xref: /linux/net/core/filter.c (revision e91c37f1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/atomic.h>
21 #include <linux/bpf_verifier.h>
22 #include <linux/module.h>
23 #include <linux/types.h>
24 #include <linux/mm.h>
25 #include <linux/fcntl.h>
26 #include <linux/socket.h>
27 #include <linux/sock_diag.h>
28 #include <linux/in.h>
29 #include <linux/inet.h>
30 #include <linux/netdevice.h>
31 #include <linux/if_packet.h>
32 #include <linux/if_arp.h>
33 #include <linux/gfp.h>
34 #include <net/inet_common.h>
35 #include <net/ip.h>
36 #include <net/protocol.h>
37 #include <net/netlink.h>
38 #include <linux/skbuff.h>
39 #include <linux/skmsg.h>
40 #include <net/sock.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <linux/filter.h>
47 #include <linux/ratelimit.h>
48 #include <linux/seccomp.h>
49 #include <linux/if_vlan.h>
50 #include <linux/bpf.h>
51 #include <linux/btf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
55 #include <net/dst.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
58 #include <net/tcp.h>
59 #include <net/xfrm.h>
60 #include <net/udp.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/inet_hashtables.h>
65 #include <net/inet6_hashtables.h>
66 #include <net/ip_fib.h>
67 #include <net/nexthop.h>
68 #include <net/flow.h>
69 #include <net/arp.h>
70 #include <net/ipv6.h>
71 #include <net/net_namespace.h>
72 #include <linux/seg6_local.h>
73 #include <net/seg6.h>
74 #include <net/seg6_local.h>
75 #include <net/lwtunnel.h>
76 #include <net/ipv6_stubs.h>
77 #include <net/bpf_sk_storage.h>
78 #include <net/transp_v6.h>
79 #include <linux/btf_ids.h>
80 #include <net/tls.h>
81 #include <net/xdp.h>
82 #include <net/mptcp.h>
83 #include <net/netfilter/nf_conntrack_bpf.h>
84 #include <net/netkit.h>
85 #include <linux/un.h>
86 #include <net/xdp_sock_drv.h>
87 
88 #include "dev.h"
89 
90 static const struct bpf_func_proto *
91 bpf_sk_base_func_proto(enum bpf_func_id func_id);
92 
93 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len)
94 {
95 	if (in_compat_syscall()) {
96 		struct compat_sock_fprog f32;
97 
98 		if (len != sizeof(f32))
99 			return -EINVAL;
100 		if (copy_from_sockptr(&f32, src, sizeof(f32)))
101 			return -EFAULT;
102 		memset(dst, 0, sizeof(*dst));
103 		dst->len = f32.len;
104 		dst->filter = compat_ptr(f32.filter);
105 	} else {
106 		if (len != sizeof(*dst))
107 			return -EINVAL;
108 		if (copy_from_sockptr(dst, src, sizeof(*dst)))
109 			return -EFAULT;
110 	}
111 
112 	return 0;
113 }
114 EXPORT_SYMBOL_GPL(copy_bpf_fprog_from_user);
115 
116 /**
117  *	sk_filter_trim_cap - run a packet through a socket filter
118  *	@sk: sock associated with &sk_buff
119  *	@skb: buffer to filter
120  *	@cap: limit on how short the eBPF program may trim the packet
121  *
122  * Run the eBPF program and then cut skb->data to correct size returned by
123  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
124  * than pkt_len we keep whole skb->data. This is the socket level
125  * wrapper to bpf_prog_run. It returns 0 if the packet should
126  * be accepted or -EPERM if the packet should be tossed.
127  *
128  */
129 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
130 {
131 	int err;
132 	struct sk_filter *filter;
133 
134 	/*
135 	 * If the skb was allocated from pfmemalloc reserves, only
136 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
137 	 * helping free memory
138 	 */
139 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
140 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
141 		return -ENOMEM;
142 	}
143 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
144 	if (err)
145 		return err;
146 
147 	err = security_sock_rcv_skb(sk, skb);
148 	if (err)
149 		return err;
150 
151 	rcu_read_lock();
152 	filter = rcu_dereference(sk->sk_filter);
153 	if (filter) {
154 		struct sock *save_sk = skb->sk;
155 		unsigned int pkt_len;
156 
157 		skb->sk = sk;
158 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
159 		skb->sk = save_sk;
160 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
161 	}
162 	rcu_read_unlock();
163 
164 	return err;
165 }
166 EXPORT_SYMBOL(sk_filter_trim_cap);
167 
168 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
169 {
170 	return skb_get_poff(skb);
171 }
172 
173 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
174 {
175 	struct nlattr *nla;
176 
177 	if (skb_is_nonlinear(skb))
178 		return 0;
179 
180 	if (skb->len < sizeof(struct nlattr))
181 		return 0;
182 
183 	if (a > skb->len - sizeof(struct nlattr))
184 		return 0;
185 
186 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
187 	if (nla)
188 		return (void *) nla - (void *) skb->data;
189 
190 	return 0;
191 }
192 
193 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
194 {
195 	struct nlattr *nla;
196 
197 	if (skb_is_nonlinear(skb))
198 		return 0;
199 
200 	if (skb->len < sizeof(struct nlattr))
201 		return 0;
202 
203 	if (a > skb->len - sizeof(struct nlattr))
204 		return 0;
205 
206 	nla = (struct nlattr *) &skb->data[a];
207 	if (!nla_ok(nla, skb->len - a))
208 		return 0;
209 
210 	nla = nla_find_nested(nla, x);
211 	if (nla)
212 		return (void *) nla - (void *) skb->data;
213 
214 	return 0;
215 }
216 
217 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
218 	   data, int, headlen, int, offset)
219 {
220 	u8 tmp, *ptr;
221 	const int len = sizeof(tmp);
222 
223 	if (offset >= 0) {
224 		if (headlen - offset >= len)
225 			return *(u8 *)(data + offset);
226 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
227 			return tmp;
228 	} else {
229 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
230 		if (likely(ptr))
231 			return *(u8 *)ptr;
232 	}
233 
234 	return -EFAULT;
235 }
236 
237 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
238 	   int, offset)
239 {
240 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
241 					 offset);
242 }
243 
244 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
245 	   data, int, headlen, int, offset)
246 {
247 	__be16 tmp, *ptr;
248 	const int len = sizeof(tmp);
249 
250 	if (offset >= 0) {
251 		if (headlen - offset >= len)
252 			return get_unaligned_be16(data + offset);
253 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
254 			return be16_to_cpu(tmp);
255 	} else {
256 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
257 		if (likely(ptr))
258 			return get_unaligned_be16(ptr);
259 	}
260 
261 	return -EFAULT;
262 }
263 
264 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
265 	   int, offset)
266 {
267 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
268 					  offset);
269 }
270 
271 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
272 	   data, int, headlen, int, offset)
273 {
274 	__be32 tmp, *ptr;
275 	const int len = sizeof(tmp);
276 
277 	if (likely(offset >= 0)) {
278 		if (headlen - offset >= len)
279 			return get_unaligned_be32(data + offset);
280 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
281 			return be32_to_cpu(tmp);
282 	} else {
283 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
284 		if (likely(ptr))
285 			return get_unaligned_be32(ptr);
286 	}
287 
288 	return -EFAULT;
289 }
290 
291 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
292 	   int, offset)
293 {
294 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
295 					  offset);
296 }
297 
298 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
299 			      struct bpf_insn *insn_buf)
300 {
301 	struct bpf_insn *insn = insn_buf;
302 
303 	switch (skb_field) {
304 	case SKF_AD_MARK:
305 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
306 
307 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
308 				      offsetof(struct sk_buff, mark));
309 		break;
310 
311 	case SKF_AD_PKTTYPE:
312 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET);
313 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
314 #ifdef __BIG_ENDIAN_BITFIELD
315 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
316 #endif
317 		break;
318 
319 	case SKF_AD_QUEUE:
320 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
321 
322 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
323 				      offsetof(struct sk_buff, queue_mapping));
324 		break;
325 
326 	case SKF_AD_VLAN_TAG:
327 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
328 
329 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
330 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
331 				      offsetof(struct sk_buff, vlan_tci));
332 		break;
333 	case SKF_AD_VLAN_TAG_PRESENT:
334 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_all) != 4);
335 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
336 				      offsetof(struct sk_buff, vlan_all));
337 		*insn++ = BPF_JMP_IMM(BPF_JEQ, dst_reg, 0, 1);
338 		*insn++ = BPF_ALU32_IMM(BPF_MOV, dst_reg, 1);
339 		break;
340 	}
341 
342 	return insn - insn_buf;
343 }
344 
345 static bool convert_bpf_extensions(struct sock_filter *fp,
346 				   struct bpf_insn **insnp)
347 {
348 	struct bpf_insn *insn = *insnp;
349 	u32 cnt;
350 
351 	switch (fp->k) {
352 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
353 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
354 
355 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
356 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
357 				      offsetof(struct sk_buff, protocol));
358 		/* A = ntohs(A) [emitting a nop or swap16] */
359 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
360 		break;
361 
362 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
363 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
364 		insn += cnt - 1;
365 		break;
366 
367 	case SKF_AD_OFF + SKF_AD_IFINDEX:
368 	case SKF_AD_OFF + SKF_AD_HATYPE:
369 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
370 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
371 
372 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
373 				      BPF_REG_TMP, BPF_REG_CTX,
374 				      offsetof(struct sk_buff, dev));
375 		/* if (tmp != 0) goto pc + 1 */
376 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
377 		*insn++ = BPF_EXIT_INSN();
378 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
379 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
380 					    offsetof(struct net_device, ifindex));
381 		else
382 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
383 					    offsetof(struct net_device, type));
384 		break;
385 
386 	case SKF_AD_OFF + SKF_AD_MARK:
387 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
388 		insn += cnt - 1;
389 		break;
390 
391 	case SKF_AD_OFF + SKF_AD_RXHASH:
392 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
393 
394 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
395 				    offsetof(struct sk_buff, hash));
396 		break;
397 
398 	case SKF_AD_OFF + SKF_AD_QUEUE:
399 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
400 		insn += cnt - 1;
401 		break;
402 
403 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
404 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
405 					 BPF_REG_A, BPF_REG_CTX, insn);
406 		insn += cnt - 1;
407 		break;
408 
409 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
410 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
411 					 BPF_REG_A, BPF_REG_CTX, insn);
412 		insn += cnt - 1;
413 		break;
414 
415 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
416 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
417 
418 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
419 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
420 				      offsetof(struct sk_buff, vlan_proto));
421 		/* A = ntohs(A) [emitting a nop or swap16] */
422 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
423 		break;
424 
425 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
426 	case SKF_AD_OFF + SKF_AD_NLATTR:
427 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
428 	case SKF_AD_OFF + SKF_AD_CPU:
429 	case SKF_AD_OFF + SKF_AD_RANDOM:
430 		/* arg1 = CTX */
431 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
432 		/* arg2 = A */
433 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
434 		/* arg3 = X */
435 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
436 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
437 		switch (fp->k) {
438 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
439 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
440 			break;
441 		case SKF_AD_OFF + SKF_AD_NLATTR:
442 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
443 			break;
444 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
445 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
446 			break;
447 		case SKF_AD_OFF + SKF_AD_CPU:
448 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
449 			break;
450 		case SKF_AD_OFF + SKF_AD_RANDOM:
451 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
452 			bpf_user_rnd_init_once();
453 			break;
454 		}
455 		break;
456 
457 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
458 		/* A ^= X */
459 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
460 		break;
461 
462 	default:
463 		/* This is just a dummy call to avoid letting the compiler
464 		 * evict __bpf_call_base() as an optimization. Placed here
465 		 * where no-one bothers.
466 		 */
467 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
468 		return false;
469 	}
470 
471 	*insnp = insn;
472 	return true;
473 }
474 
475 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
476 {
477 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
478 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
479 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
480 		      BPF_SIZE(fp->code) == BPF_W;
481 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
482 	const int ip_align = NET_IP_ALIGN;
483 	struct bpf_insn *insn = *insnp;
484 	int offset = fp->k;
485 
486 	if (!indirect &&
487 	    ((unaligned_ok && offset >= 0) ||
488 	     (!unaligned_ok && offset >= 0 &&
489 	      offset + ip_align >= 0 &&
490 	      offset + ip_align % size == 0))) {
491 		bool ldx_off_ok = offset <= S16_MAX;
492 
493 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
494 		if (offset)
495 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
496 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
497 				      size, 2 + endian + (!ldx_off_ok * 2));
498 		if (ldx_off_ok) {
499 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
500 					      BPF_REG_D, offset);
501 		} else {
502 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
503 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
504 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
505 					      BPF_REG_TMP, 0);
506 		}
507 		if (endian)
508 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
509 		*insn++ = BPF_JMP_A(8);
510 	}
511 
512 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
513 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
514 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
515 	if (!indirect) {
516 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
517 	} else {
518 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
519 		if (fp->k)
520 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
521 	}
522 
523 	switch (BPF_SIZE(fp->code)) {
524 	case BPF_B:
525 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
526 		break;
527 	case BPF_H:
528 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
529 		break;
530 	case BPF_W:
531 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
532 		break;
533 	default:
534 		return false;
535 	}
536 
537 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
538 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
539 	*insn   = BPF_EXIT_INSN();
540 
541 	*insnp = insn;
542 	return true;
543 }
544 
545 /**
546  *	bpf_convert_filter - convert filter program
547  *	@prog: the user passed filter program
548  *	@len: the length of the user passed filter program
549  *	@new_prog: allocated 'struct bpf_prog' or NULL
550  *	@new_len: pointer to store length of converted program
551  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
552  *
553  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
554  * style extended BPF (eBPF).
555  * Conversion workflow:
556  *
557  * 1) First pass for calculating the new program length:
558  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
559  *
560  * 2) 2nd pass to remap in two passes: 1st pass finds new
561  *    jump offsets, 2nd pass remapping:
562  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
563  */
564 static int bpf_convert_filter(struct sock_filter *prog, int len,
565 			      struct bpf_prog *new_prog, int *new_len,
566 			      bool *seen_ld_abs)
567 {
568 	int new_flen = 0, pass = 0, target, i, stack_off;
569 	struct bpf_insn *new_insn, *first_insn = NULL;
570 	struct sock_filter *fp;
571 	int *addrs = NULL;
572 	u8 bpf_src;
573 
574 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
575 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
576 
577 	if (len <= 0 || len > BPF_MAXINSNS)
578 		return -EINVAL;
579 
580 	if (new_prog) {
581 		first_insn = new_prog->insnsi;
582 		addrs = kcalloc(len, sizeof(*addrs),
583 				GFP_KERNEL | __GFP_NOWARN);
584 		if (!addrs)
585 			return -ENOMEM;
586 	}
587 
588 do_pass:
589 	new_insn = first_insn;
590 	fp = prog;
591 
592 	/* Classic BPF related prologue emission. */
593 	if (new_prog) {
594 		/* Classic BPF expects A and X to be reset first. These need
595 		 * to be guaranteed to be the first two instructions.
596 		 */
597 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
598 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
599 
600 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
601 		 * In eBPF case it's done by the compiler, here we need to
602 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
603 		 */
604 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
605 		if (*seen_ld_abs) {
606 			/* For packet access in classic BPF, cache skb->data
607 			 * in callee-saved BPF R8 and skb->len - skb->data_len
608 			 * (headlen) in BPF R9. Since classic BPF is read-only
609 			 * on CTX, we only need to cache it once.
610 			 */
611 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
612 						  BPF_REG_D, BPF_REG_CTX,
613 						  offsetof(struct sk_buff, data));
614 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
615 						  offsetof(struct sk_buff, len));
616 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
617 						  offsetof(struct sk_buff, data_len));
618 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
619 		}
620 	} else {
621 		new_insn += 3;
622 	}
623 
624 	for (i = 0; i < len; fp++, i++) {
625 		struct bpf_insn tmp_insns[32] = { };
626 		struct bpf_insn *insn = tmp_insns;
627 
628 		if (addrs)
629 			addrs[i] = new_insn - first_insn;
630 
631 		switch (fp->code) {
632 		/* All arithmetic insns and skb loads map as-is. */
633 		case BPF_ALU | BPF_ADD | BPF_X:
634 		case BPF_ALU | BPF_ADD | BPF_K:
635 		case BPF_ALU | BPF_SUB | BPF_X:
636 		case BPF_ALU | BPF_SUB | BPF_K:
637 		case BPF_ALU | BPF_AND | BPF_X:
638 		case BPF_ALU | BPF_AND | BPF_K:
639 		case BPF_ALU | BPF_OR | BPF_X:
640 		case BPF_ALU | BPF_OR | BPF_K:
641 		case BPF_ALU | BPF_LSH | BPF_X:
642 		case BPF_ALU | BPF_LSH | BPF_K:
643 		case BPF_ALU | BPF_RSH | BPF_X:
644 		case BPF_ALU | BPF_RSH | BPF_K:
645 		case BPF_ALU | BPF_XOR | BPF_X:
646 		case BPF_ALU | BPF_XOR | BPF_K:
647 		case BPF_ALU | BPF_MUL | BPF_X:
648 		case BPF_ALU | BPF_MUL | BPF_K:
649 		case BPF_ALU | BPF_DIV | BPF_X:
650 		case BPF_ALU | BPF_DIV | BPF_K:
651 		case BPF_ALU | BPF_MOD | BPF_X:
652 		case BPF_ALU | BPF_MOD | BPF_K:
653 		case BPF_ALU | BPF_NEG:
654 		case BPF_LD | BPF_ABS | BPF_W:
655 		case BPF_LD | BPF_ABS | BPF_H:
656 		case BPF_LD | BPF_ABS | BPF_B:
657 		case BPF_LD | BPF_IND | BPF_W:
658 		case BPF_LD | BPF_IND | BPF_H:
659 		case BPF_LD | BPF_IND | BPF_B:
660 			/* Check for overloaded BPF extension and
661 			 * directly convert it if found, otherwise
662 			 * just move on with mapping.
663 			 */
664 			if (BPF_CLASS(fp->code) == BPF_LD &&
665 			    BPF_MODE(fp->code) == BPF_ABS &&
666 			    convert_bpf_extensions(fp, &insn))
667 				break;
668 			if (BPF_CLASS(fp->code) == BPF_LD &&
669 			    convert_bpf_ld_abs(fp, &insn)) {
670 				*seen_ld_abs = true;
671 				break;
672 			}
673 
674 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
675 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
676 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
677 				/* Error with exception code on div/mod by 0.
678 				 * For cBPF programs, this was always return 0.
679 				 */
680 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
681 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
682 				*insn++ = BPF_EXIT_INSN();
683 			}
684 
685 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
686 			break;
687 
688 		/* Jump transformation cannot use BPF block macros
689 		 * everywhere as offset calculation and target updates
690 		 * require a bit more work than the rest, i.e. jump
691 		 * opcodes map as-is, but offsets need adjustment.
692 		 */
693 
694 #define BPF_EMIT_JMP							\
695 	do {								\
696 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
697 		s32 off;						\
698 									\
699 		if (target >= len || target < 0)			\
700 			goto err;					\
701 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
702 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
703 		off -= insn - tmp_insns;				\
704 		/* Reject anything not fitting into insn->off. */	\
705 		if (off < off_min || off > off_max)			\
706 			goto err;					\
707 		insn->off = off;					\
708 	} while (0)
709 
710 		case BPF_JMP | BPF_JA:
711 			target = i + fp->k + 1;
712 			insn->code = fp->code;
713 			BPF_EMIT_JMP;
714 			break;
715 
716 		case BPF_JMP | BPF_JEQ | BPF_K:
717 		case BPF_JMP | BPF_JEQ | BPF_X:
718 		case BPF_JMP | BPF_JSET | BPF_K:
719 		case BPF_JMP | BPF_JSET | BPF_X:
720 		case BPF_JMP | BPF_JGT | BPF_K:
721 		case BPF_JMP | BPF_JGT | BPF_X:
722 		case BPF_JMP | BPF_JGE | BPF_K:
723 		case BPF_JMP | BPF_JGE | BPF_X:
724 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
725 				/* BPF immediates are signed, zero extend
726 				 * immediate into tmp register and use it
727 				 * in compare insn.
728 				 */
729 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
730 
731 				insn->dst_reg = BPF_REG_A;
732 				insn->src_reg = BPF_REG_TMP;
733 				bpf_src = BPF_X;
734 			} else {
735 				insn->dst_reg = BPF_REG_A;
736 				insn->imm = fp->k;
737 				bpf_src = BPF_SRC(fp->code);
738 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
739 			}
740 
741 			/* Common case where 'jump_false' is next insn. */
742 			if (fp->jf == 0) {
743 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
744 				target = i + fp->jt + 1;
745 				BPF_EMIT_JMP;
746 				break;
747 			}
748 
749 			/* Convert some jumps when 'jump_true' is next insn. */
750 			if (fp->jt == 0) {
751 				switch (BPF_OP(fp->code)) {
752 				case BPF_JEQ:
753 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
754 					break;
755 				case BPF_JGT:
756 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
757 					break;
758 				case BPF_JGE:
759 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
760 					break;
761 				default:
762 					goto jmp_rest;
763 				}
764 
765 				target = i + fp->jf + 1;
766 				BPF_EMIT_JMP;
767 				break;
768 			}
769 jmp_rest:
770 			/* Other jumps are mapped into two insns: Jxx and JA. */
771 			target = i + fp->jt + 1;
772 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
773 			BPF_EMIT_JMP;
774 			insn++;
775 
776 			insn->code = BPF_JMP | BPF_JA;
777 			target = i + fp->jf + 1;
778 			BPF_EMIT_JMP;
779 			break;
780 
781 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
782 		case BPF_LDX | BPF_MSH | BPF_B: {
783 			struct sock_filter tmp = {
784 				.code	= BPF_LD | BPF_ABS | BPF_B,
785 				.k	= fp->k,
786 			};
787 
788 			*seen_ld_abs = true;
789 
790 			/* X = A */
791 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
792 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
793 			convert_bpf_ld_abs(&tmp, &insn);
794 			insn++;
795 			/* A &= 0xf */
796 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
797 			/* A <<= 2 */
798 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
799 			/* tmp = X */
800 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
801 			/* X = A */
802 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
803 			/* A = tmp */
804 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
805 			break;
806 		}
807 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
808 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
809 		 */
810 		case BPF_RET | BPF_A:
811 		case BPF_RET | BPF_K:
812 			if (BPF_RVAL(fp->code) == BPF_K)
813 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
814 							0, fp->k);
815 			*insn = BPF_EXIT_INSN();
816 			break;
817 
818 		/* Store to stack. */
819 		case BPF_ST:
820 		case BPF_STX:
821 			stack_off = fp->k * 4  + 4;
822 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
823 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
824 					    -stack_off);
825 			/* check_load_and_stores() verifies that classic BPF can
826 			 * load from stack only after write, so tracking
827 			 * stack_depth for ST|STX insns is enough
828 			 */
829 			if (new_prog && new_prog->aux->stack_depth < stack_off)
830 				new_prog->aux->stack_depth = stack_off;
831 			break;
832 
833 		/* Load from stack. */
834 		case BPF_LD | BPF_MEM:
835 		case BPF_LDX | BPF_MEM:
836 			stack_off = fp->k * 4  + 4;
837 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
838 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
839 					    -stack_off);
840 			break;
841 
842 		/* A = K or X = K */
843 		case BPF_LD | BPF_IMM:
844 		case BPF_LDX | BPF_IMM:
845 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
846 					      BPF_REG_A : BPF_REG_X, fp->k);
847 			break;
848 
849 		/* X = A */
850 		case BPF_MISC | BPF_TAX:
851 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
852 			break;
853 
854 		/* A = X */
855 		case BPF_MISC | BPF_TXA:
856 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
857 			break;
858 
859 		/* A = skb->len or X = skb->len */
860 		case BPF_LD | BPF_W | BPF_LEN:
861 		case BPF_LDX | BPF_W | BPF_LEN:
862 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
863 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
864 					    offsetof(struct sk_buff, len));
865 			break;
866 
867 		/* Access seccomp_data fields. */
868 		case BPF_LDX | BPF_ABS | BPF_W:
869 			/* A = *(u32 *) (ctx + K) */
870 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
871 			break;
872 
873 		/* Unknown instruction. */
874 		default:
875 			goto err;
876 		}
877 
878 		insn++;
879 		if (new_prog)
880 			memcpy(new_insn, tmp_insns,
881 			       sizeof(*insn) * (insn - tmp_insns));
882 		new_insn += insn - tmp_insns;
883 	}
884 
885 	if (!new_prog) {
886 		/* Only calculating new length. */
887 		*new_len = new_insn - first_insn;
888 		if (*seen_ld_abs)
889 			*new_len += 4; /* Prologue bits. */
890 		return 0;
891 	}
892 
893 	pass++;
894 	if (new_flen != new_insn - first_insn) {
895 		new_flen = new_insn - first_insn;
896 		if (pass > 2)
897 			goto err;
898 		goto do_pass;
899 	}
900 
901 	kfree(addrs);
902 	BUG_ON(*new_len != new_flen);
903 	return 0;
904 err:
905 	kfree(addrs);
906 	return -EINVAL;
907 }
908 
909 /* Security:
910  *
911  * As we dont want to clear mem[] array for each packet going through
912  * __bpf_prog_run(), we check that filter loaded by user never try to read
913  * a cell if not previously written, and we check all branches to be sure
914  * a malicious user doesn't try to abuse us.
915  */
916 static int check_load_and_stores(const struct sock_filter *filter, int flen)
917 {
918 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
919 	int pc, ret = 0;
920 
921 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
922 
923 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
924 	if (!masks)
925 		return -ENOMEM;
926 
927 	memset(masks, 0xff, flen * sizeof(*masks));
928 
929 	for (pc = 0; pc < flen; pc++) {
930 		memvalid &= masks[pc];
931 
932 		switch (filter[pc].code) {
933 		case BPF_ST:
934 		case BPF_STX:
935 			memvalid |= (1 << filter[pc].k);
936 			break;
937 		case BPF_LD | BPF_MEM:
938 		case BPF_LDX | BPF_MEM:
939 			if (!(memvalid & (1 << filter[pc].k))) {
940 				ret = -EINVAL;
941 				goto error;
942 			}
943 			break;
944 		case BPF_JMP | BPF_JA:
945 			/* A jump must set masks on target */
946 			masks[pc + 1 + filter[pc].k] &= memvalid;
947 			memvalid = ~0;
948 			break;
949 		case BPF_JMP | BPF_JEQ | BPF_K:
950 		case BPF_JMP | BPF_JEQ | BPF_X:
951 		case BPF_JMP | BPF_JGE | BPF_K:
952 		case BPF_JMP | BPF_JGE | BPF_X:
953 		case BPF_JMP | BPF_JGT | BPF_K:
954 		case BPF_JMP | BPF_JGT | BPF_X:
955 		case BPF_JMP | BPF_JSET | BPF_K:
956 		case BPF_JMP | BPF_JSET | BPF_X:
957 			/* A jump must set masks on targets */
958 			masks[pc + 1 + filter[pc].jt] &= memvalid;
959 			masks[pc + 1 + filter[pc].jf] &= memvalid;
960 			memvalid = ~0;
961 			break;
962 		}
963 	}
964 error:
965 	kfree(masks);
966 	return ret;
967 }
968 
969 static bool chk_code_allowed(u16 code_to_probe)
970 {
971 	static const bool codes[] = {
972 		/* 32 bit ALU operations */
973 		[BPF_ALU | BPF_ADD | BPF_K] = true,
974 		[BPF_ALU | BPF_ADD | BPF_X] = true,
975 		[BPF_ALU | BPF_SUB | BPF_K] = true,
976 		[BPF_ALU | BPF_SUB | BPF_X] = true,
977 		[BPF_ALU | BPF_MUL | BPF_K] = true,
978 		[BPF_ALU | BPF_MUL | BPF_X] = true,
979 		[BPF_ALU | BPF_DIV | BPF_K] = true,
980 		[BPF_ALU | BPF_DIV | BPF_X] = true,
981 		[BPF_ALU | BPF_MOD | BPF_K] = true,
982 		[BPF_ALU | BPF_MOD | BPF_X] = true,
983 		[BPF_ALU | BPF_AND | BPF_K] = true,
984 		[BPF_ALU | BPF_AND | BPF_X] = true,
985 		[BPF_ALU | BPF_OR | BPF_K] = true,
986 		[BPF_ALU | BPF_OR | BPF_X] = true,
987 		[BPF_ALU | BPF_XOR | BPF_K] = true,
988 		[BPF_ALU | BPF_XOR | BPF_X] = true,
989 		[BPF_ALU | BPF_LSH | BPF_K] = true,
990 		[BPF_ALU | BPF_LSH | BPF_X] = true,
991 		[BPF_ALU | BPF_RSH | BPF_K] = true,
992 		[BPF_ALU | BPF_RSH | BPF_X] = true,
993 		[BPF_ALU | BPF_NEG] = true,
994 		/* Load instructions */
995 		[BPF_LD | BPF_W | BPF_ABS] = true,
996 		[BPF_LD | BPF_H | BPF_ABS] = true,
997 		[BPF_LD | BPF_B | BPF_ABS] = true,
998 		[BPF_LD | BPF_W | BPF_LEN] = true,
999 		[BPF_LD | BPF_W | BPF_IND] = true,
1000 		[BPF_LD | BPF_H | BPF_IND] = true,
1001 		[BPF_LD | BPF_B | BPF_IND] = true,
1002 		[BPF_LD | BPF_IMM] = true,
1003 		[BPF_LD | BPF_MEM] = true,
1004 		[BPF_LDX | BPF_W | BPF_LEN] = true,
1005 		[BPF_LDX | BPF_B | BPF_MSH] = true,
1006 		[BPF_LDX | BPF_IMM] = true,
1007 		[BPF_LDX | BPF_MEM] = true,
1008 		/* Store instructions */
1009 		[BPF_ST] = true,
1010 		[BPF_STX] = true,
1011 		/* Misc instructions */
1012 		[BPF_MISC | BPF_TAX] = true,
1013 		[BPF_MISC | BPF_TXA] = true,
1014 		/* Return instructions */
1015 		[BPF_RET | BPF_K] = true,
1016 		[BPF_RET | BPF_A] = true,
1017 		/* Jump instructions */
1018 		[BPF_JMP | BPF_JA] = true,
1019 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
1020 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
1021 		[BPF_JMP | BPF_JGE | BPF_K] = true,
1022 		[BPF_JMP | BPF_JGE | BPF_X] = true,
1023 		[BPF_JMP | BPF_JGT | BPF_K] = true,
1024 		[BPF_JMP | BPF_JGT | BPF_X] = true,
1025 		[BPF_JMP | BPF_JSET | BPF_K] = true,
1026 		[BPF_JMP | BPF_JSET | BPF_X] = true,
1027 	};
1028 
1029 	if (code_to_probe >= ARRAY_SIZE(codes))
1030 		return false;
1031 
1032 	return codes[code_to_probe];
1033 }
1034 
1035 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1036 				unsigned int flen)
1037 {
1038 	if (filter == NULL)
1039 		return false;
1040 	if (flen == 0 || flen > BPF_MAXINSNS)
1041 		return false;
1042 
1043 	return true;
1044 }
1045 
1046 /**
1047  *	bpf_check_classic - verify socket filter code
1048  *	@filter: filter to verify
1049  *	@flen: length of filter
1050  *
1051  * Check the user's filter code. If we let some ugly
1052  * filter code slip through kaboom! The filter must contain
1053  * no references or jumps that are out of range, no illegal
1054  * instructions, and must end with a RET instruction.
1055  *
1056  * All jumps are forward as they are not signed.
1057  *
1058  * Returns 0 if the rule set is legal or -EINVAL if not.
1059  */
1060 static int bpf_check_classic(const struct sock_filter *filter,
1061 			     unsigned int flen)
1062 {
1063 	bool anc_found;
1064 	int pc;
1065 
1066 	/* Check the filter code now */
1067 	for (pc = 0; pc < flen; pc++) {
1068 		const struct sock_filter *ftest = &filter[pc];
1069 
1070 		/* May we actually operate on this code? */
1071 		if (!chk_code_allowed(ftest->code))
1072 			return -EINVAL;
1073 
1074 		/* Some instructions need special checks */
1075 		switch (ftest->code) {
1076 		case BPF_ALU | BPF_DIV | BPF_K:
1077 		case BPF_ALU | BPF_MOD | BPF_K:
1078 			/* Check for division by zero */
1079 			if (ftest->k == 0)
1080 				return -EINVAL;
1081 			break;
1082 		case BPF_ALU | BPF_LSH | BPF_K:
1083 		case BPF_ALU | BPF_RSH | BPF_K:
1084 			if (ftest->k >= 32)
1085 				return -EINVAL;
1086 			break;
1087 		case BPF_LD | BPF_MEM:
1088 		case BPF_LDX | BPF_MEM:
1089 		case BPF_ST:
1090 		case BPF_STX:
1091 			/* Check for invalid memory addresses */
1092 			if (ftest->k >= BPF_MEMWORDS)
1093 				return -EINVAL;
1094 			break;
1095 		case BPF_JMP | BPF_JA:
1096 			/* Note, the large ftest->k might cause loops.
1097 			 * Compare this with conditional jumps below,
1098 			 * where offsets are limited. --ANK (981016)
1099 			 */
1100 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1101 				return -EINVAL;
1102 			break;
1103 		case BPF_JMP | BPF_JEQ | BPF_K:
1104 		case BPF_JMP | BPF_JEQ | BPF_X:
1105 		case BPF_JMP | BPF_JGE | BPF_K:
1106 		case BPF_JMP | BPF_JGE | BPF_X:
1107 		case BPF_JMP | BPF_JGT | BPF_K:
1108 		case BPF_JMP | BPF_JGT | BPF_X:
1109 		case BPF_JMP | BPF_JSET | BPF_K:
1110 		case BPF_JMP | BPF_JSET | BPF_X:
1111 			/* Both conditionals must be safe */
1112 			if (pc + ftest->jt + 1 >= flen ||
1113 			    pc + ftest->jf + 1 >= flen)
1114 				return -EINVAL;
1115 			break;
1116 		case BPF_LD | BPF_W | BPF_ABS:
1117 		case BPF_LD | BPF_H | BPF_ABS:
1118 		case BPF_LD | BPF_B | BPF_ABS:
1119 			anc_found = false;
1120 			if (bpf_anc_helper(ftest) & BPF_ANC)
1121 				anc_found = true;
1122 			/* Ancillary operation unknown or unsupported */
1123 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1124 				return -EINVAL;
1125 		}
1126 	}
1127 
1128 	/* Last instruction must be a RET code */
1129 	switch (filter[flen - 1].code) {
1130 	case BPF_RET | BPF_K:
1131 	case BPF_RET | BPF_A:
1132 		return check_load_and_stores(filter, flen);
1133 	}
1134 
1135 	return -EINVAL;
1136 }
1137 
1138 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1139 				      const struct sock_fprog *fprog)
1140 {
1141 	unsigned int fsize = bpf_classic_proglen(fprog);
1142 	struct sock_fprog_kern *fkprog;
1143 
1144 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1145 	if (!fp->orig_prog)
1146 		return -ENOMEM;
1147 
1148 	fkprog = fp->orig_prog;
1149 	fkprog->len = fprog->len;
1150 
1151 	fkprog->filter = kmemdup(fp->insns, fsize,
1152 				 GFP_KERNEL | __GFP_NOWARN);
1153 	if (!fkprog->filter) {
1154 		kfree(fp->orig_prog);
1155 		return -ENOMEM;
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 static void bpf_release_orig_filter(struct bpf_prog *fp)
1162 {
1163 	struct sock_fprog_kern *fprog = fp->orig_prog;
1164 
1165 	if (fprog) {
1166 		kfree(fprog->filter);
1167 		kfree(fprog);
1168 	}
1169 }
1170 
1171 static void __bpf_prog_release(struct bpf_prog *prog)
1172 {
1173 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1174 		bpf_prog_put(prog);
1175 	} else {
1176 		bpf_release_orig_filter(prog);
1177 		bpf_prog_free(prog);
1178 	}
1179 }
1180 
1181 static void __sk_filter_release(struct sk_filter *fp)
1182 {
1183 	__bpf_prog_release(fp->prog);
1184 	kfree(fp);
1185 }
1186 
1187 /**
1188  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1189  *	@rcu: rcu_head that contains the sk_filter to free
1190  */
1191 static void sk_filter_release_rcu(struct rcu_head *rcu)
1192 {
1193 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1194 
1195 	__sk_filter_release(fp);
1196 }
1197 
1198 /**
1199  *	sk_filter_release - release a socket filter
1200  *	@fp: filter to remove
1201  *
1202  *	Remove a filter from a socket and release its resources.
1203  */
1204 static void sk_filter_release(struct sk_filter *fp)
1205 {
1206 	if (refcount_dec_and_test(&fp->refcnt))
1207 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1208 }
1209 
1210 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1211 {
1212 	u32 filter_size = bpf_prog_size(fp->prog->len);
1213 
1214 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1215 	sk_filter_release(fp);
1216 }
1217 
1218 /* try to charge the socket memory if there is space available
1219  * return true on success
1220  */
1221 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1222 {
1223 	int optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1224 	u32 filter_size = bpf_prog_size(fp->prog->len);
1225 
1226 	/* same check as in sock_kmalloc() */
1227 	if (filter_size <= optmem_max &&
1228 	    atomic_read(&sk->sk_omem_alloc) + filter_size < optmem_max) {
1229 		atomic_add(filter_size, &sk->sk_omem_alloc);
1230 		return true;
1231 	}
1232 	return false;
1233 }
1234 
1235 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1236 {
1237 	if (!refcount_inc_not_zero(&fp->refcnt))
1238 		return false;
1239 
1240 	if (!__sk_filter_charge(sk, fp)) {
1241 		sk_filter_release(fp);
1242 		return false;
1243 	}
1244 	return true;
1245 }
1246 
1247 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1248 {
1249 	struct sock_filter *old_prog;
1250 	struct bpf_prog *old_fp;
1251 	int err, new_len, old_len = fp->len;
1252 	bool seen_ld_abs = false;
1253 
1254 	/* We are free to overwrite insns et al right here as it won't be used at
1255 	 * this point in time anymore internally after the migration to the eBPF
1256 	 * instruction representation.
1257 	 */
1258 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1259 		     sizeof(struct bpf_insn));
1260 
1261 	/* Conversion cannot happen on overlapping memory areas,
1262 	 * so we need to keep the user BPF around until the 2nd
1263 	 * pass. At this time, the user BPF is stored in fp->insns.
1264 	 */
1265 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1266 			   GFP_KERNEL | __GFP_NOWARN);
1267 	if (!old_prog) {
1268 		err = -ENOMEM;
1269 		goto out_err;
1270 	}
1271 
1272 	/* 1st pass: calculate the new program length. */
1273 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1274 				 &seen_ld_abs);
1275 	if (err)
1276 		goto out_err_free;
1277 
1278 	/* Expand fp for appending the new filter representation. */
1279 	old_fp = fp;
1280 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1281 	if (!fp) {
1282 		/* The old_fp is still around in case we couldn't
1283 		 * allocate new memory, so uncharge on that one.
1284 		 */
1285 		fp = old_fp;
1286 		err = -ENOMEM;
1287 		goto out_err_free;
1288 	}
1289 
1290 	fp->len = new_len;
1291 
1292 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1293 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1294 				 &seen_ld_abs);
1295 	if (err)
1296 		/* 2nd bpf_convert_filter() can fail only if it fails
1297 		 * to allocate memory, remapping must succeed. Note,
1298 		 * that at this time old_fp has already been released
1299 		 * by krealloc().
1300 		 */
1301 		goto out_err_free;
1302 
1303 	fp = bpf_prog_select_runtime(fp, &err);
1304 	if (err)
1305 		goto out_err_free;
1306 
1307 	kfree(old_prog);
1308 	return fp;
1309 
1310 out_err_free:
1311 	kfree(old_prog);
1312 out_err:
1313 	__bpf_prog_release(fp);
1314 	return ERR_PTR(err);
1315 }
1316 
1317 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1318 					   bpf_aux_classic_check_t trans)
1319 {
1320 	int err;
1321 
1322 	fp->bpf_func = NULL;
1323 	fp->jited = 0;
1324 
1325 	err = bpf_check_classic(fp->insns, fp->len);
1326 	if (err) {
1327 		__bpf_prog_release(fp);
1328 		return ERR_PTR(err);
1329 	}
1330 
1331 	/* There might be additional checks and transformations
1332 	 * needed on classic filters, f.e. in case of seccomp.
1333 	 */
1334 	if (trans) {
1335 		err = trans(fp->insns, fp->len);
1336 		if (err) {
1337 			__bpf_prog_release(fp);
1338 			return ERR_PTR(err);
1339 		}
1340 	}
1341 
1342 	/* Probe if we can JIT compile the filter and if so, do
1343 	 * the compilation of the filter.
1344 	 */
1345 	bpf_jit_compile(fp);
1346 
1347 	/* JIT compiler couldn't process this filter, so do the eBPF translation
1348 	 * for the optimized interpreter.
1349 	 */
1350 	if (!fp->jited)
1351 		fp = bpf_migrate_filter(fp);
1352 
1353 	return fp;
1354 }
1355 
1356 /**
1357  *	bpf_prog_create - create an unattached filter
1358  *	@pfp: the unattached filter that is created
1359  *	@fprog: the filter program
1360  *
1361  * Create a filter independent of any socket. We first run some
1362  * sanity checks on it to make sure it does not explode on us later.
1363  * If an error occurs or there is insufficient memory for the filter
1364  * a negative errno code is returned. On success the return is zero.
1365  */
1366 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1367 {
1368 	unsigned int fsize = bpf_classic_proglen(fprog);
1369 	struct bpf_prog *fp;
1370 
1371 	/* Make sure new filter is there and in the right amounts. */
1372 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1373 		return -EINVAL;
1374 
1375 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1376 	if (!fp)
1377 		return -ENOMEM;
1378 
1379 	memcpy(fp->insns, fprog->filter, fsize);
1380 
1381 	fp->len = fprog->len;
1382 	/* Since unattached filters are not copied back to user
1383 	 * space through sk_get_filter(), we do not need to hold
1384 	 * a copy here, and can spare us the work.
1385 	 */
1386 	fp->orig_prog = NULL;
1387 
1388 	/* bpf_prepare_filter() already takes care of freeing
1389 	 * memory in case something goes wrong.
1390 	 */
1391 	fp = bpf_prepare_filter(fp, NULL);
1392 	if (IS_ERR(fp))
1393 		return PTR_ERR(fp);
1394 
1395 	*pfp = fp;
1396 	return 0;
1397 }
1398 EXPORT_SYMBOL_GPL(bpf_prog_create);
1399 
1400 /**
1401  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1402  *	@pfp: the unattached filter that is created
1403  *	@fprog: the filter program
1404  *	@trans: post-classic verifier transformation handler
1405  *	@save_orig: save classic BPF program
1406  *
1407  * This function effectively does the same as bpf_prog_create(), only
1408  * that it builds up its insns buffer from user space provided buffer.
1409  * It also allows for passing a bpf_aux_classic_check_t handler.
1410  */
1411 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1412 			      bpf_aux_classic_check_t trans, bool save_orig)
1413 {
1414 	unsigned int fsize = bpf_classic_proglen(fprog);
1415 	struct bpf_prog *fp;
1416 	int err;
1417 
1418 	/* Make sure new filter is there and in the right amounts. */
1419 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1420 		return -EINVAL;
1421 
1422 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1423 	if (!fp)
1424 		return -ENOMEM;
1425 
1426 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1427 		__bpf_prog_free(fp);
1428 		return -EFAULT;
1429 	}
1430 
1431 	fp->len = fprog->len;
1432 	fp->orig_prog = NULL;
1433 
1434 	if (save_orig) {
1435 		err = bpf_prog_store_orig_filter(fp, fprog);
1436 		if (err) {
1437 			__bpf_prog_free(fp);
1438 			return -ENOMEM;
1439 		}
1440 	}
1441 
1442 	/* bpf_prepare_filter() already takes care of freeing
1443 	 * memory in case something goes wrong.
1444 	 */
1445 	fp = bpf_prepare_filter(fp, trans);
1446 	if (IS_ERR(fp))
1447 		return PTR_ERR(fp);
1448 
1449 	*pfp = fp;
1450 	return 0;
1451 }
1452 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1453 
1454 void bpf_prog_destroy(struct bpf_prog *fp)
1455 {
1456 	__bpf_prog_release(fp);
1457 }
1458 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1459 
1460 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1461 {
1462 	struct sk_filter *fp, *old_fp;
1463 
1464 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1465 	if (!fp)
1466 		return -ENOMEM;
1467 
1468 	fp->prog = prog;
1469 
1470 	if (!__sk_filter_charge(sk, fp)) {
1471 		kfree(fp);
1472 		return -ENOMEM;
1473 	}
1474 	refcount_set(&fp->refcnt, 1);
1475 
1476 	old_fp = rcu_dereference_protected(sk->sk_filter,
1477 					   lockdep_sock_is_held(sk));
1478 	rcu_assign_pointer(sk->sk_filter, fp);
1479 
1480 	if (old_fp)
1481 		sk_filter_uncharge(sk, old_fp);
1482 
1483 	return 0;
1484 }
1485 
1486 static
1487 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1488 {
1489 	unsigned int fsize = bpf_classic_proglen(fprog);
1490 	struct bpf_prog *prog;
1491 	int err;
1492 
1493 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1494 		return ERR_PTR(-EPERM);
1495 
1496 	/* Make sure new filter is there and in the right amounts. */
1497 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1498 		return ERR_PTR(-EINVAL);
1499 
1500 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1501 	if (!prog)
1502 		return ERR_PTR(-ENOMEM);
1503 
1504 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1505 		__bpf_prog_free(prog);
1506 		return ERR_PTR(-EFAULT);
1507 	}
1508 
1509 	prog->len = fprog->len;
1510 
1511 	err = bpf_prog_store_orig_filter(prog, fprog);
1512 	if (err) {
1513 		__bpf_prog_free(prog);
1514 		return ERR_PTR(-ENOMEM);
1515 	}
1516 
1517 	/* bpf_prepare_filter() already takes care of freeing
1518 	 * memory in case something goes wrong.
1519 	 */
1520 	return bpf_prepare_filter(prog, NULL);
1521 }
1522 
1523 /**
1524  *	sk_attach_filter - attach a socket filter
1525  *	@fprog: the filter program
1526  *	@sk: the socket to use
1527  *
1528  * Attach the user's filter code. We first run some sanity checks on
1529  * it to make sure it does not explode on us later. If an error
1530  * occurs or there is insufficient memory for the filter a negative
1531  * errno code is returned. On success the return is zero.
1532  */
1533 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1534 {
1535 	struct bpf_prog *prog = __get_filter(fprog, sk);
1536 	int err;
1537 
1538 	if (IS_ERR(prog))
1539 		return PTR_ERR(prog);
1540 
1541 	err = __sk_attach_prog(prog, sk);
1542 	if (err < 0) {
1543 		__bpf_prog_release(prog);
1544 		return err;
1545 	}
1546 
1547 	return 0;
1548 }
1549 EXPORT_SYMBOL_GPL(sk_attach_filter);
1550 
1551 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1552 {
1553 	struct bpf_prog *prog = __get_filter(fprog, sk);
1554 	int err, optmem_max;
1555 
1556 	if (IS_ERR(prog))
1557 		return PTR_ERR(prog);
1558 
1559 	optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1560 	if (bpf_prog_size(prog->len) > optmem_max)
1561 		err = -ENOMEM;
1562 	else
1563 		err = reuseport_attach_prog(sk, prog);
1564 
1565 	if (err)
1566 		__bpf_prog_release(prog);
1567 
1568 	return err;
1569 }
1570 
1571 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1572 {
1573 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1574 		return ERR_PTR(-EPERM);
1575 
1576 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1577 }
1578 
1579 int sk_attach_bpf(u32 ufd, struct sock *sk)
1580 {
1581 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1582 	int err;
1583 
1584 	if (IS_ERR(prog))
1585 		return PTR_ERR(prog);
1586 
1587 	err = __sk_attach_prog(prog, sk);
1588 	if (err < 0) {
1589 		bpf_prog_put(prog);
1590 		return err;
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1597 {
1598 	struct bpf_prog *prog;
1599 	int err, optmem_max;
1600 
1601 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1602 		return -EPERM;
1603 
1604 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1605 	if (PTR_ERR(prog) == -EINVAL)
1606 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1607 	if (IS_ERR(prog))
1608 		return PTR_ERR(prog);
1609 
1610 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1611 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1612 		 * bpf prog (e.g. sockmap).  It depends on the
1613 		 * limitation imposed by bpf_prog_load().
1614 		 * Hence, sysctl_optmem_max is not checked.
1615 		 */
1616 		if ((sk->sk_type != SOCK_STREAM &&
1617 		     sk->sk_type != SOCK_DGRAM) ||
1618 		    (sk->sk_protocol != IPPROTO_UDP &&
1619 		     sk->sk_protocol != IPPROTO_TCP) ||
1620 		    (sk->sk_family != AF_INET &&
1621 		     sk->sk_family != AF_INET6)) {
1622 			err = -ENOTSUPP;
1623 			goto err_prog_put;
1624 		}
1625 	} else {
1626 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1627 		optmem_max = READ_ONCE(sock_net(sk)->core.sysctl_optmem_max);
1628 		if (bpf_prog_size(prog->len) > optmem_max) {
1629 			err = -ENOMEM;
1630 			goto err_prog_put;
1631 		}
1632 	}
1633 
1634 	err = reuseport_attach_prog(sk, prog);
1635 err_prog_put:
1636 	if (err)
1637 		bpf_prog_put(prog);
1638 
1639 	return err;
1640 }
1641 
1642 void sk_reuseport_prog_free(struct bpf_prog *prog)
1643 {
1644 	if (!prog)
1645 		return;
1646 
1647 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1648 		bpf_prog_put(prog);
1649 	else
1650 		bpf_prog_destroy(prog);
1651 }
1652 
1653 struct bpf_scratchpad {
1654 	union {
1655 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1656 		u8     buff[MAX_BPF_STACK];
1657 	};
1658 };
1659 
1660 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1661 
1662 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1663 					  unsigned int write_len)
1664 {
1665 	return skb_ensure_writable(skb, write_len);
1666 }
1667 
1668 static inline int bpf_try_make_writable(struct sk_buff *skb,
1669 					unsigned int write_len)
1670 {
1671 	int err = __bpf_try_make_writable(skb, write_len);
1672 
1673 	bpf_compute_data_pointers(skb);
1674 	return err;
1675 }
1676 
1677 static int bpf_try_make_head_writable(struct sk_buff *skb)
1678 {
1679 	return bpf_try_make_writable(skb, skb_headlen(skb));
1680 }
1681 
1682 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1683 {
1684 	if (skb_at_tc_ingress(skb))
1685 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1686 }
1687 
1688 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1689 {
1690 	if (skb_at_tc_ingress(skb))
1691 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1692 }
1693 
1694 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1695 	   const void *, from, u32, len, u64, flags)
1696 {
1697 	void *ptr;
1698 
1699 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1700 		return -EINVAL;
1701 	if (unlikely(offset > INT_MAX))
1702 		return -EFAULT;
1703 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1704 		return -EFAULT;
1705 
1706 	ptr = skb->data + offset;
1707 	if (flags & BPF_F_RECOMPUTE_CSUM)
1708 		__skb_postpull_rcsum(skb, ptr, len, offset);
1709 
1710 	memcpy(ptr, from, len);
1711 
1712 	if (flags & BPF_F_RECOMPUTE_CSUM)
1713 		__skb_postpush_rcsum(skb, ptr, len, offset);
1714 	if (flags & BPF_F_INVALIDATE_HASH)
1715 		skb_clear_hash(skb);
1716 
1717 	return 0;
1718 }
1719 
1720 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1721 	.func		= bpf_skb_store_bytes,
1722 	.gpl_only	= false,
1723 	.ret_type	= RET_INTEGER,
1724 	.arg1_type	= ARG_PTR_TO_CTX,
1725 	.arg2_type	= ARG_ANYTHING,
1726 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1727 	.arg4_type	= ARG_CONST_SIZE,
1728 	.arg5_type	= ARG_ANYTHING,
1729 };
1730 
1731 int __bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from,
1732 			  u32 len, u64 flags)
1733 {
1734 	return ____bpf_skb_store_bytes(skb, offset, from, len, flags);
1735 }
1736 
1737 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1738 	   void *, to, u32, len)
1739 {
1740 	void *ptr;
1741 
1742 	if (unlikely(offset > INT_MAX))
1743 		goto err_clear;
1744 
1745 	ptr = skb_header_pointer(skb, offset, len, to);
1746 	if (unlikely(!ptr))
1747 		goto err_clear;
1748 	if (ptr != to)
1749 		memcpy(to, ptr, len);
1750 
1751 	return 0;
1752 err_clear:
1753 	memset(to, 0, len);
1754 	return -EFAULT;
1755 }
1756 
1757 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1758 	.func		= bpf_skb_load_bytes,
1759 	.gpl_only	= false,
1760 	.ret_type	= RET_INTEGER,
1761 	.arg1_type	= ARG_PTR_TO_CTX,
1762 	.arg2_type	= ARG_ANYTHING,
1763 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1764 	.arg4_type	= ARG_CONST_SIZE,
1765 };
1766 
1767 int __bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1768 {
1769 	return ____bpf_skb_load_bytes(skb, offset, to, len);
1770 }
1771 
1772 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1773 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1774 	   void *, to, u32, len)
1775 {
1776 	void *ptr;
1777 
1778 	if (unlikely(offset > 0xffff))
1779 		goto err_clear;
1780 
1781 	if (unlikely(!ctx->skb))
1782 		goto err_clear;
1783 
1784 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1785 	if (unlikely(!ptr))
1786 		goto err_clear;
1787 	if (ptr != to)
1788 		memcpy(to, ptr, len);
1789 
1790 	return 0;
1791 err_clear:
1792 	memset(to, 0, len);
1793 	return -EFAULT;
1794 }
1795 
1796 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1797 	.func		= bpf_flow_dissector_load_bytes,
1798 	.gpl_only	= false,
1799 	.ret_type	= RET_INTEGER,
1800 	.arg1_type	= ARG_PTR_TO_CTX,
1801 	.arg2_type	= ARG_ANYTHING,
1802 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1803 	.arg4_type	= ARG_CONST_SIZE,
1804 };
1805 
1806 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1807 	   u32, offset, void *, to, u32, len, u32, start_header)
1808 {
1809 	u8 *end = skb_tail_pointer(skb);
1810 	u8 *start, *ptr;
1811 
1812 	if (unlikely(offset > 0xffff))
1813 		goto err_clear;
1814 
1815 	switch (start_header) {
1816 	case BPF_HDR_START_MAC:
1817 		if (unlikely(!skb_mac_header_was_set(skb)))
1818 			goto err_clear;
1819 		start = skb_mac_header(skb);
1820 		break;
1821 	case BPF_HDR_START_NET:
1822 		start = skb_network_header(skb);
1823 		break;
1824 	default:
1825 		goto err_clear;
1826 	}
1827 
1828 	ptr = start + offset;
1829 
1830 	if (likely(ptr + len <= end)) {
1831 		memcpy(to, ptr, len);
1832 		return 0;
1833 	}
1834 
1835 err_clear:
1836 	memset(to, 0, len);
1837 	return -EFAULT;
1838 }
1839 
1840 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1841 	.func		= bpf_skb_load_bytes_relative,
1842 	.gpl_only	= false,
1843 	.ret_type	= RET_INTEGER,
1844 	.arg1_type	= ARG_PTR_TO_CTX,
1845 	.arg2_type	= ARG_ANYTHING,
1846 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1847 	.arg4_type	= ARG_CONST_SIZE,
1848 	.arg5_type	= ARG_ANYTHING,
1849 };
1850 
1851 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853 	/* Idea is the following: should the needed direct read/write
1854 	 * test fail during runtime, we can pull in more data and redo
1855 	 * again, since implicitly, we invalidate previous checks here.
