop(skb, NULL, 0);
6254 }
6255 #endif /* CONFIG_IPV6_SEG6_BPF */
6256 
6257 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6258 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6259 			     bool ingress)
6260 {
6261 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6262 }
6263 #endif
6264 
6265 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6266 	   u32, len)
6267 {
6268 	switch (type) {
6269 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6270 	case BPF_LWT_ENCAP_SEG6:
6271 	case BPF_LWT_ENCAP_SEG6_INLINE:
6272 		return bpf_push_seg6_encap(skb, type, hdr, len);
6273 #endif
6274 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6275 	case BPF_LWT_ENCAP_IP:
6276 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6277 #endif
6278 	default:
6279 		return -EINVAL;
6280 	}
6281 }
6282 
6283 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6284 	   void *, hdr, u32, len)
6285 {
6286 	switch (type) {
6287 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6288 	case BPF_LWT_ENCAP_IP:
6289 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6290 #endif
6291 	default:
6292 		return -EINVAL;
6293 	}
6294 }
6295 
6296 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6297 	.func		= bpf_lwt_in_push_encap,
6298 	.gpl_only	= false,
6299 	.ret_type	= RET_INTEGER,
6300 	.arg1_type	= ARG_PTR_TO_CTX,
6301 	.arg2_type	= ARG_ANYTHING,
6302 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6303 	.arg4_type	= ARG_CONST_SIZE
6304 };
6305 
6306 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6307 	.func		= bpf_lwt_xmit_push_encap,
6308 	.gpl_only	= false,
6309 	.ret_type	= RET_INTEGER,
6310 	.arg1_type	= ARG_PTR_TO_CTX,
6311 	.arg2_type	= ARG_ANYTHING,
6312 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6313 	.arg4_type	= ARG_CONST_SIZE
6314 };
6315 
6316 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6317 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6318 	   const void *, from, u32, len)
6319 {
6320 	struct seg6_bpf_srh_state *srh_state =
6321 		this_cpu_ptr(&seg6_bpf_srh_states);
6322 	struct ipv6_sr_hdr *srh = srh_state->srh;
6323 	void *srh_tlvs, *srh_end, *ptr;
6324 	int srhoff = 0;
6325 
6326 	if (srh == NULL)
6327 		return -EINVAL;
6328 
6329 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6330 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6331 
6332 	ptr = skb->data + offset;
6333 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6334 		srh_state->valid = false;
6335 	else if (ptr < (void *)&srh->flags ||
6336 		 ptr + len > (void *)&srh->segments)
6337 		return -EFAULT;
6338 
6339 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6340 		return -EFAULT;
6341 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6342 		return -EINVAL;
6343 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6344 
6345 	memcpy(skb->data + offset, from, len);
6346 	return 0;
6347 }
6348 
6349 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6350 	.func		= bpf_lwt_seg6_store_bytes,
6351 	.gpl_only	= false,
6352 	.ret_type	= RET_INTEGER,
6353 	.arg1_type	= ARG_PTR_TO_CTX,
6354 	.arg2_type	= ARG_ANYTHING,
6355 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6356 	.arg4_type	= ARG_CONST_SIZE
6357 };
6358 
6359 static void bpf_update_srh_state(struct sk_buff *skb)
6360 {
6361 	struct seg6_bpf_srh_state *srh_state =
6362 		this_cpu_ptr(&seg6_bpf_srh_states);
6363 	int srhoff = 0;
6364 
6365 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6366 		srh_state->srh = NULL;
6367 	} else {
6368 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6369 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6370 		srh_state->valid = true;
6371 	}
6372 }
6373 
6374 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6375 	   u32, action, void *, param, u32, param_len)
6376 {
6377 	struct seg6_bpf_srh_state *srh_state =
6378 		this_cpu_ptr(&seg6_bpf_srh_states);
6379 	int hdroff = 0;
6380 	int err;
6381 
6382 	switch (action) {
6383 	case SEG6_LOCAL_ACTION_END_X:
6384 		if (!seg6_bpf_has_valid_srh(skb))
6385 			return -EBADMSG;
6386 		if (param_len != sizeof(struct in6_addr))
6387 			return -EINVAL;
6388 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6389 	case SEG6_LOCAL_ACTION_END_T:
6390 		if (!seg6_bpf_has_valid_srh(skb))
6391 			return -EBADMSG;
6392 		if (param_len != sizeof(int))
6393 			return -EINVAL;
6394 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6395 	case SEG6_LOCAL_ACTION_END_DT6:
6396 		if (!seg6_bpf_has_valid_srh(skb))
6397 			return -EBADMSG;
6398 		if (param_len != sizeof(int))
6399 			return -EINVAL;
6400 
6401 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6402 			return -EBADMSG;
6403 		if (!pskb_pull(skb, hdroff))
6404 			return -EBADMSG;
6405 
6406 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6407 		skb_reset_network_header(skb);
6408 		skb_reset_transport_header(skb);
6409 		skb->encapsulation = 0;
6410 
6411 		bpf_compute_data_pointers(skb);
6412 		bpf_update_srh_state(skb);
6413 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6414 	case SEG6_LOCAL_ACTION_END_B6:
6415 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6416 			return -EBADMSG;
6417 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6418 					  param, param_len);
6419 		if (!err)
6420 			bpf_update_srh_state(skb);
6421 
6422 		return err;
6423 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6424 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6425 			return -EBADMSG;
6426 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6427 					  param, param_len);
6428 		if (!err)
6429 			bpf_update_srh_state(skb);
6430 
6431 		return err;
6432 	default:
6433 		return -EINVAL;
6434 	}
6435 }
6436 
6437 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6438 	.func		= bpf_lwt_seg6_action,
6439 	.gpl_only	= false,
6440 	.ret_type	= RET_INTEGER,
6441 	.arg1_type	= ARG_PTR_TO_CTX,
6442 	.arg2_type	= ARG_ANYTHING,
6443 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6444 	.arg4_type	= ARG_CONST_SIZE
6445 };
6446 
6447 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6448 	   s32, len)
6449 {
6450 	struct seg6_bpf_srh_state *srh_state =
6451 		this_cpu_ptr(&seg6_bpf_srh_states);
6452 	struct ipv6_sr_hdr *srh = srh_state->srh;
6453 	void *srh_end, *srh_tlvs, *ptr;
6454 	struct ipv6hdr *hdr;
6455 	int srhoff = 0;
6456 	int ret;
6457 
6458 	if (unlikely(srh == NULL))
6459 		return -EINVAL;
6460 
6461 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6462 			((srh->first_segment + 1) << 4));
6463 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6464 			srh_state->hdrlen);
6465 	ptr = skb->data + offset;
6466 
6467 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6468 		return -EFAULT;
6469 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6470 		return -EFAULT;
6471 
6472 	if (len > 0) {
6473 		ret = skb_cow_head(skb, len);
6474 		if (unlikely(ret < 0))
6475 			return ret;
6476 
6477 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6478 	} else {
6479 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6480 	}
6481 
6482 	bpf_compute_data_pointers(skb);
6483 	if (unlikely(ret < 0))
6484 		return ret;
6485 
6486 	hdr = (struct ipv6hdr *)skb->data;
6487 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6488 
6489 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6490 		return -EINVAL;
6491 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6492 	srh_state->hdrlen += len;
6493 	srh_state->valid = false;
6494 	return 0;
6495 }
6496 
6497 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6498 	.func		= bpf_lwt_seg6_adjust_srh,
6499 	.gpl_only	= false,
6500 	.ret_type	= RET_INTEGER,
6501 	.arg1_type	= ARG_PTR_TO_CTX,
6502 	.arg2_type	= ARG_ANYTHING,
6503 	.arg3_type	= ARG_ANYTHING,
6504 };
6505 #endif /* CONFIG_IPV6_SEG6_BPF */
6506 
6507 #ifdef CONFIG_INET
6508 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6509 			      int dif, int sdif, u8 family, u8 proto)
6510 {
6511 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6512 	bool refcounted = false;
6513 	struct sock *sk = NULL;
6514 
6515 	if (family == AF_INET) {
6516 		__be32 src4 = tuple->ipv4.saddr;
6517 		__be32 dst4 = tuple->ipv4.daddr;
6518 
6519 		if (proto == IPPROTO_TCP)
6520 			sk = __inet_lookup(net, hinfo, NULL, 0,
6521 					   src4, tuple->ipv4.sport,
6522 					   dst4, tuple->ipv4.dport,
6523 					   dif, sdif, &refcounted);
6524 		else
6525 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6526 					       dst4, tuple->ipv4.dport,
6527 					       dif, sdif, net->ipv4.udp_table, NULL);
6528 #if IS_ENABLED(CONFIG_IPV6)
6529 	} else {
6530 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6531 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6532 
6533 		if (proto == IPPROTO_TCP)
6534 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6535 					    src6, tuple->ipv6.sport,
6536 					    dst6, ntohs(tuple->ipv6.dport),
6537 					    dif, sdif, &refcounted);
6538 		else if (likely(ipv6_bpf_stub))
6539 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6540 							    src6, tuple->ipv6.sport,
6541 							    dst6, tuple->ipv6.dport,
6542 							    dif, sdif,
6543 							    net->ipv4.udp_table, NULL);
6544 #endif
6545 	}
6546 
6547 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6548 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6549 		sk = NULL;
6550 	}
6551 	return sk;
6552 }
6553 
6554 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6555  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6556  */
6557 static struct sock *
6558 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6559 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6560 		 u64 flags, int sdif)
6561 {
6562 	struct sock *sk = NULL;
6563 	struct net *net;
6564 	u8 family;
6565 
6566 	if (len == sizeof(tuple->ipv4))
6567 		family = AF_INET;
6568 	else if (len == sizeof(tuple->ipv6))
6569 		family = AF_INET6;
6570 	else
6571 		return NULL;
6572 
6573 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6574 		goto out;
6575 
6576 	if (sdif < 0) {
6577 		if (family == AF_INET)
6578 			sdif = inet_sdif(skb);
6579 		else
6580 			sdif = inet6_sdif(skb);
6581 	}
6582 
6583 	if ((s32)netns_id < 0) {
6584 		net = caller_net;
6585 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6586 	} else {
6587 		net = get_net_ns_by_id(caller_net, netns_id);
6588 		if (unlikely(!net))
6589 			goto out;
6590 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6591 		put_net(net);
6592 	}
6593 
6594 out:
6595 	return sk;
6596 }
6597 
6598 static struct sock *
6599 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6600 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6601 		u64 flags, int sdif)
6602 {
6603 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6604 					   ifindex, proto, netns_id, flags,
6605 					   sdif);
6606 
6607 	if (sk) {
6608 		struct sock *sk2 = sk_to_full_sk(sk);
6609 
6610 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6611 		 * sock refcnt is decremented to prevent a request_sock leak.
6612 		 */
6613 		if (!sk_fullsock(sk2))
6614 			sk2 = NULL;
6615 		if (sk2 != sk) {
6616 			sock_gen_put(sk);
6617 			/* Ensure there is no need to bump sk2 refcnt */
6618 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6619 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6620 				return NULL;
6621 			}
6622 			sk = sk2;
6623 		}
6624 	}
6625 
6626 	return sk;
6627 }
6628 
6629 static struct sock *
6630 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6631 	       u8 proto, u64 netns_id, u64 flags)
6632 {
6633 	struct net *caller_net;
6634 	int ifindex;
6635 
6636 	if (skb->dev) {
6637 		caller_net = dev_net(skb->dev);
6638 		ifindex = skb->dev->ifindex;
6639 	} else {
6640 		caller_net = sock_net(skb->sk);
6641 		ifindex = 0;
6642 	}
6643 
6644 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6645 				netns_id, flags, -1);
6646 }
6647 
6648 static struct sock *
6649 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6650 	      u8 proto, u64 netns_id, u64 flags)
6651 {
6652 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6653 					 flags);
6654 
6655 	if (sk) {
6656 		struct sock *sk2 = sk_to_full_sk(sk);
6657 
6658 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6659 		 * sock refcnt is decremented to prevent a request_sock leak.
6660 		 */
6661 		if (!sk_fullsock(sk2))
6662 			sk2 = NULL;
6663 		if (sk2 != sk) {
6664 			sock_gen_put(sk);
6665 			/* Ensure there is no need to bump sk2 refcnt */
6666 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6667 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6668 				return NULL;
6669 			}
6670 			sk = sk2;
6671 		}
6672 	}
6673 
6674 	return sk;
6675 }
6676 
6677 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6678 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6679 {
6680 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6681 					     netns_id, flags);
6682 }
6683 
6684 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6685 	.func		= bpf_skc_lookup_tcp,
6686 	.gpl_only	= false,
6687 	.pkt_access	= true,
6688 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6689 	.arg1_type	= ARG_PTR_TO_CTX,
6690 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6691 	.arg3_type	= ARG_CONST_SIZE,
6692 	.arg4_type	= ARG_ANYTHING,
6693 	.arg5_type	= ARG_ANYTHING,
6694 };
6695 
6696 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6697 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6698 {
6699 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6700 					    netns_id, flags);
6701 }
6702 
6703 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6704 	.func		= bpf_sk_lookup_tcp,
6705 	.gpl_only	= false,
6706 	.pkt_access	= true,
6707 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6708 	.arg1_type	= ARG_PTR_TO_CTX,
6709 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6710 	.arg3_type	= ARG_CONST_SIZE,
6711 	.arg4_type	= ARG_ANYTHING,
6712 	.arg5_type	= ARG_ANYTHING,
6713 };
6714 
6715 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6716 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6717 {
6718 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6719 					    netns_id, flags);
6720 }
6721 
6722 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6723 	.func		= bpf_sk_lookup_udp,
6724 	.gpl_only	= false,
6725 	.pkt_access	= true,
6726 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6727 	.arg1_type	= ARG_PTR_TO_CTX,
6728 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6729 	.arg3_type	= ARG_CONST_SIZE,
6730 	.arg4_type	= ARG_ANYTHING,
6731 	.arg5_type	= ARG_ANYTHING,
6732 };
6733 
6734 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6735 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6736 {
6737 	struct net_device *dev = skb->dev;
6738 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6739 	struct net *caller_net = dev_net(dev);
6740 
6741 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6742 					       ifindex, IPPROTO_TCP, netns_id,
6743 					       flags, sdif);
6744 }
6745 
6746 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6747 	.func		= bpf_tc_skc_lookup_tcp,
6748 	.gpl_only	= false,
6749 	.pkt_access	= true,
6750 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6751 	.arg1_type	= ARG_PTR_TO_CTX,
6752 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6753 	.arg3_type	= ARG_CONST_SIZE,
6754 	.arg4_type	= ARG_ANYTHING,
6755 	.arg5_type	= ARG_ANYTHING,
6756 };
6757 
6758 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6759 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6760 {
6761 	struct net_device *dev = skb->dev;
6762 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6763 	struct net *caller_net = dev_net(dev);
6764 
6765 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6766 					      ifindex, IPPROTO_TCP, netns_id,
6767 					      flags, sdif);
6768 }
6769 
6770 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6771 	.func		= bpf_tc_sk_lookup_tcp,
6772 	.gpl_only	= false,
6773 	.pkt_access	= true,
6774 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6775 	.arg1_type	= ARG_PTR_TO_CTX,
6776 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6777 	.arg3_type	= ARG_CONST_SIZE,
6778 	.arg4_type	= ARG_ANYTHING,
6779 	.arg5_type	= ARG_ANYTHING,
6780 };
6781 
6782 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6783 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6784 {
6785 	struct net_device *dev = skb->dev;
6786 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6787 	struct net *caller_net = dev_net(dev);
6788 
6789 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6790 					      ifindex, IPPROTO_UDP, netns_id,
6791 					      flags, sdif);
6792 }
6793 
6794 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6795 	.func		= bpf_tc_sk_lookup_udp,
6796 	.gpl_only	= false,
6797 	.pkt_access	= true,
6798 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6799 	.arg1_type	= ARG_PTR_TO_CTX,
6800 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6801 	.arg3_type	= ARG_CONST_SIZE,
6802 	.arg4_type	= ARG_ANYTHING,
6803 	.arg5_type	= ARG_ANYTHING,
6804 };
6805 
6806 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6807 {
6808 	if (sk && sk_is_refcounted(sk))
6809 		sock_gen_put(sk);
6810 	return 0;
6811 }
6812 
6813 static const struct bpf_func_proto bpf_sk_release_proto = {
6814 	.func		= bpf_sk_release,
6815 	.gpl_only	= false,
6816 	.ret_type	= RET_INTEGER,
6817 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6818 };
6819 
6820 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6821 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6822 {
6823 	struct net_device *dev = ctx->rxq->dev;
6824 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6825 	struct net *caller_net = dev_net(dev);
6826 
6827 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6828 					      ifindex, IPPROTO_UDP, netns_id,
6829 					      flags, sdif);
6830 }
6831 
6832 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6833 	.func           = bpf_xdp_sk_lookup_udp,
6834 	.gpl_only       = false,
6835 	.pkt_access     = true,
6836 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6837 	.arg1_type      = ARG_PTR_TO_CTX,
6838 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6839 	.arg3_type      = ARG_CONST_SIZE,
6840 	.arg4_type      = ARG_ANYTHING,
6841 	.arg5_type      = ARG_ANYTHING,
6842 };
6843 
6844 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6845 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6846 {
6847 	struct net_device *dev = ctx->rxq->dev;
6848 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6849 	struct net *caller_net = dev_net(dev);
6850 
6851 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6852 					       ifindex, IPPROTO_TCP, netns_id,
6853 					       flags, sdif);
6854 }
6855 
6856 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6857 	.func           = bpf_xdp_skc_lookup_tcp,
6858 	.gpl_only       = false,
6859 	.pkt_access     = true,
6860 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6861 	.arg1_type      = ARG_PTR_TO_CTX,
6862 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6863 	.arg3_type      = ARG_CONST_SIZE,
6864 	.arg4_type      = ARG_ANYTHING,
6865 	.arg5_type      = ARG_ANYTHING,
6866 };
6867 
6868 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6869 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6870 {
6871 	struct net_device *dev = ctx->rxq->dev;
6872 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6873 	struct net *caller_net = dev_net(dev);
6874 
6875 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6876 					      ifindex, IPPROTO_TCP, netns_id,
6877 					      flags, sdif);
6878 }
6879 
6880 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6881 	.func           = bpf_xdp_sk_lookup_tcp,
6882 	.gpl_only       = false,
6883 	.pkt_access     = true,
6884 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6885 	.arg1_type      = ARG_PTR_TO_CTX,
6886 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6887 	.arg3_type      = ARG_CONST_SIZE,
6888 	.arg4_type      = ARG_ANYTHING,
6889 	.arg5_type      = ARG_ANYTHING,
6890 };
6891 
6892 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6893 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6894 {
6895 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6896 					       sock_net(ctx->sk), 0,
6897 					       IPPROTO_TCP, netns_id, flags,
6898 					       -1);
6899 }
6900 
6901 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6902 	.func		= bpf_sock_addr_skc_lookup_tcp,
6903 	.gpl_only	= false,
6904 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6905 	.arg1_type	= ARG_PTR_TO_CTX,
6906 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6907 	.arg3_type	= ARG_CONST_SIZE,
6908 	.arg4_type	= ARG_ANYTHING,
6909 	.arg5_type	= ARG_ANYTHING,
6910 };
6911 
6912 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6913 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6914 {
6915 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6916 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
6917 					      netns_id, flags, -1);
6918 }
6919 
6920 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
6921 	.func		= bpf_sock_addr_sk_lookup_tcp,
6922 	.gpl_only	= false,
6923 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6924 	.arg1_type	= ARG_PTR_TO_CTX,
6925 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6926 	.arg3_type	= ARG_CONST_SIZE,
6927 	.arg4_type	= ARG_ANYTHING,
6928 	.arg5_type	= ARG_ANYTHING,
6929 };
6930 
6931 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
6932 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6933 {
6934 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
6935 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
6936 					      netns_id, flags, -1);
6937 }
6938 
6939 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
6940 	.func		= bpf_sock_addr_sk_lookup_udp,
6941 	.gpl_only	= false,
6942 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6943 	.arg1_type	= ARG_PTR_TO_CTX,
6944 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6945 	.arg3_type	= ARG_CONST_SIZE,
6946 	.arg4_type	= ARG_ANYTHING,
6947 	.arg5_type	= ARG_ANYTHING,
6948 };
6949 
6950 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6951 				  struct bpf_insn_access_aux *info)
6952 {
6953 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
6954 					  icsk_retransmits))
6955 		return false;
6956 
6957 	if (off % size != 0)
6958 		return false;
6959 
6960 	switch (off) {
6961 	case offsetof(struct bpf_tcp_sock, bytes_received):
6962 	case offsetof(struct bpf_tcp_sock, bytes_acked):
6963 		return size == sizeof(__u64);
6964 	default:
6965 		return size == sizeof(__u32);
6966 	}
6967 }
6968 
6969 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
6970 				    const struct bpf_insn *si,
6971 				    struct bpf_insn *insn_buf,
6972 				    struct bpf_prog *prog, u32 *target_size)
6973 {
6974 	struct bpf_insn *insn = insn_buf;
6975 
6976 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
6977 	do {								\
6978 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
6979 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6980 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
6981 				      si->dst_reg, si->src_reg,		\
6982 				      offsetof(struct tcp_sock, FIELD)); \
6983 	} while (0)
6984 
6985 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
6986 	do {								\
6987 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
6988 					  FIELD) >			\
6989 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
6990 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
6991 					struct inet_connection_sock,	\
6992 					FIELD),				\
6993 				      si->dst_reg, si->src_reg,		\
6994 				      offsetof(				\
6995 					struct inet_connection_sock,	\
6996 					FIELD));			\
6997 	} while (0)
6998 
6999 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7000 
7001 	switch (si->off) {
7002 	case offsetof(struct bpf_tcp_sock, rtt_min):
7003 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7004 			     sizeof(struct minmax));
7005 		BUILD_BUG_ON(sizeof(struct minmax) <
7006 			     sizeof(struct minmax_sample));
7007 
7008 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7009 				      offsetof(struct tcp_sock, rtt_min) +
7010 				      offsetof(struct minmax_sample, v));
7011 		break;
7012 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7013 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7014 		break;
7015 	case offsetof(struct bpf_tcp_sock, srtt_us):
7016 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7017 		break;
7018 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7019 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7020 		break;
7021 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7022 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7023 		break;
7024 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7025 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7026 		break;
7027 	case offsetof(struct bpf_tcp_sock, snd_una):
7028 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7029 		break;
7030 	case offsetof(struct bpf_tcp_sock, mss_cache):
7031 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7032 		break;
7033 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7034 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7035 		break;
7036 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7037 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7038 		break;
7039 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7040 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7041 		break;
7042 	case offsetof(struct bpf_tcp_sock, packets_out):
7043 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7044 		break;
7045 	case offsetof(struct bpf_tcp_sock, retrans_out):
7046 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7047 		break;
7048 	case offsetof(struct bpf_tcp_sock, total_retrans):
7049 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7050 		break;
7051 	case offsetof(struct bpf_tcp_sock, segs_in):
7052 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7053 		break;
7054 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7055 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7056 		break;
7057 	case offsetof(struct bpf_tcp_sock, segs_out):
7058 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7059 		break;
7060 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7061 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7062 		break;
7063 	case offsetof(struct bpf_tcp_sock, lost_out):
7064 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7065 		break;
7066 	case offsetof(struct bpf_tcp_sock, sacked_out):
7067 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7068 		break;
7069 	case offsetof(struct bpf_tcp_sock, bytes_received):
7070 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7071 		break;
7072 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7073 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7074 		break;
7075 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7076 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7077 		break;
7078 	case offsetof(struct bpf_tcp_sock, delivered):
7079 		BPF_TCP_SOCK_GET_COMMON(delivered);
7080 		break;
7081 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7082 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7083 		break;
7084 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7085 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7086 		break;
7087 	}
7088 
7089 	return insn - insn_buf;
7090 }
7091 
7092 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7093 {
7094 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7095 		return (unsigned long)sk;
7096 
7097 	return (unsigned long)NULL;
7098 }
7099 
7100 const struct bpf_func_proto bpf_tcp_sock_proto = {
7101 	.func		= bpf_tcp_sock,
7102 	.gpl_only	= false,
7103 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7104 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7105 };
7106 
7107 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7108 {
7109 	sk = sk_to_full_sk(sk);
7110 
7111 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7112 		return (unsigned long)sk;
7113 
7114 	return (unsigned long)NULL;
7115 }
7116 
7117 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7118 	.func		= bpf_get_listener_sock,
7119 	.gpl_only	= false,
7120 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7121 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7122 };
7123 
7124 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7125 {
7126 	unsigned int iphdr_len;
7127 
7128 	switch (skb_protocol(skb, true)) {
7129 	case cpu_to_be16(ETH_P_IP):
7130 		iphdr_len = sizeof(struct iphdr);
7131 		break;
7132 	case cpu_to_be16(ETH_P_IPV6):
7133 		iphdr_len = sizeof(struct ipv6hdr);
7134 		break;
7135 	default:
7136 		return 0;
7137 	}
7138 
7139 	if (skb_headlen(skb) < iphdr_len)
7140 		return 0;
7141 
7142 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7143 		return 0;
7144 
7145 	return INET_ECN_set_ce(skb);
7146 }
7147 
7148 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7149 				  struct bpf_insn_access_aux *info)
7150 {
7151 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7152 		return false;
7153 
7154 	if (off % size != 0)
7155 		return false;
7156 
7157 	switch (off) {
7158 	default:
7159 		return size == sizeof(__u32);
7160 	}
7161 }
7162 
7163 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7164 				    const struct bpf_insn *si,
7165 				    struct bpf_insn *insn_buf,
7166 				    struct bpf_prog *prog, u32 *target_size)
7167 {
7168 	struct bpf_insn *insn = insn_buf;
7169 
7170 #define BPF_XDP_SOCK_GET(FIELD)						\
7171 	do {								\
7172 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7173 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7174 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7175 				      si->dst_reg, si->src_reg,		\
7176 				      offsetof(struct xdp_sock, FIELD)); \
7177 	} while (0)
7178 
7179 	switch (si->off) {
7180 	case offsetof(struct bpf_xdp_sock, queue_id):
7181 		BPF_XDP_SOCK_GET(queue_id);
7182 		break;
7183 	}
7184 
7185 	return insn - insn_buf;
7186 }
7187 
7188 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7189 	.func           = bpf_skb_ecn_set_ce,
7190 	.gpl_only       = false,
7191 	.ret_type       = RET_INTEGER,
7192 	.arg1_type      = ARG_PTR_TO_CTX,
7193 };
7194 
7195 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7196 	   struct tcphdr *, th, u32, th_len)
7197 {
7198 #ifdef CONFIG_SYN_COOKIES
7199 	u32 cookie;
7200 	int ret;
7201 
7202 	if (unlikely(!sk || th_len < sizeof(*th)))
7203 		return -EINVAL;
7204 
7205 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7206 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7207 		return -EINVAL;
7208 
7209 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7210 		return -EINVAL;
7211 
7212 	if (!th->ack || th->rst || th->syn)
7213 		return -ENOENT;
7214 
7215 	if (unlikely(iph_len < sizeof(struct iphdr)))
7216 		return -EINVAL;
7217 
7218 	if (tcp_synq_no_recent_overflow(sk))
7219 		return -ENOENT;
7220 
7221 	cookie = ntohl(th->ack_seq) - 1;
7222 
7223 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7224 	 * same offset so we can cast to the shorter header (struct iphdr).
