xref: /linux/net/core/filter.c (revision f86fd32d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *	Jay Schulist <jschlst@samba.org>
13  *	Alexei Starovoitov <ast@plumgrid.com>
14  *	Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19 
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <net/sch_generic.h>
51 #include <net/cls_cgroup.h>
52 #include <net/dst_metadata.h>
53 #include <net/dst.h>
54 #include <net/sock_reuseport.h>
55 #include <net/busy_poll.h>
56 #include <net/tcp.h>
57 #include <net/xfrm.h>
58 #include <net/udp.h>
59 #include <linux/bpf_trace.h>
60 #include <net/xdp_sock.h>
61 #include <linux/inetdevice.h>
62 #include <net/inet_hashtables.h>
63 #include <net/inet6_hashtables.h>
64 #include <net/ip_fib.h>
65 #include <net/nexthop.h>
66 #include <net/flow.h>
67 #include <net/arp.h>
68 #include <net/ipv6.h>
69 #include <net/net_namespace.h>
70 #include <linux/seg6_local.h>
71 #include <net/seg6.h>
72 #include <net/seg6_local.h>
73 #include <net/lwtunnel.h>
74 #include <net/ipv6_stubs.h>
75 #include <net/bpf_sk_storage.h>
76 
77 /**
78  *	sk_filter_trim_cap - run a packet through a socket filter
79  *	@sk: sock associated with &sk_buff
80  *	@skb: buffer to filter
81  *	@cap: limit on how short the eBPF program may trim the packet
82  *
83  * Run the eBPF program and then cut skb->data to correct size returned by
84  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
85  * than pkt_len we keep whole skb->data. This is the socket level
86  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
87  * be accepted or -EPERM if the packet should be tossed.
88  *
89  */
90 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
91 {
92 	int err;
93 	struct sk_filter *filter;
94 
95 	/*
96 	 * If the skb was allocated from pfmemalloc reserves, only
97 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
98 	 * helping free memory
99 	 */
100 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
101 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
102 		return -ENOMEM;
103 	}
104 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
105 	if (err)
106 		return err;
107 
108 	err = security_sock_rcv_skb(sk, skb);
109 	if (err)
110 		return err;
111 
112 	rcu_read_lock();
113 	filter = rcu_dereference(sk->sk_filter);
114 	if (filter) {
115 		struct sock *save_sk = skb->sk;
116 		unsigned int pkt_len;
117 
118 		skb->sk = sk;
119 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
120 		skb->sk = save_sk;
121 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
122 	}
123 	rcu_read_unlock();
124 
125 	return err;
126 }
127 EXPORT_SYMBOL(sk_filter_trim_cap);
128 
129 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
130 {
131 	return skb_get_poff(skb);
132 }
133 
134 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
135 {
136 	struct nlattr *nla;
137 
138 	if (skb_is_nonlinear(skb))
139 		return 0;
140 
141 	if (skb->len < sizeof(struct nlattr))
142 		return 0;
143 
144 	if (a > skb->len - sizeof(struct nlattr))
145 		return 0;
146 
147 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
148 	if (nla)
149 		return (void *) nla - (void *) skb->data;
150 
151 	return 0;
152 }
153 
154 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
155 {
156 	struct nlattr *nla;
157 
158 	if (skb_is_nonlinear(skb))
159 		return 0;
160 
161 	if (skb->len < sizeof(struct nlattr))
162 		return 0;
163 
164 	if (a > skb->len - sizeof(struct nlattr))
165 		return 0;
166 
167 	nla = (struct nlattr *) &skb->data[a];
168 	if (nla->nla_len > skb->len - a)
169 		return 0;
170 
171 	nla = nla_find_nested(nla, x);
172 	if (nla)
173 		return (void *) nla - (void *) skb->data;
174 
175 	return 0;
176 }
177 
178 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
179 	   data, int, headlen, int, offset)
180 {
181 	u8 tmp, *ptr;
182 	const int len = sizeof(tmp);
183 
184 	if (offset >= 0) {
185 		if (headlen - offset >= len)
186 			return *(u8 *)(data + offset);
187 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
188 			return tmp;
189 	} else {
190 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
191 		if (likely(ptr))
192 			return *(u8 *)ptr;
193 	}
194 
195 	return -EFAULT;
196 }
197 
198 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
199 	   int, offset)
200 {
201 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
202 					 offset);
203 }
204 
205 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
206 	   data, int, headlen, int, offset)
207 {
208 	u16 tmp, *ptr;
209 	const int len = sizeof(tmp);
210 
211 	if (offset >= 0) {
212 		if (headlen - offset >= len)
213 			return get_unaligned_be16(data + offset);
214 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
215 			return be16_to_cpu(tmp);
216 	} else {
217 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
218 		if (likely(ptr))
219 			return get_unaligned_be16(ptr);
220 	}
221 
222 	return -EFAULT;
223 }
224 
225 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
226 	   int, offset)
227 {
228 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
229 					  offset);
230 }
231 
232 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
233 	   data, int, headlen, int, offset)
234 {
235 	u32 tmp, *ptr;
236 	const int len = sizeof(tmp);
237 
238 	if (likely(offset >= 0)) {
239 		if (headlen - offset >= len)
240 			return get_unaligned_be32(data + offset);
241 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
242 			return be32_to_cpu(tmp);
243 	} else {
244 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
245 		if (likely(ptr))
246 			return get_unaligned_be32(ptr);
247 	}
248 
249 	return -EFAULT;
250 }
251 
252 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
253 	   int, offset)
254 {
255 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
256 					  offset);
257 }
258 
259 BPF_CALL_0(bpf_get_raw_cpu_id)
260 {
261 	return raw_smp_processor_id();
262 }
263 
264 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
265 	.func		= bpf_get_raw_cpu_id,
266 	.gpl_only	= false,
267 	.ret_type	= RET_INTEGER,
268 };
269 
270 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
271 			      struct bpf_insn *insn_buf)
272 {
273 	struct bpf_insn *insn = insn_buf;
274 
275 	switch (skb_field) {
276 	case SKF_AD_MARK:
277 		BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
278 
279 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
280 				      offsetof(struct sk_buff, mark));
281 		break;
282 
283 	case SKF_AD_PKTTYPE:
284 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
285 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
286 #ifdef __BIG_ENDIAN_BITFIELD
287 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
288 #endif
289 		break;
290 
291 	case SKF_AD_QUEUE:
292 		BUILD_BUG_ON(sizeof_field(struct sk_buff, queue_mapping) != 2);
293 
294 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
295 				      offsetof(struct sk_buff, queue_mapping));
296 		break;
297 
298 	case SKF_AD_VLAN_TAG:
299 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_tci) != 2);
300 
301 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
302 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
303 				      offsetof(struct sk_buff, vlan_tci));
304 		break;
305 	case SKF_AD_VLAN_TAG_PRESENT:
306 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
307 		if (PKT_VLAN_PRESENT_BIT)
308 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
309 		if (PKT_VLAN_PRESENT_BIT < 7)
310 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
311 		break;
312 	}
313 
314 	return insn - insn_buf;
315 }
316 
317 static bool convert_bpf_extensions(struct sock_filter *fp,
318 				   struct bpf_insn **insnp)
319 {
320 	struct bpf_insn *insn = *insnp;
321 	u32 cnt;
322 
323 	switch (fp->k) {
324 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
325 		BUILD_BUG_ON(sizeof_field(struct sk_buff, protocol) != 2);
326 
327 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
328 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
329 				      offsetof(struct sk_buff, protocol));
330 		/* A = ntohs(A) [emitting a nop or swap16] */
331 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
332 		break;
333 
334 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
335 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
336 		insn += cnt - 1;
337 		break;
338 
339 	case SKF_AD_OFF + SKF_AD_IFINDEX:
340 	case SKF_AD_OFF + SKF_AD_HATYPE:
341 		BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
342 		BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
343 
344 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
345 				      BPF_REG_TMP, BPF_REG_CTX,
346 				      offsetof(struct sk_buff, dev));
347 		/* if (tmp != 0) goto pc + 1 */
348 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
349 		*insn++ = BPF_EXIT_INSN();
350 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
351 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
352 					    offsetof(struct net_device, ifindex));
353 		else
354 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
355 					    offsetof(struct net_device, type));
356 		break;
357 
358 	case SKF_AD_OFF + SKF_AD_MARK:
359 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
360 		insn += cnt - 1;
361 		break;
362 
363 	case SKF_AD_OFF + SKF_AD_RXHASH:
364 		BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
365 
366 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
367 				    offsetof(struct sk_buff, hash));
368 		break;
369 
370 	case SKF_AD_OFF + SKF_AD_QUEUE:
371 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
372 		insn += cnt - 1;
373 		break;
374 
375 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
376 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
377 					 BPF_REG_A, BPF_REG_CTX, insn);
378 		insn += cnt - 1;
379 		break;
380 
381 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
382 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
383 					 BPF_REG_A, BPF_REG_CTX, insn);
384 		insn += cnt - 1;
385 		break;
386 
387 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
388 		BUILD_BUG_ON(sizeof_field(struct sk_buff, vlan_proto) != 2);
389 
390 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
391 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
392 				      offsetof(struct sk_buff, vlan_proto));
393 		/* A = ntohs(A) [emitting a nop or swap16] */
394 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
395 		break;
396 
397 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
398 	case SKF_AD_OFF + SKF_AD_NLATTR:
399 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
400 	case SKF_AD_OFF + SKF_AD_CPU:
401 	case SKF_AD_OFF + SKF_AD_RANDOM:
402 		/* arg1 = CTX */
403 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
404 		/* arg2 = A */
405 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
406 		/* arg3 = X */
407 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
408 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
409 		switch (fp->k) {
410 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
411 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
412 			break;
413 		case SKF_AD_OFF + SKF_AD_NLATTR:
414 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
415 			break;
416 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
417 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
418 			break;
419 		case SKF_AD_OFF + SKF_AD_CPU:
420 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
421 			break;
422 		case SKF_AD_OFF + SKF_AD_RANDOM:
423 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
424 			bpf_user_rnd_init_once();
425 			break;
426 		}
427 		break;
428 
429 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
430 		/* A ^= X */
431 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
432 		break;
433 
434 	default:
435 		/* This is just a dummy call to avoid letting the compiler
436 		 * evict __bpf_call_base() as an optimization. Placed here
437 		 * where no-one bothers.
438 		 */
439 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
440 		return false;
441 	}
442 
443 	*insnp = insn;
444 	return true;
445 }
446 
447 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
448 {
449 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
450 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
451 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
452 		      BPF_SIZE(fp->code) == BPF_W;
453 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
454 	const int ip_align = NET_IP_ALIGN;
455 	struct bpf_insn *insn = *insnp;
456 	int offset = fp->k;
457 
458 	if (!indirect &&
459 	    ((unaligned_ok && offset >= 0) ||
460 	     (!unaligned_ok && offset >= 0 &&
461 	      offset + ip_align >= 0 &&
462 	      offset + ip_align % size == 0))) {
463 		bool ldx_off_ok = offset <= S16_MAX;
464 
465 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
466 		if (offset)
467 			*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
468 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
469 				      size, 2 + endian + (!ldx_off_ok * 2));
470 		if (ldx_off_ok) {
471 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
472 					      BPF_REG_D, offset);
473 		} else {
474 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
475 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
476 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
477 					      BPF_REG_TMP, 0);
478 		}
479 		if (endian)
480 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
481 		*insn++ = BPF_JMP_A(8);
482 	}
483 
484 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
485 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
486 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
487 	if (!indirect) {
488 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
489 	} else {
490 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
491 		if (fp->k)
492 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
493 	}
494 
495 	switch (BPF_SIZE(fp->code)) {
496 	case BPF_B:
497 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
498 		break;
499 	case BPF_H:
500 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
501 		break;
502 	case BPF_W:
503 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
504 		break;
505 	default:
506 		return false;
507 	}
508 
509 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
510 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
511 	*insn   = BPF_EXIT_INSN();
512 
513 	*insnp = insn;
514 	return true;
515 }
516 
517 /**
518  *	bpf_convert_filter - convert filter program
519  *	@prog: the user passed filter program
520  *	@len: the length of the user passed filter program
521  *	@new_prog: allocated 'struct bpf_prog' or NULL
522  *	@new_len: pointer to store length of converted program
523  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
524  *
525  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
526  * style extended BPF (eBPF).
527  * Conversion workflow:
528  *
529  * 1) First pass for calculating the new program length:
530  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
531  *
532  * 2) 2nd pass to remap in two passes: 1st pass finds new
533  *    jump offsets, 2nd pass remapping:
534  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
535  */
536 static int bpf_convert_filter(struct sock_filter *prog, int len,
537 			      struct bpf_prog *new_prog, int *new_len,
538 			      bool *seen_ld_abs)
539 {
540 	int new_flen = 0, pass = 0, target, i, stack_off;
541 	struct bpf_insn *new_insn, *first_insn = NULL;
542 	struct sock_filter *fp;
543 	int *addrs = NULL;
544 	u8 bpf_src;
545 
546 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
547 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
548 
549 	if (len <= 0 || len > BPF_MAXINSNS)
550 		return -EINVAL;
551 
552 	if (new_prog) {
553 		first_insn = new_prog->insnsi;
554 		addrs = kcalloc(len, sizeof(*addrs),
555 				GFP_KERNEL | __GFP_NOWARN);
556 		if (!addrs)
557 			return -ENOMEM;
558 	}
559 
560 do_pass:
561 	new_insn = first_insn;
562 	fp = prog;
563 
564 	/* Classic BPF related prologue emission. */
565 	if (new_prog) {
566 		/* Classic BPF expects A and X to be reset first. These need
567 		 * to be guaranteed to be the first two instructions.
568 		 */
569 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
570 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
571 
572 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
573 		 * In eBPF case it's done by the compiler, here we need to
574 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
575 		 */
576 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
577 		if (*seen_ld_abs) {
578 			/* For packet access in classic BPF, cache skb->data
579 			 * in callee-saved BPF R8 and skb->len - skb->data_len
580 			 * (headlen) in BPF R9. Since classic BPF is read-only
581 			 * on CTX, we only need to cache it once.
582 			 */
583 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
584 						  BPF_REG_D, BPF_REG_CTX,
585 						  offsetof(struct sk_buff, data));
586 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
587 						  offsetof(struct sk_buff, len));
588 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
589 						  offsetof(struct sk_buff, data_len));
590 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
591 		}
592 	} else {
593 		new_insn += 3;
594 	}
595 
596 	for (i = 0; i < len; fp++, i++) {
597 		struct bpf_insn tmp_insns[32] = { };
598 		struct bpf_insn *insn = tmp_insns;
599 
600 		if (addrs)
601 			addrs[i] = new_insn - first_insn;
602 
603 		switch (fp->code) {
604 		/* All arithmetic insns and skb loads map as-is. */
605 		case BPF_ALU | BPF_ADD | BPF_X:
606 		case BPF_ALU | BPF_ADD | BPF_K:
607 		case BPF_ALU | BPF_SUB | BPF_X:
608 		case BPF_ALU | BPF_SUB | BPF_K:
609 		case BPF_ALU | BPF_AND | BPF_X:
610 		case BPF_ALU | BPF_AND | BPF_K:
611 		case BPF_ALU | BPF_OR | BPF_X:
612 		case BPF_ALU | BPF_OR | BPF_K:
613 		case BPF_ALU | BPF_LSH | BPF_X:
614 		case BPF_ALU | BPF_LSH | BPF_K:
615 		case BPF_ALU | BPF_RSH | BPF_X:
616 		case BPF_ALU | BPF_RSH | BPF_K:
617 		case BPF_ALU | BPF_XOR | BPF_X:
618 		case BPF_ALU | BPF_XOR | BPF_K:
619 		case BPF_ALU | BPF_MUL | BPF_X:
620 		case BPF_ALU | BPF_MUL | BPF_K:
621 		case BPF_ALU | BPF_DIV | BPF_X:
622 		case BPF_ALU | BPF_DIV | BPF_K:
623 		case BPF_ALU | BPF_MOD | BPF_X:
624 		case BPF_ALU | BPF_MOD | BPF_K:
625 		case BPF_ALU | BPF_NEG:
626 		case BPF_LD | BPF_ABS | BPF_W:
627 		case BPF_LD | BPF_ABS | BPF_H:
628 		case BPF_LD | BPF_ABS | BPF_B:
629 		case BPF_LD | BPF_IND | BPF_W:
630 		case BPF_LD | BPF_IND | BPF_H:
631 		case BPF_LD | BPF_IND | BPF_B:
632 			/* Check for overloaded BPF extension and
633 			 * directly convert it if found, otherwise
634 			 * just move on with mapping.
635 			 */
636 			if (BPF_CLASS(fp->code) == BPF_LD &&
637 			    BPF_MODE(fp->code) == BPF_ABS &&
638 			    convert_bpf_extensions(fp, &insn))
639 				break;
640 			if (BPF_CLASS(fp->code) == BPF_LD &&
641 			    convert_bpf_ld_abs(fp, &insn)) {
642 				*seen_ld_abs = true;
643 				break;
644 			}
645 
646 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
647 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
648 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
649 				/* Error with exception code on div/mod by 0.
650 				 * For cBPF programs, this was always return 0.
651 				 */
652 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
653 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
654 				*insn++ = BPF_EXIT_INSN();
655 			}
656 
657 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
658 			break;
659 
660 		/* Jump transformation cannot use BPF block macros
661 		 * everywhere as offset calculation and target updates
662 		 * require a bit more work than the rest, i.e. jump
663 		 * opcodes map as-is, but offsets need adjustment.
664 		 */
665 
666 #define BPF_EMIT_JMP							\
667 	do {								\
668 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
669 		s32 off;						\
670 									\
671 		if (target >= len || target < 0)			\
672 			goto err;					\
673 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
674 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
675 		off -= insn - tmp_insns;				\
676 		/* Reject anything not fitting into insn->off. */	\
677 		if (off < off_min || off > off_max)			\
678 			goto err;					\
679 		insn->off = off;					\
680 	} while (0)
681 
682 		case BPF_JMP | BPF_JA:
683 			target = i + fp->k + 1;
684 			insn->code = fp->code;
685 			BPF_EMIT_JMP;
686 			break;
687 
688 		case BPF_JMP | BPF_JEQ | BPF_K:
689 		case BPF_JMP | BPF_JEQ | BPF_X:
690 		case BPF_JMP | BPF_JSET | BPF_K:
691 		case BPF_JMP | BPF_JSET | BPF_X:
692 		case BPF_JMP | BPF_JGT | BPF_K:
693 		case BPF_JMP | BPF_JGT | BPF_X:
694 		case BPF_JMP | BPF_JGE | BPF_K:
695 		case BPF_JMP | BPF_JGE | BPF_X:
696 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
697 				/* BPF immediates are signed, zero extend
698 				 * immediate into tmp register and use it
699 				 * in compare insn.
700 				 */
701 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
702 
703 				insn->dst_reg = BPF_REG_A;
704 				insn->src_reg = BPF_REG_TMP;
705 				bpf_src = BPF_X;
706 			} else {
707 				insn->dst_reg = BPF_REG_A;
708 				insn->imm = fp->k;
709 				bpf_src = BPF_SRC(fp->code);
710 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
711 			}
712 
713 			/* Common case where 'jump_false' is next insn. */
714 			if (fp->jf == 0) {
715 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
716 				target = i + fp->jt + 1;
717 				BPF_EMIT_JMP;
718 				break;
719 			}
720 
721 			/* Convert some jumps when 'jump_true' is next insn. */
722 			if (fp->jt == 0) {
723 				switch (BPF_OP(fp->code)) {
724 				case BPF_JEQ:
725 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
726 					break;
727 				case BPF_JGT:
728 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
729 					break;
730 				case BPF_JGE:
731 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
732 					break;
733 				default:
734 					goto jmp_rest;
735 				}
736 
737 				target = i + fp->jf + 1;
738 				BPF_EMIT_JMP;
739 				break;
740 			}
741 jmp_rest:
742 			/* Other jumps are mapped into two insns: Jxx and JA. */
743 			target = i + fp->jt + 1;
744 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
745 			BPF_EMIT_JMP;
746 			insn++;
747 
748 			insn->code = BPF_JMP | BPF_JA;
749 			target = i + fp->jf + 1;
750 			BPF_EMIT_JMP;
751 			break;
752 
753 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
754 		case BPF_LDX | BPF_MSH | BPF_B: {
755 			struct sock_filter tmp = {
756 				.code	= BPF_LD | BPF_ABS | BPF_B,
757 				.k	= fp->k,
758 			};
759 
760 			*seen_ld_abs = true;
761 
762 			/* X = A */
763 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
764 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
765 			convert_bpf_ld_abs(&tmp, &insn);
766 			insn++;
767 			/* A &= 0xf */
768 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
769 			/* A <<= 2 */
770 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
771 			/* tmp = X */
772 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
773 			/* X = A */
774 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
775 			/* A = tmp */
776 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
777 			break;
778 		}
779 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
780 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
781 		 */
782 		case BPF_RET | BPF_A:
783 		case BPF_RET | BPF_K:
784 			if (BPF_RVAL(fp->code) == BPF_K)
785 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
786 							0, fp->k);
787 			*insn = BPF_EXIT_INSN();
788 			break;
789 
790 		/* Store to stack. */
791 		case BPF_ST:
792 		case BPF_STX:
793 			stack_off = fp->k * 4  + 4;
794 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
795 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
796 					    -stack_off);
797 			/* check_load_and_stores() verifies that classic BPF can
798 			 * load from stack only after write, so tracking
799 			 * stack_depth for ST|STX insns is enough
800 			 */
801 			if (new_prog && new_prog->aux->stack_depth < stack_off)
802 				new_prog->aux->stack_depth = stack_off;
803 			break;
804 
805 		/* Load from stack. */
806 		case BPF_LD | BPF_MEM:
807 		case BPF_LDX | BPF_MEM:
808 			stack_off = fp->k * 4  + 4;
809 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
810 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
811 					    -stack_off);
812 			break;
813 
814 		/* A = K or X = K */
815 		case BPF_LD | BPF_IMM:
816 		case BPF_LDX | BPF_IMM:
817 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
818 					      BPF_REG_A : BPF_REG_X, fp->k);
819 			break;
820 
821 		/* X = A */
822 		case BPF_MISC | BPF_TAX:
823 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824 			break;
825 
826 		/* A = X */
827 		case BPF_MISC | BPF_TXA:
828 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
829 			break;
830 
831 		/* A = skb->len or X = skb->len */
832 		case BPF_LD | BPF_W | BPF_LEN:
833 		case BPF_LDX | BPF_W | BPF_LEN:
834 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
835 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
836 					    offsetof(struct sk_buff, len));
837 			break;
838 
839 		/* Access seccomp_data fields. */
840 		case BPF_LDX | BPF_ABS | BPF_W:
841 			/* A = *(u32 *) (ctx + K) */
842 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
843 			break;
844 
845 		/* Unknown instruction. */
846 		default:
847 			goto err;
848 		}
849 
850 		insn++;
851 		if (new_prog)
852 			memcpy(new_insn, tmp_insns,
853 			       sizeof(*insn) * (insn - tmp_insns));
854 		new_insn += insn - tmp_insns;
855 	}
856 
857 	if (!new_prog) {
858 		/* Only calculating new length. */
859 		*new_len = new_insn - first_insn;
860 		if (*seen_ld_abs)
861 			*new_len += 4; /* Prologue bits. */
862 		return 0;
863 	}
864 
865 	pass++;
866 	if (new_flen != new_insn - first_insn) {
867 		new_flen = new_insn - first_insn;
868 		if (pass > 2)
869 			goto err;
870 		goto do_pass;
871 	}
872 
873 	kfree(addrs);
874 	BUG_ON(*new_len != new_flen);
875 	return 0;
876 err:
877 	kfree(addrs);
878 	return -EINVAL;
879 }
880 
881 /* Security:
882  *
883  * As we dont want to clear mem[] array for each packet going through
884  * __bpf_prog_run(), we check that filter loaded by user never try to read
885  * a cell if not previously written, and we check all branches to be sure
886  * a malicious user doesn't try to abuse us.