1856 	 *
1857 	 * Or, since we know how much we need to make read/writeable,
1858 	 * this can be done once at the program beginning for direct
1859 	 * access case. By this we overcome limitations of only current
1860 	 * headroom being accessible.
1861 	 */
1862 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864 
1865 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1866 	.func		= bpf_skb_pull_data,
1867 	.gpl_only	= false,
1868 	.ret_type	= RET_INTEGER,
1869 	.arg1_type	= ARG_PTR_TO_CTX,
1870 	.arg2_type	= ARG_ANYTHING,
1871 };
1872 
1873 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1874 {
1875 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1876 }
1877 
1878 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1879 	.func		= bpf_sk_fullsock,
1880 	.gpl_only	= false,
1881 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1882 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1883 };
1884 
1885 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1886 					   unsigned int write_len)
1887 {
1888 	return __bpf_try_make_writable(skb, write_len);
1889 }
1890 
1891 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1892 {
1893 	/* Idea is the following: should the needed direct read/write
1894 	 * test fail during runtime, we can pull in more data and redo
1895 	 * again, since implicitly, we invalidate previous checks here.
1896 	 *
1897 	 * Or, since we know how much we need to make read/writeable,
1898 	 * this can be done once at the program beginning for direct
1899 	 * access case. By this we overcome limitations of only current
1900 	 * headroom being accessible.
1901 	 */
1902 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1903 }
1904 
1905 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1906 	.func		= sk_skb_pull_data,
1907 	.gpl_only	= false,
1908 	.ret_type	= RET_INTEGER,
1909 	.arg1_type	= ARG_PTR_TO_CTX,
1910 	.arg2_type	= ARG_ANYTHING,
1911 };
1912 
1913 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1914 	   u64, from, u64, to, u64, flags)
1915 {
1916 	__sum16 *ptr;
1917 
1918 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1919 		return -EINVAL;
1920 	if (unlikely(offset > 0xffff || offset & 1))
1921 		return -EFAULT;
1922 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1923 		return -EFAULT;
1924 
1925 	ptr = (__sum16 *)(skb->data + offset);
1926 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1927 	case 0:
1928 		if (unlikely(from != 0))
1929 			return -EINVAL;
1930 
1931 		csum_replace_by_diff(ptr, to);
1932 		break;
1933 	case 2:
1934 		csum_replace2(ptr, from, to);
1935 		break;
1936 	case 4:
1937 		csum_replace4(ptr, from, to);
1938 		break;
1939 	default:
1940 		return -EINVAL;
1941 	}
1942 
1943 	return 0;
1944 }
1945 
1946 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1947 	.func		= bpf_l3_csum_replace,
1948 	.gpl_only	= false,
1949 	.ret_type	= RET_INTEGER,
1950 	.arg1_type	= ARG_PTR_TO_CTX,
1951 	.arg2_type	= ARG_ANYTHING,
1952 	.arg3_type	= ARG_ANYTHING,
1953 	.arg4_type	= ARG_ANYTHING,
1954 	.arg5_type	= ARG_ANYTHING,
1955 };
1956 
1957 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1958 	   u64, from, u64, to, u64, flags)
1959 {
1960 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1961 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1962 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1963 	__sum16 *ptr;
1964 
1965 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1966 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1967 		return -EINVAL;
1968 	if (unlikely(offset > 0xffff || offset & 1))
1969 		return -EFAULT;
1970 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1971 		return -EFAULT;
1972 
1973 	ptr = (__sum16 *)(skb->data + offset);
1974 	if (is_mmzero && !do_mforce && !*ptr)
1975 		return 0;
1976 
1977 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1978 	case 0:
1979 		if (unlikely(from != 0))
1980 			return -EINVAL;
1981 
1982 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1983 		break;
1984 	case 2:
1985 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1986 		break;
1987 	case 4:
1988 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1989 		break;
1990 	default:
1991 		return -EINVAL;
1992 	}
1993 
1994 	if (is_mmzero && !*ptr)
1995 		*ptr = CSUM_MANGLED_0;
1996 	return 0;
1997 }
1998 
1999 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
2000 	.func		= bpf_l4_csum_replace,
2001 	.gpl_only	= false,
2002 	.ret_type	= RET_INTEGER,
2003 	.arg1_type	= ARG_PTR_TO_CTX,
2004 	.arg2_type	= ARG_ANYTHING,
2005 	.arg3_type	= ARG_ANYTHING,
2006 	.arg4_type	= ARG_ANYTHING,
2007 	.arg5_type	= ARG_ANYTHING,
2008 };
2009 
2010 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
2011 	   __be32 *, to, u32, to_size, __wsum, seed)
2012 {
2013 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
2014 	u32 diff_size = from_size + to_size;
2015 	int i, j = 0;
2016 
2017 	/* This is quite flexible, some examples:
2018 	 *
2019 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
2020 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
2021 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
2022 	 *
2023 	 * Even for diffing, from_size and to_size don't need to be equal.
2024 	 */
2025 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
2026 		     diff_size > sizeof(sp->diff)))
2027 		return -EINVAL;
2028 
2029 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
2030 		sp->diff[j] = ~from[i];
2031 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
2032 		sp->diff[j] = to[i];
2033 
2034 	return csum_partial(sp->diff, diff_size, seed);
2035 }
2036 
2037 static const struct bpf_func_proto bpf_csum_diff_proto = {
2038 	.func		= bpf_csum_diff,
2039 	.gpl_only	= false,
2040 	.pkt_access	= true,
2041 	.ret_type	= RET_INTEGER,
2042 	.arg1_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2043 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2044 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2045 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2046 	.arg5_type	= ARG_ANYTHING,
2047 };
2048 
2049 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2050 {
2051 	/* The interface is to be used in combination with bpf_csum_diff()
2052 	 * for direct packet writes. csum rotation for alignment as well
2053 	 * as emulating csum_sub() can be done from the eBPF program.
2054 	 */
2055 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2056 		return (skb->csum = csum_add(skb->csum, csum));
2057 
2058 	return -ENOTSUPP;
2059 }
2060 
2061 static const struct bpf_func_proto bpf_csum_update_proto = {
2062 	.func		= bpf_csum_update,
2063 	.gpl_only	= false,
2064 	.ret_type	= RET_INTEGER,
2065 	.arg1_type	= ARG_PTR_TO_CTX,
2066 	.arg2_type	= ARG_ANYTHING,
2067 };
2068 
2069 BPF_CALL_2(bpf_csum_level, struct sk_buff *, skb, u64, level)
2070 {
2071 	/* The interface is to be used in combination with bpf_skb_adjust_room()
2072 	 * for encap/decap of packet headers when BPF_F_ADJ_ROOM_NO_CSUM_RESET
2073 	 * is passed as flags, for example.
2074 	 */
2075 	switch (level) {
2076 	case BPF_CSUM_LEVEL_INC:
2077 		__skb_incr_checksum_unnecessary(skb);
2078 		break;
2079 	case BPF_CSUM_LEVEL_DEC:
2080 		__skb_decr_checksum_unnecessary(skb);
2081 		break;
2082 	case BPF_CSUM_LEVEL_RESET:
2083 		__skb_reset_checksum_unnecessary(skb);
2084 		break;
2085 	case BPF_CSUM_LEVEL_QUERY:
2086 		return skb->ip_summed == CHECKSUM_UNNECESSARY ?
2087 		       skb->csum_level : -EACCES;
2088 	default:
2089 		return -EINVAL;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 static const struct bpf_func_proto bpf_csum_level_proto = {
2096 	.func		= bpf_csum_level,
2097 	.gpl_only	= false,
2098 	.ret_type	= RET_INTEGER,
2099 	.arg1_type	= ARG_PTR_TO_CTX,
2100 	.arg2_type	= ARG_ANYTHING,
2101 };
2102 
2103 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2104 {
2105 	return dev_forward_skb_nomtu(dev, skb);
2106 }
2107 
2108 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2109 				      struct sk_buff *skb)
2110 {
2111 	int ret = ____dev_forward_skb(dev, skb, false);
2112 
2113 	if (likely(!ret)) {
2114 		skb->dev = dev;
2115 		ret = netif_rx(skb);
2116 	}
2117 
2118 	return ret;
2119 }
2120 
2121 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2122 {
2123 	int ret;
2124 
2125 	if (dev_xmit_recursion()) {
2126 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2127 		kfree_skb(skb);
2128 		return -ENETDOWN;
2129 	}
2130 
2131 	skb->dev = dev;
2132 	skb_set_redirected_noclear(skb, skb_at_tc_ingress(skb));
2133 	skb_clear_tstamp(skb);
2134 
2135 	dev_xmit_recursion_inc();
2136 	ret = dev_queue_xmit(skb);
2137 	dev_xmit_recursion_dec();
2138 
2139 	return ret;
2140 }
2141 
2142 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2143 				 u32 flags)
2144 {
2145 	unsigned int mlen = skb_network_offset(skb);
2146 
2147 	if (unlikely(skb->len <= mlen)) {
2148 		kfree_skb(skb);
2149 		return -ERANGE;
2150 	}
2151 
2152 	if (mlen) {
2153 		__skb_pull(skb, mlen);
2154 
2155 		/* At ingress, the mac header has already been pulled once.
2156 		 * At egress, skb_pospull_rcsum has to be done in case that
2157 		 * the skb is originated from ingress (i.e. a forwarded skb)
2158 		 * to ensure that rcsum starts at net header.
2159 		 */
2160 		if (!skb_at_tc_ingress(skb))
2161 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2162 	}
2163 	skb_pop_mac_header(skb);
2164 	skb_reset_mac_len(skb);
2165 	return flags & BPF_F_INGRESS ?
2166 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2167 }
2168 
2169 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2170 				 u32 flags)
2171 {
2172 	/* Verify that a link layer header is carried */
2173 	if (unlikely(skb->mac_header >= skb->network_header || skb->len == 0)) {
2174 		kfree_skb(skb);
2175 		return -ERANGE;
2176 	}
2177 
2178 	bpf_push_mac_rcsum(skb);
2179 	return flags & BPF_F_INGRESS ?
2180 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2181 }
2182 
2183 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2184 			  u32 flags)
2185 {
2186 	if (dev_is_mac_header_xmit(dev))
2187 		return __bpf_redirect_common(skb, dev, flags);
2188 	else
2189 		return __bpf_redirect_no_mac(skb, dev, flags);
2190 }
2191 
2192 #if IS_ENABLED(CONFIG_IPV6)
2193 static int bpf_out_neigh_v6(struct net *net, struct sk_buff *skb,
2194 			    struct net_device *dev, struct bpf_nh_params *nh)
2195 {
2196 	u32 hh_len = LL_RESERVED_SPACE(dev);
2197 	const struct in6_addr *nexthop;
2198 	struct dst_entry *dst = NULL;
2199 	struct neighbour *neigh;
2200 
2201 	if (dev_xmit_recursion()) {
2202 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2203 		goto out_drop;
2204 	}
2205 
2206 	skb->dev = dev;
2207 	skb_clear_tstamp(skb);
2208 
2209 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2210 		skb = skb_expand_head(skb, hh_len);
2211 		if (!skb)
2212 			return -ENOMEM;
2213 	}
2214 
2215 	rcu_read_lock();
2216 	if (!nh) {
2217 		dst = skb_dst(skb);
2218 		nexthop = rt6_nexthop(container_of(dst, struct rt6_info, dst),
2219 				      &ipv6_hdr(skb)->daddr);
2220 	} else {
2221 		nexthop = &nh->ipv6_nh;
2222 	}
2223 	neigh = ip_neigh_gw6(dev, nexthop);
2224 	if (likely(!IS_ERR(neigh))) {
2225 		int ret;
2226 
2227 		sock_confirm_neigh(skb, neigh);
2228 		local_bh_disable();
2229 		dev_xmit_recursion_inc();
2230 		ret = neigh_output(neigh, skb, false);
2231 		dev_xmit_recursion_dec();
2232 		local_bh_enable();
2233 		rcu_read_unlock();
2234 		return ret;
2235 	}
2236 	rcu_read_unlock_bh();
2237 	if (dst)
2238 		IP6_INC_STATS(net, ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
2239 out_drop:
2240 	kfree_skb(skb);
2241 	return -ENETDOWN;
2242 }
2243 
2244 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2245 				   struct bpf_nh_params *nh)
2246 {
2247 	const struct ipv6hdr *ip6h = ipv6_hdr(skb);
2248 	struct net *net = dev_net(dev);
2249 	int err, ret = NET_XMIT_DROP;
2250 
2251 	if (!nh) {
2252 		struct dst_entry *dst;
2253 		struct flowi6 fl6 = {
2254 			.flowi6_flags = FLOWI_FLAG_ANYSRC,
2255 			.flowi6_mark  = skb->mark,
2256 			.flowlabel    = ip6_flowinfo(ip6h),
2257 			.flowi6_oif   = dev->ifindex,
2258 			.flowi6_proto = ip6h->nexthdr,
2259 			.daddr	      = ip6h->daddr,
2260 			.saddr	      = ip6h->saddr,
2261 		};
2262 
2263 		dst = ipv6_stub->ipv6_dst_lookup_flow(net, NULL, &fl6, NULL);
2264 		if (IS_ERR(dst))
2265 			goto out_drop;
2266 
2267 		skb_dst_set(skb, dst);
2268 	} else if (nh->nh_family != AF_INET6) {
2269 		goto out_drop;
2270 	}
2271 
2272 	err = bpf_out_neigh_v6(net, skb, dev, nh);
2273 	if (unlikely(net_xmit_eval(err)))
2274 		dev->stats.tx_errors++;
2275 	else
2276 		ret = NET_XMIT_SUCCESS;
2277 	goto out_xmit;
2278 out_drop:
2279 	dev->stats.tx_errors++;
2280 	kfree_skb(skb);
2281 out_xmit:
2282 	return ret;
2283 }
2284 #else
2285 static int __bpf_redirect_neigh_v6(struct sk_buff *skb, struct net_device *dev,
2286 				   struct bpf_nh_params *nh)
2287 {
2288 	kfree_skb(skb);
2289 	return NET_XMIT_DROP;
2290 }
2291 #endif /* CONFIG_IPV6 */
2292 
2293 #if IS_ENABLED(CONFIG_INET)
2294 static int bpf_out_neigh_v4(struct net *net, struct sk_buff *skb,
2295 			    struct net_device *dev, struct bpf_nh_params *nh)
2296 {
2297 	u32 hh_len = LL_RESERVED_SPACE(dev);
2298 	struct neighbour *neigh;
2299 	bool is_v6gw = false;
2300 
2301 	if (dev_xmit_recursion()) {
2302 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2303 		goto out_drop;
2304 	}
2305 
2306 	skb->dev = dev;
2307 	skb_clear_tstamp(skb);
2308 
2309 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
2310 		skb = skb_expand_head(skb, hh_len);
2311 		if (!skb)
2312 			return -ENOMEM;
2313 	}
2314 
2315 	rcu_read_lock();
2316 	if (!nh) {
2317 		struct dst_entry *dst = skb_dst(skb);
2318 		struct rtable *rt = container_of(dst, struct rtable, dst);
2319 
2320 		neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
2321 	} else if (nh->nh_family == AF_INET6) {
2322 		neigh = ip_neigh_gw6(dev, &nh->ipv6_nh);
2323 		is_v6gw = true;
2324 	} else if (nh->nh_family == AF_INET) {
2325 		neigh = ip_neigh_gw4(dev, nh->ipv4_nh);
2326 	} else {
2327 		rcu_read_unlock();
2328 		goto out_drop;
2329 	}
2330 
2331 	if (likely(!IS_ERR(neigh))) {
2332 		int ret;
2333 
2334 		sock_confirm_neigh(skb, neigh);
2335 		local_bh_disable();
2336 		dev_xmit_recursion_inc();
2337 		ret = neigh_output(neigh, skb, is_v6gw);
2338 		dev_xmit_recursion_dec();
2339 		local_bh_enable();
2340 		rcu_read_unlock();
2341 		return ret;
2342 	}
2343 	rcu_read_unlock();
2344 out_drop:
2345 	kfree_skb(skb);
2346 	return -ENETDOWN;
2347 }
2348 
2349 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2350 				   struct bpf_nh_params *nh)
2351 {
2352 	const struct iphdr *ip4h = ip_hdr(skb);
2353 	struct net *net = dev_net(dev);
2354 	int err, ret = NET_XMIT_DROP;
2355 
2356 	if (!nh) {
2357 		struct flowi4 fl4 = {
2358 			.flowi4_flags = FLOWI_FLAG_ANYSRC,
2359 			.flowi4_mark  = skb->mark,
2360 			.flowi4_tos   = RT_TOS(ip4h->tos),
2361 			.flowi4_oif   = dev->ifindex,
2362 			.flowi4_proto = ip4h->protocol,
2363 			.daddr	      = ip4h->daddr,
2364 			.saddr	      = ip4h->saddr,
2365 		};
2366 		struct rtable *rt;
2367 
2368 		rt = ip_route_output_flow(net, &fl4, NULL);
2369 		if (IS_ERR(rt))
2370 			goto out_drop;
2371 		if (rt->rt_type != RTN_UNICAST && rt->rt_type != RTN_LOCAL) {
2372 			ip_rt_put(rt);
2373 			goto out_drop;
2374 		}
2375 
2376 		skb_dst_set(skb, &rt->dst);
2377 	}
2378 
2379 	err = bpf_out_neigh_v4(net, skb, dev, nh);
2380 	if (unlikely(net_xmit_eval(err)))
2381 		dev->stats.tx_errors++;
2382 	else
2383 		ret = NET_XMIT_SUCCESS;
2384 	goto out_xmit;
2385 out_drop:
2386 	dev->stats.tx_errors++;
2387 	kfree_skb(skb);
2388 out_xmit:
2389 	return ret;
2390 }
2391 #else
2392 static int __bpf_redirect_neigh_v4(struct sk_buff *skb, struct net_device *dev,
2393 				   struct bpf_nh_params *nh)
2394 {
2395 	kfree_skb(skb);
2396 	return NET_XMIT_DROP;
2397 }
2398 #endif /* CONFIG_INET */
2399 
2400 static int __bpf_redirect_neigh(struct sk_buff *skb, struct net_device *dev,
2401 				struct bpf_nh_params *nh)
2402 {
2403 	struct ethhdr *ethh = eth_hdr(skb);
2404 
2405 	if (unlikely(skb->mac_header >= skb->network_header))
2406 		goto out;
2407 	bpf_push_mac_rcsum(skb);
2408 	if (is_multicast_ether_addr(ethh->h_dest))
2409 		goto out;
2410 
2411 	skb_pull(skb, sizeof(*ethh));
2412 	skb_unset_mac_header(skb);
2413 	skb_reset_network_header(skb);
2414 
2415 	if (skb->protocol == htons(ETH_P_IP))
2416 		return __bpf_redirect_neigh_v4(skb, dev, nh);
2417 	else if (skb->protocol == htons(ETH_P_IPV6))
2418 		return __bpf_redirect_neigh_v6(skb, dev, nh);
2419 out:
2420 	kfree_skb(skb);
2421 	return -ENOTSUPP;
2422 }
2423 
2424 /* Internal, non-exposed redirect flags. */
2425 enum {
2426 	BPF_F_NEIGH	= (1ULL << 1),
2427 	BPF_F_PEER	= (1ULL << 2),
2428 	BPF_F_NEXTHOP	= (1ULL << 3),
2429 #define BPF_F_REDIRECT_INTERNAL	(BPF_F_NEIGH | BPF_F_PEER | BPF_F_NEXTHOP)
2430 };
2431 
2432 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2433 {
2434 	struct net_device *dev;
2435 	struct sk_buff *clone;
2436 	int ret;
2437 
2438 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2439 		return -EINVAL;
2440 
2441 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2442 	if (unlikely(!dev))
2443 		return -EINVAL;
2444 
2445 	clone = skb_clone(skb, GFP_ATOMIC);
2446 	if (unlikely(!clone))
2447 		return -ENOMEM;
2448 
2449 	/* For direct write, we need to keep the invariant that the skbs
2450 	 * we're dealing with need to be uncloned. Should uncloning fail
2451 	 * here, we need to free the just generated clone to unclone once
2452 	 * again.
2453 	 */
2454 	ret = bpf_try_make_head_writable(skb);
2455 	if (unlikely(ret)) {
2456 		kfree_skb(clone);
2457 		return -ENOMEM;
2458 	}
2459 
2460 	return __bpf_redirect(clone, dev, flags);
2461 }
2462 
2463 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2464 	.func           = bpf_clone_redirect,
2465 	.gpl_only       = false,
2466 	.ret_type       = RET_INTEGER,
2467 	.arg1_type      = ARG_PTR_TO_CTX,
2468 	.arg2_type      = ARG_ANYTHING,
2469 	.arg3_type      = ARG_ANYTHING,
2470 };
2471 
2472 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2473 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2474 
2475 static struct net_device *skb_get_peer_dev(struct net_device *dev)
2476 {
2477 	const struct net_device_ops *ops = dev->netdev_ops;
2478 
2479 	if (likely(ops->ndo_get_peer_dev))
2480 		return INDIRECT_CALL_1(ops->ndo_get_peer_dev,
2481 				       netkit_peer_dev, dev);
2482 	return NULL;
2483 }
2484 
2485 int skb_do_redirect(struct sk_buff *skb)
2486 {
2487 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2488 	struct net *net = dev_net(skb->dev);
2489 	struct net_device *dev;
2490 	u32 flags = ri->flags;
2491 
2492 	dev = dev_get_by_index_rcu(net, ri->tgt_index);
2493 	ri->tgt_index = 0;
2494 	ri->flags = 0;
2495 	if (unlikely(!dev))
2496 		goto out_drop;
2497 	if (flags & BPF_F_PEER) {
2498 		if (unlikely(!skb_at_tc_ingress(skb)))
2499 			goto out_drop;
2500 		dev = skb_get_peer_dev(dev);
2501 		if (unlikely(!dev ||
2502 			     !(dev->flags & IFF_UP) ||
2503 			     net_eq(net, dev_net(dev))))
2504 			goto out_drop;
2505 		skb->dev = dev;
2506 		dev_sw_netstats_rx_add(dev, skb->len);
2507 		return -EAGAIN;
2508 	}
2509 	return flags & BPF_F_NEIGH ?
2510 	       __bpf_redirect_neigh(skb, dev, flags & BPF_F_NEXTHOP ?
2511 				    &ri->nh : NULL) :
2512 	       __bpf_redirect(skb, dev, flags);
2513 out_drop:
2514 	kfree_skb(skb);
2515 	return -EINVAL;
2516 }
2517 
2518 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2519 {
2520 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2521 
2522 	if (unlikely(flags & (~(BPF_F_INGRESS) | BPF_F_REDIRECT_INTERNAL)))
2523 		return TC_ACT_SHOT;
2524 
2525 	ri->flags = flags;
2526 	ri->tgt_index = ifindex;
2527 
2528 	return TC_ACT_REDIRECT;
2529 }
2530 
2531 static const struct bpf_func_proto bpf_redirect_proto = {
2532 	.func           = bpf_redirect,
2533 	.gpl_only       = false,
2534 	.ret_type       = RET_INTEGER,
2535 	.arg1_type      = ARG_ANYTHING,
2536 	.arg2_type      = ARG_ANYTHING,
2537 };
2538 
2539 BPF_CALL_2(bpf_redirect_peer, u32, ifindex, u64, flags)
2540 {
2541 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2542 
2543 	if (unlikely(flags))
2544 		return TC_ACT_SHOT;
2545 
2546 	ri->flags = BPF_F_PEER;
2547 	ri->tgt_index = ifindex;
2548 
2549 	return TC_ACT_REDIRECT;
2550 }
2551 
2552 static const struct bpf_func_proto bpf_redirect_peer_proto = {
2553 	.func           = bpf_redirect_peer,
2554 	.gpl_only       = false,
2555 	.ret_type       = RET_INTEGER,
2556 	.arg1_type      = ARG_ANYTHING,
2557 	.arg2_type      = ARG_ANYTHING,
2558 };
2559 
2560 BPF_CALL_4(bpf_redirect_neigh, u32, ifindex, struct bpf_redir_neigh *, params,
2561 	   int, plen, u64, flags)
2562 {
2563 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2564 
2565 	if (unlikely((plen && plen < sizeof(*params)) || flags))
2566 		return TC_ACT_SHOT;
2567 
2568 	ri->flags = BPF_F_NEIGH | (plen ? BPF_F_NEXTHOP : 0);
2569 	ri->tgt_index = ifindex;
2570 
2571 	BUILD_BUG_ON(sizeof(struct bpf_redir_neigh) != sizeof(struct bpf_nh_params));
2572 	if (plen)
2573 		memcpy(&ri->nh, params, sizeof(ri->nh));
2574 
2575 	return TC_ACT_REDIRECT;
2576 }
2577 
2578 static const struct bpf_func_proto bpf_redirect_neigh_proto = {
2579 	.func		= bpf_redirect_neigh,
2580 	.gpl_only	= false,
2581 	.ret_type	= RET_INTEGER,
2582 	.arg1_type	= ARG_ANYTHING,
2583 	.arg2_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
2584 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
2585 	.arg4_type	= ARG_ANYTHING,
2586 };
2587 
2588 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2589 {
2590 	msg->apply_bytes = bytes;
2591 	return 0;
2592 }
2593 
2594 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2595 	.func           = bpf_msg_apply_bytes,
2596 	.gpl_only       = false,
2597 	.ret_type       = RET_INTEGER,
2598 	.arg1_type	= ARG_PTR_TO_CTX,
2599 	.arg2_type      = ARG_ANYTHING,
2600 };
2601 
2602 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2603 {
2604 	msg->cork_bytes = bytes;
2605 	return 0;
2606 }
2607 
2608 static void sk_msg_reset_curr(struct sk_msg *msg)
2609 {
2610 	u32 i = msg->sg.start;
2611 	u32 len = 0;
2612 
2613 	do {
2614 		len += sk_msg_elem(msg, i)->length;
2615 		sk_msg_iter_var_next(i);
2616 		if (len >= msg->sg.size)
2617 			break;
2618 	} while (i != msg->sg.end);
2619 
2620 	msg->sg.curr = i;
2621 	msg->sg.copybreak = 0;
2622 }
2623 
2624 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2625 	.func           = bpf_msg_cork_bytes,
2626 	.gpl_only       = false,
2627 	.ret_type       = RET_INTEGER,
2628 	.arg1_type	= ARG_PTR_TO_CTX,
2629 	.arg2_type      = ARG_ANYTHING,
2630 };
2631 
2632 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2633 	   u32, end, u64, flags)
2634 {
2635 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2636 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2637 	struct scatterlist *sge;
2638 	u8 *raw, *to, *from;
2639 	struct page *page;
2640 
2641 	if (unlikely(flags || end <= start))
2642 		return -EINVAL;
2643 
2644 	/* First find the starting scatterlist element */
2645 	i = msg->sg.start;
2646 	do {
2647 		offset += len;
2648 		len = sk_msg_elem(msg, i)->length;
2649 		if (start < offset + len)
2650 			break;
2651 		sk_msg_iter_var_next(i);
2652 	} while (i != msg->sg.end);
2653 
2654 	if (unlikely(start >= offset + len))
2655 		return -EINVAL;
2656 
2657 	first_sge = i;
2658 	/* The start may point into the sg element so we need to also
2659 	 * account for the headroom.
2660 	 */
2661 	bytes_sg_total = start - offset + bytes;
2662 	if (!test_bit(i, msg->sg.copy) && bytes_sg_total <= len)
2663 		goto out;
2664 
2665 	/* At this point we need to linearize multiple scatterlist
2666 	 * elements or a single shared page. Either way we need to
2667 	 * copy into a linear buffer exclusively owned by BPF. Then
2668 	 * place the buffer in the scatterlist and fixup the original
2669 	 * entries by removing the entries now in the linear buffer
2670 	 * and shifting the remaining entries. For now we do not try
2671 	 * to copy partial entries to avoid complexity of running out
2672 	 * of sg_entry slots. The downside is reading a single byte
2673 	 * will copy the entire sg entry.
2674 	 */
2675 	do {
2676 		copy += sk_msg_elem(msg, i)->length;
2677 		sk_msg_iter_var_next(i);
2678 		if (bytes_sg_total <= copy)
2679 			break;
2680 	} while (i != msg->sg.end);
2681 	last_sge = i;
2682 
2683 	if (unlikely(bytes_sg_total > copy))
2684 		return -EINVAL;
2685 
2686 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2687 			   get_order(copy));
2688 	if (unlikely(!page))
2689 		return -ENOMEM;
2690 
2691 	raw = page_address(page);
2692 	i = first_sge;
2693 	do {
2694 		sge = sk_msg_elem(msg, i);
2695 		from = sg_virt(sge);
2696 		len = sge->length;
2697 		to = raw + poffset;
2698 
2699 		memcpy(to, from, len);
2700 		poffset += len;
2701 		sge->length = 0;
2702 		put_page(sg_page(sge));
2703 
2704 		sk_msg_iter_var_next(i);
2705 	} while (i != last_sge);
2706 
2707 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2708 
2709 	/* To repair sg ring we need to shift entries. If we only
2710 	 * had a single entry though we can just replace it and
2711 	 * be done. Otherwise walk the ring and shift the entries.
2712 	 */
2713 	WARN_ON_ONCE(last_sge == first_sge);
2714 	shift = last_sge > first_sge ?
2715 		last_sge - first_sge - 1 :
2716 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2717 	if (!shift)
2718 		goto out;
2719 
2720 	i = first_sge;
2721 	sk_msg_iter_var_next(i);
2722 	do {
2723 		u32 move_from;
2724 
2725 		if (i + shift >= NR_MSG_FRAG_IDS)
2726 			move_from = i + shift - NR_MSG_FRAG_IDS;
2727 		else
2728 			move_from = i + shift;
2729 		if (move_from == msg->sg.end)
2730 			break;
2731 
2732 		msg->sg.data[i] = msg->sg.data[move_from];
2733 		msg->sg.data[move_from].length = 0;
2734 		msg->sg.data[move_from].page_link = 0;
2735 		msg->sg.data[move_from].offset = 0;
2736 		sk_msg_iter_var_next(i);
2737 	} while (1);
2738 
2739 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2740 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2741 		      msg->sg.end - shift;
2742 out:
2743 	sk_msg_reset_curr(msg);
2744 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2745 	msg->data_end = msg->data + bytes;
2746 	return 0;
2747 }
2748 
2749 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2750 	.func		= bpf_msg_pull_data,
2751 	.gpl_only	= false,
2752 	.ret_type	= RET_INTEGER,
2753 	.arg1_type	= ARG_PTR_TO_CTX,
2754 	.arg2_type	= ARG_ANYTHING,
2755 	.arg3_type	= ARG_ANYTHING,
2756 	.arg4_type	= ARG_ANYTHING,
2757 };
2758 
2759 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2760 	   u32, len, u64, flags)
2761 {
2762 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2763 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2764 	u8 *raw, *to, *from;
2765 	struct page *page;
2766 
2767 	if (unlikely(flags))
2768 		return -EINVAL;
2769 
2770 	if (unlikely(len == 0))
2771 		return 0;
2772 
2773 	/* First find the starting scatterlist element */
2774 	i = msg->sg.start;
2775 	do {
2776 		offset += l;
2777 		l = sk_msg_elem(msg, i)->length;
2778 
2779 		if (start < offset + l)
2780 			break;
2781 		sk_msg_iter_var_next(i);
2782 	} while (i != msg->sg.end);
2783 
2784 	if (start >= offset + l)
2785 		return -EINVAL;
2786 
2787 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2788 
2789 	/* If no space available will fallback to copy, we need at
2790 	 * least one scatterlist elem available to push data into
2791 	 * when start aligns to the beginning of an element or two
2792 	 * when it falls inside an element. We handle the start equals
2793 	 * offset case because its the common case for inserting a
2794 	 * header.
2795 	 */
2796 	if (!space || (space == 1 && start != offset))
2797 		copy = msg->sg.data[i].length;
2798 
2799 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2800 			   get_order(copy + len));
2801 	if (unlikely(!page))
2802 		return -ENOMEM;
2803 
2804 	if (copy) {
2805 		int front, back;
2806 
2807 		raw = page_address(page);
2808 
2809 		psge = sk_msg_elem(msg, i);
2810 		front = start - offset;
2811 		back = psge->length - front;
2812 		from = sg_virt(psge);
2813 
2814 		if (front)
2815 			memcpy(raw, from, front);
2816 
2817 		if (back) {
2818 			from += front;
2819 			to = raw + front + len;
2820 
2821 			memcpy(to, from, back);
2822 		}
2823 
2824 		put_page(sg_page(psge));
2825 	} else if (start - offset) {
2826 		psge = sk_msg_elem(msg, i);
2827 		rsge = sk_msg_elem_cpy(msg, i);
2828 
2829 		psge->length = start - offset;
2830 		rsge.length -= psge->length;
2831 		rsge.offset += start;
2832 
2833 		sk_msg_iter_var_next(i);
2834 		sg_unmark_end(psge);
2835 		sg_unmark_end(&rsge);
2836 		sk_msg_iter_next(msg, end);
2837 	}
2838 
2839 	/* Slot(s) to place newly allocated data */
2840 	new = i;
2841 
2842 	/* Shift one or two slots as needed */
2843 	if (!copy) {
2844 		sge = sk_msg_elem_cpy(msg, i);
2845 
2846 		sk_msg_iter_var_next(i);
2847 		sg_unmark_end(&sge);
2848 		sk_msg_iter_next(msg, end);
2849 
2850 		nsge = sk_msg_elem_cpy(msg, i);
2851 		if (rsge.length) {
2852 			sk_msg_iter_var_next(i);
2853 			nnsge = sk_msg_elem_cpy(msg, i);
2854 		}
2855 
2856 		while (i != msg->sg.end) {
2857 			msg->sg.data[i] = sge;
2858 			sge = nsge;
2859 			sk_msg_iter_var_next(i);
2860 			if (rsge.length) {
2861 				nsge = nnsge;
2862 				nnsge = sk_msg_elem_cpy(msg, i);
2863 			} else {
2864 				nsge = sk_msg_elem_cpy(msg, i);
2865 			}
2866 		}
2867 	}
2868 
2869 	/* Place newly allocated data buffer */
2870 	sk_mem_charge(msg->sk, len);
2871 	msg->sg.size += len;
2872 	__clear_bit(new, msg->sg.copy);
2873 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2874 	if (rsge.length) {
2875 		get_page(sg_page(&rsge));
2876 		sk_msg_iter_var_next(new);
2877 		msg->sg.data[new] = rsge;
2878 	}
2879 
2880 	sk_msg_reset_curr(msg);
2881 	sk_msg_compute_data_pointers(msg);
2882 	return 0;
2883 }
2884 
2885 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2886 	.func		= bpf_msg_push_data,
2887 	.gpl_only	= false,
2888 	.ret_type	= RET_INTEGER,
2889 	.arg1_type	= ARG_PTR_TO_CTX,
2890 	.arg2_type	= ARG_ANYTHING,
2891 	.arg3_type	= ARG_ANYTHING,
2892 	.arg4_type	= ARG_ANYTHING,
2893 };
2894 
2895 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2896 {
2897 	int prev;
2898 
2899 	do {
2900 		prev = i;
2901 		sk_msg_iter_var_next(i);
2902 		msg->sg.data[prev] = msg->sg.data[i];
2903 	} while (i != msg->sg.end);
2904 
2905 	sk_msg_iter_prev(msg, end);
2906 }
2907 
2908 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2909 {
2910 	struct scatterlist tmp, sge;
2911 
2912 	sk_msg_iter_next(msg, end);
2913 	sge = sk_msg_elem_cpy(msg, i);
2914 	sk_msg_iter_var_next(i);
2915 	tmp = sk_msg_elem_cpy(msg, i);
2916 
2917 	while (i != msg->sg.end) {
2918 		msg->sg.data[i] = sge;
2919 		sk_msg_iter_var_next(i);
2920 		sge = tmp;
2921 		tmp = sk_msg_elem_cpy(msg, i);
2922 	}
2923 }
2924 
2925 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2926 	   u32, len, u64, flags)
2927 {
2928 	u32 i = 0, l = 0, space, offset = 0;
2929 	u64 last = start + len;
2930 	int pop;
2931 
2932 	if (unlikely(flags))
2933 		return -EINVAL;
2934 
2935 	/* First find the starting scatterlist element */
2936 	i = msg->sg.start;
2937 	do {
2938 		offset += l;
2939 		l = sk_msg_elem(msg, i)->length;
2940 
2941 		if (start < offset + l)
2942 			break;
2943 		sk_msg_iter_var_next(i);
2944 	} while (i != msg->sg.end);
2945 
2946 	/* Bounds checks: start and pop must be inside message */
2947 	if (start >= offset + l || last >= msg->sg.size)
2948 		return -EINVAL;
2949 
2950 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2951 
2952 	pop = len;
2953 	/* --------------| offset
2954 	 * -| start      |-------- len -------|
2955 	 *
2956 	 *  |----- a ----|-------- pop -------|----- b ----|
2957 	 *  |______________________________________________| length
2958 	 *
2959 	 *
2960 	 * a:   region at front of scatter element to save
2961 	 * b:   region at back of scatter element to save when length > A + pop
2962 	 * pop: region to pop from element, same as input 'pop' here will be
2963 	 *      decremented below per iteration.
2964 	 *
2965 	 * Two top-level cases to handle when start != offset, first B is non
2966 	 * zero and second B is zero corresponding to when a pop includes more
2967 	 * than one element.
2968 	 *
2969 	 * Then if B is non-zero AND there is no space allocate space and
2970 	 * compact A, B regions into page. If there is space shift ring to
2971 	 * the rigth free'ing the next element in ring to place B, leaving
2972 	 * A untouched except to reduce length.
2973 	 */
2974 	if (start != offset) {
2975 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2976 		int a = start;
2977 		int b = sge->length - pop - a;
2978 
2979 		sk_msg_iter_var_next(i);
2980 
2981 		if (pop < sge->length - a) {
2982 			if (space) {
2983 				sge->length = a;
2984 				sk_msg_shift_right(msg, i);
2985 				nsge = sk_msg_elem(msg, i);
2986 				get_page(sg_page(sge));
2987 				sg_set_page(nsge,
2988 					    sg_page(sge),
2989 					    b, sge->offset + pop + a);
2990 			} else {
2991 				struct page *page, *orig;
2992 				u8 *to, *from;
2993 
2994 				page = alloc_pages(__GFP_NOWARN |
2995 						   __GFP_COMP   | GFP_ATOMIC,
2996 						   get_order(a + b));
2997 				if (unlikely(!page))
2998 					return -ENOMEM;
2999 
3000 				sge->length = a;
3001 				orig = sg_page(sge);
3002 				from = sg_virt(sge);
3003 				to = page_address(page);
3004 				memcpy(to, from, a);
3005 				memcpy(to + a, from + a + pop, b);
3006 				sg_set_page(sge, page, a + b, 0);
3007 				put_page(orig);
3008 			}
3009 			pop = 0;
3010 		} else if (pop >= sge->length - a) {
3011 			pop -= (sge->length - a);
3012 			sge->length = a;
3013 		}
3014 	}
3015 
3016 	/* From above the current layout _must_ be as follows,
3017 	 *
3018 	 * -| offset
3019 	 * -| start
3020 	 *
3021 	 *  |---- pop ---|---------------- b ------------|
3022 	 *  |____________________________________________| length
3023 	 *
3024 	 * Offset and start of the current msg elem are equal because in the
3025 	 * previous case we handled offset != start and either consumed the
3026 	 * entire element and advanced to the next element OR pop == 0.
3027 	 *
3028 	 * Two cases to handle here are first pop is less than the length
3029 	 * leaving some remainder b above. Simply adjust the element's layout
3030 	 * in this case. Or pop >= length of the element so that b = 0. In this
3031 	 * case advance to next element decrementing pop.
3032 	 */
3033 	while (pop) {
3034 		struct scatterlist *sge = sk_msg_elem(msg, i);
3035 
3036 		if (pop < sge->length) {
3037 			sge->length -= pop;
3038 			sge->offset += pop;
3039 			pop = 0;
3040 		} else {
3041 			pop -= sge->length;
3042 			sk_msg_shift_left(msg, i);
3043 		}
3044 		sk_msg_iter_var_next(i);
3045 	}
3046 
3047 	sk_mem_uncharge(msg->sk, len - pop);
3048 	msg->sg.size -= (len - pop);
3049 	sk_msg_reset_curr(msg);
3050 	sk_msg_compute_data_pointers(msg);
3051 	return 0;
3052 }
3053 
3054 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
3055 	.func		= bpf_msg_pop_data,
3056 	.gpl_only	= false,
3057 	.ret_type	= RET_INTEGER,
3058 	.arg1_type	= ARG_PTR_TO_CTX,
3059 	.arg2_type	= ARG_ANYTHING,
3060 	.arg3_type	= ARG_ANYTHING,
3061 	.arg4_type	= ARG_ANYTHING,
3062 };
3063 
3064 #ifdef CONFIG_CGROUP_NET_CLASSID
3065 BPF_CALL_0(bpf_get_cgroup_classid_curr)
3066 {
3067 	return __task_get_classid(current);
3068 }
3069 
3070 const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto = {
3071 	.func		= bpf_get_cgroup_classid_curr,
3072 	.gpl_only	= false,
3073 	.ret_type	= RET_INTEGER,
3074 };
3075 
3076 BPF_CALL_1(bpf_skb_cgroup_classid, const struct sk_buff *, skb)
3077 {
3078 	struct sock *sk = skb_to_full_sk(skb);
3079 
3080 	if (!sk || !sk_fullsock(sk))
3081 		return 0;
3082 
3083 	return sock_cgroup_classid(&sk->sk_cgrp_data);
3084 }
3085 
3086 static const struct bpf_func_proto bpf_skb_cgroup_classid_proto = {
3087 	.func		= bpf_skb_cgroup_classid,
3088 	.gpl_only	= false,
3089 	.ret_type	= RET_INTEGER,
3090 	.arg1_type	= ARG_PTR_TO_CTX,
3091 };
3092 #endif
3093 
3094 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
3095 {
3096 	return task_get_classid(skb);
3097 }
3098 
3099 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
3100 	.func           = bpf_get_cgroup_classid,
3101 	.gpl_only       = false,
3102 	.ret_type       = RET_INTEGER,
3103 	.arg1_type      = ARG_PTR_TO_CTX,
3104 };
3105 
3106 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
3107 {
3108 	return dst_tclassid(skb);
3109 }
3110 
3111 static const struct bpf_func_proto bpf_get_route_realm_proto = {
3112 	.func           = bpf_get_route_realm,
3113 	.gpl_only       = false,
3114 	.ret_type       = RET_INTEGER,
3115 	.arg1_type      = ARG_PTR_TO_CTX,
3116 };
3117 
3118 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
3119 {
3120 	/* If skb_clear_hash() was called due to mangling, we can
3121 	 * trigger SW recalculation here. Later access to hash
3122 	 * can then use the inline skb->hash via context directly
3123 	 * instead of calling this helper again.
3124 	 */
3125 	return skb_get_hash(skb);
3126 }
3127 
3128 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
3129 	.func		= bpf_get_hash_recalc,
3130 	.gpl_only	= false,
3131 	.ret_type	= RET_INTEGER,
3132 	.arg1_type	= ARG_PTR_TO_CTX,
3133 };
3134 
3135 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
3136 {
3137 	/* After all direct packet write, this can be used once for
3138 	 * triggering a lazy recalc on next skb_get_hash() invocation.
3139 	 */
3140 	skb_clear_hash(skb);
3141 	return 0;
3142 }
3143 
3144 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
3145 	.func		= bpf_set_hash_invalid,
3146 	.gpl_only	= false,
3147 	.ret_type	= RET_INTEGER,
3148 	.arg1_type	= ARG_PTR_TO_CTX,
3149 };
3150 
3151 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
3152 {
3153 	/* Set user specified hash as L4(+), so that it gets returned
3154 	 * on skb_get_hash() call unless BPF prog later on triggers a
3155 	 * skb_clear_hash().
3156 	 */
3157 	__skb_set_sw_hash(skb, hash, true);
3158 	return 0;
3159 }
3160 
3161 static const struct bpf_func_proto bpf_set_hash_proto = {
3162 	.func		= bpf_set_hash,
3163 	.gpl_only	= false,
3164 	.ret_type	= RET_INTEGER,
3165 	.arg1_type	= ARG_PTR_TO_CTX,
3166 	.arg2_type	= ARG_ANYTHING,
3167 };
3168 
3169 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
3170 	   u16, vlan_tci)
3171 {
3172 	int ret;
3173 
3174 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
3175 		     vlan_proto != htons(ETH_P_8021AD)))
3176 		vlan_proto = htons(ETH_P_8021Q);
3177 
3178 	bpf_push_mac_rcsum(skb);
3179 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
3180 	bpf_pull_mac_rcsum(skb);
3181 
3182 	bpf_compute_data_pointers(skb);
3183 	return ret;
3184 }
3185 
3186 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
3187 	.func           = bpf_skb_vlan_push,
3188 	.gpl_only       = false,
3189 	.ret_type       = RET_INTEGER,
3190 	.arg1_type      = ARG_PTR_TO_CTX,
3191 	.arg2_type      = ARG_ANYTHING,
3192 	.arg3_type      = ARG_ANYTHING,
3193 };
3194 
3195 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
3196 {
3197 	int ret;
3198 
3199 	bpf_push_mac_rcsum(skb);
3200 	ret = skb_vlan_pop(skb);
3201 	bpf_pull_mac_rcsum(skb);
3202 
3203 	bpf_compute_data_pointers(skb);
3204 	return ret;
3205 }
3206 
3207 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
3208 	.func           = bpf_skb_vlan_pop,
3209 	.gpl_only       = false,
3210 	.ret_type       = RET_INTEGER,
3211 	.arg1_type      = ARG_PTR_TO_CTX,
3212 };
3213 
3214 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
3215 {
3216 	/* Caller already did skb_cow() with len as headroom,
3217 	 * so no need to do it here.
3218 	 */
3219 	skb_push(skb, len);
3220 	memmove(skb->data, skb->data + len, off);
3221 	memset(skb->data + off, 0, len);
3222 
3223 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
3224 	 * needed here as it does not change the skb->csum
3225 	 * result for checksum complete when summing over
3226 	 * zeroed blocks.
3227 	 */
3228 	return 0;
3229 }
3230 
3231 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
3232 {
3233 	void *old_data;
3234 
3235 	/* skb_ensure_writable() is not needed here, as we're
3236 	 * already working on an uncloned skb.
3237 	 */
3238 	if (unlikely(!pskb_may_pull(skb, off + len)))
3239 		return -ENOMEM;
3240 
3241 	old_data = skb->data;
3242 	__skb_pull(skb, len);
3243 	skb_postpull_rcsum(skb, old_data + off, len);
3244 	memmove(skb->data, old_data, off);
3245 
3246 	return 0;
3247 }
3248 
3249 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
3250 {
3251 	bool trans_same = skb->transport_header == skb->network_header;
3252 	int ret;
3253 
3254 	/* There's no need for __skb_push()/__skb_pull() pair to
3255 	 * get to the start of the mac header as we're guaranteed
3256 	 * to always start from here under eBPF.
3257 	 */
3258 	ret = bpf_skb_generic_push(skb, off, len);
3259 	if (likely(!ret)) {
3260 		skb->mac_header -= len;
3261 		skb->network_header -= len;
3262 		if (trans_same)
3263 			skb->transport_header = skb->network_header;
3264 	}
3265 
3266 	return ret;
3267 }
3268 
3269 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
3270 {
3271 	bool trans_same = skb->transport_header == skb->network_header;
3272 	int ret;
3273 
3274 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
3275 	ret = bpf_skb_generic_pop(skb, off, len);
3276 	if (likely(!ret)) {
3277 		skb->mac_header += len;
3278 		skb->network_header += len;
3279 		if (trans_same)
3280 			skb->transport_header = skb->network_header;
3281 	}
3282 
3283 	return ret;
3284 }
3285 
3286 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
3287 {
3288 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3289 	u32 off = skb_mac_header_len(skb);
3290 	int ret;
3291 
3292 	ret = skb_cow(skb, len_diff);
3293 	if (unlikely(ret < 0))
3294 		return ret;
3295 
3296 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3297 	if (unlikely(ret < 0))
3298 		return ret;
3299 
3300 	if (skb_is_gso(skb)) {
3301 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3302 
3303 		/* SKB_GSO_TCPV4 needs to be changed into SKB_GSO_TCPV6. */
3304 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
3305 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
3306 			shinfo->gso_type |=  SKB_GSO_TCPV6;
3307 		}
3308 	}
3309 
3310 	skb->protocol = htons(ETH_P_IPV6);
3311 	skb_clear_hash(skb);
3312 
3313 	return 0;
3314 }
3315 
3316 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
3317 {
3318 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
3319 	u32 off = skb_mac_header_len(skb);
3320 	int ret;
3321 
3322 	ret = skb_unclone(skb, GFP_ATOMIC);
3323 	if (unlikely(ret < 0))
3324 		return ret;
3325 
3326 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3327 	if (unlikely(ret < 0))
3328 		return ret;
3329 
3330 	if (skb_is_gso(skb)) {
3331 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3332 
3333 		/* SKB_GSO_TCPV6 needs to be changed into SKB_GSO_TCPV4. */
3334 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
3335 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
3336 			shinfo->gso_type |=  SKB_GSO_TCPV4;
3337 		}
3338 	}
3339 
3340 	skb->protocol = htons(ETH_P_IP);
3341 	skb_clear_hash(skb);
3342 
3343 	return 0;
3344 }
3345 
3346 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
3347 {
3348 	__be16 from_proto = skb->protocol;
3349 
3350 	if (from_proto == htons(ETH_P_IP) &&
3351 	      to_proto == htons(ETH_P_IPV6))
3352 		return bpf_skb_proto_4_to_6(skb);
3353 
3354 	if (from_proto == htons(ETH_P_IPV6) &&
3355 	      to_proto == htons(ETH_P_IP))
3356 		return bpf_skb_proto_6_to_4(skb);
3357 
3358 	return -ENOTSUPP;
3359 }
3360 
3361 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
3362 	   u64, flags)
3363 {
3364 	int ret;
3365 
3366 	if (unlikely(flags))
3367 		return -EINVAL;
3368 
3369 	/* General idea is that this helper does the basic groundwork
3370 	 * needed for changing the protocol, and eBPF program fills the
3371 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
3372 	 * and other helpers, rather than passing a raw buffer here.