7225 	 */
7226 	switch (((struct iphdr *)iph)->version) {
7227 	case 4:
7228 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7229 			return -EINVAL;
7230 
7231 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
7232 		break;
7233 
7234 #if IS_BUILTIN(CONFIG_IPV6)
7235 	case 6:
7236 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7237 			return -EINVAL;
7238 
7239 		if (sk->sk_family != AF_INET6)
7240 			return -EINVAL;
7241 
7242 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
7243 		break;
7244 #endif /* CONFIG_IPV6 */
7245 
7246 	default:
7247 		return -EPROTONOSUPPORT;
7248 	}
7249 
7250 	if (ret > 0)
7251 		return 0;
7252 
7253 	return -ENOENT;
7254 #else
7255 	return -ENOTSUPP;
7256 #endif
7257 }
7258 
7259 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7260 	.func		= bpf_tcp_check_syncookie,
7261 	.gpl_only	= true,
7262 	.pkt_access	= true,
7263 	.ret_type	= RET_INTEGER,
7264 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7265 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7266 	.arg3_type	= ARG_CONST_SIZE,
7267 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7268 	.arg5_type	= ARG_CONST_SIZE,
7269 };
7270 
7271 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7272 	   struct tcphdr *, th, u32, th_len)
7273 {
7274 #ifdef CONFIG_SYN_COOKIES
7275 	u32 cookie;
7276 	u16 mss;
7277 
7278 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7279 		return -EINVAL;
7280 
7281 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7282 		return -EINVAL;
7283 
7284 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7285 		return -ENOENT;
7286 
7287 	if (!th->syn || th->ack || th->fin || th->rst)
7288 		return -EINVAL;
7289 
7290 	if (unlikely(iph_len < sizeof(struct iphdr)))
7291 		return -EINVAL;
7292 
7293 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7294 	 * same offset so we can cast to the shorter header (struct iphdr).
7295 	 */
7296 	switch (((struct iphdr *)iph)->version) {
7297 	case 4:
7298 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7299 			return -EINVAL;
7300 
7301 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7302 		break;
7303 
7304 #if IS_BUILTIN(CONFIG_IPV6)
7305 	case 6:
7306 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7307 			return -EINVAL;
7308 
7309 		if (sk->sk_family != AF_INET6)
7310 			return -EINVAL;
7311 
7312 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7313 		break;
7314 #endif /* CONFIG_IPV6 */
7315 
7316 	default:
7317 		return -EPROTONOSUPPORT;
7318 	}
7319 	if (mss == 0)
7320 		return -ENOENT;
7321 
7322 	return cookie | ((u64)mss << 32);
7323 #else
7324 	return -EOPNOTSUPP;
7325 #endif /* CONFIG_SYN_COOKIES */
7326 }
7327 
7328 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7329 	.func		= bpf_tcp_gen_syncookie,
7330 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7331 	.pkt_access	= true,
7332 	.ret_type	= RET_INTEGER,
7333 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7334 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7335 	.arg3_type	= ARG_CONST_SIZE,
7336 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7337 	.arg5_type	= ARG_CONST_SIZE,
7338 };
7339 
7340 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7341 {
7342 	if (!sk || flags != 0)
7343 		return -EINVAL;
7344 	if (!skb_at_tc_ingress(skb))
7345 		return -EOPNOTSUPP;
7346 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7347 		return -ENETUNREACH;
7348 	if (sk_unhashed(sk))
7349 		return -EOPNOTSUPP;
7350 	if (sk_is_refcounted(sk) &&
7351 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7352 		return -ENOENT;
7353 
7354 	skb_orphan(skb);
7355 	skb->sk = sk;
7356 	skb->destructor = sock_pfree;
7357 
7358 	return 0;
7359 }
7360 
7361 static const struct bpf_func_proto bpf_sk_assign_proto = {
7362 	.func		= bpf_sk_assign,
7363 	.gpl_only	= false,
7364 	.ret_type	= RET_INTEGER,
7365 	.arg1_type      = ARG_PTR_TO_CTX,
7366 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7367 	.arg3_type	= ARG_ANYTHING,
7368 };
7369 
7370 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7371 				    u8 search_kind, const u8 *magic,
7372 				    u8 magic_len, bool *eol)
7373 {
7374 	u8 kind, kind_len;
7375 
7376 	*eol = false;
7377 
7378 	while (op < opend) {
7379 		kind = op[0];
7380 
7381 		if (kind == TCPOPT_EOL) {
7382 			*eol = true;
7383 			return ERR_PTR(-ENOMSG);
7384 		} else if (kind == TCPOPT_NOP) {
7385 			op++;
7386 			continue;
7387 		}
7388 
7389 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7390 			/* Something is wrong in the received header.
7391 			 * Follow the TCP stack's tcp_parse_options()
7392 			 * and just bail here.
7393 			 */
7394 			return ERR_PTR(-EFAULT);
7395 
7396 		kind_len = op[1];
7397 		if (search_kind == kind) {
7398 			if (!magic_len)
7399 				return op;
7400 
7401 			if (magic_len > kind_len - 2)
7402 				return ERR_PTR(-ENOMSG);
7403 
7404 			if (!memcmp(&op[2], magic, magic_len))
7405 				return op;
7406 		}
7407 
7408 		op += kind_len;
7409 	}
7410 
7411 	return ERR_PTR(-ENOMSG);
7412 }
7413 
7414 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7415 	   void *, search_res, u32, len, u64, flags)
7416 {
7417 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7418 	const u8 *op, *opend, *magic, *search = search_res;
7419 	u8 search_kind, search_len, copy_len, magic_len;
7420 	int ret;
7421 
7422 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7423 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7424 	 * and this helper disallow loading them also.
7425 	 */
7426 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7427 		return -EINVAL;
7428 
7429 	search_kind = search[0];
7430 	search_len = search[1];
7431 
7432 	if (search_len > len || search_kind == TCPOPT_NOP ||
7433 	    search_kind == TCPOPT_EOL)
7434 		return -EINVAL;
7435 
7436 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7437 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7438 		if (search_len != 4 && search_len != 6)
7439 			return -EINVAL;
7440 		magic = &search[2];
7441 		magic_len = search_len - 2;
7442 	} else {
7443 		if (search_len)
7444 			return -EINVAL;
7445 		magic = NULL;
7446 		magic_len = 0;
7447 	}
7448 
7449 	if (load_syn) {
7450 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7451 		if (ret < 0)
7452 			return ret;
7453 
7454 		opend = op + ret;
7455 		op += sizeof(struct tcphdr);
7456 	} else {
7457 		if (!bpf_sock->skb ||
7458 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7459 			/* This bpf_sock->op cannot call this helper */
7460 			return -EPERM;
7461 
7462 		opend = bpf_sock->skb_data_end;
7463 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7464 	}
7465 
7466 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7467 				&eol);
7468 	if (IS_ERR(op))
7469 		return PTR_ERR(op);
7470 
7471 	copy_len = op[1];
7472 	ret = copy_len;
7473 	if (copy_len > len) {
7474 		ret = -ENOSPC;
7475 		copy_len = len;
7476 	}
7477 
7478 	memcpy(search_res, op, copy_len);
7479 	return ret;
7480 }
7481 
7482 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7483 	.func		= bpf_sock_ops_load_hdr_opt,
7484 	.gpl_only	= false,
7485 	.ret_type	= RET_INTEGER,
7486 	.arg1_type	= ARG_PTR_TO_CTX,
7487 	.arg2_type	= ARG_PTR_TO_MEM,
7488 	.arg3_type	= ARG_CONST_SIZE,
7489 	.arg4_type	= ARG_ANYTHING,
7490 };
7491 
7492 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7493 	   const void *, from, u32, len, u64, flags)
7494 {
7495 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7496 	const u8 *op, *new_op, *magic = NULL;
7497 	struct sk_buff *skb;
7498 	bool eol;
7499 
7500 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7501 		return -EPERM;
7502 
7503 	if (len < 2 || flags)
7504 		return -EINVAL;
7505 
7506 	new_op = from;
7507 	new_kind = new_op[0];
7508 	new_kind_len = new_op[1];
7509 
7510 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7511 	    new_kind == TCPOPT_EOL)
7512 		return -EINVAL;
7513 
7514 	if (new_kind_len > bpf_sock->remaining_opt_len)
7515 		return -ENOSPC;
7516 
7517 	/* 253 is another experimental kind */
7518 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7519 		if (new_kind_len < 4)
7520 			return -EINVAL;
7521 		/* Match for the 2 byte magic also.
7522 		 * RFC 6994: the magic could be 2 or 4 bytes.
7523 		 * Hence, matching by 2 byte only is on the
7524 		 * conservative side but it is the right
7525 		 * thing to do for the 'search-for-duplication'
7526 		 * purpose.
7527 		 */
7528 		magic = &new_op[2];
7529 		magic_len = 2;
7530 	}
7531 
7532 	/* Check for duplication */
7533 	skb = bpf_sock->skb;
7534 	op = skb->data + sizeof(struct tcphdr);
7535 	opend = bpf_sock->skb_data_end;
7536 
7537 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7538 				&eol);
7539 	if (!IS_ERR(op))
7540 		return -EEXIST;
7541 
7542 	if (PTR_ERR(op) != -ENOMSG)
7543 		return PTR_ERR(op);
7544 
7545 	if (eol)
7546 		/* The option has been ended.  Treat it as no more
7547 		 * header option can be written.
7548 		 */
7549 		return -ENOSPC;
7550 
7551 	/* No duplication found.  Store the header option. */
7552 	memcpy(opend, from, new_kind_len);
7553 
7554 	bpf_sock->remaining_opt_len -= new_kind_len;
7555 	bpf_sock->skb_data_end += new_kind_len;
7556 
7557 	return 0;
7558 }
7559 
7560 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7561 	.func		= bpf_sock_ops_store_hdr_opt,
7562 	.gpl_only	= false,
7563 	.ret_type	= RET_INTEGER,
7564 	.arg1_type	= ARG_PTR_TO_CTX,
7565 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7566 	.arg3_type	= ARG_CONST_SIZE,
7567 	.arg4_type	= ARG_ANYTHING,
7568 };
7569 
7570 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7571 	   u32, len, u64, flags)
7572 {
7573 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7574 		return -EPERM;
7575 
7576 	if (flags || len < 2)
7577 		return -EINVAL;
7578 
7579 	if (len > bpf_sock->remaining_opt_len)
7580 		return -ENOSPC;
7581 
7582 	bpf_sock->remaining_opt_len -= len;
7583 
7584 	return 0;
7585 }
7586 
7587 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7588 	.func		= bpf_sock_ops_reserve_hdr_opt,
7589 	.gpl_only	= false,
7590 	.ret_type	= RET_INTEGER,
7591 	.arg1_type	= ARG_PTR_TO_CTX,
7592 	.arg2_type	= ARG_ANYTHING,
7593 	.arg3_type	= ARG_ANYTHING,
7594 };
7595 
7596 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7597 	   u64, tstamp, u32, tstamp_type)
7598 {
7599 	/* skb_clear_delivery_time() is done for inet protocol */
7600 	if (skb->protocol != htons(ETH_P_IP) &&
7601 	    skb->protocol != htons(ETH_P_IPV6))
7602 		return -EOPNOTSUPP;
7603 
7604 	switch (tstamp_type) {
7605 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7606 		if (!tstamp)
7607 			return -EINVAL;
7608 		skb->tstamp = tstamp;
7609 		skb->mono_delivery_time = 1;
7610 		break;
7611 	case BPF_SKB_TSTAMP_UNSPEC:
7612 		if (tstamp)
7613 			return -EINVAL;
7614 		skb->tstamp = 0;
7615 		skb->mono_delivery_time = 0;
7616 		break;
7617 	default:
7618 		return -EINVAL;
7619 	}
7620 
7621 	return 0;
7622 }
7623 
7624 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7625 	.func           = bpf_skb_set_tstamp,
7626 	.gpl_only       = false,
7627 	.ret_type       = RET_INTEGER,
7628 	.arg1_type      = ARG_PTR_TO_CTX,
7629 	.arg2_type      = ARG_ANYTHING,
7630 	.arg3_type      = ARG_ANYTHING,
7631 };
7632 
7633 #ifdef CONFIG_SYN_COOKIES
7634 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7635 	   struct tcphdr *, th, u32, th_len)
7636 {
7637 	u32 cookie;
7638 	u16 mss;
7639 
7640 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7641 		return -EINVAL;
7642 
7643 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7644 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7645 
7646 	return cookie | ((u64)mss << 32);
7647 }
7648 
7649 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7650 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7651 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7652 	.pkt_access	= true,
7653 	.ret_type	= RET_INTEGER,
7654 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7655 	.arg1_size	= sizeof(struct iphdr),
7656 	.arg2_type	= ARG_PTR_TO_MEM,
7657 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7658 };
7659 
7660 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7661 	   struct tcphdr *, th, u32, th_len)
7662 {
7663 #if IS_BUILTIN(CONFIG_IPV6)
7664 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7665 		sizeof(struct ipv6hdr);
7666 	u32 cookie;
7667 	u16 mss;
7668 
7669 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7670 		return -EINVAL;
7671 
7672 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7673 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7674 
7675 	return cookie | ((u64)mss << 32);
7676 #else
7677 	return -EPROTONOSUPPORT;
7678 #endif
7679 }
7680 
7681 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7682 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7683 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7684 	.pkt_access	= true,
7685 	.ret_type	= RET_INTEGER,
7686 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7687 	.arg1_size	= sizeof(struct ipv6hdr),
7688 	.arg2_type	= ARG_PTR_TO_MEM,
7689 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7690 };
7691 
7692 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7693 	   struct tcphdr *, th)
7694 {
7695 	u32 cookie = ntohl(th->ack_seq) - 1;
7696 
7697 	if (__cookie_v4_check(iph, th, cookie) > 0)
7698 		return 0;
7699 
7700 	return -EACCES;
7701 }
7702 
7703 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7704 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7705 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7706 	.pkt_access	= true,
7707 	.ret_type	= RET_INTEGER,
7708 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7709 	.arg1_size	= sizeof(struct iphdr),
7710 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7711 	.arg2_size	= sizeof(struct tcphdr),
7712 };
7713 
7714 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7715 	   struct tcphdr *, th)
7716 {
7717 #if IS_BUILTIN(CONFIG_IPV6)
7718 	u32 cookie = ntohl(th->ack_seq) - 1;
7719 
7720 	if (__cookie_v6_check(iph, th, cookie) > 0)
7721 		return 0;
7722 
7723 	return -EACCES;
7724 #else
7725 	return -EPROTONOSUPPORT;
7726 #endif
7727 }
7728 
7729 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7730 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7731 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7732 	.pkt_access	= true,
7733 	.ret_type	= RET_INTEGER,
7734 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7735 	.arg1_size	= sizeof(struct ipv6hdr),
7736 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7737 	.arg2_size	= sizeof(struct tcphdr),
7738 };
7739 #endif /* CONFIG_SYN_COOKIES */
7740 
7741 #endif /* CONFIG_INET */
7742 
7743 bool bpf_helper_changes_pkt_data(void *func)
7744 {
7745 	if (func == bpf_skb_vlan_push ||
7746 	    func == bpf_skb_vlan_pop ||
7747 	    func == bpf_skb_store_bytes ||
7748 	    func == bpf_skb_change_proto ||
7749 	    func == bpf_skb_change_head ||
7750 	    func == sk_skb_change_head ||
7751 	    func == bpf_skb_change_tail ||
7752 	    func == sk_skb_change_tail ||
7753 	    func == bpf_skb_adjust_room ||