887  */
888 static int check_load_and_stores(const struct sock_filter *filter, int flen)
889 {
890 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
891 	int pc, ret = 0;
892 
893 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
894 
895 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
896 	if (!masks)
897 		return -ENOMEM;
898 
899 	memset(masks, 0xff, flen * sizeof(*masks));
900 
901 	for (pc = 0; pc < flen; pc++) {
902 		memvalid &= masks[pc];
903 
904 		switch (filter[pc].code) {
905 		case BPF_ST:
906 		case BPF_STX:
907 			memvalid |= (1 << filter[pc].k);
908 			break;
909 		case BPF_LD | BPF_MEM:
910 		case BPF_LDX | BPF_MEM:
911 			if (!(memvalid & (1 << filter[pc].k))) {
912 				ret = -EINVAL;
913 				goto error;
914 			}
915 			break;
916 		case BPF_JMP | BPF_JA:
917 			/* A jump must set masks on target */
918 			masks[pc + 1 + filter[pc].k] &= memvalid;
919 			memvalid = ~0;
920 			break;
921 		case BPF_JMP | BPF_JEQ | BPF_K:
922 		case BPF_JMP | BPF_JEQ | BPF_X:
923 		case BPF_JMP | BPF_JGE | BPF_K:
924 		case BPF_JMP | BPF_JGE | BPF_X:
925 		case BPF_JMP | BPF_JGT | BPF_K:
926 		case BPF_JMP | BPF_JGT | BPF_X:
927 		case BPF_JMP | BPF_JSET | BPF_K:
928 		case BPF_JMP | BPF_JSET | BPF_X:
929 			/* A jump must set masks on targets */
930 			masks[pc + 1 + filter[pc].jt] &= memvalid;
931 			masks[pc + 1 + filter[pc].jf] &= memvalid;
932 			memvalid = ~0;
933 			break;
934 		}
935 	}
936 error:
937 	kfree(masks);
938 	return ret;
939 }
940 
941 static bool chk_code_allowed(u16 code_to_probe)
942 {
943 	static const bool codes[] = {
944 		/* 32 bit ALU operations */
945 		[BPF_ALU | BPF_ADD | BPF_K] = true,
946 		[BPF_ALU | BPF_ADD | BPF_X] = true,
947 		[BPF_ALU | BPF_SUB | BPF_K] = true,
948 		[BPF_ALU | BPF_SUB | BPF_X] = true,
949 		[BPF_ALU | BPF_MUL | BPF_K] = true,
950 		[BPF_ALU | BPF_MUL | BPF_X] = true,
951 		[BPF_ALU | BPF_DIV | BPF_K] = true,
952 		[BPF_ALU | BPF_DIV | BPF_X] = true,
953 		[BPF_ALU | BPF_MOD | BPF_K] = true,
954 		[BPF_ALU | BPF_MOD | BPF_X] = true,
955 		[BPF_ALU | BPF_AND | BPF_K] = true,
956 		[BPF_ALU | BPF_AND | BPF_X] = true,
957 		[BPF_ALU | BPF_OR | BPF_K] = true,
958 		[BPF_ALU | BPF_OR | BPF_X] = true,
959 		[BPF_ALU | BPF_XOR | BPF_K] = true,
960 		[BPF_ALU | BPF_XOR | BPF_X] = true,
961 		[BPF_ALU | BPF_LSH | BPF_K] = true,
962 		[BPF_ALU | BPF_LSH | BPF_X] = true,
963 		[BPF_ALU | BPF_RSH | BPF_K] = true,
964 		[BPF_ALU | BPF_RSH | BPF_X] = true,
965 		[BPF_ALU | BPF_NEG] = true,
966 		/* Load instructions */
967 		[BPF_LD | BPF_W | BPF_ABS] = true,
968 		[BPF_LD | BPF_H | BPF_ABS] = true,
969 		[BPF_LD | BPF_B | BPF_ABS] = true,
970 		[BPF_LD | BPF_W | BPF_LEN] = true,
971 		[BPF_LD | BPF_W | BPF_IND] = true,
972 		[BPF_LD | BPF_H | BPF_IND] = true,
973 		[BPF_LD | BPF_B | BPF_IND] = true,
974 		[BPF_LD | BPF_IMM] = true,
975 		[BPF_LD | BPF_MEM] = true,
976 		[BPF_LDX | BPF_W | BPF_LEN] = true,
977 		[BPF_LDX | BPF_B | BPF_MSH] = true,
978 		[BPF_LDX | BPF_IMM] = true,
979 		[BPF_LDX | BPF_MEM] = true,
980 		/* Store instructions */
981 		[BPF_ST] = true,
982 		[BPF_STX] = true,
983 		/* Misc instructions */
984 		[BPF_MISC | BPF_TAX] = true,
985 		[BPF_MISC | BPF_TXA] = true,
986 		/* Return instructions */
987 		[BPF_RET | BPF_K] = true,
988 		[BPF_RET | BPF_A] = true,
989 		/* Jump instructions */
990 		[BPF_JMP | BPF_JA] = true,
991 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
992 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
993 		[BPF_JMP | BPF_JGE | BPF_K] = true,
994 		[BPF_JMP | BPF_JGE | BPF_X] = true,
995 		[BPF_JMP | BPF_JGT | BPF_K] = true,
996 		[BPF_JMP | BPF_JGT | BPF_X] = true,
997 		[BPF_JMP | BPF_JSET | BPF_K] = true,
998 		[BPF_JMP | BPF_JSET | BPF_X] = true,
999 	};
1000 
1001 	if (code_to_probe >= ARRAY_SIZE(codes))
1002 		return false;
1003 
1004 	return codes[code_to_probe];
1005 }
1006 
1007 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008 				unsigned int flen)
1009 {
1010 	if (filter == NULL)
1011 		return false;
1012 	if (flen == 0 || flen > BPF_MAXINSNS)
1013 		return false;
1014 
1015 	return true;
1016 }
1017 
1018 /**
1019  *	bpf_check_classic - verify socket filter code
1020  *	@filter: filter to verify
1021  *	@flen: length of filter
1022  *
1023  * Check the user's filter code. If we let some ugly
1024  * filter code slip through kaboom! The filter must contain
1025  * no references or jumps that are out of range, no illegal
1026  * instructions, and must end with a RET instruction.
1027  *
1028  * All jumps are forward as they are not signed.
1029  *
1030  * Returns 0 if the rule set is legal or -EINVAL if not.
1031  */
1032 static int bpf_check_classic(const struct sock_filter *filter,
1033 			     unsigned int flen)
1034 {
1035 	bool anc_found;
1036 	int pc;
1037 
1038 	/* Check the filter code now */
1039 	for (pc = 0; pc < flen; pc++) {
1040 		const struct sock_filter *ftest = &filter[pc];
1041 
1042 		/* May we actually operate on this code? */
1043 		if (!chk_code_allowed(ftest->code))
1044 			return -EINVAL;
1045 
1046 		/* Some instructions need special checks */
1047 		switch (ftest->code) {
1048 		case BPF_ALU | BPF_DIV | BPF_K:
1049 		case BPF_ALU | BPF_MOD | BPF_K:
1050 			/* Check for division by zero */
1051 			if (ftest->k == 0)
1052 				return -EINVAL;
1053 			break;
1054 		case BPF_ALU | BPF_LSH | BPF_K:
1055 		case BPF_ALU | BPF_RSH | BPF_K:
1056 			if (ftest->k >= 32)
1057 				return -EINVAL;
1058 			break;
1059 		case BPF_LD | BPF_MEM:
1060 		case BPF_LDX | BPF_MEM:
1061 		case BPF_ST:
1062 		case BPF_STX:
1063 			/* Check for invalid memory addresses */
1064 			if (ftest->k >= BPF_MEMWORDS)
1065 				return -EINVAL;
1066 			break;
1067 		case BPF_JMP | BPF_JA:
1068 			/* Note, the large ftest->k might cause loops.
1069 			 * Compare this with conditional jumps below,
1070 			 * where offsets are limited. --ANK (981016)
1071 			 */
1072 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1073 				return -EINVAL;
1074 			break;
1075 		case BPF_JMP | BPF_JEQ | BPF_K:
1076 		case BPF_JMP | BPF_JEQ | BPF_X:
1077 		case BPF_JMP | BPF_JGE | BPF_K:
1078 		case BPF_JMP | BPF_JGE | BPF_X:
1079 		case BPF_JMP | BPF_JGT | BPF_K:
1080 		case BPF_JMP | BPF_JGT | BPF_X:
1081 		case BPF_JMP | BPF_JSET | BPF_K:
1082 		case BPF_JMP | BPF_JSET | BPF_X:
1083 			/* Both conditionals must be safe */
1084 			if (pc + ftest->jt + 1 >= flen ||
1085 			    pc + ftest->jf + 1 >= flen)
1086 				return -EINVAL;
1087 			break;
1088 		case BPF_LD | BPF_W | BPF_ABS:
1089 		case BPF_LD | BPF_H | BPF_ABS:
1090 		case BPF_LD | BPF_B | BPF_ABS:
1091 			anc_found = false;
1092 			if (bpf_anc_helper(ftest) & BPF_ANC)
1093 				anc_found = true;
1094 			/* Ancillary operation unknown or unsupported */
1095 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096 				return -EINVAL;
1097 		}
1098 	}
1099 
1100 	/* Last instruction must be a RET code */
1101 	switch (filter[flen - 1].code) {
1102 	case BPF_RET | BPF_K:
1103 	case BPF_RET | BPF_A:
1104 		return check_load_and_stores(filter, flen);
1105 	}
1106 
1107 	return -EINVAL;
1108 }
1109 
1110 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111 				      const struct sock_fprog *fprog)
1112 {
1113 	unsigned int fsize = bpf_classic_proglen(fprog);
1114 	struct sock_fprog_kern *fkprog;
1115 
1116 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117 	if (!fp->orig_prog)
1118 		return -ENOMEM;
1119 
1120 	fkprog = fp->orig_prog;
1121 	fkprog->len = fprog->len;
1122 
1123 	fkprog->filter = kmemdup(fp->insns, fsize,
1124 				 GFP_KERNEL | __GFP_NOWARN);
1125 	if (!fkprog->filter) {
1126 		kfree(fp->orig_prog);
1127 		return -ENOMEM;
1128 	}
1129 
1130 	return 0;
1131 }
1132 
1133 static void bpf_release_orig_filter(struct bpf_prog *fp)
1134 {
1135 	struct sock_fprog_kern *fprog = fp->orig_prog;
1136 
1137 	if (fprog) {
1138 		kfree(fprog->filter);
1139 		kfree(fprog);
1140 	}
1141 }
1142 
1143 static void __bpf_prog_release(struct bpf_prog *prog)
1144 {
1145 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146 		bpf_prog_put(prog);
1147 	} else {
1148 		bpf_release_orig_filter(prog);
1149 		bpf_prog_free(prog);
1150 	}
1151 }
1152 
1153 static void __sk_filter_release(struct sk_filter *fp)
1154 {
1155 	__bpf_prog_release(fp->prog);
1156 	kfree(fp);
1157 }
1158 
1159 /**
1160  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1161  *	@rcu: rcu_head that contains the sk_filter to free
1162  */
1163 static void sk_filter_release_rcu(struct rcu_head *rcu)
1164 {
1165 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166 
1167 	__sk_filter_release(fp);
1168 }
1169 
1170 /**
1171  *	sk_filter_release - release a socket filter
1172  *	@fp: filter to remove
1173  *
1174  *	Remove a filter from a socket and release its resources.
1175  */
1176 static void sk_filter_release(struct sk_filter *fp)
1177 {
1178 	if (refcount_dec_and_test(&fp->refcnt))
1179 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1180 }
1181 
1182 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183 {
1184 	u32 filter_size = bpf_prog_size(fp->prog->len);
1185 
1186 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1187 	sk_filter_release(fp);
1188 }
1189 
1190 /* try to charge the socket memory if there is space available
1191  * return true on success
1192  */
1193 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194 {
1195 	u32 filter_size = bpf_prog_size(fp->prog->len);
1196 
1197 	/* same check as in sock_kmalloc() */
1198 	if (filter_size <= sysctl_optmem_max &&
1199 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200 		atomic_add(filter_size, &sk->sk_omem_alloc);
1201 		return true;
1202 	}
1203 	return false;
1204 }
1205 
1206 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207 {
1208 	if (!refcount_inc_not_zero(&fp->refcnt))
1209 		return false;
1210 
1211 	if (!__sk_filter_charge(sk, fp)) {
1212 		sk_filter_release(fp);
1213 		return false;
1214 	}
1215 	return true;
1216 }
1217 
1218 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219 {
1220 	struct sock_filter *old_prog;
1221 	struct bpf_prog *old_fp;
1222 	int err, new_len, old_len = fp->len;
1223 	bool seen_ld_abs = false;
1224 
1225 	/* We are free to overwrite insns et al right here as it
1226 	 * won't be used at this point in time anymore internally
1227 	 * after the migration to the internal BPF instruction
1228 	 * representation.
1229 	 */
1230 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231 		     sizeof(struct bpf_insn));
1232 
1233 	/* Conversion cannot happen on overlapping memory areas,
1234 	 * so we need to keep the user BPF around until the 2nd
1235 	 * pass. At this time, the user BPF is stored in fp->insns.
1236 	 */
1237 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238 			   GFP_KERNEL | __GFP_NOWARN);
1239 	if (!old_prog) {
1240 		err = -ENOMEM;
1241 		goto out_err;
1242 	}
1243 
1244 	/* 1st pass: calculate the new program length. */
1245 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246 				 &seen_ld_abs);
1247 	if (err)
1248 		goto out_err_free;
1249 
1250 	/* Expand fp for appending the new filter representation. */
1251 	old_fp = fp;
1252 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253 	if (!fp) {
1254 		/* The old_fp is still around in case we couldn't
1255 		 * allocate new memory, so uncharge on that one.
1256 		 */
1257 		fp = old_fp;
1258 		err = -ENOMEM;
1259 		goto out_err_free;
1260 	}
1261 
1262 	fp->len = new_len;
1263 
1264 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266 				 &seen_ld_abs);
1267 	if (err)
1268 		/* 2nd bpf_convert_filter() can fail only if it fails
1269 		 * to allocate memory, remapping must succeed. Note,
1270 		 * that at this time old_fp has already been released
1271 		 * by krealloc().
1272 		 */
1273 		goto out_err_free;
1274 
1275 	fp = bpf_prog_select_runtime(fp, &err);
1276 	if (err)
1277 		goto out_err_free;
1278 
1279 	kfree(old_prog);
1280 	return fp;
1281 
1282 out_err_free:
1283 	kfree(old_prog);
1284 out_err:
1285 	__bpf_prog_release(fp);
1286 	return ERR_PTR(err);
1287 }
1288 
1289 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290 					   bpf_aux_classic_check_t trans)
1291 {
1292 	int err;
1293 
1294 	fp->bpf_func = NULL;
1295 	fp->jited = 0;
1296 
1297 	err = bpf_check_classic(fp->insns, fp->len);
1298 	if (err) {
1299 		__bpf_prog_release(fp);
1300 		return ERR_PTR(err);
1301 	}
1302 
1303 	/* There might be additional checks and transformations
1304 	 * needed on classic filters, f.e. in case of seccomp.
1305 	 */
1306 	if (trans) {
1307 		err = trans(fp->insns, fp->len);
1308 		if (err) {
1309 			__bpf_prog_release(fp);
1310 			return ERR_PTR(err);
1311 		}
1312 	}
1313 
1314 	/* Probe if we can JIT compile the filter and if so, do
1315 	 * the compilation of the filter.
1316 	 */
1317 	bpf_jit_compile(fp);
1318 
1319 	/* JIT compiler couldn't process this filter, so do the
1320 	 * internal BPF translation for the optimized interpreter.
1321 	 */
1322 	if (!fp->jited)
1323 		fp = bpf_migrate_filter(fp);
1324 
1325 	return fp;
1326 }
1327 
1328 /**
1329  *	bpf_prog_create - create an unattached filter
1330  *	@pfp: the unattached filter that is created
1331  *	@fprog: the filter program
1332  *
1333  * Create a filter independent of any socket. We first run some
1334  * sanity checks on it to make sure it does not explode on us later.
1335  * If an error occurs or there is insufficient memory for the filter
1336  * a negative errno code is returned. On success the return is zero.
1337  */
1338 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339 {
1340 	unsigned int fsize = bpf_classic_proglen(fprog);
1341 	struct bpf_prog *fp;
1342 
1343 	/* Make sure new filter is there and in the right amounts. */
1344 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345 		return -EINVAL;
1346 
1347 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348 	if (!fp)
1349 		return -ENOMEM;
1350 
1351 	memcpy(fp->insns, fprog->filter, fsize);
1352 
1353 	fp->len = fprog->len;
1354 	/* Since unattached filters are not copied back to user
1355 	 * space through sk_get_filter(), we do not need to hold
1356 	 * a copy here, and can spare us the work.
1357 	 */
1358 	fp->orig_prog = NULL;
1359 
1360 	/* bpf_prepare_filter() already takes care of freeing
1361 	 * memory in case something goes wrong.
1362 	 */
1363 	fp = bpf_prepare_filter(fp, NULL);
1364 	if (IS_ERR(fp))
1365 		return PTR_ERR(fp);
1366 
1367 	*pfp = fp;
1368 	return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(bpf_prog_create);
1371 
1372 /**
1373  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1374  *	@pfp: the unattached filter that is created
1375  *	@fprog: the filter program
1376  *	@trans: post-classic verifier transformation handler
1377  *	@save_orig: save classic BPF program
1378  *
1379  * This function effectively does the same as bpf_prog_create(), only
1380  * that it builds up its insns buffer from user space provided buffer.
1381  * It also allows for passing a bpf_aux_classic_check_t handler.
1382  */
1383 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384 			      bpf_aux_classic_check_t trans, bool save_orig)
1385 {
1386 	unsigned int fsize = bpf_classic_proglen(fprog);
1387 	struct bpf_prog *fp;
1388 	int err;
1389 
1390 	/* Make sure new filter is there and in the right amounts. */
1391 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392 		return -EINVAL;
1393 
1394 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395 	if (!fp)
1396 		return -ENOMEM;
1397 
1398 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399 		__bpf_prog_free(fp);
1400 		return -EFAULT;
1401 	}
1402 
1403 	fp->len = fprog->len;
1404 	fp->orig_prog = NULL;
1405 
1406 	if (save_orig) {
1407 		err = bpf_prog_store_orig_filter(fp, fprog);
1408 		if (err) {
1409 			__bpf_prog_free(fp);
1410 			return -ENOMEM;
1411 		}
1412 	}
1413 
1414 	/* bpf_prepare_filter() already takes care of freeing
1415 	 * memory in case something goes wrong.
1416 	 */
1417 	fp = bpf_prepare_filter(fp, trans);
1418 	if (IS_ERR(fp))
1419 		return PTR_ERR(fp);
1420 
1421 	*pfp = fp;
1422 	return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425 
1426 void bpf_prog_destroy(struct bpf_prog *fp)
1427 {
1428 	__bpf_prog_release(fp);
1429 }
1430 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431 
1432 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433 {
1434 	struct sk_filter *fp, *old_fp;
1435 
1436 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437 	if (!fp)
1438 		return -ENOMEM;
1439 
1440 	fp->prog = prog;
1441 
1442 	if (!__sk_filter_charge(sk, fp)) {
1443 		kfree(fp);
1444 		return -ENOMEM;
1445 	}
1446 	refcount_set(&fp->refcnt, 1);
1447 
1448 	old_fp = rcu_dereference_protected(sk->sk_filter,
1449 					   lockdep_sock_is_held(sk));
1450 	rcu_assign_pointer(sk->sk_filter, fp);
1451 
1452 	if (old_fp)
1453 		sk_filter_uncharge(sk, old_fp);
1454 
1455 	return 0;
1456 }
1457 
1458 static
1459 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460 {
1461 	unsigned int fsize = bpf_classic_proglen(fprog);
1462 	struct bpf_prog *prog;
1463 	int err;
1464 
1465 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466 		return ERR_PTR(-EPERM);
1467 
1468 	/* Make sure new filter is there and in the right amounts. */
1469 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470 		return ERR_PTR(-EINVAL);
1471 
1472 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473 	if (!prog)
1474 		return ERR_PTR(-ENOMEM);
1475 
1476 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477 		__bpf_prog_free(prog);
1478 		return ERR_PTR(-EFAULT);
1479 	}
1480 
1481 	prog->len = fprog->len;
1482 
1483 	err = bpf_prog_store_orig_filter(prog, fprog);
1484 	if (err) {
1485 		__bpf_prog_free(prog);
1486 		return ERR_PTR(-ENOMEM);
1487 	}
1488 
1489 	/* bpf_prepare_filter() already takes care of freeing
1490 	 * memory in case something goes wrong.
1491 	 */
1492 	return bpf_prepare_filter(prog, NULL);
1493 }
1494 
1495 /**
1496  *	sk_attach_filter - attach a socket filter
1497  *	@fprog: the filter program
1498  *	@sk: the socket to use
1499  *
1500  * Attach the user's filter code. We first run some sanity checks on
1501  * it to make sure it does not explode on us later. If an error
1502  * occurs or there is insufficient memory for the filter a negative
1503  * errno code is returned. On success the return is zero.