3373 	 *
3374 	 * The rationale is to keep this minimal and without a need to
3375 	 * deal with raw packet data. F.e. even if we would pass buffers
3376 	 * here, the program still needs to call the bpf_lX_csum_replace()
3377 	 * helpers anyway. Plus, this way we keep also separation of
3378 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
3379 	 * care of stores.
3380 	 *
3381 	 * Currently, additional options and extension header space are
3382 	 * not supported, but flags register is reserved so we can adapt
3383 	 * that. For offloads, we mark packet as dodgy, so that headers
3384 	 * need to be verified first.
3385 	 */
3386 	ret = bpf_skb_proto_xlat(skb, proto);
3387 	bpf_compute_data_pointers(skb);
3388 	return ret;
3389 }
3390 
3391 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
3392 	.func		= bpf_skb_change_proto,
3393 	.gpl_only	= false,
3394 	.ret_type	= RET_INTEGER,
3395 	.arg1_type	= ARG_PTR_TO_CTX,
3396 	.arg2_type	= ARG_ANYTHING,
3397 	.arg3_type	= ARG_ANYTHING,
3398 };
3399 
3400 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
3401 {
3402 	/* We only allow a restricted subset to be changed for now. */
3403 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
3404 		     !skb_pkt_type_ok(pkt_type)))
3405 		return -EINVAL;
3406 
3407 	skb->pkt_type = pkt_type;
3408 	return 0;
3409 }
3410 
3411 static const struct bpf_func_proto bpf_skb_change_type_proto = {
3412 	.func		= bpf_skb_change_type,
3413 	.gpl_only	= false,
3414 	.ret_type	= RET_INTEGER,
3415 	.arg1_type	= ARG_PTR_TO_CTX,
3416 	.arg2_type	= ARG_ANYTHING,
3417 };
3418 
3419 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
3420 {
3421 	switch (skb->protocol) {
3422 	case htons(ETH_P_IP):
3423 		return sizeof(struct iphdr);
3424 	case htons(ETH_P_IPV6):
3425 		return sizeof(struct ipv6hdr);
3426 	default:
3427 		return ~0U;
3428 	}
3429 }
3430 
3431 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3432 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3433 
3434 #define BPF_F_ADJ_ROOM_DECAP_L3_MASK	(BPF_F_ADJ_ROOM_DECAP_L3_IPV4 | \
3435 					 BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3436 
3437 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3438 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3439 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3440 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3441 					 BPF_F_ADJ_ROOM_ENCAP_L2_ETH | \
3442 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3443 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) | \
3444 					 BPF_F_ADJ_ROOM_DECAP_L3_MASK)
3445 
3446 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3447 			    u64 flags)
3448 {
3449 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3450 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3451 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3452 	unsigned int gso_type = SKB_GSO_DODGY;
3453 	int ret;
3454 
3455 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3456 		/* udp gso_size delineates datagrams, only allow if fixed */
3457 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3458 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3459 			return -ENOTSUPP;
3460 	}
3461 
3462 	ret = skb_cow_head(skb, len_diff);
3463 	if (unlikely(ret < 0))
3464 		return ret;
3465 
3466 	if (encap) {
3467 		if (skb->protocol != htons(ETH_P_IP) &&
3468 		    skb->protocol != htons(ETH_P_IPV6))
3469 			return -ENOTSUPP;
3470 
3471 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3472 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3473 			return -EINVAL;
3474 
3475 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3476 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3477 			return -EINVAL;
3478 
3479 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH &&
3480 		    inner_mac_len < ETH_HLEN)
3481 			return -EINVAL;
3482 
3483 		if (skb->encapsulation)
3484 			return -EALREADY;
3485 
3486 		mac_len = skb->network_header - skb->mac_header;
3487 		inner_net = skb->network_header;
3488 		if (inner_mac_len > len_diff)
3489 			return -EINVAL;
3490 		inner_trans = skb->transport_header;
3491 	}
3492 
3493 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3494 	if (unlikely(ret < 0))
3495 		return ret;
3496 
3497 	if (encap) {
3498 		skb->inner_mac_header = inner_net - inner_mac_len;
3499 		skb->inner_network_header = inner_net;
3500 		skb->inner_transport_header = inner_trans;
3501 
3502 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L2_ETH)
3503 			skb_set_inner_protocol(skb, htons(ETH_P_TEB));
3504 		else
3505 			skb_set_inner_protocol(skb, skb->protocol);
3506 
3507 		skb->encapsulation = 1;
3508 		skb_set_network_header(skb, mac_len);
3509 
3510 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3511 			gso_type |= SKB_GSO_UDP_TUNNEL;
3512 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3513 			gso_type |= SKB_GSO_GRE;
3514 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3515 			gso_type |= SKB_GSO_IPXIP6;
3516 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3517 			gso_type |= SKB_GSO_IPXIP4;
3518 
3519 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3520 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3521 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3522 					sizeof(struct ipv6hdr) :
3523 					sizeof(struct iphdr);
3524 
3525 			skb_set_transport_header(skb, mac_len + nh_len);
3526 		}
3527 
3528 		/* Match skb->protocol to new outer l3 protocol */
3529 		if (skb->protocol == htons(ETH_P_IP) &&
3530 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3531 			skb->protocol = htons(ETH_P_IPV6);
3532 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3533 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3534 			skb->protocol = htons(ETH_P_IP);
3535 	}
3536 
3537 	if (skb_is_gso(skb)) {
3538 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3539 
3540 		/* Due to header grow, MSS needs to be downgraded. */
3541 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3542 			skb_decrease_gso_size(shinfo, len_diff);
3543 
3544 		/* Header must be checked, and gso_segs recomputed. */
3545 		shinfo->gso_type |= gso_type;
3546 		shinfo->gso_segs = 0;
3547 	}
3548 
3549 	return 0;
3550 }
3551 
3552 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3553 			      u64 flags)
3554 {
3555 	int ret;
3556 
3557 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_FIXED_GSO |
3558 			       BPF_F_ADJ_ROOM_DECAP_L3_MASK |
3559 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3560 		return -EINVAL;
3561 
3562 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3563 		/* udp gso_size delineates datagrams, only allow if fixed */
3564 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3565 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3566 			return -ENOTSUPP;
3567 	}
3568 
3569 	ret = skb_unclone(skb, GFP_ATOMIC);
3570 	if (unlikely(ret < 0))
3571 		return ret;
3572 
3573 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3574 	if (unlikely(ret < 0))
3575 		return ret;
3576 
3577 	/* Match skb->protocol to new outer l3 protocol */
3578 	if (skb->protocol == htons(ETH_P_IP) &&
3579 	    flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV6)
3580 		skb->protocol = htons(ETH_P_IPV6);
3581 	else if (skb->protocol == htons(ETH_P_IPV6) &&
3582 		 flags & BPF_F_ADJ_ROOM_DECAP_L3_IPV4)
3583 		skb->protocol = htons(ETH_P_IP);
3584 
3585 	if (skb_is_gso(skb)) {
3586 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3587 
3588 		/* Due to header shrink, MSS can be upgraded. */
3589 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3590 			skb_increase_gso_size(shinfo, len_diff);
3591 
3592 		/* Header must be checked, and gso_segs recomputed. */
3593 		shinfo->gso_type |= SKB_GSO_DODGY;
3594 		shinfo->gso_segs = 0;
3595 	}
3596 
3597 	return 0;
3598 }
3599 
3600 #define BPF_SKB_MAX_LEN SKB_MAX_ALLOC
3601 
3602 BPF_CALL_4(sk_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3603 	   u32, mode, u64, flags)
3604 {
3605 	u32 len_diff_abs = abs(len_diff);
3606 	bool shrink = len_diff < 0;
3607 	int ret = 0;
3608 
3609 	if (unlikely(flags || mode))
3610 		return -EINVAL;
3611 	if (unlikely(len_diff_abs > 0xfffU))
3612 		return -EFAULT;
3613 
3614 	if (!shrink) {
3615 		ret = skb_cow(skb, len_diff);
3616 		if (unlikely(ret < 0))
3617 			return ret;
3618 		__skb_push(skb, len_diff_abs);
3619 		memset(skb->data, 0, len_diff_abs);
3620 	} else {
3621 		if (unlikely(!pskb_may_pull(skb, len_diff_abs)))
3622 			return -ENOMEM;
3623 		__skb_pull(skb, len_diff_abs);
3624 	}
3625 	if (tls_sw_has_ctx_rx(skb->sk)) {
3626 		struct strp_msg *rxm = strp_msg(skb);
3627 
3628 		rxm->full_len += len_diff;
3629 	}
3630 	return ret;
3631 }
3632 
3633 static const struct bpf_func_proto sk_skb_adjust_room_proto = {
3634 	.func		= sk_skb_adjust_room,
3635 	.gpl_only	= false,
3636 	.ret_type	= RET_INTEGER,
3637 	.arg1_type	= ARG_PTR_TO_CTX,
3638 	.arg2_type	= ARG_ANYTHING,
3639 	.arg3_type	= ARG_ANYTHING,
3640 	.arg4_type	= ARG_ANYTHING,
3641 };
3642 
3643 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3644 	   u32, mode, u64, flags)
3645 {
3646 	u32 len_cur, len_diff_abs = abs(len_diff);
3647 	u32 len_min = bpf_skb_net_base_len(skb);
3648 	u32 len_max = BPF_SKB_MAX_LEN;
3649 	__be16 proto = skb->protocol;
3650 	bool shrink = len_diff < 0;
3651 	u32 off;
3652 	int ret;
3653 
3654 	if (unlikely(flags & ~(BPF_F_ADJ_ROOM_MASK |
3655 			       BPF_F_ADJ_ROOM_NO_CSUM_RESET)))
3656 		return -EINVAL;
3657 	if (unlikely(len_diff_abs > 0xfffU))
3658 		return -EFAULT;
3659 	if (unlikely(proto != htons(ETH_P_IP) &&
3660 		     proto != htons(ETH_P_IPV6)))
3661 		return -ENOTSUPP;
3662 
3663 	off = skb_mac_header_len(skb);
3664 	switch (mode) {
3665 	case BPF_ADJ_ROOM_NET:
3666 		off += bpf_skb_net_base_len(skb);
3667 		break;
3668 	case BPF_ADJ_ROOM_MAC:
3669 		break;
3670 	default:
3671 		return -ENOTSUPP;
3672 	}
3673 
3674 	if (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3675 		if (!shrink)
3676 			return -EINVAL;
3677 
3678 		switch (flags & BPF_F_ADJ_ROOM_DECAP_L3_MASK) {
3679 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV4:
3680 			len_min = sizeof(struct iphdr);
3681 			break;
3682 		case BPF_F_ADJ_ROOM_DECAP_L3_IPV6:
3683 			len_min = sizeof(struct ipv6hdr);
3684 			break;
3685 		default:
3686 			return -EINVAL;
3687 		}
3688 	}
3689 
3690 	len_cur = skb->len - skb_network_offset(skb);
3691 	if ((shrink && (len_diff_abs >= len_cur ||
3692 			len_cur - len_diff_abs < len_min)) ||
3693 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3694 			 !skb_is_gso(skb))))
3695 		return -ENOTSUPP;
3696 
3697 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3698 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3699 	if (!ret && !(flags & BPF_F_ADJ_ROOM_NO_CSUM_RESET))
3700 		__skb_reset_checksum_unnecessary(skb);
3701 
3702 	bpf_compute_data_pointers(skb);
3703 	return ret;
3704 }
3705 
3706 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3707 	.func		= bpf_skb_adjust_room,
3708 	.gpl_only	= false,
3709 	.ret_type	= RET_INTEGER,
3710 	.arg1_type	= ARG_PTR_TO_CTX,
3711 	.arg2_type	= ARG_ANYTHING,
3712 	.arg3_type	= ARG_ANYTHING,
3713 	.arg4_type	= ARG_ANYTHING,
3714 };
3715 
3716 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3717 {
3718 	u32 min_len = skb_network_offset(skb);
3719 
3720 	if (skb_transport_header_was_set(skb))
3721 		min_len = skb_transport_offset(skb);
3722 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3723 		min_len = skb_checksum_start_offset(skb) +
3724 			  skb->csum_offset + sizeof(__sum16);
3725 	return min_len;
3726 }
3727 
3728 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3729 {
3730 	unsigned int old_len = skb->len;
3731 	int ret;
3732 
3733 	ret = __skb_grow_rcsum(skb, new_len);
3734 	if (!ret)
3735 		memset(skb->data + old_len, 0, new_len - old_len);
3736 	return ret;
3737 }
3738 
3739 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3740 {
3741 	return __skb_trim_rcsum(skb, new_len);
3742 }
3743 
3744 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3745 					u64 flags)
3746 {
3747 	u32 max_len = BPF_SKB_MAX_LEN;
3748 	u32 min_len = __bpf_skb_min_len(skb);
3749 	int ret;
3750 
3751 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3752 		return -EINVAL;
3753 	if (skb->encapsulation)
3754 		return -ENOTSUPP;
3755 
3756 	/* The basic idea of this helper is that it's performing the
3757 	 * needed work to either grow or trim an skb, and eBPF program
3758 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3759 	 * bpf_lX_csum_replace() and others rather than passing a raw
3760 	 * buffer here. This one is a slow path helper and intended
3761 	 * for replies with control messages.
3762 	 *
3763 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3764 	 * minimal and without protocol specifics so that we are able
3765 	 * to separate concerns as in bpf_skb_store_bytes() should only
3766 	 * be the one responsible for writing buffers.
3767 	 *
3768 	 * It's really expected to be a slow path operation here for
3769 	 * control message replies, so we're implicitly linearizing,
3770 	 * uncloning and drop offloads from the skb by this.
3771 	 */
3772 	ret = __bpf_try_make_writable(skb, skb->len);
3773 	if (!ret) {
3774 		if (new_len > skb->len)
3775 			ret = bpf_skb_grow_rcsum(skb, new_len);
3776 		else if (new_len < skb->len)
3777 			ret = bpf_skb_trim_rcsum(skb, new_len);
3778 		if (!ret && skb_is_gso(skb))
3779 			skb_gso_reset(skb);
3780 	}
3781 	return ret;
3782 }
3783 
3784 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3785 	   u64, flags)
3786 {
3787 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3788 
3789 	bpf_compute_data_pointers(skb);
3790 	return ret;
3791 }
3792 
3793 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3794 	.func		= bpf_skb_change_tail,
3795 	.gpl_only	= false,
3796 	.ret_type	= RET_INTEGER,
3797 	.arg1_type	= ARG_PTR_TO_CTX,
3798 	.arg2_type	= ARG_ANYTHING,
3799 	.arg3_type	= ARG_ANYTHING,
3800 };
3801 
3802 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3803 	   u64, flags)
3804 {
3805 	return __bpf_skb_change_tail(skb, new_len, flags);
3806 }
3807 
3808 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3809 	.func		= sk_skb_change_tail,
3810 	.gpl_only	= false,
3811 	.ret_type	= RET_INTEGER,
3812 	.arg1_type	= ARG_PTR_TO_CTX,
3813 	.arg2_type	= ARG_ANYTHING,
3814 	.arg3_type	= ARG_ANYTHING,
3815 };
3816 
3817 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3818 					u64 flags)
3819 {
3820 	u32 max_len = BPF_SKB_MAX_LEN;
3821 	u32 new_len = skb->len + head_room;
3822 	int ret;
3823 
3824 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3825 		     new_len < skb->len))
3826 		return -EINVAL;
3827 
3828 	ret = skb_cow(skb, head_room);
3829 	if (likely(!ret)) {
3830 		/* Idea for this helper is that we currently only
3831 		 * allow to expand on mac header. This means that
3832 		 * skb->protocol network header, etc, stay as is.
3833 		 * Compared to bpf_skb_change_tail(), we're more
3834 		 * flexible due to not needing to linearize or
3835 		 * reset GSO. Intention for this helper is to be
3836 		 * used by an L3 skb that needs to push mac header
3837 		 * for redirection into L2 device.
3838 		 */
3839 		__skb_push(skb, head_room);
3840 		memset(skb->data, 0, head_room);
3841 		skb_reset_mac_header(skb);
3842 		skb_reset_mac_len(skb);
3843 	}
3844 
3845 	return ret;
3846 }
3847 
3848 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3849 	   u64, flags)
3850 {
3851 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3852 
3853 	bpf_compute_data_pointers(skb);
3854 	return ret;
3855 }
3856 
3857 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3858 	.func		= bpf_skb_change_head,
3859 	.gpl_only	= false,
3860 	.ret_type	= RET_INTEGER,
3861 	.arg1_type	= ARG_PTR_TO_CTX,
3862 	.arg2_type	= ARG_ANYTHING,
3863 	.arg3_type	= ARG_ANYTHING,
3864 };
3865 
3866 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3867 	   u64, flags)
3868 {
3869 	return __bpf_skb_change_head(skb, head_room, flags);
3870 }
3871 
3872 static const struct bpf_func_proto sk_skb_change_head_proto = {
3873 	.func		= sk_skb_change_head,
3874 	.gpl_only	= false,
3875 	.ret_type	= RET_INTEGER,
3876 	.arg1_type	= ARG_PTR_TO_CTX,
3877 	.arg2_type	= ARG_ANYTHING,
3878 	.arg3_type	= ARG_ANYTHING,
3879 };
3880 
3881 BPF_CALL_1(bpf_xdp_get_buff_len, struct xdp_buff*, xdp)
3882 {
3883 	return xdp_get_buff_len(xdp);
3884 }
3885 
3886 static const struct bpf_func_proto bpf_xdp_get_buff_len_proto = {
3887 	.func		= bpf_xdp_get_buff_len,
3888 	.gpl_only	= false,
3889 	.ret_type	= RET_INTEGER,
3890 	.arg1_type	= ARG_PTR_TO_CTX,
3891 };
3892 
3893 BTF_ID_LIST_SINGLE(bpf_xdp_get_buff_len_bpf_ids, struct, xdp_buff)
3894 
3895 const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto = {
3896 	.func		= bpf_xdp_get_buff_len,
3897 	.gpl_only	= false,
3898 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3899 	.arg1_btf_id	= &bpf_xdp_get_buff_len_bpf_ids[0],
3900 };
3901 
3902 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3903 {
3904 	return xdp_data_meta_unsupported(xdp) ? 0 :
3905 	       xdp->data - xdp->data_meta;
3906 }
3907 
3908 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3909 {
3910 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3911 	unsigned long metalen = xdp_get_metalen(xdp);
3912 	void *data_start = xdp_frame_end + metalen;
3913 	void *data = xdp->data + offset;
3914 
3915 	if (unlikely(data < data_start ||
3916 		     data > xdp->data_end - ETH_HLEN))
3917 		return -EINVAL;
3918 
3919 	if (metalen)
3920 		memmove(xdp->data_meta + offset,
3921 			xdp->data_meta, metalen);
3922 	xdp->data_meta += offset;
3923 	xdp->data = data;
3924 
3925 	return 0;
3926 }
3927 
3928 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3929 	.func		= bpf_xdp_adjust_head,
3930 	.gpl_only	= false,
3931 	.ret_type	= RET_INTEGER,
3932 	.arg1_type	= ARG_PTR_TO_CTX,
3933 	.arg2_type	= ARG_ANYTHING,
3934 };
3935 
3936 void bpf_xdp_copy_buf(struct xdp_buff *xdp, unsigned long off,
3937 		      void *buf, unsigned long len, bool flush)
3938 {
3939 	unsigned long ptr_len, ptr_off = 0;
3940 	skb_frag_t *next_frag, *end_frag;
3941 	struct skb_shared_info *sinfo;
3942 	void *src, *dst;
3943 	u8 *ptr_buf;
3944 
3945 	if (likely(xdp->data_end - xdp->data >= off + len)) {
3946 		src = flush ? buf : xdp->data + off;
3947 		dst = flush ? xdp->data + off : buf;
3948 		memcpy(dst, src, len);
3949 		return;
3950 	}
3951 
3952 	sinfo = xdp_get_shared_info_from_buff(xdp);
3953 	end_frag = &sinfo->frags[sinfo->nr_frags];
3954 	next_frag = &sinfo->frags[0];
3955 
3956 	ptr_len = xdp->data_end - xdp->data;
3957 	ptr_buf = xdp->data;
3958 
3959 	while (true) {
3960 		if (off < ptr_off + ptr_len) {
3961 			unsigned long copy_off = off - ptr_off;
3962 			unsigned long copy_len = min(len, ptr_len - copy_off);
3963 
3964 			src = flush ? buf : ptr_buf + copy_off;
3965 			dst = flush ? ptr_buf + copy_off : buf;
3966 			memcpy(dst, src, copy_len);
3967 
3968 			off += copy_len;
3969 			len -= copy_len;
3970 			buf += copy_len;
3971 		}
3972 
3973 		if (!len || next_frag == end_frag)
3974 			break;
3975 
3976 		ptr_off += ptr_len;
3977 		ptr_buf = skb_frag_address(next_frag);
3978 		ptr_len = skb_frag_size(next_frag);
3979 		next_frag++;
3980 	}
3981 }
3982 
3983 void *bpf_xdp_pointer(struct xdp_buff *xdp, u32 offset, u32 len)
3984 {
3985 	u32 size = xdp->data_end - xdp->data;
3986 	struct skb_shared_info *sinfo;
3987 	void *addr = xdp->data;
3988 	int i;
3989 
3990 	if (unlikely(offset > 0xffff || len > 0xffff))
3991 		return ERR_PTR(-EFAULT);
3992 
3993 	if (unlikely(offset + len > xdp_get_buff_len(xdp)))
3994 		return ERR_PTR(-EINVAL);
3995 
3996 	if (likely(offset < size)) /* linear area */
3997 		goto out;
3998 
3999 	sinfo = xdp_get_shared_info_from_buff(xdp);
4000 	offset -= size;
4001 	for (i = 0; i < sinfo->nr_frags; i++) { /* paged area */
4002 		u32 frag_size = skb_frag_size(&sinfo->frags[i]);
4003 
4004 		if  (offset < frag_size) {
4005 			addr = skb_frag_address(&sinfo->frags[i]);
4006 			size = frag_size;
4007 			break;
4008 		}
4009 		offset -= frag_size;
4010 	}
4011 out:
4012 	return offset + len <= size ? addr + offset : NULL;
4013 }
4014 
4015 BPF_CALL_4(bpf_xdp_load_bytes, struct xdp_buff *, xdp, u32, offset,
4016 	   void *, buf, u32, len)
4017 {
4018 	void *ptr;
4019 
4020 	ptr = bpf_xdp_pointer(xdp, offset, len);
4021 	if (IS_ERR(ptr))
4022 		return PTR_ERR(ptr);
4023 
4024 	if (!ptr)
4025 		bpf_xdp_copy_buf(xdp, offset, buf, len, false);
4026 	else
4027 		memcpy(buf, ptr, len);
4028 
4029 	return 0;
4030 }
4031 
4032 static const struct bpf_func_proto bpf_xdp_load_bytes_proto = {
4033 	.func		= bpf_xdp_load_bytes,
4034 	.gpl_only	= false,
4035 	.ret_type	= RET_INTEGER,
4036 	.arg1_type	= ARG_PTR_TO_CTX,
4037 	.arg2_type	= ARG_ANYTHING,
4038 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4039 	.arg4_type	= ARG_CONST_SIZE,
4040 };
4041 
4042 int __bpf_xdp_load_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4043 {
4044 	return ____bpf_xdp_load_bytes(xdp, offset, buf, len);
4045 }
4046 
4047 BPF_CALL_4(bpf_xdp_store_bytes, struct xdp_buff *, xdp, u32, offset,
4048 	   void *, buf, u32, len)
4049 {
4050 	void *ptr;
4051 
4052 	ptr = bpf_xdp_pointer(xdp, offset, len);
4053 	if (IS_ERR(ptr))
4054 		return PTR_ERR(ptr);
4055 
4056 	if (!ptr)
4057 		bpf_xdp_copy_buf(xdp, offset, buf, len, true);
4058 	else
4059 		memcpy(ptr, buf, len);
4060 
4061 	return 0;
4062 }
4063 
4064 static const struct bpf_func_proto bpf_xdp_store_bytes_proto = {
4065 	.func		= bpf_xdp_store_bytes,
4066 	.gpl_only	= false,
4067 	.ret_type	= RET_INTEGER,
4068 	.arg1_type	= ARG_PTR_TO_CTX,
4069 	.arg2_type	= ARG_ANYTHING,
4070 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4071 	.arg4_type	= ARG_CONST_SIZE,
4072 };
4073 
4074 int __bpf_xdp_store_bytes(struct xdp_buff *xdp, u32 offset, void *buf, u32 len)
4075 {
4076 	return ____bpf_xdp_store_bytes(xdp, offset, buf, len);
4077 }
4078 
4079 static int bpf_xdp_frags_increase_tail(struct xdp_buff *xdp, int offset)
4080 {
4081 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4082 	skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags - 1];
4083 	struct xdp_rxq_info *rxq = xdp->rxq;
4084 	unsigned int tailroom;
4085 
4086 	if (!rxq->frag_size || rxq->frag_size > xdp->frame_sz)
4087 		return -EOPNOTSUPP;
4088 
4089 	tailroom = rxq->frag_size - skb_frag_size(frag) - skb_frag_off(frag);
4090 	if (unlikely(offset > tailroom))
4091 		return -EINVAL;
4092 
4093 	memset(skb_frag_address(frag) + skb_frag_size(frag), 0, offset);
4094 	skb_frag_size_add(frag, offset);
4095 	sinfo->xdp_frags_size += offset;
4096 	if (rxq->mem.type == MEM_TYPE_XSK_BUFF_POOL)
4097 		xsk_buff_get_tail(xdp)->data_end += offset;
4098 
4099 	return 0;
4100 }
4101 
4102 static void bpf_xdp_shrink_data_zc(struct xdp_buff *xdp, int shrink,
4103 				   struct xdp_mem_info *mem_info, bool release)
4104 {
4105 	struct xdp_buff *zc_frag = xsk_buff_get_tail(xdp);
4106 
4107 	if (release) {
4108 		xsk_buff_del_tail(zc_frag);
4109 		__xdp_return(NULL, mem_info, false, zc_frag);
4110 	} else {
4111 		zc_frag->data_end -= shrink;
4112 	}
4113 }
4114 
4115 static bool bpf_xdp_shrink_data(struct xdp_buff *xdp, skb_frag_t *frag,
4116 				int shrink)
4117 {
4118 	struct xdp_mem_info *mem_info = &xdp->rxq->mem;
4119 	bool release = skb_frag_size(frag) == shrink;
4120 
4121 	if (mem_info->type == MEM_TYPE_XSK_BUFF_POOL) {
4122 		bpf_xdp_shrink_data_zc(xdp, shrink, mem_info, release);
4123 		goto out;
4124 	}
4125 
4126 	if (release) {
4127 		struct page *page = skb_frag_page(frag);
4128 
4129 		__xdp_return(page_address(page), mem_info, false, NULL);
4130 	}
4131 
4132 out:
4133 	return release;
4134 }
4135 
4136 static int bpf_xdp_frags_shrink_tail(struct xdp_buff *xdp, int offset)
4137 {
4138 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
4139 	int i, n_frags_free = 0, len_free = 0;
4140 
4141 	if (unlikely(offset > (int)xdp_get_buff_len(xdp) - ETH_HLEN))
4142 		return -EINVAL;
4143 
4144 	for (i = sinfo->nr_frags - 1; i >= 0 && offset > 0; i--) {
4145 		skb_frag_t *frag = &sinfo->frags[i];
4146 		int shrink = min_t(int, offset, skb_frag_size(frag));
4147 
4148 		len_free += shrink;
4149 		offset -= shrink;
4150 		if (bpf_xdp_shrink_data(xdp, frag, shrink)) {
4151 			n_frags_free++;
4152 		} else {
4153 			skb_frag_size_sub(frag, shrink);
4154 			break;
4155 		}
4156 	}
4157 	sinfo->nr_frags -= n_frags_free;
4158 	sinfo->xdp_frags_size -= len_free;
4159 
4160 	if (unlikely(!sinfo->nr_frags)) {
4161 		xdp_buff_clear_frags_flag(xdp);
4162 		xdp->data_end -= offset;
4163 	}
4164 
4165 	return 0;
4166 }
4167 
4168 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
4169 {
4170 	void *data_hard_end = xdp_data_hard_end(xdp); /* use xdp->frame_sz */
4171 	void *data_end = xdp->data_end + offset;
4172 
4173 	if (unlikely(xdp_buff_has_frags(xdp))) { /* non-linear xdp buff */
4174 		if (offset < 0)
4175 			return bpf_xdp_frags_shrink_tail(xdp, -offset);
4176 
4177 		return bpf_xdp_frags_increase_tail(xdp, offset);
4178 	}
4179 
4180 	/* Notice that xdp_data_hard_end have reserved some tailroom */
4181 	if (unlikely(data_end > data_hard_end))
4182 		return -EINVAL;
4183 
4184 	if (unlikely(data_end < xdp->data + ETH_HLEN))
4185 		return -EINVAL;
4186 
4187 	/* Clear memory area on grow, can contain uninit kernel memory */
4188 	if (offset > 0)
4189 		memset(xdp->data_end, 0, offset);
4190 
4191 	xdp->data_end = data_end;
4192 
4193 	return 0;
4194 }
4195 
4196 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
4197 	.func		= bpf_xdp_adjust_tail,
4198 	.gpl_only	= false,
4199 	.ret_type	= RET_INTEGER,
4200 	.arg1_type	= ARG_PTR_TO_CTX,
4201 	.arg2_type	= ARG_ANYTHING,
4202 };
4203 
4204 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
4205 {
4206 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
4207 	void *meta = xdp->data_meta + offset;
4208 	unsigned long metalen = xdp->data - meta;
4209 
4210 	if (xdp_data_meta_unsupported(xdp))
4211 		return -ENOTSUPP;
4212 	if (unlikely(meta < xdp_frame_end ||
4213 		     meta > xdp->data))
4214 		return -EINVAL;
4215 	if (unlikely(xdp_metalen_invalid(metalen)))
4216 		return -EACCES;
4217 
4218 	xdp->data_meta = meta;
4219 
4220 	return 0;
4221 }
4222 
4223 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
4224 	.func		= bpf_xdp_adjust_meta,
4225 	.gpl_only	= false,
4226 	.ret_type	= RET_INTEGER,
4227 	.arg1_type	= ARG_PTR_TO_CTX,
4228 	.arg2_type	= ARG_ANYTHING,
4229 };
4230 
4231 /**
4232  * DOC: xdp redirect
4233  *
4234  * XDP_REDIRECT works by a three-step process, implemented in the functions
4235  * below:
4236  *
4237  * 1. The bpf_redirect() and bpf_redirect_map() helpers will lookup the target
4238  *    of the redirect and store it (along with some other metadata) in a per-CPU
4239  *    struct bpf_redirect_info.
4240  *
4241  * 2. When the program returns the XDP_REDIRECT return code, the driver will
4242  *    call xdp_do_redirect() which will use the information in struct
4243  *    bpf_redirect_info to actually enqueue the frame into a map type-specific
4244  *    bulk queue structure.
4245  *
4246  * 3. Before exiting its NAPI poll loop, the driver will call
4247  *    xdp_do_flush(), which will flush all the different bulk queues,
4248  *    thus completing the redirect. Note that xdp_do_flush() must be
4249  *    called before napi_complete_done() in the driver, as the
4250  *    XDP_REDIRECT logic relies on being inside a single NAPI instance
4251  *    through to the xdp_do_flush() call for RCU protection of all
4252  *    in-kernel data structures.
4253  */
4254 /*
4255  * Pointers to the map entries will be kept around for this whole sequence of
4256  * steps, protected by RCU. However, there is no top-level rcu_read_lock() in
4257  * the core code; instead, the RCU protection relies on everything happening
4258  * inside a single NAPI poll sequence, which means it's between a pair of calls
4259  * to local_bh_disable()/local_bh_enable().
4260  *
4261  * The map entries are marked as __rcu and the map code makes sure to
4262  * dereference those pointers with rcu_dereference_check() in a way that works
4263  * for both sections that to hold an rcu_read_lock() and sections that are
4264  * called from NAPI without a separate rcu_read_lock(). The code below does not
4265  * use RCU annotations, but relies on those in the map code.
4266  */
4267 void xdp_do_flush(void)
4268 {
4269 	__dev_flush();
4270 	__cpu_map_flush();
4271 	__xsk_map_flush();
4272 }
4273 EXPORT_SYMBOL_GPL(xdp_do_flush);
4274 
4275 #if defined(CONFIG_DEBUG_NET) && defined(CONFIG_BPF_SYSCALL)
4276 void xdp_do_check_flushed(struct napi_struct *napi)
4277 {
4278 	bool ret;
4279 
4280 	ret = dev_check_flush();
4281 	ret |= cpu_map_check_flush();
4282 	ret |= xsk_map_check_flush();
4283 
4284 	WARN_ONCE(ret, "Missing xdp_do_flush() invocation after NAPI by %ps\n",
4285 		  napi->poll);
4286 }
4287 #endif
4288 
4289 void bpf_clear_redirect_map(struct bpf_map *map)
4290 {
4291 	struct bpf_redirect_info *ri;
4292 	int cpu;
4293 
4294 	for_each_possible_cpu(cpu) {
4295 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
4296 		/* Avoid polluting remote cacheline due to writes if
4297 		 * not needed. Once we pass this test, we need the
4298 		 * cmpxchg() to make sure it hasn't been changed in
4299 		 * the meantime by remote CPU.
4300 		 */
4301 		if (unlikely(READ_ONCE(ri->map) == map))
4302 			cmpxchg(&ri->map, map, NULL);
4303 	}
4304 }
4305 
4306 DEFINE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
4307 EXPORT_SYMBOL_GPL(bpf_master_redirect_enabled_key);
4308 
4309 u32 xdp_master_redirect(struct xdp_buff *xdp)
4310 {
4311 	struct net_device *master, *slave;
4312 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4313 
4314 	master = netdev_master_upper_dev_get_rcu(xdp->rxq->dev);
4315 	slave = master->netdev_ops->ndo_xdp_get_xmit_slave(master, xdp);
4316 	if (slave && slave != xdp->rxq->dev) {
4317 		/* The target device is different from the receiving device, so
4318 		 * redirect it to the new device.
4319 		 * Using XDP_REDIRECT gets the correct behaviour from XDP enabled
4320 		 * drivers to unmap the packet from their rx ring.
4321 		 */
4322 		ri->tgt_index = slave->ifindex;
4323 		ri->map_id = INT_MAX;
4324 		ri->map_type = BPF_MAP_TYPE_UNSPEC;
4325 		return XDP_REDIRECT;
4326 	}
4327 	return XDP_TX;
4328 }
4329 EXPORT_SYMBOL_GPL(xdp_master_redirect);
4330 
4331 static inline int __xdp_do_redirect_xsk(struct bpf_redirect_info *ri,
4332 					struct net_device *dev,
4333 					struct xdp_buff *xdp,
4334 					struct bpf_prog *xdp_prog)
4335 {
4336 	enum bpf_map_type map_type = ri->map_type;
4337 	void *fwd = ri->tgt_value;
4338 	u32 map_id = ri->map_id;
4339 	int err;
4340 
4341 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4342 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4343 
4344 	err = __xsk_map_redirect(fwd, xdp);
4345 	if (unlikely(err))
4346 		goto err;
4347 
4348 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4349 	return 0;
4350 err:
4351 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4352 	return err;
4353 }
4354 
4355 static __always_inline int __xdp_do_redirect_frame(struct bpf_redirect_info *ri,
4356 						   struct net_device *dev,
4357 						   struct xdp_frame *xdpf,
4358 						   struct bpf_prog *xdp_prog)
4359 {
4360 	enum bpf_map_type map_type = ri->map_type;
4361 	void *fwd = ri->tgt_value;
4362 	u32 map_id = ri->map_id;
4363 	struct bpf_map *map;
4364 	int err;
4365 
4366 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4367 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4368 
4369 	if (unlikely(!xdpf)) {
4370 		err = -EOVERFLOW;
4371 		goto err;
4372 	}
4373 
4374 	switch (map_type) {
4375 	case BPF_MAP_TYPE_DEVMAP:
4376 		fallthrough;
4377 	case BPF_MAP_TYPE_DEVMAP_HASH:
4378 		map = READ_ONCE(ri->map);
4379 		if (unlikely(map)) {
4380 			WRITE_ONCE(ri->map, NULL);
4381 			err = dev_map_enqueue_multi(xdpf, dev, map,
4382 						    ri->flags & BPF_F_EXCLUDE_INGRESS);
4383 		} else {
4384 			err = dev_map_enqueue(fwd, xdpf, dev);
4385 		}
4386 		break;
4387 	case BPF_MAP_TYPE_CPUMAP:
4388 		err = cpu_map_enqueue(fwd, xdpf, dev);
4389 		break;
4390 	case BPF_MAP_TYPE_UNSPEC:
4391 		if (map_id == INT_MAX) {
4392 			fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4393 			if (unlikely(!fwd)) {
4394 				err = -EINVAL;
4395 				break;
4396 			}
4397 			err = dev_xdp_enqueue(fwd, xdpf, dev);
4398 			break;
4399 		}
4400 		fallthrough;
4401 	default:
4402 		err = -EBADRQC;
4403 	}
4404 
4405 	if (unlikely(err))
4406 		goto err;
4407 
4408 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4409 	return 0;
4410 err:
4411 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4412 	return err;
4413 }
4414 
4415 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
4416 		    struct bpf_prog *xdp_prog)
4417 {
4418 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4419 	enum bpf_map_type map_type = ri->map_type;
4420 
4421 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4422 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4423 
4424 	return __xdp_do_redirect_frame(ri, dev, xdp_convert_buff_to_frame(xdp),
4425 				       xdp_prog);
4426 }
4427 EXPORT_SYMBOL_GPL(xdp_do_redirect);
4428 
4429 int xdp_do_redirect_frame(struct net_device *dev, struct xdp_buff *xdp,
4430 			  struct xdp_frame *xdpf, struct bpf_prog *xdp_prog)
4431 {
4432 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4433 	enum bpf_map_type map_type = ri->map_type;
4434 
4435 	if (map_type == BPF_MAP_TYPE_XSKMAP)
4436 		return __xdp_do_redirect_xsk(ri, dev, xdp, xdp_prog);
4437 
4438 	return __xdp_do_redirect_frame(ri, dev, xdpf, xdp_prog);
4439 }
4440 EXPORT_SYMBOL_GPL(xdp_do_redirect_frame);
4441 
4442 static int xdp_do_generic_redirect_map(struct net_device *dev,
4443 				       struct sk_buff *skb,
4444 				       struct xdp_buff *xdp,
4445 				       struct bpf_prog *xdp_prog,
4446 				       void *fwd,
4447 				       enum bpf_map_type map_type, u32 map_id)
4448 {
4449 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4450 	struct bpf_map *map;
4451 	int err;
4452 
4453 	switch (map_type) {
4454 	case BPF_MAP_TYPE_DEVMAP:
4455 		fallthrough;
4456 	case BPF_MAP_TYPE_DEVMAP_HASH:
4457 		map = READ_ONCE(ri->map);
4458 		if (unlikely(map)) {
4459 			WRITE_ONCE(ri->map, NULL);
4460 			err = dev_map_redirect_multi(dev, skb, xdp_prog, map,
4461 						     ri->flags & BPF_F_EXCLUDE_INGRESS);
4462 		} else {
4463 			err = dev_map_generic_redirect(fwd, skb, xdp_prog);
4464 		}
4465 		if (unlikely(err))
4466 			goto err;
4467 		break;
4468 	case BPF_MAP_TYPE_XSKMAP:
4469 		err = xsk_generic_rcv(fwd, xdp);
4470 		if (err)
4471 			goto err;
4472 		consume_skb(skb);
4473 		break;
4474 	case BPF_MAP_TYPE_CPUMAP:
4475 		err = cpu_map_generic_redirect(fwd, skb);
4476 		if (unlikely(err))
4477 			goto err;
4478 		break;
4479 	default:
4480 		err = -EBADRQC;
4481 		goto err;
4482 	}
4483 
4484 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index);
4485 	return 0;
4486 err:
4487 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map_type, map_id, ri->tgt_index, err);
4488 	return err;
4489 }
4490 
4491 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
4492 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
4493 {
4494 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4495 	enum bpf_map_type map_type = ri->map_type;
4496 	void *fwd = ri->tgt_value;
4497 	u32 map_id = ri->map_id;
4498 	int err;
4499 
4500 	ri->map_id = 0; /* Valid map id idr range: [1,INT_MAX[ */
4501 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4502 
4503 	if (map_type == BPF_MAP_TYPE_UNSPEC && map_id == INT_MAX) {
4504 		fwd = dev_get_by_index_rcu(dev_net(dev), ri->tgt_index);
4505 		if (unlikely(!fwd)) {
4506 			err = -EINVAL;
4507 			goto err;
4508 		}
4509 
4510 		err = xdp_ok_fwd_dev(fwd, skb->len);
4511 		if (unlikely(err))
4512 			goto err;
4513 
4514 		skb->dev = fwd;
4515 		_trace_xdp_redirect(dev, xdp_prog, ri->tgt_index);
4516 		generic_xdp_tx(skb, xdp_prog);
4517 		return 0;
4518 	}
4519 
4520 	return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, fwd, map_type, map_id);
4521 err:
4522 	_trace_xdp_redirect_err(dev, xdp_prog, ri->tgt_index, err);
4523 	return err;
4524 }
4525 
4526 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
4527 {
4528 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
4529 
4530 	if (unlikely(flags))
4531 		return XDP_ABORTED;
4532 
4533 	/* NB! Map type UNSPEC and map_id == INT_MAX (never generated
4534 	 * by map_idr) is used for ifindex based XDP redirect.
4535 	 */
4536 	ri->tgt_index = ifindex;
4537 	ri->map_id = INT_MAX;
4538 	ri->map_type = BPF_MAP_TYPE_UNSPEC;
4539 
4540 	return XDP_REDIRECT;
4541 }
4542 
4543 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
4544 	.func           = bpf_xdp_redirect,
4545 	.gpl_only       = false,
4546 	.ret_type       = RET_INTEGER,
4547 	.arg1_type      = ARG_ANYTHING,
4548 	.arg2_type      = ARG_ANYTHING,
4549 };
4550 
4551 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u64, key,
4552 	   u64, flags)
4553 {
4554 	return map->ops->map_redirect(map, key, flags);
4555 }
4556 
4557 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
4558 	.func           = bpf_xdp_redirect_map,
4559 	.gpl_only       = false,
4560 	.ret_type       = RET_INTEGER,
4561 	.arg1_type      = ARG_CONST_MAP_PTR,
4562 	.arg2_type      = ARG_ANYTHING,
4563 	.arg3_type      = ARG_ANYTHING,
4564 };
4565 
4566 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
4567 				  unsigned long off, unsigned long len)
4568 {
4569 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
4570 
4571 	if (unlikely(!ptr))
4572 		return len;
4573 	if (ptr != dst_buff)
4574 		memcpy(dst_buff, ptr, len);
4575 
4576 	return 0;
4577 }
4578 
4579 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
4580 	   u64, flags, void *, meta, u64, meta_size)
4581 {
4582 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4583 
4584 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4585 		return -EINVAL;
4586 	if (unlikely(!skb || skb_size > skb->len))
4587 		return -EFAULT;
4588 
4589 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
4590 				bpf_skb_copy);
4591 }
4592 
4593 static const struct bpf_func_proto bpf_skb_event_output_proto = {
4594 	.func		= bpf_skb_event_output,
4595 	.gpl_only	= true,
4596 	.ret_type	= RET_INTEGER,
4597 	.arg1_type	= ARG_PTR_TO_CTX,
4598 	.arg2_type	= ARG_CONST_MAP_PTR,
4599 	.arg3_type	= ARG_ANYTHING,
4600 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4601 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4602 };
4603 
4604 BTF_ID_LIST_SINGLE(bpf_skb_output_btf_ids, struct, sk_buff)
4605 
4606 const struct bpf_func_proto bpf_skb_output_proto = {
4607 	.func		= bpf_skb_event_output,
4608 	.gpl_only	= true,
4609 	.ret_type	= RET_INTEGER,
4610 	.arg1_type	= ARG_PTR_TO_BTF_ID,
4611 	.arg1_btf_id	= &bpf_skb_output_btf_ids[0],
4612 	.arg2_type	= ARG_CONST_MAP_PTR,
4613 	.arg3_type	= ARG_ANYTHING,
4614 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4615 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4616 };
4617 
4618 static unsigned short bpf_tunnel_key_af(u64 flags)
4619 {
4620 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
4621 }
4622 
4623 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
4624 	   u32, size, u64, flags)
4625 {
4626 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4627 	u8 compat[sizeof(struct bpf_tunnel_key)];
4628 	void *to_orig = to;
4629 	int err;
4630 
4631 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6 |
4632 					 BPF_F_TUNINFO_FLAGS)))) {
4633 		err = -EINVAL;
4634 		goto err_clear;
4635 	}
4636 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
4637 		err = -EPROTO;
4638 		goto err_clear;
4639 	}
4640 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4641 		err = -EINVAL;
4642 		switch (size) {
4643 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4644 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4645 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4646 			goto set_compat;
4647 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4648 			/* Fixup deprecated structure layouts here, so we have
4649 			 * a common path later on.
4650 			 */
4651 			if (ip_tunnel_info_af(info) != AF_INET)
4652 				goto err_clear;
4653 set_compat:
4654 			to = (struct bpf_tunnel_key *)compat;
4655 			break;
4656 		default:
4657 			goto err_clear;
4658 		}
4659 	}
4660 
4661 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
4662 	to->tunnel_tos = info->key.tos;
4663 	to->tunnel_ttl = info->key.ttl;
4664 	if (flags & BPF_F_TUNINFO_FLAGS)
4665 		to->tunnel_flags = info->key.tun_flags;
4666 	else
4667 		to->tunnel_ext = 0;
4668 
4669 	if (flags & BPF_F_TUNINFO_IPV6) {
4670 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
4671 		       sizeof(to->remote_ipv6));
4672 		memcpy(to->local_ipv6, &info->key.u.ipv6.dst,
4673 		       sizeof(to->local_ipv6));
4674 		to->tunnel_label = be32_to_cpu(info->key.label);
4675 	} else {
4676 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
4677 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4678 		to->local_ipv4 = be32_to_cpu(info->key.u.ipv4.dst);
4679 		memset(&to->local_ipv6[1], 0, sizeof(__u32) * 3);
4680 		to->tunnel_label = 0;
4681 	}
4682 
4683 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
4684 		memcpy(to_orig, to, size);
4685 
4686 	return 0;
4687 err_clear:
4688 	memset(to_orig, 0, size);
4689 	return err;
4690 }
4691 
4692 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
4693 	.func		= bpf_skb_get_tunnel_key,
4694 	.gpl_only	= false,
4695 	.ret_type	= RET_INTEGER,
4696 	.arg1_type	= ARG_PTR_TO_CTX,
4697 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4698 	.arg3_type	= ARG_CONST_SIZE,
4699 	.arg4_type	= ARG_ANYTHING,
4700 };
4701 
4702 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
4703 {
4704 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
4705 	int err;
4706 
4707 	if (unlikely(!info ||
4708 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
4709 		err = -ENOENT;
4710 		goto err_clear;
4711 	}
4712 	if (unlikely(size < info->options_len)) {
4713 		err = -ENOMEM;
4714 		goto err_clear;
4715 	}
4716 
4717 	ip_tunnel_info_opts_get(to, info);
4718 	if (size > info->options_len)
4719 		memset(to + info->options_len, 0, size - info->options_len);
4720 
4721 	return info->options_len;
4722 err_clear:
4723 	memset(to, 0, size);
4724 	return err;
4725 }
4726 
4727 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
4728 	.func		= bpf_skb_get_tunnel_opt,
4729 	.gpl_only	= false,
4730 	.ret_type	= RET_INTEGER,
4731 	.arg1_type	= ARG_PTR_TO_CTX,
4732 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
4733 	.arg3_type	= ARG_CONST_SIZE,
4734 };
4735 
4736 static struct metadata_dst __percpu *md_dst;
4737 
4738 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
4739 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
4740 {
4741 	struct metadata_dst *md = this_cpu_ptr(md_dst);
4742 	u8 compat[sizeof(struct bpf_tunnel_key)];
4743 	struct ip_tunnel_info *info;
4744 
4745 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
4746 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER |
4747 			       BPF_F_NO_TUNNEL_KEY)))
4748 		return -EINVAL;
4749 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
4750 		switch (size) {
4751 		case offsetof(struct bpf_tunnel_key, local_ipv6[0]):
4752 		case offsetof(struct bpf_tunnel_key, tunnel_label):
4753 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
4754 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
4755 			/* Fixup deprecated structure layouts here, so we have
4756 			 * a common path later on.