7754 	    func == sk_skb_adjust_room ||
7755 	    func == bpf_skb_pull_data ||
7756 	    func == sk_skb_pull_data ||
7757 	    func == bpf_clone_redirect ||
7758 	    func == bpf_l3_csum_replace ||
7759 	    func == bpf_l4_csum_replace ||
7760 	    func == bpf_xdp_adjust_head ||
7761 	    func == bpf_xdp_adjust_meta ||
7762 	    func == bpf_msg_pull_data ||
7763 	    func == bpf_msg_push_data ||
7764 	    func == bpf_msg_pop_data ||
7765 	    func == bpf_xdp_adjust_tail ||
7766 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7767 	    func == bpf_lwt_seg6_store_bytes ||
7768 	    func == bpf_lwt_seg6_adjust_srh ||
7769 	    func == bpf_lwt_seg6_action ||
7770 #endif
7771 #ifdef CONFIG_INET
7772 	    func == bpf_sock_ops_store_hdr_opt ||
7773 #endif
7774 	    func == bpf_lwt_in_push_encap ||
7775 	    func == bpf_lwt_xmit_push_encap)
7776 		return true;
7777 
7778 	return false;
7779 }
7780 
7781 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7782 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7783 
7784 static const struct bpf_func_proto *
7785 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7786 {
7787 	const struct bpf_func_proto *func_proto;
7788 
7789 	func_proto = cgroup_common_func_proto(func_id, prog);
7790 	if (func_proto)
7791 		return func_proto;
7792 
7793 	func_proto = cgroup_current_func_proto(func_id, prog);
7794 	if (func_proto)
7795 		return func_proto;
7796 
7797 	switch (func_id) {
7798 	case BPF_FUNC_get_socket_cookie:
7799 		return &bpf_get_socket_cookie_sock_proto;
7800 	case BPF_FUNC_get_netns_cookie:
7801 		return &bpf_get_netns_cookie_sock_proto;
7802 	case BPF_FUNC_perf_event_output:
7803 		return &bpf_event_output_data_proto;
7804 	case BPF_FUNC_sk_storage_get:
7805 		return &bpf_sk_storage_get_cg_sock_proto;
7806 	case BPF_FUNC_ktime_get_coarse_ns:
7807 		return &bpf_ktime_get_coarse_ns_proto;
7808 	default:
7809 		return bpf_base_func_proto(func_id);
7810 	}
7811 }
7812 
7813 static const struct bpf_func_proto *
7814 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7815 {
7816 	const struct bpf_func_proto *func_proto;
7817 
7818 	func_proto = cgroup_common_func_proto(func_id, prog);
7819 	if (func_proto)
7820 		return func_proto;
7821 
7822 	func_proto = cgroup_current_func_proto(func_id, prog);
7823 	if (func_proto)
7824 		return func_proto;
7825 
7826 	switch (func_id) {
7827 	case BPF_FUNC_bind:
7828 		switch (prog->expected_attach_type) {
7829 		case BPF_CGROUP_INET4_CONNECT:
7830 		case BPF_CGROUP_INET6_CONNECT:
7831 			return &bpf_bind_proto;
7832 		default:
7833 			return NULL;
7834 		}
7835 	case BPF_FUNC_get_socket_cookie:
7836 		return &bpf_get_socket_cookie_sock_addr_proto;
7837 	case BPF_FUNC_get_netns_cookie:
7838 		return &bpf_get_netns_cookie_sock_addr_proto;
7839 	case BPF_FUNC_perf_event_output:
7840 		return &bpf_event_output_data_proto;
7841 #ifdef CONFIG_INET
7842 	case BPF_FUNC_sk_lookup_tcp:
7843 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7844 	case BPF_FUNC_sk_lookup_udp:
7845 		return &bpf_sock_addr_sk_lookup_udp_proto;
7846 	case BPF_FUNC_sk_release:
7847 		return &bpf_sk_release_proto;
7848 	case BPF_FUNC_skc_lookup_tcp:
7849 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7850 #endif /* CONFIG_INET */
7851 	case BPF_FUNC_sk_storage_get:
7852 		return &bpf_sk_storage_get_proto;
7853 	case BPF_FUNC_sk_storage_delete:
7854 		return &bpf_sk_storage_delete_proto;
7855 	case BPF_FUNC_setsockopt:
7856 		switch (prog->expected_attach_type) {
7857 		case BPF_CGROUP_INET4_BIND:
7858 		case BPF_CGROUP_INET6_BIND:
7859 		case BPF_CGROUP_INET4_CONNECT:
7860 		case BPF_CGROUP_INET6_CONNECT:
7861 		case BPF_CGROUP_UDP4_RECVMSG:
7862 		case BPF_CGROUP_UDP6_RECVMSG:
7863 		case BPF_CGROUP_UDP4_SENDMSG:
7864 		case BPF_CGROUP_UDP6_SENDMSG:
7865 		case BPF_CGROUP_INET4_GETPEERNAME:
7866 		case BPF_CGROUP_INET6_GETPEERNAME:
7867 		case BPF_CGROUP_INET4_GETSOCKNAME:
7868 		case BPF_CGROUP_INET6_GETSOCKNAME:
7869 			return &bpf_sock_addr_setsockopt_proto;
7870 		default:
7871 			return NULL;
7872 		}
7873 	case BPF_FUNC_getsockopt:
7874 		switch (prog->expected_attach_type) {
7875 		case BPF_CGROUP_INET4_BIND:
7876 		case BPF_CGROUP_INET6_BIND:
7877 		case BPF_CGROUP_INET4_CONNECT:
7878 		case BPF_CGROUP_INET6_CONNECT:
7879 		case BPF_CGROUP_UDP4_RECVMSG:
7880 		case BPF_CGROUP_UDP6_RECVMSG:
7881 		case BPF_CGROUP_UDP4_SENDMSG:
7882 		case BPF_CGROUP_UDP6_SENDMSG:
7883 		case BPF_CGROUP_INET4_GETPEERNAME:
7884 		case BPF_CGROUP_INET6_GETPEERNAME:
7885 		case BPF_CGROUP_INET4_GETSOCKNAME:
7886 		case BPF_CGROUP_INET6_GETSOCKNAME:
7887 			return &bpf_sock_addr_getsockopt_proto;
7888 		default:
7889 			return NULL;
7890 		}
7891 	default:
7892 		return bpf_sk_base_func_proto(func_id);
7893 	}
7894 }
7895 
7896 static const struct bpf_func_proto *
7897 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7898 {
7899 	switch (func_id) {
7900 	case BPF_FUNC_skb_load_bytes:
7901 		return &bpf_skb_load_bytes_proto;
7902 	case BPF_FUNC_skb_load_bytes_relative:
7903 		return &bpf_skb_load_bytes_relative_proto;
7904 	case BPF_FUNC_get_socket_cookie:
7905 		return &bpf_get_socket_cookie_proto;
7906 	case BPF_FUNC_get_socket_uid:
7907 		return &bpf_get_socket_uid_proto;
7908 	case BPF_FUNC_perf_event_output:
7909 		return &bpf_skb_event_output_proto;
7910 	default:
7911 		return bpf_sk_base_func_proto(func_id);
7912 	}
7913 }
7914 
7915 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
7916 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
7917 
7918 static const struct bpf_func_proto *
7919 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7920 {
7921 	const struct bpf_func_proto *func_proto;
7922 
7923 	func_proto = cgroup_common_func_proto(func_id, prog);
7924 	if (func_proto)
7925 		return func_proto;
7926 
7927 	switch (func_id) {
7928 	case BPF_FUNC_sk_fullsock:
7929 		return &bpf_sk_fullsock_proto;
7930 	case BPF_FUNC_sk_storage_get:
7931 		return &bpf_sk_storage_get_proto;
7932 	case BPF_FUNC_sk_storage_delete:
7933 		return &bpf_sk_storage_delete_proto;
7934 	case BPF_FUNC_perf_event_output:
7935 		return &bpf_skb_event_output_proto;
7936 #ifdef CONFIG_SOCK_CGROUP_DATA
7937 	case BPF_FUNC_skb_cgroup_id:
7938 		return &bpf_skb_cgroup_id_proto;
7939 	case BPF_FUNC_skb_ancestor_cgroup_id:
7940 		return &bpf_skb_ancestor_cgroup_id_proto;
7941 	case BPF_FUNC_sk_cgroup_id:
7942 		return &bpf_sk_cgroup_id_proto;
7943 	case BPF_FUNC_sk_ancestor_cgroup_id:
7944 		return &bpf_sk_ancestor_cgroup_id_proto;
7945 #endif
7946 #ifdef CONFIG_INET
7947 	case BPF_FUNC_sk_lookup_tcp:
7948 		return &bpf_sk_lookup_tcp_proto;
7949 	case BPF_FUNC_sk_lookup_udp:
7950 		return &bpf_sk_lookup_udp_proto;
7951 	case BPF_FUNC_sk_release:
7952 		return &bpf_sk_release_proto;
7953 	case BPF_FUNC_skc_lookup_tcp:
7954 		return &bpf_skc_lookup_tcp_proto;
7955 	case BPF_FUNC_tcp_sock:
7956 		return &bpf_tcp_sock_proto;
7957 	case BPF_FUNC_get_listener_sock:
7958 		return &bpf_get_listener_sock_proto;
7959 	case BPF_FUNC_skb_ecn_set_ce:
7960 		return &bpf_skb_ecn_set_ce_proto;
7961 #endif
7962 	default:
7963 		return sk_filter_func_proto(func_id, prog);
7964 	}
7965 }
7966 
7967 static const struct bpf_func_proto *
7968 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7969 {
7970 	switch (func_id) {
7971 	case BPF_FUNC_skb_store_bytes:
7972 		return &bpf_skb_store_bytes_proto;
7973 	case BPF_FUNC_skb_load_bytes:
7974 		return &bpf_skb_load_bytes_proto;
7975 	case BPF_FUNC_skb_load_bytes_relative:
7976 		return &bpf_skb_load_bytes_relative_proto;
7977 	case BPF_FUNC_skb_pull_data:
7978 		return &bpf_skb_pull_data_proto;
7979 	case BPF_FUNC_csum_diff:
7980 		return &bpf_csum_diff_proto;
7981 	case BPF_FUNC_csum_update:
7982 		return &bpf_csum_update_proto;
7983 	case BPF_FUNC_csum_level:
7984 		return &bpf_csum_level_proto;
7985 	case BPF_FUNC_l3_csum_replace:
7986 		return &bpf_l3_csum_replace_proto;
7987 	case BPF_FUNC_l4_csum_replace:
7988 		return &bpf_l4_csum_replace_proto;
7989 	case BPF_FUNC_clone_redirect:
7990 		return &bpf_clone_redirect_proto;
7991 	case BPF_FUNC_get_cgroup_classid:
7992 		return &bpf_get_cgroup_classid_proto;
7993 	case BPF_FUNC_skb_vlan_push:
7994 		return &bpf_skb_vlan_push_proto;
7995 	case BPF_FUNC_skb_vlan_pop:
7996 		return &bpf_skb_vlan_pop_proto;
7997 	case BPF_FUNC_skb_change_proto:
7998 		return &bpf_skb_change_proto_proto;
7999 	case BPF_FUNC_skb_change_type:
8000 		return &bpf_skb_change_type_proto;
8001 	case BPF_FUNC_skb_adjust_room:
8002 		return &bpf_skb_adjust_room_proto;
8003 	case BPF_FUNC_skb_change_tail:
8004 		return &bpf_skb_change_tail_proto;
8005 	case BPF_FUNC_skb_change_head:
8006 		return &bpf_skb_change_head_proto;
8007 	case BPF_FUNC_skb_get_tunnel_key:
8008 		return &bpf_skb_get_tunnel_key_proto;
8009 	case BPF_FUNC_skb_set_tunnel_key:
8010 		return bpf_get_skb_set_tunnel_proto(func_id);
8011 	case BPF_FUNC_skb_get_tunnel_opt:
8012 		return &bpf_skb_get_tunnel_opt_proto;
8013 	case BPF_FUNC_skb_set_tunnel_opt:
8014 		return bpf_get_skb_set_tunnel_proto(func_id);
8015 	case BPF_FUNC_redirect:
8016 		return &bpf_redirect_proto;
8017 	case BPF_FUNC_redirect_neigh:
8018 		return &bpf_redirect_neigh_proto;
8019 	case BPF_FUNC_redirect_peer:
8020 		return &bpf_redirect_peer_proto;
8021 	case BPF_FUNC_get_route_realm:
8022 		return &bpf_get_route_realm_proto;
8023 	case BPF_FUNC_get_hash_recalc:
8024 		return &bpf_get_hash_recalc_proto;
8025 	case BPF_FUNC_set_hash_invalid:
8026 		return &bpf_set_hash_invalid_proto;
8027 	case BPF_FUNC_set_hash:
8028 		return &bpf_set_hash_proto;
8029 	case BPF_FUNC_perf_event_output:
8030 		return &bpf_skb_event_output_proto;
8031 	case BPF_FUNC_get_smp_processor_id:
8032 		return &bpf_get_smp_processor_id_proto;
8033 	case BPF_FUNC_skb_under_cgroup:
8034 		return &bpf_skb_under_cgroup_proto;
8035 	case BPF_FUNC_get_socket_cookie:
8036 		return &bpf_get_socket_cookie_proto;
8037 	case BPF_FUNC_get_socket_uid:
8038 		return &bpf_get_socket_uid_proto;
8039 	case BPF_FUNC_fib_lookup:
8040 		return &bpf_skb_fib_lookup_proto;
8041 	case BPF_FUNC_check_mtu:
8042 		return &bpf_skb_check_mtu_proto;
8043 	case BPF_FUNC_sk_fullsock:
8044 		return &bpf_sk_fullsock_proto;
8045 	case BPF_FUNC_sk_storage_get:
8046 		return &bpf_sk_storage_get_proto;
8047 	case BPF_FUNC_sk_storage_delete:
8048 		return &bpf_sk_storage_delete_proto;
8049 #ifdef CONFIG_XFRM
8050 	case BPF_FUNC_skb_get_xfrm_state:
8051 		return &bpf_skb_get_xfrm_state_proto;
8052 #endif
8053 #ifdef CONFIG_CGROUP_NET_CLASSID
8054 	case BPF_FUNC_skb_cgroup_classid:
8055 		return &bpf_skb_cgroup_classid_proto;
8056 #endif
8057 #ifdef CONFIG_SOCK_CGROUP_DATA
8058 	case BPF_FUNC_skb_cgroup_id:
8059 		return &bpf_skb_cgroup_id_proto;
8060 	case BPF_FUNC_skb_ancestor_cgroup_id:
8061 		return &bpf_skb_ancestor_cgroup_id_proto;
8062 #endif
8063 #ifdef CONFIG_INET
8064 	case BPF_FUNC_sk_lookup_tcp:
8065 		return &bpf_tc_sk_lookup_tcp_proto;
8066 	case BPF_FUNC_sk_lookup_udp:
8067 		return &bpf_tc_sk_lookup_udp_proto;
8068 	case BPF_FUNC_sk_release:
8069 		return &bpf_sk_release_proto;
8070 	case BPF_FUNC_tcp_sock:
8071 		return &bpf_tcp_sock_proto;
8072 	case BPF_FUNC_get_listener_sock:
8073 		return &bpf_get_listener_sock_proto;
8074 	case BPF_FUNC_skc_lookup_tcp:
8075 		return &bpf_tc_skc_lookup_tcp_proto;
8076 	case BPF_FUNC_tcp_check_syncookie:
8077 		return &bpf_tcp_check_syncookie_proto;
8078 	case BPF_FUNC_skb_ecn_set_ce:
8079 		return &bpf_skb_ecn_set_ce_proto;
8080 	case BPF_FUNC_tcp_gen_syncookie:
8081 		return &bpf_tcp_gen_syncookie_proto;
8082 	case BPF_FUNC_sk_assign:
8083 		return &bpf_sk_assign_proto;
8084 	case BPF_FUNC_skb_set_tstamp:
8085 		return &bpf_skb_set_tstamp_proto;
8086 #ifdef CONFIG_SYN_COOKIES
8087 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8088 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8089 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8090 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8091 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8092 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8093 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8094 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8095 #endif
8096 #endif
8097 	default:
8098 		return bpf_sk_base_func_proto(func_id);
8099 	}
8100 }
8101 
8102 static const struct bpf_func_proto *
8103 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8104 {
8105 	switch (func_id) {
8106 	case BPF_FUNC_perf_event_output:
8107 		return &bpf_xdp_event_output_proto;
8108 	case BPF_FUNC_get_smp_processor_id:
8109 		return &bpf_get_smp_processor_id_proto;
8110 	case BPF_FUNC_csum_diff:
8111 		return &bpf_csum_diff_proto;
8112 	case BPF_FUNC_xdp_adjust_head:
8113 		return &bpf_xdp_adjust_head_proto;
8114 	case BPF_FUNC_xdp_adjust_meta:
8115 		return &bpf_xdp_adjust_meta_proto;
8116 	case BPF_FUNC_redirect:
8117 		return &bpf_xdp_redirect_proto;
8118 	case BPF_FUNC_redirect_map:
8119 		return &bpf_xdp_redirect_map_proto;
8120 	case BPF_FUNC_xdp_adjust_tail:
8121 		return &bpf_xdp_adjust_tail_proto;
8122 	case BPF_FUNC_xdp_get_buff_len:
8123 		return &bpf_xdp_get_buff_len_proto;
8124 	case BPF_FUNC_xdp_load_bytes:
8125 		return &bpf_xdp_load_bytes_proto;
8126 	case BPF_FUNC_xdp_store_bytes:
8127 		return &bpf_xdp_store_bytes_proto;
8128 	case BPF_FUNC_fib_lookup:
8129 		return &bpf_xdp_fib_lookup_proto;
8130 	case BPF_FUNC_check_mtu:
8131 		return &bpf_xdp_check_mtu_proto;
8132 #ifdef CONFIG_INET
8133 	case BPF_FUNC_sk_lookup_udp:
8134 		return &bpf_xdp_sk_lookup_udp_proto;
8135 	case BPF_FUNC_sk_lookup_tcp:
8136 		return &bpf_xdp_sk_lookup_tcp_proto;
8137 	case BPF_FUNC_sk_release:
8138 		return &bpf_sk_release_proto;
8139 	case BPF_FUNC_skc_lookup_tcp:
8140 		return &bpf_xdp_skc_lookup_tcp_proto;
8141 	case BPF_FUNC_tcp_check_syncookie:
8142 		return &bpf_tcp_check_syncookie_proto;
8143 	case BPF_FUNC_tcp_gen_syncookie:
8144 		return &bpf_tcp_gen_syncookie_proto;
8145 #ifdef CONFIG_SYN_COOKIES
8146 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8147 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8148 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8149 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8150 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8151 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8152 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8153 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8154 #endif
8155 #endif
8156 	default:
8157 		return bpf_sk_base_func_proto(func_id);
8158 	}
8159 
8160 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8161 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8162 	 * kfuncs are defined in two different modules, and we want to be able
8163 	 * to use them interchangably with the same BTF type ID. Because modules
8164 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8165 	 * referenced in the vmlinux BTF or the verifier will get confused about
8166 	 * the different types. So we add this dummy type reference which will
8167 	 * be included in vmlinux BTF, allowing both modules to refer to the
8168 	 * same type ID.