1504  */
1505 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506 {
1507 	struct bpf_prog *prog = __get_filter(fprog, sk);
1508 	int err;
1509 
1510 	if (IS_ERR(prog))
1511 		return PTR_ERR(prog);
1512 
1513 	err = __sk_attach_prog(prog, sk);
1514 	if (err < 0) {
1515 		__bpf_prog_release(prog);
1516 		return err;
1517 	}
1518 
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(sk_attach_filter);
1522 
1523 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524 {
1525 	struct bpf_prog *prog = __get_filter(fprog, sk);
1526 	int err;
1527 
1528 	if (IS_ERR(prog))
1529 		return PTR_ERR(prog);
1530 
1531 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532 		err = -ENOMEM;
1533 	else
1534 		err = reuseport_attach_prog(sk, prog);
1535 
1536 	if (err)
1537 		__bpf_prog_release(prog);
1538 
1539 	return err;
1540 }
1541 
1542 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543 {
1544 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545 		return ERR_PTR(-EPERM);
1546 
1547 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548 }
1549 
1550 int sk_attach_bpf(u32 ufd, struct sock *sk)
1551 {
1552 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1553 	int err;
1554 
1555 	if (IS_ERR(prog))
1556 		return PTR_ERR(prog);
1557 
1558 	err = __sk_attach_prog(prog, sk);
1559 	if (err < 0) {
1560 		bpf_prog_put(prog);
1561 		return err;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568 {
1569 	struct bpf_prog *prog;
1570 	int err;
1571 
1572 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573 		return -EPERM;
1574 
1575 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576 	if (PTR_ERR(prog) == -EINVAL)
1577 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578 	if (IS_ERR(prog))
1579 		return PTR_ERR(prog);
1580 
1581 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583 		 * bpf prog (e.g. sockmap).  It depends on the
1584 		 * limitation imposed by bpf_prog_load().
1585 		 * Hence, sysctl_optmem_max is not checked.
1586 		 */
1587 		if ((sk->sk_type != SOCK_STREAM &&
1588 		     sk->sk_type != SOCK_DGRAM) ||
1589 		    (sk->sk_protocol != IPPROTO_UDP &&
1590 		     sk->sk_protocol != IPPROTO_TCP) ||
1591 		    (sk->sk_family != AF_INET &&
1592 		     sk->sk_family != AF_INET6)) {
1593 			err = -ENOTSUPP;
1594 			goto err_prog_put;
1595 		}
1596 	} else {
1597 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1598 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599 			err = -ENOMEM;
1600 			goto err_prog_put;
1601 		}
1602 	}
1603 
1604 	err = reuseport_attach_prog(sk, prog);
1605 err_prog_put:
1606 	if (err)
1607 		bpf_prog_put(prog);
1608 
1609 	return err;
1610 }
1611 
1612 void sk_reuseport_prog_free(struct bpf_prog *prog)
1613 {
1614 	if (!prog)
1615 		return;
1616 
1617 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618 		bpf_prog_put(prog);
1619 	else
1620 		bpf_prog_destroy(prog);
1621 }
1622 
1623 struct bpf_scratchpad {
1624 	union {
1625 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626 		u8     buff[MAX_BPF_STACK];
1627 	};
1628 };
1629 
1630 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631 
1632 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633 					  unsigned int write_len)
1634 {
1635 	return skb_ensure_writable(skb, write_len);
1636 }
1637 
1638 static inline int bpf_try_make_writable(struct sk_buff *skb,
1639 					unsigned int write_len)
1640 {
1641 	int err = __bpf_try_make_writable(skb, write_len);
1642 
1643 	bpf_compute_data_pointers(skb);
1644 	return err;
1645 }
1646 
1647 static int bpf_try_make_head_writable(struct sk_buff *skb)
1648 {
1649 	return bpf_try_make_writable(skb, skb_headlen(skb));
1650 }
1651 
1652 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653 {
1654 	if (skb_at_tc_ingress(skb))
1655 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656 }
1657 
1658 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659 {
1660 	if (skb_at_tc_ingress(skb))
1661 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662 }
1663 
1664 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665 	   const void *, from, u32, len, u64, flags)
1666 {
1667 	void *ptr;
1668 
1669 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670 		return -EINVAL;
1671 	if (unlikely(offset > 0xffff))
1672 		return -EFAULT;
1673 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674 		return -EFAULT;
1675 
1676 	ptr = skb->data + offset;
1677 	if (flags & BPF_F_RECOMPUTE_CSUM)
1678 		__skb_postpull_rcsum(skb, ptr, len, offset);
1679 
1680 	memcpy(ptr, from, len);
1681 
1682 	if (flags & BPF_F_RECOMPUTE_CSUM)
1683 		__skb_postpush_rcsum(skb, ptr, len, offset);
1684 	if (flags & BPF_F_INVALIDATE_HASH)
1685 		skb_clear_hash(skb);
1686 
1687 	return 0;
1688 }
1689 
1690 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691 	.func		= bpf_skb_store_bytes,
1692 	.gpl_only	= false,
1693 	.ret_type	= RET_INTEGER,
1694 	.arg1_type	= ARG_PTR_TO_CTX,
1695 	.arg2_type	= ARG_ANYTHING,
1696 	.arg3_type	= ARG_PTR_TO_MEM,
1697 	.arg4_type	= ARG_CONST_SIZE,
1698 	.arg5_type	= ARG_ANYTHING,
1699 };
1700 
1701 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702 	   void *, to, u32, len)
1703 {
1704 	void *ptr;
1705 
1706 	if (unlikely(offset > 0xffff))
1707 		goto err_clear;
1708 
1709 	ptr = skb_header_pointer(skb, offset, len, to);
1710 	if (unlikely(!ptr))
1711 		goto err_clear;
1712 	if (ptr != to)
1713 		memcpy(to, ptr, len);
1714 
1715 	return 0;
1716 err_clear:
1717 	memset(to, 0, len);
1718 	return -EFAULT;
1719 }
1720 
1721 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722 	.func		= bpf_skb_load_bytes,
1723 	.gpl_only	= false,
1724 	.ret_type	= RET_INTEGER,
1725 	.arg1_type	= ARG_PTR_TO_CTX,
1726 	.arg2_type	= ARG_ANYTHING,
1727 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1728 	.arg4_type	= ARG_CONST_SIZE,
1729 };
1730 
1731 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1732 	   const struct bpf_flow_dissector *, ctx, u32, offset,
1733 	   void *, to, u32, len)
1734 {
1735 	void *ptr;
1736 
1737 	if (unlikely(offset > 0xffff))
1738 		goto err_clear;
1739 
1740 	if (unlikely(!ctx->skb))
1741 		goto err_clear;
1742 
1743 	ptr = skb_header_pointer(ctx->skb, offset, len, to);
1744 	if (unlikely(!ptr))
1745 		goto err_clear;
1746 	if (ptr != to)
1747 		memcpy(to, ptr, len);
1748 
1749 	return 0;
1750 err_clear:
1751 	memset(to, 0, len);
1752 	return -EFAULT;
1753 }
1754 
1755 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1756 	.func		= bpf_flow_dissector_load_bytes,
1757 	.gpl_only	= false,
1758 	.ret_type	= RET_INTEGER,
1759 	.arg1_type	= ARG_PTR_TO_CTX,
1760 	.arg2_type	= ARG_ANYTHING,
1761 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1762 	.arg4_type	= ARG_CONST_SIZE,
1763 };
1764 
1765 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1766 	   u32, offset, void *, to, u32, len, u32, start_header)
1767 {
1768 	u8 *end = skb_tail_pointer(skb);
1769 	u8 *net = skb_network_header(skb);
1770 	u8 *mac = skb_mac_header(skb);
1771 	u8 *ptr;
1772 
1773 	if (unlikely(offset > 0xffff || len > (end - mac)))
1774 		goto err_clear;
1775 
1776 	switch (start_header) {
1777 	case BPF_HDR_START_MAC:
1778 		ptr = mac + offset;
1779 		break;
1780 	case BPF_HDR_START_NET:
1781 		ptr = net + offset;
1782 		break;
1783 	default:
1784 		goto err_clear;
1785 	}
1786 
1787 	if (likely(ptr >= mac && ptr + len <= end)) {
1788 		memcpy(to, ptr, len);
1789 		return 0;
1790 	}
1791 
1792 err_clear:
1793 	memset(to, 0, len);
1794 	return -EFAULT;
1795 }
1796 
1797 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1798 	.func		= bpf_skb_load_bytes_relative,
1799 	.gpl_only	= false,
1800 	.ret_type	= RET_INTEGER,
1801 	.arg1_type	= ARG_PTR_TO_CTX,
1802 	.arg2_type	= ARG_ANYTHING,
1803 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1804 	.arg4_type	= ARG_CONST_SIZE,
1805 	.arg5_type	= ARG_ANYTHING,
1806 };
1807 
1808 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1809 {
1810 	/* Idea is the following: should the needed direct read/write
1811 	 * test fail during runtime, we can pull in more data and redo
1812 	 * again, since implicitly, we invalidate previous checks here.
1813 	 *
1814 	 * Or, since we know how much we need to make read/writeable,
1815 	 * this can be done once at the program beginning for direct
1816 	 * access case. By this we overcome limitations of only current
1817 	 * headroom being accessible.
1818 	 */
1819 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1820 }
1821 
1822 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1823 	.func		= bpf_skb_pull_data,
1824 	.gpl_only	= false,
1825 	.ret_type	= RET_INTEGER,
1826 	.arg1_type	= ARG_PTR_TO_CTX,
1827 	.arg2_type	= ARG_ANYTHING,
1828 };
1829 
1830 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1831 {
1832 	return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1833 }
1834 
1835 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1836 	.func		= bpf_sk_fullsock,
1837 	.gpl_only	= false,
1838 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
1839 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
1840 };
1841 
1842 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1843 					   unsigned int write_len)
1844 {
1845 	int err = __bpf_try_make_writable(skb, write_len);
1846 
1847 	bpf_compute_data_end_sk_skb(skb);
1848 	return err;
1849 }
1850 
1851 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853 	/* Idea is the following: should the needed direct read/write
1854 	 * test fail during runtime, we can pull in more data and redo
1855 	 * again, since implicitly, we invalidate previous checks here.
1856 	 *
1857 	 * Or, since we know how much we need to make read/writeable,
1858 	 * this can be done once at the program beginning for direct
1859 	 * access case. By this we overcome limitations of only current
1860 	 * headroom being accessible.
1861 	 */
1862 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864 
1865 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1866 	.func		= sk_skb_pull_data,
1867 	.gpl_only	= false,
1868 	.ret_type	= RET_INTEGER,
1869 	.arg1_type	= ARG_PTR_TO_CTX,
1870 	.arg2_type	= ARG_ANYTHING,
1871 };
1872 
1873 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1874 	   u64, from, u64, to, u64, flags)
1875 {
1876 	__sum16 *ptr;
1877 
1878 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1879 		return -EINVAL;
1880 	if (unlikely(offset > 0xffff || offset & 1))
1881 		return -EFAULT;
1882 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883 		return -EFAULT;
1884 
1885 	ptr = (__sum16 *)(skb->data + offset);
1886 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1887 	case 0:
1888 		if (unlikely(from != 0))
1889 			return -EINVAL;
1890 
1891 		csum_replace_by_diff(ptr, to);
1892 		break;
1893 	case 2:
1894 		csum_replace2(ptr, from, to);
1895 		break;
1896 	case 4:
1897 		csum_replace4(ptr, from, to);
1898 		break;
1899 	default:
1900 		return -EINVAL;
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1907 	.func		= bpf_l3_csum_replace,
1908 	.gpl_only	= false,
1909 	.ret_type	= RET_INTEGER,
1910 	.arg1_type	= ARG_PTR_TO_CTX,
1911 	.arg2_type	= ARG_ANYTHING,
1912 	.arg3_type	= ARG_ANYTHING,
1913 	.arg4_type	= ARG_ANYTHING,
1914 	.arg5_type	= ARG_ANYTHING,
1915 };
1916 
1917 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1918 	   u64, from, u64, to, u64, flags)
1919 {
1920 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1921 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1922 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1923 	__sum16 *ptr;
1924 
1925 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1926 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1927 		return -EINVAL;
1928 	if (unlikely(offset > 0xffff || offset & 1))
1929 		return -EFAULT;
1930 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931 		return -EFAULT;
1932 
1933 	ptr = (__sum16 *)(skb->data + offset);
1934 	if (is_mmzero && !do_mforce && !*ptr)
1935 		return 0;
1936 
1937 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1938 	case 0:
1939 		if (unlikely(from != 0))
1940 			return -EINVAL;
1941 
1942 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1943 		break;
1944 	case 2:
1945 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1946 		break;
1947 	case 4:
1948 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1949 		break;
1950 	default:
1951 		return -EINVAL;
1952 	}
1953 
1954 	if (is_mmzero && !*ptr)
1955 		*ptr = CSUM_MANGLED_0;
1956 	return 0;
1957 }
1958 
1959 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1960 	.func		= bpf_l4_csum_replace,
1961 	.gpl_only	= false,
1962 	.ret_type	= RET_INTEGER,
1963 	.arg1_type	= ARG_PTR_TO_CTX,
1964 	.arg2_type	= ARG_ANYTHING,
1965 	.arg3_type	= ARG_ANYTHING,
1966 	.arg4_type	= ARG_ANYTHING,
1967 	.arg5_type	= ARG_ANYTHING,
1968 };
1969 
1970 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1971 	   __be32 *, to, u32, to_size, __wsum, seed)
1972 {
1973 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1974 	u32 diff_size = from_size + to_size;
1975 	int i, j = 0;
1976 
1977 	/* This is quite flexible, some examples:
1978 	 *
1979 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1980 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1981 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1982 	 *
1983 	 * Even for diffing, from_size and to_size don't need to be equal.
1984 	 */
1985 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1986 		     diff_size > sizeof(sp->diff)))
1987 		return -EINVAL;
1988 
1989 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1990 		sp->diff[j] = ~from[i];
1991 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1992 		sp->diff[j] = to[i];
1993 
1994 	return csum_partial(sp->diff, diff_size, seed);
1995 }
1996 
1997 static const struct bpf_func_proto bpf_csum_diff_proto = {
1998 	.func		= bpf_csum_diff,
1999 	.gpl_only	= false,
2000 	.pkt_access	= true,
2001 	.ret_type	= RET_INTEGER,
2002 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
2003 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
2004 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
2005 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
2006 	.arg5_type	= ARG_ANYTHING,
2007 };
2008 
2009 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2010 {
2011 	/* The interface is to be used in combination with bpf_csum_diff()
2012 	 * for direct packet writes. csum rotation for alignment as well
2013 	 * as emulating csum_sub() can be done from the eBPF program.
2014 	 */
2015 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2016 		return (skb->csum = csum_add(skb->csum, csum));
2017 
2018 	return -ENOTSUPP;
2019 }
2020 
2021 static const struct bpf_func_proto bpf_csum_update_proto = {
2022 	.func		= bpf_csum_update,
2023 	.gpl_only	= false,
2024 	.ret_type	= RET_INTEGER,
2025 	.arg1_type	= ARG_PTR_TO_CTX,
2026 	.arg2_type	= ARG_ANYTHING,
2027 };
2028 
2029 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2030 {
2031 	return dev_forward_skb(dev, skb);
2032 }
2033 
2034 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2035 				      struct sk_buff *skb)
2036 {
2037 	int ret = ____dev_forward_skb(dev, skb);
2038 
2039 	if (likely(!ret)) {
2040 		skb->dev = dev;
2041 		ret = netif_rx(skb);
2042 	}
2043 
2044 	return ret;
2045 }
2046 
2047 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2048 {
2049 	int ret;
2050 
2051 	if (dev_xmit_recursion()) {
2052 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2053 		kfree_skb(skb);
2054 		return -ENETDOWN;
2055 	}
2056 
2057 	skb->dev = dev;
2058 	skb->tstamp = 0;
2059 
2060 	dev_xmit_recursion_inc();
2061 	ret = dev_queue_xmit(skb);
2062 	dev_xmit_recursion_dec();
2063 
2064 	return ret;
2065 }
2066 
2067 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2068 				 u32 flags)
2069 {
2070 	unsigned int mlen = skb_network_offset(skb);
2071 
2072 	if (mlen) {
2073 		__skb_pull(skb, mlen);
2074 
2075 		/* At ingress, the mac header has already been pulled once.
2076 		 * At egress, skb_pospull_rcsum has to be done in case that
2077 		 * the skb is originated from ingress (i.e. a forwarded skb)
2078 		 * to ensure that rcsum starts at net header.
2079 		 */
2080 		if (!skb_at_tc_ingress(skb))
2081 			skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2082 	}
2083 	skb_pop_mac_header(skb);
2084 	skb_reset_mac_len(skb);
2085 	return flags & BPF_F_INGRESS ?
2086 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2087 }
2088 
2089 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2090 				 u32 flags)
2091 {
2092 	/* Verify that a link layer header is carried */
2093 	if (unlikely(skb->mac_header >= skb->network_header)) {
2094 		kfree_skb(skb);
2095 		return -ERANGE;
2096 	}
2097 
2098 	bpf_push_mac_rcsum(skb);
2099 	return flags & BPF_F_INGRESS ?
2100 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2101 }
2102 
2103 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2104 			  u32 flags)
2105 {
2106 	if (dev_is_mac_header_xmit(dev))
2107 		return __bpf_redirect_common(skb, dev, flags);
2108 	else
2109 		return __bpf_redirect_no_mac(skb, dev, flags);
2110 }
2111 
2112 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2113 {
2114 	struct net_device *dev;
2115 	struct sk_buff *clone;
2116 	int ret;
2117 
2118 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2119 		return -EINVAL;
2120 
2121 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2122 	if (unlikely(!dev))
2123 		return -EINVAL;
2124 
2125 	clone = skb_clone(skb, GFP_ATOMIC);
2126 	if (unlikely(!clone))
2127 		return -ENOMEM;
2128 
2129 	/* For direct write, we need to keep the invariant that the skbs
2130 	 * we're dealing with need to be uncloned. Should uncloning fail
2131 	 * here, we need to free the just generated clone to unclone once
2132 	 * again.
2133 	 */
2134 	ret = bpf_try_make_head_writable(skb);
2135 	if (unlikely(ret)) {
2136 		kfree_skb(clone);
2137 		return -ENOMEM;
2138 	}
2139 
2140 	return __bpf_redirect(clone, dev, flags);
2141 }
2142 
2143 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2144 	.func           = bpf_clone_redirect,
2145 	.gpl_only       = false,
2146 	.ret_type       = RET_INTEGER,
2147 	.arg1_type      = ARG_PTR_TO_CTX,
2148 	.arg2_type      = ARG_ANYTHING,
2149 	.arg3_type      = ARG_ANYTHING,
2150 };
2151 
2152 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2153 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2154 
2155 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2156 {
2157 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2158 
2159 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2160 		return TC_ACT_SHOT;
2161 
2162 	ri->flags = flags;
2163 	ri->tgt_index = ifindex;
2164 
2165 	return TC_ACT_REDIRECT;
2166 }
2167 
2168 int skb_do_redirect(struct sk_buff *skb)
2169 {
2170 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2171 	struct net_device *dev;
2172 
2173 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2174 	ri->tgt_index = 0;
2175 	if (unlikely(!dev)) {
2176 		kfree_skb(skb);
2177 		return -EINVAL;
2178 	}
2179 
2180 	return __bpf_redirect(skb, dev, ri->flags);
2181 }
2182 
2183 static const struct bpf_func_proto bpf_redirect_proto = {
2184 	.func           = bpf_redirect,
2185 	.gpl_only       = false,
2186 	.ret_type       = RET_INTEGER,
2187 	.arg1_type      = ARG_ANYTHING,
2188 	.arg2_type      = ARG_ANYTHING,
2189 };
2190 
2191 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2192 {
2193 	msg->apply_bytes = bytes;
2194 	return 0;
2195 }
2196 
2197 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2198 	.func           = bpf_msg_apply_bytes,
2199 	.gpl_only       = false,
2200 	.ret_type       = RET_INTEGER,
2201 	.arg1_type	= ARG_PTR_TO_CTX,
2202 	.arg2_type      = ARG_ANYTHING,
2203 };
2204 
2205 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2206 {
2207 	msg->cork_bytes = bytes;
2208 	return 0;
2209 }
2210 
2211 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2212 	.func           = bpf_msg_cork_bytes,
2213 	.gpl_only       = false,
2214 	.ret_type       = RET_INTEGER,
2215 	.arg1_type	= ARG_PTR_TO_CTX,
2216 	.arg2_type      = ARG_ANYTHING,
2217 };
2218 
2219 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2220 	   u32, end, u64, flags)
2221 {
2222 	u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2223 	u32 first_sge, last_sge, i, shift, bytes_sg_total;
2224 	struct scatterlist *sge;
2225 	u8 *raw, *to, *from;
2226 	struct page *page;
2227 
2228 	if (unlikely(flags || end <= start))
2229 		return -EINVAL;
2230 
2231 	/* First find the starting scatterlist element */
2232 	i = msg->sg.start;
2233 	do {
2234 		offset += len;
2235 		len = sk_msg_elem(msg, i)->length;
2236 		if (start < offset + len)
2237 			break;
2238 		sk_msg_iter_var_next(i);
2239 	} while (i != msg->sg.end);
2240 
2241 	if (unlikely(start >= offset + len))
2242 		return -EINVAL;
2243 
2244 	first_sge = i;
2245 	/* The start may point into the sg element so we need to also
2246 	 * account for the headroom.
2247 	 */
2248 	bytes_sg_total = start - offset + bytes;
2249 	if (!test_bit(i, &msg->sg.copy) && bytes_sg_total <= len)
2250 		goto out;
2251 
2252 	/* At this point we need to linearize multiple scatterlist
2253 	 * elements or a single shared page. Either way we need to
2254 	 * copy into a linear buffer exclusively owned by BPF. Then
2255 	 * place the buffer in the scatterlist and fixup the original
2256 	 * entries by removing the entries now in the linear buffer
2257 	 * and shifting the remaining entries. For now we do not try
2258 	 * to copy partial entries to avoid complexity of running out
2259 	 * of sg_entry slots. The downside is reading a single byte
2260 	 * will copy the entire sg entry.