4757 			 */
4758 			memcpy(compat, from, size);
4759 			memset(compat + size, 0, sizeof(compat) - size);
4760 			from = (const struct bpf_tunnel_key *) compat;
4761 			break;
4762 		default:
4763 			return -EINVAL;
4764 		}
4765 	}
4766 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
4767 		     from->tunnel_ext))
4768 		return -EINVAL;
4769 
4770 	skb_dst_drop(skb);
4771 	dst_hold((struct dst_entry *) md);
4772 	skb_dst_set(skb, (struct dst_entry *) md);
4773 
4774 	info = &md->u.tun_info;
4775 	memset(info, 0, sizeof(*info));
4776 	info->mode = IP_TUNNEL_INFO_TX;
4777 
4778 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
4779 	if (flags & BPF_F_DONT_FRAGMENT)
4780 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
4781 	if (flags & BPF_F_ZERO_CSUM_TX)
4782 		info->key.tun_flags &= ~TUNNEL_CSUM;
4783 	if (flags & BPF_F_SEQ_NUMBER)
4784 		info->key.tun_flags |= TUNNEL_SEQ;
4785 	if (flags & BPF_F_NO_TUNNEL_KEY)
4786 		info->key.tun_flags &= ~TUNNEL_KEY;
4787 
4788 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
4789 	info->key.tos = from->tunnel_tos;
4790 	info->key.ttl = from->tunnel_ttl;
4791 
4792 	if (flags & BPF_F_TUNINFO_IPV6) {
4793 		info->mode |= IP_TUNNEL_INFO_IPV6;
4794 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
4795 		       sizeof(from->remote_ipv6));
4796 		memcpy(&info->key.u.ipv6.src, from->local_ipv6,
4797 		       sizeof(from->local_ipv6));
4798 		info->key.label = cpu_to_be32(from->tunnel_label) &
4799 				  IPV6_FLOWLABEL_MASK;
4800 	} else {
4801 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
4802 		info->key.u.ipv4.src = cpu_to_be32(from->local_ipv4);
4803 		info->key.flow_flags = FLOWI_FLAG_ANYSRC;
4804 	}
4805 
4806 	return 0;
4807 }
4808 
4809 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
4810 	.func		= bpf_skb_set_tunnel_key,
4811 	.gpl_only	= false,
4812 	.ret_type	= RET_INTEGER,
4813 	.arg1_type	= ARG_PTR_TO_CTX,
4814 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4815 	.arg3_type	= ARG_CONST_SIZE,
4816 	.arg4_type	= ARG_ANYTHING,
4817 };
4818 
4819 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
4820 	   const u8 *, from, u32, size)
4821 {
4822 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
4823 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
4824 
4825 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4826 		return -EINVAL;
4827 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4828 		return -ENOMEM;
4829 
4830 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4831 
4832 	return 0;
4833 }
4834 
4835 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4836 	.func		= bpf_skb_set_tunnel_opt,
4837 	.gpl_only	= false,
4838 	.ret_type	= RET_INTEGER,
4839 	.arg1_type	= ARG_PTR_TO_CTX,
4840 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
4841 	.arg3_type	= ARG_CONST_SIZE,
4842 };
4843 
4844 static const struct bpf_func_proto *
4845 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4846 {
4847 	if (!md_dst) {
4848 		struct metadata_dst __percpu *tmp;
4849 
4850 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4851 						METADATA_IP_TUNNEL,
4852 						GFP_KERNEL);
4853 		if (!tmp)
4854 			return NULL;
4855 		if (cmpxchg(&md_dst, NULL, tmp))
4856 			metadata_dst_free_percpu(tmp);
4857 	}
4858 
4859 	switch (which) {
4860 	case BPF_FUNC_skb_set_tunnel_key:
4861 		return &bpf_skb_set_tunnel_key_proto;
4862 	case BPF_FUNC_skb_set_tunnel_opt:
4863 		return &bpf_skb_set_tunnel_opt_proto;
4864 	default:
4865 		return NULL;
4866 	}
4867 }
4868 
4869 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4870 	   u32, idx)
4871 {
4872 	struct bpf_array *array = container_of(map, struct bpf_array, map);
4873 	struct cgroup *cgrp;
4874 	struct sock *sk;
4875 
4876 	sk = skb_to_full_sk(skb);
4877 	if (!sk || !sk_fullsock(sk))
4878 		return -ENOENT;
4879 	if (unlikely(idx >= array->map.max_entries))
4880 		return -E2BIG;
4881 
4882 	cgrp = READ_ONCE(array->ptrs[idx]);
4883 	if (unlikely(!cgrp))
4884 		return -EAGAIN;
4885 
4886 	return sk_under_cgroup_hierarchy(sk, cgrp);
4887 }
4888 
4889 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4890 	.func		= bpf_skb_under_cgroup,
4891 	.gpl_only	= false,
4892 	.ret_type	= RET_INTEGER,
4893 	.arg1_type	= ARG_PTR_TO_CTX,
4894 	.arg2_type	= ARG_CONST_MAP_PTR,
4895 	.arg3_type	= ARG_ANYTHING,
4896 };
4897 
4898 #ifdef CONFIG_SOCK_CGROUP_DATA
4899 static inline u64 __bpf_sk_cgroup_id(struct sock *sk)
4900 {
4901 	struct cgroup *cgrp;
4902 
4903 	sk = sk_to_full_sk(sk);
4904 	if (!sk || !sk_fullsock(sk))
4905 		return 0;
4906 
4907 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4908 	return cgroup_id(cgrp);
4909 }
4910 
4911 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4912 {
4913 	return __bpf_sk_cgroup_id(skb->sk);
4914 }
4915 
4916 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4917 	.func           = bpf_skb_cgroup_id,
4918 	.gpl_only       = false,
4919 	.ret_type       = RET_INTEGER,
4920 	.arg1_type      = ARG_PTR_TO_CTX,
4921 };
4922 
4923 static inline u64 __bpf_sk_ancestor_cgroup_id(struct sock *sk,
4924 					      int ancestor_level)
4925 {
4926 	struct cgroup *ancestor;
4927 	struct cgroup *cgrp;
4928 
4929 	sk = sk_to_full_sk(sk);
4930 	if (!sk || !sk_fullsock(sk))
4931 		return 0;
4932 
4933 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4934 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4935 	if (!ancestor)
4936 		return 0;
4937 
4938 	return cgroup_id(ancestor);
4939 }
4940 
4941 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4942 	   ancestor_level)
4943 {
4944 	return __bpf_sk_ancestor_cgroup_id(skb->sk, ancestor_level);
4945 }
4946 
4947 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4948 	.func           = bpf_skb_ancestor_cgroup_id,
4949 	.gpl_only       = false,
4950 	.ret_type       = RET_INTEGER,
4951 	.arg1_type      = ARG_PTR_TO_CTX,
4952 	.arg2_type      = ARG_ANYTHING,
4953 };
4954 
4955 BPF_CALL_1(bpf_sk_cgroup_id, struct sock *, sk)
4956 {
4957 	return __bpf_sk_cgroup_id(sk);
4958 }
4959 
4960 static const struct bpf_func_proto bpf_sk_cgroup_id_proto = {
4961 	.func           = bpf_sk_cgroup_id,
4962 	.gpl_only       = false,
4963 	.ret_type       = RET_INTEGER,
4964 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4965 };
4966 
4967 BPF_CALL_2(bpf_sk_ancestor_cgroup_id, struct sock *, sk, int, ancestor_level)
4968 {
4969 	return __bpf_sk_ancestor_cgroup_id(sk, ancestor_level);
4970 }
4971 
4972 static const struct bpf_func_proto bpf_sk_ancestor_cgroup_id_proto = {
4973 	.func           = bpf_sk_ancestor_cgroup_id,
4974 	.gpl_only       = false,
4975 	.ret_type       = RET_INTEGER,
4976 	.arg1_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
4977 	.arg2_type      = ARG_ANYTHING,
4978 };
4979 #endif
4980 
4981 static unsigned long bpf_xdp_copy(void *dst, const void *ctx,
4982 				  unsigned long off, unsigned long len)
4983 {
4984 	struct xdp_buff *xdp = (struct xdp_buff *)ctx;
4985 
4986 	bpf_xdp_copy_buf(xdp, off, dst, len, false);
4987 	return 0;
4988 }
4989 
4990 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4991 	   u64, flags, void *, meta, u64, meta_size)
4992 {
4993 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4994 
4995 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4996 		return -EINVAL;
4997 
4998 	if (unlikely(!xdp || xdp_size > xdp_get_buff_len(xdp)))
4999 		return -EFAULT;
5000 
5001 	return bpf_event_output(map, flags, meta, meta_size, xdp,
5002 				xdp_size, bpf_xdp_copy);
5003 }
5004 
5005 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
5006 	.func		= bpf_xdp_event_output,
5007 	.gpl_only	= true,
5008 	.ret_type	= RET_INTEGER,
5009 	.arg1_type	= ARG_PTR_TO_CTX,
5010 	.arg2_type	= ARG_CONST_MAP_PTR,
5011 	.arg3_type	= ARG_ANYTHING,
5012 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5013 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5014 };
5015 
5016 BTF_ID_LIST_SINGLE(bpf_xdp_output_btf_ids, struct, xdp_buff)
5017 
5018 const struct bpf_func_proto bpf_xdp_output_proto = {
5019 	.func		= bpf_xdp_event_output,
5020 	.gpl_only	= true,
5021 	.ret_type	= RET_INTEGER,
5022 	.arg1_type	= ARG_PTR_TO_BTF_ID,
5023 	.arg1_btf_id	= &bpf_xdp_output_btf_ids[0],
5024 	.arg2_type	= ARG_CONST_MAP_PTR,
5025 	.arg3_type	= ARG_ANYTHING,
5026 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5027 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
5028 };
5029 
5030 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
5031 {
5032 	return skb->sk ? __sock_gen_cookie(skb->sk) : 0;
5033 }
5034 
5035 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
5036 	.func           = bpf_get_socket_cookie,
5037 	.gpl_only       = false,
5038 	.ret_type       = RET_INTEGER,
5039 	.arg1_type      = ARG_PTR_TO_CTX,
5040 };
5041 
5042 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5043 {
5044 	return __sock_gen_cookie(ctx->sk);
5045 }
5046 
5047 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
5048 	.func		= bpf_get_socket_cookie_sock_addr,
5049 	.gpl_only	= false,
5050 	.ret_type	= RET_INTEGER,
5051 	.arg1_type	= ARG_PTR_TO_CTX,
5052 };
5053 
5054 BPF_CALL_1(bpf_get_socket_cookie_sock, struct sock *, ctx)
5055 {
5056 	return __sock_gen_cookie(ctx);
5057 }
5058 
5059 static const struct bpf_func_proto bpf_get_socket_cookie_sock_proto = {
5060 	.func		= bpf_get_socket_cookie_sock,
5061 	.gpl_only	= false,
5062 	.ret_type	= RET_INTEGER,
5063 	.arg1_type	= ARG_PTR_TO_CTX,
5064 };
5065 
5066 BPF_CALL_1(bpf_get_socket_ptr_cookie, struct sock *, sk)
5067 {
5068 	return sk ? sock_gen_cookie(sk) : 0;
5069 }
5070 
5071 const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto = {
5072 	.func		= bpf_get_socket_ptr_cookie,
5073 	.gpl_only	= false,
5074 	.ret_type	= RET_INTEGER,
5075 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | PTR_MAYBE_NULL,
5076 };
5077 
5078 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5079 {
5080 	return __sock_gen_cookie(ctx->sk);
5081 }
5082 
5083 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
5084 	.func		= bpf_get_socket_cookie_sock_ops,
5085 	.gpl_only	= false,
5086 	.ret_type	= RET_INTEGER,
5087 	.arg1_type	= ARG_PTR_TO_CTX,
5088 };
5089 
5090 static u64 __bpf_get_netns_cookie(struct sock *sk)
5091 {
5092 	const struct net *net = sk ? sock_net(sk) : &init_net;
5093 
5094 	return net->net_cookie;
5095 }
5096 
5097 BPF_CALL_1(bpf_get_netns_cookie_sock, struct sock *, ctx)
5098 {
5099 	return __bpf_get_netns_cookie(ctx);
5100 }
5101 
5102 static const struct bpf_func_proto bpf_get_netns_cookie_sock_proto = {
5103 	.func		= bpf_get_netns_cookie_sock,
5104 	.gpl_only	= false,
5105 	.ret_type	= RET_INTEGER,
5106 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5107 };
5108 
5109 BPF_CALL_1(bpf_get_netns_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
5110 {
5111 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5112 }
5113 
5114 static const struct bpf_func_proto bpf_get_netns_cookie_sock_addr_proto = {
5115 	.func		= bpf_get_netns_cookie_sock_addr,
5116 	.gpl_only	= false,
5117 	.ret_type	= RET_INTEGER,
5118 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5119 };
5120 
5121 BPF_CALL_1(bpf_get_netns_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
5122 {
5123 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5124 }
5125 
5126 static const struct bpf_func_proto bpf_get_netns_cookie_sock_ops_proto = {
5127 	.func		= bpf_get_netns_cookie_sock_ops,
5128 	.gpl_only	= false,
5129 	.ret_type	= RET_INTEGER,
5130 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5131 };
5132 
5133 BPF_CALL_1(bpf_get_netns_cookie_sk_msg, struct sk_msg *, ctx)
5134 {
5135 	return __bpf_get_netns_cookie(ctx ? ctx->sk : NULL);
5136 }
5137 
5138 static const struct bpf_func_proto bpf_get_netns_cookie_sk_msg_proto = {
5139 	.func		= bpf_get_netns_cookie_sk_msg,
5140 	.gpl_only	= false,
5141 	.ret_type	= RET_INTEGER,
5142 	.arg1_type	= ARG_PTR_TO_CTX_OR_NULL,
5143 };
5144 
5145 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
5146 {
5147 	struct sock *sk = sk_to_full_sk(skb->sk);
5148 	kuid_t kuid;
5149 
5150 	if (!sk || !sk_fullsock(sk))
5151 		return overflowuid;
5152 	kuid = sock_net_uid(sock_net(sk), sk);
5153 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
5154 }
5155 
5156 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
5157 	.func           = bpf_get_socket_uid,
5158 	.gpl_only       = false,
5159 	.ret_type       = RET_INTEGER,
5160 	.arg1_type      = ARG_PTR_TO_CTX,
5161 };
5162 
5163 static int sol_socket_sockopt(struct sock *sk, int optname,
5164 			      char *optval, int *optlen,
5165 			      bool getopt)
5166 {
5167 	switch (optname) {
5168 	case SO_REUSEADDR:
5169 	case SO_SNDBUF:
5170 	case SO_RCVBUF:
5171 	case SO_KEEPALIVE:
5172 	case SO_PRIORITY:
5173 	case SO_REUSEPORT:
5174 	case SO_RCVLOWAT:
5175 	case SO_MARK:
5176 	case SO_MAX_PACING_RATE:
5177 	case SO_BINDTOIFINDEX:
5178 	case SO_TXREHASH:
5179 		if (*optlen != sizeof(int))
5180 			return -EINVAL;
5181 		break;
5182 	case SO_BINDTODEVICE:
5183 		break;
5184 	default:
5185 		return -EINVAL;
5186 	}
5187 
5188 	if (getopt) {
5189 		if (optname == SO_BINDTODEVICE)
5190 			return -EINVAL;
5191 		return sk_getsockopt(sk, SOL_SOCKET, optname,
5192 				     KERNEL_SOCKPTR(optval),
5193 				     KERNEL_SOCKPTR(optlen));
5194 	}
5195 
5196 	return sk_setsockopt(sk, SOL_SOCKET, optname,
5197 			     KERNEL_SOCKPTR(optval), *optlen);
5198 }
5199 
5200 static int bpf_sol_tcp_setsockopt(struct sock *sk, int optname,
5201 				  char *optval, int optlen)
5202 {
5203 	struct tcp_sock *tp = tcp_sk(sk);
5204 	unsigned long timeout;
5205 	int val;
5206 
5207 	if (optlen != sizeof(int))
5208 		return -EINVAL;
5209 
5210 	val = *(int *)optval;
5211 
5212 	/* Only some options are supported */
5213 	switch (optname) {
5214 	case TCP_BPF_IW:
5215 		if (val <= 0 || tp->data_segs_out > tp->syn_data)
5216 			return -EINVAL;
5217 		tcp_snd_cwnd_set(tp, val);
5218 		break;
5219 	case TCP_BPF_SNDCWND_CLAMP:
5220 		if (val <= 0)
5221 			return -EINVAL;
5222 		tp->snd_cwnd_clamp = val;
5223 		tp->snd_ssthresh = val;
5224 		break;
5225 	case TCP_BPF_DELACK_MAX:
5226 		timeout = usecs_to_jiffies(val);
5227 		if (timeout > TCP_DELACK_MAX ||
5228 		    timeout < TCP_TIMEOUT_MIN)
5229 			return -EINVAL;
5230 		inet_csk(sk)->icsk_delack_max = timeout;
5231 		break;
5232 	case TCP_BPF_RTO_MIN:
5233 		timeout = usecs_to_jiffies(val);
5234 		if (timeout > TCP_RTO_MIN ||
5235 		    timeout < TCP_TIMEOUT_MIN)
5236 			return -EINVAL;
5237 		inet_csk(sk)->icsk_rto_min = timeout;
5238 		break;
5239 	default:
5240 		return -EINVAL;
5241 	}
5242 
5243 	return 0;
5244 }
5245 
5246 static int sol_tcp_sockopt_congestion(struct sock *sk, char *optval,
5247 				      int *optlen, bool getopt)
5248 {
5249 	struct tcp_sock *tp;
5250 	int ret;
5251 
5252 	if (*optlen < 2)
5253 		return -EINVAL;
5254 
5255 	if (getopt) {
5256 		if (!inet_csk(sk)->icsk_ca_ops)
5257 			return -EINVAL;
5258 		/* BPF expects NULL-terminated tcp-cc string */
5259 		optval[--(*optlen)] = '\0';
5260 		return do_tcp_getsockopt(sk, SOL_TCP, TCP_CONGESTION,
5261 					 KERNEL_SOCKPTR(optval),
5262 					 KERNEL_SOCKPTR(optlen));
5263 	}
5264 
5265 	/* "cdg" is the only cc that alloc a ptr
5266 	 * in inet_csk_ca area.  The bpf-tcp-cc may
5267 	 * overwrite this ptr after switching to cdg.
5268 	 */
5269 	if (*optlen >= sizeof("cdg") - 1 && !strncmp("cdg", optval, *optlen))
5270 		return -ENOTSUPP;
5271 
5272 	/* It stops this looping
5273 	 *
5274 	 * .init => bpf_setsockopt(tcp_cc) => .init =>
5275 	 * bpf_setsockopt(tcp_cc)" => .init => ....
5276 	 *
5277 	 * The second bpf_setsockopt(tcp_cc) is not allowed
5278 	 * in order to break the loop when both .init
5279 	 * are the same bpf prog.
5280 	 *
5281 	 * This applies even the second bpf_setsockopt(tcp_cc)
5282 	 * does not cause a loop.  This limits only the first
5283 	 * '.init' can call bpf_setsockopt(TCP_CONGESTION) to
5284 	 * pick a fallback cc (eg. peer does not support ECN)
5285 	 * and the second '.init' cannot fallback to
5286 	 * another.
5287 	 */
5288 	tp = tcp_sk(sk);
5289 	if (tp->bpf_chg_cc_inprogress)
5290 		return -EBUSY;
5291 
5292 	tp->bpf_chg_cc_inprogress = 1;
5293 	ret = do_tcp_setsockopt(sk, SOL_TCP, TCP_CONGESTION,
5294 				KERNEL_SOCKPTR(optval), *optlen);
5295 	tp->bpf_chg_cc_inprogress = 0;
5296 	return ret;
5297 }
5298 
5299 static int sol_tcp_sockopt(struct sock *sk, int optname,
5300 			   char *optval, int *optlen,
5301 			   bool getopt)
5302 {
5303 	if (sk->sk_protocol != IPPROTO_TCP)
5304 		return -EINVAL;
5305 
5306 	switch (optname) {
5307 	case TCP_NODELAY:
5308 	case TCP_MAXSEG:
5309 	case TCP_KEEPIDLE:
5310 	case TCP_KEEPINTVL:
5311 	case TCP_KEEPCNT:
5312 	case TCP_SYNCNT:
5313 	case TCP_WINDOW_CLAMP:
5314 	case TCP_THIN_LINEAR_TIMEOUTS:
5315 	case TCP_USER_TIMEOUT:
5316 	case TCP_NOTSENT_LOWAT:
5317 	case TCP_SAVE_SYN:
5318 		if (*optlen != sizeof(int))
5319 			return -EINVAL;
5320 		break;
5321 	case TCP_CONGESTION:
5322 		return sol_tcp_sockopt_congestion(sk, optval, optlen, getopt);
5323 	case TCP_SAVED_SYN:
5324 		if (*optlen < 1)
5325 			return -EINVAL;
5326 		break;
5327 	default:
5328 		if (getopt)
5329 			return -EINVAL;
5330 		return bpf_sol_tcp_setsockopt(sk, optname, optval, *optlen);
5331 	}
5332 
5333 	if (getopt) {
5334 		if (optname == TCP_SAVED_SYN) {
5335 			struct tcp_sock *tp = tcp_sk(sk);
5336 
5337 			if (!tp->saved_syn ||
5338 			    *optlen > tcp_saved_syn_len(tp->saved_syn))
5339 				return -EINVAL;
5340 			memcpy(optval, tp->saved_syn->data, *optlen);
5341 			/* It cannot free tp->saved_syn here because it
5342 			 * does not know if the user space still needs it.
5343 			 */
5344 			return 0;
5345 		}
5346 
5347 		return do_tcp_getsockopt(sk, SOL_TCP, optname,
5348 					 KERNEL_SOCKPTR(optval),
5349 					 KERNEL_SOCKPTR(optlen));
5350 	}
5351 
5352 	return do_tcp_setsockopt(sk, SOL_TCP, optname,
5353 				 KERNEL_SOCKPTR(optval), *optlen);
5354 }
5355 
5356 static int sol_ip_sockopt(struct sock *sk, int optname,
5357 			  char *optval, int *optlen,
5358 			  bool getopt)
5359 {
5360 	if (sk->sk_family != AF_INET)
5361 		return -EINVAL;
5362 
5363 	switch (optname) {
5364 	case IP_TOS:
5365 		if (*optlen != sizeof(int))
5366 			return -EINVAL;
5367 		break;
5368 	default:
5369 		return -EINVAL;
5370 	}
5371 
5372 	if (getopt)
5373 		return do_ip_getsockopt(sk, SOL_IP, optname,
5374 					KERNEL_SOCKPTR(optval),
5375 					KERNEL_SOCKPTR(optlen));
5376 
5377 	return do_ip_setsockopt(sk, SOL_IP, optname,
5378 				KERNEL_SOCKPTR(optval), *optlen);
5379 }
5380 
5381 static int sol_ipv6_sockopt(struct sock *sk, int optname,
5382 			    char *optval, int *optlen,
5383 			    bool getopt)
5384 {
5385 	if (sk->sk_family != AF_INET6)
5386 		return -EINVAL;
5387 
5388 	switch (optname) {
5389 	case IPV6_TCLASS:
5390 	case IPV6_AUTOFLOWLABEL:
5391 		if (*optlen != sizeof(int))
5392 			return -EINVAL;
5393 		break;
5394 	default:
5395 		return -EINVAL;
5396 	}
5397 
5398 	if (getopt)
5399 		return ipv6_bpf_stub->ipv6_getsockopt(sk, SOL_IPV6, optname,
5400 						      KERNEL_SOCKPTR(optval),
5401 						      KERNEL_SOCKPTR(optlen));
5402 
5403 	return ipv6_bpf_stub->ipv6_setsockopt(sk, SOL_IPV6, optname,
5404 					      KERNEL_SOCKPTR(optval), *optlen);
5405 }
5406 
5407 static int __bpf_setsockopt(struct sock *sk, int level, int optname,
5408 			    char *optval, int optlen)
5409 {
5410 	if (!sk_fullsock(sk))
5411 		return -EINVAL;
5412 
5413 	if (level == SOL_SOCKET)
5414 		return sol_socket_sockopt(sk, optname, optval, &optlen, false);
5415 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5416 		return sol_ip_sockopt(sk, optname, optval, &optlen, false);
5417 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5418 		return sol_ipv6_sockopt(sk, optname, optval, &optlen, false);
5419 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5420 		return sol_tcp_sockopt(sk, optname, optval, &optlen, false);
5421 
5422 	return -EINVAL;
5423 }
5424 
5425 static int _bpf_setsockopt(struct sock *sk, int level, int optname,
5426 			   char *optval, int optlen)
5427 {
5428 	if (sk_fullsock(sk))
5429 		sock_owned_by_me(sk);
5430 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5431 }
5432 
5433 static int __bpf_getsockopt(struct sock *sk, int level, int optname,
5434 			    char *optval, int optlen)
5435 {
5436 	int err, saved_optlen = optlen;
5437 
5438 	if (!sk_fullsock(sk)) {
5439 		err = -EINVAL;
5440 		goto done;
5441 	}
5442 
5443 	if (level == SOL_SOCKET)
5444 		err = sol_socket_sockopt(sk, optname, optval, &optlen, true);
5445 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP)
5446 		err = sol_tcp_sockopt(sk, optname, optval, &optlen, true);
5447 	else if (IS_ENABLED(CONFIG_INET) && level == SOL_IP)
5448 		err = sol_ip_sockopt(sk, optname, optval, &optlen, true);
5449 	else if (IS_ENABLED(CONFIG_IPV6) && level == SOL_IPV6)
5450 		err = sol_ipv6_sockopt(sk, optname, optval, &optlen, true);
5451 	else
5452 		err = -EINVAL;
5453 
5454 done:
5455 	if (err)
5456 		optlen = 0;
5457 	if (optlen < saved_optlen)
5458 		memset(optval + optlen, 0, saved_optlen - optlen);
5459 	return err;
5460 }
5461 
5462 static int _bpf_getsockopt(struct sock *sk, int level, int optname,
5463 			   char *optval, int optlen)
5464 {
5465 	if (sk_fullsock(sk))
5466 		sock_owned_by_me(sk);
5467 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5468 }
5469 
5470 BPF_CALL_5(bpf_sk_setsockopt, struct sock *, sk, int, level,
5471 	   int, optname, char *, optval, int, optlen)
5472 {
5473 	return _bpf_setsockopt(sk, level, optname, optval, optlen);
5474 }
5475 
5476 const struct bpf_func_proto bpf_sk_setsockopt_proto = {
5477 	.func		= bpf_sk_setsockopt,
5478 	.gpl_only	= false,
5479 	.ret_type	= RET_INTEGER,
5480 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5481 	.arg2_type	= ARG_ANYTHING,
5482 	.arg3_type	= ARG_ANYTHING,
5483 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5484 	.arg5_type	= ARG_CONST_SIZE,
5485 };
5486 
5487 BPF_CALL_5(bpf_sk_getsockopt, struct sock *, sk, int, level,
5488 	   int, optname, char *, optval, int, optlen)
5489 {
5490 	return _bpf_getsockopt(sk, level, optname, optval, optlen);
5491 }
5492 
5493 const struct bpf_func_proto bpf_sk_getsockopt_proto = {
5494 	.func		= bpf_sk_getsockopt,
5495 	.gpl_only	= false,
5496 	.ret_type	= RET_INTEGER,
5497 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5498 	.arg2_type	= ARG_ANYTHING,
5499 	.arg3_type	= ARG_ANYTHING,
5500 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5501 	.arg5_type	= ARG_CONST_SIZE,
5502 };
5503 
5504 BPF_CALL_5(bpf_unlocked_sk_setsockopt, struct sock *, sk, int, level,
5505 	   int, optname, char *, optval, int, optlen)
5506 {
5507 	return __bpf_setsockopt(sk, level, optname, optval, optlen);
5508 }
5509 
5510 const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto = {
5511 	.func		= bpf_unlocked_sk_setsockopt,
5512 	.gpl_only	= false,
5513 	.ret_type	= RET_INTEGER,
5514 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5515 	.arg2_type	= ARG_ANYTHING,
5516 	.arg3_type	= ARG_ANYTHING,
5517 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5518 	.arg5_type	= ARG_CONST_SIZE,
5519 };
5520 
5521 BPF_CALL_5(bpf_unlocked_sk_getsockopt, struct sock *, sk, int, level,
5522 	   int, optname, char *, optval, int, optlen)
5523 {
5524 	return __bpf_getsockopt(sk, level, optname, optval, optlen);
5525 }
5526 
5527 const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto = {
5528 	.func		= bpf_unlocked_sk_getsockopt,
5529 	.gpl_only	= false,
5530 	.ret_type	= RET_INTEGER,
5531 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
5532 	.arg2_type	= ARG_ANYTHING,
5533 	.arg3_type	= ARG_ANYTHING,
5534 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5535 	.arg5_type	= ARG_CONST_SIZE,
5536 };
5537 
5538 BPF_CALL_5(bpf_sock_addr_setsockopt, struct bpf_sock_addr_kern *, ctx,
5539 	   int, level, int, optname, char *, optval, int, optlen)
5540 {
5541 	return _bpf_setsockopt(ctx->sk, level, optname, optval, optlen);
5542 }
5543 
5544 static const struct bpf_func_proto bpf_sock_addr_setsockopt_proto = {
5545 	.func		= bpf_sock_addr_setsockopt,
5546 	.gpl_only	= false,
5547 	.ret_type	= RET_INTEGER,
5548 	.arg1_type	= ARG_PTR_TO_CTX,
5549 	.arg2_type	= ARG_ANYTHING,
5550 	.arg3_type	= ARG_ANYTHING,
5551 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5552 	.arg5_type	= ARG_CONST_SIZE,
5553 };
5554 
5555 BPF_CALL_5(bpf_sock_addr_getsockopt, struct bpf_sock_addr_kern *, ctx,
5556 	   int, level, int, optname, char *, optval, int, optlen)
5557 {
5558 	return _bpf_getsockopt(ctx->sk, level, optname, optval, optlen);
5559 }
5560 
5561 static const struct bpf_func_proto bpf_sock_addr_getsockopt_proto = {
5562 	.func		= bpf_sock_addr_getsockopt,
5563 	.gpl_only	= false,
5564 	.ret_type	= RET_INTEGER,
5565 	.arg1_type	= ARG_PTR_TO_CTX,
5566 	.arg2_type	= ARG_ANYTHING,
5567 	.arg3_type	= ARG_ANYTHING,
5568 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5569 	.arg5_type	= ARG_CONST_SIZE,
5570 };
5571 
5572 BPF_CALL_5(bpf_sock_ops_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5573 	   int, level, int, optname, char *, optval, int, optlen)
5574 {
5575 	return _bpf_setsockopt(bpf_sock->sk, level, optname, optval, optlen);
5576 }
5577 
5578 static const struct bpf_func_proto bpf_sock_ops_setsockopt_proto = {
5579 	.func		= bpf_sock_ops_setsockopt,
5580 	.gpl_only	= false,
5581 	.ret_type	= RET_INTEGER,
5582 	.arg1_type	= ARG_PTR_TO_CTX,
5583 	.arg2_type	= ARG_ANYTHING,
5584 	.arg3_type	= ARG_ANYTHING,
5585 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5586 	.arg5_type	= ARG_CONST_SIZE,
5587 };
5588 
5589 static int bpf_sock_ops_get_syn(struct bpf_sock_ops_kern *bpf_sock,
5590 				int optname, const u8 **start)
5591 {
5592 	struct sk_buff *syn_skb = bpf_sock->syn_skb;
5593 	const u8 *hdr_start;
5594 	int ret;
5595 
5596 	if (syn_skb) {
5597 		/* sk is a request_sock here */
5598 
5599 		if (optname == TCP_BPF_SYN) {
5600 			hdr_start = syn_skb->data;
5601 			ret = tcp_hdrlen(syn_skb);
5602 		} else if (optname == TCP_BPF_SYN_IP) {
5603 			hdr_start = skb_network_header(syn_skb);
5604 			ret = skb_network_header_len(syn_skb) +
5605 				tcp_hdrlen(syn_skb);
5606 		} else {
5607 			/* optname == TCP_BPF_SYN_MAC */
5608 			hdr_start = skb_mac_header(syn_skb);
5609 			ret = skb_mac_header_len(syn_skb) +
5610 				skb_network_header_len(syn_skb) +
5611 				tcp_hdrlen(syn_skb);
5612 		}
5613 	} else {
5614 		struct sock *sk = bpf_sock->sk;
5615 		struct saved_syn *saved_syn;
5616 
5617 		if (sk->sk_state == TCP_NEW_SYN_RECV)
5618 			/* synack retransmit. bpf_sock->syn_skb will
5619 			 * not be available.  It has to resort to
5620 			 * saved_syn (if it is saved).
5621 			 */
5622 			saved_syn = inet_reqsk(sk)->saved_syn;
5623 		else
5624 			saved_syn = tcp_sk(sk)->saved_syn;
5625 
5626 		if (!saved_syn)
5627 			return -ENOENT;
5628 
5629 		if (optname == TCP_BPF_SYN) {
5630 			hdr_start = saved_syn->data +
5631 				saved_syn->mac_hdrlen +
5632 				saved_syn->network_hdrlen;
5633 			ret = saved_syn->tcp_hdrlen;
5634 		} else if (optname == TCP_BPF_SYN_IP) {
5635 			hdr_start = saved_syn->data +
5636 				saved_syn->mac_hdrlen;
5637 			ret = saved_syn->network_hdrlen +
5638 				saved_syn->tcp_hdrlen;
5639 		} else {
5640 			/* optname == TCP_BPF_SYN_MAC */
5641 
5642 			/* TCP_SAVE_SYN may not have saved the mac hdr */
5643 			if (!saved_syn->mac_hdrlen)
5644 				return -ENOENT;
5645 
5646 			hdr_start = saved_syn->data;
5647 			ret = saved_syn->mac_hdrlen +
5648 				saved_syn->network_hdrlen +
5649 				saved_syn->tcp_hdrlen;
5650 		}
5651 	}
5652 
5653 	*start = hdr_start;
5654 	return ret;
5655 }
5656 
5657 BPF_CALL_5(bpf_sock_ops_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
5658 	   int, level, int, optname, char *, optval, int, optlen)
5659 {
5660 	if (IS_ENABLED(CONFIG_INET) && level == SOL_TCP &&
5661 	    optname >= TCP_BPF_SYN && optname <= TCP_BPF_SYN_MAC) {
5662 		int ret, copy_len = 0;
5663 		const u8 *start;
5664 
5665 		ret = bpf_sock_ops_get_syn(bpf_sock, optname, &start);
5666 		if (ret > 0) {
5667 			copy_len = ret;
5668 			if (optlen < copy_len) {
5669 				copy_len = optlen;
5670 				ret = -ENOSPC;
5671 			}
5672 
5673 			memcpy(optval, start, copy_len);
5674 		}
5675 
5676 		/* Zero out unused buffer at the end */
5677 		memset(optval + copy_len, 0, optlen - copy_len);
5678 
5679 		return ret;
5680 	}
5681 
5682 	return _bpf_getsockopt(bpf_sock->sk, level, optname, optval, optlen);
5683 }
5684 
5685 static const struct bpf_func_proto bpf_sock_ops_getsockopt_proto = {
5686 	.func		= bpf_sock_ops_getsockopt,
5687 	.gpl_only	= false,
5688 	.ret_type	= RET_INTEGER,
5689 	.arg1_type	= ARG_PTR_TO_CTX,
5690 	.arg2_type	= ARG_ANYTHING,
5691 	.arg3_type	= ARG_ANYTHING,
5692 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
5693 	.arg5_type	= ARG_CONST_SIZE,
5694 };
5695 
5696 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
5697 	   int, argval)
5698 {
5699 	struct sock *sk = bpf_sock->sk;
5700 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
5701 
5702 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
5703 		return -EINVAL;
5704 
5705 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
5706 
5707 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
5708 }
5709 
5710 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
5711 	.func		= bpf_sock_ops_cb_flags_set,
5712 	.gpl_only	= false,
5713 	.ret_type	= RET_INTEGER,
5714 	.arg1_type	= ARG_PTR_TO_CTX,
5715 	.arg2_type	= ARG_ANYTHING,
5716 };
5717 
5718 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
5719 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
5720 
5721 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
5722 	   int, addr_len)
5723 {
5724 #ifdef CONFIG_INET
5725 	struct sock *sk = ctx->sk;
5726 	u32 flags = BIND_FROM_BPF;
5727 	int err;
5728 
5729 	err = -EINVAL;
5730 	if (addr_len < offsetofend(struct sockaddr, sa_family))
5731 		return err;
5732 	if (addr->sa_family == AF_INET) {
5733 		if (addr_len < sizeof(struct sockaddr_in))
5734 			return err;
5735 		if (((struct sockaddr_in *)addr)->sin_port == htons(0))
5736 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5737 		return __inet_bind(sk, addr, addr_len, flags);
5738 #if IS_ENABLED(CONFIG_IPV6)
5739 	} else if (addr->sa_family == AF_INET6) {
5740 		if (addr_len < SIN6_LEN_RFC2133)
5741 			return err;
5742 		if (((struct sockaddr_in6 *)addr)->sin6_port == htons(0))
5743 			flags |= BIND_FORCE_ADDRESS_NO_PORT;
5744 		/* ipv6_bpf_stub cannot be NULL, since it's called from
5745 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
5746 		 */
5747 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, flags);
5748 #endif /* CONFIG_IPV6 */
5749 	}
5750 #endif /* CONFIG_INET */
5751 
5752 	return -EAFNOSUPPORT;
5753 }
5754 
5755 static const struct bpf_func_proto bpf_bind_proto = {
5756 	.func		= bpf_bind,
5757 	.gpl_only	= false,
5758 	.ret_type	= RET_INTEGER,
5759 	.arg1_type	= ARG_PTR_TO_CTX,
5760 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
5761 	.arg3_type	= ARG_CONST_SIZE,
5762 };
5763 
5764 #ifdef CONFIG_XFRM
5765 
5766 #if (IS_BUILTIN(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) || \
5767     (IS_MODULE(CONFIG_XFRM_INTERFACE) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
5768 
5769 struct metadata_dst __percpu *xfrm_bpf_md_dst;
5770 EXPORT_SYMBOL_GPL(xfrm_bpf_md_dst);
5771 
5772 #endif
5773 
5774 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
5775 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
5776 {
5777 	const struct sec_path *sp = skb_sec_path(skb);
5778 	const struct xfrm_state *x;
5779 
5780 	if (!sp || unlikely(index >= sp->len || flags))
5781 		goto err_clear;
5782 
5783 	x = sp->xvec[index];
5784 
5785 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
5786 		goto err_clear;
5787 
5788 	to->reqid = x->props.reqid;
5789 	to->spi = x->id.spi;
5790 	to->family = x->props.family;
5791 	to->ext = 0;
5792 
5793 	if (to->family == AF_INET6) {
5794 		memcpy(to->remote_ipv6, x->props.saddr.a6,
5795 		       sizeof(to->remote_ipv6));
5796 	} else {
5797 		to->remote_ipv4 = x->props.saddr.a4;
5798 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
5799 	}
5800 
5801 	return 0;
5802 err_clear:
5803 	memset(to, 0, size);
5804 	return -EINVAL;
5805 }
5806 
5807 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
5808 	.func		= bpf_skb_get_xfrm_state,
5809 	.gpl_only	= false,
5810 	.ret_type	= RET_INTEGER,
5811 	.arg1_type	= ARG_PTR_TO_CTX,
5812 	.arg2_type	= ARG_ANYTHING,
5813 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
5814 	.arg4_type	= ARG_CONST_SIZE,
5815 	.arg5_type	= ARG_ANYTHING,
5816 };
5817 #endif
5818 
5819 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
5820 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, u32 mtu)
5821 {
5822 	params->h_vlan_TCI = 0;
5823 	params->h_vlan_proto = 0;
5824 	if (mtu)
5825 		params->mtu_result = mtu; /* union with tot_len */
5826 
5827 	return 0;
5828 }
5829 #endif
5830 
5831 #if IS_ENABLED(CONFIG_INET)
5832 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5833 			       u32 flags, bool check_mtu)
5834 {
5835 	struct fib_nh_common *nhc;
5836 	struct in_device *in_dev;
5837 	struct neighbour *neigh;
5838 	struct net_device *dev;
5839 	struct fib_result res;
5840 	struct flowi4 fl4;
5841 	u32 mtu = 0;
5842 	int err;
5843 
5844 	dev = dev_get_by_index_rcu(net, params->ifindex);
5845 	if (unlikely(!dev))
5846 		return -ENODEV;
5847 
5848 	/* verify forwarding is enabled on this interface */
5849 	in_dev = __in_dev_get_rcu(dev);
5850 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
5851 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5852 
5853 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5854 		fl4.flowi4_iif = 1;
5855 		fl4.flowi4_oif = params->ifindex;
5856 	} else {
5857 		fl4.flowi4_iif = params->ifindex;
5858 		fl4.flowi4_oif = 0;
5859 	}
5860 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
5861 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
5862 	fl4.flowi4_flags = 0;
5863 
5864 	fl4.flowi4_proto = params->l4_protocol;
5865 	fl4.daddr = params->ipv4_dst;
5866 	fl4.saddr = params->ipv4_src;
5867 	fl4.fl4_sport = params->sport;
5868 	fl4.fl4_dport = params->dport;
5869 	fl4.flowi4_multipath_hash = 0;
5870 
5871 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
5872 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
5873 		struct fib_table *tb;
5874 
5875 		if (flags & BPF_FIB_LOOKUP_TBID) {
5876 			tbid = params->tbid;
5877 			/* zero out for vlan output */
5878 			params->tbid = 0;
5879 		}
5880 
5881 		tb = fib_get_table(net, tbid);
5882 		if (unlikely(!tb))
5883 			return BPF_FIB_LKUP_RET_NOT_FWDED;
5884 
5885 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
5886 	} else {
5887 		fl4.flowi4_mark = 0;
5888 		fl4.flowi4_secid = 0;
5889 		fl4.flowi4_tun_key.tun_id = 0;
5890 		fl4.flowi4_uid = sock_net_uid(net, NULL);
5891 
5892 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
5893 	}
5894 
5895 	if (err) {
5896 		/* map fib lookup errors to RTN_ type */
5897 		if (err == -EINVAL)
5898 			return BPF_FIB_LKUP_RET_BLACKHOLE;
5899 		if (err == -EHOSTUNREACH)
5900 			return BPF_FIB_LKUP_RET_UNREACHABLE;
5901 		if (err == -EACCES)
5902 			return BPF_FIB_LKUP_RET_PROHIBIT;
5903 
5904 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5905 	}
5906 
5907 	if (res.type != RTN_UNICAST)
5908 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5909 
5910 	if (fib_info_num_path(res.fi) > 1)
5911 		fib_select_path(net, &res, &fl4, NULL);
5912 
5913 	if (check_mtu) {
5914 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
5915 		if (params->tot_len > mtu) {
5916 			params->mtu_result = mtu; /* union with tot_len */
5917 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
5918 		}
5919 	}
5920 
5921 	nhc = res.nhc;
5922 
5923 	/* do not handle lwt encaps right now */
5924 	if (nhc->nhc_lwtstate)
5925 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
5926 
5927 	dev = nhc->nhc_dev;
5928 
5929 	params->rt_metric = res.fi->fib_priority;
5930 	params->ifindex = dev->ifindex;
5931 
5932 	if (flags & BPF_FIB_LOOKUP_SRC)
5933 		params->ipv4_src = fib_result_prefsrc(net, &res);
5934 
5935 	/* xdp and cls_bpf programs are run in RCU-bh so
5936 	 * rcu_read_lock_bh is not needed here
5937 	 */
5938 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
5939 		if (nhc->nhc_gw_family)
5940 			params->ipv4_dst = nhc->nhc_gw.ipv4;
5941 	} else {
5942 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
5943 
5944 		params->family = AF_INET6;
5945 		*dst = nhc->nhc_gw.ipv6;
5946 	}
5947 
5948 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
5949 		goto set_fwd_params;
5950 
5951 	if (likely(nhc->nhc_gw_family != AF_INET6))
5952 		neigh = __ipv4_neigh_lookup_noref(dev,
5953 						  (__force u32)params->ipv4_dst);
5954 	else
5955 		neigh = __ipv6_neigh_lookup_noref_stub(dev, params->ipv6_dst);
5956 
5957 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
5958 		return BPF_FIB_LKUP_RET_NO_NEIGH;
5959 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
5960 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
5961 
5962 set_fwd_params:
5963 	return bpf_fib_set_fwd_params(params, mtu);
5964 }
5965 #endif
5966 
5967 #if IS_ENABLED(CONFIG_IPV6)
5968 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
5969 			       u32 flags, bool check_mtu)
5970 {
5971 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
5972 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
5973 	struct fib6_result res = {};
5974 	struct neighbour *neigh;
5975 	struct net_device *dev;
5976 	struct inet6_dev *idev;
5977 	struct flowi6 fl6;
5978 	int strict = 0;
5979 	int oif, err;
5980 	u32 mtu = 0;
5981 
5982 	/* link local addresses are never forwarded */
5983 	if (rt6_need_strict(dst) || rt6_need_strict(src))
5984 		return BPF_FIB_LKUP_RET_NOT_FWDED;
5985 
5986 	dev = dev_get_by_index_rcu(net, params->ifindex);
5987 	if (unlikely(!dev))
5988 		return -ENODEV;
5989 
5990 	idev = __in6_dev_get_safely(dev);
5991 	if (unlikely(!idev || !idev->cnf.forwarding))
5992 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
5993 
5994 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
5995 		fl6.flowi6_iif = 1;
5996 		oif = fl6.flowi6_oif = params->ifindex;
5997 	} else {
5998 		oif = fl6.flowi6_iif = params->ifindex;
5999 		fl6.flowi6_oif = 0;
6000 		strict = RT6_LOOKUP_F_HAS_SADDR;
6001 	}
6002 	fl6.flowlabel = params->flowinfo;
6003 	fl6.flowi6_scope = 0;
6004 	fl6.flowi6_flags = 0;
6005 	fl6.mp_hash = 0;
6006 
6007 	fl6.flowi6_proto = params->l4_protocol;
6008 	fl6.daddr = *dst;
6009 	fl6.saddr = *src;
6010 	fl6.fl6_sport = params->sport;
6011 	fl6.fl6_dport = params->dport;
6012 
6013 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
6014 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
6015 		struct fib6_table *tb;
6016 
6017 		if (flags & BPF_FIB_LOOKUP_TBID) {
6018 			tbid = params->tbid;
6019 			/* zero out for vlan output */
6020 			params->tbid = 0;
6021 		}
6022 
6023 		tb = ipv6_stub->fib6_get_table(net, tbid);
6024 		if (unlikely(!tb))
6025 			return BPF_FIB_LKUP_RET_NOT_FWDED;
6026 
6027 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
6028 						   strict);
6029 	} else {
6030 		fl6.flowi6_mark = 0;
6031 		fl6.flowi6_secid = 0;
6032 		fl6.flowi6_tun_key.tun_id = 0;
6033 		fl6.flowi6_uid = sock_net_uid(net, NULL);
6034 
6035 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
6036 	}
6037 
6038 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
6039 		     res.f6i == net->ipv6.fib6_null_entry))
6040 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6041 
6042 	switch (res.fib6_type) {
6043 	/* only unicast is forwarded */
6044 	case RTN_UNICAST:
6045 		break;
6046 	case RTN_BLACKHOLE:
6047 		return BPF_FIB_LKUP_RET_BLACKHOLE;
6048 	case RTN_UNREACHABLE:
6049 		return BPF_FIB_LKUP_RET_UNREACHABLE;
6050 	case RTN_PROHIBIT:
6051 		return BPF_FIB_LKUP_RET_PROHIBIT;
6052 	default:
6053 		return BPF_FIB_LKUP_RET_NOT_FWDED;
6054 	}
6055 
6056 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
6057 				    fl6.flowi6_oif != 0, NULL, strict);
6058 
6059 	if (check_mtu) {
6060 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
6061 		if (params->tot_len > mtu) {
6062 			params->mtu_result = mtu; /* union with tot_len */
6063 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
6064 		}
6065 	}
6066 
6067 	if (res.nh->fib_nh_lws)
6068 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
6069 
6070 	if (res.nh->fib_nh_gw_family)
6071 		*dst = res.nh->fib_nh_gw6;
6072 
6073 	dev = res.nh->fib_nh_dev;
6074 	params->rt_metric = res.f6i->fib6_metric;
6075 	params->ifindex = dev->ifindex;
6076 
6077 	if (flags & BPF_FIB_LOOKUP_SRC) {
6078 		if (res.f6i->fib6_prefsrc.plen) {
6079 			*src = res.f6i->fib6_prefsrc.addr;
6080 		} else {
6081 			err = ipv6_bpf_stub->ipv6_dev_get_saddr(net, dev,
6082 								&fl6.daddr, 0,
6083 								src);
6084 			if (err)
6085 				return BPF_FIB_LKUP_RET_NO_SRC_ADDR;
6086 		}
6087 	}
6088 
6089 	if (flags & BPF_FIB_LOOKUP_SKIP_NEIGH)
6090 		goto set_fwd_params;
6091 
6092 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
6093 	 * not needed here.
6094 	 */
6095 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
6096 	if (!neigh || !(READ_ONCE(neigh->nud_state) & NUD_VALID))
6097 		return BPF_FIB_LKUP_RET_NO_NEIGH;
6098 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
6099 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
6100 
6101 set_fwd_params:
6102 	return bpf_fib_set_fwd_params(params, mtu);
6103 }
6104 #endif
6105 
6106 #define BPF_FIB_LOOKUP_MASK (BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT | \
6107 			     BPF_FIB_LOOKUP_SKIP_NEIGH | BPF_FIB_LOOKUP_TBID | \
6108 			     BPF_FIB_LOOKUP_SRC)
6109 
6110 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
6111 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6112 {
6113 	if (plen < sizeof(*params))
6114 		return -EINVAL;
6115 
6116 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6117 		return -EINVAL;
6118 
6119 	switch (params->family) {
6120 #if IS_ENABLED(CONFIG_INET)
6121 	case AF_INET:
6122 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
6123 					   flags, true);
6124 #endif
6125 #if IS_ENABLED(CONFIG_IPV6)
6126 	case AF_INET6:
6127 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
6128 					   flags, true);
6129 #endif
6130 	}
6131 	return -EAFNOSUPPORT;
6132 }
6133 
6134 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
6135 	.func		= bpf_xdp_fib_lookup,
6136 	.gpl_only	= true,
6137 	.ret_type	= RET_INTEGER,
6138 	.arg1_type      = ARG_PTR_TO_CTX,
6139 	.arg2_type      = ARG_PTR_TO_MEM,
6140 	.arg3_type      = ARG_CONST_SIZE,
6141 	.arg4_type	= ARG_ANYTHING,
6142 };
6143 
6144 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
6145 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
6146 {
6147 	struct net *net = dev_net(skb->dev);
6148 	int rc = -EAFNOSUPPORT;
6149 	bool check_mtu = false;
6150 
6151 	if (plen < sizeof(*params))
6152 		return -EINVAL;
6153 
6154 	if (flags & ~BPF_FIB_LOOKUP_MASK)
6155 		return -EINVAL;
6156 
6157 	if (params->tot_len)
6158 		check_mtu = true;
6159 
6160 	switch (params->family) {
6161 #if IS_ENABLED(CONFIG_INET)
6162 	case AF_INET:
6163 		rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu);
6164 		break;
6165 #endif
6166 #if IS_ENABLED(CONFIG_IPV6)
6167 	case AF_INET6:
6168 		rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu);
6169 		break;
6170 #endif
6171 	}
6172 
6173 	if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) {
6174 		struct net_device *dev;
6175 
6176 		/* When tot_len isn't provided by user, check skb
6177 		 * against MTU of FIB lookup resulting net_device
6178 		 */
6179 		dev = dev_get_by_index_rcu(net, params->ifindex);
6180 		if (!is_skb_forwardable(dev, skb))
6181 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
6182 
6183 		params->mtu_result = dev->mtu; /* union with tot_len */
6184 	}
6185 
6186 	return rc;
6187 }
6188 
6189 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
6190 	.func		= bpf_skb_fib_lookup,
6191 	.gpl_only	= true,
6192 	.ret_type	= RET_INTEGER,
6193 	.arg1_type      = ARG_PTR_TO_CTX,
6194 	.arg2_type      = ARG_PTR_TO_MEM,
6195 	.arg3_type      = ARG_CONST_SIZE,
6196 	.arg4_type	= ARG_ANYTHING,
6197 };
6198 
6199 static struct net_device *__dev_via_ifindex(struct net_device *dev_curr,
6200 					    u32 ifindex)
6201 {
6202 	struct net *netns = dev_net(dev_curr);
6203 
6204 	/* Non-redirect use-cases can use ifindex=0 and save ifindex lookup */
6205 	if (ifindex == 0)
6206 		return dev_curr;
6207 
6208 	return dev_get_by_index_rcu(netns, ifindex);
6209 }
6210 
6211 BPF_CALL_5(bpf_skb_check_mtu, struct sk_buff *, skb,
6212 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6213 {
6214 	int ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6215 	struct net_device *dev = skb->dev;
6216 	int skb_len, dev_len;
6217 	int mtu;
6218 
6219 	if (unlikely(flags & ~(BPF_MTU_CHK_SEGS)))
6220 		return -EINVAL;
6221 
6222 	if (unlikely(flags & BPF_MTU_CHK_SEGS && (len_diff || *mtu_len)))
6223 		return -EINVAL;
6224 
6225 	dev = __dev_via_ifindex(dev, ifindex);
6226 	if (unlikely(!dev))
6227 		return -ENODEV;
6228 
6229 	mtu = READ_ONCE(dev->mtu);
6230 
6231 	dev_len = mtu + dev->hard_header_len;
6232 
6233 	/* If set use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6234 	skb_len = *mtu_len ? *mtu_len + dev->hard_header_len : skb->len;
6235 
6236 	skb_len += len_diff; /* minus result pass check */
6237 	if (skb_len <= dev_len) {
6238 		ret = BPF_MTU_CHK_RET_SUCCESS;
6239 		goto out;
6240 	}
6241 	/* At this point, skb->len exceed MTU, but as it include length of all
6242 	 * segments, it can still be below MTU.  The SKB can possibly get
6243 	 * re-segmented in transmit path (see validate_xmit_skb).  Thus, user
6244 	 * must choose if segs are to be MTU checked.