8169 	 */
8170 	BTF_TYPE_EMIT(struct nf_conn___init);
8171 #endif
8172 }
8173 
8174 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8175 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8176 
8177 static const struct bpf_func_proto *
8178 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8179 {
8180 	const struct bpf_func_proto *func_proto;
8181 
8182 	func_proto = cgroup_common_func_proto(func_id, prog);
8183 	if (func_proto)
8184 		return func_proto;
8185 
8186 	switch (func_id) {
8187 	case BPF_FUNC_setsockopt:
8188 		return &bpf_sock_ops_setsockopt_proto;
8189 	case BPF_FUNC_getsockopt:
8190 		return &bpf_sock_ops_getsockopt_proto;
8191 	case BPF_FUNC_sock_ops_cb_flags_set:
8192 		return &bpf_sock_ops_cb_flags_set_proto;
8193 	case BPF_FUNC_sock_map_update:
8194 		return &bpf_sock_map_update_proto;
8195 	case BPF_FUNC_sock_hash_update:
8196 		return &bpf_sock_hash_update_proto;
8197 	case BPF_FUNC_get_socket_cookie:
8198 		return &bpf_get_socket_cookie_sock_ops_proto;
8199 	case BPF_FUNC_perf_event_output:
8200 		return &bpf_event_output_data_proto;
8201 	case BPF_FUNC_sk_storage_get:
8202 		return &bpf_sk_storage_get_proto;
8203 	case BPF_FUNC_sk_storage_delete:
8204 		return &bpf_sk_storage_delete_proto;
8205 	case BPF_FUNC_get_netns_cookie:
8206 		return &bpf_get_netns_cookie_sock_ops_proto;
8207 #ifdef CONFIG_INET
8208 	case BPF_FUNC_load_hdr_opt:
8209 		return &bpf_sock_ops_load_hdr_opt_proto;
8210 	case BPF_FUNC_store_hdr_opt:
8211 		return &bpf_sock_ops_store_hdr_opt_proto;
8212 	case BPF_FUNC_reserve_hdr_opt:
8213 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8214 	case BPF_FUNC_tcp_sock:
8215 		return &bpf_tcp_sock_proto;
8216 #endif /* CONFIG_INET */
8217 	default:
8218 		return bpf_sk_base_func_proto(func_id);
8219 	}
8220 }
8221 
8222 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8223 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8224 
8225 static const struct bpf_func_proto *
8226 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8227 {
8228 	switch (func_id) {
8229 	case BPF_FUNC_msg_redirect_map:
8230 		return &bpf_msg_redirect_map_proto;
8231 	case BPF_FUNC_msg_redirect_hash:
8232 		return &bpf_msg_redirect_hash_proto;
8233 	case BPF_FUNC_msg_apply_bytes:
8234 		return &bpf_msg_apply_bytes_proto;
8235 	case BPF_FUNC_msg_cork_bytes:
8236 		return &bpf_msg_cork_bytes_proto;
8237 	case BPF_FUNC_msg_pull_data:
8238 		return &bpf_msg_pull_data_proto;
8239 	case BPF_FUNC_msg_push_data:
8240 		return &bpf_msg_push_data_proto;
8241 	case BPF_FUNC_msg_pop_data:
8242 		return &bpf_msg_pop_data_proto;
8243 	case BPF_FUNC_perf_event_output:
8244 		return &bpf_event_output_data_proto;
8245 	case BPF_FUNC_get_current_uid_gid:
8246 		return &bpf_get_current_uid_gid_proto;
8247 	case BPF_FUNC_get_current_pid_tgid:
8248 		return &bpf_get_current_pid_tgid_proto;
8249 	case BPF_FUNC_sk_storage_get:
8250 		return &bpf_sk_storage_get_proto;
8251 	case BPF_FUNC_sk_storage_delete:
8252 		return &bpf_sk_storage_delete_proto;
8253 	case BPF_FUNC_get_netns_cookie:
8254 		return &bpf_get_netns_cookie_sk_msg_proto;
8255 #ifdef CONFIG_CGROUP_NET_CLASSID
8256 	case BPF_FUNC_get_cgroup_classid:
8257 		return &bpf_get_cgroup_classid_curr_proto;
8258 #endif
8259 	default:
8260 		return bpf_sk_base_func_proto(func_id);
8261 	}
8262 }
8263 
8264 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8265 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8266 
8267 static const struct bpf_func_proto *
8268 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8269 {
8270 	switch (func_id) {
8271 	case BPF_FUNC_skb_store_bytes:
8272 		return &bpf_skb_store_bytes_proto;
8273 	case BPF_FUNC_skb_load_bytes:
8274 		return &bpf_skb_load_bytes_proto;
8275 	case BPF_FUNC_skb_pull_data:
8276 		return &sk_skb_pull_data_proto;
8277 	case BPF_FUNC_skb_change_tail:
8278 		return &sk_skb_change_tail_proto;
8279 	case BPF_FUNC_skb_change_head:
8280 		return &sk_skb_change_head_proto;
8281 	case BPF_FUNC_skb_adjust_room:
8282 		return &sk_skb_adjust_room_proto;
8283 	case BPF_FUNC_get_socket_cookie:
8284 		return &bpf_get_socket_cookie_proto;
8285 	case BPF_FUNC_get_socket_uid:
8286 		return &bpf_get_socket_uid_proto;
8287 	case BPF_FUNC_sk_redirect_map:
8288 		return &bpf_sk_redirect_map_proto;
8289 	case BPF_FUNC_sk_redirect_hash:
8290 		return &bpf_sk_redirect_hash_proto;
8291 	case BPF_FUNC_perf_event_output:
8292 		return &bpf_skb_event_output_proto;
8293 #ifdef CONFIG_INET
8294 	case BPF_FUNC_sk_lookup_tcp:
8295 		return &bpf_sk_lookup_tcp_proto;
8296 	case BPF_FUNC_sk_lookup_udp:
8297 		return &bpf_sk_lookup_udp_proto;
8298 	case BPF_FUNC_sk_release:
8299 		return &bpf_sk_release_proto;
8300 	case BPF_FUNC_skc_lookup_tcp:
8301 		return &bpf_skc_lookup_tcp_proto;
8302 #endif
8303 	default:
8304 		return bpf_sk_base_func_proto(func_id);
8305 	}
8306 }
8307 
8308 static const struct bpf_func_proto *
8309 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8310 {
8311 	switch (func_id) {
8312 	case BPF_FUNC_skb_load_bytes:
8313 		return &bpf_flow_dissector_load_bytes_proto;
8314 	default:
8315 		return bpf_sk_base_func_proto(func_id);
8316 	}
8317 }
8318 
8319 static const struct bpf_func_proto *
8320 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8321 {
8322 	switch (func_id) {
8323 	case BPF_FUNC_skb_load_bytes:
8324 		return &bpf_skb_load_bytes_proto;
8325 	case BPF_FUNC_skb_pull_data:
8326 		return &bpf_skb_pull_data_proto;
8327 	case BPF_FUNC_csum_diff:
8328 		return &bpf_csum_diff_proto;
8329 	case BPF_FUNC_get_cgroup_classid:
8330 		return &bpf_get_cgroup_classid_proto;
8331 	case BPF_FUNC_get_route_realm:
8332 		return &bpf_get_route_realm_proto;
8333 	case BPF_FUNC_get_hash_recalc:
8334 		return &bpf_get_hash_recalc_proto;
8335 	case BPF_FUNC_perf_event_output:
8336 		return &bpf_skb_event_output_proto;
8337 	case BPF_FUNC_get_smp_processor_id:
8338 		return &bpf_get_smp_processor_id_proto;
8339 	case BPF_FUNC_skb_under_cgroup:
8340 		return &bpf_skb_under_cgroup_proto;
8341 	default:
8342 		return bpf_sk_base_func_proto(func_id);
8343 	}
8344 }
8345 
8346 static const struct bpf_func_proto *
8347 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8348 {
8349 	switch (func_id) {
8350 	case BPF_FUNC_lwt_push_encap:
8351 		return &bpf_lwt_in_push_encap_proto;
8352 	default:
8353 		return lwt_out_func_proto(func_id, prog);
8354 	}
8355 }
8356 
8357 static const struct bpf_func_proto *
8358 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8359 {
8360 	switch (func_id) {
8361 	case BPF_FUNC_skb_get_tunnel_key:
8362 		return &bpf_skb_get_tunnel_key_proto;
8363 	case BPF_FUNC_skb_set_tunnel_key:
8364 		return bpf_get_skb_set_tunnel_proto(func_id);
8365 	case BPF_FUNC_skb_get_tunnel_opt:
8366 		return &bpf_skb_get_tunnel_opt_proto;
8367 	case BPF_FUNC_skb_set_tunnel_opt:
8368 		return bpf_get_skb_set_tunnel_proto(func_id);
8369 	case BPF_FUNC_redirect:
8370 		return &bpf_redirect_proto;
8371 	case BPF_FUNC_clone_redirect:
8372 		return &bpf_clone_redirect_proto;
8373 	case BPF_FUNC_skb_change_tail:
8374 		return &bpf_skb_change_tail_proto;
8375 	case BPF_FUNC_skb_change_head:
8376 		return &bpf_skb_change_head_proto;
8377 	case BPF_FUNC_skb_store_bytes:
8378 		return &bpf_skb_store_bytes_proto;
8379 	case BPF_FUNC_csum_update:
8380 		return &bpf_csum_update_proto;
8381 	case BPF_FUNC_csum_level:
8382 		return &bpf_csum_level_proto;
8383 	case BPF_FUNC_l3_csum_replace:
8384 		return &bpf_l3_csum_replace_proto;
8385 	case BPF_FUNC_l4_csum_replace:
8386 		return &bpf_l4_csum_replace_proto;
8387 	case BPF_FUNC_set_hash_invalid:
8388 		return &bpf_set_hash_invalid_proto;
8389 	case BPF_FUNC_lwt_push_encap:
8390 		return &bpf_lwt_xmit_push_encap_proto;
8391 	default:
8392 		return lwt_out_func_proto(func_id, prog);
8393 	}
8394 }
8395 
8396 static const struct bpf_func_proto *
8397 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8398 {
8399 	switch (func_id) {
8400 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8401 	case BPF_FUNC_lwt_seg6_store_bytes:
8402 		return &bpf_lwt_seg6_store_bytes_proto;
8403 	case BPF_FUNC_lwt_seg6_action:
8404 		return &bpf_lwt_seg6_action_proto;
8405 	case BPF_FUNC_lwt_seg6_adjust_srh:
8406 		return &bpf_lwt_seg6_adjust_srh_proto;
8407 #endif
8408 	default:
8409 		return lwt_out_func_proto(func_id, prog);
8410 	}
8411 }
8412 
8413 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8414 				    const struct bpf_prog *prog,
8415 				    struct bpf_insn_access_aux *info)
8416 {
8417 	const int size_default = sizeof(__u32);
8418 
8419 	if (off < 0 || off >= sizeof(struct __sk_buff))
8420 		return false;
8421 
8422 	/* The verifier guarantees that size > 0. */
8423 	if (off % size != 0)
8424 		return false;
8425 
8426 	switch (off) {
8427 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8428 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8429 			return false;
8430 		break;
8431 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8432 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8433 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8434 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8435 	case bpf_ctx_range(struct __sk_buff, data):
8436 	case bpf_ctx_range(struct __sk_buff, data_meta):
8437 	case bpf_ctx_range(struct __sk_buff, data_end):
8438 		if (size != size_default)
8439 			return false;
8440 		break;
8441 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8442 		return false;
8443 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8444 		if (type == BPF_WRITE || size != sizeof(__u64))
8445 			return false;
8446 		break;
8447 	case bpf_ctx_range(struct __sk_buff, tstamp):
8448 		if (size != sizeof(__u64))
8449 			return false;
8450 		break;
8451 	case offsetof(struct __sk_buff, sk):
8452 		if (type == BPF_WRITE || size != sizeof(__u64))
8453 			return false;
8454 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8455 		break;
8456 	case offsetof(struct __sk_buff, tstamp_type):
8457 		return false;
8458 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8459 		/* Explicitly prohibit access to padding in __sk_buff. */
8460 		return false;
8461 	default:
8462 		/* Only narrow read access allowed for now. */
8463 		if (type == BPF_WRITE) {
8464 			if (size != size_default)
8465 				return false;
8466 		} else {
8467 			bpf_ctx_record_field_size(info, size_default);
8468 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8469 				return false;
8470 		}
8471 	}
8472 
8473 	return true;
8474 }
8475 
8476 static bool sk_filter_is_valid_access(int off, int size,
8477 				      enum bpf_access_type type,
8478 				      const struct bpf_prog *prog,
8479 				      struct bpf_insn_access_aux *info)
8480 {
8481 	switch (off) {
8482 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8483 	case bpf_ctx_range(struct __sk_buff, data):
8484 	case bpf_ctx_range(struct __sk_buff, data_meta):
8485 	case bpf_ctx_range(struct __sk_buff, data_end):
8486 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8487 	case bpf_ctx_range(struct __sk_buff, tstamp):
8488 	case bpf_ctx_range(struct __sk_buff, wire_len):
8489 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8490 		return false;
8491 	}
8492 
8493 	if (type == BPF_WRITE) {
8494 		switch (off) {
8495 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8496 			break;
8497 		default:
8498 			return false;
8499 		}
8500 	}
8501 
8502 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8503 }
8504 
8505 static bool cg_skb_is_valid_access(int off, int size,
8506 				   enum bpf_access_type type,
8507 				   const struct bpf_prog *prog,
8508 				   struct bpf_insn_access_aux *info)
8509 {
8510 	switch (off) {
8511 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8512 	case bpf_ctx_range(struct __sk_buff, data_meta):
8513 	case bpf_ctx_range(struct __sk_buff, wire_len):
8514 		return false;
8515 	case bpf_ctx_range(struct __sk_buff, data):
8516 	case bpf_ctx_range(struct __sk_buff, data_end):
8517 		if (!bpf_capable())
8518 			return false;
8519 		break;
8520 	}
8521 
8522 	if (type == BPF_WRITE) {
8523 		switch (off) {
8524 		case bpf_ctx_range(struct __sk_buff, mark):
8525 		case bpf_ctx_range(struct __sk_buff, priority):
8526 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8527 			break;
8528 		case bpf_ctx_range(struct __sk_buff, tstamp):
8529 			if (!bpf_capable())
8530 				return false;
8531 			break;
8532 		default:
8533 			return false;
8534 		}
8535 	}
8536 
8537 	switch (off) {
8538 	case bpf_ctx_range(struct __sk_buff, data):
8539 		info->reg_type = PTR_TO_PACKET;
8540 		break;
8541 	case bpf_ctx_range(struct __sk_buff, data_end):
8542 		info->reg_type = PTR_TO_PACKET_END;
8543 		break;
8544 	}
8545 
8546 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8547 }
8548 
8549 static bool lwt_is_valid_access(int off, int size,
8550 				enum bpf_access_type type,
8551 				const struct bpf_prog *prog,
8552 				struct bpf_insn_access_aux *info)
8553 {
8554 	switch (off) {
8555 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8556 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8557 	case bpf_ctx_range(struct __sk_buff, data_meta):
8558 	case bpf_ctx_range(struct __sk_buff, tstamp):
8559 	case bpf_ctx_range(struct __sk_buff, wire_len):
8560 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8561 		return false;
8562 	}
8563 
8564 	if (type == BPF_WRITE) {
8565 		switch (off) {
8566 		case bpf_ctx_range(struct __sk_buff, mark):
8567 		case bpf_ctx_range(struct __sk_buff, priority):
8568 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8569 			break;
8570 		default:
8571 			return false;
8572 		}
8573 	}
8574 
8575 	switch (off) {
8576 	case bpf_ctx_range(struct __sk_buff, data):
8577 		info->reg_type = PTR_TO_PACKET;
8578 		break;
8579 	case bpf_ctx_range(struct __sk_buff, data_end):
8580 		info->reg_type = PTR_TO_PACKET_END;
8581 		break;
8582 	}
8583 
8584 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8585 }
8586 
8587 /* Attach type specific accesses */
8588 static bool __sock_filter_check_attach_type(int off,
8589 					    enum bpf_access_type access_type,
8590 					    enum bpf_attach_type attach_type)
8591 {
8592 	switch (off) {
8593 	case offsetof(struct bpf_sock, bound_dev_if):
8594 	case offsetof(struct bpf_sock, mark):
8595 	case offsetof(struct bpf_sock, priority):
8596 		switch (attach_type) {
8597 		case BPF_CGROUP_INET_SOCK_CREATE:
8598 		case BPF_CGROUP_INET_SOCK_RELEASE:
8599 			goto full_access;
8600 		default:
8601 			return false;
8602 		}
8603 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8604 		switch (attach_type) {
8605 		case BPF_CGROUP_INET4_POST_BIND:
8606 			goto read_only;
8607 		default:
8608 			return false;
8609 		}
8610 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8611 		switch (attach_type) {
8612 		case BPF_CGROUP_INET6_POST_BIND:
8613 			goto read_only;
8614 		default:
8615 			return false;
8616 		}
8617 	case bpf_ctx_range(struct bpf_sock, src_port):
8618 		switch (attach_type) {
8619 		case BPF_CGROUP_INET4_POST_BIND:
8620 		case BPF_CGROUP_INET6_POST_BIND:
8621 			goto read_only;
8622 		default:
8623 			return false;
8624 		}
8625 	}
8626 read_only:
8627 	return access_type == BPF_READ;
8628 full_access:
8629 	return true;
8630 }
8631 
8632 bool bpf_sock_common_is_valid_access(int off, int size,
8633 				     enum bpf_access_type type,
8634 				     struct bpf_insn_access_aux *info)
8635 {
8636 	switch (off) {
8637 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8638 		return false;
8639 	default:
8640 		return bpf_sock_is_valid_access(off, size, type, info);
8641 	}
8642 }
8643 
8644 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8645 			      struct bpf_insn_access_aux *info)
8646 {
8647 	const int size_default = sizeof(__u32);
8648 	int field_size;
8649 
8650 	if (off < 0 || off >= sizeof(struct bpf_sock))
8651 		return false;
8652 	if (off % size != 0)
8653 		return false;
8654 
8655 	switch (off) {
8656 	case offsetof(struct bpf_sock, state):
8657 	case offsetof(struct bpf_sock, family):
8658 	case offsetof(struct bpf_sock, type):
8659 	case offsetof(struct bpf_sock, protocol):
8660 	case offsetof(struct bpf_sock, src_port):
8661 	case offsetof(struct bpf_sock, rx_queue_mapping):
8662 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8663 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8664 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8665 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8666 		bpf_ctx_record_field_size(info, size_default);
8667 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8668 	case bpf_ctx_range(struct bpf_sock, dst_port):
8669 		field_size = size == size_default ?
8670 			size_default : sizeof_field(struct bpf_sock, dst_port);
8671 		bpf_ctx_record_field_size(info, field_size);
8672 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8673 	case offsetofend(struct bpf_sock, dst_port) ...
8674 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8675 		return false;
8676 	}
8677 
8678 	return size == size_default;
8679 }
8680 
8681 static bool sock_filter_is_valid_access(int off, int size,
8682 					enum bpf_access_type type,
8683 					const struct bpf_prog *prog,
8684 					struct bpf_insn_access_aux *info)
8685 {
8686 	if (!bpf_sock_is_valid_access(off, size, type, info))
8687 		return false;
8688 	return __sock_filter_check_attach_type(off, type,
8689 					       prog->expected_attach_type);
8690 }
8691 
8692 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8693 			     const struct bpf_prog *prog)
8694 {
8695 	/* Neither direct read nor direct write requires any preliminary
8696 	 * action.
8697 	 */
8698 	return 0;
8699 }
8700 
8701 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8702 				const struct bpf_prog *prog, int drop_verdict)
8703 {
8704 	struct bpf_insn *insn = insn_buf;
8705 
8706 	if (!direct_write)
8707 		return 0;
8708 
8709 	/* if (!skb->cloned)
8710 	 *       goto start;
8711 	 *
8712 	 * (Fast-path, otherwise approximation that we might be
8713 	 *  a clone, do the rest in helper.)
8714 	 */
8715 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8716 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8717 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8718 
8719 	/* ret = bpf_skb_pull_data(skb, 0); */
8720 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8721 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8722 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8723 			       BPF_FUNC_skb_pull_data);
8724 	/* if (!ret)
8725 	 *      goto restore;
8726 	 * return TC_ACT_SHOT;
8727 	 */
8728 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8729 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8730 	*insn++ = BPF_EXIT_INSN();
8731 
8732 	/* restore: */
8733 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8734 	/* start: */
8735 	*insn++ = prog->insnsi[0];
8736 
8737 	return insn - insn_buf;
8738 }
8739 
8740 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8741 			  struct bpf_insn *insn_buf)
8742 {
8743 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8744 	struct bpf_insn *insn = insn_buf;
8745 
8746 	if (!indirect) {
8747 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8748 	} else {
8749 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8750 		if (orig->imm)
8751 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8752 	}
8753 	/* We're guaranteed here that CTX is in R6. */
8754 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8755 
8756 	switch (BPF_SIZE(orig->code)) {
8757 	case BPF_B:
8758 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8759 		break;
8760 	case BPF_H:
8761 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8762 		break;
8763 	case BPF_W:
8764 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8765 		break;
8766 	}
8767 
8768 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8769 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8770 	*insn++ = BPF_EXIT_INSN();
8771 
8772 	return insn - insn_buf;
8773 }
8774 
8775 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8776 			       const struct bpf_prog *prog)
8777 {
8778 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8779 }
8780 
8781 static bool tc_cls_act_is_valid_access(int off, int size,
8782 				       enum bpf_access_type type,
8783 				       const struct bpf_prog *prog,
8784 				       struct bpf_insn_access_aux *info)
8785 {
8786 	if (type == BPF_WRITE) {
8787 		switch (off) {
8788 		case bpf_ctx_range(struct __sk_buff, mark):
8789 		case bpf_ctx_range(struct __sk_buff, tc_index):
8790 		case bpf_ctx_range(struct __sk_buff, priority):
8791 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8792 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8793 		case bpf_ctx_range(struct __sk_buff, tstamp):
8794 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8795 			break;
8796 		default:
8797 			return false;
8798 		}
8799 	}
8800 
8801 	switch (off) {
8802 	case bpf_ctx_range(struct __sk_buff, data):
8803 		info->reg_type = PTR_TO_PACKET;
8804 		break;
8805 	case bpf_ctx_range(struct __sk_buff, data_meta):
8806 		info->reg_type = PTR_TO_PACKET_META;
8807 		break;
8808 	case bpf_ctx_range(struct __sk_buff, data_end):
8809 		info->reg_type = PTR_TO_PACKET_END;
8810 		break;
8811 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8812 		return false;
8813 	case offsetof(struct __sk_buff, tstamp_type):
8814 		/* The convert_ctx_access() on reading and writing
8815 		 * __sk_buff->tstamp depends on whether the bpf prog
8816 		 * has used __sk_buff->tstamp_type or not.
8817 		 * Thus, we need to set prog->tstamp_type_access
8818 		 * earlier during is_valid_access() here.
8819 		 */
8820 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8821 		return size == sizeof(__u8);
8822 	}
8823 
8824 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8825 }
8826 
8827 DEFINE_MUTEX(nf_conn_btf_access_lock);
8828 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8829 
8830 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8831 			      const struct bpf_reg_state *reg,
8832 			      int off, int size);
8833 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8834 
8835 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8836 					const struct bpf_reg_state *reg,
8837 					int off, int size)
8838 {
8839 	int ret = -EACCES;
8840 
8841 	mutex_lock(&nf_conn_btf_access_lock);
8842 	if (nfct_btf_struct_access)
8843 		ret = nfct_btf_struct_access(log, reg, off, size);
8844 	mutex_unlock(&nf_conn_btf_access_lock);
8845 
8846 	return ret;
8847 }
8848 
8849 static bool __is_valid_xdp_access(int off, int size)
8850 {
8851 	if (off < 0 || off >= sizeof(struct xdp_md))
8852 		return false;
8853 	if (off % size != 0)
8854 		return false;
8855 	if (size != sizeof(__u32))
8856 		return false;
8857 
8858 	return true;
8859 }
8860 
8861 static bool xdp_is_valid_access(int off, int size,
8862 				enum bpf_access_type type,
8863 				const struct bpf_prog *prog,
8864 				struct bpf_insn_access_aux *info)
8865 {
8866 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8867 		switch (off) {
8868 		case offsetof(struct xdp_md, egress_ifindex):
8869 			return false;
8870 		}
8871 	}
8872 
8873 	if (type == BPF_WRITE) {
8874 		if (bpf_prog_is_offloaded(prog->aux)) {
8875 			switch (off) {
8876 			case offsetof(struct xdp_md, rx_queue_index):
8877 				return __is_valid_xdp_access(off, size);
8878 			}
8879 		}
8880 		return false;
8881 	}
8882 
8883 	switch (off) {
8884 	case offsetof(struct xdp_md, data):
8885 		info->reg_type = PTR_TO_PACKET;
8886 		break;
8887 	case offsetof(struct xdp_md, data_meta):
8888 		info->reg_type = PTR_TO_PACKET_META;
8889 		break;
8890 	case offsetof(struct xdp_md, data_end):
8891 		info->reg_type = PTR_TO_PACKET_END;
8892 		break;
8893 	}
8894 
8895 	return __is_valid_xdp_access(off, size);
8896 }
8897 
8898 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8899 {
8900 	const u32 act_max = XDP_REDIRECT;
8901 
8902 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
8903 		     act > act_max ? "Illegal" : "Driver unsupported",
8904 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
8905 }
8906 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
8907 
8908 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
8909 				 const struct bpf_reg_state *reg,
8910 				 int off, int size)
8911 {
8912 	int ret = -EACCES;
8913 
8914 	mutex_lock(&nf_conn_btf_access_lock);
8915 	if (nfct_btf_struct_access)
8916 		ret = nfct_btf_struct_access(log, reg, off, size);
8917 	mutex_unlock(&nf_conn_btf_access_lock);
8918 
8919 	return ret;
8920 }
8921 
8922 static bool sock_addr_is_valid_access(int off, int size,
8923 				      enum bpf_access_type type,
8924 				      const struct bpf_prog *prog,
8925 				      struct bpf_insn_access_aux *info)
8926 {
8927 	const int size_default = sizeof(__u32);
8928 
8929 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
8930 		return false;
8931 	if (off % size != 0)
8932 		return false;
8933 
8934 	/* Disallow access to IPv6 fields from IPv4 contex and vise
8935 	 * versa.