2261 	 */
2262 	do {
2263 		copy += sk_msg_elem(msg, i)->length;
2264 		sk_msg_iter_var_next(i);
2265 		if (bytes_sg_total <= copy)
2266 			break;
2267 	} while (i != msg->sg.end);
2268 	last_sge = i;
2269 
2270 	if (unlikely(bytes_sg_total > copy))
2271 		return -EINVAL;
2272 
2273 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2274 			   get_order(copy));
2275 	if (unlikely(!page))
2276 		return -ENOMEM;
2277 
2278 	raw = page_address(page);
2279 	i = first_sge;
2280 	do {
2281 		sge = sk_msg_elem(msg, i);
2282 		from = sg_virt(sge);
2283 		len = sge->length;
2284 		to = raw + poffset;
2285 
2286 		memcpy(to, from, len);
2287 		poffset += len;
2288 		sge->length = 0;
2289 		put_page(sg_page(sge));
2290 
2291 		sk_msg_iter_var_next(i);
2292 	} while (i != last_sge);
2293 
2294 	sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2295 
2296 	/* To repair sg ring we need to shift entries. If we only
2297 	 * had a single entry though we can just replace it and
2298 	 * be done. Otherwise walk the ring and shift the entries.
2299 	 */
2300 	WARN_ON_ONCE(last_sge == first_sge);
2301 	shift = last_sge > first_sge ?
2302 		last_sge - first_sge - 1 :
2303 		NR_MSG_FRAG_IDS - first_sge + last_sge - 1;
2304 	if (!shift)
2305 		goto out;
2306 
2307 	i = first_sge;
2308 	sk_msg_iter_var_next(i);
2309 	do {
2310 		u32 move_from;
2311 
2312 		if (i + shift >= NR_MSG_FRAG_IDS)
2313 			move_from = i + shift - NR_MSG_FRAG_IDS;
2314 		else
2315 			move_from = i + shift;
2316 		if (move_from == msg->sg.end)
2317 			break;
2318 
2319 		msg->sg.data[i] = msg->sg.data[move_from];
2320 		msg->sg.data[move_from].length = 0;
2321 		msg->sg.data[move_from].page_link = 0;
2322 		msg->sg.data[move_from].offset = 0;
2323 		sk_msg_iter_var_next(i);
2324 	} while (1);
2325 
2326 	msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2327 		      msg->sg.end - shift + NR_MSG_FRAG_IDS :
2328 		      msg->sg.end - shift;
2329 out:
2330 	msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2331 	msg->data_end = msg->data + bytes;
2332 	return 0;
2333 }
2334 
2335 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2336 	.func		= bpf_msg_pull_data,
2337 	.gpl_only	= false,
2338 	.ret_type	= RET_INTEGER,
2339 	.arg1_type	= ARG_PTR_TO_CTX,
2340 	.arg2_type	= ARG_ANYTHING,
2341 	.arg3_type	= ARG_ANYTHING,
2342 	.arg4_type	= ARG_ANYTHING,
2343 };
2344 
2345 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2346 	   u32, len, u64, flags)
2347 {
2348 	struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2349 	u32 new, i = 0, l = 0, space, copy = 0, offset = 0;
2350 	u8 *raw, *to, *from;
2351 	struct page *page;
2352 
2353 	if (unlikely(flags))
2354 		return -EINVAL;
2355 
2356 	/* First find the starting scatterlist element */
2357 	i = msg->sg.start;
2358 	do {
2359 		offset += l;
2360 		l = sk_msg_elem(msg, i)->length;
2361 
2362 		if (start < offset + l)
2363 			break;
2364 		sk_msg_iter_var_next(i);
2365 	} while (i != msg->sg.end);
2366 
2367 	if (start >= offset + l)
2368 		return -EINVAL;
2369 
2370 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2371 
2372 	/* If no space available will fallback to copy, we need at
2373 	 * least one scatterlist elem available to push data into
2374 	 * when start aligns to the beginning of an element or two
2375 	 * when it falls inside an element. We handle the start equals
2376 	 * offset case because its the common case for inserting a
2377 	 * header.
2378 	 */
2379 	if (!space || (space == 1 && start != offset))
2380 		copy = msg->sg.data[i].length;
2381 
2382 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2383 			   get_order(copy + len));
2384 	if (unlikely(!page))
2385 		return -ENOMEM;
2386 
2387 	if (copy) {
2388 		int front, back;
2389 
2390 		raw = page_address(page);
2391 
2392 		psge = sk_msg_elem(msg, i);
2393 		front = start - offset;
2394 		back = psge->length - front;
2395 		from = sg_virt(psge);
2396 
2397 		if (front)
2398 			memcpy(raw, from, front);
2399 
2400 		if (back) {
2401 			from += front;
2402 			to = raw + front + len;
2403 
2404 			memcpy(to, from, back);
2405 		}
2406 
2407 		put_page(sg_page(psge));
2408 	} else if (start - offset) {
2409 		psge = sk_msg_elem(msg, i);
2410 		rsge = sk_msg_elem_cpy(msg, i);
2411 
2412 		psge->length = start - offset;
2413 		rsge.length -= psge->length;
2414 		rsge.offset += start;
2415 
2416 		sk_msg_iter_var_next(i);
2417 		sg_unmark_end(psge);
2418 		sg_unmark_end(&rsge);
2419 		sk_msg_iter_next(msg, end);
2420 	}
2421 
2422 	/* Slot(s) to place newly allocated data */
2423 	new = i;
2424 
2425 	/* Shift one or two slots as needed */
2426 	if (!copy) {
2427 		sge = sk_msg_elem_cpy(msg, i);
2428 
2429 		sk_msg_iter_var_next(i);
2430 		sg_unmark_end(&sge);
2431 		sk_msg_iter_next(msg, end);
2432 
2433 		nsge = sk_msg_elem_cpy(msg, i);
2434 		if (rsge.length) {
2435 			sk_msg_iter_var_next(i);
2436 			nnsge = sk_msg_elem_cpy(msg, i);
2437 		}
2438 
2439 		while (i != msg->sg.end) {
2440 			msg->sg.data[i] = sge;
2441 			sge = nsge;
2442 			sk_msg_iter_var_next(i);
2443 			if (rsge.length) {
2444 				nsge = nnsge;
2445 				nnsge = sk_msg_elem_cpy(msg, i);
2446 			} else {
2447 				nsge = sk_msg_elem_cpy(msg, i);
2448 			}
2449 		}
2450 	}
2451 
2452 	/* Place newly allocated data buffer */
2453 	sk_mem_charge(msg->sk, len);
2454 	msg->sg.size += len;
2455 	__clear_bit(new, &msg->sg.copy);
2456 	sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2457 	if (rsge.length) {
2458 		get_page(sg_page(&rsge));
2459 		sk_msg_iter_var_next(new);
2460 		msg->sg.data[new] = rsge;
2461 	}
2462 
2463 	sk_msg_compute_data_pointers(msg);
2464 	return 0;
2465 }
2466 
2467 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2468 	.func		= bpf_msg_push_data,
2469 	.gpl_only	= false,
2470 	.ret_type	= RET_INTEGER,
2471 	.arg1_type	= ARG_PTR_TO_CTX,
2472 	.arg2_type	= ARG_ANYTHING,
2473 	.arg3_type	= ARG_ANYTHING,
2474 	.arg4_type	= ARG_ANYTHING,
2475 };
2476 
2477 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2478 {
2479 	int prev;
2480 
2481 	do {
2482 		prev = i;
2483 		sk_msg_iter_var_next(i);
2484 		msg->sg.data[prev] = msg->sg.data[i];
2485 	} while (i != msg->sg.end);
2486 
2487 	sk_msg_iter_prev(msg, end);
2488 }
2489 
2490 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2491 {
2492 	struct scatterlist tmp, sge;
2493 
2494 	sk_msg_iter_next(msg, end);
2495 	sge = sk_msg_elem_cpy(msg, i);
2496 	sk_msg_iter_var_next(i);
2497 	tmp = sk_msg_elem_cpy(msg, i);
2498 
2499 	while (i != msg->sg.end) {
2500 		msg->sg.data[i] = sge;
2501 		sk_msg_iter_var_next(i);
2502 		sge = tmp;
2503 		tmp = sk_msg_elem_cpy(msg, i);
2504 	}
2505 }
2506 
2507 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2508 	   u32, len, u64, flags)
2509 {
2510 	u32 i = 0, l = 0, space, offset = 0;
2511 	u64 last = start + len;
2512 	int pop;
2513 
2514 	if (unlikely(flags))
2515 		return -EINVAL;
2516 
2517 	/* First find the starting scatterlist element */
2518 	i = msg->sg.start;
2519 	do {
2520 		offset += l;
2521 		l = sk_msg_elem(msg, i)->length;
2522 
2523 		if (start < offset + l)
2524 			break;
2525 		sk_msg_iter_var_next(i);
2526 	} while (i != msg->sg.end);
2527 
2528 	/* Bounds checks: start and pop must be inside message */
2529 	if (start >= offset + l || last >= msg->sg.size)
2530 		return -EINVAL;
2531 
2532 	space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2533 
2534 	pop = len;
2535 	/* --------------| offset
2536 	 * -| start      |-------- len -------|
2537 	 *
2538 	 *  |----- a ----|-------- pop -------|----- b ----|
2539 	 *  |______________________________________________| length
2540 	 *
2541 	 *
2542 	 * a:   region at front of scatter element to save
2543 	 * b:   region at back of scatter element to save when length > A + pop
2544 	 * pop: region to pop from element, same as input 'pop' here will be
2545 	 *      decremented below per iteration.
2546 	 *
2547 	 * Two top-level cases to handle when start != offset, first B is non
2548 	 * zero and second B is zero corresponding to when a pop includes more
2549 	 * than one element.
2550 	 *
2551 	 * Then if B is non-zero AND there is no space allocate space and
2552 	 * compact A, B regions into page. If there is space shift ring to
2553 	 * the rigth free'ing the next element in ring to place B, leaving
2554 	 * A untouched except to reduce length.
2555 	 */
2556 	if (start != offset) {
2557 		struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2558 		int a = start;
2559 		int b = sge->length - pop - a;
2560 
2561 		sk_msg_iter_var_next(i);
2562 
2563 		if (pop < sge->length - a) {
2564 			if (space) {
2565 				sge->length = a;
2566 				sk_msg_shift_right(msg, i);
2567 				nsge = sk_msg_elem(msg, i);
2568 				get_page(sg_page(sge));
2569 				sg_set_page(nsge,
2570 					    sg_page(sge),
2571 					    b, sge->offset + pop + a);
2572 			} else {
2573 				struct page *page, *orig;
2574 				u8 *to, *from;
2575 
2576 				page = alloc_pages(__GFP_NOWARN |
2577 						   __GFP_COMP   | GFP_ATOMIC,
2578 						   get_order(a + b));
2579 				if (unlikely(!page))
2580 					return -ENOMEM;
2581 
2582 				sge->length = a;
2583 				orig = sg_page(sge);
2584 				from = sg_virt(sge);
2585 				to = page_address(page);
2586 				memcpy(to, from, a);
2587 				memcpy(to + a, from + a + pop, b);
2588 				sg_set_page(sge, page, a + b, 0);
2589 				put_page(orig);
2590 			}
2591 			pop = 0;
2592 		} else if (pop >= sge->length - a) {
2593 			sge->length = a;
2594 			pop -= (sge->length - a);
2595 		}
2596 	}
2597 
2598 	/* From above the current layout _must_ be as follows,
2599 	 *
2600 	 * -| offset
2601 	 * -| start
2602 	 *
2603 	 *  |---- pop ---|---------------- b ------------|
2604 	 *  |____________________________________________| length
2605 	 *
2606 	 * Offset and start of the current msg elem are equal because in the
2607 	 * previous case we handled offset != start and either consumed the
2608 	 * entire element and advanced to the next element OR pop == 0.
2609 	 *
2610 	 * Two cases to handle here are first pop is less than the length
2611 	 * leaving some remainder b above. Simply adjust the element's layout
2612 	 * in this case. Or pop >= length of the element so that b = 0. In this
2613 	 * case advance to next element decrementing pop.
2614 	 */
2615 	while (pop) {
2616 		struct scatterlist *sge = sk_msg_elem(msg, i);
2617 
2618 		if (pop < sge->length) {
2619 			sge->length -= pop;
2620 			sge->offset += pop;
2621 			pop = 0;
2622 		} else {
2623 			pop -= sge->length;
2624 			sk_msg_shift_left(msg, i);
2625 		}
2626 		sk_msg_iter_var_next(i);
2627 	}
2628 
2629 	sk_mem_uncharge(msg->sk, len - pop);
2630 	msg->sg.size -= (len - pop);
2631 	sk_msg_compute_data_pointers(msg);
2632 	return 0;
2633 }
2634 
2635 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2636 	.func		= bpf_msg_pop_data,
2637 	.gpl_only	= false,
2638 	.ret_type	= RET_INTEGER,
2639 	.arg1_type	= ARG_PTR_TO_CTX,
2640 	.arg2_type	= ARG_ANYTHING,
2641 	.arg3_type	= ARG_ANYTHING,
2642 	.arg4_type	= ARG_ANYTHING,
2643 };
2644 
2645 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2646 {
2647 	return task_get_classid(skb);
2648 }
2649 
2650 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2651 	.func           = bpf_get_cgroup_classid,
2652 	.gpl_only       = false,
2653 	.ret_type       = RET_INTEGER,
2654 	.arg1_type      = ARG_PTR_TO_CTX,
2655 };
2656 
2657 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2658 {
2659 	return dst_tclassid(skb);
2660 }
2661 
2662 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2663 	.func           = bpf_get_route_realm,
2664 	.gpl_only       = false,
2665 	.ret_type       = RET_INTEGER,
2666 	.arg1_type      = ARG_PTR_TO_CTX,
2667 };
2668 
2669 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2670 {
2671 	/* If skb_clear_hash() was called due to mangling, we can
2672 	 * trigger SW recalculation here. Later access to hash
2673 	 * can then use the inline skb->hash via context directly
2674 	 * instead of calling this helper again.
2675 	 */
2676 	return skb_get_hash(skb);
2677 }
2678 
2679 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2680 	.func		= bpf_get_hash_recalc,
2681 	.gpl_only	= false,
2682 	.ret_type	= RET_INTEGER,
2683 	.arg1_type	= ARG_PTR_TO_CTX,
2684 };
2685 
2686 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2687 {
2688 	/* After all direct packet write, this can be used once for
2689 	 * triggering a lazy recalc on next skb_get_hash() invocation.
2690 	 */
2691 	skb_clear_hash(skb);
2692 	return 0;
2693 }
2694 
2695 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2696 	.func		= bpf_set_hash_invalid,
2697 	.gpl_only	= false,
2698 	.ret_type	= RET_INTEGER,
2699 	.arg1_type	= ARG_PTR_TO_CTX,
2700 };
2701 
2702 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2703 {
2704 	/* Set user specified hash as L4(+), so that it gets returned
2705 	 * on skb_get_hash() call unless BPF prog later on triggers a
2706 	 * skb_clear_hash().
2707 	 */
2708 	__skb_set_sw_hash(skb, hash, true);
2709 	return 0;
2710 }
2711 
2712 static const struct bpf_func_proto bpf_set_hash_proto = {
2713 	.func		= bpf_set_hash,
2714 	.gpl_only	= false,
2715 	.ret_type	= RET_INTEGER,
2716 	.arg1_type	= ARG_PTR_TO_CTX,
2717 	.arg2_type	= ARG_ANYTHING,
2718 };
2719 
2720 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2721 	   u16, vlan_tci)
2722 {
2723 	int ret;
2724 
2725 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2726 		     vlan_proto != htons(ETH_P_8021AD)))
2727 		vlan_proto = htons(ETH_P_8021Q);
2728 
2729 	bpf_push_mac_rcsum(skb);
2730 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2731 	bpf_pull_mac_rcsum(skb);
2732 
2733 	bpf_compute_data_pointers(skb);
2734 	return ret;
2735 }
2736 
2737 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2738 	.func           = bpf_skb_vlan_push,
2739 	.gpl_only       = false,
2740 	.ret_type       = RET_INTEGER,
2741 	.arg1_type      = ARG_PTR_TO_CTX,
2742 	.arg2_type      = ARG_ANYTHING,
2743 	.arg3_type      = ARG_ANYTHING,
2744 };
2745 
2746 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2747 {
2748 	int ret;
2749 
2750 	bpf_push_mac_rcsum(skb);
2751 	ret = skb_vlan_pop(skb);
2752 	bpf_pull_mac_rcsum(skb);
2753 
2754 	bpf_compute_data_pointers(skb);
2755 	return ret;
2756 }
2757 
2758 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2759 	.func           = bpf_skb_vlan_pop,
2760 	.gpl_only       = false,
2761 	.ret_type       = RET_INTEGER,
2762 	.arg1_type      = ARG_PTR_TO_CTX,
2763 };
2764 
2765 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2766 {
2767 	/* Caller already did skb_cow() with len as headroom,
2768 	 * so no need to do it here.
2769 	 */
2770 	skb_push(skb, len);
2771 	memmove(skb->data, skb->data + len, off);
2772 	memset(skb->data + off, 0, len);
2773 
2774 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2775 	 * needed here as it does not change the skb->csum
2776 	 * result for checksum complete when summing over
2777 	 * zeroed blocks.
2778 	 */
2779 	return 0;
2780 }
2781 
2782 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2783 {
2784 	/* skb_ensure_writable() is not needed here, as we're
2785 	 * already working on an uncloned skb.
2786 	 */
2787 	if (unlikely(!pskb_may_pull(skb, off + len)))
2788 		return -ENOMEM;
2789 
2790 	skb_postpull_rcsum(skb, skb->data + off, len);
2791 	memmove(skb->data + len, skb->data, off);
2792 	__skb_pull(skb, len);
2793 
2794 	return 0;
2795 }
2796 
2797 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2798 {
2799 	bool trans_same = skb->transport_header == skb->network_header;
2800 	int ret;
2801 
2802 	/* There's no need for __skb_push()/__skb_pull() pair to
2803 	 * get to the start of the mac header as we're guaranteed
2804 	 * to always start from here under eBPF.
2805 	 */
2806 	ret = bpf_skb_generic_push(skb, off, len);
2807 	if (likely(!ret)) {
2808 		skb->mac_header -= len;
2809 		skb->network_header -= len;
2810 		if (trans_same)
2811 			skb->transport_header = skb->network_header;
2812 	}
2813 
2814 	return ret;
2815 }
2816 
2817 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2818 {
2819 	bool trans_same = skb->transport_header == skb->network_header;
2820 	int ret;
2821 
2822 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2823 	ret = bpf_skb_generic_pop(skb, off, len);
2824 	if (likely(!ret)) {
2825 		skb->mac_header += len;
2826 		skb->network_header += len;
2827 		if (trans_same)
2828 			skb->transport_header = skb->network_header;
2829 	}
2830 
2831 	return ret;
2832 }
2833 
2834 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2835 {
2836 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2837 	u32 off = skb_mac_header_len(skb);
2838 	int ret;
2839 
2840 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2841 		return -ENOTSUPP;
2842 
2843 	ret = skb_cow(skb, len_diff);
2844 	if (unlikely(ret < 0))
2845 		return ret;
2846 
2847 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2848 	if (unlikely(ret < 0))
2849 		return ret;
2850 
2851 	if (skb_is_gso(skb)) {
2852 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2853 
2854 		/* SKB_GSO_TCPV4 needs to be changed into
2855 		 * SKB_GSO_TCPV6.
2856 		 */
2857 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
2858 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
2859 			shinfo->gso_type |=  SKB_GSO_TCPV6;
2860 		}
2861 
2862 		/* Due to IPv6 header, MSS needs to be downgraded. */
2863 		skb_decrease_gso_size(shinfo, len_diff);
2864 		/* Header must be checked, and gso_segs recomputed. */
2865 		shinfo->gso_type |= SKB_GSO_DODGY;
2866 		shinfo->gso_segs = 0;
2867 	}
2868 
2869 	skb->protocol = htons(ETH_P_IPV6);
2870 	skb_clear_hash(skb);
2871 
2872 	return 0;
2873 }
2874 
2875 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2876 {
2877 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2878 	u32 off = skb_mac_header_len(skb);
2879 	int ret;
2880 
2881 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2882 		return -ENOTSUPP;
2883 
2884 	ret = skb_unclone(skb, GFP_ATOMIC);
2885 	if (unlikely(ret < 0))
2886 		return ret;
2887 
2888 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2889 	if (unlikely(ret < 0))
2890 		return ret;
2891 
2892 	if (skb_is_gso(skb)) {
2893 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2894 
2895 		/* SKB_GSO_TCPV6 needs to be changed into
2896 		 * SKB_GSO_TCPV4.
2897 		 */
2898 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
2899 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
2900 			shinfo->gso_type |=  SKB_GSO_TCPV4;
2901 		}
2902 
2903 		/* Due to IPv4 header, MSS can be upgraded. */
2904 		skb_increase_gso_size(shinfo, len_diff);
2905 		/* Header must be checked, and gso_segs recomputed. */
2906 		shinfo->gso_type |= SKB_GSO_DODGY;
2907 		shinfo->gso_segs = 0;
2908 	}
2909 
2910 	skb->protocol = htons(ETH_P_IP);
2911 	skb_clear_hash(skb);
2912 
2913 	return 0;
2914 }
2915 
2916 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2917 {
2918 	__be16 from_proto = skb->protocol;
2919 
2920 	if (from_proto == htons(ETH_P_IP) &&
2921 	      to_proto == htons(ETH_P_IPV6))
2922 		return bpf_skb_proto_4_to_6(skb);
2923 
2924 	if (from_proto == htons(ETH_P_IPV6) &&
2925 	      to_proto == htons(ETH_P_IP))
2926 		return bpf_skb_proto_6_to_4(skb);
2927 
2928 	return -ENOTSUPP;
2929 }
2930 
2931 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2932 	   u64, flags)
2933 {
2934 	int ret;
2935 
2936 	if (unlikely(flags))
2937 		return -EINVAL;
2938 
2939 	/* General idea is that this helper does the basic groundwork
2940 	 * needed for changing the protocol, and eBPF program fills the
2941 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2942 	 * and other helpers, rather than passing a raw buffer here.
2943 	 *
2944 	 * The rationale is to keep this minimal and without a need to
2945 	 * deal with raw packet data. F.e. even if we would pass buffers
2946 	 * here, the program still needs to call the bpf_lX_csum_replace()
2947 	 * helpers anyway. Plus, this way we keep also separation of
2948 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2949 	 * care of stores.
2950 	 *
2951 	 * Currently, additional options and extension header space are
2952 	 * not supported, but flags register is reserved so we can adapt
2953 	 * that. For offloads, we mark packet as dodgy, so that headers
2954 	 * need to be verified first.