6245 	 */
6246 	if (skb_is_gso(skb)) {
6247 		ret = BPF_MTU_CHK_RET_SUCCESS;
6248 
6249 		if (flags & BPF_MTU_CHK_SEGS &&
6250 		    !skb_gso_validate_network_len(skb, mtu))
6251 			ret = BPF_MTU_CHK_RET_SEGS_TOOBIG;
6252 	}
6253 out:
6254 	/* BPF verifier guarantees valid pointer */
6255 	*mtu_len = mtu;
6256 
6257 	return ret;
6258 }
6259 
6260 BPF_CALL_5(bpf_xdp_check_mtu, struct xdp_buff *, xdp,
6261 	   u32, ifindex, u32 *, mtu_len, s32, len_diff, u64, flags)
6262 {
6263 	struct net_device *dev = xdp->rxq->dev;
6264 	int xdp_len = xdp->data_end - xdp->data;
6265 	int ret = BPF_MTU_CHK_RET_SUCCESS;
6266 	int mtu, dev_len;
6267 
6268 	/* XDP variant doesn't support multi-buffer segment check (yet) */
6269 	if (unlikely(flags))
6270 		return -EINVAL;
6271 
6272 	dev = __dev_via_ifindex(dev, ifindex);
6273 	if (unlikely(!dev))
6274 		return -ENODEV;
6275 
6276 	mtu = READ_ONCE(dev->mtu);
6277 
6278 	/* Add L2-header as dev MTU is L3 size */
6279 	dev_len = mtu + dev->hard_header_len;
6280 
6281 	/* Use *mtu_len as input, L3 as iph->tot_len (like fib_lookup) */
6282 	if (*mtu_len)
6283 		xdp_len = *mtu_len + dev->hard_header_len;
6284 
6285 	xdp_len += len_diff; /* minus result pass check */
6286 	if (xdp_len > dev_len)
6287 		ret = BPF_MTU_CHK_RET_FRAG_NEEDED;
6288 
6289 	/* BPF verifier guarantees valid pointer */
6290 	*mtu_len = mtu;
6291 
6292 	return ret;
6293 }
6294 
6295 static const struct bpf_func_proto bpf_skb_check_mtu_proto = {
6296 	.func		= bpf_skb_check_mtu,
6297 	.gpl_only	= true,
6298 	.ret_type	= RET_INTEGER,
6299 	.arg1_type      = ARG_PTR_TO_CTX,
6300 	.arg2_type      = ARG_ANYTHING,
6301 	.arg3_type      = ARG_PTR_TO_INT,
6302 	.arg4_type      = ARG_ANYTHING,
6303 	.arg5_type      = ARG_ANYTHING,
6304 };
6305 
6306 static const struct bpf_func_proto bpf_xdp_check_mtu_proto = {
6307 	.func		= bpf_xdp_check_mtu,
6308 	.gpl_only	= true,
6309 	.ret_type	= RET_INTEGER,
6310 	.arg1_type      = ARG_PTR_TO_CTX,
6311 	.arg2_type      = ARG_ANYTHING,
6312 	.arg3_type      = ARG_PTR_TO_INT,
6313 	.arg4_type      = ARG_ANYTHING,
6314 	.arg5_type      = ARG_ANYTHING,
6315 };
6316 
6317 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6318 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
6319 {
6320 	int err;
6321 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
6322 
6323 	if (!seg6_validate_srh(srh, len, false))
6324 		return -EINVAL;
6325 
6326 	switch (type) {
6327 	case BPF_LWT_ENCAP_SEG6_INLINE:
6328 		if (skb->protocol != htons(ETH_P_IPV6))
6329 			return -EBADMSG;
6330 
6331 		err = seg6_do_srh_inline(skb, srh);
6332 		break;
6333 	case BPF_LWT_ENCAP_SEG6:
6334 		skb_reset_inner_headers(skb);
6335 		skb->encapsulation = 1;
6336 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
6337 		break;
6338 	default:
6339 		return -EINVAL;
6340 	}
6341 
6342 	bpf_compute_data_pointers(skb);
6343 	if (err)
6344 		return err;
6345 
6346 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
6347 
6348 	return seg6_lookup_nexthop(skb, NULL, 0);
6349 }
6350 #endif /* CONFIG_IPV6_SEG6_BPF */
6351 
6352 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6353 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
6354 			     bool ingress)
6355 {
6356 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
6357 }
6358 #endif
6359 
6360 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
6361 	   u32, len)
6362 {
6363 	switch (type) {
6364 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6365 	case BPF_LWT_ENCAP_SEG6:
6366 	case BPF_LWT_ENCAP_SEG6_INLINE:
6367 		return bpf_push_seg6_encap(skb, type, hdr, len);
6368 #endif
6369 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6370 	case BPF_LWT_ENCAP_IP:
6371 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
6372 #endif
6373 	default:
6374 		return -EINVAL;
6375 	}
6376 }
6377 
6378 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
6379 	   void *, hdr, u32, len)
6380 {
6381 	switch (type) {
6382 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
6383 	case BPF_LWT_ENCAP_IP:
6384 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
6385 #endif
6386 	default:
6387 		return -EINVAL;
6388 	}
6389 }
6390 
6391 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
6392 	.func		= bpf_lwt_in_push_encap,
6393 	.gpl_only	= false,
6394 	.ret_type	= RET_INTEGER,
6395 	.arg1_type	= ARG_PTR_TO_CTX,
6396 	.arg2_type	= ARG_ANYTHING,
6397 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6398 	.arg4_type	= ARG_CONST_SIZE
6399 };
6400 
6401 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
6402 	.func		= bpf_lwt_xmit_push_encap,
6403 	.gpl_only	= false,
6404 	.ret_type	= RET_INTEGER,
6405 	.arg1_type	= ARG_PTR_TO_CTX,
6406 	.arg2_type	= ARG_ANYTHING,
6407 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6408 	.arg4_type	= ARG_CONST_SIZE
6409 };
6410 
6411 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6412 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
6413 	   const void *, from, u32, len)
6414 {
6415 	struct seg6_bpf_srh_state *srh_state =
6416 		this_cpu_ptr(&seg6_bpf_srh_states);
6417 	struct ipv6_sr_hdr *srh = srh_state->srh;
6418 	void *srh_tlvs, *srh_end, *ptr;
6419 	int srhoff = 0;
6420 
6421 	if (srh == NULL)
6422 		return -EINVAL;
6423 
6424 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
6425 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
6426 
6427 	ptr = skb->data + offset;
6428 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
6429 		srh_state->valid = false;
6430 	else if (ptr < (void *)&srh->flags ||
6431 		 ptr + len > (void *)&srh->segments)
6432 		return -EFAULT;
6433 
6434 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
6435 		return -EFAULT;
6436 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6437 		return -EINVAL;
6438 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6439 
6440 	memcpy(skb->data + offset, from, len);
6441 	return 0;
6442 }
6443 
6444 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
6445 	.func		= bpf_lwt_seg6_store_bytes,
6446 	.gpl_only	= false,
6447 	.ret_type	= RET_INTEGER,
6448 	.arg1_type	= ARG_PTR_TO_CTX,
6449 	.arg2_type	= ARG_ANYTHING,
6450 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6451 	.arg4_type	= ARG_CONST_SIZE
6452 };
6453 
6454 static void bpf_update_srh_state(struct sk_buff *skb)
6455 {
6456 	struct seg6_bpf_srh_state *srh_state =
6457 		this_cpu_ptr(&seg6_bpf_srh_states);
6458 	int srhoff = 0;
6459 
6460 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
6461 		srh_state->srh = NULL;
6462 	} else {
6463 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6464 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
6465 		srh_state->valid = true;
6466 	}
6467 }
6468 
6469 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
6470 	   u32, action, void *, param, u32, param_len)
6471 {
6472 	struct seg6_bpf_srh_state *srh_state =
6473 		this_cpu_ptr(&seg6_bpf_srh_states);
6474 	int hdroff = 0;
6475 	int err;
6476 
6477 	switch (action) {
6478 	case SEG6_LOCAL_ACTION_END_X:
6479 		if (!seg6_bpf_has_valid_srh(skb))
6480 			return -EBADMSG;
6481 		if (param_len != sizeof(struct in6_addr))
6482 			return -EINVAL;
6483 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
6484 	case SEG6_LOCAL_ACTION_END_T:
6485 		if (!seg6_bpf_has_valid_srh(skb))
6486 			return -EBADMSG;
6487 		if (param_len != sizeof(int))
6488 			return -EINVAL;
6489 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6490 	case SEG6_LOCAL_ACTION_END_DT6:
6491 		if (!seg6_bpf_has_valid_srh(skb))
6492 			return -EBADMSG;
6493 		if (param_len != sizeof(int))
6494 			return -EINVAL;
6495 
6496 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
6497 			return -EBADMSG;
6498 		if (!pskb_pull(skb, hdroff))
6499 			return -EBADMSG;
6500 
6501 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
6502 		skb_reset_network_header(skb);
6503 		skb_reset_transport_header(skb);
6504 		skb->encapsulation = 0;
6505 
6506 		bpf_compute_data_pointers(skb);
6507 		bpf_update_srh_state(skb);
6508 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
6509 	case SEG6_LOCAL_ACTION_END_B6:
6510 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6511 			return -EBADMSG;
6512 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
6513 					  param, param_len);
6514 		if (!err)
6515 			bpf_update_srh_state(skb);
6516 
6517 		return err;
6518 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
6519 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
6520 			return -EBADMSG;
6521 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
6522 					  param, param_len);
6523 		if (!err)
6524 			bpf_update_srh_state(skb);
6525 
6526 		return err;
6527 	default:
6528 		return -EINVAL;
6529 	}
6530 }
6531 
6532 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
6533 	.func		= bpf_lwt_seg6_action,
6534 	.gpl_only	= false,
6535 	.ret_type	= RET_INTEGER,
6536 	.arg1_type	= ARG_PTR_TO_CTX,
6537 	.arg2_type	= ARG_ANYTHING,
6538 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6539 	.arg4_type	= ARG_CONST_SIZE
6540 };
6541 
6542 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
6543 	   s32, len)
6544 {
6545 	struct seg6_bpf_srh_state *srh_state =
6546 		this_cpu_ptr(&seg6_bpf_srh_states);
6547 	struct ipv6_sr_hdr *srh = srh_state->srh;
6548 	void *srh_end, *srh_tlvs, *ptr;
6549 	struct ipv6hdr *hdr;
6550 	int srhoff = 0;
6551 	int ret;
6552 
6553 	if (unlikely(srh == NULL))
6554 		return -EINVAL;
6555 
6556 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
6557 			((srh->first_segment + 1) << 4));
6558 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
6559 			srh_state->hdrlen);
6560 	ptr = skb->data + offset;
6561 
6562 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
6563 		return -EFAULT;
6564 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
6565 		return -EFAULT;
6566 
6567 	if (len > 0) {
6568 		ret = skb_cow_head(skb, len);
6569 		if (unlikely(ret < 0))
6570 			return ret;
6571 
6572 		ret = bpf_skb_net_hdr_push(skb, offset, len);
6573 	} else {
6574 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
6575 	}
6576 
6577 	bpf_compute_data_pointers(skb);
6578 	if (unlikely(ret < 0))
6579 		return ret;
6580 
6581 	hdr = (struct ipv6hdr *)skb->data;
6582 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
6583 
6584 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
6585 		return -EINVAL;
6586 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
6587 	srh_state->hdrlen += len;
6588 	srh_state->valid = false;
6589 	return 0;
6590 }
6591 
6592 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
6593 	.func		= bpf_lwt_seg6_adjust_srh,
6594 	.gpl_only	= false,
6595 	.ret_type	= RET_INTEGER,
6596 	.arg1_type	= ARG_PTR_TO_CTX,
6597 	.arg2_type	= ARG_ANYTHING,
6598 	.arg3_type	= ARG_ANYTHING,
6599 };
6600 #endif /* CONFIG_IPV6_SEG6_BPF */
6601 
6602 #ifdef CONFIG_INET
6603 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
6604 			      int dif, int sdif, u8 family, u8 proto)
6605 {
6606 	struct inet_hashinfo *hinfo = net->ipv4.tcp_death_row.hashinfo;
6607 	bool refcounted = false;
6608 	struct sock *sk = NULL;
6609 
6610 	if (family == AF_INET) {
6611 		__be32 src4 = tuple->ipv4.saddr;
6612 		__be32 dst4 = tuple->ipv4.daddr;
6613 
6614 		if (proto == IPPROTO_TCP)
6615 			sk = __inet_lookup(net, hinfo, NULL, 0,
6616 					   src4, tuple->ipv4.sport,
6617 					   dst4, tuple->ipv4.dport,
6618 					   dif, sdif, &refcounted);
6619 		else
6620 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
6621 					       dst4, tuple->ipv4.dport,
6622 					       dif, sdif, net->ipv4.udp_table, NULL);
6623 #if IS_ENABLED(CONFIG_IPV6)
6624 	} else {
6625 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
6626 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
6627 
6628 		if (proto == IPPROTO_TCP)
6629 			sk = __inet6_lookup(net, hinfo, NULL, 0,
6630 					    src6, tuple->ipv6.sport,
6631 					    dst6, ntohs(tuple->ipv6.dport),
6632 					    dif, sdif, &refcounted);
6633 		else if (likely(ipv6_bpf_stub))
6634 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
6635 							    src6, tuple->ipv6.sport,
6636 							    dst6, tuple->ipv6.dport,
6637 							    dif, sdif,
6638 							    net->ipv4.udp_table, NULL);
6639 #endif
6640 	}
6641 
6642 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
6643 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6644 		sk = NULL;
6645 	}
6646 	return sk;
6647 }
6648 
6649 /* bpf_skc_lookup performs the core lookup for different types of sockets,
6650  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
6651  */
6652 static struct sock *
6653 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6654 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6655 		 u64 flags, int sdif)
6656 {
6657 	struct sock *sk = NULL;
6658 	struct net *net;
6659 	u8 family;
6660 
6661 	if (len == sizeof(tuple->ipv4))
6662 		family = AF_INET;
6663 	else if (len == sizeof(tuple->ipv6))
6664 		family = AF_INET6;
6665 	else
6666 		return NULL;
6667 
6668 	if (unlikely(flags || !((s32)netns_id < 0 || netns_id <= S32_MAX)))
6669 		goto out;
6670 
6671 	if (sdif < 0) {
6672 		if (family == AF_INET)
6673 			sdif = inet_sdif(skb);
6674 		else
6675 			sdif = inet6_sdif(skb);
6676 	}
6677 
6678 	if ((s32)netns_id < 0) {
6679 		net = caller_net;
6680 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6681 	} else {
6682 		net = get_net_ns_by_id(caller_net, netns_id);
6683 		if (unlikely(!net))
6684 			goto out;
6685 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
6686 		put_net(net);
6687 	}
6688 
6689 out:
6690 	return sk;
6691 }
6692 
6693 static struct sock *
6694 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6695 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
6696 		u64 flags, int sdif)
6697 {
6698 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
6699 					   ifindex, proto, netns_id, flags,
6700 					   sdif);
6701 
6702 	if (sk) {
6703 		struct sock *sk2 = sk_to_full_sk(sk);
6704 
6705 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6706 		 * sock refcnt is decremented to prevent a request_sock leak.
6707 		 */
6708 		if (!sk_fullsock(sk2))
6709 			sk2 = NULL;
6710 		if (sk2 != sk) {
6711 			sock_gen_put(sk);
6712 			/* Ensure there is no need to bump sk2 refcnt */
6713 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6714 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6715 				return NULL;
6716 			}
6717 			sk = sk2;
6718 		}
6719 	}
6720 
6721 	return sk;
6722 }
6723 
6724 static struct sock *
6725 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6726 	       u8 proto, u64 netns_id, u64 flags)
6727 {
6728 	struct net *caller_net;
6729 	int ifindex;
6730 
6731 	if (skb->dev) {
6732 		caller_net = dev_net(skb->dev);
6733 		ifindex = skb->dev->ifindex;
6734 	} else {
6735 		caller_net = sock_net(skb->sk);
6736 		ifindex = 0;
6737 	}
6738 
6739 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
6740 				netns_id, flags, -1);
6741 }
6742 
6743 static struct sock *
6744 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
6745 	      u8 proto, u64 netns_id, u64 flags)
6746 {
6747 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
6748 					 flags);
6749 
6750 	if (sk) {
6751 		struct sock *sk2 = sk_to_full_sk(sk);
6752 
6753 		/* sk_to_full_sk() may return (sk)->rsk_listener, so make sure the original sk
6754 		 * sock refcnt is decremented to prevent a request_sock leak.
6755 		 */
6756 		if (!sk_fullsock(sk2))
6757 			sk2 = NULL;
6758 		if (sk2 != sk) {
6759 			sock_gen_put(sk);
6760 			/* Ensure there is no need to bump sk2 refcnt */
6761 			if (unlikely(sk2 && !sock_flag(sk2, SOCK_RCU_FREE))) {
6762 				WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
6763 				return NULL;
6764 			}
6765 			sk = sk2;
6766 		}
6767 	}
6768 
6769 	return sk;
6770 }
6771 
6772 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
6773 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6774 {
6775 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
6776 					     netns_id, flags);
6777 }
6778 
6779 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
6780 	.func		= bpf_skc_lookup_tcp,
6781 	.gpl_only	= false,
6782 	.pkt_access	= true,
6783 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6784 	.arg1_type	= ARG_PTR_TO_CTX,
6785 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6786 	.arg3_type	= ARG_CONST_SIZE,
6787 	.arg4_type	= ARG_ANYTHING,
6788 	.arg5_type	= ARG_ANYTHING,
6789 };
6790 
6791 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
6792 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6793 {
6794 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
6795 					    netns_id, flags);
6796 }
6797 
6798 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
6799 	.func		= bpf_sk_lookup_tcp,
6800 	.gpl_only	= false,
6801 	.pkt_access	= true,
6802 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6803 	.arg1_type	= ARG_PTR_TO_CTX,
6804 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6805 	.arg3_type	= ARG_CONST_SIZE,
6806 	.arg4_type	= ARG_ANYTHING,
6807 	.arg5_type	= ARG_ANYTHING,
6808 };
6809 
6810 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
6811 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6812 {
6813 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
6814 					    netns_id, flags);
6815 }
6816 
6817 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
6818 	.func		= bpf_sk_lookup_udp,
6819 	.gpl_only	= false,
6820 	.pkt_access	= true,
6821 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6822 	.arg1_type	= ARG_PTR_TO_CTX,
6823 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6824 	.arg3_type	= ARG_CONST_SIZE,
6825 	.arg4_type	= ARG_ANYTHING,
6826 	.arg5_type	= ARG_ANYTHING,
6827 };
6828 
6829 BPF_CALL_5(bpf_tc_skc_lookup_tcp, struct sk_buff *, skb,
6830 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6831 {
6832 	struct net_device *dev = skb->dev;
6833 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6834 	struct net *caller_net = dev_net(dev);
6835 
6836 	return (unsigned long)__bpf_skc_lookup(skb, tuple, len, caller_net,
6837 					       ifindex, IPPROTO_TCP, netns_id,
6838 					       flags, sdif);
6839 }
6840 
6841 static const struct bpf_func_proto bpf_tc_skc_lookup_tcp_proto = {
6842 	.func		= bpf_tc_skc_lookup_tcp,
6843 	.gpl_only	= false,
6844 	.pkt_access	= true,
6845 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
6846 	.arg1_type	= ARG_PTR_TO_CTX,
6847 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6848 	.arg3_type	= ARG_CONST_SIZE,
6849 	.arg4_type	= ARG_ANYTHING,
6850 	.arg5_type	= ARG_ANYTHING,
6851 };
6852 
6853 BPF_CALL_5(bpf_tc_sk_lookup_tcp, struct sk_buff *, skb,
6854 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6855 {
6856 	struct net_device *dev = skb->dev;
6857 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6858 	struct net *caller_net = dev_net(dev);
6859 
6860 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6861 					      ifindex, IPPROTO_TCP, netns_id,
6862 					      flags, sdif);
6863 }
6864 
6865 static const struct bpf_func_proto bpf_tc_sk_lookup_tcp_proto = {
6866 	.func		= bpf_tc_sk_lookup_tcp,
6867 	.gpl_only	= false,
6868 	.pkt_access	= true,
6869 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6870 	.arg1_type	= ARG_PTR_TO_CTX,
6871 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6872 	.arg3_type	= ARG_CONST_SIZE,
6873 	.arg4_type	= ARG_ANYTHING,
6874 	.arg5_type	= ARG_ANYTHING,
6875 };
6876 
6877 BPF_CALL_5(bpf_tc_sk_lookup_udp, struct sk_buff *, skb,
6878 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6879 {
6880 	struct net_device *dev = skb->dev;
6881 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6882 	struct net *caller_net = dev_net(dev);
6883 
6884 	return (unsigned long)__bpf_sk_lookup(skb, tuple, len, caller_net,
6885 					      ifindex, IPPROTO_UDP, netns_id,
6886 					      flags, sdif);
6887 }
6888 
6889 static const struct bpf_func_proto bpf_tc_sk_lookup_udp_proto = {
6890 	.func		= bpf_tc_sk_lookup_udp,
6891 	.gpl_only	= false,
6892 	.pkt_access	= true,
6893 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
6894 	.arg1_type	= ARG_PTR_TO_CTX,
6895 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
6896 	.arg3_type	= ARG_CONST_SIZE,
6897 	.arg4_type	= ARG_ANYTHING,
6898 	.arg5_type	= ARG_ANYTHING,
6899 };
6900 
6901 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
6902 {
6903 	if (sk && sk_is_refcounted(sk))
6904 		sock_gen_put(sk);
6905 	return 0;
6906 }
6907 
6908 static const struct bpf_func_proto bpf_sk_release_proto = {
6909 	.func		= bpf_sk_release,
6910 	.gpl_only	= false,
6911 	.ret_type	= RET_INTEGER,
6912 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON | OBJ_RELEASE,
6913 };
6914 
6915 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
6916 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6917 {
6918 	struct net_device *dev = ctx->rxq->dev;
6919 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6920 	struct net *caller_net = dev_net(dev);
6921 
6922 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6923 					      ifindex, IPPROTO_UDP, netns_id,
6924 					      flags, sdif);
6925 }
6926 
6927 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
6928 	.func           = bpf_xdp_sk_lookup_udp,
6929 	.gpl_only       = false,
6930 	.pkt_access     = true,
6931 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6932 	.arg1_type      = ARG_PTR_TO_CTX,
6933 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6934 	.arg3_type      = ARG_CONST_SIZE,
6935 	.arg4_type      = ARG_ANYTHING,
6936 	.arg5_type      = ARG_ANYTHING,
6937 };
6938 
6939 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
6940 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6941 {
6942 	struct net_device *dev = ctx->rxq->dev;
6943 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6944 	struct net *caller_net = dev_net(dev);
6945 
6946 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
6947 					       ifindex, IPPROTO_TCP, netns_id,
6948 					       flags, sdif);
6949 }
6950 
6951 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
6952 	.func           = bpf_xdp_skc_lookup_tcp,
6953 	.gpl_only       = false,
6954 	.pkt_access     = true,
6955 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
6956 	.arg1_type      = ARG_PTR_TO_CTX,
6957 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6958 	.arg3_type      = ARG_CONST_SIZE,
6959 	.arg4_type      = ARG_ANYTHING,
6960 	.arg5_type      = ARG_ANYTHING,
6961 };
6962 
6963 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
6964 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
6965 {
6966 	struct net_device *dev = ctx->rxq->dev;
6967 	int ifindex = dev->ifindex, sdif = dev_sdif(dev);
6968 	struct net *caller_net = dev_net(dev);
6969 
6970 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
6971 					      ifindex, IPPROTO_TCP, netns_id,
6972 					      flags, sdif);
6973 }
6974 
6975 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
6976 	.func           = bpf_xdp_sk_lookup_tcp,
6977 	.gpl_only       = false,
6978 	.pkt_access     = true,
6979 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
6980 	.arg1_type      = ARG_PTR_TO_CTX,
6981 	.arg2_type      = ARG_PTR_TO_MEM | MEM_RDONLY,
6982 	.arg3_type      = ARG_CONST_SIZE,
6983 	.arg4_type      = ARG_ANYTHING,
6984 	.arg5_type      = ARG_ANYTHING,
6985 };
6986 
6987 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
6988 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
6989 {
6990 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
6991 					       sock_net(ctx->sk), 0,
6992 					       IPPROTO_TCP, netns_id, flags,
6993 					       -1);
6994 }
6995 
6996 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
6997 	.func		= bpf_sock_addr_skc_lookup_tcp,
6998 	.gpl_only	= false,
6999 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
7000 	.arg1_type	= ARG_PTR_TO_CTX,
7001 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7002 	.arg3_type	= ARG_CONST_SIZE,
7003 	.arg4_type	= ARG_ANYTHING,
7004 	.arg5_type	= ARG_ANYTHING,
7005 };
7006 
7007 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
7008 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7009 {
7010 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7011 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
7012 					      netns_id, flags, -1);
7013 }
7014 
7015 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
7016 	.func		= bpf_sock_addr_sk_lookup_tcp,
7017 	.gpl_only	= false,
7018 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7019 	.arg1_type	= ARG_PTR_TO_CTX,
7020 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7021 	.arg3_type	= ARG_CONST_SIZE,
7022 	.arg4_type	= ARG_ANYTHING,
7023 	.arg5_type	= ARG_ANYTHING,
7024 };
7025 
7026 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
7027 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
7028 {
7029 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
7030 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
7031 					      netns_id, flags, -1);
7032 }
7033 
7034 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
7035 	.func		= bpf_sock_addr_sk_lookup_udp,
7036 	.gpl_only	= false,
7037 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7038 	.arg1_type	= ARG_PTR_TO_CTX,
7039 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7040 	.arg3_type	= ARG_CONST_SIZE,
7041 	.arg4_type	= ARG_ANYTHING,
7042 	.arg5_type	= ARG_ANYTHING,
7043 };
7044 
7045 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7046 				  struct bpf_insn_access_aux *info)
7047 {
7048 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
7049 					  icsk_retransmits))
7050 		return false;
7051 
7052 	if (off % size != 0)
7053 		return false;
7054 
7055 	switch (off) {
7056 	case offsetof(struct bpf_tcp_sock, bytes_received):
7057 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7058 		return size == sizeof(__u64);
7059 	default:
7060 		return size == sizeof(__u32);
7061 	}
7062 }
7063 
7064 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
7065 				    const struct bpf_insn *si,
7066 				    struct bpf_insn *insn_buf,
7067 				    struct bpf_prog *prog, u32 *target_size)
7068 {
7069 	struct bpf_insn *insn = insn_buf;
7070 
7071 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
7072 	do {								\
7073 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
7074 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7075 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
7076 				      si->dst_reg, si->src_reg,		\
7077 				      offsetof(struct tcp_sock, FIELD)); \
7078 	} while (0)
7079 
7080 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
7081 	do {								\
7082 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
7083 					  FIELD) >			\
7084 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
7085 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
7086 					struct inet_connection_sock,	\
7087 					FIELD),				\
7088 				      si->dst_reg, si->src_reg,		\
7089 				      offsetof(				\
7090 					struct inet_connection_sock,	\
7091 					FIELD));			\
7092 	} while (0)
7093 
7094 	BTF_TYPE_EMIT(struct bpf_tcp_sock);
7095 
7096 	switch (si->off) {
7097 	case offsetof(struct bpf_tcp_sock, rtt_min):
7098 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
7099 			     sizeof(struct minmax));
7100 		BUILD_BUG_ON(sizeof(struct minmax) <
7101 			     sizeof(struct minmax_sample));
7102 
7103 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7104 				      offsetof(struct tcp_sock, rtt_min) +
7105 				      offsetof(struct minmax_sample, v));
7106 		break;
7107 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
7108 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
7109 		break;
7110 	case offsetof(struct bpf_tcp_sock, srtt_us):
7111 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
7112 		break;
7113 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
7114 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
7115 		break;
7116 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
7117 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
7118 		break;
7119 	case offsetof(struct bpf_tcp_sock, snd_nxt):
7120 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
7121 		break;
7122 	case offsetof(struct bpf_tcp_sock, snd_una):
7123 		BPF_TCP_SOCK_GET_COMMON(snd_una);
7124 		break;
7125 	case offsetof(struct bpf_tcp_sock, mss_cache):
7126 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
7127 		break;
7128 	case offsetof(struct bpf_tcp_sock, ecn_flags):
7129 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
7130 		break;
7131 	case offsetof(struct bpf_tcp_sock, rate_delivered):
7132 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
7133 		break;
7134 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
7135 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
7136 		break;
7137 	case offsetof(struct bpf_tcp_sock, packets_out):
7138 		BPF_TCP_SOCK_GET_COMMON(packets_out);
7139 		break;
7140 	case offsetof(struct bpf_tcp_sock, retrans_out):
7141 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
7142 		break;
7143 	case offsetof(struct bpf_tcp_sock, total_retrans):
7144 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
7145 		break;
7146 	case offsetof(struct bpf_tcp_sock, segs_in):
7147 		BPF_TCP_SOCK_GET_COMMON(segs_in);
7148 		break;
7149 	case offsetof(struct bpf_tcp_sock, data_segs_in):
7150 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
7151 		break;
7152 	case offsetof(struct bpf_tcp_sock, segs_out):
7153 		BPF_TCP_SOCK_GET_COMMON(segs_out);
7154 		break;
7155 	case offsetof(struct bpf_tcp_sock, data_segs_out):
7156 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
7157 		break;
7158 	case offsetof(struct bpf_tcp_sock, lost_out):
7159 		BPF_TCP_SOCK_GET_COMMON(lost_out);
7160 		break;
7161 	case offsetof(struct bpf_tcp_sock, sacked_out):
7162 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
7163 		break;
7164 	case offsetof(struct bpf_tcp_sock, bytes_received):
7165 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
7166 		break;
7167 	case offsetof(struct bpf_tcp_sock, bytes_acked):
7168 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
7169 		break;
7170 	case offsetof(struct bpf_tcp_sock, dsack_dups):
7171 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
7172 		break;
7173 	case offsetof(struct bpf_tcp_sock, delivered):
7174 		BPF_TCP_SOCK_GET_COMMON(delivered);
7175 		break;
7176 	case offsetof(struct bpf_tcp_sock, delivered_ce):
7177 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
7178 		break;
7179 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
7180 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
7181 		break;
7182 	}
7183 
7184 	return insn - insn_buf;
7185 }
7186 
7187 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
7188 {
7189 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
7190 		return (unsigned long)sk;
7191 
7192 	return (unsigned long)NULL;
7193 }
7194 
7195 const struct bpf_func_proto bpf_tcp_sock_proto = {
7196 	.func		= bpf_tcp_sock,
7197 	.gpl_only	= false,
7198 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
7199 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7200 };
7201 
7202 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
7203 {
7204 	sk = sk_to_full_sk(sk);
7205 
7206 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
7207 		return (unsigned long)sk;
7208 
7209 	return (unsigned long)NULL;
7210 }
7211 
7212 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
7213 	.func		= bpf_get_listener_sock,
7214 	.gpl_only	= false,
7215 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
7216 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
7217 };
7218 
7219 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
7220 {
7221 	unsigned int iphdr_len;
7222 
7223 	switch (skb_protocol(skb, true)) {
7224 	case cpu_to_be16(ETH_P_IP):
7225 		iphdr_len = sizeof(struct iphdr);
7226 		break;
7227 	case cpu_to_be16(ETH_P_IPV6):
7228 		iphdr_len = sizeof(struct ipv6hdr);
7229 		break;
7230 	default:
7231 		return 0;
7232 	}
7233 
7234 	if (skb_headlen(skb) < iphdr_len)
7235 		return 0;
7236 
7237 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
7238 		return 0;
7239 
7240 	return INET_ECN_set_ce(skb);
7241 }
7242 
7243 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
7244 				  struct bpf_insn_access_aux *info)
7245 {
7246 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
7247 		return false;
7248 
7249 	if (off % size != 0)
7250 		return false;
7251 
7252 	switch (off) {
7253 	default:
7254 		return size == sizeof(__u32);
7255 	}
7256 }
7257 
7258 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
7259 				    const struct bpf_insn *si,
7260 				    struct bpf_insn *insn_buf,
7261 				    struct bpf_prog *prog, u32 *target_size)
7262 {
7263 	struct bpf_insn *insn = insn_buf;
7264 
7265 #define BPF_XDP_SOCK_GET(FIELD)						\
7266 	do {								\
7267 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
7268 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
7269 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
7270 				      si->dst_reg, si->src_reg,		\
7271 				      offsetof(struct xdp_sock, FIELD)); \
7272 	} while (0)
7273 
7274 	switch (si->off) {
7275 	case offsetof(struct bpf_xdp_sock, queue_id):
7276 		BPF_XDP_SOCK_GET(queue_id);
7277 		break;
7278 	}
7279 
7280 	return insn - insn_buf;
7281 }
7282 
7283 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
7284 	.func           = bpf_skb_ecn_set_ce,
7285 	.gpl_only       = false,
7286 	.ret_type       = RET_INTEGER,
7287 	.arg1_type      = ARG_PTR_TO_CTX,
7288 };
7289 
7290 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7291 	   struct tcphdr *, th, u32, th_len)
7292 {
7293 #ifdef CONFIG_SYN_COOKIES
7294 	int ret;
7295 
7296 	if (unlikely(!sk || th_len < sizeof(*th)))
7297 		return -EINVAL;
7298 
7299 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
7300 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7301 		return -EINVAL;
7302 
7303 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7304 		return -EINVAL;
7305 
7306 	if (!th->ack || th->rst || th->syn)
7307 		return -ENOENT;
7308 
7309 	if (unlikely(iph_len < sizeof(struct iphdr)))
7310 		return -EINVAL;
7311 
7312 	if (tcp_synq_no_recent_overflow(sk))
7313 		return -ENOENT;
7314 
7315 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7316 	 * same offset so we can cast to the shorter header (struct iphdr).
7317 	 */
7318 	switch (((struct iphdr *)iph)->version) {
7319 	case 4:
7320 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7321 			return -EINVAL;
7322 
7323 		ret = __cookie_v4_check((struct iphdr *)iph, th);
7324 		break;
7325 
7326 #if IS_BUILTIN(CONFIG_IPV6)
7327 	case 6:
7328 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7329 			return -EINVAL;
7330 
7331 		if (sk->sk_family != AF_INET6)
7332 			return -EINVAL;
7333 
7334 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th);
7335 		break;
7336 #endif /* CONFIG_IPV6 */
7337 
7338 	default:
7339 		return -EPROTONOSUPPORT;
7340 	}
7341 
7342 	if (ret > 0)
7343 		return 0;
7344 
7345 	return -ENOENT;
7346 #else
7347 	return -ENOTSUPP;
7348 #endif
7349 }
7350 
7351 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
7352 	.func		= bpf_tcp_check_syncookie,
7353 	.gpl_only	= true,
7354 	.pkt_access	= true,
7355 	.ret_type	= RET_INTEGER,
7356 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7357 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7358 	.arg3_type	= ARG_CONST_SIZE,
7359 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7360 	.arg5_type	= ARG_CONST_SIZE,
7361 };
7362 
7363 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
7364 	   struct tcphdr *, th, u32, th_len)
7365 {
7366 #ifdef CONFIG_SYN_COOKIES
7367 	u32 cookie;
7368 	u16 mss;
7369 
7370 	if (unlikely(!sk || th_len < sizeof(*th) || th_len != th->doff * 4))
7371 		return -EINVAL;
7372 
7373 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
7374 		return -EINVAL;
7375 
7376 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies))
7377 		return -ENOENT;
7378 
7379 	if (!th->syn || th->ack || th->fin || th->rst)
7380 		return -EINVAL;
7381 
7382 	if (unlikely(iph_len < sizeof(struct iphdr)))
7383 		return -EINVAL;
7384 
7385 	/* Both struct iphdr and struct ipv6hdr have the version field at the
7386 	 * same offset so we can cast to the shorter header (struct iphdr).
7387 	 */
7388 	switch (((struct iphdr *)iph)->version) {
7389 	case 4:
7390 		if (sk->sk_family == AF_INET6 && ipv6_only_sock(sk))
7391 			return -EINVAL;
7392 
7393 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
7394 		break;
7395 
7396 #if IS_BUILTIN(CONFIG_IPV6)
7397 	case 6:
7398 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
7399 			return -EINVAL;
7400 
7401 		if (sk->sk_family != AF_INET6)
7402 			return -EINVAL;
7403 
7404 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
7405 		break;
7406 #endif /* CONFIG_IPV6 */
7407 
7408 	default:
7409 		return -EPROTONOSUPPORT;
7410 	}
7411 	if (mss == 0)
7412 		return -ENOENT;
7413 
7414 	return cookie | ((u64)mss << 32);
7415 #else
7416 	return -EOPNOTSUPP;
7417 #endif /* CONFIG_SYN_COOKIES */
7418 }
7419 
7420 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
7421 	.func		= bpf_tcp_gen_syncookie,
7422 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
7423 	.pkt_access	= true,
7424 	.ret_type	= RET_INTEGER,
7425 	.arg1_type	= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7426 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7427 	.arg3_type	= ARG_CONST_SIZE,
7428 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7429 	.arg5_type	= ARG_CONST_SIZE,
7430 };
7431 
7432 BPF_CALL_3(bpf_sk_assign, struct sk_buff *, skb, struct sock *, sk, u64, flags)
7433 {
7434 	if (!sk || flags != 0)
7435 		return -EINVAL;
7436 	if (!skb_at_tc_ingress(skb))
7437 		return -EOPNOTSUPP;
7438 	if (unlikely(dev_net(skb->dev) != sock_net(sk)))
7439 		return -ENETUNREACH;
7440 	if (sk_unhashed(sk))
7441 		return -EOPNOTSUPP;
7442 	if (sk_is_refcounted(sk) &&
7443 	    unlikely(!refcount_inc_not_zero(&sk->sk_refcnt)))
7444 		return -ENOENT;
7445 
7446 	skb_orphan(skb);
7447 	skb->sk = sk;
7448 	skb->destructor = sock_pfree;
7449 
7450 	return 0;
7451 }
7452 
7453 static const struct bpf_func_proto bpf_sk_assign_proto = {
7454 	.func		= bpf_sk_assign,
7455 	.gpl_only	= false,
7456 	.ret_type	= RET_INTEGER,
7457 	.arg1_type      = ARG_PTR_TO_CTX,
7458 	.arg2_type      = ARG_PTR_TO_BTF_ID_SOCK_COMMON,
7459 	.arg3_type	= ARG_ANYTHING,
7460 };
7461 
7462 static const u8 *bpf_search_tcp_opt(const u8 *op, const u8 *opend,
7463 				    u8 search_kind, const u8 *magic,
7464 				    u8 magic_len, bool *eol)
7465 {
7466 	u8 kind, kind_len;
7467 
7468 	*eol = false;
7469 
7470 	while (op < opend) {
7471 		kind = op[0];
7472 
7473 		if (kind == TCPOPT_EOL) {
7474 			*eol = true;
7475 			return ERR_PTR(-ENOMSG);
7476 		} else if (kind == TCPOPT_NOP) {
7477 			op++;
7478 			continue;
7479 		}
7480 
7481 		if (opend - op < 2 || opend - op < op[1] || op[1] < 2)
7482 			/* Something is wrong in the received header.
7483 			 * Follow the TCP stack's tcp_parse_options()
7484 			 * and just bail here.
7485 			 */
7486 			return ERR_PTR(-EFAULT);
7487 
7488 		kind_len = op[1];
7489 		if (search_kind == kind) {
7490 			if (!magic_len)
7491 				return op;
7492 
7493 			if (magic_len > kind_len - 2)
7494 				return ERR_PTR(-ENOMSG);
7495 
7496 			if (!memcmp(&op[2], magic, magic_len))
7497 				return op;
7498 		}
7499 
7500 		op += kind_len;
7501 	}
7502 
7503 	return ERR_PTR(-ENOMSG);
7504 }
7505 
7506 BPF_CALL_4(bpf_sock_ops_load_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7507 	   void *, search_res, u32, len, u64, flags)
7508 {
7509 	bool eol, load_syn = flags & BPF_LOAD_HDR_OPT_TCP_SYN;
7510 	const u8 *op, *opend, *magic, *search = search_res;
7511 	u8 search_kind, search_len, copy_len, magic_len;
7512 	int ret;
7513 
7514 	/* 2 byte is the minimal option len except TCPOPT_NOP and
7515 	 * TCPOPT_EOL which are useless for the bpf prog to learn
7516 	 * and this helper disallow loading them also.
7517 	 */
7518 	if (len < 2 || flags & ~BPF_LOAD_HDR_OPT_TCP_SYN)
7519 		return -EINVAL;
7520 
7521 	search_kind = search[0];
7522 	search_len = search[1];
7523 
7524 	if (search_len > len || search_kind == TCPOPT_NOP ||
7525 	    search_kind == TCPOPT_EOL)
7526 		return -EINVAL;
7527 
7528 	if (search_kind == TCPOPT_EXP || search_kind == 253) {
7529 		/* 16 or 32 bit magic.  +2 for kind and kind length */
7530 		if (search_len != 4 && search_len != 6)
7531 			return -EINVAL;
7532 		magic = &search[2];
7533 		magic_len = search_len - 2;
7534 	} else {
7535 		if (search_len)
7536 			return -EINVAL;
7537 		magic = NULL;
7538 		magic_len = 0;
7539 	}
7540 
7541 	if (load_syn) {
7542 		ret = bpf_sock_ops_get_syn(bpf_sock, TCP_BPF_SYN, &op);
7543 		if (ret < 0)
7544 			return ret;
7545 
7546 		opend = op + ret;
7547 		op += sizeof(struct tcphdr);
7548 	} else {
7549 		if (!bpf_sock->skb ||
7550 		    bpf_sock->op == BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7551 			/* This bpf_sock->op cannot call this helper */
7552 			return -EPERM;
7553 
7554 		opend = bpf_sock->skb_data_end;
7555 		op = bpf_sock->skb->data + sizeof(struct tcphdr);
7556 	}
7557 
7558 	op = bpf_search_tcp_opt(op, opend, search_kind, magic, magic_len,
7559 				&eol);
7560 	if (IS_ERR(op))
7561 		return PTR_ERR(op);
7562 
7563 	copy_len = op[1];
7564 	ret = copy_len;
7565 	if (copy_len > len) {
7566 		ret = -ENOSPC;
7567 		copy_len = len;
7568 	}
7569 
7570 	memcpy(search_res, op, copy_len);
7571 	return ret;
7572 }
7573 
7574 static const struct bpf_func_proto bpf_sock_ops_load_hdr_opt_proto = {
7575 	.func		= bpf_sock_ops_load_hdr_opt,
7576 	.gpl_only	= false,
7577 	.ret_type	= RET_INTEGER,
7578 	.arg1_type	= ARG_PTR_TO_CTX,
7579 	.arg2_type	= ARG_PTR_TO_MEM,
7580 	.arg3_type	= ARG_CONST_SIZE,
7581 	.arg4_type	= ARG_ANYTHING,
7582 };
7583 
7584 BPF_CALL_4(bpf_sock_ops_store_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7585 	   const void *, from, u32, len, u64, flags)
7586 {
7587 	u8 new_kind, new_kind_len, magic_len = 0, *opend;
7588 	const u8 *op, *new_op, *magic = NULL;
7589 	struct sk_buff *skb;
7590 	bool eol;
7591 
7592 	if (bpf_sock->op != BPF_SOCK_OPS_WRITE_HDR_OPT_CB)
7593 		return -EPERM;
7594 
7595 	if (len < 2 || flags)
7596 		return -EINVAL;
7597 
7598 	new_op = from;
7599 	new_kind = new_op[0];
7600 	new_kind_len = new_op[1];
7601 
7602 	if (new_kind_len > len || new_kind == TCPOPT_NOP ||
7603 	    new_kind == TCPOPT_EOL)
7604 		return -EINVAL;
7605 
7606 	if (new_kind_len > bpf_sock->remaining_opt_len)
7607 		return -ENOSPC;
7608 
7609 	/* 253 is another experimental kind */
7610 	if (new_kind == TCPOPT_EXP || new_kind == 253)  {
7611 		if (new_kind_len < 4)
7612 			return -EINVAL;
7613 		/* Match for the 2 byte magic also.
7614 		 * RFC 6994: the magic could be 2 or 4 bytes.
7615 		 * Hence, matching by 2 byte only is on the
7616 		 * conservative side but it is the right
7617 		 * thing to do for the 'search-for-duplication'
7618 		 * purpose.
7619 		 */
7620 		magic = &new_op[2];
7621 		magic_len = 2;
7622 	}
7623 
7624 	/* Check for duplication */
7625 	skb = bpf_sock->skb;
7626 	op = skb->data + sizeof(struct tcphdr);
7627 	opend = bpf_sock->skb_data_end;
7628 
7629 	op = bpf_search_tcp_opt(op, opend, new_kind, magic, magic_len,
7630 				&eol);
7631 	if (!IS_ERR(op))
7632 		return -EEXIST;
7633 
7634 	if (PTR_ERR(op) != -ENOMSG)
7635 		return PTR_ERR(op);
7636 
7637 	if (eol)
7638 		/* The option has been ended.  Treat it as no more
7639 		 * header option can be written.