8936 	 */
8937 	switch (off) {
8938 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8939 		switch (prog->expected_attach_type) {
8940 		case BPF_CGROUP_INET4_BIND:
8941 		case BPF_CGROUP_INET4_CONNECT:
8942 		case BPF_CGROUP_INET4_GETPEERNAME:
8943 		case BPF_CGROUP_INET4_GETSOCKNAME:
8944 		case BPF_CGROUP_UDP4_SENDMSG:
8945 		case BPF_CGROUP_UDP4_RECVMSG:
8946 			break;
8947 		default:
8948 			return false;
8949 		}
8950 		break;
8951 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8952 		switch (prog->expected_attach_type) {
8953 		case BPF_CGROUP_INET6_BIND:
8954 		case BPF_CGROUP_INET6_CONNECT:
8955 		case BPF_CGROUP_INET6_GETPEERNAME:
8956 		case BPF_CGROUP_INET6_GETSOCKNAME:
8957 		case BPF_CGROUP_UDP6_SENDMSG:
8958 		case BPF_CGROUP_UDP6_RECVMSG:
8959 			break;
8960 		default:
8961 			return false;
8962 		}
8963 		break;
8964 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8965 		switch (prog->expected_attach_type) {
8966 		case BPF_CGROUP_UDP4_SENDMSG:
8967 			break;
8968 		default:
8969 			return false;
8970 		}
8971 		break;
8972 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8973 				msg_src_ip6[3]):
8974 		switch (prog->expected_attach_type) {
8975 		case BPF_CGROUP_UDP6_SENDMSG:
8976 			break;
8977 		default:
8978 			return false;
8979 		}
8980 		break;
8981 	}
8982 
8983 	switch (off) {
8984 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
8985 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
8986 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
8987 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
8988 				msg_src_ip6[3]):
8989 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
8990 		if (type == BPF_READ) {
8991 			bpf_ctx_record_field_size(info, size_default);
8992 
8993 			if (bpf_ctx_wide_access_ok(off, size,
8994 						   struct bpf_sock_addr,
8995 						   user_ip6))
8996 				return true;
8997 
8998 			if (bpf_ctx_wide_access_ok(off, size,
8999 						   struct bpf_sock_addr,
9000 						   msg_src_ip6))
9001 				return true;
9002 
9003 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9004 				return false;
9005 		} else {
9006 			if (bpf_ctx_wide_access_ok(off, size,
9007 						   struct bpf_sock_addr,
9008 						   user_ip6))
9009 				return true;
9010 
9011 			if (bpf_ctx_wide_access_ok(off, size,
9012 						   struct bpf_sock_addr,
9013 						   msg_src_ip6))
9014 				return true;
9015 
9016 			if (size != size_default)
9017 				return false;
9018 		}
9019 		break;
9020 	case offsetof(struct bpf_sock_addr, sk):
9021 		if (type != BPF_READ)
9022 			return false;
9023 		if (size != sizeof(__u64))
9024 			return false;
9025 		info->reg_type = PTR_TO_SOCKET;
9026 		break;
9027 	default:
9028 		if (type == BPF_READ) {
9029 			if (size != size_default)
9030 				return false;
9031 		} else {
9032 			return false;
9033 		}
9034 	}
9035 
9036 	return true;
9037 }
9038 
9039 static bool sock_ops_is_valid_access(int off, int size,
9040 				     enum bpf_access_type type,
9041 				     const struct bpf_prog *prog,
9042 				     struct bpf_insn_access_aux *info)
9043 {
9044 	const int size_default = sizeof(__u32);
9045 
9046 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9047 		return false;
9048 
9049 	/* The verifier guarantees that size > 0. */
9050 	if (off % size != 0)
9051 		return false;
9052 
9053 	if (type == BPF_WRITE) {
9054 		switch (off) {
9055 		case offsetof(struct bpf_sock_ops, reply):
9056 		case offsetof(struct bpf_sock_ops, sk_txhash):
9057 			if (size != size_default)
9058 				return false;
9059 			break;
9060 		default:
9061 			return false;
9062 		}
9063 	} else {
9064 		switch (off) {
9065 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9066 					bytes_acked):
9067 			if (size != sizeof(__u64))
9068 				return false;
9069 			break;
9070 		case offsetof(struct bpf_sock_ops, sk):
9071 			if (size != sizeof(__u64))
9072 				return false;
9073 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9074 			break;
9075 		case offsetof(struct bpf_sock_ops, skb_data):
9076 			if (size != sizeof(__u64))
9077 				return false;
9078 			info->reg_type = PTR_TO_PACKET;
9079 			break;
9080 		case offsetof(struct bpf_sock_ops, skb_data_end):
9081 			if (size != sizeof(__u64))
9082 				return false;
9083 			info->reg_type = PTR_TO_PACKET_END;
9084 			break;
9085 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9086 			bpf_ctx_record_field_size(info, size_default);
9087 			return bpf_ctx_narrow_access_ok(off, size,
9088 							size_default);
9089 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9090 			if (size != sizeof(__u64))
9091 				return false;
9092 			break;
9093 		default:
9094 			if (size != size_default)
9095 				return false;
9096 			break;
9097 		}
9098 	}
9099 
9100 	return true;
9101 }
9102 
9103 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9104 			   const struct bpf_prog *prog)
9105 {
9106 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9107 }
9108 
9109 static bool sk_skb_is_valid_access(int off, int size,
9110 				   enum bpf_access_type type,
9111 				   const struct bpf_prog *prog,
9112 				   struct bpf_insn_access_aux *info)
9113 {
9114 	switch (off) {
9115 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9116 	case bpf_ctx_range(struct __sk_buff, data_meta):
9117 	case bpf_ctx_range(struct __sk_buff, tstamp):
9118 	case bpf_ctx_range(struct __sk_buff, wire_len):
9119 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9120 		return false;
9121 	}
9122 
9123 	if (type == BPF_WRITE) {
9124 		switch (off) {
9125 		case bpf_ctx_range(struct __sk_buff, tc_index):
9126 		case bpf_ctx_range(struct __sk_buff, priority):
9127 			break;
9128 		default:
9129 			return false;
9130 		}
9131 	}
9132 
9133 	switch (off) {
9134 	case bpf_ctx_range(struct __sk_buff, mark):
9135 		return false;
9136 	case bpf_ctx_range(struct __sk_buff, data):
9137 		info->reg_type = PTR_TO_PACKET;
9138 		break;
9139 	case bpf_ctx_range(struct __sk_buff, data_end):
9140 		info->reg_type = PTR_TO_PACKET_END;
9141 		break;
9142 	}
9143 
9144 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9145 }
9146 
9147 static bool sk_msg_is_valid_access(int off, int size,
9148 				   enum bpf_access_type type,
9149 				   const struct bpf_prog *prog,
9150 				   struct bpf_insn_access_aux *info)
9151 {
9152 	if (type == BPF_WRITE)
9153 		return false;
9154 
9155 	if (off % size != 0)
9156 		return false;
9157 
9158 	switch (off) {
9159 	case offsetof(struct sk_msg_md, data):
9160 		info->reg_type = PTR_TO_PACKET;
9161 		if (size != sizeof(__u64))
9162 			return false;
9163 		break;
9164 	case offsetof(struct sk_msg_md, data_end):
9165 		info->reg_type = PTR_TO_PACKET_END;
9166 		if (size != sizeof(__u64))
9167 			return false;
9168 		break;
9169 	case offsetof(struct sk_msg_md, sk):
9170 		if (size != sizeof(__u64))
9171 			return false;
9172 		info->reg_type = PTR_TO_SOCKET;
9173 		break;
9174 	case bpf_ctx_range(struct sk_msg_md, family):
9175 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9176 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9177 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9178 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9179 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9180 	case bpf_ctx_range(struct sk_msg_md, local_port):
9181 	case bpf_ctx_range(struct sk_msg_md, size):
9182 		if (size != sizeof(__u32))
9183 			return false;
9184 		break;
9185 	default:
9186 		return false;
9187 	}
9188 	return true;
9189 }
9190 
9191 static bool flow_dissector_is_valid_access(int off, int size,
9192 					   enum bpf_access_type type,
9193 					   const struct bpf_prog *prog,
9194 					   struct bpf_insn_access_aux *info)
9195 {
9196 	const int size_default = sizeof(__u32);
9197 
9198 	if (off < 0 || off >= sizeof(struct __sk_buff))
9199 		return false;
9200 
9201 	if (type == BPF_WRITE)
9202 		return false;
9203 
9204 	switch (off) {
9205 	case bpf_ctx_range(struct __sk_buff, data):
9206 		if (size != size_default)
9207 			return false;
9208 		info->reg_type = PTR_TO_PACKET;
9209 		return true;
9210 	case bpf_ctx_range(struct __sk_buff, data_end):
9211 		if (size != size_default)
9212 			return false;
9213 		info->reg_type = PTR_TO_PACKET_END;
9214 		return true;
9215 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9216 		if (size != sizeof(__u64))
9217 			return false;
9218 		info->reg_type = PTR_TO_FLOW_KEYS;
9219 		return true;
9220 	default:
9221 		return false;
9222 	}
9223 }
9224 
9225 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9226 					     const struct bpf_insn *si,
9227 					     struct bpf_insn *insn_buf,
9228 					     struct bpf_prog *prog,
9229 					     u32 *target_size)
9230 
9231 {
9232 	struct bpf_insn *insn = insn_buf;
9233 
9234 	switch (si->off) {
9235 	case offsetof(struct __sk_buff, data):
9236 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9237 				      si->dst_reg, si->src_reg,
9238 				      offsetof(struct bpf_flow_dissector, data));
9239 		break;
9240 
9241 	case offsetof(struct __sk_buff, data_end):
9242 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9243 				      si->dst_reg, si->src_reg,
9244 				      offsetof(struct bpf_flow_dissector, data_end));
9245 		break;
9246 
9247 	case offsetof(struct __sk_buff, flow_keys):
9248 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9249 				      si->dst_reg, si->src_reg,
9250 				      offsetof(struct bpf_flow_dissector, flow_keys));
9251 		break;
9252 	}
9253 
9254 	return insn - insn_buf;
9255 }
9256 
9257 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9258 						     struct bpf_insn *insn)
9259 {
9260 	__u8 value_reg = si->dst_reg;
9261 	__u8 skb_reg = si->src_reg;
9262 	/* AX is needed because src_reg and dst_reg could be the same */
9263 	__u8 tmp_reg = BPF_REG_AX;
9264 
9265 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9266 			      SKB_BF_MONO_TC_OFFSET);
9267 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9268 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9269 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9270 	*insn++ = BPF_JMP_A(1);
9271 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9272 
9273 	return insn;
9274 }
9275 
9276 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9277 						  struct bpf_insn *insn)
9278 {
9279 	/* si->dst_reg = skb_shinfo(SKB); */
9280 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9281 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9282 			      BPF_REG_AX, skb_reg,
9283 			      offsetof(struct sk_buff, end));
9284 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9285 			      dst_reg, skb_reg,
9286 			      offsetof(struct sk_buff, head));
9287 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9288 #else
9289 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9290 			      dst_reg, skb_reg,
9291 			      offsetof(struct sk_buff, end));
9292 #endif
9293 
9294 	return insn;
9295 }
9296 
9297 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9298 						const struct bpf_insn *si,
9299 						struct bpf_insn *insn)
9300 {
9301 	__u8 value_reg = si->dst_reg;
9302 	__u8 skb_reg = si->src_reg;
9303 
9304 #ifdef CONFIG_NET_XGRESS
9305 	/* If the tstamp_type is read,
9306 	 * the bpf prog is aware the tstamp could have delivery time.
9307 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9308 	 */
9309 	if (!prog->tstamp_type_access) {
9310 		/* AX is needed because src_reg and dst_reg could be the same */
9311 		__u8 tmp_reg = BPF_REG_AX;
9312 
9313 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9314 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9315 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9316 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9317 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9318 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9319 		 * read 0 as the (rcv) timestamp.
9320 		 */
9321 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9322 		*insn++ = BPF_JMP_A(1);
9323 	}
9324 #endif
9325 
9326 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9327 			      offsetof(struct sk_buff, tstamp));
9328 	return insn;
9329 }
9330 
9331 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9332 						 const struct bpf_insn *si,
9333 						 struct bpf_insn *insn)
9334 {
9335 	__u8 value_reg = si->src_reg;
9336 	__u8 skb_reg = si->dst_reg;
9337 
9338 #ifdef CONFIG_NET_XGRESS
9339 	/* If the tstamp_type is read,
9340 	 * the bpf prog is aware the tstamp could have delivery time.
9341 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9342 	 * Otherwise, writing at ingress will have to clear the
9343 	 * mono_delivery_time bit also.
9344 	 */
9345 	if (!prog->tstamp_type_access) {
9346 		__u8 tmp_reg = BPF_REG_AX;
9347 
9348 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9349 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9350 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9351 		/* goto <store> */
9352 		*insn++ = BPF_JMP_A(2);
9353 		/* <clear>: mono_delivery_time */
9354 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9355 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9356 	}
9357 #endif
9358 
9359 	/* <store>: skb->tstamp = tstamp */
9360 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9361 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9362 	return insn;
9363 }
9364 
9365 #define BPF_EMIT_STORE(size, si, off)					\
9366 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9367 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9368 
9369 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9370 				  const struct bpf_insn *si,
9371 				  struct bpf_insn *insn_buf,
9372 				  struct bpf_prog *prog, u32 *target_size)
9373 {
9374 	struct bpf_insn *insn = insn_buf;
9375 	int off;
9376 
9377 	switch (si->off) {
9378 	case offsetof(struct __sk_buff, len):
9379 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9380 				      bpf_target_off(struct sk_buff, len, 4,
9381 						     target_size));
9382 		break;
9383 
9384 	case offsetof(struct __sk_buff, protocol):
9385 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9386 				      bpf_target_off(struct sk_buff, protocol, 2,
9387 						     target_size));
9388 		break;
9389 
9390 	case offsetof(struct __sk_buff, vlan_proto):
9391 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9392 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9393 						     target_size));
9394 		break;
9395 
9396 	case offsetof(struct __sk_buff, priority):
9397 		if (type == BPF_WRITE)
9398 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9399 						 bpf_target_off(struct sk_buff, priority, 4,
9400 								target_size));
9401 		else
9402 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9403 					      bpf_target_off(struct sk_buff, priority, 4,
9404 							     target_size));
9405 		break;
9406 
9407 	case offsetof(struct __sk_buff, ingress_ifindex):
9408 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9409 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9410 						     target_size));
9411 		break;
9412 
9413 	case offsetof(struct __sk_buff, ifindex):
9414 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9415 				      si->dst_reg, si->src_reg,
9416 				      offsetof(struct sk_buff, dev));
9417 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9418 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9419 				      bpf_target_off(struct net_device, ifindex, 4,
9420 						     target_size));
9421 		break;
9422 
9423 	case offsetof(struct __sk_buff, hash):
9424 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9425 				      bpf_target_off(struct sk_buff, hash, 4,
9426 						     target_size));
9427 		break;
9428 
9429 	case offsetof(struct __sk_buff, mark):
9430 		if (type == BPF_WRITE)
9431 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9432 						 bpf_target_off(struct sk_buff, mark, 4,
9433 								target_size));
9434 		else
9435 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9436 					      bpf_target_off(struct sk_buff, mark, 4,
9437 							     target_size));
9438 		break;
9439 
9440 	case offsetof(struct __sk_buff, pkt_type):
9441 		*target_size = 1;
9442 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9443 				      PKT_TYPE_OFFSET);
9444 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9445 #ifdef __BIG_ENDIAN_BITFIELD
9446 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9447 #endif
9448 		break;
9449 
9450 	case offsetof(struct __sk_buff, queue_mapping):
9451 		if (type == BPF_WRITE) {
9452 			u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9453 
9454 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9455 				*insn++ = BPF_JMP_A(0); /* noop */
9456 				break;
9457 			}
9458 
9459 			if (BPF_CLASS(si->code) == BPF_STX)
9460 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9461 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9462 		} else {
9463 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9464 					      bpf_target_off(struct sk_buff,
9465 							     queue_mapping,
9466 							     2, target_size));
9467 		}
9468 		break;
9469 
9470 	case offsetof(struct __sk_buff, vlan_present):
9471 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9472 				      bpf_target_off(struct sk_buff,
9473 						     vlan_all, 4, target_size));
9474 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9475 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9476 		break;
9477 
9478 	case offsetof(struct __sk_buff, vlan_tci):
9479 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9480 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9481 						     target_size));
9482 		break;
9483 
9484 	case offsetof(struct __sk_buff, cb[0]) ...