2955 	 */
2956 	ret = bpf_skb_proto_xlat(skb, proto);
2957 	bpf_compute_data_pointers(skb);
2958 	return ret;
2959 }
2960 
2961 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2962 	.func		= bpf_skb_change_proto,
2963 	.gpl_only	= false,
2964 	.ret_type	= RET_INTEGER,
2965 	.arg1_type	= ARG_PTR_TO_CTX,
2966 	.arg2_type	= ARG_ANYTHING,
2967 	.arg3_type	= ARG_ANYTHING,
2968 };
2969 
2970 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2971 {
2972 	/* We only allow a restricted subset to be changed for now. */
2973 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2974 		     !skb_pkt_type_ok(pkt_type)))
2975 		return -EINVAL;
2976 
2977 	skb->pkt_type = pkt_type;
2978 	return 0;
2979 }
2980 
2981 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2982 	.func		= bpf_skb_change_type,
2983 	.gpl_only	= false,
2984 	.ret_type	= RET_INTEGER,
2985 	.arg1_type	= ARG_PTR_TO_CTX,
2986 	.arg2_type	= ARG_ANYTHING,
2987 };
2988 
2989 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2990 {
2991 	switch (skb->protocol) {
2992 	case htons(ETH_P_IP):
2993 		return sizeof(struct iphdr);
2994 	case htons(ETH_P_IPV6):
2995 		return sizeof(struct ipv6hdr);
2996 	default:
2997 		return ~0U;
2998 	}
2999 }
3000 
3001 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK	(BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3002 					 BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3003 
3004 #define BPF_F_ADJ_ROOM_MASK		(BPF_F_ADJ_ROOM_FIXED_GSO | \
3005 					 BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3006 					 BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3007 					 BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3008 					 BPF_F_ADJ_ROOM_ENCAP_L2( \
3009 					  BPF_ADJ_ROOM_ENCAP_L2_MASK))
3010 
3011 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3012 			    u64 flags)
3013 {
3014 	u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3015 	bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3016 	u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3017 	unsigned int gso_type = SKB_GSO_DODGY;
3018 	int ret;
3019 
3020 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3021 		/* udp gso_size delineates datagrams, only allow if fixed */
3022 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3023 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3024 			return -ENOTSUPP;
3025 	}
3026 
3027 	ret = skb_cow_head(skb, len_diff);
3028 	if (unlikely(ret < 0))
3029 		return ret;
3030 
3031 	if (encap) {
3032 		if (skb->protocol != htons(ETH_P_IP) &&
3033 		    skb->protocol != htons(ETH_P_IPV6))
3034 			return -ENOTSUPP;
3035 
3036 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3037 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3038 			return -EINVAL;
3039 
3040 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3041 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3042 			return -EINVAL;
3043 
3044 		if (skb->encapsulation)
3045 			return -EALREADY;
3046 
3047 		mac_len = skb->network_header - skb->mac_header;
3048 		inner_net = skb->network_header;
3049 		if (inner_mac_len > len_diff)
3050 			return -EINVAL;
3051 		inner_trans = skb->transport_header;
3052 	}
3053 
3054 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3055 	if (unlikely(ret < 0))
3056 		return ret;
3057 
3058 	if (encap) {
3059 		skb->inner_mac_header = inner_net - inner_mac_len;
3060 		skb->inner_network_header = inner_net;
3061 		skb->inner_transport_header = inner_trans;
3062 		skb_set_inner_protocol(skb, skb->protocol);
3063 
3064 		skb->encapsulation = 1;
3065 		skb_set_network_header(skb, mac_len);
3066 
3067 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3068 			gso_type |= SKB_GSO_UDP_TUNNEL;
3069 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3070 			gso_type |= SKB_GSO_GRE;
3071 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3072 			gso_type |= SKB_GSO_IPXIP6;
3073 		else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3074 			gso_type |= SKB_GSO_IPXIP4;
3075 
3076 		if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3077 		    flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3078 			int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3079 					sizeof(struct ipv6hdr) :
3080 					sizeof(struct iphdr);
3081 
3082 			skb_set_transport_header(skb, mac_len + nh_len);
3083 		}
3084 
3085 		/* Match skb->protocol to new outer l3 protocol */
3086 		if (skb->protocol == htons(ETH_P_IP) &&
3087 		    flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3088 			skb->protocol = htons(ETH_P_IPV6);
3089 		else if (skb->protocol == htons(ETH_P_IPV6) &&
3090 			 flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3091 			skb->protocol = htons(ETH_P_IP);
3092 	}
3093 
3094 	if (skb_is_gso(skb)) {
3095 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3096 
3097 		/* Due to header grow, MSS needs to be downgraded. */
3098 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3099 			skb_decrease_gso_size(shinfo, len_diff);
3100 
3101 		/* Header must be checked, and gso_segs recomputed. */
3102 		shinfo->gso_type |= gso_type;
3103 		shinfo->gso_segs = 0;
3104 	}
3105 
3106 	return 0;
3107 }
3108 
3109 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3110 			      u64 flags)
3111 {
3112 	int ret;
3113 
3114 	if (flags & ~BPF_F_ADJ_ROOM_FIXED_GSO)
3115 		return -EINVAL;
3116 
3117 	if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3118 		/* udp gso_size delineates datagrams, only allow if fixed */
3119 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3120 		    !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3121 			return -ENOTSUPP;
3122 	}
3123 
3124 	ret = skb_unclone(skb, GFP_ATOMIC);
3125 	if (unlikely(ret < 0))
3126 		return ret;
3127 
3128 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3129 	if (unlikely(ret < 0))
3130 		return ret;
3131 
3132 	if (skb_is_gso(skb)) {
3133 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3134 
3135 		/* Due to header shrink, MSS can be upgraded. */
3136 		if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3137 			skb_increase_gso_size(shinfo, len_diff);
3138 
3139 		/* Header must be checked, and gso_segs recomputed. */
3140 		shinfo->gso_type |= SKB_GSO_DODGY;
3141 		shinfo->gso_segs = 0;
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3148 {
3149 	return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3150 			  SKB_MAX_ALLOC;
3151 }
3152 
3153 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3154 	   u32, mode, u64, flags)
3155 {
3156 	u32 len_cur, len_diff_abs = abs(len_diff);
3157 	u32 len_min = bpf_skb_net_base_len(skb);
3158 	u32 len_max = __bpf_skb_max_len(skb);
3159 	__be16 proto = skb->protocol;
3160 	bool shrink = len_diff < 0;
3161 	u32 off;
3162 	int ret;
3163 
3164 	if (unlikely(flags & ~BPF_F_ADJ_ROOM_MASK))
3165 		return -EINVAL;
3166 	if (unlikely(len_diff_abs > 0xfffU))
3167 		return -EFAULT;
3168 	if (unlikely(proto != htons(ETH_P_IP) &&
3169 		     proto != htons(ETH_P_IPV6)))
3170 		return -ENOTSUPP;
3171 
3172 	off = skb_mac_header_len(skb);
3173 	switch (mode) {
3174 	case BPF_ADJ_ROOM_NET:
3175 		off += bpf_skb_net_base_len(skb);
3176 		break;
3177 	case BPF_ADJ_ROOM_MAC:
3178 		break;
3179 	default:
3180 		return -ENOTSUPP;
3181 	}
3182 
3183 	len_cur = skb->len - skb_network_offset(skb);
3184 	if ((shrink && (len_diff_abs >= len_cur ||
3185 			len_cur - len_diff_abs < len_min)) ||
3186 	    (!shrink && (skb->len + len_diff_abs > len_max &&
3187 			 !skb_is_gso(skb))))
3188 		return -ENOTSUPP;
3189 
3190 	ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3191 		       bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3192 
3193 	bpf_compute_data_pointers(skb);
3194 	return ret;
3195 }
3196 
3197 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3198 	.func		= bpf_skb_adjust_room,
3199 	.gpl_only	= false,
3200 	.ret_type	= RET_INTEGER,
3201 	.arg1_type	= ARG_PTR_TO_CTX,
3202 	.arg2_type	= ARG_ANYTHING,
3203 	.arg3_type	= ARG_ANYTHING,
3204 	.arg4_type	= ARG_ANYTHING,
3205 };
3206 
3207 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3208 {
3209 	u32 min_len = skb_network_offset(skb);
3210 
3211 	if (skb_transport_header_was_set(skb))
3212 		min_len = skb_transport_offset(skb);
3213 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3214 		min_len = skb_checksum_start_offset(skb) +
3215 			  skb->csum_offset + sizeof(__sum16);
3216 	return min_len;
3217 }
3218 
3219 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3220 {
3221 	unsigned int old_len = skb->len;
3222 	int ret;
3223 
3224 	ret = __skb_grow_rcsum(skb, new_len);
3225 	if (!ret)
3226 		memset(skb->data + old_len, 0, new_len - old_len);
3227 	return ret;
3228 }
3229 
3230 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3231 {
3232 	return __skb_trim_rcsum(skb, new_len);
3233 }
3234 
3235 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3236 					u64 flags)
3237 {
3238 	u32 max_len = __bpf_skb_max_len(skb);
3239 	u32 min_len = __bpf_skb_min_len(skb);
3240 	int ret;
3241 
3242 	if (unlikely(flags || new_len > max_len || new_len < min_len))
3243 		return -EINVAL;
3244 	if (skb->encapsulation)
3245 		return -ENOTSUPP;
3246 
3247 	/* The basic idea of this helper is that it's performing the
3248 	 * needed work to either grow or trim an skb, and eBPF program
3249 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
3250 	 * bpf_lX_csum_replace() and others rather than passing a raw
3251 	 * buffer here. This one is a slow path helper and intended
3252 	 * for replies with control messages.
3253 	 *
3254 	 * Like in bpf_skb_change_proto(), we want to keep this rather
3255 	 * minimal and without protocol specifics so that we are able
3256 	 * to separate concerns as in bpf_skb_store_bytes() should only
3257 	 * be the one responsible for writing buffers.
3258 	 *
3259 	 * It's really expected to be a slow path operation here for
3260 	 * control message replies, so we're implicitly linearizing,
3261 	 * uncloning and drop offloads from the skb by this.
3262 	 */
3263 	ret = __bpf_try_make_writable(skb, skb->len);
3264 	if (!ret) {
3265 		if (new_len > skb->len)
3266 			ret = bpf_skb_grow_rcsum(skb, new_len);
3267 		else if (new_len < skb->len)
3268 			ret = bpf_skb_trim_rcsum(skb, new_len);
3269 		if (!ret && skb_is_gso(skb))
3270 			skb_gso_reset(skb);
3271 	}
3272 	return ret;
3273 }
3274 
3275 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3276 	   u64, flags)
3277 {
3278 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3279 
3280 	bpf_compute_data_pointers(skb);
3281 	return ret;
3282 }
3283 
3284 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3285 	.func		= bpf_skb_change_tail,
3286 	.gpl_only	= false,
3287 	.ret_type	= RET_INTEGER,
3288 	.arg1_type	= ARG_PTR_TO_CTX,
3289 	.arg2_type	= ARG_ANYTHING,
3290 	.arg3_type	= ARG_ANYTHING,
3291 };
3292 
3293 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3294 	   u64, flags)
3295 {
3296 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
3297 
3298 	bpf_compute_data_end_sk_skb(skb);
3299 	return ret;
3300 }
3301 
3302 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3303 	.func		= sk_skb_change_tail,
3304 	.gpl_only	= false,
3305 	.ret_type	= RET_INTEGER,
3306 	.arg1_type	= ARG_PTR_TO_CTX,
3307 	.arg2_type	= ARG_ANYTHING,
3308 	.arg3_type	= ARG_ANYTHING,
3309 };
3310 
3311 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3312 					u64 flags)
3313 {
3314 	u32 max_len = __bpf_skb_max_len(skb);
3315 	u32 new_len = skb->len + head_room;
3316 	int ret;
3317 
3318 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3319 		     new_len < skb->len))
3320 		return -EINVAL;
3321 
3322 	ret = skb_cow(skb, head_room);
3323 	if (likely(!ret)) {
3324 		/* Idea for this helper is that we currently only
3325 		 * allow to expand on mac header. This means that
3326 		 * skb->protocol network header, etc, stay as is.
3327 		 * Compared to bpf_skb_change_tail(), we're more
3328 		 * flexible due to not needing to linearize or
3329 		 * reset GSO. Intention for this helper is to be
3330 		 * used by an L3 skb that needs to push mac header
3331 		 * for redirection into L2 device.
3332 		 */
3333 		__skb_push(skb, head_room);
3334 		memset(skb->data, 0, head_room);
3335 		skb_reset_mac_header(skb);
3336 	}
3337 
3338 	return ret;
3339 }
3340 
3341 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3342 	   u64, flags)
3343 {
3344 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3345 
3346 	bpf_compute_data_pointers(skb);
3347 	return ret;
3348 }
3349 
3350 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3351 	.func		= bpf_skb_change_head,
3352 	.gpl_only	= false,
3353 	.ret_type	= RET_INTEGER,
3354 	.arg1_type	= ARG_PTR_TO_CTX,
3355 	.arg2_type	= ARG_ANYTHING,
3356 	.arg3_type	= ARG_ANYTHING,
3357 };
3358 
3359 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3360 	   u64, flags)
3361 {
3362 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3363 
3364 	bpf_compute_data_end_sk_skb(skb);
3365 	return ret;
3366 }
3367 
3368 static const struct bpf_func_proto sk_skb_change_head_proto = {
3369 	.func		= sk_skb_change_head,
3370 	.gpl_only	= false,
3371 	.ret_type	= RET_INTEGER,
3372 	.arg1_type	= ARG_PTR_TO_CTX,
3373 	.arg2_type	= ARG_ANYTHING,
3374 	.arg3_type	= ARG_ANYTHING,
3375 };
3376 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3377 {
3378 	return xdp_data_meta_unsupported(xdp) ? 0 :
3379 	       xdp->data - xdp->data_meta;
3380 }
3381 
3382 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3383 {
3384 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3385 	unsigned long metalen = xdp_get_metalen(xdp);
3386 	void *data_start = xdp_frame_end + metalen;
3387 	void *data = xdp->data + offset;
3388 
3389 	if (unlikely(data < data_start ||
3390 		     data > xdp->data_end - ETH_HLEN))
3391 		return -EINVAL;
3392 
3393 	if (metalen)
3394 		memmove(xdp->data_meta + offset,
3395 			xdp->data_meta, metalen);
3396 	xdp->data_meta += offset;
3397 	xdp->data = data;
3398 
3399 	return 0;
3400 }
3401 
3402 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3403 	.func		= bpf_xdp_adjust_head,
3404 	.gpl_only	= false,
3405 	.ret_type	= RET_INTEGER,
3406 	.arg1_type	= ARG_PTR_TO_CTX,
3407 	.arg2_type	= ARG_ANYTHING,
3408 };
3409 
3410 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3411 {
3412 	void *data_end = xdp->data_end + offset;
3413 
3414 	/* only shrinking is allowed for now. */
3415 	if (unlikely(offset >= 0))
3416 		return -EINVAL;
3417 
3418 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3419 		return -EINVAL;
3420 
3421 	xdp->data_end = data_end;
3422 
3423 	return 0;
3424 }
3425 
3426 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3427 	.func		= bpf_xdp_adjust_tail,
3428 	.gpl_only	= false,
3429 	.ret_type	= RET_INTEGER,
3430 	.arg1_type	= ARG_PTR_TO_CTX,
3431 	.arg2_type	= ARG_ANYTHING,
3432 };
3433 
3434 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3435 {
3436 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3437 	void *meta = xdp->data_meta + offset;
3438 	unsigned long metalen = xdp->data - meta;
3439 
3440 	if (xdp_data_meta_unsupported(xdp))
3441 		return -ENOTSUPP;
3442 	if (unlikely(meta < xdp_frame_end ||
3443 		     meta > xdp->data))
3444 		return -EINVAL;
3445 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3446 		     (metalen > 32)))
3447 		return -EACCES;
3448 
3449 	xdp->data_meta = meta;
3450 
3451 	return 0;
3452 }
3453 
3454 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3455 	.func		= bpf_xdp_adjust_meta,
3456 	.gpl_only	= false,
3457 	.ret_type	= RET_INTEGER,
3458 	.arg1_type	= ARG_PTR_TO_CTX,
3459 	.arg2_type	= ARG_ANYTHING,
3460 };
3461 
3462 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3463 			    struct bpf_map *map, struct xdp_buff *xdp)
3464 {
3465 	switch (map->map_type) {
3466 	case BPF_MAP_TYPE_DEVMAP:
3467 	case BPF_MAP_TYPE_DEVMAP_HASH:
3468 		return dev_map_enqueue(fwd, xdp, dev_rx);
3469 	case BPF_MAP_TYPE_CPUMAP:
3470 		return cpu_map_enqueue(fwd, xdp, dev_rx);
3471 	case BPF_MAP_TYPE_XSKMAP:
3472 		return __xsk_map_redirect(fwd, xdp);
3473 	default:
3474 		return -EBADRQC;
3475 	}
3476 	return 0;
3477 }
3478 
3479 void xdp_do_flush(void)
3480 {
3481 	__dev_flush();
3482 	__cpu_map_flush();
3483 	__xsk_map_flush();
3484 }
3485 EXPORT_SYMBOL_GPL(xdp_do_flush);
3486 
3487 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3488 {
3489 	switch (map->map_type) {
3490 	case BPF_MAP_TYPE_DEVMAP:
3491 		return __dev_map_lookup_elem(map, index);
3492 	case BPF_MAP_TYPE_DEVMAP_HASH:
3493 		return __dev_map_hash_lookup_elem(map, index);
3494 	case BPF_MAP_TYPE_CPUMAP:
3495 		return __cpu_map_lookup_elem(map, index);
3496 	case BPF_MAP_TYPE_XSKMAP:
3497 		return __xsk_map_lookup_elem(map, index);
3498 	default:
3499 		return NULL;
3500 	}
3501 }
3502 
3503 void bpf_clear_redirect_map(struct bpf_map *map)
3504 {
3505 	struct bpf_redirect_info *ri;
3506 	int cpu;
3507 
3508 	for_each_possible_cpu(cpu) {
3509 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3510 		/* Avoid polluting remote cacheline due to writes if
3511 		 * not needed. Once we pass this test, we need the
3512 		 * cmpxchg() to make sure it hasn't been changed in
3513 		 * the meantime by remote CPU.
3514 		 */
3515 		if (unlikely(READ_ONCE(ri->map) == map))
3516 			cmpxchg(&ri->map, map, NULL);
3517 	}
3518 }
3519 
3520 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3521 		    struct bpf_prog *xdp_prog)
3522 {
3523 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3524 	struct bpf_map *map = READ_ONCE(ri->map);
3525 	u32 index = ri->tgt_index;
3526 	void *fwd = ri->tgt_value;
3527 	int err;
3528 
3529 	ri->tgt_index = 0;
3530 	ri->tgt_value = NULL;
3531 	WRITE_ONCE(ri->map, NULL);
3532 
3533 	if (unlikely(!map)) {
3534 		fwd = dev_get_by_index_rcu(dev_net(dev), index);
3535 		if (unlikely(!fwd)) {
3536 			err = -EINVAL;
3537 			goto err;
3538 		}
3539 
3540 		err = dev_xdp_enqueue(fwd, xdp, dev);
3541 	} else {
3542 		err = __bpf_tx_xdp_map(dev, fwd, map, xdp);
3543 	}
3544 
3545 	if (unlikely(err))
3546 		goto err;
3547 
3548 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3549 	return 0;
3550 err:
3551 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3552 	return err;
3553 }
3554 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3555 
3556 static int xdp_do_generic_redirect_map(struct net_device *dev,
3557 				       struct sk_buff *skb,
3558 				       struct xdp_buff *xdp,
3559 				       struct bpf_prog *xdp_prog,
3560 				       struct bpf_map *map)
3561 {
3562 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3563 	u32 index = ri->tgt_index;
3564 	void *fwd = ri->tgt_value;
3565 	int err = 0;
3566 
3567 	ri->tgt_index = 0;
3568 	ri->tgt_value = NULL;
3569 	WRITE_ONCE(ri->map, NULL);
3570 
3571 	if (map->map_type == BPF_MAP_TYPE_DEVMAP ||
3572 	    map->map_type == BPF_MAP_TYPE_DEVMAP_HASH) {
3573 		struct bpf_dtab_netdev *dst = fwd;
3574 
3575 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
3576 		if (unlikely(err))
3577 			goto err;
3578 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3579 		struct xdp_sock *xs = fwd;
3580 
3581 		err = xsk_generic_rcv(xs, xdp);
3582 		if (err)
3583 			goto err;
3584 		consume_skb(skb);
3585 	} else {
3586 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3587 		err = -EBADRQC;
3588 		goto err;
3589 	}
3590 
3591 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3592 	return 0;
3593 err:
3594 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3595 	return err;
3596 }
3597 
3598 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3599 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3600 {
3601 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3602 	struct bpf_map *map = READ_ONCE(ri->map);
3603 	u32 index = ri->tgt_index;
3604 	struct net_device *fwd;
3605 	int err = 0;
3606 
3607 	if (map)
3608 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3609 						   map);
3610 	ri->tgt_index = 0;
3611 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3612 	if (unlikely(!fwd)) {
3613 		err = -EINVAL;
3614 		goto err;
3615 	}
3616 
3617 	err = xdp_ok_fwd_dev(fwd, skb->len);
3618 	if (unlikely(err))
3619 		goto err;
3620 
3621 	skb->dev = fwd;
3622 	_trace_xdp_redirect(dev, xdp_prog, index);
3623 	generic_xdp_tx(skb, xdp_prog);
3624 	return 0;
3625 err:
3626 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3627 	return err;
3628 }
3629 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3630 
3631 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3632 {
3633 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3634 
3635 	if (unlikely(flags))
3636 		return XDP_ABORTED;
3637 
3638 	ri->flags = flags;
3639 	ri->tgt_index = ifindex;
3640 	ri->tgt_value = NULL;
3641 	WRITE_ONCE(ri->map, NULL);
3642 
3643 	return XDP_REDIRECT;
3644 }
3645 
3646 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3647 	.func           = bpf_xdp_redirect,
3648 	.gpl_only       = false,
3649 	.ret_type       = RET_INTEGER,
3650 	.arg1_type      = ARG_ANYTHING,
3651 	.arg2_type      = ARG_ANYTHING,
3652 };
3653 
3654 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3655 	   u64, flags)
3656 {
3657 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3658 
3659 	/* Lower bits of the flags are used as return code on lookup failure */
3660 	if (unlikely(flags > XDP_TX))
3661 		return XDP_ABORTED;
3662 
3663 	ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3664 	if (unlikely(!ri->tgt_value)) {
3665 		/* If the lookup fails we want to clear out the state in the
3666 		 * redirect_info struct completely, so that if an eBPF program
3667 		 * performs multiple lookups, the last one always takes
3668 		 * precedence.