7640 		 */
7641 		return -ENOSPC;
7642 
7643 	/* No duplication found.  Store the header option. */
7644 	memcpy(opend, from, new_kind_len);
7645 
7646 	bpf_sock->remaining_opt_len -= new_kind_len;
7647 	bpf_sock->skb_data_end += new_kind_len;
7648 
7649 	return 0;
7650 }
7651 
7652 static const struct bpf_func_proto bpf_sock_ops_store_hdr_opt_proto = {
7653 	.func		= bpf_sock_ops_store_hdr_opt,
7654 	.gpl_only	= false,
7655 	.ret_type	= RET_INTEGER,
7656 	.arg1_type	= ARG_PTR_TO_CTX,
7657 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
7658 	.arg3_type	= ARG_CONST_SIZE,
7659 	.arg4_type	= ARG_ANYTHING,
7660 };
7661 
7662 BPF_CALL_3(bpf_sock_ops_reserve_hdr_opt, struct bpf_sock_ops_kern *, bpf_sock,
7663 	   u32, len, u64, flags)
7664 {
7665 	if (bpf_sock->op != BPF_SOCK_OPS_HDR_OPT_LEN_CB)
7666 		return -EPERM;
7667 
7668 	if (flags || len < 2)
7669 		return -EINVAL;
7670 
7671 	if (len > bpf_sock->remaining_opt_len)
7672 		return -ENOSPC;
7673 
7674 	bpf_sock->remaining_opt_len -= len;
7675 
7676 	return 0;
7677 }
7678 
7679 static const struct bpf_func_proto bpf_sock_ops_reserve_hdr_opt_proto = {
7680 	.func		= bpf_sock_ops_reserve_hdr_opt,
7681 	.gpl_only	= false,
7682 	.ret_type	= RET_INTEGER,
7683 	.arg1_type	= ARG_PTR_TO_CTX,
7684 	.arg2_type	= ARG_ANYTHING,
7685 	.arg3_type	= ARG_ANYTHING,
7686 };
7687 
7688 BPF_CALL_3(bpf_skb_set_tstamp, struct sk_buff *, skb,
7689 	   u64, tstamp, u32, tstamp_type)
7690 {
7691 	/* skb_clear_delivery_time() is done for inet protocol */
7692 	if (skb->protocol != htons(ETH_P_IP) &&
7693 	    skb->protocol != htons(ETH_P_IPV6))
7694 		return -EOPNOTSUPP;
7695 
7696 	switch (tstamp_type) {
7697 	case BPF_SKB_TSTAMP_DELIVERY_MONO:
7698 		if (!tstamp)
7699 			return -EINVAL;
7700 		skb->tstamp = tstamp;
7701 		skb->mono_delivery_time = 1;
7702 		break;
7703 	case BPF_SKB_TSTAMP_UNSPEC:
7704 		if (tstamp)
7705 			return -EINVAL;
7706 		skb->tstamp = 0;
7707 		skb->mono_delivery_time = 0;
7708 		break;
7709 	default:
7710 		return -EINVAL;
7711 	}
7712 
7713 	return 0;
7714 }
7715 
7716 static const struct bpf_func_proto bpf_skb_set_tstamp_proto = {
7717 	.func           = bpf_skb_set_tstamp,
7718 	.gpl_only       = false,
7719 	.ret_type       = RET_INTEGER,
7720 	.arg1_type      = ARG_PTR_TO_CTX,
7721 	.arg2_type      = ARG_ANYTHING,
7722 	.arg3_type      = ARG_ANYTHING,
7723 };
7724 
7725 #ifdef CONFIG_SYN_COOKIES
7726 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv4, struct iphdr *, iph,
7727 	   struct tcphdr *, th, u32, th_len)
7728 {
7729 	u32 cookie;
7730 	u16 mss;
7731 
7732 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7733 		return -EINVAL;
7734 
7735 	mss = tcp_parse_mss_option(th, 0) ?: TCP_MSS_DEFAULT;
7736 	cookie = __cookie_v4_init_sequence(iph, th, &mss);
7737 
7738 	return cookie | ((u64)mss << 32);
7739 }
7740 
7741 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv4_proto = {
7742 	.func		= bpf_tcp_raw_gen_syncookie_ipv4,
7743 	.gpl_only	= true, /* __cookie_v4_init_sequence() is GPL */
7744 	.pkt_access	= true,
7745 	.ret_type	= RET_INTEGER,
7746 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7747 	.arg1_size	= sizeof(struct iphdr),
7748 	.arg2_type	= ARG_PTR_TO_MEM,
7749 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7750 };
7751 
7752 BPF_CALL_3(bpf_tcp_raw_gen_syncookie_ipv6, struct ipv6hdr *, iph,
7753 	   struct tcphdr *, th, u32, th_len)
7754 {
7755 #if IS_BUILTIN(CONFIG_IPV6)
7756 	const u16 mss_clamp = IPV6_MIN_MTU - sizeof(struct tcphdr) -
7757 		sizeof(struct ipv6hdr);
7758 	u32 cookie;
7759 	u16 mss;
7760 
7761 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
7762 		return -EINVAL;
7763 
7764 	mss = tcp_parse_mss_option(th, 0) ?: mss_clamp;
7765 	cookie = __cookie_v6_init_sequence(iph, th, &mss);
7766 
7767 	return cookie | ((u64)mss << 32);
7768 #else
7769 	return -EPROTONOSUPPORT;
7770 #endif
7771 }
7772 
7773 static const struct bpf_func_proto bpf_tcp_raw_gen_syncookie_ipv6_proto = {
7774 	.func		= bpf_tcp_raw_gen_syncookie_ipv6,
7775 	.gpl_only	= true, /* __cookie_v6_init_sequence() is GPL */
7776 	.pkt_access	= true,
7777 	.ret_type	= RET_INTEGER,
7778 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7779 	.arg1_size	= sizeof(struct ipv6hdr),
7780 	.arg2_type	= ARG_PTR_TO_MEM,
7781 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
7782 };
7783 
7784 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv4, struct iphdr *, iph,
7785 	   struct tcphdr *, th)
7786 {
7787 	if (__cookie_v4_check(iph, th) > 0)
7788 		return 0;
7789 
7790 	return -EACCES;
7791 }
7792 
7793 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv4_proto = {
7794 	.func		= bpf_tcp_raw_check_syncookie_ipv4,
7795 	.gpl_only	= true, /* __cookie_v4_check is GPL */
7796 	.pkt_access	= true,
7797 	.ret_type	= RET_INTEGER,
7798 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7799 	.arg1_size	= sizeof(struct iphdr),
7800 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7801 	.arg2_size	= sizeof(struct tcphdr),
7802 };
7803 
7804 BPF_CALL_2(bpf_tcp_raw_check_syncookie_ipv6, struct ipv6hdr *, iph,
7805 	   struct tcphdr *, th)
7806 {
7807 #if IS_BUILTIN(CONFIG_IPV6)
7808 	if (__cookie_v6_check(iph, th) > 0)
7809 		return 0;
7810 
7811 	return -EACCES;
7812 #else
7813 	return -EPROTONOSUPPORT;
7814 #endif
7815 }
7816 
7817 static const struct bpf_func_proto bpf_tcp_raw_check_syncookie_ipv6_proto = {
7818 	.func		= bpf_tcp_raw_check_syncookie_ipv6,
7819 	.gpl_only	= true, /* __cookie_v6_check is GPL */
7820 	.pkt_access	= true,
7821 	.ret_type	= RET_INTEGER,
7822 	.arg1_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7823 	.arg1_size	= sizeof(struct ipv6hdr),
7824 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM,
7825 	.arg2_size	= sizeof(struct tcphdr),
7826 };
7827 #endif /* CONFIG_SYN_COOKIES */
7828 
7829 #endif /* CONFIG_INET */
7830 
7831 bool bpf_helper_changes_pkt_data(void *func)
7832 {
7833 	if (func == bpf_skb_vlan_push ||
7834 	    func == bpf_skb_vlan_pop ||
7835 	    func == bpf_skb_store_bytes ||
7836 	    func == bpf_skb_change_proto ||
7837 	    func == bpf_skb_change_head ||
7838 	    func == sk_skb_change_head ||
7839 	    func == bpf_skb_change_tail ||
7840 	    func == sk_skb_change_tail ||
7841 	    func == bpf_skb_adjust_room ||
7842 	    func == sk_skb_adjust_room ||
7843 	    func == bpf_skb_pull_data ||
7844 	    func == sk_skb_pull_data ||
7845 	    func == bpf_clone_redirect ||
7846 	    func == bpf_l3_csum_replace ||
7847 	    func == bpf_l4_csum_replace ||
7848 	    func == bpf_xdp_adjust_head ||
7849 	    func == bpf_xdp_adjust_meta ||
7850 	    func == bpf_msg_pull_data ||
7851 	    func == bpf_msg_push_data ||
7852 	    func == bpf_msg_pop_data ||
7853 	    func == bpf_xdp_adjust_tail ||
7854 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
7855 	    func == bpf_lwt_seg6_store_bytes ||
7856 	    func == bpf_lwt_seg6_adjust_srh ||
7857 	    func == bpf_lwt_seg6_action ||
7858 #endif
7859 #ifdef CONFIG_INET
7860 	    func == bpf_sock_ops_store_hdr_opt ||
7861 #endif
7862 	    func == bpf_lwt_in_push_encap ||
7863 	    func == bpf_lwt_xmit_push_encap)
7864 		return true;
7865 
7866 	return false;
7867 }
7868 
7869 const struct bpf_func_proto bpf_event_output_data_proto __weak;
7870 const struct bpf_func_proto bpf_sk_storage_get_cg_sock_proto __weak;
7871 
7872 static const struct bpf_func_proto *
7873 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7874 {
7875 	const struct bpf_func_proto *func_proto;
7876 
7877 	func_proto = cgroup_common_func_proto(func_id, prog);
7878 	if (func_proto)
7879 		return func_proto;
7880 
7881 	func_proto = cgroup_current_func_proto(func_id, prog);
7882 	if (func_proto)
7883 		return func_proto;
7884 
7885 	switch (func_id) {
7886 	case BPF_FUNC_get_socket_cookie:
7887 		return &bpf_get_socket_cookie_sock_proto;
7888 	case BPF_FUNC_get_netns_cookie:
7889 		return &bpf_get_netns_cookie_sock_proto;
7890 	case BPF_FUNC_perf_event_output:
7891 		return &bpf_event_output_data_proto;
7892 	case BPF_FUNC_sk_storage_get:
7893 		return &bpf_sk_storage_get_cg_sock_proto;
7894 	case BPF_FUNC_ktime_get_coarse_ns:
7895 		return &bpf_ktime_get_coarse_ns_proto;
7896 	default:
7897 		return bpf_base_func_proto(func_id);
7898 	}
7899 }
7900 
7901 static const struct bpf_func_proto *
7902 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7903 {
7904 	const struct bpf_func_proto *func_proto;
7905 
7906 	func_proto = cgroup_common_func_proto(func_id, prog);
7907 	if (func_proto)
7908 		return func_proto;
7909 
7910 	func_proto = cgroup_current_func_proto(func_id, prog);
7911 	if (func_proto)
7912 		return func_proto;
7913 
7914 	switch (func_id) {
7915 	case BPF_FUNC_bind:
7916 		switch (prog->expected_attach_type) {
7917 		case BPF_CGROUP_INET4_CONNECT:
7918 		case BPF_CGROUP_INET6_CONNECT:
7919 			return &bpf_bind_proto;
7920 		default:
7921 			return NULL;
7922 		}
7923 	case BPF_FUNC_get_socket_cookie:
7924 		return &bpf_get_socket_cookie_sock_addr_proto;
7925 	case BPF_FUNC_get_netns_cookie:
7926 		return &bpf_get_netns_cookie_sock_addr_proto;
7927 	case BPF_FUNC_perf_event_output:
7928 		return &bpf_event_output_data_proto;
7929 #ifdef CONFIG_INET
7930 	case BPF_FUNC_sk_lookup_tcp:
7931 		return &bpf_sock_addr_sk_lookup_tcp_proto;
7932 	case BPF_FUNC_sk_lookup_udp:
7933 		return &bpf_sock_addr_sk_lookup_udp_proto;
7934 	case BPF_FUNC_sk_release:
7935 		return &bpf_sk_release_proto;
7936 	case BPF_FUNC_skc_lookup_tcp:
7937 		return &bpf_sock_addr_skc_lookup_tcp_proto;
7938 #endif /* CONFIG_INET */
7939 	case BPF_FUNC_sk_storage_get:
7940 		return &bpf_sk_storage_get_proto;
7941 	case BPF_FUNC_sk_storage_delete:
7942 		return &bpf_sk_storage_delete_proto;
7943 	case BPF_FUNC_setsockopt:
7944 		switch (prog->expected_attach_type) {
7945 		case BPF_CGROUP_INET4_BIND:
7946 		case BPF_CGROUP_INET6_BIND:
7947 		case BPF_CGROUP_INET4_CONNECT:
7948 		case BPF_CGROUP_INET6_CONNECT:
7949 		case BPF_CGROUP_UNIX_CONNECT:
7950 		case BPF_CGROUP_UDP4_RECVMSG:
7951 		case BPF_CGROUP_UDP6_RECVMSG:
7952 		case BPF_CGROUP_UNIX_RECVMSG:
7953 		case BPF_CGROUP_UDP4_SENDMSG:
7954 		case BPF_CGROUP_UDP6_SENDMSG:
7955 		case BPF_CGROUP_UNIX_SENDMSG:
7956 		case BPF_CGROUP_INET4_GETPEERNAME:
7957 		case BPF_CGROUP_INET6_GETPEERNAME:
7958 		case BPF_CGROUP_UNIX_GETPEERNAME:
7959 		case BPF_CGROUP_INET4_GETSOCKNAME:
7960 		case BPF_CGROUP_INET6_GETSOCKNAME:
7961 		case BPF_CGROUP_UNIX_GETSOCKNAME:
7962 			return &bpf_sock_addr_setsockopt_proto;
7963 		default:
7964 			return NULL;
7965 		}
7966 	case BPF_FUNC_getsockopt:
7967 		switch (prog->expected_attach_type) {
7968 		case BPF_CGROUP_INET4_BIND:
7969 		case BPF_CGROUP_INET6_BIND:
7970 		case BPF_CGROUP_INET4_CONNECT:
7971 		case BPF_CGROUP_INET6_CONNECT:
7972 		case BPF_CGROUP_UNIX_CONNECT:
7973 		case BPF_CGROUP_UDP4_RECVMSG:
7974 		case BPF_CGROUP_UDP6_RECVMSG:
7975 		case BPF_CGROUP_UNIX_RECVMSG:
7976 		case BPF_CGROUP_UDP4_SENDMSG:
7977 		case BPF_CGROUP_UDP6_SENDMSG:
7978 		case BPF_CGROUP_UNIX_SENDMSG:
7979 		case BPF_CGROUP_INET4_GETPEERNAME:
7980 		case BPF_CGROUP_INET6_GETPEERNAME:
7981 		case BPF_CGROUP_UNIX_GETPEERNAME:
7982 		case BPF_CGROUP_INET4_GETSOCKNAME:
7983 		case BPF_CGROUP_INET6_GETSOCKNAME:
7984 		case BPF_CGROUP_UNIX_GETSOCKNAME:
7985 			return &bpf_sock_addr_getsockopt_proto;
7986 		default:
7987 			return NULL;
7988 		}
7989 	default:
7990 		return bpf_sk_base_func_proto(func_id);
7991 	}
7992 }
7993 
7994 static const struct bpf_func_proto *
7995 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
7996 {
7997 	switch (func_id) {
7998 	case BPF_FUNC_skb_load_bytes:
7999 		return &bpf_skb_load_bytes_proto;
8000 	case BPF_FUNC_skb_load_bytes_relative:
8001 		return &bpf_skb_load_bytes_relative_proto;
8002 	case BPF_FUNC_get_socket_cookie:
8003 		return &bpf_get_socket_cookie_proto;
8004 	case BPF_FUNC_get_socket_uid:
8005 		return &bpf_get_socket_uid_proto;
8006 	case BPF_FUNC_perf_event_output:
8007 		return &bpf_skb_event_output_proto;
8008 	default:
8009 		return bpf_sk_base_func_proto(func_id);
8010 	}
8011 }
8012 
8013 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
8014 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
8015 
8016 static const struct bpf_func_proto *
8017 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8018 {
8019 	const struct bpf_func_proto *func_proto;
8020 
8021 	func_proto = cgroup_common_func_proto(func_id, prog);
8022 	if (func_proto)
8023 		return func_proto;
8024 
8025 	switch (func_id) {
8026 	case BPF_FUNC_sk_fullsock:
8027 		return &bpf_sk_fullsock_proto;
8028 	case BPF_FUNC_sk_storage_get:
8029 		return &bpf_sk_storage_get_proto;
8030 	case BPF_FUNC_sk_storage_delete:
8031 		return &bpf_sk_storage_delete_proto;
8032 	case BPF_FUNC_perf_event_output:
8033 		return &bpf_skb_event_output_proto;
8034 #ifdef CONFIG_SOCK_CGROUP_DATA
8035 	case BPF_FUNC_skb_cgroup_id:
8036 		return &bpf_skb_cgroup_id_proto;
8037 	case BPF_FUNC_skb_ancestor_cgroup_id:
8038 		return &bpf_skb_ancestor_cgroup_id_proto;
8039 	case BPF_FUNC_sk_cgroup_id:
8040 		return &bpf_sk_cgroup_id_proto;
8041 	case BPF_FUNC_sk_ancestor_cgroup_id:
8042 		return &bpf_sk_ancestor_cgroup_id_proto;
8043 #endif
8044 #ifdef CONFIG_INET
8045 	case BPF_FUNC_sk_lookup_tcp:
8046 		return &bpf_sk_lookup_tcp_proto;
8047 	case BPF_FUNC_sk_lookup_udp:
8048 		return &bpf_sk_lookup_udp_proto;
8049 	case BPF_FUNC_sk_release:
8050 		return &bpf_sk_release_proto;
8051 	case BPF_FUNC_skc_lookup_tcp:
8052 		return &bpf_skc_lookup_tcp_proto;
8053 	case BPF_FUNC_tcp_sock:
8054 		return &bpf_tcp_sock_proto;
8055 	case BPF_FUNC_get_listener_sock:
8056 		return &bpf_get_listener_sock_proto;
8057 	case BPF_FUNC_skb_ecn_set_ce:
8058 		return &bpf_skb_ecn_set_ce_proto;
8059 #endif
8060 	default:
8061 		return sk_filter_func_proto(func_id, prog);
8062 	}
8063 }
8064 
8065 static const struct bpf_func_proto *
8066 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8067 {
8068 	switch (func_id) {
8069 	case BPF_FUNC_skb_store_bytes:
8070 		return &bpf_skb_store_bytes_proto;
8071 	case BPF_FUNC_skb_load_bytes:
8072 		return &bpf_skb_load_bytes_proto;
8073 	case BPF_FUNC_skb_load_bytes_relative:
8074 		return &bpf_skb_load_bytes_relative_proto;
8075 	case BPF_FUNC_skb_pull_data:
8076 		return &bpf_skb_pull_data_proto;
8077 	case BPF_FUNC_csum_diff:
8078 		return &bpf_csum_diff_proto;
8079 	case BPF_FUNC_csum_update:
8080 		return &bpf_csum_update_proto;
8081 	case BPF_FUNC_csum_level:
8082 		return &bpf_csum_level_proto;
8083 	case BPF_FUNC_l3_csum_replace:
8084 		return &bpf_l3_csum_replace_proto;
8085 	case BPF_FUNC_l4_csum_replace:
8086 		return &bpf_l4_csum_replace_proto;
8087 	case BPF_FUNC_clone_redirect:
8088 		return &bpf_clone_redirect_proto;
8089 	case BPF_FUNC_get_cgroup_classid:
8090 		return &bpf_get_cgroup_classid_proto;
8091 	case BPF_FUNC_skb_vlan_push:
8092 		return &bpf_skb_vlan_push_proto;
8093 	case BPF_FUNC_skb_vlan_pop:
8094 		return &bpf_skb_vlan_pop_proto;
8095 	case BPF_FUNC_skb_change_proto:
8096 		return &bpf_skb_change_proto_proto;
8097 	case BPF_FUNC_skb_change_type:
8098 		return &bpf_skb_change_type_proto;
8099 	case BPF_FUNC_skb_adjust_room:
8100 		return &bpf_skb_adjust_room_proto;
8101 	case BPF_FUNC_skb_change_tail:
8102 		return &bpf_skb_change_tail_proto;
8103 	case BPF_FUNC_skb_change_head:
8104 		return &bpf_skb_change_head_proto;
8105 	case BPF_FUNC_skb_get_tunnel_key:
8106 		return &bpf_skb_get_tunnel_key_proto;
8107 	case BPF_FUNC_skb_set_tunnel_key:
8108 		return bpf_get_skb_set_tunnel_proto(func_id);
8109 	case BPF_FUNC_skb_get_tunnel_opt:
8110 		return &bpf_skb_get_tunnel_opt_proto;
8111 	case BPF_FUNC_skb_set_tunnel_opt:
8112 		return bpf_get_skb_set_tunnel_proto(func_id);
8113 	case BPF_FUNC_redirect:
8114 		return &bpf_redirect_proto;
8115 	case BPF_FUNC_redirect_neigh:
8116 		return &bpf_redirect_neigh_proto;
8117 	case BPF_FUNC_redirect_peer:
8118 		return &bpf_redirect_peer_proto;
8119 	case BPF_FUNC_get_route_realm:
8120 		return &bpf_get_route_realm_proto;
8121 	case BPF_FUNC_get_hash_recalc:
8122 		return &bpf_get_hash_recalc_proto;
8123 	case BPF_FUNC_set_hash_invalid:
8124 		return &bpf_set_hash_invalid_proto;
8125 	case BPF_FUNC_set_hash:
8126 		return &bpf_set_hash_proto;
8127 	case BPF_FUNC_perf_event_output:
8128 		return &bpf_skb_event_output_proto;
8129 	case BPF_FUNC_get_smp_processor_id:
8130 		return &bpf_get_smp_processor_id_proto;
8131 	case BPF_FUNC_skb_under_cgroup:
8132 		return &bpf_skb_under_cgroup_proto;
8133 	case BPF_FUNC_get_socket_cookie:
8134 		return &bpf_get_socket_cookie_proto;
8135 	case BPF_FUNC_get_socket_uid:
8136 		return &bpf_get_socket_uid_proto;
8137 	case BPF_FUNC_fib_lookup:
8138 		return &bpf_skb_fib_lookup_proto;
8139 	case BPF_FUNC_check_mtu:
8140 		return &bpf_skb_check_mtu_proto;
8141 	case BPF_FUNC_sk_fullsock:
8142 		return &bpf_sk_fullsock_proto;
8143 	case BPF_FUNC_sk_storage_get:
8144 		return &bpf_sk_storage_get_proto;
8145 	case BPF_FUNC_sk_storage_delete:
8146 		return &bpf_sk_storage_delete_proto;
8147 #ifdef CONFIG_XFRM
8148 	case BPF_FUNC_skb_get_xfrm_state:
8149 		return &bpf_skb_get_xfrm_state_proto;
8150 #endif
8151 #ifdef CONFIG_CGROUP_NET_CLASSID
8152 	case BPF_FUNC_skb_cgroup_classid:
8153 		return &bpf_skb_cgroup_classid_proto;
8154 #endif
8155 #ifdef CONFIG_SOCK_CGROUP_DATA
8156 	case BPF_FUNC_skb_cgroup_id:
8157 		return &bpf_skb_cgroup_id_proto;
8158 	case BPF_FUNC_skb_ancestor_cgroup_id:
8159 		return &bpf_skb_ancestor_cgroup_id_proto;
8160 #endif
8161 #ifdef CONFIG_INET
8162 	case BPF_FUNC_sk_lookup_tcp:
8163 		return &bpf_tc_sk_lookup_tcp_proto;
8164 	case BPF_FUNC_sk_lookup_udp:
8165 		return &bpf_tc_sk_lookup_udp_proto;
8166 	case BPF_FUNC_sk_release:
8167 		return &bpf_sk_release_proto;
8168 	case BPF_FUNC_tcp_sock:
8169 		return &bpf_tcp_sock_proto;
8170 	case BPF_FUNC_get_listener_sock:
8171 		return &bpf_get_listener_sock_proto;
8172 	case BPF_FUNC_skc_lookup_tcp:
8173 		return &bpf_tc_skc_lookup_tcp_proto;
8174 	case BPF_FUNC_tcp_check_syncookie:
8175 		return &bpf_tcp_check_syncookie_proto;
8176 	case BPF_FUNC_skb_ecn_set_ce:
8177 		return &bpf_skb_ecn_set_ce_proto;
8178 	case BPF_FUNC_tcp_gen_syncookie:
8179 		return &bpf_tcp_gen_syncookie_proto;
8180 	case BPF_FUNC_sk_assign:
8181 		return &bpf_sk_assign_proto;
8182 	case BPF_FUNC_skb_set_tstamp:
8183 		return &bpf_skb_set_tstamp_proto;
8184 #ifdef CONFIG_SYN_COOKIES
8185 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8186 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8187 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8188 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8189 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8190 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8191 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8192 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8193 #endif
8194 #endif
8195 	default:
8196 		return bpf_sk_base_func_proto(func_id);
8197 	}
8198 }
8199 
8200 static const struct bpf_func_proto *
8201 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8202 {
8203 	switch (func_id) {
8204 	case BPF_FUNC_perf_event_output:
8205 		return &bpf_xdp_event_output_proto;
8206 	case BPF_FUNC_get_smp_processor_id:
8207 		return &bpf_get_smp_processor_id_proto;
8208 	case BPF_FUNC_csum_diff:
8209 		return &bpf_csum_diff_proto;
8210 	case BPF_FUNC_xdp_adjust_head:
8211 		return &bpf_xdp_adjust_head_proto;
8212 	case BPF_FUNC_xdp_adjust_meta:
8213 		return &bpf_xdp_adjust_meta_proto;
8214 	case BPF_FUNC_redirect:
8215 		return &bpf_xdp_redirect_proto;
8216 	case BPF_FUNC_redirect_map:
8217 		return &bpf_xdp_redirect_map_proto;
8218 	case BPF_FUNC_xdp_adjust_tail:
8219 		return &bpf_xdp_adjust_tail_proto;
8220 	case BPF_FUNC_xdp_get_buff_len:
8221 		return &bpf_xdp_get_buff_len_proto;
8222 	case BPF_FUNC_xdp_load_bytes:
8223 		return &bpf_xdp_load_bytes_proto;
8224 	case BPF_FUNC_xdp_store_bytes:
8225 		return &bpf_xdp_store_bytes_proto;
8226 	case BPF_FUNC_fib_lookup:
8227 		return &bpf_xdp_fib_lookup_proto;
8228 	case BPF_FUNC_check_mtu:
8229 		return &bpf_xdp_check_mtu_proto;
8230 #ifdef CONFIG_INET
8231 	case BPF_FUNC_sk_lookup_udp:
8232 		return &bpf_xdp_sk_lookup_udp_proto;
8233 	case BPF_FUNC_sk_lookup_tcp:
8234 		return &bpf_xdp_sk_lookup_tcp_proto;
8235 	case BPF_FUNC_sk_release:
8236 		return &bpf_sk_release_proto;
8237 	case BPF_FUNC_skc_lookup_tcp:
8238 		return &bpf_xdp_skc_lookup_tcp_proto;
8239 	case BPF_FUNC_tcp_check_syncookie:
8240 		return &bpf_tcp_check_syncookie_proto;
8241 	case BPF_FUNC_tcp_gen_syncookie:
8242 		return &bpf_tcp_gen_syncookie_proto;
8243 #ifdef CONFIG_SYN_COOKIES
8244 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv4:
8245 		return &bpf_tcp_raw_gen_syncookie_ipv4_proto;
8246 	case BPF_FUNC_tcp_raw_gen_syncookie_ipv6:
8247 		return &bpf_tcp_raw_gen_syncookie_ipv6_proto;
8248 	case BPF_FUNC_tcp_raw_check_syncookie_ipv4:
8249 		return &bpf_tcp_raw_check_syncookie_ipv4_proto;
8250 	case BPF_FUNC_tcp_raw_check_syncookie_ipv6:
8251 		return &bpf_tcp_raw_check_syncookie_ipv6_proto;
8252 #endif
8253 #endif
8254 	default:
8255 		return bpf_sk_base_func_proto(func_id);
8256 	}
8257 
8258 #if IS_MODULE(CONFIG_NF_CONNTRACK) && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES)
8259 	/* The nf_conn___init type is used in the NF_CONNTRACK kfuncs. The
8260 	 * kfuncs are defined in two different modules, and we want to be able
8261 	 * to use them interchangably with the same BTF type ID. Because modules
8262 	 * can't de-duplicate BTF IDs between each other, we need the type to be
8263 	 * referenced in the vmlinux BTF or the verifier will get confused about
8264 	 * the different types. So we add this dummy type reference which will
8265 	 * be included in vmlinux BTF, allowing both modules to refer to the
8266 	 * same type ID.
8267 	 */
8268 	BTF_TYPE_EMIT(struct nf_conn___init);
8269 #endif
8270 }
8271 
8272 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
8273 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
8274 
8275 static const struct bpf_func_proto *
8276 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8277 {
8278 	const struct bpf_func_proto *func_proto;
8279 
8280 	func_proto = cgroup_common_func_proto(func_id, prog);
8281 	if (func_proto)
8282 		return func_proto;
8283 
8284 	switch (func_id) {
8285 	case BPF_FUNC_setsockopt:
8286 		return &bpf_sock_ops_setsockopt_proto;
8287 	case BPF_FUNC_getsockopt:
8288 		return &bpf_sock_ops_getsockopt_proto;
8289 	case BPF_FUNC_sock_ops_cb_flags_set:
8290 		return &bpf_sock_ops_cb_flags_set_proto;
8291 	case BPF_FUNC_sock_map_update:
8292 		return &bpf_sock_map_update_proto;
8293 	case BPF_FUNC_sock_hash_update:
8294 		return &bpf_sock_hash_update_proto;
8295 	case BPF_FUNC_get_socket_cookie:
8296 		return &bpf_get_socket_cookie_sock_ops_proto;
8297 	case BPF_FUNC_perf_event_output:
8298 		return &bpf_event_output_data_proto;
8299 	case BPF_FUNC_sk_storage_get:
8300 		return &bpf_sk_storage_get_proto;
8301 	case BPF_FUNC_sk_storage_delete:
8302 		return &bpf_sk_storage_delete_proto;
8303 	case BPF_FUNC_get_netns_cookie:
8304 		return &bpf_get_netns_cookie_sock_ops_proto;
8305 #ifdef CONFIG_INET
8306 	case BPF_FUNC_load_hdr_opt:
8307 		return &bpf_sock_ops_load_hdr_opt_proto;
8308 	case BPF_FUNC_store_hdr_opt:
8309 		return &bpf_sock_ops_store_hdr_opt_proto;
8310 	case BPF_FUNC_reserve_hdr_opt:
8311 		return &bpf_sock_ops_reserve_hdr_opt_proto;
8312 	case BPF_FUNC_tcp_sock:
8313 		return &bpf_tcp_sock_proto;
8314 #endif /* CONFIG_INET */
8315 	default:
8316 		return bpf_sk_base_func_proto(func_id);
8317 	}
8318 }
8319 
8320 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
8321 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
8322 
8323 static const struct bpf_func_proto *
8324 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8325 {
8326 	switch (func_id) {
8327 	case BPF_FUNC_msg_redirect_map:
8328 		return &bpf_msg_redirect_map_proto;
8329 	case BPF_FUNC_msg_redirect_hash:
8330 		return &bpf_msg_redirect_hash_proto;
8331 	case BPF_FUNC_msg_apply_bytes:
8332 		return &bpf_msg_apply_bytes_proto;
8333 	case BPF_FUNC_msg_cork_bytes:
8334 		return &bpf_msg_cork_bytes_proto;
8335 	case BPF_FUNC_msg_pull_data:
8336 		return &bpf_msg_pull_data_proto;
8337 	case BPF_FUNC_msg_push_data:
8338 		return &bpf_msg_push_data_proto;
8339 	case BPF_FUNC_msg_pop_data:
8340 		return &bpf_msg_pop_data_proto;
8341 	case BPF_FUNC_perf_event_output:
8342 		return &bpf_event_output_data_proto;
8343 	case BPF_FUNC_get_current_uid_gid:
8344 		return &bpf_get_current_uid_gid_proto;
8345 	case BPF_FUNC_get_current_pid_tgid:
8346 		return &bpf_get_current_pid_tgid_proto;
8347 	case BPF_FUNC_sk_storage_get:
8348 		return &bpf_sk_storage_get_proto;
8349 	case BPF_FUNC_sk_storage_delete:
8350 		return &bpf_sk_storage_delete_proto;
8351 	case BPF_FUNC_get_netns_cookie:
8352 		return &bpf_get_netns_cookie_sk_msg_proto;
8353 #ifdef CONFIG_CGROUP_NET_CLASSID
8354 	case BPF_FUNC_get_cgroup_classid:
8355 		return &bpf_get_cgroup_classid_curr_proto;
8356 #endif
8357 	default:
8358 		return bpf_sk_base_func_proto(func_id);
8359 	}
8360 }
8361 
8362 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
8363 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
8364 
8365 static const struct bpf_func_proto *
8366 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8367 {
8368 	switch (func_id) {
8369 	case BPF_FUNC_skb_store_bytes:
8370 		return &bpf_skb_store_bytes_proto;
8371 	case BPF_FUNC_skb_load_bytes:
8372 		return &bpf_skb_load_bytes_proto;
8373 	case BPF_FUNC_skb_pull_data:
8374 		return &sk_skb_pull_data_proto;
8375 	case BPF_FUNC_skb_change_tail:
8376 		return &sk_skb_change_tail_proto;
8377 	case BPF_FUNC_skb_change_head:
8378 		return &sk_skb_change_head_proto;
8379 	case BPF_FUNC_skb_adjust_room:
8380 		return &sk_skb_adjust_room_proto;
8381 	case BPF_FUNC_get_socket_cookie:
8382 		return &bpf_get_socket_cookie_proto;
8383 	case BPF_FUNC_get_socket_uid:
8384 		return &bpf_get_socket_uid_proto;
8385 	case BPF_FUNC_sk_redirect_map:
8386 		return &bpf_sk_redirect_map_proto;
8387 	case BPF_FUNC_sk_redirect_hash:
8388 		return &bpf_sk_redirect_hash_proto;
8389 	case BPF_FUNC_perf_event_output:
8390 		return &bpf_skb_event_output_proto;
8391 #ifdef CONFIG_INET
8392 	case BPF_FUNC_sk_lookup_tcp:
8393 		return &bpf_sk_lookup_tcp_proto;
8394 	case BPF_FUNC_sk_lookup_udp:
8395 		return &bpf_sk_lookup_udp_proto;
8396 	case BPF_FUNC_sk_release:
8397 		return &bpf_sk_release_proto;
8398 	case BPF_FUNC_skc_lookup_tcp:
8399 		return &bpf_skc_lookup_tcp_proto;
8400 #endif
8401 	default:
8402 		return bpf_sk_base_func_proto(func_id);
8403 	}
8404 }
8405 
8406 static const struct bpf_func_proto *
8407 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8408 {
8409 	switch (func_id) {
8410 	case BPF_FUNC_skb_load_bytes:
8411 		return &bpf_flow_dissector_load_bytes_proto;
8412 	default:
8413 		return bpf_sk_base_func_proto(func_id);
8414 	}
8415 }
8416 
8417 static const struct bpf_func_proto *
8418 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8419 {
8420 	switch (func_id) {
8421 	case BPF_FUNC_skb_load_bytes:
8422 		return &bpf_skb_load_bytes_proto;
8423 	case BPF_FUNC_skb_pull_data:
8424 		return &bpf_skb_pull_data_proto;
8425 	case BPF_FUNC_csum_diff:
8426 		return &bpf_csum_diff_proto;
8427 	case BPF_FUNC_get_cgroup_classid:
8428 		return &bpf_get_cgroup_classid_proto;
8429 	case BPF_FUNC_get_route_realm:
8430 		return &bpf_get_route_realm_proto;
8431 	case BPF_FUNC_get_hash_recalc:
8432 		return &bpf_get_hash_recalc_proto;
8433 	case BPF_FUNC_perf_event_output:
8434 		return &bpf_skb_event_output_proto;
8435 	case BPF_FUNC_get_smp_processor_id:
8436 		return &bpf_get_smp_processor_id_proto;
8437 	case BPF_FUNC_skb_under_cgroup:
8438 		return &bpf_skb_under_cgroup_proto;
8439 	default:
8440 		return bpf_sk_base_func_proto(func_id);
8441 	}
8442 }
8443 
8444 static const struct bpf_func_proto *
8445 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8446 {
8447 	switch (func_id) {
8448 	case BPF_FUNC_lwt_push_encap:
8449 		return &bpf_lwt_in_push_encap_proto;
8450 	default:
8451 		return lwt_out_func_proto(func_id, prog);
8452 	}
8453 }
8454 
8455 static const struct bpf_func_proto *
8456 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8457 {
8458 	switch (func_id) {
8459 	case BPF_FUNC_skb_get_tunnel_key:
8460 		return &bpf_skb_get_tunnel_key_proto;
8461 	case BPF_FUNC_skb_set_tunnel_key:
8462 		return bpf_get_skb_set_tunnel_proto(func_id);
8463 	case BPF_FUNC_skb_get_tunnel_opt:
8464 		return &bpf_skb_get_tunnel_opt_proto;
8465 	case BPF_FUNC_skb_set_tunnel_opt:
8466 		return bpf_get_skb_set_tunnel_proto(func_id);
8467 	case BPF_FUNC_redirect:
8468 		return &bpf_redirect_proto;
8469 	case BPF_FUNC_clone_redirect:
8470 		return &bpf_clone_redirect_proto;
8471 	case BPF_FUNC_skb_change_tail:
8472 		return &bpf_skb_change_tail_proto;
8473 	case BPF_FUNC_skb_change_head:
8474 		return &bpf_skb_change_head_proto;
8475 	case BPF_FUNC_skb_store_bytes:
8476 		return &bpf_skb_store_bytes_proto;
8477 	case BPF_FUNC_csum_update:
8478 		return &bpf_csum_update_proto;
8479 	case BPF_FUNC_csum_level:
8480 		return &bpf_csum_level_proto;
8481 	case BPF_FUNC_l3_csum_replace:
8482 		return &bpf_l3_csum_replace_proto;
8483 	case BPF_FUNC_l4_csum_replace:
8484 		return &bpf_l4_csum_replace_proto;
8485 	case BPF_FUNC_set_hash_invalid:
8486 		return &bpf_set_hash_invalid_proto;
8487 	case BPF_FUNC_lwt_push_encap:
8488 		return &bpf_lwt_xmit_push_encap_proto;
8489 	default:
8490 		return lwt_out_func_proto(func_id, prog);
8491 	}
8492 }
8493 
8494 static const struct bpf_func_proto *
8495 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
8496 {
8497 	switch (func_id) {
8498 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
8499 	case BPF_FUNC_lwt_seg6_store_bytes:
8500 		return &bpf_lwt_seg6_store_bytes_proto;
8501 	case BPF_FUNC_lwt_seg6_action:
8502 		return &bpf_lwt_seg6_action_proto;
8503 	case BPF_FUNC_lwt_seg6_adjust_srh:
8504 		return &bpf_lwt_seg6_adjust_srh_proto;
8505 #endif
8506 	default:
8507 		return lwt_out_func_proto(func_id, prog);
8508 	}
8509 }
8510 
8511 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
8512 				    const struct bpf_prog *prog,
8513 				    struct bpf_insn_access_aux *info)
8514 {
8515 	const int size_default = sizeof(__u32);
8516 
8517 	if (off < 0 || off >= sizeof(struct __sk_buff))
8518 		return false;
8519 
8520 	/* The verifier guarantees that size > 0. */
8521 	if (off % size != 0)
8522 		return false;
8523 
8524 	switch (off) {
8525 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8526 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
8527 			return false;
8528 		break;
8529 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
8530 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
8531 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
8532 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
8533 	case bpf_ctx_range(struct __sk_buff, data):
8534 	case bpf_ctx_range(struct __sk_buff, data_meta):
8535 	case bpf_ctx_range(struct __sk_buff, data_end):
8536 		if (size != size_default)
8537 			return false;
8538 		break;
8539 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
8540 		return false;
8541 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8542 		if (type == BPF_WRITE || size != sizeof(__u64))
8543 			return false;
8544 		break;
8545 	case bpf_ctx_range(struct __sk_buff, tstamp):
8546 		if (size != sizeof(__u64))
8547 			return false;
8548 		break;
8549 	case offsetof(struct __sk_buff, sk):
8550 		if (type == BPF_WRITE || size != sizeof(__u64))
8551 			return false;
8552 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
8553 		break;
8554 	case offsetof(struct __sk_buff, tstamp_type):
8555 		return false;
8556 	case offsetofend(struct __sk_buff, tstamp_type) ... offsetof(struct __sk_buff, hwtstamp) - 1:
8557 		/* Explicitly prohibit access to padding in __sk_buff. */
8558 		return false;
8559 	default:
8560 		/* Only narrow read access allowed for now. */
8561 		if (type == BPF_WRITE) {
8562 			if (size != size_default)
8563 				return false;
8564 		} else {
8565 			bpf_ctx_record_field_size(info, size_default);
8566 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
8567 				return false;
8568 		}
8569 	}
8570 
8571 	return true;
8572 }
8573 
8574 static bool sk_filter_is_valid_access(int off, int size,
8575 				      enum bpf_access_type type,
8576 				      const struct bpf_prog *prog,
8577 				      struct bpf_insn_access_aux *info)
8578 {
8579 	switch (off) {
8580 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8581 	case bpf_ctx_range(struct __sk_buff, data):
8582 	case bpf_ctx_range(struct __sk_buff, data_meta):
8583 	case bpf_ctx_range(struct __sk_buff, data_end):
8584 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8585 	case bpf_ctx_range(struct __sk_buff, tstamp):
8586 	case bpf_ctx_range(struct __sk_buff, wire_len):
8587 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8588 		return false;
8589 	}
8590 
8591 	if (type == BPF_WRITE) {
8592 		switch (off) {
8593 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8594 			break;
8595 		default:
8596 			return false;
8597 		}
8598 	}
8599 
8600 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8601 }
8602 
8603 static bool cg_skb_is_valid_access(int off, int size,
8604 				   enum bpf_access_type type,
8605 				   const struct bpf_prog *prog,
8606 				   struct bpf_insn_access_aux *info)
8607 {
8608 	switch (off) {
8609 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8610 	case bpf_ctx_range(struct __sk_buff, data_meta):
8611 	case bpf_ctx_range(struct __sk_buff, wire_len):
8612 		return false;
8613 	case bpf_ctx_range(struct __sk_buff, data):
8614 	case bpf_ctx_range(struct __sk_buff, data_end):
8615 		if (!bpf_capable())
8616 			return false;
8617 		break;
8618 	}
8619 
8620 	if (type == BPF_WRITE) {
8621 		switch (off) {
8622 		case bpf_ctx_range(struct __sk_buff, mark):
8623 		case bpf_ctx_range(struct __sk_buff, priority):
8624 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8625 			break;
8626 		case bpf_ctx_range(struct __sk_buff, tstamp):
8627 			if (!bpf_capable())
8628 				return false;
8629 			break;
8630 		default:
8631 			return false;
8632 		}
8633 	}
8634 
8635 	switch (off) {
8636 	case bpf_ctx_range(struct __sk_buff, data):
8637 		info->reg_type = PTR_TO_PACKET;
8638 		break;
8639 	case bpf_ctx_range(struct __sk_buff, data_end):
8640 		info->reg_type = PTR_TO_PACKET_END;
8641 		break;
8642 	}
8643 
8644 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8645 }
8646 
8647 static bool lwt_is_valid_access(int off, int size,
8648 				enum bpf_access_type type,
8649 				const struct bpf_prog *prog,
8650 				struct bpf_insn_access_aux *info)
8651 {
8652 	switch (off) {
8653 	case bpf_ctx_range(struct __sk_buff, tc_classid):
8654 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8655 	case bpf_ctx_range(struct __sk_buff, data_meta):
8656 	case bpf_ctx_range(struct __sk_buff, tstamp):
8657 	case bpf_ctx_range(struct __sk_buff, wire_len):
8658 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
8659 		return false;
8660 	}
8661 
8662 	if (type == BPF_WRITE) {
8663 		switch (off) {
8664 		case bpf_ctx_range(struct __sk_buff, mark):
8665 		case bpf_ctx_range(struct __sk_buff, priority):
8666 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8667 			break;
8668 		default:
8669 			return false;
8670 		}
8671 	}
8672 
8673 	switch (off) {
8674 	case bpf_ctx_range(struct __sk_buff, data):
8675 		info->reg_type = PTR_TO_PACKET;
8676 		break;
8677 	case bpf_ctx_range(struct __sk_buff, data_end):
8678 		info->reg_type = PTR_TO_PACKET_END;
8679 		break;
8680 	}
8681 
8682 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8683 }
8684 
8685 /* Attach type specific accesses */
8686 static bool __sock_filter_check_attach_type(int off,
8687 					    enum bpf_access_type access_type,
8688 					    enum bpf_attach_type attach_type)
8689 {
8690 	switch (off) {
8691 	case offsetof(struct bpf_sock, bound_dev_if):
8692 	case offsetof(struct bpf_sock, mark):
8693 	case offsetof(struct bpf_sock, priority):
8694 		switch (attach_type) {
8695 		case BPF_CGROUP_INET_SOCK_CREATE:
8696 		case BPF_CGROUP_INET_SOCK_RELEASE:
8697 			goto full_access;
8698 		default:
8699 			return false;
8700 		}
8701 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8702 		switch (attach_type) {
8703 		case BPF_CGROUP_INET4_POST_BIND:
8704 			goto read_only;
8705 		default:
8706 			return false;
8707 		}
8708 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8709 		switch (attach_type) {
8710 		case BPF_CGROUP_INET6_POST_BIND:
8711 			goto read_only;
8712 		default:
8713 			return false;
8714 		}
8715 	case bpf_ctx_range(struct bpf_sock, src_port):
8716 		switch (attach_type) {
8717 		case BPF_CGROUP_INET4_POST_BIND:
8718 		case BPF_CGROUP_INET6_POST_BIND:
8719 			goto read_only;
8720 		default:
8721 			return false;
8722 		}
8723 	}
8724 read_only:
8725 	return access_type == BPF_READ;
8726 full_access:
8727 	return true;
8728 }
8729 
8730 bool bpf_sock_common_is_valid_access(int off, int size,
8731 				     enum bpf_access_type type,
8732 				     struct bpf_insn_access_aux *info)
8733 {
8734 	switch (off) {
8735 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
8736 		return false;
8737 	default:
8738 		return bpf_sock_is_valid_access(off, size, type, info);
8739 	}
8740 }
8741 
8742 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
8743 			      struct bpf_insn_access_aux *info)
8744 {
8745 	const int size_default = sizeof(__u32);
8746 	int field_size;
8747 
8748 	if (off < 0 || off >= sizeof(struct bpf_sock))
8749 		return false;
8750 	if (off % size != 0)
8751 		return false;
8752 
8753 	switch (off) {
8754 	case offsetof(struct bpf_sock, state):
8755 	case offsetof(struct bpf_sock, family):
8756 	case offsetof(struct bpf_sock, type):
8757 	case offsetof(struct bpf_sock, protocol):
8758 	case offsetof(struct bpf_sock, src_port):
8759 	case offsetof(struct bpf_sock, rx_queue_mapping):
8760 	case bpf_ctx_range(struct bpf_sock, src_ip4):
8761 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
8762 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
8763 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
8764 		bpf_ctx_record_field_size(info, size_default);
8765 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8766 	case bpf_ctx_range(struct bpf_sock, dst_port):
8767 		field_size = size == size_default ?
8768 			size_default : sizeof_field(struct bpf_sock, dst_port);
8769 		bpf_ctx_record_field_size(info, field_size);
8770 		return bpf_ctx_narrow_access_ok(off, size, field_size);
8771 	case offsetofend(struct bpf_sock, dst_port) ...
8772 	     offsetof(struct bpf_sock, dst_ip4) - 1:
8773 		return false;
8774 	}
8775 
8776 	return size == size_default;
8777 }
8778 
8779 static bool sock_filter_is_valid_access(int off, int size,
8780 					enum bpf_access_type type,
8781 					const struct bpf_prog *prog,
8782 					struct bpf_insn_access_aux *info)
8783 {
8784 	if (!bpf_sock_is_valid_access(off, size, type, info))
8785 		return false;
8786 	return __sock_filter_check_attach_type(off, type,
8787 					       prog->expected_attach_type);
8788 }
8789 
8790 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
8791 			     const struct bpf_prog *prog)
8792 {
8793 	/* Neither direct read nor direct write requires any preliminary
8794 	 * action.
8795 	 */
8796 	return 0;
8797 }
8798 
8799 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
8800 				const struct bpf_prog *prog, int drop_verdict)
8801 {
8802 	struct bpf_insn *insn = insn_buf;
8803 
8804 	if (!direct_write)
8805 		return 0;
8806 
8807 	/* if (!skb->cloned)
8808 	 *       goto start;
8809 	 *
8810 	 * (Fast-path, otherwise approximation that we might be
8811 	 *  a clone, do the rest in helper.)
8812 	 */
8813 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET);
8814 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
8815 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
8816 
8817 	/* ret = bpf_skb_pull_data(skb, 0); */
8818 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
8819 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
8820 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
8821 			       BPF_FUNC_skb_pull_data);
8822 	/* if (!ret)
8823 	 *      goto restore;
8824 	 * return TC_ACT_SHOT;
8825 	 */
8826 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
8827 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
8828 	*insn++ = BPF_EXIT_INSN();
8829 
8830 	/* restore: */
8831 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
8832 	/* start: */
8833 	*insn++ = prog->insnsi[0];
8834 
8835 	return insn - insn_buf;
8836 }
8837 
8838 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
8839 			  struct bpf_insn *insn_buf)
8840 {
8841 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
8842 	struct bpf_insn *insn = insn_buf;
8843 
8844 	if (!indirect) {
8845 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
8846 	} else {
8847 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
8848 		if (orig->imm)
8849 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
8850 	}
8851 	/* We're guaranteed here that CTX is in R6. */
8852 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
8853 
8854 	switch (BPF_SIZE(orig->code)) {
8855 	case BPF_B:
8856 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
8857 		break;
8858 	case BPF_H:
8859 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
8860 		break;
8861 	case BPF_W:
8862 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
8863 		break;
8864 	}
8865 
8866 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
8867 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
8868 	*insn++ = BPF_EXIT_INSN();
8869 
8870 	return insn - insn_buf;
8871 }
8872 
8873 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
8874 			       const struct bpf_prog *prog)
8875 {
8876 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
8877 }
8878 
8879 static bool tc_cls_act_is_valid_access(int off, int size,
8880 				       enum bpf_access_type type,
8881 				       const struct bpf_prog *prog,
8882 				       struct bpf_insn_access_aux *info)
8883 {
8884 	if (type == BPF_WRITE) {
8885 		switch (off) {
8886 		case bpf_ctx_range(struct __sk_buff, mark):
8887 		case bpf_ctx_range(struct __sk_buff, tc_index):
8888 		case bpf_ctx_range(struct __sk_buff, priority):
8889 		case bpf_ctx_range(struct __sk_buff, tc_classid):
8890 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
8891 		case bpf_ctx_range(struct __sk_buff, tstamp):
8892 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
8893 			break;
8894 		default:
8895 			return false;
8896 		}
8897 	}
8898 
8899 	switch (off) {
8900 	case bpf_ctx_range(struct __sk_buff, data):
8901 		info->reg_type = PTR_TO_PACKET;
8902 		break;
8903 	case bpf_ctx_range(struct __sk_buff, data_meta):
8904 		info->reg_type = PTR_TO_PACKET_META;
8905 		break;
8906 	case bpf_ctx_range(struct __sk_buff, data_end):
8907 		info->reg_type = PTR_TO_PACKET_END;
8908 		break;
8909 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
8910 		return false;
8911 	case offsetof(struct __sk_buff, tstamp_type):
8912 		/* The convert_ctx_access() on reading and writing
8913 		 * __sk_buff->tstamp depends on whether the bpf prog
8914 		 * has used __sk_buff->tstamp_type or not.
8915 		 * Thus, we need to set prog->tstamp_type_access
8916 		 * earlier during is_valid_access() here.
8917 		 */
8918 		((struct bpf_prog *)prog)->tstamp_type_access = 1;
8919 		return size == sizeof(__u8);
8920 	}
8921 
8922 	return bpf_skb_is_valid_access(off, size, type, prog, info);
8923 }
8924 
8925 DEFINE_MUTEX(nf_conn_btf_access_lock);
8926 EXPORT_SYMBOL_GPL(nf_conn_btf_access_lock);
8927 
8928 int (*nfct_btf_struct_access)(struct bpf_verifier_log *log,
8929 			      const struct bpf_reg_state *reg,
8930 			      int off, int size);
8931 EXPORT_SYMBOL_GPL(nfct_btf_struct_access);
8932 
8933 static int tc_cls_act_btf_struct_access(struct bpf_verifier_log *log,
8934 					const struct bpf_reg_state *reg,
8935 					int off, int size)
8936 {
8937 	int ret = -EACCES;
8938 
8939 	mutex_lock(&nf_conn_btf_access_lock);
8940 	if (nfct_btf_struct_access)
8941 		ret = nfct_btf_struct_access(log, reg, off, size);
8942 	mutex_unlock(&nf_conn_btf_access_lock);
8943 
8944 	return ret;
8945 }
8946 
8947 static bool __is_valid_xdp_access(int off, int size)
8948 {
8949 	if (off < 0 || off >= sizeof(struct xdp_md))
8950 		return false;
8951 	if (off % size != 0)
8952 		return false;
8953 	if (size != sizeof(__u32))
8954 		return false;
8955 
8956 	return true;
8957 }
8958 
8959 static bool xdp_is_valid_access(int off, int size,
8960 				enum bpf_access_type type,
8961 				const struct bpf_prog *prog,
8962 				struct bpf_insn_access_aux *info)
8963 {
8964 	if (prog->expected_attach_type != BPF_XDP_DEVMAP) {
8965 		switch (off) {
8966 		case offsetof(struct xdp_md, egress_ifindex):
8967 			return false;
8968 		}
8969 	}
8970 
8971 	if (type == BPF_WRITE) {
8972 		if (bpf_prog_is_offloaded(prog->aux)) {
8973 			switch (off) {
8974 			case offsetof(struct xdp_md, rx_queue_index):
8975 				return __is_valid_xdp_access(off, size);
8976 			}
8977 		}
8978 		return false;
8979 	}
8980 
8981 	switch (off) {
8982 	case offsetof(struct xdp_md, data):
8983 		info->reg_type = PTR_TO_PACKET;
8984 		break;
8985 	case offsetof(struct xdp_md, data_meta):
8986 		info->reg_type = PTR_TO_PACKET_META;
8987 		break;
8988 	case offsetof(struct xdp_md, data_end):
8989 		info->reg_type = PTR_TO_PACKET_END;
8990 		break;
8991 	}
8992 
8993 	return __is_valid_xdp_access(off, size);
8994 }
8995 
8996 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act)
8997 {
8998 	const u32 act_max = XDP_REDIRECT;
8999 
9000 	pr_warn_once("%s XDP return value %u on prog %s (id %d) dev %s, expect packet loss!\n",
9001 		     act > act_max ? "Illegal" : "Driver unsupported",
9002 		     act, prog->aux->name, prog->aux->id, dev ? dev->name : "N/A");
9003 }
9004 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
9005 
9006 static int xdp_btf_struct_access(struct bpf_verifier_log *log,
9007 				 const struct bpf_reg_state *reg,
9008 				 int off, int size)
9009 {
9010 	int ret = -EACCES;
9011 
9012 	mutex_lock(&nf_conn_btf_access_lock);
9013 	if (nfct_btf_struct_access)
9014 		ret = nfct_btf_struct_access(log, reg, off, size);
9015 	mutex_unlock(&nf_conn_btf_access_lock);
9016 
9017 	return ret;
9018 }
9019 
9020 static bool sock_addr_is_valid_access(int off, int size,
9021 				      enum bpf_access_type type,
9022 				      const struct bpf_prog *prog,
9023 				      struct bpf_insn_access_aux *info)
9024 {
9025 	const int size_default = sizeof(__u32);
9026 
9027 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
9028 		return false;
9029 	if (off % size != 0)
9030 		return false;
9031 
9032 	/* Disallow access to fields not belonging to the attach type's address
9033 	 * family.