9485 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9486 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9487 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9488 			      offsetof(struct qdisc_skb_cb, data)) %
9489 			     sizeof(__u64));
9490 
9491 		prog->cb_access = 1;
9492 		off  = si->off;
9493 		off -= offsetof(struct __sk_buff, cb[0]);
9494 		off += offsetof(struct sk_buff, cb);
9495 		off += offsetof(struct qdisc_skb_cb, data);
9496 		if (type == BPF_WRITE)
9497 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9498 		else
9499 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9500 					      si->src_reg, off);
9501 		break;
9502 
9503 	case offsetof(struct __sk_buff, tc_classid):
9504 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9505 
9506 		off  = si->off;
9507 		off -= offsetof(struct __sk_buff, tc_classid);
9508 		off += offsetof(struct sk_buff, cb);
9509 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9510 		*target_size = 2;
9511 		if (type == BPF_WRITE)
9512 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9513 		else
9514 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9515 					      si->src_reg, off);
9516 		break;
9517 
9518 	case offsetof(struct __sk_buff, data):
9519 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9520 				      si->dst_reg, si->src_reg,
9521 				      offsetof(struct sk_buff, data));
9522 		break;
9523 
9524 	case offsetof(struct __sk_buff, data_meta):
9525 		off  = si->off;
9526 		off -= offsetof(struct __sk_buff, data_meta);
9527 		off += offsetof(struct sk_buff, cb);
9528 		off += offsetof(struct bpf_skb_data_end, data_meta);
9529 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9530 				      si->src_reg, off);
9531 		break;
9532 
9533 	case offsetof(struct __sk_buff, data_end):
9534 		off  = si->off;
9535 		off -= offsetof(struct __sk_buff, data_end);
9536 		off += offsetof(struct sk_buff, cb);
9537 		off += offsetof(struct bpf_skb_data_end, data_end);
9538 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9539 				      si->src_reg, off);
9540 		break;
9541 
9542 	case offsetof(struct __sk_buff, tc_index):
9543 #ifdef CONFIG_NET_SCHED
9544 		if (type == BPF_WRITE)
9545 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9546 						 bpf_target_off(struct sk_buff, tc_index, 2,
9547 								target_size));
9548 		else
9549 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9550 					      bpf_target_off(struct sk_buff, tc_index, 2,
9551 							     target_size));
9552 #else
9553 		*target_size = 2;
9554 		if (type == BPF_WRITE)
9555 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9556 		else
9557 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9558 #endif
9559 		break;
9560 
9561 	case offsetof(struct __sk_buff, napi_id):
9562 #if defined(CONFIG_NET_RX_BUSY_POLL)
9563 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9564 				      bpf_target_off(struct sk_buff, napi_id, 4,
9565 						     target_size));
9566 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9567 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9568 #else
9569 		*target_size = 4;
9570 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9571 #endif
9572 		break;
9573 	case offsetof(struct __sk_buff, family):
9574 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9575 
9576 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9577 				      si->dst_reg, si->src_reg,
9578 				      offsetof(struct sk_buff, sk));
9579 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9580 				      bpf_target_off(struct sock_common,
9581 						     skc_family,
9582 						     2, target_size));
9583 		break;
9584 	case offsetof(struct __sk_buff, remote_ip4):
9585 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9586 
9587 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9588 				      si->dst_reg, si->src_reg,
9589 				      offsetof(struct sk_buff, sk));
9590 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9591 				      bpf_target_off(struct sock_common,
9592 						     skc_daddr,
9593 						     4, target_size));
9594 		break;
9595 	case offsetof(struct __sk_buff, local_ip4):
9596 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9597 					  skc_rcv_saddr) != 4);
9598 
9599 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9600 				      si->dst_reg, si->src_reg,
9601 				      offsetof(struct sk_buff, sk));
9602 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9603 				      bpf_target_off(struct sock_common,
9604 						     skc_rcv_saddr,
9605 						     4, target_size));
9606 		break;
9607 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9608 	     offsetof(struct __sk_buff, remote_ip6[3]):
9609 #if IS_ENABLED(CONFIG_IPV6)
9610 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9611 					  skc_v6_daddr.s6_addr32[0]) != 4);
9612 
9613 		off = si->off;
9614 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9615 
9616 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9617 				      si->dst_reg, si->src_reg,
9618 				      offsetof(struct sk_buff, sk));
9619 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9620 				      offsetof(struct sock_common,
9621 					       skc_v6_daddr.s6_addr32[0]) +
9622 				      off);
9623 #else
9624 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9625 #endif
9626 		break;
9627 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9628 	     offsetof(struct __sk_buff, local_ip6[3]):
9629 #if IS_ENABLED(CONFIG_IPV6)
9630 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9631 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9632 
9633 		off = si->off;
9634 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9635 
9636 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9637 				      si->dst_reg, si->src_reg,
9638 				      offsetof(struct sk_buff, sk));
9639 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9640 				      offsetof(struct sock_common,
9641 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9642 				      off);
9643 #else
9644 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9645 #endif
9646 		break;
9647 
9648 	case offsetof(struct __sk_buff, remote_port):
9649 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9650 
9651 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9652 				      si->dst_reg, si->src_reg,
9653 				      offsetof(struct sk_buff, sk));
9654 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9655 				      bpf_target_off(struct sock_common,
9656 						     skc_dport,
9657 						     2, target_size));
9658 #ifndef __BIG_ENDIAN_BITFIELD
9659 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9660 #endif
9661 		break;
9662 
9663 	case offsetof(struct __sk_buff, local_port):
9664 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9665 
9666 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9667 				      si->dst_reg, si->src_reg,
9668 				      offsetof(struct sk_buff, sk));
9669 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9670 				      bpf_target_off(struct sock_common,
9671 						     skc_num, 2, target_size));
9672 		break;
9673 
9674 	case offsetof(struct __sk_buff, tstamp):
9675 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9676 
9677 		if (type == BPF_WRITE)
9678 			insn = bpf_convert_tstamp_write(prog, si, insn);
9679 		else
9680 			insn = bpf_convert_tstamp_read(prog, si, insn);
9681 		break;
9682 
9683 	case offsetof(struct __sk_buff, tstamp_type):
9684 		insn = bpf_convert_tstamp_type_read(si, insn);
9685 		break;
9686 
9687 	case offsetof(struct __sk_buff, gso_segs):
9688 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9689 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9690 				      si->dst_reg, si->dst_reg,
9691 				      bpf_target_off(struct skb_shared_info,
9692 						     gso_segs, 2,
9693 						     target_size));
9694 		break;
9695 	case offsetof(struct __sk_buff, gso_size):
9696 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9697 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9698 				      si->dst_reg, si->dst_reg,
9699 				      bpf_target_off(struct skb_shared_info,
9700 						     gso_size, 2,
9701 						     target_size));
9702 		break;
9703 	case offsetof(struct __sk_buff, wire_len):
9704 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9705 
9706 		off = si->off;
9707 		off -= offsetof(struct __sk_buff, wire_len);
9708 		off += offsetof(struct sk_buff, cb);
9709 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9710 		*target_size = 4;
9711 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9712 		break;
9713 
9714 	case offsetof(struct __sk_buff, sk):
9715 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9716 				      si->dst_reg, si->src_reg,
9717 				      offsetof(struct sk_buff, sk));
9718 		break;
9719 	case offsetof(struct __sk_buff, hwtstamp):
9720 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9721 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9722 
9723 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9724 		*insn++ = BPF_LDX_MEM(BPF_DW,
9725 				      si->dst_reg, si->dst_reg,
9726 				      bpf_target_off(struct skb_shared_info,
9727 						     hwtstamps, 8,
9728 						     target_size));
9729 		break;
9730 	}
9731 
9732 	return insn - insn_buf;
9733 }
9734 
9735 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9736 				const struct bpf_insn *si,
9737 				struct bpf_insn *insn_buf,
9738 				struct bpf_prog *prog, u32 *target_size)
9739 {
9740 	struct bpf_insn *insn = insn_buf;
9741 	int off;
9742 
9743 	switch (si->off) {
9744 	case offsetof(struct bpf_sock, bound_dev_if):
9745 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9746 
9747 		if (type == BPF_WRITE)
9748 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9749 						 offsetof(struct sock, sk_bound_dev_if));
9750 		else
9751 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9752 				      offsetof(struct sock, sk_bound_dev_if));
9753 		break;
9754 
9755 	case offsetof(struct bpf_sock, mark):
9756 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9757 
9758 		if (type == BPF_WRITE)
9759 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9760 						 offsetof(struct sock, sk_mark));
9761 		else
9762 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9763 				      offsetof(struct sock, sk_mark));
9764 		break;
9765 
9766 	case offsetof(struct bpf_sock, priority):
9767 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9768 
9769 		if (type == BPF_WRITE)
9770 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9771 						 offsetof(struct sock, sk_priority));
9772 		else
9773 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9774 				      offsetof(struct sock, sk_priority));
9775 		break;
9776 
9777 	case offsetof(struct bpf_sock, family):
9778 		*insn++ = BPF_LDX_MEM(
9779 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9780 			si->dst_reg, si->src_reg,
9781 			bpf_target_off(struct sock_common,
9782 				       skc_family,
9783 				       sizeof_field(struct sock_common,
9784 						    skc_family),
9785 				       target_size));
9786 		break;
9787 
9788 	case offsetof(struct bpf_sock, type):
9789 		*insn++ = BPF_LDX_MEM(
9790 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9791 			si->dst_reg, si->src_reg,
9792 			bpf_target_off(struct sock, sk_type,
9793 				       sizeof_field(struct sock, sk_type),
9794 				       target_size));
9795 		break;
9796 
9797 	case offsetof(struct bpf_sock, protocol):
9798 		*insn++ = BPF_LDX_MEM(
9799 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9800 			si->dst_reg, si->src_reg,
9801 			bpf_target_off(struct sock, sk_protocol,
9802 				       sizeof_field(struct sock, sk_protocol),
9803 				       target_size));
9804 		break;
9805 
9806 	case offsetof(struct bpf_sock, src_ip4):
9807 		*insn++ = BPF_LDX_MEM(
9808 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9809 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9810 				       sizeof_field(struct sock_common,
9811 						    skc_rcv_saddr),
9812 				       target_size));
9813 		break;
9814 
9815 	case offsetof(struct bpf_sock, dst_ip4):
9816 		*insn++ = BPF_LDX_MEM(
9817 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9818 			bpf_target_off(struct sock_common, skc_daddr,
9819 				       sizeof_field(struct sock_common,
9820 						    skc_daddr),
9821 				       target_size));
9822 		break;
9823 
9824 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9825 #if IS_ENABLED(CONFIG_IPV6)
9826 		off = si->off;
9827 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9828 		*insn++ = BPF_LDX_MEM(
9829 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9830 			bpf_target_off(
9831 				struct sock_common,
9832 				skc_v6_rcv_saddr.s6_addr32[0],
9833 				sizeof_field(struct sock_common,
9834 					     skc_v6_rcv_saddr.s6_addr32[0]),
9835 				target_size) + off);
9836 #else
9837 		(void)off;
9838 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9839 #endif
9840 		break;
9841 
9842 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9843 #if IS_ENABLED(CONFIG_IPV6)
9844 		off = si->off;
9845 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9846 		*insn++ = BPF_LDX_MEM(
9847 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9848 			bpf_target_off(struct sock_common,
9849 				       skc_v6_daddr.s6_addr32[0],
9850 				       sizeof_field(struct sock_common,
9851 						    skc_v6_daddr.s6_addr32[0]),
9852 				       target_size) + off);
9853 #else
9854 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9855 		*target_size = 4;
9856 #endif
9857 		break;
9858 
9859 	case offsetof(struct bpf_sock, src_port):
9860 		*insn++ = BPF_LDX_MEM(
9861 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9862 			si->dst_reg, si->src_reg,
9863 			bpf_target_off(struct sock_common, skc_num,
9864 				       sizeof_field(struct sock_common,
9865 						    skc_num),
9866 				       target_size));
9867 		break;
9868 
9869 	case offsetof(struct bpf_sock, dst_port):
9870 		*insn++ = BPF_LDX_MEM(
9871 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9872 			si->dst_reg, si->src_reg,
9873 			bpf_target_off(struct sock_common, skc_dport,
9874 				       sizeof_field(struct sock_common,
9875 						    skc_dport),
9876 				       target_size));
9877 		break;
9878 
9879 	case offsetof(struct bpf_sock, state):
9880 		*insn++ = BPF_LDX_MEM(
9881 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9882 			si->dst_reg, si->src_reg,
9883 			bpf_target_off(struct sock_common, skc_state,
9884 				       sizeof_field(struct sock_common,
9885 						    skc_state),
9886 				       target_size));
9887 		break;
9888 	case offsetof(struct bpf_sock, rx_queue_mapping):
9889 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9890 		*insn++ = BPF_LDX_MEM(
9891 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9892 			si->dst_reg, si->src_reg,
9893 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9894 				       sizeof_field(struct sock,
9895 						    sk_rx_queue_mapping),
9896 				       target_size));
9897 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9898 				      1);
9899 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9900 #else
9901 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9902 		*target_size = 2;
9903 #endif
9904 		break;
9905 	}
9906 
9907 	return insn - insn_buf;
9908 }
9909 
9910 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
9911 					 const struct bpf_insn *si,
9912 					 struct bpf_insn *insn_buf,
9913 					 struct bpf_prog *prog, u32 *target_size)
9914 {
9915 	struct bpf_insn *insn = insn_buf;
9916 
9917 	switch (si->off) {
9918 	case offsetof(struct __sk_buff, ifindex):
9919 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9920 				      si->dst_reg, si->src_reg,
9921 				      offsetof(struct sk_buff, dev));
9922 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9923 				      bpf_target_off(struct net_device, ifindex, 4,
9924 						     target_size));
9925 		break;
9926 	default:
9927 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
9928 					      target_size);
9929 	}
9930 
9931 	return insn - insn_buf;
9932 }
9933 
9934 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
9935 				  const struct bpf_insn *si,
9936 				  struct bpf_insn *insn_buf,
9937 				  struct bpf_prog *prog, u32 *target_size)
9938 {
9939 	struct bpf_insn *insn = insn_buf;
9940 
9941 	switch (si->off) {
9942 	case offsetof(struct xdp_md, data):
9943 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
9944 				      si->dst_reg, si->src_reg,
9945 				      offsetof(struct xdp_buff, data));
9946 		break;
9947 	case offsetof(struct xdp_md, data_meta):
9948 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
9949 				      si->dst_reg, si->src_reg,
9950 				      offsetof(struct xdp_buff, data_meta));
9951 		break;
9952 	case offsetof(struct xdp_md, data_end):
9953 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
9954 				      si->dst_reg, si->src_reg,
9955 				      offsetof(struct xdp_buff, data_end));
9956 		break;
9957 	case offsetof(struct xdp_md, ingress_ifindex):
9958 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9959 				      si->dst_reg, si->src_reg,
9960 				      offsetof(struct xdp_buff, rxq));
9961 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
9962 				      si->dst_reg, si->dst_reg,
9963 				      offsetof(struct xdp_rxq_info, dev));
9964 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9965 				      offsetof(struct net_device, ifindex));
9966 		break;
9967 	case offsetof(struct xdp_md, rx_queue_index):
9968 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
9969 				      si->dst_reg, si->src_reg,
9970 				      offsetof(struct xdp_buff, rxq));
9971 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9972 				      offsetof(struct xdp_rxq_info,
9973 					       queue_index));
9974 		break;
9975 	case offsetof(struct xdp_md, egress_ifindex):
9976 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
9977 				      si->dst_reg, si->src_reg,
9978 				      offsetof(struct xdp_buff, txq));
9979 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
9980 				      si->dst_reg, si->dst_reg,
9981 				      offsetof(struct xdp_txq_info, dev));
9982 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9983 				      offsetof(struct net_device, ifindex));
9984 		break;
9985 	}
9986 
9987 	return insn - insn_buf;
9988 }
9989 
9990 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
9991  * context Structure, F is Field in context structure that contains a pointer
9992  * to Nested Structure of type NS that has the field NF.
9993  *
9994  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
9995  * sure that SIZE is not greater than actual size of S.F.NF.
9996  *
9997  * If offset OFF is provided, the load happens from that offset relative to
9998  * offset of NF.
9999  */
10000 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10001 	do {								       \
10002 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10003 				      si->src_reg, offsetof(S, F));	       \
10004 		*insn++ = BPF_LDX_MEM(					       \
10005 			SIZE, si->dst_reg, si->dst_reg,			       \
10006 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10007 				       target_size)			       \
10008 				+ OFF);					       \
10009 	} while (0)
10010 
10011 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10012 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10013 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10014 
10015 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10016  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10017  *
10018  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10019  * "register" since two registers available in convert_ctx_access are not
10020  * enough: we can't override neither SRC, since it contains value to store, nor
10021  * DST since it contains pointer to context that may be used by later
10022  * instructions. But we need a temporary place to save pointer to nested
10023  * structure whose field we want to store to.
10024  */
10025 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10026 	do {								       \
10027 		int tmp_reg = BPF_REG_9;				       \
10028 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10029 			--tmp_reg;					       \
10030 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10031 			--tmp_reg;					       \
10032 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10033 				      offsetof(S, TF));			       \
10034 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10035 				      si->dst_reg, offsetof(S, F));	       \
10036 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10037 				       tmp_reg, si->src_reg,		       \
10038 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10039 				       target_size)			       \
10040 				       + OFF,				       \
10041 				       si->imm);			       \
10042 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10043 				      offsetof(S, TF));			       \
10044 	} while (0)
10045 
10046 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10047 						      TF)		       \
10048 	do {								       \
10049 		if (type == BPF_WRITE) {				       \
10050 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10051 							 OFF, TF);	       \
10052 		} else {						       \
10053 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10054 				S, NS, F, NF, SIZE, OFF);  \
10055 		}							       \
10056 	} while (0)
10057 
10058 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
10059 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
10060 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10061 
10062 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10063 					const struct bpf_insn *si,
10064 					struct bpf_insn *insn_buf,
10065 					struct bpf_prog *prog, u32 *target_size)
10066 {
10067 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10068 	struct bpf_insn *insn = insn_buf;
10069 
10070 	switch (si->off) {
10071 	case offsetof(struct bpf_sock_addr, user_family):
10072 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10073 					    struct sockaddr, uaddr, sa_family);
10074 		break;
10075 
10076 	case offsetof(struct bpf_sock_addr, user_ip4):
10077 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10078 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10079 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10080 		break;
10081 
10082 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10083 		off = si->off;
10084 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10085 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10086 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10087 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10088 			tmp_reg);
10089 		break;
10090 
10091 	case offsetof(struct bpf_sock_addr, user_port):
10092 		/* To get port we need to know sa_family first and then treat
10093 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10094 		 * Though we can simplify since port field has same offset and
10095 		 * size in both structures.
10096 		 * Here we check this invariant and use just one of the
10097 		 * structures if it's true.
10098 		 */
10099 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10100 			     offsetof(struct sockaddr_in6, sin6_port));
10101 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10102 			     sizeof_field(struct sockaddr_in6, sin6_port));
10103 		/* Account for sin6_port being smaller than user_port. */
10104 		port_size = min(port_size, BPF_LDST_BYTES(si));
10105 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10106 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10107 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10108 		break;
10109 
10110 	case offsetof(struct bpf_sock_addr, family):
10111 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10112 					    struct sock, sk, sk_family);
10113 		break;
10114 
10115 	case offsetof(struct bpf_sock_addr, type):
10116 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10117 					    struct sock, sk, sk_type);
10118 		break;
10119 
10120 	case offsetof(struct bpf_sock_addr, protocol):
10121 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10122 					    struct sock, sk, sk_protocol);
10123 		break;
10124 
10125 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10126 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10127 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10128 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10129 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10130 		break;
10131 
10132 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10133 				msg_src_ip6[3]):
10134 		off = si->off;
10135 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10136 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10137 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10138 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10139 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10140 		break;
10141 	case offsetof(struct bpf_sock_addr, sk):
10142 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10143 				      si->dst_reg, si->src_reg,
10144 				      offsetof(struct bpf_sock_addr_kern, sk));
10145 		break;
10146 	}
10147 
10148 	return insn - insn_buf;
10149 }
10150 
10151 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10152 				       const struct bpf_insn *si,
10153 				       struct bpf_insn *insn_buf,
10154 				       struct bpf_prog *prog,
10155 				       u32 *target_size)
10156 {
10157 	struct bpf_insn *insn = insn_buf;
10158 	int off;
10159 
10160 /* Helper macro for adding read access to tcp_sock or sock fields. */
10161 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10162 	do {								      \
10163 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10164 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10165 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10166 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10167 			reg--;						      \
10168 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10169 			reg--;						      \
10170 		if (si->dst_reg == si->src_reg) {			      \
10171 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10172 					  offsetof(struct bpf_sock_ops_kern,  \
10173 					  temp));			      \
10174 			fullsock_reg = reg;				      \
10175 			jmp += 2;					      \
10176 		}							      \
10177 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10178 						struct bpf_sock_ops_kern,     \
10179 						is_fullsock),		      \
10180 				      fullsock_reg, si->src_reg,	      \
10181 				      offsetof(struct bpf_sock_ops_kern,      \
10182 					       is_fullsock));		      \
10183 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10184 		if (si->dst_reg == si->src_reg)				      \
10185 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10186 				      offsetof(struct bpf_sock_ops_kern,      \
10187 				      temp));				      \
10188 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10189 						struct bpf_sock_ops_kern, sk),\
10190 				      si->dst_reg, si->src_reg,		      \
10191 				      offsetof(struct bpf_sock_ops_kern, sk));\
10192 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10193 						       OBJ_FIELD),	      \
10194 				      si->dst_reg, si->dst_reg,		      \
10195 				      offsetof(OBJ, OBJ_FIELD));	      \
10196 		if (si->dst_reg == si->src_reg)	{			      \
10197 			*insn++ = BPF_JMP_A(1);				      \
10198 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10199 				      offsetof(struct bpf_sock_ops_kern,      \
10200 				      temp));				      \
10201 		}							      \
10202 	} while (0)
10203 
10204 #define SOCK_OPS_GET_SK()							      \
10205 	do {								      \
10206 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10207 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10208 			reg--;						      \
10209 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10210 			reg--;						      \
10211 		if (si->dst_reg == si->src_reg) {			      \
10212 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10213 					  offsetof(struct bpf_sock_ops_kern,  \
10214 					  temp));			      \
10215 			fullsock_reg = reg;				      \
10216 			jmp += 2;					      \
10217 		}							      \
10218 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10219 						struct bpf_sock_ops_kern,     \
10220 						is_fullsock),		      \
10221 				      fullsock_reg, si->src_reg,	      \
10222 				      offsetof(struct bpf_sock_ops_kern,      \
10223 					       is_fullsock));		      \
10224 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10225 		if (si->dst_reg == si->src_reg)				      \
10226 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10227 				      offsetof(struct bpf_sock_ops_kern,      \
10228 				      temp));				      \
10229 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10230 						struct bpf_sock_ops_kern, sk),\
10231 				      si->dst_reg, si->src_reg,		      \
10232 				      offsetof(struct bpf_sock_ops_kern, sk));\
10233 		if (si->dst_reg == si->src_reg)	{			      \
10234 			*insn++ = BPF_JMP_A(1);				      \
10235 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10236 				      offsetof(struct bpf_sock_ops_kern,      \
10237 				      temp));				      \
10238 		}							      \
10239 	} while (0)
10240 
10241 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10242 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10243 
10244 /* Helper macro for adding write access to tcp_sock or sock fields.
10245  * The macro is called with two registers, dst_reg which contains a pointer
10246  * to ctx (context) and src_reg which contains the value that should be
10247  * stored. However, we need an additional register since we cannot overwrite
10248  * dst_reg because it may be used later in the program.
10249  * Instead we "borrow" one of the other register. We first save its value
10250  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10251  * it at the end of the macro.