3669 		 */
3670 		WRITE_ONCE(ri->map, NULL);
3671 		return flags;
3672 	}
3673 
3674 	ri->flags = flags;
3675 	ri->tgt_index = ifindex;
3676 	WRITE_ONCE(ri->map, map);
3677 
3678 	return XDP_REDIRECT;
3679 }
3680 
3681 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3682 	.func           = bpf_xdp_redirect_map,
3683 	.gpl_only       = false,
3684 	.ret_type       = RET_INTEGER,
3685 	.arg1_type      = ARG_CONST_MAP_PTR,
3686 	.arg2_type      = ARG_ANYTHING,
3687 	.arg3_type      = ARG_ANYTHING,
3688 };
3689 
3690 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3691 				  unsigned long off, unsigned long len)
3692 {
3693 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3694 
3695 	if (unlikely(!ptr))
3696 		return len;
3697 	if (ptr != dst_buff)
3698 		memcpy(dst_buff, ptr, len);
3699 
3700 	return 0;
3701 }
3702 
3703 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3704 	   u64, flags, void *, meta, u64, meta_size)
3705 {
3706 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3707 
3708 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3709 		return -EINVAL;
3710 	if (unlikely(!skb || skb_size > skb->len))
3711 		return -EFAULT;
3712 
3713 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3714 				bpf_skb_copy);
3715 }
3716 
3717 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3718 	.func		= bpf_skb_event_output,
3719 	.gpl_only	= true,
3720 	.ret_type	= RET_INTEGER,
3721 	.arg1_type	= ARG_PTR_TO_CTX,
3722 	.arg2_type	= ARG_CONST_MAP_PTR,
3723 	.arg3_type	= ARG_ANYTHING,
3724 	.arg4_type	= ARG_PTR_TO_MEM,
3725 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3726 };
3727 
3728 static int bpf_skb_output_btf_ids[5];
3729 const struct bpf_func_proto bpf_skb_output_proto = {
3730 	.func		= bpf_skb_event_output,
3731 	.gpl_only	= true,
3732 	.ret_type	= RET_INTEGER,
3733 	.arg1_type	= ARG_PTR_TO_BTF_ID,
3734 	.arg2_type	= ARG_CONST_MAP_PTR,
3735 	.arg3_type	= ARG_ANYTHING,
3736 	.arg4_type	= ARG_PTR_TO_MEM,
3737 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3738 	.btf_id		= bpf_skb_output_btf_ids,
3739 };
3740 
3741 static unsigned short bpf_tunnel_key_af(u64 flags)
3742 {
3743 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3744 }
3745 
3746 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3747 	   u32, size, u64, flags)
3748 {
3749 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3750 	u8 compat[sizeof(struct bpf_tunnel_key)];
3751 	void *to_orig = to;
3752 	int err;
3753 
3754 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3755 		err = -EINVAL;
3756 		goto err_clear;
3757 	}
3758 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3759 		err = -EPROTO;
3760 		goto err_clear;
3761 	}
3762 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3763 		err = -EINVAL;
3764 		switch (size) {
3765 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3766 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3767 			goto set_compat;
3768 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3769 			/* Fixup deprecated structure layouts here, so we have
3770 			 * a common path later on.
3771 			 */
3772 			if (ip_tunnel_info_af(info) != AF_INET)
3773 				goto err_clear;
3774 set_compat:
3775 			to = (struct bpf_tunnel_key *)compat;
3776 			break;
3777 		default:
3778 			goto err_clear;
3779 		}
3780 	}
3781 
3782 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3783 	to->tunnel_tos = info->key.tos;
3784 	to->tunnel_ttl = info->key.ttl;
3785 	to->tunnel_ext = 0;
3786 
3787 	if (flags & BPF_F_TUNINFO_IPV6) {
3788 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3789 		       sizeof(to->remote_ipv6));
3790 		to->tunnel_label = be32_to_cpu(info->key.label);
3791 	} else {
3792 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3793 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3794 		to->tunnel_label = 0;
3795 	}
3796 
3797 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3798 		memcpy(to_orig, to, size);
3799 
3800 	return 0;
3801 err_clear:
3802 	memset(to_orig, 0, size);
3803 	return err;
3804 }
3805 
3806 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3807 	.func		= bpf_skb_get_tunnel_key,
3808 	.gpl_only	= false,
3809 	.ret_type	= RET_INTEGER,
3810 	.arg1_type	= ARG_PTR_TO_CTX,
3811 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3812 	.arg3_type	= ARG_CONST_SIZE,
3813 	.arg4_type	= ARG_ANYTHING,
3814 };
3815 
3816 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3817 {
3818 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3819 	int err;
3820 
3821 	if (unlikely(!info ||
3822 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3823 		err = -ENOENT;
3824 		goto err_clear;
3825 	}
3826 	if (unlikely(size < info->options_len)) {
3827 		err = -ENOMEM;
3828 		goto err_clear;
3829 	}
3830 
3831 	ip_tunnel_info_opts_get(to, info);
3832 	if (size > info->options_len)
3833 		memset(to + info->options_len, 0, size - info->options_len);
3834 
3835 	return info->options_len;
3836 err_clear:
3837 	memset(to, 0, size);
3838 	return err;
3839 }
3840 
3841 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3842 	.func		= bpf_skb_get_tunnel_opt,
3843 	.gpl_only	= false,
3844 	.ret_type	= RET_INTEGER,
3845 	.arg1_type	= ARG_PTR_TO_CTX,
3846 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3847 	.arg3_type	= ARG_CONST_SIZE,
3848 };
3849 
3850 static struct metadata_dst __percpu *md_dst;
3851 
3852 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3853 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3854 {
3855 	struct metadata_dst *md = this_cpu_ptr(md_dst);
3856 	u8 compat[sizeof(struct bpf_tunnel_key)];
3857 	struct ip_tunnel_info *info;
3858 
3859 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3860 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3861 		return -EINVAL;
3862 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3863 		switch (size) {
3864 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3865 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3866 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3867 			/* Fixup deprecated structure layouts here, so we have
3868 			 * a common path later on.
3869 			 */
3870 			memcpy(compat, from, size);
3871 			memset(compat + size, 0, sizeof(compat) - size);
3872 			from = (const struct bpf_tunnel_key *) compat;
3873 			break;
3874 		default:
3875 			return -EINVAL;
3876 		}
3877 	}
3878 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3879 		     from->tunnel_ext))
3880 		return -EINVAL;
3881 
3882 	skb_dst_drop(skb);
3883 	dst_hold((struct dst_entry *) md);
3884 	skb_dst_set(skb, (struct dst_entry *) md);
3885 
3886 	info = &md->u.tun_info;
3887 	memset(info, 0, sizeof(*info));
3888 	info->mode = IP_TUNNEL_INFO_TX;
3889 
3890 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3891 	if (flags & BPF_F_DONT_FRAGMENT)
3892 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3893 	if (flags & BPF_F_ZERO_CSUM_TX)
3894 		info->key.tun_flags &= ~TUNNEL_CSUM;
3895 	if (flags & BPF_F_SEQ_NUMBER)
3896 		info->key.tun_flags |= TUNNEL_SEQ;
3897 
3898 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3899 	info->key.tos = from->tunnel_tos;
3900 	info->key.ttl = from->tunnel_ttl;
3901 
3902 	if (flags & BPF_F_TUNINFO_IPV6) {
3903 		info->mode |= IP_TUNNEL_INFO_IPV6;
3904 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3905 		       sizeof(from->remote_ipv6));
3906 		info->key.label = cpu_to_be32(from->tunnel_label) &
3907 				  IPV6_FLOWLABEL_MASK;
3908 	} else {
3909 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3910 	}
3911 
3912 	return 0;
3913 }
3914 
3915 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3916 	.func		= bpf_skb_set_tunnel_key,
3917 	.gpl_only	= false,
3918 	.ret_type	= RET_INTEGER,
3919 	.arg1_type	= ARG_PTR_TO_CTX,
3920 	.arg2_type	= ARG_PTR_TO_MEM,
3921 	.arg3_type	= ARG_CONST_SIZE,
3922 	.arg4_type	= ARG_ANYTHING,
3923 };
3924 
3925 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3926 	   const u8 *, from, u32, size)
3927 {
3928 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
3929 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
3930 
3931 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3932 		return -EINVAL;
3933 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3934 		return -ENOMEM;
3935 
3936 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3937 
3938 	return 0;
3939 }
3940 
3941 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3942 	.func		= bpf_skb_set_tunnel_opt,
3943 	.gpl_only	= false,
3944 	.ret_type	= RET_INTEGER,
3945 	.arg1_type	= ARG_PTR_TO_CTX,
3946 	.arg2_type	= ARG_PTR_TO_MEM,
3947 	.arg3_type	= ARG_CONST_SIZE,
3948 };
3949 
3950 static const struct bpf_func_proto *
3951 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3952 {
3953 	if (!md_dst) {
3954 		struct metadata_dst __percpu *tmp;
3955 
3956 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3957 						METADATA_IP_TUNNEL,
3958 						GFP_KERNEL);
3959 		if (!tmp)
3960 			return NULL;
3961 		if (cmpxchg(&md_dst, NULL, tmp))
3962 			metadata_dst_free_percpu(tmp);
3963 	}
3964 
3965 	switch (which) {
3966 	case BPF_FUNC_skb_set_tunnel_key:
3967 		return &bpf_skb_set_tunnel_key_proto;
3968 	case BPF_FUNC_skb_set_tunnel_opt:
3969 		return &bpf_skb_set_tunnel_opt_proto;
3970 	default:
3971 		return NULL;
3972 	}
3973 }
3974 
3975 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3976 	   u32, idx)
3977 {
3978 	struct bpf_array *array = container_of(map, struct bpf_array, map);
3979 	struct cgroup *cgrp;
3980 	struct sock *sk;
3981 
3982 	sk = skb_to_full_sk(skb);
3983 	if (!sk || !sk_fullsock(sk))
3984 		return -ENOENT;
3985 	if (unlikely(idx >= array->map.max_entries))
3986 		return -E2BIG;
3987 
3988 	cgrp = READ_ONCE(array->ptrs[idx]);
3989 	if (unlikely(!cgrp))
3990 		return -EAGAIN;
3991 
3992 	return sk_under_cgroup_hierarchy(sk, cgrp);
3993 }
3994 
3995 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3996 	.func		= bpf_skb_under_cgroup,
3997 	.gpl_only	= false,
3998 	.ret_type	= RET_INTEGER,
3999 	.arg1_type	= ARG_PTR_TO_CTX,
4000 	.arg2_type	= ARG_CONST_MAP_PTR,
4001 	.arg3_type	= ARG_ANYTHING,
4002 };
4003 
4004 #ifdef CONFIG_SOCK_CGROUP_DATA
4005 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4006 {
4007 	struct sock *sk = skb_to_full_sk(skb);
4008 	struct cgroup *cgrp;
4009 
4010 	if (!sk || !sk_fullsock(sk))
4011 		return 0;
4012 
4013 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4014 	return cgroup_id(cgrp);
4015 }
4016 
4017 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4018 	.func           = bpf_skb_cgroup_id,
4019 	.gpl_only       = false,
4020 	.ret_type       = RET_INTEGER,
4021 	.arg1_type      = ARG_PTR_TO_CTX,
4022 };
4023 
4024 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4025 	   ancestor_level)
4026 {
4027 	struct sock *sk = skb_to_full_sk(skb);
4028 	struct cgroup *ancestor;
4029 	struct cgroup *cgrp;
4030 
4031 	if (!sk || !sk_fullsock(sk))
4032 		return 0;
4033 
4034 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4035 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
4036 	if (!ancestor)
4037 		return 0;
4038 
4039 	return cgroup_id(ancestor);
4040 }
4041 
4042 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4043 	.func           = bpf_skb_ancestor_cgroup_id,
4044 	.gpl_only       = false,
4045 	.ret_type       = RET_INTEGER,
4046 	.arg1_type      = ARG_PTR_TO_CTX,
4047 	.arg2_type      = ARG_ANYTHING,
4048 };
4049 #endif
4050 
4051 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4052 				  unsigned long off, unsigned long len)
4053 {
4054 	memcpy(dst_buff, src_buff + off, len);
4055 	return 0;
4056 }
4057 
4058 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4059 	   u64, flags, void *, meta, u64, meta_size)
4060 {
4061 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4062 
4063 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4064 		return -EINVAL;
4065 	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4066 		return -EFAULT;
4067 
4068 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4069 				xdp_size, bpf_xdp_copy);
4070 }
4071 
4072 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4073 	.func		= bpf_xdp_event_output,
4074 	.gpl_only	= true,
4075 	.ret_type	= RET_INTEGER,
4076 	.arg1_type	= ARG_PTR_TO_CTX,
4077 	.arg2_type	= ARG_CONST_MAP_PTR,
4078 	.arg3_type	= ARG_ANYTHING,
4079 	.arg4_type	= ARG_PTR_TO_MEM,
4080 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
4081 };
4082 
4083 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4084 {
4085 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4086 }
4087 
4088 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4089 	.func           = bpf_get_socket_cookie,
4090 	.gpl_only       = false,
4091 	.ret_type       = RET_INTEGER,
4092 	.arg1_type      = ARG_PTR_TO_CTX,
4093 };
4094 
4095 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4096 {
4097 	return sock_gen_cookie(ctx->sk);
4098 }
4099 
4100 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4101 	.func		= bpf_get_socket_cookie_sock_addr,
4102 	.gpl_only	= false,
4103 	.ret_type	= RET_INTEGER,
4104 	.arg1_type	= ARG_PTR_TO_CTX,
4105 };
4106 
4107 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4108 {
4109 	return sock_gen_cookie(ctx->sk);
4110 }
4111 
4112 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4113 	.func		= bpf_get_socket_cookie_sock_ops,
4114 	.gpl_only	= false,
4115 	.ret_type	= RET_INTEGER,
4116 	.arg1_type	= ARG_PTR_TO_CTX,
4117 };
4118 
4119 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4120 {
4121 	struct sock *sk = sk_to_full_sk(skb->sk);
4122 	kuid_t kuid;
4123 
4124 	if (!sk || !sk_fullsock(sk))
4125 		return overflowuid;
4126 	kuid = sock_net_uid(sock_net(sk), sk);
4127 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4128 }
4129 
4130 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4131 	.func           = bpf_get_socket_uid,
4132 	.gpl_only       = false,
4133 	.ret_type       = RET_INTEGER,
4134 	.arg1_type      = ARG_PTR_TO_CTX,
4135 };
4136 
4137 BPF_CALL_5(bpf_sockopt_event_output, struct bpf_sock_ops_kern *, bpf_sock,
4138 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
4139 {
4140 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4141 		return -EINVAL;
4142 
4143 	return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4144 }
4145 
4146 static const struct bpf_func_proto bpf_sockopt_event_output_proto =  {
4147 	.func		= bpf_sockopt_event_output,
4148 	.gpl_only       = true,
4149 	.ret_type       = RET_INTEGER,
4150 	.arg1_type      = ARG_PTR_TO_CTX,
4151 	.arg2_type      = ARG_CONST_MAP_PTR,
4152 	.arg3_type      = ARG_ANYTHING,
4153 	.arg4_type      = ARG_PTR_TO_MEM,
4154 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4155 };
4156 
4157 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4158 	   int, level, int, optname, char *, optval, int, optlen)
4159 {
4160 	struct sock *sk = bpf_sock->sk;
4161 	int ret = 0;
4162 	int val;
4163 
4164 	if (!sk_fullsock(sk))
4165 		return -EINVAL;
4166 
4167 	if (level == SOL_SOCKET) {
4168 		if (optlen != sizeof(int))
4169 			return -EINVAL;
4170 		val = *((int *)optval);
4171 
4172 		/* Only some socketops are supported */
4173 		switch (optname) {
4174 		case SO_RCVBUF:
4175 			val = min_t(u32, val, sysctl_rmem_max);
4176 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4177 			WRITE_ONCE(sk->sk_rcvbuf,
4178 				   max_t(int, val * 2, SOCK_MIN_RCVBUF));
4179 			break;
4180 		case SO_SNDBUF:
4181 			val = min_t(u32, val, sysctl_wmem_max);
4182 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4183 			WRITE_ONCE(sk->sk_sndbuf,
4184 				   max_t(int, val * 2, SOCK_MIN_SNDBUF));
4185 			break;
4186 		case SO_MAX_PACING_RATE: /* 32bit version */
4187 			if (val != ~0U)
4188 				cmpxchg(&sk->sk_pacing_status,
4189 					SK_PACING_NONE,
4190 					SK_PACING_NEEDED);
4191 			sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4192 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4193 						 sk->sk_max_pacing_rate);
4194 			break;
4195 		case SO_PRIORITY:
4196 			sk->sk_priority = val;
4197 			break;
4198 		case SO_RCVLOWAT:
4199 			if (val < 0)
4200 				val = INT_MAX;
4201 			WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
4202 			break;
4203 		case SO_MARK:
4204 			if (sk->sk_mark != val) {
4205 				sk->sk_mark = val;
4206 				sk_dst_reset(sk);
4207 			}
4208 			break;
4209 		default:
4210 			ret = -EINVAL;
4211 		}
4212 #ifdef CONFIG_INET
4213 	} else if (level == SOL_IP) {
4214 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4215 			return -EINVAL;
4216 
4217 		val = *((int *)optval);
4218 		/* Only some options are supported */
4219 		switch (optname) {
4220 		case IP_TOS:
4221 			if (val < -1 || val > 0xff) {
4222 				ret = -EINVAL;
4223 			} else {
4224 				struct inet_sock *inet = inet_sk(sk);
4225 
4226 				if (val == -1)
4227 					val = 0;
4228 				inet->tos = val;
4229 			}
4230 			break;
4231 		default:
4232 			ret = -EINVAL;
4233 		}
4234 #if IS_ENABLED(CONFIG_IPV6)
4235 	} else if (level == SOL_IPV6) {
4236 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4237 			return -EINVAL;
4238 
4239 		val = *((int *)optval);
4240 		/* Only some options are supported */
4241 		switch (optname) {
4242 		case IPV6_TCLASS:
4243 			if (val < -1 || val > 0xff) {
4244 				ret = -EINVAL;
4245 			} else {
4246 				struct ipv6_pinfo *np = inet6_sk(sk);
4247 
4248 				if (val == -1)
4249 					val = 0;
4250 				np->tclass = val;
4251 			}
4252 			break;
4253 		default:
4254 			ret = -EINVAL;
4255 		}
4256 #endif
4257 	} else if (level == SOL_TCP &&
4258 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
4259 		if (optname == TCP_CONGESTION) {
4260 			char name[TCP_CA_NAME_MAX];
4261 			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4262 
4263 			strncpy(name, optval, min_t(long, optlen,
4264 						    TCP_CA_NAME_MAX-1));
4265 			name[TCP_CA_NAME_MAX-1] = 0;
4266 			ret = tcp_set_congestion_control(sk, name, false,
4267 							 reinit, true);
4268 		} else {
4269 			struct tcp_sock *tp = tcp_sk(sk);
4270 
4271 			if (optlen != sizeof(int))
4272 				return -EINVAL;
4273 
4274 			val = *((int *)optval);
4275 			/* Only some options are supported */
4276 			switch (optname) {
4277 			case TCP_BPF_IW:
4278 				if (val <= 0 || tp->data_segs_out > tp->syn_data)
4279 					ret = -EINVAL;
4280 				else
4281 					tp->snd_cwnd = val;
4282 				break;
4283 			case TCP_BPF_SNDCWND_CLAMP:
4284 				if (val <= 0) {
4285 					ret = -EINVAL;
4286 				} else {
4287 					tp->snd_cwnd_clamp = val;
4288 					tp->snd_ssthresh = val;
4289 				}
4290 				break;
4291 			case TCP_SAVE_SYN:
4292 				if (val < 0 || val > 1)
4293 					ret = -EINVAL;
4294 				else
4295 					tp->save_syn = val;
4296 				break;
4297 			default:
4298 				ret = -EINVAL;
4299 			}
4300 		}
4301 #endif
4302 	} else {
4303 		ret = -EINVAL;
4304 	}
4305 	return ret;
4306 }
4307 
4308 static const struct bpf_func_proto bpf_setsockopt_proto = {
4309 	.func		= bpf_setsockopt,
4310 	.gpl_only	= false,
4311 	.ret_type	= RET_INTEGER,
4312 	.arg1_type	= ARG_PTR_TO_CTX,
4313 	.arg2_type	= ARG_ANYTHING,
4314 	.arg3_type	= ARG_ANYTHING,
4315 	.arg4_type	= ARG_PTR_TO_MEM,
4316 	.arg5_type	= ARG_CONST_SIZE,
4317 };
4318 
4319 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4320 	   int, level, int, optname, char *, optval, int, optlen)
4321 {
4322 	struct sock *sk = bpf_sock->sk;
4323 
4324 	if (!sk_fullsock(sk))
4325 		goto err_clear;
4326 #ifdef CONFIG_INET
4327 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4328 		struct inet_connection_sock *icsk;
4329 		struct tcp_sock *tp;
4330 
4331 		switch (optname) {
4332 		case TCP_CONGESTION:
4333 			icsk = inet_csk(sk);
4334 
4335 			if (!icsk->icsk_ca_ops || optlen <= 1)
4336 				goto err_clear;
4337 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4338 			optval[optlen - 1] = 0;
4339 			break;
4340 		case TCP_SAVED_SYN:
4341 			tp = tcp_sk(sk);
4342 
4343 			if (optlen <= 0 || !tp->saved_syn ||
4344 			    optlen > tp->saved_syn[0])
4345 				goto err_clear;
4346 			memcpy(optval, tp->saved_syn + 1, optlen);
4347 			break;
4348 		default:
4349 			goto err_clear;
4350 		}
4351 	} else if (level == SOL_IP) {
4352 		struct inet_sock *inet = inet_sk(sk);
4353 
4354 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4355 			goto err_clear;
4356 
4357 		/* Only some options are supported */
4358 		switch (optname) {
4359 		case IP_TOS:
4360 			*((int *)optval) = (int)inet->tos;
4361 			break;
4362 		default:
4363 			goto err_clear;
4364 		}
4365 #if IS_ENABLED(CONFIG_IPV6)
4366 	} else if (level == SOL_IPV6) {
4367 		struct ipv6_pinfo *np = inet6_sk(sk);
4368 
4369 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4370 			goto err_clear;
4371 
4372 		/* Only some options are supported */
4373 		switch (optname) {
4374 		case IPV6_TCLASS:
4375 			*((int *)optval) = (int)np->tclass;
4376 			break;
4377 		default:
4378 			goto err_clear;
4379 		}
4380 #endif
4381 	} else {
4382 		goto err_clear;
4383 	}
4384 	return 0;
4385 #endif
4386 err_clear:
4387 	memset(optval, 0, optlen);
4388 	return -EINVAL;
4389 }
4390 
4391 static const struct bpf_func_proto bpf_getsockopt_proto = {
4392 	.func		= bpf_getsockopt,
4393 	.gpl_only	= false,
4394 	.ret_type	= RET_INTEGER,
4395 	.arg1_type	= ARG_PTR_TO_CTX,
4396 	.arg2_type	= ARG_ANYTHING,
4397 	.arg3_type	= ARG_ANYTHING,
4398 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
4399 	.arg5_type	= ARG_CONST_SIZE,
4400 };
4401 
4402 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4403 	   int, argval)
4404 {
4405 	struct sock *sk = bpf_sock->sk;
4406 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4407 
4408 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4409 		return -EINVAL;
4410 
4411 	tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4412 
4413 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4414 }
4415 
4416 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4417 	.func		= bpf_sock_ops_cb_flags_set,
4418 	.gpl_only	= false,
4419 	.ret_type	= RET_INTEGER,
4420 	.arg1_type	= ARG_PTR_TO_CTX,
4421 	.arg2_type	= ARG_ANYTHING,
4422 };
4423 
4424 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4425 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4426 
4427 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4428 	   int, addr_len)
4429 {
4430 #ifdef CONFIG_INET
4431 	struct sock *sk = ctx->sk;
4432 	int err;
4433 
4434 	/* Binding to port can be expensive so it's prohibited in the helper.