9034 	 */
9035 	switch (off) {
9036 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9037 		switch (prog->expected_attach_type) {
9038 		case BPF_CGROUP_INET4_BIND:
9039 		case BPF_CGROUP_INET4_CONNECT:
9040 		case BPF_CGROUP_INET4_GETPEERNAME:
9041 		case BPF_CGROUP_INET4_GETSOCKNAME:
9042 		case BPF_CGROUP_UDP4_SENDMSG:
9043 		case BPF_CGROUP_UDP4_RECVMSG:
9044 			break;
9045 		default:
9046 			return false;
9047 		}
9048 		break;
9049 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9050 		switch (prog->expected_attach_type) {
9051 		case BPF_CGROUP_INET6_BIND:
9052 		case BPF_CGROUP_INET6_CONNECT:
9053 		case BPF_CGROUP_INET6_GETPEERNAME:
9054 		case BPF_CGROUP_INET6_GETSOCKNAME:
9055 		case BPF_CGROUP_UDP6_SENDMSG:
9056 		case BPF_CGROUP_UDP6_RECVMSG:
9057 			break;
9058 		default:
9059 			return false;
9060 		}
9061 		break;
9062 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9063 		switch (prog->expected_attach_type) {
9064 		case BPF_CGROUP_UDP4_SENDMSG:
9065 			break;
9066 		default:
9067 			return false;
9068 		}
9069 		break;
9070 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9071 				msg_src_ip6[3]):
9072 		switch (prog->expected_attach_type) {
9073 		case BPF_CGROUP_UDP6_SENDMSG:
9074 			break;
9075 		default:
9076 			return false;
9077 		}
9078 		break;
9079 	}
9080 
9081 	switch (off) {
9082 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
9083 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
9084 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
9085 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
9086 				msg_src_ip6[3]):
9087 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
9088 		if (type == BPF_READ) {
9089 			bpf_ctx_record_field_size(info, size_default);
9090 
9091 			if (bpf_ctx_wide_access_ok(off, size,
9092 						   struct bpf_sock_addr,
9093 						   user_ip6))
9094 				return true;
9095 
9096 			if (bpf_ctx_wide_access_ok(off, size,
9097 						   struct bpf_sock_addr,
9098 						   msg_src_ip6))
9099 				return true;
9100 
9101 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
9102 				return false;
9103 		} else {
9104 			if (bpf_ctx_wide_access_ok(off, size,
9105 						   struct bpf_sock_addr,
9106 						   user_ip6))
9107 				return true;
9108 
9109 			if (bpf_ctx_wide_access_ok(off, size,
9110 						   struct bpf_sock_addr,
9111 						   msg_src_ip6))
9112 				return true;
9113 
9114 			if (size != size_default)
9115 				return false;
9116 		}
9117 		break;
9118 	case offsetof(struct bpf_sock_addr, sk):
9119 		if (type != BPF_READ)
9120 			return false;
9121 		if (size != sizeof(__u64))
9122 			return false;
9123 		info->reg_type = PTR_TO_SOCKET;
9124 		break;
9125 	default:
9126 		if (type == BPF_READ) {
9127 			if (size != size_default)
9128 				return false;
9129 		} else {
9130 			return false;
9131 		}
9132 	}
9133 
9134 	return true;
9135 }
9136 
9137 static bool sock_ops_is_valid_access(int off, int size,
9138 				     enum bpf_access_type type,
9139 				     const struct bpf_prog *prog,
9140 				     struct bpf_insn_access_aux *info)
9141 {
9142 	const int size_default = sizeof(__u32);
9143 
9144 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
9145 		return false;
9146 
9147 	/* The verifier guarantees that size > 0. */
9148 	if (off % size != 0)
9149 		return false;
9150 
9151 	if (type == BPF_WRITE) {
9152 		switch (off) {
9153 		case offsetof(struct bpf_sock_ops, reply):
9154 		case offsetof(struct bpf_sock_ops, sk_txhash):
9155 			if (size != size_default)
9156 				return false;
9157 			break;
9158 		default:
9159 			return false;
9160 		}
9161 	} else {
9162 		switch (off) {
9163 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
9164 					bytes_acked):
9165 			if (size != sizeof(__u64))
9166 				return false;
9167 			break;
9168 		case offsetof(struct bpf_sock_ops, sk):
9169 			if (size != sizeof(__u64))
9170 				return false;
9171 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
9172 			break;
9173 		case offsetof(struct bpf_sock_ops, skb_data):
9174 			if (size != sizeof(__u64))
9175 				return false;
9176 			info->reg_type = PTR_TO_PACKET;
9177 			break;
9178 		case offsetof(struct bpf_sock_ops, skb_data_end):
9179 			if (size != sizeof(__u64))
9180 				return false;
9181 			info->reg_type = PTR_TO_PACKET_END;
9182 			break;
9183 		case offsetof(struct bpf_sock_ops, skb_tcp_flags):
9184 			bpf_ctx_record_field_size(info, size_default);
9185 			return bpf_ctx_narrow_access_ok(off, size,
9186 							size_default);
9187 		case offsetof(struct bpf_sock_ops, skb_hwtstamp):
9188 			if (size != sizeof(__u64))
9189 				return false;
9190 			break;
9191 		default:
9192 			if (size != size_default)
9193 				return false;
9194 			break;
9195 		}
9196 	}
9197 
9198 	return true;
9199 }
9200 
9201 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
9202 			   const struct bpf_prog *prog)
9203 {
9204 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
9205 }
9206 
9207 static bool sk_skb_is_valid_access(int off, int size,
9208 				   enum bpf_access_type type,
9209 				   const struct bpf_prog *prog,
9210 				   struct bpf_insn_access_aux *info)
9211 {
9212 	switch (off) {
9213 	case bpf_ctx_range(struct __sk_buff, tc_classid):
9214 	case bpf_ctx_range(struct __sk_buff, data_meta):
9215 	case bpf_ctx_range(struct __sk_buff, tstamp):
9216 	case bpf_ctx_range(struct __sk_buff, wire_len):
9217 	case bpf_ctx_range(struct __sk_buff, hwtstamp):
9218 		return false;
9219 	}
9220 
9221 	if (type == BPF_WRITE) {
9222 		switch (off) {
9223 		case bpf_ctx_range(struct __sk_buff, tc_index):
9224 		case bpf_ctx_range(struct __sk_buff, priority):
9225 			break;
9226 		default:
9227 			return false;
9228 		}
9229 	}
9230 
9231 	switch (off) {
9232 	case bpf_ctx_range(struct __sk_buff, mark):
9233 		return false;
9234 	case bpf_ctx_range(struct __sk_buff, data):
9235 		info->reg_type = PTR_TO_PACKET;
9236 		break;
9237 	case bpf_ctx_range(struct __sk_buff, data_end):
9238 		info->reg_type = PTR_TO_PACKET_END;
9239 		break;
9240 	}
9241 
9242 	return bpf_skb_is_valid_access(off, size, type, prog, info);
9243 }
9244 
9245 static bool sk_msg_is_valid_access(int off, int size,
9246 				   enum bpf_access_type type,
9247 				   const struct bpf_prog *prog,
9248 				   struct bpf_insn_access_aux *info)
9249 {
9250 	if (type == BPF_WRITE)
9251 		return false;
9252 
9253 	if (off % size != 0)
9254 		return false;
9255 
9256 	switch (off) {
9257 	case offsetof(struct sk_msg_md, data):
9258 		info->reg_type = PTR_TO_PACKET;
9259 		if (size != sizeof(__u64))
9260 			return false;
9261 		break;
9262 	case offsetof(struct sk_msg_md, data_end):
9263 		info->reg_type = PTR_TO_PACKET_END;
9264 		if (size != sizeof(__u64))
9265 			return false;
9266 		break;
9267 	case offsetof(struct sk_msg_md, sk):
9268 		if (size != sizeof(__u64))
9269 			return false;
9270 		info->reg_type = PTR_TO_SOCKET;
9271 		break;
9272 	case bpf_ctx_range(struct sk_msg_md, family):
9273 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
9274 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
9275 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
9276 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
9277 	case bpf_ctx_range(struct sk_msg_md, remote_port):
9278 	case bpf_ctx_range(struct sk_msg_md, local_port):
9279 	case bpf_ctx_range(struct sk_msg_md, size):
9280 		if (size != sizeof(__u32))
9281 			return false;
9282 		break;
9283 	default:
9284 		return false;
9285 	}
9286 	return true;
9287 }
9288 
9289 static bool flow_dissector_is_valid_access(int off, int size,
9290 					   enum bpf_access_type type,
9291 					   const struct bpf_prog *prog,
9292 					   struct bpf_insn_access_aux *info)
9293 {
9294 	const int size_default = sizeof(__u32);
9295 
9296 	if (off < 0 || off >= sizeof(struct __sk_buff))
9297 		return false;
9298 
9299 	if (type == BPF_WRITE)
9300 		return false;
9301 
9302 	switch (off) {
9303 	case bpf_ctx_range(struct __sk_buff, data):
9304 		if (size != size_default)
9305 			return false;
9306 		info->reg_type = PTR_TO_PACKET;
9307 		return true;
9308 	case bpf_ctx_range(struct __sk_buff, data_end):
9309 		if (size != size_default)
9310 			return false;
9311 		info->reg_type = PTR_TO_PACKET_END;
9312 		return true;
9313 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
9314 		if (size != sizeof(__u64))
9315 			return false;
9316 		info->reg_type = PTR_TO_FLOW_KEYS;
9317 		return true;
9318 	default:
9319 		return false;
9320 	}
9321 }
9322 
9323 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
9324 					     const struct bpf_insn *si,
9325 					     struct bpf_insn *insn_buf,
9326 					     struct bpf_prog *prog,
9327 					     u32 *target_size)
9328 
9329 {
9330 	struct bpf_insn *insn = insn_buf;
9331 
9332 	switch (si->off) {
9333 	case offsetof(struct __sk_buff, data):
9334 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
9335 				      si->dst_reg, si->src_reg,
9336 				      offsetof(struct bpf_flow_dissector, data));
9337 		break;
9338 
9339 	case offsetof(struct __sk_buff, data_end):
9340 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
9341 				      si->dst_reg, si->src_reg,
9342 				      offsetof(struct bpf_flow_dissector, data_end));
9343 		break;
9344 
9345 	case offsetof(struct __sk_buff, flow_keys):
9346 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
9347 				      si->dst_reg, si->src_reg,
9348 				      offsetof(struct bpf_flow_dissector, flow_keys));
9349 		break;
9350 	}
9351 
9352 	return insn - insn_buf;
9353 }
9354 
9355 static struct bpf_insn *bpf_convert_tstamp_type_read(const struct bpf_insn *si,
9356 						     struct bpf_insn *insn)
9357 {
9358 	__u8 value_reg = si->dst_reg;
9359 	__u8 skb_reg = si->src_reg;
9360 	/* AX is needed because src_reg and dst_reg could be the same */
9361 	__u8 tmp_reg = BPF_REG_AX;
9362 
9363 	*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg,
9364 			      SKB_BF_MONO_TC_OFFSET);
9365 	*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg,
9366 				SKB_MONO_DELIVERY_TIME_MASK, 2);
9367 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_UNSPEC);
9368 	*insn++ = BPF_JMP_A(1);
9369 	*insn++ = BPF_MOV32_IMM(value_reg, BPF_SKB_TSTAMP_DELIVERY_MONO);
9370 
9371 	return insn;
9372 }
9373 
9374 static struct bpf_insn *bpf_convert_shinfo_access(__u8 dst_reg, __u8 skb_reg,
9375 						  struct bpf_insn *insn)
9376 {
9377 	/* si->dst_reg = skb_shinfo(SKB); */
9378 #ifdef NET_SKBUFF_DATA_USES_OFFSET
9379 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9380 			      BPF_REG_AX, skb_reg,
9381 			      offsetof(struct sk_buff, end));
9382 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
9383 			      dst_reg, skb_reg,
9384 			      offsetof(struct sk_buff, head));
9385 	*insn++ = BPF_ALU64_REG(BPF_ADD, dst_reg, BPF_REG_AX);
9386 #else
9387 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
9388 			      dst_reg, skb_reg,
9389 			      offsetof(struct sk_buff, end));
9390 #endif
9391 
9392 	return insn;
9393 }
9394 
9395 static struct bpf_insn *bpf_convert_tstamp_read(const struct bpf_prog *prog,
9396 						const struct bpf_insn *si,
9397 						struct bpf_insn *insn)
9398 {
9399 	__u8 value_reg = si->dst_reg;
9400 	__u8 skb_reg = si->src_reg;
9401 
9402 #ifdef CONFIG_NET_XGRESS
9403 	/* If the tstamp_type is read,
9404 	 * the bpf prog is aware the tstamp could have delivery time.
9405 	 * Thus, read skb->tstamp as is if tstamp_type_access is true.
9406 	 */
9407 	if (!prog->tstamp_type_access) {
9408 		/* AX is needed because src_reg and dst_reg could be the same */
9409 		__u8 tmp_reg = BPF_REG_AX;
9410 
9411 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9412 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg,
9413 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK);
9414 		*insn++ = BPF_JMP32_IMM(BPF_JNE, tmp_reg,
9415 					TC_AT_INGRESS_MASK | SKB_MONO_DELIVERY_TIME_MASK, 2);
9416 		/* skb->tc_at_ingress && skb->mono_delivery_time,
9417 		 * read 0 as the (rcv) timestamp.
9418 		 */
9419 		*insn++ = BPF_MOV64_IMM(value_reg, 0);
9420 		*insn++ = BPF_JMP_A(1);
9421 	}
9422 #endif
9423 
9424 	*insn++ = BPF_LDX_MEM(BPF_DW, value_reg, skb_reg,
9425 			      offsetof(struct sk_buff, tstamp));
9426 	return insn;
9427 }
9428 
9429 static struct bpf_insn *bpf_convert_tstamp_write(const struct bpf_prog *prog,
9430 						 const struct bpf_insn *si,
9431 						 struct bpf_insn *insn)
9432 {
9433 	__u8 value_reg = si->src_reg;
9434 	__u8 skb_reg = si->dst_reg;
9435 
9436 #ifdef CONFIG_NET_XGRESS
9437 	/* If the tstamp_type is read,
9438 	 * the bpf prog is aware the tstamp could have delivery time.
9439 	 * Thus, write skb->tstamp as is if tstamp_type_access is true.
9440 	 * Otherwise, writing at ingress will have to clear the
9441 	 * mono_delivery_time bit also.
9442 	 */
9443 	if (!prog->tstamp_type_access) {
9444 		__u8 tmp_reg = BPF_REG_AX;
9445 
9446 		*insn++ = BPF_LDX_MEM(BPF_B, tmp_reg, skb_reg, SKB_BF_MONO_TC_OFFSET);
9447 		/* Writing __sk_buff->tstamp as ingress, goto <clear> */
9448 		*insn++ = BPF_JMP32_IMM(BPF_JSET, tmp_reg, TC_AT_INGRESS_MASK, 1);
9449 		/* goto <store> */
9450 		*insn++ = BPF_JMP_A(2);
9451 		/* <clear>: mono_delivery_time */
9452 		*insn++ = BPF_ALU32_IMM(BPF_AND, tmp_reg, ~SKB_MONO_DELIVERY_TIME_MASK);
9453 		*insn++ = BPF_STX_MEM(BPF_B, skb_reg, tmp_reg, SKB_BF_MONO_TC_OFFSET);
9454 	}
9455 #endif
9456 
9457 	/* <store>: skb->tstamp = tstamp */
9458 	*insn++ = BPF_RAW_INSN(BPF_CLASS(si->code) | BPF_DW | BPF_MEM,
9459 			       skb_reg, value_reg, offsetof(struct sk_buff, tstamp), si->imm);
9460 	return insn;
9461 }
9462 
9463 #define BPF_EMIT_STORE(size, si, off)					\
9464 	BPF_RAW_INSN(BPF_CLASS((si)->code) | (size) | BPF_MEM,		\
9465 		     (si)->dst_reg, (si)->src_reg, (off), (si)->imm)
9466 
9467 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
9468 				  const struct bpf_insn *si,
9469 				  struct bpf_insn *insn_buf,
9470 				  struct bpf_prog *prog, u32 *target_size)
9471 {
9472 	struct bpf_insn *insn = insn_buf;
9473 	int off;
9474 
9475 	switch (si->off) {
9476 	case offsetof(struct __sk_buff, len):
9477 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9478 				      bpf_target_off(struct sk_buff, len, 4,
9479 						     target_size));
9480 		break;
9481 
9482 	case offsetof(struct __sk_buff, protocol):
9483 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9484 				      bpf_target_off(struct sk_buff, protocol, 2,
9485 						     target_size));
9486 		break;
9487 
9488 	case offsetof(struct __sk_buff, vlan_proto):
9489 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9490 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
9491 						     target_size));
9492 		break;
9493 
9494 	case offsetof(struct __sk_buff, priority):
9495 		if (type == BPF_WRITE)
9496 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9497 						 bpf_target_off(struct sk_buff, priority, 4,
9498 								target_size));
9499 		else
9500 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9501 					      bpf_target_off(struct sk_buff, priority, 4,
9502 							     target_size));
9503 		break;
9504 
9505 	case offsetof(struct __sk_buff, ingress_ifindex):
9506 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9507 				      bpf_target_off(struct sk_buff, skb_iif, 4,
9508 						     target_size));
9509 		break;
9510 
9511 	case offsetof(struct __sk_buff, ifindex):
9512 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
9513 				      si->dst_reg, si->src_reg,
9514 				      offsetof(struct sk_buff, dev));
9515 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9516 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9517 				      bpf_target_off(struct net_device, ifindex, 4,
9518 						     target_size));
9519 		break;
9520 
9521 	case offsetof(struct __sk_buff, hash):
9522 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9523 				      bpf_target_off(struct sk_buff, hash, 4,
9524 						     target_size));
9525 		break;
9526 
9527 	case offsetof(struct __sk_buff, mark):
9528 		if (type == BPF_WRITE)
9529 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9530 						 bpf_target_off(struct sk_buff, mark, 4,
9531 								target_size));
9532 		else
9533 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9534 					      bpf_target_off(struct sk_buff, mark, 4,
9535 							     target_size));
9536 		break;
9537 
9538 	case offsetof(struct __sk_buff, pkt_type):
9539 		*target_size = 1;
9540 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
9541 				      PKT_TYPE_OFFSET);
9542 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
9543 #ifdef __BIG_ENDIAN_BITFIELD
9544 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
9545 #endif
9546 		break;
9547 
9548 	case offsetof(struct __sk_buff, queue_mapping):
9549 		if (type == BPF_WRITE) {
9550 			u32 off = bpf_target_off(struct sk_buff, queue_mapping, 2, target_size);
9551 
9552 			if (BPF_CLASS(si->code) == BPF_ST && si->imm >= NO_QUEUE_MAPPING) {
9553 				*insn++ = BPF_JMP_A(0); /* noop */
9554 				break;
9555 			}
9556 
9557 			if (BPF_CLASS(si->code) == BPF_STX)
9558 				*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
9559 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9560 		} else {
9561 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9562 					      bpf_target_off(struct sk_buff,
9563 							     queue_mapping,
9564 							     2, target_size));
9565 		}
9566 		break;
9567 
9568 	case offsetof(struct __sk_buff, vlan_present):
9569 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9570 				      bpf_target_off(struct sk_buff,
9571 						     vlan_all, 4, target_size));
9572 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
9573 		*insn++ = BPF_ALU32_IMM(BPF_MOV, si->dst_reg, 1);
9574 		break;
9575 
9576 	case offsetof(struct __sk_buff, vlan_tci):
9577 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9578 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
9579 						     target_size));
9580 		break;
9581 
9582 	case offsetof(struct __sk_buff, cb[0]) ...
9583 	     offsetofend(struct __sk_buff, cb[4]) - 1:
9584 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
9585 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
9586 			      offsetof(struct qdisc_skb_cb, data)) %
9587 			     sizeof(__u64));
9588 
9589 		prog->cb_access = 1;
9590 		off  = si->off;
9591 		off -= offsetof(struct __sk_buff, cb[0]);
9592 		off += offsetof(struct sk_buff, cb);
9593 		off += offsetof(struct qdisc_skb_cb, data);
9594 		if (type == BPF_WRITE)
9595 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
9596 		else
9597 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
9598 					      si->src_reg, off);
9599 		break;
9600 
9601 	case offsetof(struct __sk_buff, tc_classid):
9602 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
9603 
9604 		off  = si->off;
9605 		off -= offsetof(struct __sk_buff, tc_classid);
9606 		off += offsetof(struct sk_buff, cb);
9607 		off += offsetof(struct qdisc_skb_cb, tc_classid);
9608 		*target_size = 2;
9609 		if (type == BPF_WRITE)
9610 			*insn++ = BPF_EMIT_STORE(BPF_H, si, off);
9611 		else
9612 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
9613 					      si->src_reg, off);
9614 		break;
9615 
9616 	case offsetof(struct __sk_buff, data):
9617 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
9618 				      si->dst_reg, si->src_reg,
9619 				      offsetof(struct sk_buff, data));
9620 		break;
9621 
9622 	case offsetof(struct __sk_buff, data_meta):
9623 		off  = si->off;
9624 		off -= offsetof(struct __sk_buff, data_meta);
9625 		off += offsetof(struct sk_buff, cb);
9626 		off += offsetof(struct bpf_skb_data_end, data_meta);
9627 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9628 				      si->src_reg, off);
9629 		break;
9630 
9631 	case offsetof(struct __sk_buff, data_end):
9632 		off  = si->off;
9633 		off -= offsetof(struct __sk_buff, data_end);
9634 		off += offsetof(struct sk_buff, cb);
9635 		off += offsetof(struct bpf_skb_data_end, data_end);
9636 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
9637 				      si->src_reg, off);
9638 		break;
9639 
9640 	case offsetof(struct __sk_buff, tc_index):
9641 #ifdef CONFIG_NET_SCHED
9642 		if (type == BPF_WRITE)
9643 			*insn++ = BPF_EMIT_STORE(BPF_H, si,
9644 						 bpf_target_off(struct sk_buff, tc_index, 2,
9645 								target_size));
9646 		else
9647 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
9648 					      bpf_target_off(struct sk_buff, tc_index, 2,
9649 							     target_size));
9650 #else
9651 		*target_size = 2;
9652 		if (type == BPF_WRITE)
9653 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
9654 		else
9655 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9656 #endif
9657 		break;
9658 
9659 	case offsetof(struct __sk_buff, napi_id):
9660 #if defined(CONFIG_NET_RX_BUSY_POLL)
9661 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9662 				      bpf_target_off(struct sk_buff, napi_id, 4,
9663 						     target_size));
9664 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
9665 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9666 #else
9667 		*target_size = 4;
9668 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
9669 #endif
9670 		break;
9671 	case offsetof(struct __sk_buff, family):
9672 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
9673 
9674 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9675 				      si->dst_reg, si->src_reg,
9676 				      offsetof(struct sk_buff, sk));
9677 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9678 				      bpf_target_off(struct sock_common,
9679 						     skc_family,
9680 						     2, target_size));
9681 		break;
9682 	case offsetof(struct __sk_buff, remote_ip4):
9683 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
9684 
9685 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9686 				      si->dst_reg, si->src_reg,
9687 				      offsetof(struct sk_buff, sk));
9688 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9689 				      bpf_target_off(struct sock_common,
9690 						     skc_daddr,
9691 						     4, target_size));
9692 		break;
9693 	case offsetof(struct __sk_buff, local_ip4):
9694 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9695 					  skc_rcv_saddr) != 4);
9696 
9697 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9698 				      si->dst_reg, si->src_reg,
9699 				      offsetof(struct sk_buff, sk));
9700 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9701 				      bpf_target_off(struct sock_common,
9702 						     skc_rcv_saddr,
9703 						     4, target_size));
9704 		break;
9705 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
9706 	     offsetof(struct __sk_buff, remote_ip6[3]):
9707 #if IS_ENABLED(CONFIG_IPV6)
9708 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9709 					  skc_v6_daddr.s6_addr32[0]) != 4);
9710 
9711 		off = si->off;
9712 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
9713 
9714 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9715 				      si->dst_reg, si->src_reg,
9716 				      offsetof(struct sk_buff, sk));
9717 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9718 				      offsetof(struct sock_common,
9719 					       skc_v6_daddr.s6_addr32[0]) +
9720 				      off);
9721 #else
9722 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9723 #endif
9724 		break;
9725 	case offsetof(struct __sk_buff, local_ip6[0]) ...
9726 	     offsetof(struct __sk_buff, local_ip6[3]):
9727 #if IS_ENABLED(CONFIG_IPV6)
9728 		BUILD_BUG_ON(sizeof_field(struct sock_common,
9729 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
9730 
9731 		off = si->off;
9732 		off -= offsetof(struct __sk_buff, local_ip6[0]);
9733 
9734 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9735 				      si->dst_reg, si->src_reg,
9736 				      offsetof(struct sk_buff, sk));
9737 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
9738 				      offsetof(struct sock_common,
9739 					       skc_v6_rcv_saddr.s6_addr32[0]) +
9740 				      off);
9741 #else
9742 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9743 #endif
9744 		break;
9745 
9746 	case offsetof(struct __sk_buff, remote_port):
9747 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
9748 
9749 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9750 				      si->dst_reg, si->src_reg,
9751 				      offsetof(struct sk_buff, sk));
9752 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9753 				      bpf_target_off(struct sock_common,
9754 						     skc_dport,
9755 						     2, target_size));
9756 #ifndef __BIG_ENDIAN_BITFIELD
9757 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
9758 #endif
9759 		break;
9760 
9761 	case offsetof(struct __sk_buff, local_port):
9762 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
9763 
9764 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9765 				      si->dst_reg, si->src_reg,
9766 				      offsetof(struct sk_buff, sk));
9767 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
9768 				      bpf_target_off(struct sock_common,
9769 						     skc_num, 2, target_size));
9770 		break;
9771 
9772 	case offsetof(struct __sk_buff, tstamp):
9773 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
9774 
9775 		if (type == BPF_WRITE)
9776 			insn = bpf_convert_tstamp_write(prog, si, insn);
9777 		else
9778 			insn = bpf_convert_tstamp_read(prog, si, insn);
9779 		break;
9780 
9781 	case offsetof(struct __sk_buff, tstamp_type):
9782 		insn = bpf_convert_tstamp_type_read(si, insn);
9783 		break;
9784 
9785 	case offsetof(struct __sk_buff, gso_segs):
9786 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9787 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
9788 				      si->dst_reg, si->dst_reg,
9789 				      bpf_target_off(struct skb_shared_info,
9790 						     gso_segs, 2,
9791 						     target_size));
9792 		break;
9793 	case offsetof(struct __sk_buff, gso_size):
9794 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9795 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_size),
9796 				      si->dst_reg, si->dst_reg,
9797 				      bpf_target_off(struct skb_shared_info,
9798 						     gso_size, 2,
9799 						     target_size));
9800 		break;
9801 	case offsetof(struct __sk_buff, wire_len):
9802 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
9803 
9804 		off = si->off;
9805 		off -= offsetof(struct __sk_buff, wire_len);
9806 		off += offsetof(struct sk_buff, cb);
9807 		off += offsetof(struct qdisc_skb_cb, pkt_len);
9808 		*target_size = 4;
9809 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
9810 		break;
9811 
9812 	case offsetof(struct __sk_buff, sk):
9813 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
9814 				      si->dst_reg, si->src_reg,
9815 				      offsetof(struct sk_buff, sk));
9816 		break;
9817 	case offsetof(struct __sk_buff, hwtstamp):
9818 		BUILD_BUG_ON(sizeof_field(struct skb_shared_hwtstamps, hwtstamp) != 8);
9819 		BUILD_BUG_ON(offsetof(struct skb_shared_hwtstamps, hwtstamp) != 0);
9820 
9821 		insn = bpf_convert_shinfo_access(si->dst_reg, si->src_reg, insn);
9822 		*insn++ = BPF_LDX_MEM(BPF_DW,
9823 				      si->dst_reg, si->dst_reg,
9824 				      bpf_target_off(struct skb_shared_info,
9825 						     hwtstamps, 8,
9826 						     target_size));
9827 		break;
9828 	}
9829 
9830 	return insn - insn_buf;
9831 }
9832 
9833 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
9834 				const struct bpf_insn *si,
9835 				struct bpf_insn *insn_buf,
9836 				struct bpf_prog *prog, u32 *target_size)
9837 {
9838 	struct bpf_insn *insn = insn_buf;
9839 	int off;
9840 
9841 	switch (si->off) {
9842 	case offsetof(struct bpf_sock, bound_dev_if):
9843 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
9844 
9845 		if (type == BPF_WRITE)
9846 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9847 						 offsetof(struct sock, sk_bound_dev_if));
9848 		else
9849 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9850 				      offsetof(struct sock, sk_bound_dev_if));
9851 		break;
9852 
9853 	case offsetof(struct bpf_sock, mark):
9854 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
9855 
9856 		if (type == BPF_WRITE)
9857 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9858 						 offsetof(struct sock, sk_mark));
9859 		else
9860 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9861 				      offsetof(struct sock, sk_mark));
9862 		break;
9863 
9864 	case offsetof(struct bpf_sock, priority):
9865 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
9866 
9867 		if (type == BPF_WRITE)
9868 			*insn++ = BPF_EMIT_STORE(BPF_W, si,
9869 						 offsetof(struct sock, sk_priority));
9870 		else
9871 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
9872 				      offsetof(struct sock, sk_priority));
9873 		break;
9874 
9875 	case offsetof(struct bpf_sock, family):
9876 		*insn++ = BPF_LDX_MEM(
9877 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
9878 			si->dst_reg, si->src_reg,
9879 			bpf_target_off(struct sock_common,
9880 				       skc_family,
9881 				       sizeof_field(struct sock_common,
9882 						    skc_family),
9883 				       target_size));
9884 		break;
9885 
9886 	case offsetof(struct bpf_sock, type):
9887 		*insn++ = BPF_LDX_MEM(
9888 			BPF_FIELD_SIZEOF(struct sock, sk_type),
9889 			si->dst_reg, si->src_reg,
9890 			bpf_target_off(struct sock, sk_type,
9891 				       sizeof_field(struct sock, sk_type),
9892 				       target_size));
9893 		break;
9894 
9895 	case offsetof(struct bpf_sock, protocol):
9896 		*insn++ = BPF_LDX_MEM(
9897 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
9898 			si->dst_reg, si->src_reg,
9899 			bpf_target_off(struct sock, sk_protocol,
9900 				       sizeof_field(struct sock, sk_protocol),
9901 				       target_size));
9902 		break;
9903 
9904 	case offsetof(struct bpf_sock, src_ip4):
9905 		*insn++ = BPF_LDX_MEM(
9906 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9907 			bpf_target_off(struct sock_common, skc_rcv_saddr,
9908 				       sizeof_field(struct sock_common,
9909 						    skc_rcv_saddr),
9910 				       target_size));
9911 		break;
9912 
9913 	case offsetof(struct bpf_sock, dst_ip4):
9914 		*insn++ = BPF_LDX_MEM(
9915 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9916 			bpf_target_off(struct sock_common, skc_daddr,
9917 				       sizeof_field(struct sock_common,
9918 						    skc_daddr),
9919 				       target_size));
9920 		break;
9921 
9922 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
9923 #if IS_ENABLED(CONFIG_IPV6)
9924 		off = si->off;
9925 		off -= offsetof(struct bpf_sock, src_ip6[0]);
9926 		*insn++ = BPF_LDX_MEM(
9927 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9928 			bpf_target_off(
9929 				struct sock_common,
9930 				skc_v6_rcv_saddr.s6_addr32[0],
9931 				sizeof_field(struct sock_common,
9932 					     skc_v6_rcv_saddr.s6_addr32[0]),
9933 				target_size) + off);
9934 #else
9935 		(void)off;
9936 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9937 #endif
9938 		break;
9939 
9940 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
9941 #if IS_ENABLED(CONFIG_IPV6)
9942 		off = si->off;
9943 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
9944 		*insn++ = BPF_LDX_MEM(
9945 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
9946 			bpf_target_off(struct sock_common,
9947 				       skc_v6_daddr.s6_addr32[0],
9948 				       sizeof_field(struct sock_common,
9949 						    skc_v6_daddr.s6_addr32[0]),
9950 				       target_size) + off);
9951 #else
9952 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
9953 		*target_size = 4;
9954 #endif
9955 		break;
9956 
9957 	case offsetof(struct bpf_sock, src_port):
9958 		*insn++ = BPF_LDX_MEM(
9959 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
9960 			si->dst_reg, si->src_reg,
9961 			bpf_target_off(struct sock_common, skc_num,
9962 				       sizeof_field(struct sock_common,
9963 						    skc_num),
9964 				       target_size));
9965 		break;
9966 
9967 	case offsetof(struct bpf_sock, dst_port):
9968 		*insn++ = BPF_LDX_MEM(
9969 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
9970 			si->dst_reg, si->src_reg,
9971 			bpf_target_off(struct sock_common, skc_dport,
9972 				       sizeof_field(struct sock_common,
9973 						    skc_dport),
9974 				       target_size));
9975 		break;
9976 
9977 	case offsetof(struct bpf_sock, state):
9978 		*insn++ = BPF_LDX_MEM(
9979 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
9980 			si->dst_reg, si->src_reg,
9981 			bpf_target_off(struct sock_common, skc_state,
9982 				       sizeof_field(struct sock_common,
9983 						    skc_state),
9984 				       target_size));
9985 		break;
9986 	case offsetof(struct bpf_sock, rx_queue_mapping):
9987 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
9988 		*insn++ = BPF_LDX_MEM(
9989 			BPF_FIELD_SIZEOF(struct sock, sk_rx_queue_mapping),
9990 			si->dst_reg, si->src_reg,
9991 			bpf_target_off(struct sock, sk_rx_queue_mapping,
9992 				       sizeof_field(struct sock,
9993 						    sk_rx_queue_mapping),
9994 				       target_size));
9995 		*insn++ = BPF_JMP_IMM(BPF_JNE, si->dst_reg, NO_QUEUE_MAPPING,
9996 				      1);
9997 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
9998 #else
9999 		*insn++ = BPF_MOV64_IMM(si->dst_reg, -1);
10000 		*target_size = 2;
10001 #endif
10002 		break;
10003 	}
10004 
10005 	return insn - insn_buf;
10006 }
10007 
10008 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
10009 					 const struct bpf_insn *si,
10010 					 struct bpf_insn *insn_buf,
10011 					 struct bpf_prog *prog, u32 *target_size)
10012 {
10013 	struct bpf_insn *insn = insn_buf;
10014 
10015 	switch (si->off) {
10016 	case offsetof(struct __sk_buff, ifindex):
10017 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
10018 				      si->dst_reg, si->src_reg,
10019 				      offsetof(struct sk_buff, dev));
10020 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10021 				      bpf_target_off(struct net_device, ifindex, 4,
10022 						     target_size));
10023 		break;
10024 	default:
10025 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10026 					      target_size);
10027 	}
10028 
10029 	return insn - insn_buf;
10030 }
10031 
10032 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
10033 				  const struct bpf_insn *si,
10034 				  struct bpf_insn *insn_buf,
10035 				  struct bpf_prog *prog, u32 *target_size)
10036 {
10037 	struct bpf_insn *insn = insn_buf;
10038 
10039 	switch (si->off) {
10040 	case offsetof(struct xdp_md, data):
10041 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
10042 				      si->dst_reg, si->src_reg,
10043 				      offsetof(struct xdp_buff, data));
10044 		break;
10045 	case offsetof(struct xdp_md, data_meta):
10046 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
10047 				      si->dst_reg, si->src_reg,
10048 				      offsetof(struct xdp_buff, data_meta));
10049 		break;
10050 	case offsetof(struct xdp_md, data_end):
10051 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
10052 				      si->dst_reg, si->src_reg,
10053 				      offsetof(struct xdp_buff, data_end));
10054 		break;
10055 	case offsetof(struct xdp_md, ingress_ifindex):
10056 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10057 				      si->dst_reg, si->src_reg,
10058 				      offsetof(struct xdp_buff, rxq));
10059 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
10060 				      si->dst_reg, si->dst_reg,
10061 				      offsetof(struct xdp_rxq_info, dev));
10062 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10063 				      offsetof(struct net_device, ifindex));
10064 		break;
10065 	case offsetof(struct xdp_md, rx_queue_index):
10066 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
10067 				      si->dst_reg, si->src_reg,
10068 				      offsetof(struct xdp_buff, rxq));
10069 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10070 				      offsetof(struct xdp_rxq_info,
10071 					       queue_index));
10072 		break;
10073 	case offsetof(struct xdp_md, egress_ifindex):
10074 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, txq),
10075 				      si->dst_reg, si->src_reg,
10076 				      offsetof(struct xdp_buff, txq));
10077 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_txq_info, dev),
10078 				      si->dst_reg, si->dst_reg,
10079 				      offsetof(struct xdp_txq_info, dev));
10080 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10081 				      offsetof(struct net_device, ifindex));
10082 		break;
10083 	}
10084 
10085 	return insn - insn_buf;
10086 }
10087 
10088 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
10089  * context Structure, F is Field in context structure that contains a pointer
10090  * to Nested Structure of type NS that has the field NF.
10091  *
10092  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
10093  * sure that SIZE is not greater than actual size of S.F.NF.
10094  *
10095  * If offset OFF is provided, the load happens from that offset relative to
10096  * offset of NF.
10097  */
10098 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
10099 	do {								       \
10100 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
10101 				      si->src_reg, offsetof(S, F));	       \
10102 		*insn++ = BPF_LDX_MEM(					       \
10103 			SIZE, si->dst_reg, si->dst_reg,			       \
10104 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10105 				       target_size)			       \
10106 				+ OFF);					       \
10107 	} while (0)
10108 
10109 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
10110 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
10111 					     BPF_FIELD_SIZEOF(NS, NF), 0)
10112 
10113 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
10114  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
10115  *
10116  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
10117  * "register" since two registers available in convert_ctx_access are not
10118  * enough: we can't override neither SRC, since it contains value to store, nor
10119  * DST since it contains pointer to context that may be used by later
10120  * instructions. But we need a temporary place to save pointer to nested
10121  * structure whose field we want to store to.
10122  */
10123 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
10124 	do {								       \
10125 		int tmp_reg = BPF_REG_9;				       \
10126 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10127 			--tmp_reg;					       \
10128 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
10129 			--tmp_reg;					       \
10130 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
10131 				      offsetof(S, TF));			       \
10132 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
10133 				      si->dst_reg, offsetof(S, F));	       \
10134 		*insn++ = BPF_RAW_INSN(SIZE | BPF_MEM | BPF_CLASS(si->code),   \
10135 				       tmp_reg, si->src_reg,		       \
10136 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
10137 				       target_size)			       \
10138 				       + OFF,				       \
10139 				       si->imm);			       \
10140 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
10141 				      offsetof(S, TF));			       \
10142 	} while (0)
10143 
10144 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
10145 						      TF)		       \
10146 	do {								       \
10147 		if (type == BPF_WRITE) {				       \
10148 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
10149 							 OFF, TF);	       \
10150 		} else {						       \
10151 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
10152 				S, NS, F, NF, SIZE, OFF);  \
10153 		}							       \
10154 	} while (0)
10155 
10156 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
10157 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
10158 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
10159 
10160 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
10161 					const struct bpf_insn *si,
10162 					struct bpf_insn *insn_buf,
10163 					struct bpf_prog *prog, u32 *target_size)
10164 {
10165 	int off, port_size = sizeof_field(struct sockaddr_in6, sin6_port);
10166 	struct bpf_insn *insn = insn_buf;
10167 
10168 	switch (si->off) {
10169 	case offsetof(struct bpf_sock_addr, user_family):
10170 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10171 					    struct sockaddr, uaddr, sa_family);
10172 		break;
10173 
10174 	case offsetof(struct bpf_sock_addr, user_ip4):
10175 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10176 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
10177 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
10178 		break;
10179 
10180 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
10181 		off = si->off;
10182 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
10183 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10184 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10185 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
10186 			tmp_reg);
10187 		break;
10188 
10189 	case offsetof(struct bpf_sock_addr, user_port):
10190 		/* To get port we need to know sa_family first and then treat
10191 		 * sockaddr as either sockaddr_in or sockaddr_in6.
10192 		 * Though we can simplify since port field has same offset and
10193 		 * size in both structures.
10194 		 * Here we check this invariant and use just one of the
10195 		 * structures if it's true.
10196 		 */
10197 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
10198 			     offsetof(struct sockaddr_in6, sin6_port));
10199 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
10200 			     sizeof_field(struct sockaddr_in6, sin6_port));
10201 		/* Account for sin6_port being smaller than user_port. */
10202 		port_size = min(port_size, BPF_LDST_BYTES(si));
10203 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10204 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
10205 			sin6_port, bytes_to_bpf_size(port_size), 0, tmp_reg);
10206 		break;
10207 
10208 	case offsetof(struct bpf_sock_addr, family):
10209 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10210 					    struct sock, sk, sk_family);
10211 		break;
10212 
10213 	case offsetof(struct bpf_sock_addr, type):
10214 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10215 					    struct sock, sk, sk_type);
10216 		break;
10217 
10218 	case offsetof(struct bpf_sock_addr, protocol):
10219 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
10220 					    struct sock, sk, sk_protocol);
10221 		break;
10222 
10223 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
10224 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
10225 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10226 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
10227 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
10228 		break;
10229 
10230 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
10231 				msg_src_ip6[3]):
10232 		off = si->off;
10233 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
10234 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
10235 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
10236 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
10237 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
10238 		break;
10239 	case offsetof(struct bpf_sock_addr, sk):
10240 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
10241 				      si->dst_reg, si->src_reg,
10242 				      offsetof(struct bpf_sock_addr_kern, sk));
10243 		break;
10244 	}
10245 
10246 	return insn - insn_buf;
10247 }
10248 
10249 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
10250 				       const struct bpf_insn *si,
10251 				       struct bpf_insn *insn_buf,
10252 				       struct bpf_prog *prog,
10253 				       u32 *target_size)
10254 {
10255 	struct bpf_insn *insn = insn_buf;
10256 	int off;
10257 
10258 /* Helper macro for adding read access to tcp_sock or sock fields. */
10259 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10260 	do {								      \
10261 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 2;     \
10262 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10263 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10264 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10265 			reg--;						      \
10266 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10267 			reg--;						      \
10268 		if (si->dst_reg == si->src_reg) {			      \
10269 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10270 					  offsetof(struct bpf_sock_ops_kern,  \
10271 					  temp));			      \
10272 			fullsock_reg = reg;				      \
10273 			jmp += 2;					      \
10274 		}							      \
10275 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10276 						struct bpf_sock_ops_kern,     \
10277 						is_fullsock),		      \
10278 				      fullsock_reg, si->src_reg,	      \
10279 				      offsetof(struct bpf_sock_ops_kern,      \
10280 					       is_fullsock));		      \
10281 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10282 		if (si->dst_reg == si->src_reg)				      \
10283 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10284 				      offsetof(struct bpf_sock_ops_kern,      \
10285 				      temp));				      \
10286 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10287 						struct bpf_sock_ops_kern, sk),\
10288 				      si->dst_reg, si->src_reg,		      \
10289 				      offsetof(struct bpf_sock_ops_kern, sk));\
10290 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
10291 						       OBJ_FIELD),	      \
10292 				      si->dst_reg, si->dst_reg,		      \
10293 				      offsetof(OBJ, OBJ_FIELD));	      \
10294 		if (si->dst_reg == si->src_reg)	{			      \
10295 			*insn++ = BPF_JMP_A(1);				      \
10296 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10297 				      offsetof(struct bpf_sock_ops_kern,      \
10298 				      temp));				      \
10299 		}							      \
10300 	} while (0)
10301 
10302 #define SOCK_OPS_GET_SK()							      \
10303 	do {								      \
10304 		int fullsock_reg = si->dst_reg, reg = BPF_REG_9, jmp = 1;     \
10305 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10306 			reg--;						      \
10307 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10308 			reg--;						      \
10309 		if (si->dst_reg == si->src_reg) {			      \
10310 			*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg,	      \
10311 					  offsetof(struct bpf_sock_ops_kern,  \
10312 					  temp));			      \
10313 			fullsock_reg = reg;				      \
10314 			jmp += 2;					      \
10315 		}							      \
10316 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10317 						struct bpf_sock_ops_kern,     \
10318 						is_fullsock),		      \
10319 				      fullsock_reg, si->src_reg,	      \
10320 				      offsetof(struct bpf_sock_ops_kern,      \
10321 					       is_fullsock));		      \
10322 		*insn++ = BPF_JMP_IMM(BPF_JEQ, fullsock_reg, 0, jmp);	      \
10323 		if (si->dst_reg == si->src_reg)				      \
10324 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10325 				      offsetof(struct bpf_sock_ops_kern,      \
10326 				      temp));				      \
10327 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10328 						struct bpf_sock_ops_kern, sk),\
10329 				      si->dst_reg, si->src_reg,		      \
10330 				      offsetof(struct bpf_sock_ops_kern, sk));\
10331 		if (si->dst_reg == si->src_reg)	{			      \
10332 			*insn++ = BPF_JMP_A(1);				      \
10333 			*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->src_reg,	      \
10334 				      offsetof(struct bpf_sock_ops_kern,      \
10335 				      temp));				      \
10336 		}							      \
10337 	} while (0)
10338 
10339 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
10340 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
10341 
10342 /* Helper macro for adding write access to tcp_sock or sock fields.
10343  * The macro is called with two registers, dst_reg which contains a pointer
10344  * to ctx (context) and src_reg which contains the value that should be
10345  * stored. However, we need an additional register since we cannot overwrite
10346  * dst_reg because it may be used later in the program.
10347  * Instead we "borrow" one of the other register. We first save its value
10348  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
10349  * it at the end of the macro.
10350  */
10351 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
10352 	do {								      \
10353 		int reg = BPF_REG_9;					      \
10354 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
10355 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
10356 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10357 			reg--;						      \
10358 		if (si->dst_reg == reg || si->src_reg == reg)		      \
10359 			reg--;						      \
10360 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
10361 				      offsetof(struct bpf_sock_ops_kern,      \
10362 					       temp));			      \
10363 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10364 						struct bpf_sock_ops_kern,     \
10365 						is_fullsock),		      \
10366 				      reg, si->dst_reg,			      \
10367 				      offsetof(struct bpf_sock_ops_kern,      \
10368 					       is_fullsock));		      \
10369 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
10370 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
10371 						struct bpf_sock_ops_kern, sk),\
10372 				      reg, si->dst_reg,			      \
10373 				      offsetof(struct bpf_sock_ops_kern, sk));\
10374 		*insn++ = BPF_RAW_INSN(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD) |     \
10375 				       BPF_MEM | BPF_CLASS(si->code),	      \
10376 				       reg, si->src_reg,		      \
10377 				       offsetof(OBJ, OBJ_FIELD),	      \
10378 				       si->imm);			      \
10379 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
10380 				      offsetof(struct bpf_sock_ops_kern,      \
10381 					       temp));			      \
10382 	} while (0)
10383 
10384 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
10385 	do {								      \
10386 		if (TYPE == BPF_WRITE)					      \
10387 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10388 		else							      \
10389 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
10390 	} while (0)
10391 
10392 	switch (si->off) {
10393 	case offsetof(struct bpf_sock_ops, op):
10394 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10395 						       op),
10396 				      si->dst_reg, si->src_reg,
10397 				      offsetof(struct bpf_sock_ops_kern, op));
10398 		break;
10399 
10400 	case offsetof(struct bpf_sock_ops, replylong[0]) ...
10401 	     offsetof(struct bpf_sock_ops, replylong[3]):
10402 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
10403 			     sizeof_field(struct bpf_sock_ops_kern, reply));
10404 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
10405 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
10406 		off = si->off;
10407 		off -= offsetof(struct bpf_sock_ops, replylong[0]);
10408 		off += offsetof(struct bpf_sock_ops_kern, replylong[0]);
10409 		if (type == BPF_WRITE)
10410 			*insn++ = BPF_EMIT_STORE(BPF_W, si, off);
10411 		else
10412 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
10413 					      off);
10414 		break;
10415 
10416 	case offsetof(struct bpf_sock_ops, family):
10417 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10418 
10419 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10420 					      struct bpf_sock_ops_kern, sk),
10421 				      si->dst_reg, si->src_reg,
10422 				      offsetof(struct bpf_sock_ops_kern, sk));
10423 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10424 				      offsetof(struct sock_common, skc_family));
10425 		break;
10426 
10427 	case offsetof(struct bpf_sock_ops, remote_ip4):
10428 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10429 
10430 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10431 						struct bpf_sock_ops_kern, sk),
10432 				      si->dst_reg, si->src_reg,
10433 				      offsetof(struct bpf_sock_ops_kern, sk));
10434 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10435 				      offsetof(struct sock_common, skc_daddr));
10436 		break;
10437 
10438 	case offsetof(struct bpf_sock_ops, local_ip4):
10439 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10440 					  skc_rcv_saddr) != 4);
10441 
10442 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10443 					      struct bpf_sock_ops_kern, sk),
10444 				      si->dst_reg, si->src_reg,
10445 				      offsetof(struct bpf_sock_ops_kern, sk));
10446 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10447 				      offsetof(struct sock_common,
10448 					       skc_rcv_saddr));
10449 		break;
10450 
10451 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
10452 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
10453 #if IS_ENABLED(CONFIG_IPV6)
10454 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10455 					  skc_v6_daddr.s6_addr32[0]) != 4);
10456 
10457 		off = si->off;
10458 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
10459 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10460 						struct bpf_sock_ops_kern, sk),
10461 				      si->dst_reg, si->src_reg,
10462 				      offsetof(struct bpf_sock_ops_kern, sk));
10463 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10464 				      offsetof(struct sock_common,
10465 					       skc_v6_daddr.s6_addr32[0]) +
10466 				      off);
10467 #else
10468 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10469 #endif
10470 		break;
10471 
10472 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
10473 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
10474 #if IS_ENABLED(CONFIG_IPV6)
10475 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10476 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10477 
10478 		off = si->off;
10479 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
10480 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10481 						struct bpf_sock_ops_kern, sk),
10482 				      si->dst_reg, si->src_reg,
10483 				      offsetof(struct bpf_sock_ops_kern, sk));
10484 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10485 				      offsetof(struct sock_common,
10486 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10487 				      off);
10488 #else
10489 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10490 #endif
10491 		break;
10492 
10493 	case offsetof(struct bpf_sock_ops, remote_port):
10494 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10495 
10496 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10497 						struct bpf_sock_ops_kern, sk),
10498 				      si->dst_reg, si->src_reg,
10499 				      offsetof(struct bpf_sock_ops_kern, sk));
10500 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10501 				      offsetof(struct sock_common, skc_dport));
10502 #ifndef __BIG_ENDIAN_BITFIELD
10503 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10504 #endif
10505 		break;
10506 
10507 	case offsetof(struct bpf_sock_ops, local_port):
10508 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10509 
10510 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10511 						struct bpf_sock_ops_kern, sk),
10512 				      si->dst_reg, si->src_reg,
10513 				      offsetof(struct bpf_sock_ops_kern, sk));
10514 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10515 				      offsetof(struct sock_common, skc_num));
10516 		break;
10517 
10518 	case offsetof(struct bpf_sock_ops, is_fullsock):
10519 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10520 						struct bpf_sock_ops_kern,
10521 						is_fullsock),
10522 				      si->dst_reg, si->src_reg,
10523 				      offsetof(struct bpf_sock_ops_kern,
10524 					       is_fullsock));
10525 		break;
10526 
10527 	case offsetof(struct bpf_sock_ops, state):
10528 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
10529 
10530 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10531 						struct bpf_sock_ops_kern, sk),
10532 				      si->dst_reg, si->src_reg,
10533 				      offsetof(struct bpf_sock_ops_kern, sk));
10534 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
10535 				      offsetof(struct sock_common, skc_state));
10536 		break;
10537 
10538 	case offsetof(struct bpf_sock_ops, rtt_min):
10539 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
10540 			     sizeof(struct minmax));
10541 		BUILD_BUG_ON(sizeof(struct minmax) <
10542 			     sizeof(struct minmax_sample));
10543 
10544 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10545 						struct bpf_sock_ops_kern, sk),
10546 				      si->dst_reg, si->src_reg,
10547 				      offsetof(struct bpf_sock_ops_kern, sk));
10548 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10549 				      offsetof(struct tcp_sock, rtt_min) +
10550 				      sizeof_field(struct minmax_sample, t));
10551 		break;
10552 
10553 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
10554 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
10555 				   struct tcp_sock);
10556 		break;
10557 
10558 	case offsetof(struct bpf_sock_ops, sk_txhash):
10559 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
10560 					  struct sock, type);
10561 		break;
10562 	case offsetof(struct bpf_sock_ops, snd_cwnd):
10563 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
10564 		break;
10565 	case offsetof(struct bpf_sock_ops, srtt_us):
10566 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
10567 		break;
10568 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
10569 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
10570 		break;
10571 	case offsetof(struct bpf_sock_ops, rcv_nxt):
10572 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
10573 		break;
10574 	case offsetof(struct bpf_sock_ops, snd_nxt):
10575 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
10576 		break;
10577 	case offsetof(struct bpf_sock_ops, snd_una):
10578 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
10579 		break;
10580 	case offsetof(struct bpf_sock_ops, mss_cache):
10581 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
10582 		break;
10583 	case offsetof(struct bpf_sock_ops, ecn_flags):
10584 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
10585 		break;
10586 	case offsetof(struct bpf_sock_ops, rate_delivered):
10587 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
10588 		break;
10589 	case offsetof(struct bpf_sock_ops, rate_interval_us):
10590 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
10591 		break;
10592 	case offsetof(struct bpf_sock_ops, packets_out):
10593 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
10594 		break;
10595 	case offsetof(struct bpf_sock_ops, retrans_out):
10596 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
10597 		break;
10598 	case offsetof(struct bpf_sock_ops, total_retrans):
10599 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
10600 		break;
10601 	case offsetof(struct bpf_sock_ops, segs_in):
10602 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
10603 		break;
10604 	case offsetof(struct bpf_sock_ops, data_segs_in):
10605 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
10606 		break;
10607 	case offsetof(struct bpf_sock_ops, segs_out):
10608 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
10609 		break;
10610 	case offsetof(struct bpf_sock_ops, data_segs_out):
10611 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
10612 		break;
10613 	case offsetof(struct bpf_sock_ops, lost_out):
10614 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
10615 		break;
10616 	case offsetof(struct bpf_sock_ops, sacked_out):
10617 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
10618 		break;
10619 	case offsetof(struct bpf_sock_ops, bytes_received):
10620 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
10621 		break;
10622 	case offsetof(struct bpf_sock_ops, bytes_acked):
10623 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
10624 		break;
10625 	case offsetof(struct bpf_sock_ops, sk):
10626 		SOCK_OPS_GET_SK();
10627 		break;
10628 	case offsetof(struct bpf_sock_ops, skb_data_end):
10629 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10630 						       skb_data_end),
10631 				      si->dst_reg, si->src_reg,
10632 				      offsetof(struct bpf_sock_ops_kern,
10633 					       skb_data_end));
10634 		break;
10635 	case offsetof(struct bpf_sock_ops, skb_data):
10636 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10637 						       skb),
10638 				      si->dst_reg, si->src_reg,
10639 				      offsetof(struct bpf_sock_ops_kern,
10640 					       skb));
10641 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10642 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10643 				      si->dst_reg, si->dst_reg,
10644 				      offsetof(struct sk_buff, data));
10645 		break;
10646 	case offsetof(struct bpf_sock_ops, skb_len):
10647 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10648 						       skb),
10649 				      si->dst_reg, si->src_reg,
10650 				      offsetof(struct bpf_sock_ops_kern,
10651 					       skb));
10652 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10653 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10654 				      si->dst_reg, si->dst_reg,
10655 				      offsetof(struct sk_buff, len));
10656 		break;
10657 	case offsetof(struct bpf_sock_ops, skb_tcp_flags):
10658 		off = offsetof(struct sk_buff, cb);
10659 		off += offsetof(struct tcp_skb_cb, tcp_flags);
10660 		*target_size = sizeof_field(struct tcp_skb_cb, tcp_flags);
10661 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10662 						       skb),
10663 				      si->dst_reg, si->src_reg,
10664 				      offsetof(struct bpf_sock_ops_kern,
10665 					       skb));
10666 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
10667 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_skb_cb,
10668 						       tcp_flags),
10669 				      si->dst_reg, si->dst_reg, off);
10670 		break;
10671 	case offsetof(struct bpf_sock_ops, skb_hwtstamp): {
10672 		struct bpf_insn *jmp_on_null_skb;
10673 
10674 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_ops_kern,
10675 						       skb),
10676 				      si->dst_reg, si->src_reg,
10677 				      offsetof(struct bpf_sock_ops_kern,
10678 					       skb));
10679 		/* Reserve one insn to test skb == NULL */
10680 		jmp_on_null_skb = insn++;
10681 		insn = bpf_convert_shinfo_access(si->dst_reg, si->dst_reg, insn);
10682 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
10683 				      bpf_target_off(struct skb_shared_info,
10684 						     hwtstamps, 8,
10685 						     target_size));
10686 		*jmp_on_null_skb = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0,
10687 					       insn - jmp_on_null_skb - 1);
10688 		break;
10689 	}
10690 	}
10691 	return insn - insn_buf;
10692 }
10693 
10694 /* data_end = skb->data + skb_headlen() */
10695 static struct bpf_insn *bpf_convert_data_end_access(const struct bpf_insn *si,
10696 						    struct bpf_insn *insn)
10697 {
10698 	int reg;
10699 	int temp_reg_off = offsetof(struct sk_buff, cb) +
10700 			   offsetof(struct sk_skb_cb, temp_reg);
10701 
10702 	if (si->src_reg == si->dst_reg) {
10703 		/* We need an extra register, choose and save a register. */
10704 		reg = BPF_REG_9;
10705 		if (si->src_reg == reg || si->dst_reg == reg)
10706 			reg--;
10707 		if (si->src_reg == reg || si->dst_reg == reg)
10708 			reg--;
10709 		*insn++ = BPF_STX_MEM(BPF_DW, si->src_reg, reg, temp_reg_off);
10710 	} else {
10711 		reg = si->dst_reg;
10712 	}
10713 
10714 	/* reg = skb->data */
10715 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
10716 			      reg, si->src_reg,
10717 			      offsetof(struct sk_buff, data));
10718 	/* AX = skb->len */
10719 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, len),
10720 			      BPF_REG_AX, si->src_reg,
10721 			      offsetof(struct sk_buff, len));
10722 	/* reg = skb->data + skb->len */
10723 	*insn++ = BPF_ALU64_REG(BPF_ADD, reg, BPF_REG_AX);
10724 	/* AX = skb->data_len */
10725 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data_len),
10726 			      BPF_REG_AX, si->src_reg,
10727 			      offsetof(struct sk_buff, data_len));
10728 
10729 	/* reg = skb->data + skb->len - skb->data_len */
10730 	*insn++ = BPF_ALU64_REG(BPF_SUB, reg, BPF_REG_AX);
10731 
10732 	if (si->src_reg == si->dst_reg) {
10733 		/* Restore the saved register */
10734 		*insn++ = BPF_MOV64_REG(BPF_REG_AX, si->src_reg);
10735 		*insn++ = BPF_MOV64_REG(si->dst_reg, reg);
10736 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, BPF_REG_AX, temp_reg_off);
10737 	}
10738 
10739 	return insn;
10740 }
10741 
10742 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
10743 				     const struct bpf_insn *si,
10744 				     struct bpf_insn *insn_buf,
10745 				     struct bpf_prog *prog, u32 *target_size)
10746 {
10747 	struct bpf_insn *insn = insn_buf;
10748 	int off;
10749 
10750 	switch (si->off) {
10751 	case offsetof(struct __sk_buff, data_end):
10752 		insn = bpf_convert_data_end_access(si, insn);
10753 		break;
10754 	case offsetof(struct __sk_buff, cb[0]) ...