10252  */
10253 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10254 	do {								      \
10255 		int reg = BPF_REG_9;					      \
10256 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10257 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10258 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10259 			reg--;						      \
10260 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10261 			reg--;						      \
10262 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10263 				      offsetof(struct bpf_sock_ops_kern,      \
10264 					       temp));			      \
10265 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10266 						struct bpf_sock_ops_kern,     \
10267 						is_fullsock),		      \
10268 				      reg, si->dst_reg,			      \
10269 				      offsetof(struct bpf_sock_ops_kern,      \
10270 					       is_fullsock));		      \
10271 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10272 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10273 						struct bpf_sock_ops_kern, sk),\
10274 				      reg, si->dst_reg,			      \
10275 				      offsetof(struct bpf_sock_ops_kern, sk));\
10276 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10277 				       BPF_MEM | BPF_CLASS(si->code),	      \
10278 				       reg, si->src_reg,		      \
10279 				       offsetof(OBJ, OBJ_FIELD),	      \
10280 				       si->imm);			      \
10281 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10282 				      offsetof(struct bpf_sock_ops_kern,      \
10283 					       temp));			      \
10284 	} while (0)
10285 
10286 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10287 	do {								      \
10288 		if (TYPE == BPF_WRITE)					      \
10289 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10290 		else							      \
10291 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10292 	} while (0)
10293 
10294 	switch (si->off) {
10295 	case offsetof(struct bpf_sock_ops, op):
10296 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10297 						       op),
10298 				      si->dst_reg, si->src_reg,
10299 				      offsetof(struct bpf_sock_ops_kern, op));
10300 		break;
10301 
10302 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10303 	     offsetof(struct bpf_sock_ops, replylong[3]):
10304 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10305 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10306 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10307 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10308 		off = si->off;
10309 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10310 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10311 		if (type == BPF_WRITE)
10312 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10313 		else
10314 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10315 					      off);
10316 		break;
10317 
10318 	case offsetof(struct bpf_sock_ops, family):
10319 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10320 
10321 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10322 					      struct bpf_sock_ops_kern, sk),
10323 				      si->dst_reg, si->src_reg,
10324 				      offsetof(struct bpf_sock_ops_kern, sk));
10325 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10326 				      offsetof(struct sock_common, skc_family));
10327 		break;
10328 
10329 	case offsetof(struct bpf_sock_ops, remote_ip4):
10330 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10331 
10332 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10333 						struct bpf_sock_ops_kern, sk),
10334 				      si->dst_reg, si->src_reg,
10335 				      offsetof(struct bpf_sock_ops_kern, sk));
10336 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10337 				      offsetof(struct sock_common, skc_daddr));
10338 		break;
10339 
10340 	case offsetof(struct bpf_sock_ops, local_ip4):
10341 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10342 					  skc_rcv_saddr) != 4);
10343 
10344 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10345 					      struct bpf_sock_ops_kern, sk),
10346 				      si->dst_reg, si->src_reg,
10347 				      offsetof(struct bpf_sock_ops_kern, sk));
10348 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10349 				      offsetof(struct sock_common,
10350 					       skc_rcv_saddr));
10351 		break;
10352 
10353 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10354 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10355 #if IS_ENABLED(CONFIG_IPV6)
10356 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10357 					  skc_v6_daddr.s6_addr32[0]) != 4);
10358 
10359 		off = si->off;
10360 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10361 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10362 						struct bpf_sock_ops_kern, sk),
10363 				      si->dst_reg, si->src_reg,
10364 				      offsetof(struct bpf_sock_ops_kern, sk));
10365 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10366 				      offsetof(struct sock_common,
10367 					       skc_v6_daddr.s6_addr32[0]) +
10368 				      off);
10369 #else
10370 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10371 #endif
10372 		break;
10373 
10374 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10375 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10376 #if IS_ENABLED(CONFIG_IPV6)
10377 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10378 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10379 
10380 		off = si->off;
10381 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10382 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10383 						struct bpf_sock_ops_kern, sk),
10384 				      si->dst_reg, si->src_reg,
10385 				      offsetof(struct bpf_sock_ops_kern, sk));
10386 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10387 				      offsetof(struct sock_common,
10388 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10389 				      off);
10390 #else
10391 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10392 #endif
10393 		break;
10394 
10395 	case offsetof(struct bpf_sock_ops, remote_port):
10396 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10397 
10398 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10399 						struct bpf_sock_ops_kern, sk),
10400 				      si->dst_reg, si->src_reg,
10401 				      offsetof(struct bpf_sock_ops_kern, sk));
10402 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10403 				      offsetof(struct sock_common, skc_dport));
10404 #ifndef __BIG_ENDIAN_BITFIELD
10405 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10406 #endif
10407 		break;
10408 
10409 	case offsetof(struct bpf_sock_ops, local_port):
10410 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10411 
10412 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10413 						struct bpf_sock_ops_kern, sk),
10414 				      si->dst_reg, si->src_reg,
10415 				      offsetof(struct bpf_sock_ops_kern, sk));
10416 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10417 				      offsetof(struct sock_common, skc_num));
10418 		break;
10419 
10420 	case offsetof(struct bpf_sock_ops, is_fullsock):
10421 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10422 						struct bpf_sock_ops_kern,
10423 						is_fullsock),
10424 				      si->dst_reg, si->src_reg,
10425 				      offsetof(struct bpf_sock_ops_kern,
10426 					       is_fullsock));
10427 		break;
10428 
10429 	case offsetof(struct bpf_sock_ops, state):
10430 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10431 
10432 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10433 						struct bpf_sock_ops_kern, sk),
10434 				      si->dst_reg, si->src_reg,
10435 				      offsetof(struct bpf_sock_ops_kern, sk));
10436 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10437 				      offsetof(struct sock_common, skc_state));
10438 		break;
10439 
10440 	case offsetof(struct bpf_sock_ops, rtt_min):
10441 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10442 			     sizeof(struct minmax));
10443 		BUILD_BUG_ON(sizeof(struct minmax) <
10444 			     sizeof(struct minmax_sample));
10445 
10446 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10447 						struct bpf_sock_ops_kern, sk),
10448 				      si->dst_reg, si->src_reg,
10449 				      offsetof(struct bpf_sock_ops_kern, sk));
10450 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10451 				      offsetof(struct tcp_sock, rtt_min) +
10452 				      sizeof_field(struct minmax_sample, t));
10453 		break;
10454 
10455 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10456 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10457 				   struct tcp_sock);
10458 		break;
10459 
10460 	case offsetof(struct bpf_sock_ops, sk_txhash):
10461 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10462 					  struct sock, type);
10463 		break;
10464 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10465 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10466 		break;
10467 	case offsetof(struct bpf_sock_ops, srtt_us):
10468 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10469 		break;
10470 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10471 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10472 		break;
10473 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10474 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10475 		break;
10476 	case offsetof(struct bpf_sock_ops, snd_nxt):
10477 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10478 		break;
10479 	case offsetof(struct bpf_sock_ops, snd_una):
10480 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10481 		break;
10482 	case offsetof(struct bpf_sock_ops, mss_cache):
10483 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10484 		break;
10485 	case offsetof(struct bpf_sock_ops, ecn_flags):
10486 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10487 		break;
10488 	case offsetof(struct bpf_sock_ops, rate_delivered):
10489 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10490 		break;
10491 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10492 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10493 		break;
10494 	case offsetof(struct bpf_sock_ops, packets_out):
10495 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10496 		break;
10497 	case offsetof(struct bpf_sock_ops, retrans_out):
10498 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10499 		break;
10500 	case offsetof(struct bpf_sock_ops, total_retrans):
10501 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10502 		break;
10503 	case offsetof(struct bpf_sock_ops, segs_in):
10504 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10505 		break;
10506 	case offsetof(struct bpf_sock_ops, data_segs_in):
10507 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10508 		break;
10509 	case offsetof(struct bpf_sock_ops, segs_out):
10510 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10511 		break;
10512 	case offsetof(struct bpf_sock_ops, data_segs_out):
10513 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10514 		break;
10515 	case offsetof(struct bpf_sock_ops, lost_out):
10516 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10517 		break;
10518 	case offsetof(struct bpf_sock_ops, sacked_out):
10519 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10520 		break;
10521 	case offsetof(struct bpf_sock_ops, bytes_received):
10522 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10523 		break;
10524 	case offsetof(struct bpf_sock_ops, bytes_acked):
10525 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10526 		break;
10527 	case offsetof(struct bpf_sock_ops, sk):
10528 		SOCK_OPS_GET_SK();
10529 		break;
10530 	case offsetof(struct bpf_sock_ops, skb_data_end):
10531 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10532 						       skb_data_end),
10533 				      si->dst_reg, si->src_reg,
10534 				      offsetof(struct bpf_sock_ops_kern,
10535 					       skb_data_end));
10536 		break;
10537 	case offsetof(struct bpf_sock_ops, skb_data):
10538 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10539 						       skb),
10540 				      si->dst_reg, si->src_reg,
10541 				      offsetof(struct bpf_sock_ops_kern,
10542 					       skb));
10543 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10544 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10545 				      si->dst_reg, si->dst_reg,
10546 				      offsetof(struct sk_buff, data));
10547 		break;
10548 	case offsetof(struct bpf_sock_ops, skb_len):
10549 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10550 						       skb),
10551 				      si->dst_reg, si->src_reg,
10552 				      offsetof(struct bpf_sock_ops_kern,
10553 					       skb));
10554 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10555 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10556 				      si->dst_reg, si->dst_reg,
10557 				      offsetof(struct sk_buff, len));
10558 		break;
10559 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10560 		off = offsetof(struct sk_buff, cb);
10561 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10562 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10563 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10564 						       skb),
10565 				      si->dst_reg, si->src_reg,
10566 				      offsetof(struct bpf_sock_ops_kern,
10567 					       skb));
10568 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10569 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10570 						       tcp_flags),
10571 				      si->dst_reg, si->dst_reg, off);
10572 		break;
10573 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10574 		struct bpf_insn *jmp_on_null_skb;
10575 
10576 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10577 						       skb),
10578 				      si->dst_reg, si->src_reg,
10579 				      offsetof(struct bpf_sock_ops_kern,
10580 					       skb));
10581 		/* Reserve one insn to test skb == NULL */
10582 		jmp_on_null_skb = insn++;
10583 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10584 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10585 				      bpf_target_off(struct skb_shared_info,
10586 						     hwtstamps, 8,
10587 						     target_size));
10588 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10589 					       insn - jmp_on_null_skb - 1);
10590 		break;
10591 	}
10592 	}
10593 	return insn - insn_buf;
10594 }
10595 
10596 /* data_end = skb->data + skb_headlen() */
10597 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10598 						    struct bpf_insn *insn)
10599 {
10600 	int reg;
10601 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10602 			   offsetof(struct sk_skb_cb, temp_reg);
10603 
10604 	if (si->src_reg == si->dst_reg) {
10605 		/* We need an extra register, choose and save a register. */
10606 		reg = BPF_REG_9;
10607 		if (si->src_reg == reg || si->dst_reg == reg)
10608 			reg--;
10609 		if (si->src_reg == reg || si->dst_reg == reg)
10610 			reg--;
10611 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10612 	} else {
10613 		reg = si->dst_reg;
10614 	}
10615 
10616 	/* reg = skb->data */
10617 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10618 			      reg, si->src_reg,
10619 			      offsetof(struct sk_buff, data));
10620 	/* AX = skb->len */
10621 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10622 			      BPF_REG_AX, si->src_reg,
10623 			      offsetof(struct sk_buff, len));
10624 	/* reg = skb->data + skb->len */
10625 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10626 	/* AX = skb->data_len */
10627 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10628 			      BPF_REG_AX, si->src_reg,
10629 			      offsetof(struct sk_buff, data_len));
10630 
10631 	/* reg = skb->data + skb->len - skb->data_len */
10632 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10633 
10634 	if (si->src_reg == si->dst_reg) {
10635 		/* Restore the saved register */
10636 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10637 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10638 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10639 	}
10640 
10641 	return insn;
10642 }
10643 
10644 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10645 				     const struct bpf_insn *si,
10646 				     struct bpf_insn *insn_buf,
10647 				     struct bpf_prog *prog, u32 *target_size)
10648 {
10649 	struct bpf_insn *insn = insn_buf;
10650 	int off;
10651 
10652 	switch (si->off) {
10653 	case offsetof(struct __sk_buff, data_end):
10654 		insn = bpf_convert_data_end_access(si, insn);
10655 		break;
10656 	case offsetof(struct __sk_buff, cb[0]) ...
10657 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10658 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10659 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10660 			      offsetof(struct sk_skb_cb, data)) %
10661 			     sizeof(__u64));
10662 
10663 		prog->cb_access = 1;
10664 		off  = si->off;
10665 		off -= offsetof(struct __sk_buff, cb[0]);
10666 		off += offsetof(struct sk_buff, cb);
10667 		off += offsetof(struct sk_skb_cb, data);
10668 		if (type == BPF_WRITE)
10669 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10670 		else
10671 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10672 					      si->src_reg, off);
10673 		break;
10674 
10675 
10676 	default:
10677 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10678 					      target_size);
10679 	}
10680 
10681 	return insn - insn_buf;
10682 }
10683 
10684 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10685 				     const struct bpf_insn *si,
10686 				     struct bpf_insn *insn_buf,
10687 				     struct bpf_prog *prog, u32 *target_size)
10688 {
10689 	struct bpf_insn *insn = insn_buf;
10690 #if IS_ENABLED(CONFIG_IPV6)
10691 	int off;
10692 #endif
10693 
10694 	/* convert ctx uses the fact sg element is first in struct */
10695 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10696 
10697 	switch (si->off) {
10698 	case offsetof(struct sk_msg_md, data):
10699 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10700 				      si->dst_reg, si->src_reg,
10701 				      offsetof(struct sk_msg, data));
10702 		break;
10703 	case offsetof(struct sk_msg_md, data_end):
10704 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10705 				      si->dst_reg, si->src_reg,
10706 				      offsetof(struct sk_msg, data_end));
10707 		break;
10708 	case offsetof(struct sk_msg_md, family):
10709 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10710 
10711 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10712 					      struct sk_msg, sk),
10713 				      si->dst_reg, si->src_reg,
10714 				      offsetof(struct sk_msg, sk));
10715 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10716 				      offsetof(struct sock_common, skc_family));
10717 		break;
10718 
10719 	case offsetof(struct sk_msg_md, remote_ip4):
10720 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10721 
10722 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10723 						struct sk_msg, sk),
10724 				      si->dst_reg, si->src_reg,
10725 				      offsetof(struct sk_msg, sk));
10726 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10727 				      offsetof(struct sock_common, skc_daddr));
10728 		break;
10729 
10730 	case offsetof(struct sk_msg_md, local_ip4):
10731 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10732 					  skc_rcv_saddr) != 4);
10733 
10734 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10735 					      struct sk_msg, sk),
10736 				      si->dst_reg, si->src_reg,
10737 				      offsetof(struct sk_msg, sk));
10738 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10739 				      offsetof(struct sock_common,
10740 					       skc_rcv_saddr));
10741 		break;
10742 
10743 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10744 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10745 #if IS_ENABLED(CONFIG_IPV6)
10746 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10747 					  skc_v6_daddr.s6_addr32[0]) != 4);
10748 
10749 		off = si->off;
10750 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10751 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10752 						struct sk_msg, sk),
10753 				      si->dst_reg, si->src_reg,
10754 				      offsetof(struct sk_msg, sk));
10755 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10756 				      offsetof(struct sock_common,
10757 					       skc_v6_daddr.s6_addr32[0]) +
10758 				      off);
10759 #else
10760 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10761 #endif
10762 		break;
10763 
10764 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10765 	     offsetof(struct sk_msg_md, local_ip6[3]):
10766 #if IS_ENABLED(CONFIG_IPV6)
10767 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10768 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10769 
10770 		off = si->off;
10771 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10772 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10773 						struct sk_msg, sk),
10774 				      si->dst_reg, si->src_reg,
10775 				      offsetof(struct sk_msg, sk));
10776 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10777 				      offsetof(struct sock_common,
10778 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10779 				      off);
10780 #else
10781 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10782 #endif
10783 		break;
10784 
10785 	case offsetof(struct sk_msg_md, remote_port):
10786 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10787 
10788 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10789 						struct sk_msg, sk),
10790 				      si->dst_reg, si->src_reg,
10791 				      offsetof(struct sk_msg, sk));
10792 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10793 				      offsetof(struct sock_common, skc_dport));
10794 #ifndef __BIG_ENDIAN_BITFIELD
10795 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10796 #endif
10797 		break;
10798 
10799 	case offsetof(struct sk_msg_md, local_port):
10800 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10801 
10802 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10803 						struct sk_msg, sk),
10804 				      si->dst_reg, si->src_reg,
10805 				      offsetof(struct sk_msg, sk));
10806 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10807 				      offsetof(struct sock_common, skc_num));
10808 		break;
10809 
10810 	case offsetof(struct sk_msg_md, size):
10811 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10812 				      si->dst_reg, si->src_reg,
10813 				      offsetof(struct sk_msg_sg, size));
10814 		break;
10815 
10816 	case offsetof(struct sk_msg_md, sk):
10817 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10818 				      si->dst_reg, si->src_reg,
10819 				      offsetof(struct sk_msg, sk));
10820 		break;
10821 	}
10822 
10823 	return insn - insn_buf;
10824 }
10825 
10826 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10827 	.get_func_proto		= sk_filter_func_proto,
10828 	.is_valid_access	= sk_filter_is_valid_access,
10829 	.convert_ctx_access	= bpf_convert_ctx_access,
10830 	.gen_ld_abs		= bpf_gen_ld_abs,
10831 };
10832 
10833 const struct bpf_prog_ops sk_filter_prog_ops = {
10834 	.test_run		= bpf_prog_test_run_skb,
10835 };
10836 
10837 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10838 	.get_func_proto		= tc_cls_act_func_proto,
10839 	.is_valid_access	= tc_cls_act_is_valid_access,
10840 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10841 	.gen_prologue		= tc_cls_act_prologue,
10842 	.gen_ld_abs		= bpf_gen_ld_abs,
10843 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10844 };
10845 
10846 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10847 	.test_run		= bpf_prog_test_run_skb,
10848 };
10849 
10850 const struct bpf_verifier_ops xdp_verifier_ops = {
10851 	.get_func_proto		= xdp_func_proto,
10852 	.is_valid_access	= xdp_is_valid_access,
10853 	.convert_ctx_access	= xdp_convert_ctx_access,
10854 	.gen_prologue		= bpf_noop_prologue,
10855 	.btf_struct_access	= xdp_btf_struct_access,
10856 };
10857 
10858 const struct bpf_prog_ops xdp_prog_ops = {
10859 	.test_run		= bpf_prog_test_run_xdp,
10860 };
10861 
10862 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10863 	.get_func_proto		= cg_skb_func_proto,
10864 	.is_valid_access	= cg_skb_is_valid_access,
10865 	.convert_ctx_access	= bpf_convert_ctx_access,
10866 };
10867 
10868 const struct bpf_prog_ops cg_skb_prog_ops = {
10869 	.test_run		= bpf_prog_test_run_skb,
10870 };
10871 
10872 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10873 	.get_func_proto		= lwt_in_func_proto,
10874 	.is_valid_access	= lwt_is_valid_access,
10875 	.convert_ctx_access	= bpf_convert_ctx_access,
10876 };
10877 
10878 const struct bpf_prog_ops lwt_in_prog_ops = {
10879 	.test_run		= bpf_prog_test_run_skb,
10880 };
10881 
10882 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10883 	.get_func_proto		= lwt_out_func_proto,
10884 	.is_valid_access	= lwt_is_valid_access,
10885 	.convert_ctx_access	= bpf_convert_ctx_access,
10886 };
10887 
10888 const struct bpf_prog_ops lwt_out_prog_ops = {
10889 	.test_run		= bpf_prog_test_run_skb,
10890 };
10891 
10892 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10893 	.get_func_proto		= lwt_xmit_func_proto,
10894 	.is_valid_access	= lwt_is_valid_access,
10895 	.convert_ctx_access	= bpf_convert_ctx_access,
10896 	.gen_prologue		= tc_cls_act_prologue,
10897 };
10898 
10899 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10900 	.test_run		= bpf_prog_test_run_skb,
10901 };
10902 
10903 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
10904 	.get_func_proto		= lwt_seg6local_func_proto,
10905 	.is_valid_access	= lwt_is_valid_access,
10906 	.convert_ctx_access	= bpf_convert_ctx_access,
10907 };
10908 
10909 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
10910 	.test_run		= bpf_prog_test_run_skb,
10911 };
10912 
10913 const struct bpf_verifier_ops cg_sock_verifier_ops = {
10914 	.get_func_proto		= sock_filter_func_proto,
10915 	.is_valid_access	= sock_filter_is_valid_access,
10916 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
10917 };
10918 
10919 const struct bpf_prog_ops cg_sock_prog_ops = {
10920 };
10921 
10922 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
10923 	.get_func_proto		= sock_addr_func_proto,
10924 	.is_valid_access	= sock_addr_is_valid_access,
10925 	.convert_ctx_access	= sock_addr_convert_ctx_access,
10926 };
10927 
10928 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
10929 };
10930 
10931 const struct bpf_verifier_ops sock_ops_verifier_ops = {
10932 	.get_func_proto		= sock_ops_func_proto,
10933 	.is_valid_access	= sock_ops_is_valid_access,
10934 	.convert_ctx_access	= sock_ops_convert_ctx_access,
10935 };
10936 
10937 const struct bpf_prog_ops sock_ops_prog_ops = {
10938 };
10939 
10940 const struct bpf_verifier_ops sk_skb_verifier_ops = {
10941 	.get_func_proto		= sk_skb_func_proto,
10942 	.is_valid_access	= sk_skb_is_valid_access,
10943 	.convert_ctx_access	= sk_skb_convert_ctx_access,
10944 	.gen_prologue		= sk_skb_prologue,
10945 };
10946 
10947 const struct bpf_prog_ops sk_skb_prog_ops = {
10948 };
10949 
10950 const struct bpf_verifier_ops sk_msg_verifier_ops = {
10951 	.get_func_proto		= sk_msg_func_proto,
10952 	.is_valid_access	= sk_msg_is_valid_access,
10953 	.convert_ctx_access	= sk_msg_convert_ctx_access,
10954 	.gen_prologue		= bpf_noop_prologue,
10955 };
10956 
10957 const struct bpf_prog_ops sk_msg_prog_ops = {
10958 };
10959 
10960 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
10961 	.get_func_proto		= flow_dissector_func_proto,
10962 	.is_valid_access	= flow_dissector_is_valid_access,
10963 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
10964 };
10965 
10966 const struct bpf_prog_ops flow_dissector_prog_ops = {
10967 	.test_run		= bpf_prog_test_run_flow_dissector,
10968 };
10969 
10970 int sk_detach_filter(struct sock *sk)
10971 {
10972 	int ret = -ENOENT;
10973 	struct sk_filter *filter;
10974 
10975 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
10976 		return -EPERM;
10977 
10978 	filter = rcu_dereference_protected(sk->sk_filter,
10979 					   lockdep_sock_is_held(sk));
10980 	if (filter) {
10981 		RCU_INIT_POINTER(sk->sk_filter, NULL);
10982 		sk_filter_uncharge(sk, filter);
10983 		ret = 0;
10984 	}
10985 
10986 	return ret;
10987 }
10988 EXPORT_SYMBOL_GPL(sk_detach_filter);
10989 
10990 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
10991 {
10992 	struct sock_fprog_kern *fprog;
10993 	struct sk_filter *filter;
10994 	int ret = 0;
10995 
10996 	sockopt_lock_sock(sk);
10997 	filter = rcu_dereference_protected(sk->sk_filter,
10998 					   lockdep_sock_is_held(sk));
10999 	if (!filter)
11000 		goto out;
11001 
11002 	/* We're copying the filter that has been originally attached,
11003 	 * so no conversion/decode needed anymore. eBPF programs that
11004 	 * have no original program cannot be dumped through this.
11005 	 */
11006 	ret = -EACCES;
11007 	fprog = filter->prog->orig_prog;
11008 	if (!fprog)
11009 		goto out;
11010 
11011 	ret = fprog->len;
11012 	if (!len)
11013 		/* User space only enquires number of filter blocks. */
11014 		goto out;
11015 
11016 	ret = -EINVAL;
11017 	if (len < fprog->len)
11018 		goto out;
11019 
11020 	ret = -EFAULT;
11021 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11022 		goto out;
11023 
11024 	/* Instead of bytes, the API requests to return the number
11025 	 * of filter blocks.
11026 	 */
11027 	ret = fprog->len;
11028 out:
11029 	sockopt_release_sock(sk);
11030 	return ret;
11031 }
11032 
11033 #ifdef CONFIG_INET
11034 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11035 				    struct sock_reuseport *reuse,
11036 				    struct sock *sk, struct sk_buff *skb,
11037 				    struct sock *migrating_sk,
11038 				    u32 hash)
11039 {
11040 	reuse_kern->skb = skb;
11041 	reuse_kern->sk = sk;
11042 	reuse_kern->selected_sk = NULL;
11043 	reuse_kern->migrating_sk = migrating_sk;
11044 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11045 	reuse_kern->hash = hash;
11046 	reuse_kern->reuseport_id = reuse->reuseport_id;
11047 	reuse_kern->bind_inany = reuse->bind_inany;
11048 }
11049 
11050 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11051 				  struct bpf_prog *prog, struct sk_buff *skb,
11052 				  struct sock *migrating_sk,
11053 				  u32 hash)
11054 {
11055 	struct sk_reuseport_kern reuse_kern;
11056 	enum sk_action action;
11057 
11058 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11059 	action = bpf_prog_run(prog, &reuse_kern);
11060 
11061 	if (action == SK_PASS)
11062 		return reuse_kern.selected_sk;
11063 	else
11064 		return ERR_PTR(-ECONNREFUSED);
11065 }
11066 
11067 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11068 	   struct bpf_map *, map, void *, key, u32, flags)
11069 {
11070 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11071 	struct sock_reuseport *reuse;
11072 	struct sock *selected_sk;
11073 
11074 	selected_sk = map->ops->map_lookup_elem(map, key);
11075 	if (!selected_sk)
11076 		return -ENOENT;
11077 
11078 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11079 	if (!reuse) {
11080 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11081 		if (sk_is_refcounted(selected_sk))
11082 			sock_put(selected_sk);
11083 
11084 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11085 		 * The only (!reuse) case here is - the sk has already been
11086 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11087 		 *
11088 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11089 		 * the sk may never be in the reuseport group to begin with.