4435 	 * Only binding to IP is supported.
4436 	 */
4437 	err = -EINVAL;
4438 	if (addr_len < offsetofend(struct sockaddr, sa_family))
4439 		return err;
4440 	if (addr->sa_family == AF_INET) {
4441 		if (addr_len < sizeof(struct sockaddr_in))
4442 			return err;
4443 		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4444 			return err;
4445 		return __inet_bind(sk, addr, addr_len, true, false);
4446 #if IS_ENABLED(CONFIG_IPV6)
4447 	} else if (addr->sa_family == AF_INET6) {
4448 		if (addr_len < SIN6_LEN_RFC2133)
4449 			return err;
4450 		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4451 			return err;
4452 		/* ipv6_bpf_stub cannot be NULL, since it's called from
4453 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4454 		 */
4455 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4456 #endif /* CONFIG_IPV6 */
4457 	}
4458 #endif /* CONFIG_INET */
4459 
4460 	return -EAFNOSUPPORT;
4461 }
4462 
4463 static const struct bpf_func_proto bpf_bind_proto = {
4464 	.func		= bpf_bind,
4465 	.gpl_only	= false,
4466 	.ret_type	= RET_INTEGER,
4467 	.arg1_type	= ARG_PTR_TO_CTX,
4468 	.arg2_type	= ARG_PTR_TO_MEM,
4469 	.arg3_type	= ARG_CONST_SIZE,
4470 };
4471 
4472 #ifdef CONFIG_XFRM
4473 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4474 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
4475 {
4476 	const struct sec_path *sp = skb_sec_path(skb);
4477 	const struct xfrm_state *x;
4478 
4479 	if (!sp || unlikely(index >= sp->len || flags))
4480 		goto err_clear;
4481 
4482 	x = sp->xvec[index];
4483 
4484 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4485 		goto err_clear;
4486 
4487 	to->reqid = x->props.reqid;
4488 	to->spi = x->id.spi;
4489 	to->family = x->props.family;
4490 	to->ext = 0;
4491 
4492 	if (to->family == AF_INET6) {
4493 		memcpy(to->remote_ipv6, x->props.saddr.a6,
4494 		       sizeof(to->remote_ipv6));
4495 	} else {
4496 		to->remote_ipv4 = x->props.saddr.a4;
4497 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4498 	}
4499 
4500 	return 0;
4501 err_clear:
4502 	memset(to, 0, size);
4503 	return -EINVAL;
4504 }
4505 
4506 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4507 	.func		= bpf_skb_get_xfrm_state,
4508 	.gpl_only	= false,
4509 	.ret_type	= RET_INTEGER,
4510 	.arg1_type	= ARG_PTR_TO_CTX,
4511 	.arg2_type	= ARG_ANYTHING,
4512 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4513 	.arg4_type	= ARG_CONST_SIZE,
4514 	.arg5_type	= ARG_ANYTHING,
4515 };
4516 #endif
4517 
4518 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4519 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4520 				  const struct neighbour *neigh,
4521 				  const struct net_device *dev)
4522 {
4523 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
4524 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4525 	params->h_vlan_TCI = 0;
4526 	params->h_vlan_proto = 0;
4527 	params->ifindex = dev->ifindex;
4528 
4529 	return 0;
4530 }
4531 #endif
4532 
4533 #if IS_ENABLED(CONFIG_INET)
4534 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4535 			       u32 flags, bool check_mtu)
4536 {
4537 	struct fib_nh_common *nhc;
4538 	struct in_device *in_dev;
4539 	struct neighbour *neigh;
4540 	struct net_device *dev;
4541 	struct fib_result res;
4542 	struct flowi4 fl4;
4543 	int err;
4544 	u32 mtu;
4545 
4546 	dev = dev_get_by_index_rcu(net, params->ifindex);
4547 	if (unlikely(!dev))
4548 		return -ENODEV;
4549 
4550 	/* verify forwarding is enabled on this interface */
4551 	in_dev = __in_dev_get_rcu(dev);
4552 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4553 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4554 
4555 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4556 		fl4.flowi4_iif = 1;
4557 		fl4.flowi4_oif = params->ifindex;
4558 	} else {
4559 		fl4.flowi4_iif = params->ifindex;
4560 		fl4.flowi4_oif = 0;
4561 	}
4562 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4563 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4564 	fl4.flowi4_flags = 0;
4565 
4566 	fl4.flowi4_proto = params->l4_protocol;
4567 	fl4.daddr = params->ipv4_dst;
4568 	fl4.saddr = params->ipv4_src;
4569 	fl4.fl4_sport = params->sport;
4570 	fl4.fl4_dport = params->dport;
4571 
4572 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4573 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4574 		struct fib_table *tb;
4575 
4576 		tb = fib_get_table(net, tbid);
4577 		if (unlikely(!tb))
4578 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4579 
4580 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4581 	} else {
4582 		fl4.flowi4_mark = 0;
4583 		fl4.flowi4_secid = 0;
4584 		fl4.flowi4_tun_key.tun_id = 0;
4585 		fl4.flowi4_uid = sock_net_uid(net, NULL);
4586 
4587 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4588 	}
4589 
4590 	if (err) {
4591 		/* map fib lookup errors to RTN_ type */
4592 		if (err == -EINVAL)
4593 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4594 		if (err == -EHOSTUNREACH)
4595 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4596 		if (err == -EACCES)
4597 			return BPF_FIB_LKUP_RET_PROHIBIT;
4598 
4599 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4600 	}
4601 
4602 	if (res.type != RTN_UNICAST)
4603 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4604 
4605 	if (fib_info_num_path(res.fi) > 1)
4606 		fib_select_path(net, &res, &fl4, NULL);
4607 
4608 	if (check_mtu) {
4609 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4610 		if (params->tot_len > mtu)
4611 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4612 	}
4613 
4614 	nhc = res.nhc;
4615 
4616 	/* do not handle lwt encaps right now */
4617 	if (nhc->nhc_lwtstate)
4618 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4619 
4620 	dev = nhc->nhc_dev;
4621 
4622 	params->rt_metric = res.fi->fib_priority;
4623 
4624 	/* xdp and cls_bpf programs are run in RCU-bh so
4625 	 * rcu_read_lock_bh is not needed here
4626 	 */
4627 	if (likely(nhc->nhc_gw_family != AF_INET6)) {
4628 		if (nhc->nhc_gw_family)
4629 			params->ipv4_dst = nhc->nhc_gw.ipv4;
4630 
4631 		neigh = __ipv4_neigh_lookup_noref(dev,
4632 						 (__force u32)params->ipv4_dst);
4633 	} else {
4634 		struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4635 
4636 		params->family = AF_INET6;
4637 		*dst = nhc->nhc_gw.ipv6;
4638 		neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4639 	}
4640 
4641 	if (!neigh)
4642 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4643 
4644 	return bpf_fib_set_fwd_params(params, neigh, dev);
4645 }
4646 #endif
4647 
4648 #if IS_ENABLED(CONFIG_IPV6)
4649 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4650 			       u32 flags, bool check_mtu)
4651 {
4652 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4653 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4654 	struct fib6_result res = {};
4655 	struct neighbour *neigh;
4656 	struct net_device *dev;
4657 	struct inet6_dev *idev;
4658 	struct flowi6 fl6;
4659 	int strict = 0;
4660 	int oif, err;
4661 	u32 mtu;
4662 
4663 	/* link local addresses are never forwarded */
4664 	if (rt6_need_strict(dst) || rt6_need_strict(src))
4665 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4666 
4667 	dev = dev_get_by_index_rcu(net, params->ifindex);
4668 	if (unlikely(!dev))
4669 		return -ENODEV;
4670 
4671 	idev = __in6_dev_get_safely(dev);
4672 	if (unlikely(!idev || !idev->cnf.forwarding))
4673 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4674 
4675 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4676 		fl6.flowi6_iif = 1;
4677 		oif = fl6.flowi6_oif = params->ifindex;
4678 	} else {
4679 		oif = fl6.flowi6_iif = params->ifindex;
4680 		fl6.flowi6_oif = 0;
4681 		strict = RT6_LOOKUP_F_HAS_SADDR;
4682 	}
4683 	fl6.flowlabel = params->flowinfo;
4684 	fl6.flowi6_scope = 0;
4685 	fl6.flowi6_flags = 0;
4686 	fl6.mp_hash = 0;
4687 
4688 	fl6.flowi6_proto = params->l4_protocol;
4689 	fl6.daddr = *dst;
4690 	fl6.saddr = *src;
4691 	fl6.fl6_sport = params->sport;
4692 	fl6.fl6_dport = params->dport;
4693 
4694 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4695 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4696 		struct fib6_table *tb;
4697 
4698 		tb = ipv6_stub->fib6_get_table(net, tbid);
4699 		if (unlikely(!tb))
4700 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4701 
4702 		err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4703 						   strict);
4704 	} else {
4705 		fl6.flowi6_mark = 0;
4706 		fl6.flowi6_secid = 0;
4707 		fl6.flowi6_tun_key.tun_id = 0;
4708 		fl6.flowi6_uid = sock_net_uid(net, NULL);
4709 
4710 		err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4711 	}
4712 
4713 	if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4714 		     res.f6i == net->ipv6.fib6_null_entry))
4715 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4716 
4717 	switch (res.fib6_type) {
4718 	/* only unicast is forwarded */
4719 	case RTN_UNICAST:
4720 		break;
4721 	case RTN_BLACKHOLE:
4722 		return BPF_FIB_LKUP_RET_BLACKHOLE;
4723 	case RTN_UNREACHABLE:
4724 		return BPF_FIB_LKUP_RET_UNREACHABLE;
4725 	case RTN_PROHIBIT:
4726 		return BPF_FIB_LKUP_RET_PROHIBIT;
4727 	default:
4728 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4729 	}
4730 
4731 	ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
4732 				    fl6.flowi6_oif != 0, NULL, strict);
4733 
4734 	if (check_mtu) {
4735 		mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
4736 		if (params->tot_len > mtu)
4737 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4738 	}
4739 
4740 	if (res.nh->fib_nh_lws)
4741 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4742 
4743 	if (res.nh->fib_nh_gw_family)
4744 		*dst = res.nh->fib_nh_gw6;
4745 
4746 	dev = res.nh->fib_nh_dev;
4747 	params->rt_metric = res.f6i->fib6_metric;
4748 
4749 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4750 	 * not needed here.
4751 	 */
4752 	neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4753 	if (!neigh)
4754 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4755 
4756 	return bpf_fib_set_fwd_params(params, neigh, dev);
4757 }
4758 #endif
4759 
4760 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4761 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4762 {
4763 	if (plen < sizeof(*params))
4764 		return -EINVAL;
4765 
4766 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4767 		return -EINVAL;
4768 
4769 	switch (params->family) {
4770 #if IS_ENABLED(CONFIG_INET)
4771 	case AF_INET:
4772 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4773 					   flags, true);
4774 #endif
4775 #if IS_ENABLED(CONFIG_IPV6)
4776 	case AF_INET6:
4777 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4778 					   flags, true);
4779 #endif
4780 	}
4781 	return -EAFNOSUPPORT;
4782 }
4783 
4784 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4785 	.func		= bpf_xdp_fib_lookup,
4786 	.gpl_only	= true,
4787 	.ret_type	= RET_INTEGER,
4788 	.arg1_type      = ARG_PTR_TO_CTX,
4789 	.arg2_type      = ARG_PTR_TO_MEM,
4790 	.arg3_type      = ARG_CONST_SIZE,
4791 	.arg4_type	= ARG_ANYTHING,
4792 };
4793 
4794 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4795 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4796 {
4797 	struct net *net = dev_net(skb->dev);
4798 	int rc = -EAFNOSUPPORT;
4799 
4800 	if (plen < sizeof(*params))
4801 		return -EINVAL;
4802 
4803 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4804 		return -EINVAL;
4805 
4806 	switch (params->family) {
4807 #if IS_ENABLED(CONFIG_INET)
4808 	case AF_INET:
4809 		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4810 		break;
4811 #endif
4812 #if IS_ENABLED(CONFIG_IPV6)
4813 	case AF_INET6:
4814 		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4815 		break;
4816 #endif
4817 	}
4818 
4819 	if (!rc) {
4820 		struct net_device *dev;
4821 
4822 		dev = dev_get_by_index_rcu(net, params->ifindex);
4823 		if (!is_skb_forwardable(dev, skb))
4824 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4825 	}
4826 
4827 	return rc;
4828 }
4829 
4830 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4831 	.func		= bpf_skb_fib_lookup,
4832 	.gpl_only	= true,
4833 	.ret_type	= RET_INTEGER,
4834 	.arg1_type      = ARG_PTR_TO_CTX,
4835 	.arg2_type      = ARG_PTR_TO_MEM,
4836 	.arg3_type      = ARG_CONST_SIZE,
4837 	.arg4_type	= ARG_ANYTHING,
4838 };
4839 
4840 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4841 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4842 {
4843 	int err;
4844 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4845 
4846 	if (!seg6_validate_srh(srh, len))
4847 		return -EINVAL;
4848 
4849 	switch (type) {
4850 	case BPF_LWT_ENCAP_SEG6_INLINE:
4851 		if (skb->protocol != htons(ETH_P_IPV6))
4852 			return -EBADMSG;
4853 
4854 		err = seg6_do_srh_inline(skb, srh);
4855 		break;
4856 	case BPF_LWT_ENCAP_SEG6:
4857 		skb_reset_inner_headers(skb);
4858 		skb->encapsulation = 1;
4859 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4860 		break;
4861 	default:
4862 		return -EINVAL;
4863 	}
4864 
4865 	bpf_compute_data_pointers(skb);
4866 	if (err)
4867 		return err;
4868 
4869 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4870 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4871 
4872 	return seg6_lookup_nexthop(skb, NULL, 0);
4873 }
4874 #endif /* CONFIG_IPV6_SEG6_BPF */
4875 
4876 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4877 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
4878 			     bool ingress)
4879 {
4880 	return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
4881 }
4882 #endif
4883 
4884 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4885 	   u32, len)
4886 {
4887 	switch (type) {
4888 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4889 	case BPF_LWT_ENCAP_SEG6:
4890 	case BPF_LWT_ENCAP_SEG6_INLINE:
4891 		return bpf_push_seg6_encap(skb, type, hdr, len);
4892 #endif
4893 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4894 	case BPF_LWT_ENCAP_IP:
4895 		return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
4896 #endif
4897 	default:
4898 		return -EINVAL;
4899 	}
4900 }
4901 
4902 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
4903 	   void *, hdr, u32, len)
4904 {
4905 	switch (type) {
4906 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4907 	case BPF_LWT_ENCAP_IP:
4908 		return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
4909 #endif
4910 	default:
4911 		return -EINVAL;
4912 	}
4913 }
4914 
4915 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
4916 	.func		= bpf_lwt_in_push_encap,
4917 	.gpl_only	= false,
4918 	.ret_type	= RET_INTEGER,
4919 	.arg1_type	= ARG_PTR_TO_CTX,
4920 	.arg2_type	= ARG_ANYTHING,
4921 	.arg3_type	= ARG_PTR_TO_MEM,
4922 	.arg4_type	= ARG_CONST_SIZE
4923 };
4924 
4925 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
4926 	.func		= bpf_lwt_xmit_push_encap,
4927 	.gpl_only	= false,
4928 	.ret_type	= RET_INTEGER,
4929 	.arg1_type	= ARG_PTR_TO_CTX,
4930 	.arg2_type	= ARG_ANYTHING,
4931 	.arg3_type	= ARG_PTR_TO_MEM,
4932 	.arg4_type	= ARG_CONST_SIZE
4933 };
4934 
4935 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4936 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4937 	   const void *, from, u32, len)
4938 {
4939 	struct seg6_bpf_srh_state *srh_state =
4940 		this_cpu_ptr(&seg6_bpf_srh_states);
4941 	struct ipv6_sr_hdr *srh = srh_state->srh;
4942 	void *srh_tlvs, *srh_end, *ptr;
4943 	int srhoff = 0;
4944 
4945 	if (srh == NULL)
4946 		return -EINVAL;
4947 
4948 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4949 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4950 
4951 	ptr = skb->data + offset;
4952 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
4953 		srh_state->valid = false;
4954 	else if (ptr < (void *)&srh->flags ||
4955 		 ptr + len > (void *)&srh->segments)
4956 		return -EFAULT;
4957 
4958 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
4959 		return -EFAULT;
4960 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4961 		return -EINVAL;
4962 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4963 
4964 	memcpy(skb->data + offset, from, len);
4965 	return 0;
4966 }
4967 
4968 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4969 	.func		= bpf_lwt_seg6_store_bytes,
4970 	.gpl_only	= false,
4971 	.ret_type	= RET_INTEGER,
4972 	.arg1_type	= ARG_PTR_TO_CTX,
4973 	.arg2_type	= ARG_ANYTHING,
4974 	.arg3_type	= ARG_PTR_TO_MEM,
4975 	.arg4_type	= ARG_CONST_SIZE
4976 };
4977 
4978 static void bpf_update_srh_state(struct sk_buff *skb)
4979 {
4980 	struct seg6_bpf_srh_state *srh_state =
4981 		this_cpu_ptr(&seg6_bpf_srh_states);
4982 	int srhoff = 0;
4983 
4984 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
4985 		srh_state->srh = NULL;
4986 	} else {
4987 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4988 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
4989 		srh_state->valid = true;
4990 	}
4991 }
4992 
4993 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4994 	   u32, action, void *, param, u32, param_len)
4995 {
4996 	struct seg6_bpf_srh_state *srh_state =
4997 		this_cpu_ptr(&seg6_bpf_srh_states);
4998 	int hdroff = 0;
4999 	int err;
5000 
5001 	switch (action) {
5002 	case SEG6_LOCAL_ACTION_END_X:
5003 		if (!seg6_bpf_has_valid_srh(skb))
5004 			return -EBADMSG;
5005 		if (param_len != sizeof(struct in6_addr))
5006 			return -EINVAL;
5007 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5008 	case SEG6_LOCAL_ACTION_END_T:
5009 		if (!seg6_bpf_has_valid_srh(skb))
5010 			return -EBADMSG;
5011 		if (param_len != sizeof(int))
5012 			return -EINVAL;
5013 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5014 	case SEG6_LOCAL_ACTION_END_DT6:
5015 		if (!seg6_bpf_has_valid_srh(skb))
5016 			return -EBADMSG;
5017 		if (param_len != sizeof(int))
5018 			return -EINVAL;
5019 
5020 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5021 			return -EBADMSG;
5022 		if (!pskb_pull(skb, hdroff))
5023 			return -EBADMSG;
5024 
5025 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5026 		skb_reset_network_header(skb);
5027 		skb_reset_transport_header(skb);
5028 		skb->encapsulation = 0;
5029 
5030 		bpf_compute_data_pointers(skb);
5031 		bpf_update_srh_state(skb);
5032 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5033 	case SEG6_LOCAL_ACTION_END_B6:
5034 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5035 			return -EBADMSG;
5036 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5037 					  param, param_len);
5038 		if (!err)
5039 			bpf_update_srh_state(skb);
5040 
5041 		return err;
5042 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5043 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5044 			return -EBADMSG;
5045 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5046 					  param, param_len);
5047 		if (!err)
5048 			bpf_update_srh_state(skb);
5049 
5050 		return err;
5051 	default:
5052 		return -EINVAL;
5053 	}
5054 }
5055 
5056 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5057 	.func		= bpf_lwt_seg6_action,
5058 	.gpl_only	= false,
5059 	.ret_type	= RET_INTEGER,
5060 	.arg1_type	= ARG_PTR_TO_CTX,
5061 	.arg2_type	= ARG_ANYTHING,
5062 	.arg3_type	= ARG_PTR_TO_MEM,
5063 	.arg4_type	= ARG_CONST_SIZE
5064 };
5065 
5066 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5067 	   s32, len)
5068 {
5069 	struct seg6_bpf_srh_state *srh_state =
5070 		this_cpu_ptr(&seg6_bpf_srh_states);
5071 	struct ipv6_sr_hdr *srh = srh_state->srh;
5072 	void *srh_end, *srh_tlvs, *ptr;
5073 	struct ipv6hdr *hdr;
5074 	int srhoff = 0;
5075 	int ret;
5076 
5077 	if (unlikely(srh == NULL))
5078 		return -EINVAL;
5079 
5080 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5081 			((srh->first_segment + 1) << 4));
5082 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5083 			srh_state->hdrlen);
5084 	ptr = skb->data + offset;
5085 
5086 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5087 		return -EFAULT;
5088 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5089 		return -EFAULT;
5090 
5091 	if (len > 0) {
5092 		ret = skb_cow_head(skb, len);
5093 		if (unlikely(ret < 0))
5094 			return ret;
5095 
5096 		ret = bpf_skb_net_hdr_push(skb, offset, len);
5097 	} else {
5098 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5099 	}
5100 
5101 	bpf_compute_data_pointers(skb);
5102 	if (unlikely(ret < 0))
5103 		return ret;
5104 
5105 	hdr = (struct ipv6hdr *)skb->data;
5106 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5107 
5108 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5109 		return -EINVAL;
5110 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5111 	srh_state->hdrlen += len;
5112 	srh_state->valid = false;
5113 	return 0;
5114 }
5115 
5116 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5117 	.func		= bpf_lwt_seg6_adjust_srh,
5118 	.gpl_only	= false,
5119 	.ret_type	= RET_INTEGER,
5120 	.arg1_type	= ARG_PTR_TO_CTX,
5121 	.arg2_type	= ARG_ANYTHING,
5122 	.arg3_type	= ARG_ANYTHING,
5123 };
5124 #endif /* CONFIG_IPV6_SEG6_BPF */
5125 
5126 #ifdef CONFIG_INET
5127 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5128 			      int dif, int sdif, u8 family, u8 proto)
5129 {
5130 	bool refcounted = false;
5131 	struct sock *sk = NULL;
5132 
5133 	if (family == AF_INET) {
5134 		__be32 src4 = tuple->ipv4.saddr;
5135 		__be32 dst4 = tuple->ipv4.daddr;
5136 
5137 		if (proto == IPPROTO_TCP)
5138 			sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5139 					   src4, tuple->ipv4.sport,
5140 					   dst4, tuple->ipv4.dport,
5141 					   dif, sdif, &refcounted);
5142 		else
5143 			sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5144 					       dst4, tuple->ipv4.dport,
5145 					       dif, sdif, &udp_table, NULL);
5146 #if IS_ENABLED(CONFIG_IPV6)
5147 	} else {
5148 		struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5149 		struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5150 
5151 		if (proto == IPPROTO_TCP)
5152 			sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5153 					    src6, tuple->ipv6.sport,
5154 					    dst6, ntohs(tuple->ipv6.dport),
5155 					    dif, sdif, &refcounted);
5156 		else if (likely(ipv6_bpf_stub))
5157 			sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5158 							    src6, tuple->ipv6.sport,
5159 							    dst6, tuple->ipv6.dport,
5160 							    dif, sdif,
5161 							    &udp_table, NULL);
5162 #endif
5163 	}
5164 
5165 	if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5166 		WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5167 		sk = NULL;
5168 	}
5169 	return sk;
5170 }
5171 
5172 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5173  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5174  * Returns the socket as an 'unsigned long' to simplify the casting in the
5175  * callers to satisfy BPF_CALL declarations.