10755 	     offsetofend(struct __sk_buff, cb[4]) - 1:
10756 		BUILD_BUG_ON(sizeof_field(struct sk_skb_cb, data) < 20);
10757 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
10758 			      offsetof(struct sk_skb_cb, data)) %
10759 			     sizeof(__u64));
10760 
10761 		prog->cb_access = 1;
10762 		off  = si->off;
10763 		off -= offsetof(struct __sk_buff, cb[0]);
10764 		off += offsetof(struct sk_buff, cb);
10765 		off += offsetof(struct sk_skb_cb, data);
10766 		if (type == BPF_WRITE)
10767 			*insn++ = BPF_EMIT_STORE(BPF_SIZE(si->code), si, off);
10768 		else
10769 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
10770 					      si->src_reg, off);
10771 		break;
10772 
10773 
10774 	default:
10775 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
10776 					      target_size);
10777 	}
10778 
10779 	return insn - insn_buf;
10780 }
10781 
10782 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
10783 				     const struct bpf_insn *si,
10784 				     struct bpf_insn *insn_buf,
10785 				     struct bpf_prog *prog, u32 *target_size)
10786 {
10787 	struct bpf_insn *insn = insn_buf;
10788 #if IS_ENABLED(CONFIG_IPV6)
10789 	int off;
10790 #endif
10791 
10792 	/* convert ctx uses the fact sg element is first in struct */
10793 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
10794 
10795 	switch (si->off) {
10796 	case offsetof(struct sk_msg_md, data):
10797 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
10798 				      si->dst_reg, si->src_reg,
10799 				      offsetof(struct sk_msg, data));
10800 		break;
10801 	case offsetof(struct sk_msg_md, data_end):
10802 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
10803 				      si->dst_reg, si->src_reg,
10804 				      offsetof(struct sk_msg, data_end));
10805 		break;
10806 	case offsetof(struct sk_msg_md, family):
10807 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
10808 
10809 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10810 					      struct sk_msg, sk),
10811 				      si->dst_reg, si->src_reg,
10812 				      offsetof(struct sk_msg, sk));
10813 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10814 				      offsetof(struct sock_common, skc_family));
10815 		break;
10816 
10817 	case offsetof(struct sk_msg_md, remote_ip4):
10818 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
10819 
10820 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10821 						struct sk_msg, sk),
10822 				      si->dst_reg, si->src_reg,
10823 				      offsetof(struct sk_msg, sk));
10824 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10825 				      offsetof(struct sock_common, skc_daddr));
10826 		break;
10827 
10828 	case offsetof(struct sk_msg_md, local_ip4):
10829 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10830 					  skc_rcv_saddr) != 4);
10831 
10832 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10833 					      struct sk_msg, sk),
10834 				      si->dst_reg, si->src_reg,
10835 				      offsetof(struct sk_msg, sk));
10836 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10837 				      offsetof(struct sock_common,
10838 					       skc_rcv_saddr));
10839 		break;
10840 
10841 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
10842 	     offsetof(struct sk_msg_md, remote_ip6[3]):
10843 #if IS_ENABLED(CONFIG_IPV6)
10844 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10845 					  skc_v6_daddr.s6_addr32[0]) != 4);
10846 
10847 		off = si->off;
10848 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
10849 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10850 						struct sk_msg, sk),
10851 				      si->dst_reg, si->src_reg,
10852 				      offsetof(struct sk_msg, sk));
10853 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10854 				      offsetof(struct sock_common,
10855 					       skc_v6_daddr.s6_addr32[0]) +
10856 				      off);
10857 #else
10858 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10859 #endif
10860 		break;
10861 
10862 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
10863 	     offsetof(struct sk_msg_md, local_ip6[3]):
10864 #if IS_ENABLED(CONFIG_IPV6)
10865 		BUILD_BUG_ON(sizeof_field(struct sock_common,
10866 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
10867 
10868 		off = si->off;
10869 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
10870 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10871 						struct sk_msg, sk),
10872 				      si->dst_reg, si->src_reg,
10873 				      offsetof(struct sk_msg, sk));
10874 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
10875 				      offsetof(struct sock_common,
10876 					       skc_v6_rcv_saddr.s6_addr32[0]) +
10877 				      off);
10878 #else
10879 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
10880 #endif
10881 		break;
10882 
10883 	case offsetof(struct sk_msg_md, remote_port):
10884 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
10885 
10886 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10887 						struct sk_msg, sk),
10888 				      si->dst_reg, si->src_reg,
10889 				      offsetof(struct sk_msg, sk));
10890 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10891 				      offsetof(struct sock_common, skc_dport));
10892 #ifndef __BIG_ENDIAN_BITFIELD
10893 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
10894 #endif
10895 		break;
10896 
10897 	case offsetof(struct sk_msg_md, local_port):
10898 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
10899 
10900 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
10901 						struct sk_msg, sk),
10902 				      si->dst_reg, si->src_reg,
10903 				      offsetof(struct sk_msg, sk));
10904 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
10905 				      offsetof(struct sock_common, skc_num));
10906 		break;
10907 
10908 	case offsetof(struct sk_msg_md, size):
10909 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
10910 				      si->dst_reg, si->src_reg,
10911 				      offsetof(struct sk_msg_sg, size));
10912 		break;
10913 
10914 	case offsetof(struct sk_msg_md, sk):
10915 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, sk),
10916 				      si->dst_reg, si->src_reg,
10917 				      offsetof(struct sk_msg, sk));
10918 		break;
10919 	}
10920 
10921 	return insn - insn_buf;
10922 }
10923 
10924 const struct bpf_verifier_ops sk_filter_verifier_ops = {
10925 	.get_func_proto		= sk_filter_func_proto,
10926 	.is_valid_access	= sk_filter_is_valid_access,
10927 	.convert_ctx_access	= bpf_convert_ctx_access,
10928 	.gen_ld_abs		= bpf_gen_ld_abs,
10929 };
10930 
10931 const struct bpf_prog_ops sk_filter_prog_ops = {
10932 	.test_run		= bpf_prog_test_run_skb,
10933 };
10934 
10935 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
10936 	.get_func_proto		= tc_cls_act_func_proto,
10937 	.is_valid_access	= tc_cls_act_is_valid_access,
10938 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
10939 	.gen_prologue		= tc_cls_act_prologue,
10940 	.gen_ld_abs		= bpf_gen_ld_abs,
10941 	.btf_struct_access	= tc_cls_act_btf_struct_access,
10942 };
10943 
10944 const struct bpf_prog_ops tc_cls_act_prog_ops = {
10945 	.test_run		= bpf_prog_test_run_skb,
10946 };
10947 
10948 const struct bpf_verifier_ops xdp_verifier_ops = {
10949 	.get_func_proto		= xdp_func_proto,
10950 	.is_valid_access	= xdp_is_valid_access,
10951 	.convert_ctx_access	= xdp_convert_ctx_access,
10952 	.gen_prologue		= bpf_noop_prologue,
10953 	.btf_struct_access	= xdp_btf_struct_access,
10954 };
10955 
10956 const struct bpf_prog_ops xdp_prog_ops = {
10957 	.test_run		= bpf_prog_test_run_xdp,
10958 };
10959 
10960 const struct bpf_verifier_ops cg_skb_verifier_ops = {
10961 	.get_func_proto		= cg_skb_func_proto,
10962 	.is_valid_access	= cg_skb_is_valid_access,
10963 	.convert_ctx_access	= bpf_convert_ctx_access,
10964 };
10965 
10966 const struct bpf_prog_ops cg_skb_prog_ops = {
10967 	.test_run		= bpf_prog_test_run_skb,
10968 };
10969 
10970 const struct bpf_verifier_ops lwt_in_verifier_ops = {
10971 	.get_func_proto		= lwt_in_func_proto,
10972 	.is_valid_access	= lwt_is_valid_access,
10973 	.convert_ctx_access	= bpf_convert_ctx_access,
10974 };
10975 
10976 const struct bpf_prog_ops lwt_in_prog_ops = {
10977 	.test_run		= bpf_prog_test_run_skb,
10978 };
10979 
10980 const struct bpf_verifier_ops lwt_out_verifier_ops = {
10981 	.get_func_proto		= lwt_out_func_proto,
10982 	.is_valid_access	= lwt_is_valid_access,
10983 	.convert_ctx_access	= bpf_convert_ctx_access,
10984 };
10985 
10986 const struct bpf_prog_ops lwt_out_prog_ops = {
10987 	.test_run		= bpf_prog_test_run_skb,
10988 };
10989 
10990 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
10991 	.get_func_proto		= lwt_xmit_func_proto,
10992 	.is_valid_access	= lwt_is_valid_access,
10993 	.convert_ctx_access	= bpf_convert_ctx_access,
10994 	.gen_prologue		= tc_cls_act_prologue,
10995 };
10996 
10997 const struct bpf_prog_ops lwt_xmit_prog_ops = {
10998 	.test_run		= bpf_prog_test_run_skb,
10999 };
11000 
11001 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
11002 	.get_func_proto		= lwt_seg6local_func_proto,
11003 	.is_valid_access	= lwt_is_valid_access,
11004 	.convert_ctx_access	= bpf_convert_ctx_access,
11005 };
11006 
11007 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
11008 	.test_run		= bpf_prog_test_run_skb,
11009 };
11010 
11011 const struct bpf_verifier_ops cg_sock_verifier_ops = {
11012 	.get_func_proto		= sock_filter_func_proto,
11013 	.is_valid_access	= sock_filter_is_valid_access,
11014 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
11015 };
11016 
11017 const struct bpf_prog_ops cg_sock_prog_ops = {
11018 };
11019 
11020 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
11021 	.get_func_proto		= sock_addr_func_proto,
11022 	.is_valid_access	= sock_addr_is_valid_access,
11023 	.convert_ctx_access	= sock_addr_convert_ctx_access,
11024 };
11025 
11026 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
11027 };
11028 
11029 const struct bpf_verifier_ops sock_ops_verifier_ops = {
11030 	.get_func_proto		= sock_ops_func_proto,
11031 	.is_valid_access	= sock_ops_is_valid_access,
11032 	.convert_ctx_access	= sock_ops_convert_ctx_access,
11033 };
11034 
11035 const struct bpf_prog_ops sock_ops_prog_ops = {
11036 };
11037 
11038 const struct bpf_verifier_ops sk_skb_verifier_ops = {
11039 	.get_func_proto		= sk_skb_func_proto,
11040 	.is_valid_access	= sk_skb_is_valid_access,
11041 	.convert_ctx_access	= sk_skb_convert_ctx_access,
11042 	.gen_prologue		= sk_skb_prologue,
11043 };
11044 
11045 const struct bpf_prog_ops sk_skb_prog_ops = {
11046 };
11047 
11048 const struct bpf_verifier_ops sk_msg_verifier_ops = {
11049 	.get_func_proto		= sk_msg_func_proto,
11050 	.is_valid_access	= sk_msg_is_valid_access,
11051 	.convert_ctx_access	= sk_msg_convert_ctx_access,
11052 	.gen_prologue		= bpf_noop_prologue,
11053 };
11054 
11055 const struct bpf_prog_ops sk_msg_prog_ops = {
11056 };
11057 
11058 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
11059 	.get_func_proto		= flow_dissector_func_proto,
11060 	.is_valid_access	= flow_dissector_is_valid_access,
11061 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
11062 };
11063 
11064 const struct bpf_prog_ops flow_dissector_prog_ops = {
11065 	.test_run		= bpf_prog_test_run_flow_dissector,
11066 };
11067 
11068 int sk_detach_filter(struct sock *sk)
11069 {
11070 	int ret = -ENOENT;
11071 	struct sk_filter *filter;
11072 
11073 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
11074 		return -EPERM;
11075 
11076 	filter = rcu_dereference_protected(sk->sk_filter,
11077 					   lockdep_sock_is_held(sk));
11078 	if (filter) {
11079 		RCU_INIT_POINTER(sk->sk_filter, NULL);
11080 		sk_filter_uncharge(sk, filter);
11081 		ret = 0;
11082 	}
11083 
11084 	return ret;
11085 }
11086 EXPORT_SYMBOL_GPL(sk_detach_filter);
11087 
11088 int sk_get_filter(struct sock *sk, sockptr_t optval, unsigned int len)
11089 {
11090 	struct sock_fprog_kern *fprog;
11091 	struct sk_filter *filter;
11092 	int ret = 0;
11093 
11094 	sockopt_lock_sock(sk);
11095 	filter = rcu_dereference_protected(sk->sk_filter,
11096 					   lockdep_sock_is_held(sk));
11097 	if (!filter)
11098 		goto out;
11099 
11100 	/* We're copying the filter that has been originally attached,
11101 	 * so no conversion/decode needed anymore. eBPF programs that
11102 	 * have no original program cannot be dumped through this.
11103 	 */
11104 	ret = -EACCES;
11105 	fprog = filter->prog->orig_prog;
11106 	if (!fprog)
11107 		goto out;
11108 
11109 	ret = fprog->len;
11110 	if (!len)
11111 		/* User space only enquires number of filter blocks. */
11112 		goto out;
11113 
11114 	ret = -EINVAL;
11115 	if (len < fprog->len)
11116 		goto out;
11117 
11118 	ret = -EFAULT;
11119 	if (copy_to_sockptr(optval, fprog->filter, bpf_classic_proglen(fprog)))
11120 		goto out;
11121 
11122 	/* Instead of bytes, the API requests to return the number
11123 	 * of filter blocks.
11124 	 */
11125 	ret = fprog->len;
11126 out:
11127 	sockopt_release_sock(sk);
11128 	return ret;
11129 }
11130 
11131 #ifdef CONFIG_INET
11132 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
11133 				    struct sock_reuseport *reuse,
11134 				    struct sock *sk, struct sk_buff *skb,
11135 				    struct sock *migrating_sk,
11136 				    u32 hash)
11137 {
11138 	reuse_kern->skb = skb;
11139 	reuse_kern->sk = sk;
11140 	reuse_kern->selected_sk = NULL;
11141 	reuse_kern->migrating_sk = migrating_sk;
11142 	reuse_kern->data_end = skb->data + skb_headlen(skb);
11143 	reuse_kern->hash = hash;
11144 	reuse_kern->reuseport_id = reuse->reuseport_id;
11145 	reuse_kern->bind_inany = reuse->bind_inany;
11146 }
11147 
11148 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
11149 				  struct bpf_prog *prog, struct sk_buff *skb,
11150 				  struct sock *migrating_sk,
11151 				  u32 hash)
11152 {
11153 	struct sk_reuseport_kern reuse_kern;
11154 	enum sk_action action;
11155 
11156 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, migrating_sk, hash);
11157 	action = bpf_prog_run(prog, &reuse_kern);
11158 
11159 	if (action == SK_PASS)
11160 		return reuse_kern.selected_sk;
11161 	else
11162 		return ERR_PTR(-ECONNREFUSED);
11163 }
11164 
11165 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
11166 	   struct bpf_map *, map, void *, key, u32, flags)
11167 {
11168 	bool is_sockarray = map->map_type == BPF_MAP_TYPE_REUSEPORT_SOCKARRAY;
11169 	struct sock_reuseport *reuse;
11170 	struct sock *selected_sk;
11171 
11172 	selected_sk = map->ops->map_lookup_elem(map, key);
11173 	if (!selected_sk)
11174 		return -ENOENT;
11175 
11176 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
11177 	if (!reuse) {
11178 		/* Lookup in sock_map can return TCP ESTABLISHED sockets. */
11179 		if (sk_is_refcounted(selected_sk))
11180 			sock_put(selected_sk);
11181 
11182 		/* reuseport_array has only sk with non NULL sk_reuseport_cb.
11183 		 * The only (!reuse) case here is - the sk has already been
11184 		 * unhashed (e.g. by close()), so treat it as -ENOENT.
11185 		 *
11186 		 * Other maps (e.g. sock_map) do not provide this guarantee and
11187 		 * the sk may never be in the reuseport group to begin with.
11188 		 */
11189 		return is_sockarray ? -ENOENT : -EINVAL;
11190 	}
11191 
11192 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
11193 		struct sock *sk = reuse_kern->sk;
11194 
11195 		if (sk->sk_protocol != selected_sk->sk_protocol)
11196 			return -EPROTOTYPE;
11197 		else if (sk->sk_family != selected_sk->sk_family)
11198 			return -EAFNOSUPPORT;
11199 
11200 		/* Catch all. Likely bound to a different sockaddr. */
11201 		return -EBADFD;
11202 	}
11203 
11204 	reuse_kern->selected_sk = selected_sk;
11205 
11206 	return 0;
11207 }
11208 
11209 static const struct bpf_func_proto sk_select_reuseport_proto = {
11210 	.func           = sk_select_reuseport,
11211 	.gpl_only       = false,
11212 	.ret_type       = RET_INTEGER,
11213 	.arg1_type	= ARG_PTR_TO_CTX,
11214 	.arg2_type      = ARG_CONST_MAP_PTR,
11215 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
11216 	.arg4_type	= ARG_ANYTHING,
11217 };
11218 
11219 BPF_CALL_4(sk_reuseport_load_bytes,
11220 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11221 	   void *, to, u32, len)
11222 {
11223 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
11224 }
11225 
11226 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
11227 	.func		= sk_reuseport_load_bytes,
11228 	.gpl_only	= false,
11229 	.ret_type	= RET_INTEGER,
11230 	.arg1_type	= ARG_PTR_TO_CTX,
11231 	.arg2_type	= ARG_ANYTHING,
11232 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11233 	.arg4_type	= ARG_CONST_SIZE,
11234 };
11235 
11236 BPF_CALL_5(sk_reuseport_load_bytes_relative,
11237 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
11238 	   void *, to, u32, len, u32, start_header)
11239 {
11240 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
11241 					       len, start_header);
11242 }
11243 
11244 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
11245 	.func		= sk_reuseport_load_bytes_relative,
11246 	.gpl_only	= false,
11247 	.ret_type	= RET_INTEGER,
11248 	.arg1_type	= ARG_PTR_TO_CTX,
11249 	.arg2_type	= ARG_ANYTHING,
11250 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
11251 	.arg4_type	= ARG_CONST_SIZE,
11252 	.arg5_type	= ARG_ANYTHING,
11253 };
11254 
11255 static const struct bpf_func_proto *
11256 sk_reuseport_func_proto(enum bpf_func_id func_id,
11257 			const struct bpf_prog *prog)
11258 {
11259 	switch (func_id) {
11260 	case BPF_FUNC_sk_select_reuseport:
11261 		return &sk_select_reuseport_proto;
11262 	case BPF_FUNC_skb_load_bytes:
11263 		return &sk_reuseport_load_bytes_proto;
11264 	case BPF_FUNC_skb_load_bytes_relative:
11265 		return &sk_reuseport_load_bytes_relative_proto;
11266 	case BPF_FUNC_get_socket_cookie:
11267 		return &bpf_get_socket_ptr_cookie_proto;
11268 	case BPF_FUNC_ktime_get_coarse_ns:
11269 		return &bpf_ktime_get_coarse_ns_proto;
11270 	default:
11271 		return bpf_base_func_proto(func_id);
11272 	}
11273 }
11274 
11275 static bool
11276 sk_reuseport_is_valid_access(int off, int size,
11277 			     enum bpf_access_type type,
11278 			     const struct bpf_prog *prog,
11279 			     struct bpf_insn_access_aux *info)
11280 {
11281 	const u32 size_default = sizeof(__u32);
11282 
11283 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
11284 	    off % size || type != BPF_READ)
11285 		return false;
11286 
11287 	switch (off) {
11288 	case offsetof(struct sk_reuseport_md, data):
11289 		info->reg_type = PTR_TO_PACKET;
11290 		return size == sizeof(__u64);
11291 
11292 	case offsetof(struct sk_reuseport_md, data_end):
11293 		info->reg_type = PTR_TO_PACKET_END;
11294 		return size == sizeof(__u64);
11295 
11296 	case offsetof(struct sk_reuseport_md, hash):
11297 		return size == size_default;
11298 
11299 	case offsetof(struct sk_reuseport_md, sk):
11300 		info->reg_type = PTR_TO_SOCKET;
11301 		return size == sizeof(__u64);
11302 
11303 	case offsetof(struct sk_reuseport_md, migrating_sk):
11304 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
11305 		return size == sizeof(__u64);
11306 
11307 	/* Fields that allow narrowing */
11308 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
11309 		if (size < sizeof_field(struct sk_buff, protocol))
11310 			return false;
11311 		fallthrough;
11312 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
11313 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
11314 	case bpf_ctx_range(struct sk_reuseport_md, len):
11315 		bpf_ctx_record_field_size(info, size_default);
11316 		return bpf_ctx_narrow_access_ok(off, size, size_default);
11317 
11318 	default:
11319 		return false;
11320 	}
11321 }
11322 
11323 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
11324 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
11325 			      si->dst_reg, si->src_reg,			\
11326 			      bpf_target_off(struct sk_reuseport_kern, F, \
11327 					     sizeof_field(struct sk_reuseport_kern, F), \
11328 					     target_size));		\
11329 	})
11330 
11331 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
11332 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11333 				    struct sk_buff,			\
11334 				    skb,				\
11335 				    SKB_FIELD)
11336 
11337 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
11338 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
11339 				    struct sock,			\
11340 				    sk,					\
11341 				    SK_FIELD)
11342 
11343 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
11344 					   const struct bpf_insn *si,
11345 					   struct bpf_insn *insn_buf,
11346 					   struct bpf_prog *prog,
11347 					   u32 *target_size)
11348 {
11349 	struct bpf_insn *insn = insn_buf;
11350 
11351 	switch (si->off) {
11352 	case offsetof(struct sk_reuseport_md, data):
11353 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
11354 		break;
11355 
11356 	case offsetof(struct sk_reuseport_md, len):
11357 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
11358 		break;
11359 
11360 	case offsetof(struct sk_reuseport_md, eth_protocol):
11361 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
11362 		break;
11363 
11364 	case offsetof(struct sk_reuseport_md, ip_protocol):
11365 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
11366 		break;
11367 
11368 	case offsetof(struct sk_reuseport_md, data_end):
11369 		SK_REUSEPORT_LOAD_FIELD(data_end);
11370 		break;
11371 
11372 	case offsetof(struct sk_reuseport_md, hash):
11373 		SK_REUSEPORT_LOAD_FIELD(hash);
11374 		break;
11375 
11376 	case offsetof(struct sk_reuseport_md, bind_inany):
11377 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
11378 		break;
11379 
11380 	case offsetof(struct sk_reuseport_md, sk):
11381 		SK_REUSEPORT_LOAD_FIELD(sk);
11382 		break;
11383 
11384 	case offsetof(struct sk_reuseport_md, migrating_sk):
11385 		SK_REUSEPORT_LOAD_FIELD(migrating_sk);
11386 		break;
11387 	}
11388 
11389 	return insn - insn_buf;
11390 }
11391 
11392 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
11393 	.get_func_proto		= sk_reuseport_func_proto,
11394 	.is_valid_access	= sk_reuseport_is_valid_access,
11395 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
11396 };
11397 
11398 const struct bpf_prog_ops sk_reuseport_prog_ops = {
11399 };
11400 
11401 DEFINE_STATIC_KEY_FALSE(bpf_sk_lookup_enabled);
11402 EXPORT_SYMBOL(bpf_sk_lookup_enabled);
11403 
11404 BPF_CALL_3(bpf_sk_lookup_assign, struct bpf_sk_lookup_kern *, ctx,
11405 	   struct sock *, sk, u64, flags)
11406 {
11407 	if (unlikely(flags & ~(BPF_SK_LOOKUP_F_REPLACE |
11408 			       BPF_SK_LOOKUP_F_NO_REUSEPORT)))
11409 		return -EINVAL;
11410 	if (unlikely(sk && sk_is_refcounted(sk)))
11411 		return -ESOCKTNOSUPPORT; /* reject non-RCU freed sockets */
11412 	if (unlikely(sk && sk_is_tcp(sk) && sk->sk_state != TCP_LISTEN))
11413 		return -ESOCKTNOSUPPORT; /* only accept TCP socket in LISTEN */
11414 	if (unlikely(sk && sk_is_udp(sk) && sk->sk_state != TCP_CLOSE))
11415 		return -ESOCKTNOSUPPORT; /* only accept UDP socket in CLOSE */
11416 
11417 	/* Check if socket is suitable for packet L3/L4 protocol */
11418 	if (sk && sk->sk_protocol != ctx->protocol)
11419 		return -EPROTOTYPE;
11420 	if (sk && sk->sk_family != ctx->family &&
11421 	    (sk->sk_family == AF_INET || ipv6_only_sock(sk)))
11422 		return -EAFNOSUPPORT;
11423 
11424 	if (ctx->selected_sk && !(flags & BPF_SK_LOOKUP_F_REPLACE))
11425 		return -EEXIST;
11426 
11427 	/* Select socket as lookup result */
11428 	ctx->selected_sk = sk;
11429 	ctx->no_reuseport = flags & BPF_SK_LOOKUP_F_NO_REUSEPORT;
11430 	return 0;
11431 }
11432 
11433 static const struct bpf_func_proto bpf_sk_lookup_assign_proto = {
11434 	.func		= bpf_sk_lookup_assign,
11435 	.gpl_only	= false,
11436 	.ret_type	= RET_INTEGER,
11437 	.arg1_type	= ARG_PTR_TO_CTX,
11438 	.arg2_type	= ARG_PTR_TO_SOCKET_OR_NULL,
11439 	.arg3_type	= ARG_ANYTHING,
11440 };
11441 
11442 static const struct bpf_func_proto *
11443 sk_lookup_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
11444 {
11445 	switch (func_id) {
11446 	case BPF_FUNC_perf_event_output:
11447 		return &bpf_event_output_data_proto;
11448 	case BPF_FUNC_sk_assign:
11449 		return &bpf_sk_lookup_assign_proto;
11450 	case BPF_FUNC_sk_release:
11451 		return &bpf_sk_release_proto;
11452 	default:
11453 		return bpf_sk_base_func_proto(func_id);
11454 	}
11455 }
11456 
11457 static bool sk_lookup_is_valid_access(int off, int size,
11458 				      enum bpf_access_type type,
11459 				      const struct bpf_prog *prog,
11460 				      struct bpf_insn_access_aux *info)
11461 {
11462 	if (off < 0 || off >= sizeof(struct bpf_sk_lookup))
11463 		return false;
11464 	if (off % size != 0)
11465 		return false;
11466 	if (type != BPF_READ)
11467 		return false;
11468 
11469 	switch (off) {
11470 	case offsetof(struct bpf_sk_lookup, sk):
11471 		info->reg_type = PTR_TO_SOCKET_OR_NULL;
11472 		return size == sizeof(__u64);
11473 
11474 	case bpf_ctx_range(struct bpf_sk_lookup, family):
11475 	case bpf_ctx_range(struct bpf_sk_lookup, protocol):
11476 	case bpf_ctx_range(struct bpf_sk_lookup, remote_ip4):
11477 	case bpf_ctx_range(struct bpf_sk_lookup, local_ip4):
11478 	case bpf_ctx_range_till(struct bpf_sk_lookup, remote_ip6[0], remote_ip6[3]):
11479 	case bpf_ctx_range_till(struct bpf_sk_lookup, local_ip6[0], local_ip6[3]):
11480 	case bpf_ctx_range(struct bpf_sk_lookup, local_port):
11481 	case bpf_ctx_range(struct bpf_sk_lookup, ingress_ifindex):
11482 		bpf_ctx_record_field_size(info, sizeof(__u32));
11483 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u32));
11484 
11485 	case bpf_ctx_range(struct bpf_sk_lookup, remote_port):
11486 		/* Allow 4-byte access to 2-byte field for backward compatibility */
11487 		if (size == sizeof(__u32))
11488 			return true;
11489 		bpf_ctx_record_field_size(info, sizeof(__be16));
11490 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__be16));
11491 
11492 	case offsetofend(struct bpf_sk_lookup, remote_port) ...
11493 	     offsetof(struct bpf_sk_lookup, local_ip4) - 1:
11494 		/* Allow access to zero padding for backward compatibility */
11495 		bpf_ctx_record_field_size(info, sizeof(__u16));
11496 		return bpf_ctx_narrow_access_ok(off, size, sizeof(__u16));
11497 
11498 	default:
11499 		return false;
11500 	}
11501 }
11502 
11503 static u32 sk_lookup_convert_ctx_access(enum bpf_access_type type,
11504 					const struct bpf_insn *si,
11505 					struct bpf_insn *insn_buf,
11506 					struct bpf_prog *prog,
11507 					u32 *target_size)
11508 {
11509 	struct bpf_insn *insn = insn_buf;
11510 
11511 	switch (si->off) {
11512 	case offsetof(struct bpf_sk_lookup, sk):
11513 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11514 				      offsetof(struct bpf_sk_lookup_kern, selected_sk));
11515 		break;
11516 
11517 	case offsetof(struct bpf_sk_lookup, family):
11518 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11519 				      bpf_target_off(struct bpf_sk_lookup_kern,
11520 						     family, 2, target_size));
11521 		break;
11522 
11523 	case offsetof(struct bpf_sk_lookup, protocol):
11524 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11525 				      bpf_target_off(struct bpf_sk_lookup_kern,
11526 						     protocol, 2, target_size));
11527 		break;
11528 
11529 	case offsetof(struct bpf_sk_lookup, remote_ip4):
11530 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11531 				      bpf_target_off(struct bpf_sk_lookup_kern,
11532 						     v4.saddr, 4, target_size));
11533 		break;
11534 
11535 	case offsetof(struct bpf_sk_lookup, local_ip4):
11536 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11537 				      bpf_target_off(struct bpf_sk_lookup_kern,
11538 						     v4.daddr, 4, target_size));
11539 		break;
11540 
11541 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11542 				remote_ip6[0], remote_ip6[3]): {
11543 #if IS_ENABLED(CONFIG_IPV6)
11544 		int off = si->off;
11545 
11546 		off -= offsetof(struct bpf_sk_lookup, remote_ip6[0]);
11547 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11548 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11549 				      offsetof(struct bpf_sk_lookup_kern, v6.saddr));
11550 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11551 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11552 #else
11553 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11554 #endif
11555 		break;
11556 	}
11557 	case bpf_ctx_range_till(struct bpf_sk_lookup,
11558 				local_ip6[0], local_ip6[3]): {
11559 #if IS_ENABLED(CONFIG_IPV6)
11560 		int off = si->off;
11561 
11562 		off -= offsetof(struct bpf_sk_lookup, local_ip6[0]);
11563 		off += bpf_target_off(struct in6_addr, s6_addr32[0], 4, target_size);
11564 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg,
11565 				      offsetof(struct bpf_sk_lookup_kern, v6.daddr));
11566 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
11567 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, off);
11568 #else
11569 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11570 #endif
11571 		break;
11572 	}
11573 	case offsetof(struct bpf_sk_lookup, remote_port):
11574 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11575 				      bpf_target_off(struct bpf_sk_lookup_kern,
11576 						     sport, 2, target_size));
11577 		break;
11578 
11579 	case offsetofend(struct bpf_sk_lookup, remote_port):
11580 		*target_size = 2;
11581 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
11582 		break;
11583 
11584 	case offsetof(struct bpf_sk_lookup, local_port):
11585 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
11586 				      bpf_target_off(struct bpf_sk_lookup_kern,
11587 						     dport, 2, target_size));
11588 		break;
11589 
11590 	case offsetof(struct bpf_sk_lookup, ingress_ifindex):
11591 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
11592 				      bpf_target_off(struct bpf_sk_lookup_kern,
11593 						     ingress_ifindex, 4, target_size));
11594 		break;
11595 	}
11596 
11597 	return insn - insn_buf;
11598 }
11599 
11600 const struct bpf_prog_ops sk_lookup_prog_ops = {
11601 	.test_run = bpf_prog_test_run_sk_lookup,
11602 };
11603 
11604 const struct bpf_verifier_ops sk_lookup_verifier_ops = {
11605 	.get_func_proto		= sk_lookup_func_proto,
11606 	.is_valid_access	= sk_lookup_is_valid_access,
11607 	.convert_ctx_access	= sk_lookup_convert_ctx_access,
11608 };
11609 
11610 #endif /* CONFIG_INET */
11611 
11612 DEFINE_BPF_DISPATCHER(xdp)
11613 
11614 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
11615 {
11616 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(xdp), prev_prog, prog);
11617 }
11618 
11619 BTF_ID_LIST_GLOBAL(btf_sock_ids, MAX_BTF_SOCK_TYPE)
11620 #define BTF_SOCK_TYPE(name, type) BTF_ID(struct, type)
11621 BTF_SOCK_TYPE_xxx
11622 #undef BTF_SOCK_TYPE
11623 
11624 BPF_CALL_1(bpf_skc_to_tcp6_sock, struct sock *, sk)
11625 {
11626 	/* tcp6_sock type is not generated in dwarf and hence btf,
11627 	 * trigger an explicit type generation here.
11628 	 */
11629 	BTF_TYPE_EMIT(struct tcp6_sock);
11630 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP &&
11631 	    sk->sk_family == AF_INET6)
11632 		return (unsigned long)sk;
11633 
11634 	return (unsigned long)NULL;
11635 }
11636 
11637 const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto = {
11638 	.func			= bpf_skc_to_tcp6_sock,
11639 	.gpl_only		= false,
11640 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11641 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11642 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP6],
11643 };
11644 
11645 BPF_CALL_1(bpf_skc_to_tcp_sock, struct sock *, sk)
11646 {
11647 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
11648 		return (unsigned long)sk;
11649 
11650 	return (unsigned long)NULL;
11651 }
11652 
11653 const struct bpf_func_proto bpf_skc_to_tcp_sock_proto = {
11654 	.func			= bpf_skc_to_tcp_sock,
11655 	.gpl_only		= false,
11656 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11657 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11658 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP],
11659 };
11660 
11661 BPF_CALL_1(bpf_skc_to_tcp_timewait_sock, struct sock *, sk)
11662 {
11663 	/* BTF types for tcp_timewait_sock and inet_timewait_sock are not
11664 	 * generated if CONFIG_INET=n. Trigger an explicit generation here.
11665 	 */
11666 	BTF_TYPE_EMIT(struct inet_timewait_sock);
11667 	BTF_TYPE_EMIT(struct tcp_timewait_sock);
11668 
11669 #ifdef CONFIG_INET
11670 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_TIME_WAIT)
11671 		return (unsigned long)sk;
11672 #endif
11673 
11674 #if IS_BUILTIN(CONFIG_IPV6)
11675 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_TIME_WAIT)
11676 		return (unsigned long)sk;
11677 #endif
11678 
11679 	return (unsigned long)NULL;
11680 }
11681 
11682 const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto = {
11683 	.func			= bpf_skc_to_tcp_timewait_sock,
11684 	.gpl_only		= false,
11685 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11686 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11687 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_TW],
11688 };
11689 
11690 BPF_CALL_1(bpf_skc_to_tcp_request_sock, struct sock *, sk)
11691 {
11692 #ifdef CONFIG_INET
11693 	if (sk && sk->sk_prot == &tcp_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11694 		return (unsigned long)sk;
11695 #endif
11696 
11697 #if IS_BUILTIN(CONFIG_IPV6)
11698 	if (sk && sk->sk_prot == &tcpv6_prot && sk->sk_state == TCP_NEW_SYN_RECV)
11699 		return (unsigned long)sk;
11700 #endif
11701 
11702 	return (unsigned long)NULL;
11703 }
11704 
11705 const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto = {
11706 	.func			= bpf_skc_to_tcp_request_sock,
11707 	.gpl_only		= false,
11708 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11709 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11710 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_TCP_REQ],
11711 };
11712 
11713 BPF_CALL_1(bpf_skc_to_udp6_sock, struct sock *, sk)
11714 {
11715 	/* udp6_sock type is not generated in dwarf and hence btf,
11716 	 * trigger an explicit type generation here.
11717 	 */
11718 	BTF_TYPE_EMIT(struct udp6_sock);
11719 	if (sk && sk_fullsock(sk) && sk->sk_protocol == IPPROTO_UDP &&
11720 	    sk->sk_type == SOCK_DGRAM && sk->sk_family == AF_INET6)
11721 		return (unsigned long)sk;
11722 
11723 	return (unsigned long)NULL;
11724 }
11725 
11726 const struct bpf_func_proto bpf_skc_to_udp6_sock_proto = {
11727 	.func			= bpf_skc_to_udp6_sock,
11728 	.gpl_only		= false,
11729 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11730 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11731 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UDP6],
11732 };
11733 
11734 BPF_CALL_1(bpf_skc_to_unix_sock, struct sock *, sk)
11735 {
11736 	/* unix_sock type is not generated in dwarf and hence btf,
11737 	 * trigger an explicit type generation here.
11738 	 */
11739 	BTF_TYPE_EMIT(struct unix_sock);
11740 	if (sk && sk_fullsock(sk) && sk->sk_family == AF_UNIX)
11741 		return (unsigned long)sk;
11742 
11743 	return (unsigned long)NULL;
11744 }
11745 
11746 const struct bpf_func_proto bpf_skc_to_unix_sock_proto = {
11747 	.func			= bpf_skc_to_unix_sock,
11748 	.gpl_only		= false,
11749 	.ret_type		= RET_PTR_TO_BTF_ID_OR_NULL,
11750 	.arg1_type		= ARG_PTR_TO_BTF_ID_SOCK_COMMON,
11751 	.ret_btf_id		= &btf_sock_ids[BTF_SOCK_TYPE_UNIX],
11752 };
11753 
11754 BPF_CALL_1(bpf_skc_to_mptcp_sock, struct sock *, sk)
11755 {
11756 	BTF_TYPE_EMIT(struct mptcp_sock);
11757 	return (unsigned long)bpf_mptcp_sock_from_subflow(sk);
11758 }
11759 
11760 const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto = {
11761 	.func		= bpf_skc_to_mptcp_sock,
11762 	.gpl_only	= false,
11763 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11764 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
11765 	.ret_btf_id	= &btf_sock_ids[BTF_SOCK_TYPE_MPTCP],
11766 };
11767 
11768 BPF_CALL_1(bpf_sock_from_file, struct file *, file)
11769 {
11770 	return (unsigned long)sock_from_file(file);
11771 }
11772 
11773 BTF_ID_LIST(bpf_sock_from_file_btf_ids)
11774 BTF_ID(struct, socket)
11775 BTF_ID(struct, file)
11776 
11777 const struct bpf_func_proto bpf_sock_from_file_proto = {
11778 	.func		= bpf_sock_from_file,
11779 	.gpl_only	= false,
11780 	.ret_type	= RET_PTR_TO_BTF_ID_OR_NULL,
11781 	.ret_btf_id	= &bpf_sock_from_file_btf_ids[0],
11782 	.arg1_type	= ARG_PTR_TO_BTF_ID,
11783 	.arg1_btf_id	= &bpf_sock_from_file_btf_ids[1],
11784 };
11785 
11786 static const struct bpf_func_proto *
11787 bpf_sk_base_func_proto(enum bpf_func_id func_id)
11788 {
11789 	const struct bpf_func_proto *func;
11790 
11791 	switch (func_id) {
11792 	case BPF_FUNC_skc_to_tcp6_sock:
11793 		func = &bpf_skc_to_tcp6_sock_proto;
11794 		break;
11795 	case BPF_FUNC_skc_to_tcp_sock:
11796 		func = &bpf_skc_to_tcp_sock_proto;
11797 		break;
11798 	case BPF_FUNC_skc_to_tcp_timewait_sock:
11799 		func = &bpf_skc_to_tcp_timewait_sock_proto;
11800 		break;
11801 	case BPF_FUNC_skc_to_tcp_request_sock:
11802 		func = &bpf_skc_to_tcp_request_sock_proto;
11803 		break;
11804 	case BPF_FUNC_skc_to_udp6_sock:
11805 		func = &bpf_skc_to_udp6_sock_proto;
11806 		break;
11807 	case BPF_FUNC_skc_to_unix_sock:
11808 		func = &bpf_skc_to_unix_sock_proto;
11809 		break;
11810 	case BPF_FUNC_skc_to_mptcp_sock:
11811 		func = &bpf_skc_to_mptcp_sock_proto;
11812 		break;
11813 	case BPF_FUNC_ktime_get_coarse_ns:
11814 		return &bpf_ktime_get_coarse_ns_proto;
11815 	default:
11816 		return bpf_base_func_proto(func_id);
11817 	}
11818 
11819 	if (!perfmon_capable())
11820 		return NULL;
11821 
11822 	return func;
11823 }
11824 
11825 __bpf_kfunc_start_defs();
11826 __bpf_kfunc int bpf_dynptr_from_skb(struct sk_buff *skb, u64 flags,
11827 				    struct bpf_dynptr_kern *ptr__uninit)
11828 {
11829 	if (flags) {
11830 		bpf_dynptr_set_null(ptr__uninit);
11831 		return -EINVAL;
11832 	}
11833 
11834 	bpf_dynptr_init(ptr__uninit, skb, BPF_DYNPTR_TYPE_SKB, 0, skb->len);
11835 
11836 	return 0;
11837 }
11838 
11839 __bpf_kfunc int bpf_dynptr_from_xdp(struct xdp_buff *xdp, u64 flags,
11840 				    struct bpf_dynptr_kern *ptr__uninit)
11841 {
11842 	if (flags) {
11843 		bpf_dynptr_set_null(ptr__uninit);
11844 		return -EINVAL;
11845 	}
11846 
11847 	bpf_dynptr_init(ptr__uninit, xdp, BPF_DYNPTR_TYPE_XDP, 0, xdp_get_buff_len(xdp));
11848 
11849 	return 0;
11850 }
11851 
11852 __bpf_kfunc int bpf_sock_addr_set_sun_path(struct bpf_sock_addr_kern *sa_kern,
11853 					   const u8 *sun_path, u32 sun_path__sz)
11854 {
11855 	struct sockaddr_un *un;
11856 
11857 	if (sa_kern->sk->sk_family != AF_UNIX)
11858 		return -EINVAL;
11859 
11860 	/* We do not allow changing the address to unnamed or larger than the
11861 	 * maximum allowed address size for a unix sockaddr.
11862 	 */
11863 	if (sun_path__sz == 0 || sun_path__sz > UNIX_PATH_MAX)
11864 		return -EINVAL;
11865 
11866 	un = (struct sockaddr_un *)sa_kern->uaddr;
11867 	memcpy(un->sun_path, sun_path, sun_path__sz);
11868 	sa_kern->uaddrlen = offsetof(struct sockaddr_un, sun_path) + sun_path__sz;
11869 
11870 	return 0;
11871 }
11872 __bpf_kfunc_end_defs();
11873 
11874 int bpf_dynptr_from_skb_rdonly(struct sk_buff *skb, u64 flags,
11875 			       struct bpf_dynptr_kern *ptr__uninit)
11876 {
11877 	int err;
11878 
11879 	err = bpf_dynptr_from_skb(skb, flags, ptr__uninit);
11880 	if (err)
11881 		return err;
11882 
11883 	bpf_dynptr_set_rdonly(ptr__uninit);
11884 
11885 	return 0;
11886 }
11887 
11888 BTF_SET8_START(bpf_kfunc_check_set_skb)
11889 BTF_ID_FLAGS(func, bpf_dynptr_from_skb)
11890 BTF_SET8_END(bpf_kfunc_check_set_skb)
11891 
11892 BTF_SET8_START(bpf_kfunc_check_set_xdp)
11893 BTF_ID_FLAGS(func, bpf_dynptr_from_xdp)
11894 BTF_SET8_END(bpf_kfunc_check_set_xdp)
11895 
11896 BTF_SET8_START(bpf_kfunc_check_set_sock_addr)
11897 BTF_ID_FLAGS(func, bpf_sock_addr_set_sun_path)
11898 BTF_SET8_END(bpf_kfunc_check_set_sock_addr)
11899 
11900 static const struct btf_kfunc_id_set bpf_kfunc_set_skb = {
11901 	.owner = THIS_MODULE,
11902 	.set = &bpf_kfunc_check_set_skb,
11903 };
11904 
11905 static const struct btf_kfunc_id_set bpf_kfunc_set_xdp = {
11906 	.owner = THIS_MODULE,
11907 	.set = &bpf_kfunc_check_set_xdp,
11908 };
11909 
11910 static const struct btf_kfunc_id_set bpf_kfunc_set_sock_addr = {
11911 	.owner = THIS_MODULE,
11912 	.set = &bpf_kfunc_check_set_sock_addr,
11913 };
11914 
11915 static int __init bpf_kfunc_init(void)
11916 {
11917 	int ret;
11918 
11919 	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &bpf_kfunc_set_skb);
11920 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_ACT, &bpf_kfunc_set_skb);
11921 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SK_SKB, &bpf_kfunc_set_skb);
11922 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SOCKET_FILTER, &bpf_kfunc_set_skb);
11923 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &bpf_kfunc_set_skb);
11924 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_OUT, &bpf_kfunc_set_skb);
11925 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_IN, &bpf_kfunc_set_skb);
11926 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_XMIT, &bpf_kfunc_set_skb);
11927 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_LWT_SEG6LOCAL, &bpf_kfunc_set_skb);
11928 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_NETFILTER, &bpf_kfunc_set_skb);
11929 	ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &bpf_kfunc_set_xdp);
11930 	return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
11931 						&bpf_kfunc_set_sock_addr);
11932 }
11933 late_initcall(bpf_kfunc_init);
11934 
11935 __bpf_kfunc_start_defs();
11936 
11937 /* bpf_sock_destroy: Destroy the given socket with ECONNABORTED error code.
11938  *
11939  * The function expects a non-NULL pointer to a socket, and invokes the
11940  * protocol specific socket destroy handlers.
11941  *
11942  * The helper can only be called from BPF contexts that have acquired the socket
11943  * locks.
11944  *
11945  * Parameters:
11946  * @sock: Pointer to socket to be destroyed
11947  *
11948  * Return:
11949  * On error, may return EPROTONOSUPPORT, EINVAL.
11950  * EPROTONOSUPPORT if protocol specific destroy handler is not supported.
11951  * 0 otherwise
11952  */
11953 __bpf_kfunc int bpf_sock_destroy(struct sock_common *sock)
11954 {
11955 	struct sock *sk = (struct sock *)sock;
11956 
11957 	/* The locking semantics that allow for synchronous execution of the
11958 	 * destroy handlers are only supported for TCP and UDP.
11959 	 * Supporting protocols will need to acquire sock lock in the BPF context
11960 	 * prior to invoking this kfunc.
11961 	 */
11962 	if (!sk->sk_prot->diag_destroy || (sk->sk_protocol != IPPROTO_TCP &&
11963 					   sk->sk_protocol != IPPROTO_UDP))
11964 		return -EOPNOTSUPP;
11965 
11966 	return sk->sk_prot->diag_destroy(sk, ECONNABORTED);
11967 }
11968 
11969 __bpf_kfunc_end_defs();
11970 
11971 BTF_SET8_START(bpf_sk_iter_kfunc_ids)
11972 BTF_ID_FLAGS(func, bpf_sock_destroy, KF_TRUSTED_ARGS)
11973 BTF_SET8_END(bpf_sk_iter_kfunc_ids)
11974 
11975 static int tracing_iter_filter(const struct bpf_prog *prog, u32 kfunc_id)
11976 {
11977 	if (btf_id_set8_contains(&bpf_sk_iter_kfunc_ids, kfunc_id) &&
11978 	    prog->expected_attach_type != BPF_TRACE_ITER)
11979 		return -EACCES;
11980 	return 0;
11981 }
11982 
11983 static const struct btf_kfunc_id_set bpf_sk_iter_kfunc_set = {
11984 	.owner = THIS_MODULE,
11985 	.set   = &bpf_sk_iter_kfunc_ids,
11986 	.filter = tracing_iter_filter,
11987 };
11988 
11989 static int init_subsystem(void)
11990 {
11991 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &bpf_sk_iter_kfunc_set);
11992 }
11993 late_initcall(init_subsystem);
11994