11090 		 */
11091 		return is_sockarray ? -ENOENT : -EINVAL;
11092 	}
11093 
11094 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11095 		struct sock *sk = reuse_kern->sk;
11096 
11097 		if (sk->sk_protocol != selected_sk->sk_protocol)
11098 			return -EPROTOTYPE;
11099 		else if (sk->sk_family != selected_sk->sk_family)
11100 			return -EAFNOSUPPORT;
11101 
11102 		/* Catch all. Likely bound to a different sockaddr. */
11103 		return -EBADFD;
11104 	}
11105 
11106 	reuse_kern->selected_sk = selected_sk;
11107 
11108 	return 0;
11109 }
11110 
11111 static const struct bpf_func_proto sk_select_reuseport_proto = {
11112 	.func           = sk_select_reuseport,
11113 	.gpl_only       = false,
11114 	.ret_type       = RET_INTEGER,
11115 	.arg1_type	= ARG_PTR_TO_CTX,
11116 	.arg2_type      = ARG_CONST_MAP_PTR,
11117 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11118 	.arg4_type	= ARG_ANYTHING,
11119 };
11120 
11121 BPF_CALL_4(sk_reuseport_load_bytes,
11122 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11123 	   void *, to, u32, len)
11124 {
11125 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11126 }
11127 
11128 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11129 	.func		= sk_reuseport_load_bytes,
11130 	.gpl_only	= false,
11131 	.ret_type	= RET_INTEGER,
11132 	.arg1_type	= ARG_PTR_TO_CTX,
11133 	.arg2_type	= ARG_ANYTHING,
11134 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11135 	.arg4_type	= ARG_CONST_SIZE,
11136 };
11137 
11138 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11139 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11140 	   void *, to, u32, len, u32, start_header)
11141 {
11142 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11143 					       len, start_header);
11144 }
11145 
11146 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11147 	.func		= sk_reuseport_load_bytes_relative,
11148 	.gpl_only	= false,
11149 	.ret_type	= RET_INTEGER,
11150 	.arg1_type	= ARG_PTR_TO_CTX,
11151 	.arg2_type	= ARG_ANYTHING,
11152 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11153 	.arg4_type	= ARG_CONST_SIZE,
11154 	.arg5_type	= ARG_ANYTHING,
11155 };
11156 
11157 static const struct bpf_func_proto *
11158 sk_reuseport_func_proto(enum bpf_func_id func_id,
11159 			const struct bpf_prog *prog)
11160 {
11161 	switch (func_id) {
11162 	case BPF_FUNC_sk_select_reuseport:
11163 		return &sk_select_reuseport_proto;
11164 	case BPF_FUNC_skb_load_bytes:
11165 		return &sk_reuseport_load_bytes_proto;
11166 	case BPF_FUNC_skb_load_bytes_relative:
11167 		return &sk_reuseport_load_bytes_relative_proto;
11168 	case BPF_FUNC_get_socket_cookie:
11169 		return &bpf_get_socket_ptr_cookie_proto;
11170 	case BPF_FUNC_ktime_get_coarse_ns:
11171 		return &bpf_ktime_get_coarse_ns_proto;
11172 	default:
11173 		return bpf_base_func_proto(func_id);
11174 	}
11175 }
11176 
11177 static bool
11178 sk_reuseport_is_valid_access(int off, int size,
11179 			     enum bpf_access_type type,
11180 			     const struct bpf_prog *prog,
11181 			     struct bpf_insn_access_aux *info)
11182 {
11183 	const u32 size_default = sizeof(__u32);
11184 
11185 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11186 	    off % size || type != BPF_READ)
11187 		return false;
11188 
11189 	switch (off) {
11190 	case offsetof(struct sk_reuseport_md, data):
11191 		info->reg_type = PTR_TO_PACKET;
11192 		return size == sizeof(__u64);
11193 
11194 	case offsetof(struct sk_reuseport_md, data_end):
11195 		info->reg_type = PTR_TO_PACKET_END;
11196 		return size == sizeof(__u64);
11197 
11198 	case offsetof(struct sk_reuseport_md, hash):
11199 		return size == size_default;
11200 
11201 	case offsetof(struct sk_reuseport_md, sk):
11202 		info->reg_type = PTR_TO_SOCKET;
11203 		return size == sizeof(__u64);
11204 
11205 	case offsetof(struct sk_reuseport_md, migrating_sk):
11206 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11207 		return size == sizeof(__u64);
11208 
11209 	/* Fields that allow narrowing */
11210 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11211 		if (size < sizeof_field(struct sk_buff, protocol))
11212 			return false;
11213 		fallthrough;
11214 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11215 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11216 	case bpf_ctx_range(struct sk_reuseport_md, len):
11217 		bpf_ctx_record_field_size(info, size_default);
11218 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11219 
11220 	default:
11221 		return false;
11222 	}
11223 }
11224 
11225 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11226 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11227 			      si->dst_reg, si->src_reg,			\
11228 			      bpf_target_off(struct sk_reuseport_kern, F, \
11229 					     sizeof_field(struct sk_reuseport_kern, F), \
11230 					     target_size));		\
11231 	})
11232 
11233 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11234 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11235 				    struct sk_buff,			\
11236 				    skb,				\
11237 				    SKB_FIELD)
11238 
11239 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11240 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11241 				    struct sock,			\
11242 				    sk,					\
11243 				    SK_FIELD)
11244 
11245 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11246 					   const struct bpf_insn *si,
11247 					   struct bpf_insn *insn_buf,
11248 					   struct bpf_prog *prog,
11249 					   u32 *target_size)
11250 {
11251 	struct bpf_insn *insn = insn_buf;
11252 
11253 	switch (si->off) {
11254 	case offsetof(struct sk_reuseport_md, data):
11255 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11256 		break;
11257 
11258 	case offsetof(struct sk_reuseport_md, len):
11259 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11260 		break;
11261 
11262 	case offsetof(struct sk_reuseport_md, eth_protocol):
11263 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11264 		break;
11265 
11266 	case offsetof(struct sk_reuseport_md, ip_protocol):
11267 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11268 		break;
11269 
11270 	case offsetof(struct sk_reuseport_md, data_end):
11271 		SK_REUSEPORT_LOAD_FIELD(data_end);
11272 		break;
11273 
11274 	case offsetof(struct sk_reuseport_md, hash):
11275 		SK_REUSEPORT_LOAD_FIELD(hash);
11276 		break;
11277 
11278 	case offsetof(struct sk_reuseport_md, bind_inany):
11279 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11280 		break;
11281 
11282 	case offsetof(struct sk_reuseport_md, sk):
11283 		SK_REUSEPORT_LOAD_FIELD(sk);
11284 		break;
11285 
11286 	case offsetof(struct sk_reuseport_md, migrating_sk):
11287 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11288 		break;
11289 	}
11290 
11291 	return insn - insn_buf;
11292 }
11293 
11294 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11295 	.get_func_proto		= sk_reuseport_func_proto,
11296 	.is_valid_access	= sk_reuseport_is_valid_access,
11297 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11298 };
11299 
11300 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11301 };
11302 
11303 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11304 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11305 
11306 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11307 	   struct sock *, sk, u64, flags)
11308 {
11309 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11310 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11311 		return -EINVAL;
11312 	if (unlikely(sk && sk_is_refcounted(sk)))
11313 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11314 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11315 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11316 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11317 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11318 
11319 	/* Check if socket is suitable for packet L3/L4 protocol */
11320 	if (sk && sk->sk_protocol != ctx->protocol)
11321 		return -EPROTOTYPE;
11322 	if (sk && sk->sk_family != ctx->family &&
11323 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11324 		return -EAFNOSUPPORT;
11325 
11326 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11327 		return -EEXIST;
11328 
11329 	/* Select socket as lookup result */
11330 	ctx->selected_sk = sk;
11331 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11332 	return 0;
11333 }
11334 
11335 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11336 	.func		= bpf_sk_lookup_assign,
11337 	.gpl_only	= false,
11338 	.ret_type	= RET_INTEGER,
11339 	.arg1_type	= ARG_PTR_TO_CTX,
11340 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11341 	.arg3_type	= ARG_ANYTHING,
11342 };
11343 
11344 static const struct bpf_func_proto *
11345 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11346 {
11347 	switch (func_id) {
11348 	case BPF_FUNC_perf_event_output:
11349 		return &bpf_event_output_data_proto;
11350 	case BPF_FUNC_sk_assign:
11351 		return &bpf_sk_lookup_assign_proto;
11352 	case BPF_FUNC_sk_release:
11353 		return &bpf_sk_release_proto;
11354 	default:
11355 		return bpf_sk_base_func_proto(func_id);
11356 	}
11357 }
11358 
11359 static bool sk_lookup_is_valid_access(int off, int size,
11360 				      enum bpf_access_type type,
11361 				      const struct bpf_prog *prog,
11362 				      struct bpf_insn_access_aux *info)
11363 {
11364 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11365 		return false;
11366 	if (off % size != 0)
11367 		return false;
11368 	if (type != BPF_READ)
11369 		return false;
11370 
11371 	switch (off) {
11372 	case offsetof(struct bpf_sk_lookup, sk):
11373 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11374 		return size == sizeof(__u64);
11375 
11376 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11377 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11378 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11379 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11380 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11381 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11382 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11383 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11384 		bpf_ctx_record_field_size(info, sizeof(__u32));
11385 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11386 
11387 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11388 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11389 		if (size == sizeof(__u32))
11390 			return true;
11391 		bpf_ctx_record_field_size(info, sizeof(__be16));
11392 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11393 
11394 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11395 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11396 		/* Allow access to zero padding for backward compatibility */
11397 		bpf_ctx_record_field_size(info, sizeof(__u16));
11398 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11399 
11400 	default:
11401 		return false;
11402 	}
11403 }
11404 
11405 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11406 					const struct bpf_insn *si,
11407 					struct bpf_insn *insn_buf,
11408 					struct bpf_prog *prog,
11409 					u32 *target_size)
11410 {
11411 	struct bpf_insn *insn = insn_buf;
11412 
11413 	switch (si->off) {
11414 	case offsetof(struct bpf_sk_lookup, sk):
11415 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11416 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11417 		break;
11418 
11419 	case offsetof(struct bpf_sk_lookup, family):
11420 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11421 				      bpf_target_off(struct bpf_sk_lookup_kern,
11422 						     family, 2, target_size));
11423 		break;
11424 
11425 	case offsetof(struct bpf_sk_lookup, protocol):
11426 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11427 				      bpf_target_off(struct bpf_sk_lookup_kern,
11428 						     protocol, 2, target_size));
11429 		break;
11430 
11431 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11432 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11433 				      bpf_target_off(struct bpf_sk_lookup_kern,
11434 						     v4.saddr, 4, target_size));
11435 		break;
11436 
11437 	case offsetof(struct bpf_sk_lookup, local_ip4):
11438 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11439 				      bpf_target_off(struct bpf_sk_lookup_kern,
11440 						     v4.daddr, 4, target_size));
11441 		break;
11442 
11443 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11444 				remote_ip6[0], remote_ip6[3]): {
11445 #if IS_ENABLED(CONFIG_IPV6)
11446 		int off = si->off;
11447 
11448 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11449 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11450 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11451 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11452 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11453 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11454 #else
11455 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11456 #endif
11457 		break;
11458 	}
11459 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11460 				local_ip6[0], local_ip6[3]): {
11461 #if IS_ENABLED(CONFIG_IPV6)
11462 		int off = si->off;
11463 
11464 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11465 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11466 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11467 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11468 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11469 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11470 #else
11471 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11472 #endif
11473 		break;
11474 	}
11475 	case offsetof(struct bpf_sk_lookup, remote_port):
11476 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11477 				      bpf_target_off(struct bpf_sk_lookup_kern,
11478 						     sport, 2, target_size));
11479 		break;
11480 
11481 	case offsetofend(struct bpf_sk_lookup, remote_port):
11482 		*target_size = 2;
11483 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11484 		break;
11485 
11486 	case offsetof(struct bpf_sk_lookup, local_port):
11487 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11488 				      bpf_target_off(struct bpf_sk_lookup_kern,
11489 						     dport, 2, target_size));
11490 		break;
11491 
11492 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11493 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11494 				      bpf_target_off(struct bpf_sk_lookup_kern,
11495 						     ingress_ifindex, 4, target_size));
11496 		break;
11497 	}
11498 
11499 	return insn - insn_buf;
11500 }
11501 
11502 const struct bpf_prog_ops sk_lookup_prog_ops = {
11503 	.test_run = bpf_prog_test_run_sk_lookup,
11504 };
11505 
11506 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11507 	.get_func_proto		= sk_lookup_func_proto,
11508 	.is_valid_access	= sk_lookup_is_valid_access,
11509 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11510 };
11511 
11512 #endif /* CONFIG_INET */
11513 
11514 DEFINE_BPF_DISPATCHER(xdp)
11515 
11516 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11517 {
11518 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11519 }
11520 
11521 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11522 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11523 BTF_SOCK_TYPE_xxx
11524 #undef BTF_SOCK_TYPE
11525 
11526 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11527 {
11528 	/* tcp6_sock type is not generated in dwarf and hence btf,
11529 	 * trigger an explicit type generation here.
11530 	 */
11531 	BTF_TYPE_EMIT(struct tcp6_sock);
11532 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11533 	    sk->sk_family == AF_INET6)
11534 		return (unsigned long)sk;
11535 
11536 	return (unsigned long)NULL;
11537 }
11538 
11539 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11540 	.func			= bpf_skc_to_tcp6_sock,
11541 	.gpl_only		= false,
11542 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11543 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11544 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11545 };
11546 
11547 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11548 {
11549 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11550 		return (unsigned long)sk;
11551 
11552 	return (unsigned long)NULL;
11553 }
11554 
11555 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11556 	.func			= bpf_skc_to_tcp_sock,
11557 	.gpl_only		= false,
11558 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11559 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11560 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11561 };
11562 
11563 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11564 {
11565 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11566 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11567 	 */
11568 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11569 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11570 
11571 #ifdef CONFIG_INET
11572 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11573 		return (unsigned long)sk;
11574 #endif
11575 
11576 #if IS_BUILTIN(CONFIG_IPV6)
11577 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11578 		return (unsigned long)sk;
11579 #endif
11580 
11581 	return (unsigned long)NULL;
11582 }
11583 
11584 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11585 	.func			= bpf_skc_to_tcp_timewait_sock,
11586 	.gpl_only		= false,
11587 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11588 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11589 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11590 };
11591 
11592 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11593 {
11594 #ifdef CONFIG_INET
11595 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11596 		return (unsigned long)sk;
11597 #endif
11598 
11599 #if IS_BUILTIN(CONFIG_IPV6)
11600 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11601 		return (unsigned long)sk;
11602 #endif
11603 
11604 	return (unsigned long)NULL;
11605 }
11606 
11607 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11608 	.func			= bpf_skc_to_tcp_request_sock,
11609 	.gpl_only		= false,
11610 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11611 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11612 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11613 };
11614 
11615 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11616 {
11617 	/* udp6_sock type is not generated in dwarf and hence btf,
11618 	 * trigger an explicit type generation here.
11619 	 */
11620 	BTF_TYPE_EMIT(struct udp6_sock);
11621 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11622 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11623 		return (unsigned long)sk;
11624 
11625 	return (unsigned long)NULL;
11626 }
11627 
11628 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11629 	.func			= bpf_skc_to_udp6_sock,
11630 	.gpl_only		= false,
11631 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11632 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11633 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11634 };
11635 
11636 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11637 {
11638 	/* unix_sock type is not generated in dwarf and hence btf,
11639 	 * trigger an explicit type generation here.
11640 	 */
11641 	BTF_TYPE_EMIT(struct unix_sock);
11642 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11643 		return (unsigned long)sk;
11644 
11645 	return (unsigned long)NULL;
11646 }
11647 
11648 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11649 	.func			= bpf_skc_to_unix_sock,
11650 	.gpl_only		= false,
11651 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11652 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11653 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11654 };
11655 
11656 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11657 {
11658 	BTF_TYPE_EMIT(struct mptcp_sock);
11659 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11660 }
11661 
11662 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11663 	.func		= bpf_skc_to_mptcp_sock,
11664 	.gpl_only	= false,
11665 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11666 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11667 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11668 };
11669 
11670 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11671 {
11672 	return (unsigned long)sock_from_file(file);
11673 }
11674 
11675 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11676 BTF_ID(struct, socket)
11677 BTF_ID(struct, file)
11678 
11679 const struct bpf_func_proto bpf_sock_from_file_proto = {
11680 	.func		= bpf_sock_from_file,
11681 	.gpl_only	= false,
11682 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11683 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11684 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11685 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11686 };
11687 
11688 static const struct bpf_func_proto *
11689 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11690 {
11691 	const struct bpf_func_proto *func;
11692 
11693 	switch (func_id) {
11694 	case BPF_FUNC_skc_to_tcp6_sock:
11695 		func = &bpf_skc_to_tcp6_sock_proto;
11696 		break;
11697 	case BPF_FUNC_skc_to_tcp_sock:
11698 		func = &bpf_skc_to_tcp_sock_proto;
11699 		break;
11700 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11701 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11702 		break;
11703 	case BPF_FUNC_skc_to_tcp_request_sock:
11704 		func = &bpf_skc_to_tcp_request_sock_proto;
11705 		break;
11706 	case BPF_FUNC_skc_to_udp6_sock:
11707 		func = &bpf_skc_to_udp6_sock_proto;
11708 		break;
11709 	case BPF_FUNC_skc_to_unix_sock:
11710 		func = &bpf_skc_to_unix_sock_proto;
11711 		break;
11712 	case BPF_FUNC_skc_to_mptcp_sock:
11713 		func = &bpf_skc_to_mptcp_sock_proto;
11714 		break;
11715 	case BPF_FUNC_ktime_get_coarse_ns:
11716 		return &bpf_ktime_get_coarse_ns_proto;
11717 	default:
11718 		return bpf_base_func_proto(func_id);
11719 	}
11720 
11721 	if (!perfmon_capable())
11722 		return NULL;
11723 
11724 	return func;
11725 }
11726 
11727 __diag_push();
11728 __diag_ignore_all("-Wmissing-prototypes",
11729 		  "Global functions as their definitions will be in vmlinux BTF");
11730 __bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11731 				    struct bpf_dynptr_kern *ptr__uninit)
11732 {
11733 	if (flags) {
11734 		bpf_dynptr_set_null(ptr__uninit);
11735 		return -EINVAL;
11736 	}
11737 
11738 	bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11739 
11740 	return 0;
11741 }
11742 
11743 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11744 				    struct bpf_dynptr_kern *ptr__uninit)
11745 {
11746 	if (flags) {
11747 		bpf_dynptr_set_null(ptr__uninit);
11748 		return -EINVAL;
11749 	}
11750 
11751 	bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11752 
11753 	return 0;
11754 }
11755 __diag_pop();
11756 
11757 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11758 			       struct bpf_dynptr_kern *ptr__uninit)
11759 {
11760 	int err;
11761 
11762 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11763 	if (err)
11764 		return err;
11765 
11766 	bpf_dynptr_set_rdonly(ptr__uninit);
11767 
11768 	return 0;
11769 }
11770 
11771 BTF_SET8_START(bpf_kfunc_check_set_skb)
11772 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11773 BTF_SET8_END(bpf_kfunc_check_set_skb)
11774 
11775 BTF_SET8_START(bpf_kfunc_check_set_xdp)
11776 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11777 BTF_SET8_END(bpf_kfunc_check_set_xdp)
11778 
11779 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
11780 	.owner = THIS_MODULE,
11781 	.set = &bpf_kfunc_check_set_skb,
11782 };
11783 
11784 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
11785 	.owner = THIS_MODULE,
11786 	.set = &bpf_kfunc_check_set_xdp,
11787 };
11788 
11789 static int __init bpf_kfunc_init(void)
11790 {
11791 	int ret;
11792 
11793 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
11794 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
11795 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
11796 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
11797 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
11798 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
11799 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
11800 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
11801 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
11802 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
11803 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
11804 }
11805 late_initcall(bpf_kfunc_init);
11806 
11807 /* Disables missing prototype warnings */
11808 __diag_push();
11809 __diag_ignore_all("-Wmissing-prototypes",
11810 		  "Global functions as their definitions will be in vmlinux BTF");
11811 
11812 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
11813  *
11814  * The function expects a non-NULL pointer to a socket, and invokes the
11815  * protocol specific socket destroy handlers.
11816  *
11817  * The helper can only be called from BPF contexts that have acquired the socket
11818  * locks.
11819  *
11820  * Parameters:
11821  * @sock: Pointer to socket to be destroyed
11822  *
11823  * Return:
11824  * On error, may return EPROTONOSUPPORT, EINVAL.
11825  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
11826  * 0 otherwise
11827  */
11828 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
11829 {
11830 	struct sock *sk = (struct sock *)sock;
11831 
11832 	/* The locking semantics that allow for synchronous execution of the
11833 	 * destroy handlers are only supported for TCP and UDP.
11834 	 * Supporting protocols will need to acquire sock lock in the BPF context
11835 	 * prior to invoking this kfunc.
11836 	 */
11837 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
11838 					   sk->sk_protocol != IPPROTO_UDP))
11839 		return -EOPNOTSUPP;
11840 
11841 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
11842 }
11843 
11844 __diag_pop()
11845 
11846 BTF_SET8_START(bpf_sk_iter_kfunc_ids)
11847 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
11848 BTF_SET8_END(bpf_sk_iter_kfunc_ids)
11849 
11850 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
11851 {
11852 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
11853 	    prog->expected_attach_type != BPF_TRACE_ITER)
11854 		return -EACCES;
11855 	return 0;
11856 }
11857 
11858 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
11859 	.owner = THIS_MODULE,
11860 	.set   = &bpf_sk_iter_kfunc_ids,
11861 	.filter = tracing_iter_filter,
11862 };
11863 
11864 static int init_subsystem(void)
11865 {
11866 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
11867 }
11868 late_initcall(init_subsystem);
11869