5176  */
5177 static struct sock *
5178 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5179 		 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5180 		 u64 flags)
5181 {
5182 	struct sock *sk = NULL;
5183 	u8 family = AF_UNSPEC;
5184 	struct net *net;
5185 	int sdif;
5186 
5187 	if (len == sizeof(tuple->ipv4))
5188 		family = AF_INET;
5189 	else if (len == sizeof(tuple->ipv6))
5190 		family = AF_INET6;
5191 	else
5192 		return NULL;
5193 
5194 	if (unlikely(family == AF_UNSPEC || flags ||
5195 		     !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5196 		goto out;
5197 
5198 	if (family == AF_INET)
5199 		sdif = inet_sdif(skb);
5200 	else
5201 		sdif = inet6_sdif(skb);
5202 
5203 	if ((s32)netns_id < 0) {
5204 		net = caller_net;
5205 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5206 	} else {
5207 		net = get_net_ns_by_id(caller_net, netns_id);
5208 		if (unlikely(!net))
5209 			goto out;
5210 		sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5211 		put_net(net);
5212 	}
5213 
5214 out:
5215 	return sk;
5216 }
5217 
5218 static struct sock *
5219 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5220 		struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5221 		u64 flags)
5222 {
5223 	struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5224 					   ifindex, proto, netns_id, flags);
5225 
5226 	if (sk) {
5227 		sk = sk_to_full_sk(sk);
5228 		if (!sk_fullsock(sk)) {
5229 			sock_gen_put(sk);
5230 			return NULL;
5231 		}
5232 	}
5233 
5234 	return sk;
5235 }
5236 
5237 static struct sock *
5238 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5239 	       u8 proto, u64 netns_id, u64 flags)
5240 {
5241 	struct net *caller_net;
5242 	int ifindex;
5243 
5244 	if (skb->dev) {
5245 		caller_net = dev_net(skb->dev);
5246 		ifindex = skb->dev->ifindex;
5247 	} else {
5248 		caller_net = sock_net(skb->sk);
5249 		ifindex = 0;
5250 	}
5251 
5252 	return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5253 				netns_id, flags);
5254 }
5255 
5256 static struct sock *
5257 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5258 	      u8 proto, u64 netns_id, u64 flags)
5259 {
5260 	struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5261 					 flags);
5262 
5263 	if (sk) {
5264 		sk = sk_to_full_sk(sk);
5265 		if (!sk_fullsock(sk)) {
5266 			sock_gen_put(sk);
5267 			return NULL;
5268 		}
5269 	}
5270 
5271 	return sk;
5272 }
5273 
5274 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5275 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5276 {
5277 	return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5278 					     netns_id, flags);
5279 }
5280 
5281 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5282 	.func		= bpf_skc_lookup_tcp,
5283 	.gpl_only	= false,
5284 	.pkt_access	= true,
5285 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5286 	.arg1_type	= ARG_PTR_TO_CTX,
5287 	.arg2_type	= ARG_PTR_TO_MEM,
5288 	.arg3_type	= ARG_CONST_SIZE,
5289 	.arg4_type	= ARG_ANYTHING,
5290 	.arg5_type	= ARG_ANYTHING,
5291 };
5292 
5293 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5294 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5295 {
5296 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5297 					    netns_id, flags);
5298 }
5299 
5300 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5301 	.func		= bpf_sk_lookup_tcp,
5302 	.gpl_only	= false,
5303 	.pkt_access	= true,
5304 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5305 	.arg1_type	= ARG_PTR_TO_CTX,
5306 	.arg2_type	= ARG_PTR_TO_MEM,
5307 	.arg3_type	= ARG_CONST_SIZE,
5308 	.arg4_type	= ARG_ANYTHING,
5309 	.arg5_type	= ARG_ANYTHING,
5310 };
5311 
5312 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5313 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5314 {
5315 	return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5316 					    netns_id, flags);
5317 }
5318 
5319 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5320 	.func		= bpf_sk_lookup_udp,
5321 	.gpl_only	= false,
5322 	.pkt_access	= true,
5323 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5324 	.arg1_type	= ARG_PTR_TO_CTX,
5325 	.arg2_type	= ARG_PTR_TO_MEM,
5326 	.arg3_type	= ARG_CONST_SIZE,
5327 	.arg4_type	= ARG_ANYTHING,
5328 	.arg5_type	= ARG_ANYTHING,
5329 };
5330 
5331 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5332 {
5333 	/* Only full sockets have sk->sk_flags. */
5334 	if (!sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE))
5335 		sock_gen_put(sk);
5336 	return 0;
5337 }
5338 
5339 static const struct bpf_func_proto bpf_sk_release_proto = {
5340 	.func		= bpf_sk_release,
5341 	.gpl_only	= false,
5342 	.ret_type	= RET_INTEGER,
5343 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5344 };
5345 
5346 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5347 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5348 {
5349 	struct net *caller_net = dev_net(ctx->rxq->dev);
5350 	int ifindex = ctx->rxq->dev->ifindex;
5351 
5352 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5353 					      ifindex, IPPROTO_UDP, netns_id,
5354 					      flags);
5355 }
5356 
5357 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5358 	.func           = bpf_xdp_sk_lookup_udp,
5359 	.gpl_only       = false,
5360 	.pkt_access     = true,
5361 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5362 	.arg1_type      = ARG_PTR_TO_CTX,
5363 	.arg2_type      = ARG_PTR_TO_MEM,
5364 	.arg3_type      = ARG_CONST_SIZE,
5365 	.arg4_type      = ARG_ANYTHING,
5366 	.arg5_type      = ARG_ANYTHING,
5367 };
5368 
5369 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5370 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5371 {
5372 	struct net *caller_net = dev_net(ctx->rxq->dev);
5373 	int ifindex = ctx->rxq->dev->ifindex;
5374 
5375 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5376 					       ifindex, IPPROTO_TCP, netns_id,
5377 					       flags);
5378 }
5379 
5380 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5381 	.func           = bpf_xdp_skc_lookup_tcp,
5382 	.gpl_only       = false,
5383 	.pkt_access     = true,
5384 	.ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5385 	.arg1_type      = ARG_PTR_TO_CTX,
5386 	.arg2_type      = ARG_PTR_TO_MEM,
5387 	.arg3_type      = ARG_CONST_SIZE,
5388 	.arg4_type      = ARG_ANYTHING,
5389 	.arg5_type      = ARG_ANYTHING,
5390 };
5391 
5392 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5393 	   struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5394 {
5395 	struct net *caller_net = dev_net(ctx->rxq->dev);
5396 	int ifindex = ctx->rxq->dev->ifindex;
5397 
5398 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5399 					      ifindex, IPPROTO_TCP, netns_id,
5400 					      flags);
5401 }
5402 
5403 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5404 	.func           = bpf_xdp_sk_lookup_tcp,
5405 	.gpl_only       = false,
5406 	.pkt_access     = true,
5407 	.ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5408 	.arg1_type      = ARG_PTR_TO_CTX,
5409 	.arg2_type      = ARG_PTR_TO_MEM,
5410 	.arg3_type      = ARG_CONST_SIZE,
5411 	.arg4_type      = ARG_ANYTHING,
5412 	.arg5_type      = ARG_ANYTHING,
5413 };
5414 
5415 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5416 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5417 {
5418 	return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5419 					       sock_net(ctx->sk), 0,
5420 					       IPPROTO_TCP, netns_id, flags);
5421 }
5422 
5423 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5424 	.func		= bpf_sock_addr_skc_lookup_tcp,
5425 	.gpl_only	= false,
5426 	.ret_type	= RET_PTR_TO_SOCK_COMMON_OR_NULL,
5427 	.arg1_type	= ARG_PTR_TO_CTX,
5428 	.arg2_type	= ARG_PTR_TO_MEM,
5429 	.arg3_type	= ARG_CONST_SIZE,
5430 	.arg4_type	= ARG_ANYTHING,
5431 	.arg5_type	= ARG_ANYTHING,
5432 };
5433 
5434 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5435 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5436 {
5437 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5438 					      sock_net(ctx->sk), 0, IPPROTO_TCP,
5439 					      netns_id, flags);
5440 }
5441 
5442 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5443 	.func		= bpf_sock_addr_sk_lookup_tcp,
5444 	.gpl_only	= false,
5445 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5446 	.arg1_type	= ARG_PTR_TO_CTX,
5447 	.arg2_type	= ARG_PTR_TO_MEM,
5448 	.arg3_type	= ARG_CONST_SIZE,
5449 	.arg4_type	= ARG_ANYTHING,
5450 	.arg5_type	= ARG_ANYTHING,
5451 };
5452 
5453 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5454 	   struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5455 {
5456 	return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5457 					      sock_net(ctx->sk), 0, IPPROTO_UDP,
5458 					      netns_id, flags);
5459 }
5460 
5461 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5462 	.func		= bpf_sock_addr_sk_lookup_udp,
5463 	.gpl_only	= false,
5464 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5465 	.arg1_type	= ARG_PTR_TO_CTX,
5466 	.arg2_type	= ARG_PTR_TO_MEM,
5467 	.arg3_type	= ARG_CONST_SIZE,
5468 	.arg4_type	= ARG_ANYTHING,
5469 	.arg5_type	= ARG_ANYTHING,
5470 };
5471 
5472 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5473 				  struct bpf_insn_access_aux *info)
5474 {
5475 	if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5476 					  icsk_retransmits))
5477 		return false;
5478 
5479 	if (off % size != 0)
5480 		return false;
5481 
5482 	switch (off) {
5483 	case offsetof(struct bpf_tcp_sock, bytes_received):
5484 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5485 		return size == sizeof(__u64);
5486 	default:
5487 		return size == sizeof(__u32);
5488 	}
5489 }
5490 
5491 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5492 				    const struct bpf_insn *si,
5493 				    struct bpf_insn *insn_buf,
5494 				    struct bpf_prog *prog, u32 *target_size)
5495 {
5496 	struct bpf_insn *insn = insn_buf;
5497 
5498 #define BPF_TCP_SOCK_GET_COMMON(FIELD)					\
5499 	do {								\
5500 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, FIELD) >	\
5501 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
5502 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5503 				      si->dst_reg, si->src_reg,		\
5504 				      offsetof(struct tcp_sock, FIELD)); \
5505 	} while (0)
5506 
5507 #define BPF_INET_SOCK_GET_COMMON(FIELD)					\
5508 	do {								\
5509 		BUILD_BUG_ON(sizeof_field(struct inet_connection_sock,	\
5510 					  FIELD) >			\
5511 			     sizeof_field(struct bpf_tcp_sock, FIELD));	\
5512 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			\
5513 					struct inet_connection_sock,	\
5514 					FIELD),				\
5515 				      si->dst_reg, si->src_reg,		\
5516 				      offsetof(				\
5517 					struct inet_connection_sock,	\
5518 					FIELD));			\
5519 	} while (0)
5520 
5521 	if (insn > insn_buf)
5522 		return insn - insn_buf;
5523 
5524 	switch (si->off) {
5525 	case offsetof(struct bpf_tcp_sock, rtt_min):
5526 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
5527 			     sizeof(struct minmax));
5528 		BUILD_BUG_ON(sizeof(struct minmax) <
5529 			     sizeof(struct minmax_sample));
5530 
5531 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5532 				      offsetof(struct tcp_sock, rtt_min) +
5533 				      offsetof(struct minmax_sample, v));
5534 		break;
5535 	case offsetof(struct bpf_tcp_sock, snd_cwnd):
5536 		BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5537 		break;
5538 	case offsetof(struct bpf_tcp_sock, srtt_us):
5539 		BPF_TCP_SOCK_GET_COMMON(srtt_us);
5540 		break;
5541 	case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5542 		BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5543 		break;
5544 	case offsetof(struct bpf_tcp_sock, rcv_nxt):
5545 		BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5546 		break;
5547 	case offsetof(struct bpf_tcp_sock, snd_nxt):
5548 		BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5549 		break;
5550 	case offsetof(struct bpf_tcp_sock, snd_una):
5551 		BPF_TCP_SOCK_GET_COMMON(snd_una);
5552 		break;
5553 	case offsetof(struct bpf_tcp_sock, mss_cache):
5554 		BPF_TCP_SOCK_GET_COMMON(mss_cache);
5555 		break;
5556 	case offsetof(struct bpf_tcp_sock, ecn_flags):
5557 		BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5558 		break;
5559 	case offsetof(struct bpf_tcp_sock, rate_delivered):
5560 		BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5561 		break;
5562 	case offsetof(struct bpf_tcp_sock, rate_interval_us):
5563 		BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5564 		break;
5565 	case offsetof(struct bpf_tcp_sock, packets_out):
5566 		BPF_TCP_SOCK_GET_COMMON(packets_out);
5567 		break;
5568 	case offsetof(struct bpf_tcp_sock, retrans_out):
5569 		BPF_TCP_SOCK_GET_COMMON(retrans_out);
5570 		break;
5571 	case offsetof(struct bpf_tcp_sock, total_retrans):
5572 		BPF_TCP_SOCK_GET_COMMON(total_retrans);
5573 		break;
5574 	case offsetof(struct bpf_tcp_sock, segs_in):
5575 		BPF_TCP_SOCK_GET_COMMON(segs_in);
5576 		break;
5577 	case offsetof(struct bpf_tcp_sock, data_segs_in):
5578 		BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5579 		break;
5580 	case offsetof(struct bpf_tcp_sock, segs_out):
5581 		BPF_TCP_SOCK_GET_COMMON(segs_out);
5582 		break;
5583 	case offsetof(struct bpf_tcp_sock, data_segs_out):
5584 		BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5585 		break;
5586 	case offsetof(struct bpf_tcp_sock, lost_out):
5587 		BPF_TCP_SOCK_GET_COMMON(lost_out);
5588 		break;
5589 	case offsetof(struct bpf_tcp_sock, sacked_out):
5590 		BPF_TCP_SOCK_GET_COMMON(sacked_out);
5591 		break;
5592 	case offsetof(struct bpf_tcp_sock, bytes_received):
5593 		BPF_TCP_SOCK_GET_COMMON(bytes_received);
5594 		break;
5595 	case offsetof(struct bpf_tcp_sock, bytes_acked):
5596 		BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5597 		break;
5598 	case offsetof(struct bpf_tcp_sock, dsack_dups):
5599 		BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5600 		break;
5601 	case offsetof(struct bpf_tcp_sock, delivered):
5602 		BPF_TCP_SOCK_GET_COMMON(delivered);
5603 		break;
5604 	case offsetof(struct bpf_tcp_sock, delivered_ce):
5605 		BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5606 		break;
5607 	case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5608 		BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5609 		break;
5610 	}
5611 
5612 	return insn - insn_buf;
5613 }
5614 
5615 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5616 {
5617 	if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5618 		return (unsigned long)sk;
5619 
5620 	return (unsigned long)NULL;
5621 }
5622 
5623 const struct bpf_func_proto bpf_tcp_sock_proto = {
5624 	.func		= bpf_tcp_sock,
5625 	.gpl_only	= false,
5626 	.ret_type	= RET_PTR_TO_TCP_SOCK_OR_NULL,
5627 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5628 };
5629 
5630 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5631 {
5632 	sk = sk_to_full_sk(sk);
5633 
5634 	if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5635 		return (unsigned long)sk;
5636 
5637 	return (unsigned long)NULL;
5638 }
5639 
5640 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5641 	.func		= bpf_get_listener_sock,
5642 	.gpl_only	= false,
5643 	.ret_type	= RET_PTR_TO_SOCKET_OR_NULL,
5644 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5645 };
5646 
5647 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5648 {
5649 	unsigned int iphdr_len;
5650 
5651 	if (skb->protocol == cpu_to_be16(ETH_P_IP))
5652 		iphdr_len = sizeof(struct iphdr);
5653 	else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5654 		iphdr_len = sizeof(struct ipv6hdr);
5655 	else
5656 		return 0;
5657 
5658 	if (skb_headlen(skb) < iphdr_len)
5659 		return 0;
5660 
5661 	if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5662 		return 0;
5663 
5664 	return INET_ECN_set_ce(skb);
5665 }
5666 
5667 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5668 				  struct bpf_insn_access_aux *info)
5669 {
5670 	if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5671 		return false;
5672 
5673 	if (off % size != 0)
5674 		return false;
5675 
5676 	switch (off) {
5677 	default:
5678 		return size == sizeof(__u32);
5679 	}
5680 }
5681 
5682 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5683 				    const struct bpf_insn *si,
5684 				    struct bpf_insn *insn_buf,
5685 				    struct bpf_prog *prog, u32 *target_size)
5686 {
5687 	struct bpf_insn *insn = insn_buf;
5688 
5689 #define BPF_XDP_SOCK_GET(FIELD)						\
5690 	do {								\
5691 		BUILD_BUG_ON(sizeof_field(struct xdp_sock, FIELD) >	\
5692 			     sizeof_field(struct bpf_xdp_sock, FIELD));	\
5693 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5694 				      si->dst_reg, si->src_reg,		\
5695 				      offsetof(struct xdp_sock, FIELD)); \
5696 	} while (0)
5697 
5698 	switch (si->off) {
5699 	case offsetof(struct bpf_xdp_sock, queue_id):
5700 		BPF_XDP_SOCK_GET(queue_id);
5701 		break;
5702 	}
5703 
5704 	return insn - insn_buf;
5705 }
5706 
5707 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5708 	.func           = bpf_skb_ecn_set_ce,
5709 	.gpl_only       = false,
5710 	.ret_type       = RET_INTEGER,
5711 	.arg1_type      = ARG_PTR_TO_CTX,
5712 };
5713 
5714 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5715 	   struct tcphdr *, th, u32, th_len)
5716 {
5717 #ifdef CONFIG_SYN_COOKIES
5718 	u32 cookie;
5719 	int ret;
5720 
5721 	if (unlikely(th_len < sizeof(*th)))
5722 		return -EINVAL;
5723 
5724 	/* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5725 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5726 		return -EINVAL;
5727 
5728 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5729 		return -EINVAL;
5730 
5731 	if (!th->ack || th->rst || th->syn)
5732 		return -ENOENT;
5733 
5734 	if (tcp_synq_no_recent_overflow(sk))
5735 		return -ENOENT;
5736 
5737 	cookie = ntohl(th->ack_seq) - 1;
5738 
5739 	switch (sk->sk_family) {
5740 	case AF_INET:
5741 		if (unlikely(iph_len < sizeof(struct iphdr)))
5742 			return -EINVAL;
5743 
5744 		ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
5745 		break;
5746 
5747 #if IS_BUILTIN(CONFIG_IPV6)
5748 	case AF_INET6:
5749 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5750 			return -EINVAL;
5751 
5752 		ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
5753 		break;
5754 #endif /* CONFIG_IPV6 */
5755 
5756 	default:
5757 		return -EPROTONOSUPPORT;
5758 	}
5759 
5760 	if (ret > 0)
5761 		return 0;
5762 
5763 	return -ENOENT;
5764 #else
5765 	return -ENOTSUPP;
5766 #endif
5767 }
5768 
5769 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
5770 	.func		= bpf_tcp_check_syncookie,
5771 	.gpl_only	= true,
5772 	.pkt_access	= true,
5773 	.ret_type	= RET_INTEGER,
5774 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5775 	.arg2_type	= ARG_PTR_TO_MEM,
5776 	.arg3_type	= ARG_CONST_SIZE,
5777 	.arg4_type	= ARG_PTR_TO_MEM,
5778 	.arg5_type	= ARG_CONST_SIZE,
5779 };
5780 
5781 BPF_CALL_5(bpf_tcp_gen_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5782 	   struct tcphdr *, th, u32, th_len)
5783 {
5784 #ifdef CONFIG_SYN_COOKIES
5785 	u32 cookie;
5786 	u16 mss;
5787 
5788 	if (unlikely(th_len < sizeof(*th) || th_len != th->doff * 4))
5789 		return -EINVAL;
5790 
5791 	if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5792 		return -EINVAL;
5793 
5794 	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5795 		return -ENOENT;
5796 
5797 	if (!th->syn || th->ack || th->fin || th->rst)
5798 		return -EINVAL;
5799 
5800 	if (unlikely(iph_len < sizeof(struct iphdr)))
5801 		return -EINVAL;
5802 
5803 	/* Both struct iphdr and struct ipv6hdr have the version field at the
5804 	 * same offset so we can cast to the shorter header (struct iphdr).
5805 	 */
5806 	switch (((struct iphdr *)iph)->version) {
5807 	case 4:
5808 		if (sk->sk_family == AF_INET6 && sk->sk_ipv6only)
5809 			return -EINVAL;
5810 
5811 		mss = tcp_v4_get_syncookie(sk, iph, th, &cookie);
5812 		break;
5813 
5814 #if IS_BUILTIN(CONFIG_IPV6)
5815 	case 6:
5816 		if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5817 			return -EINVAL;
5818 
5819 		if (sk->sk_family != AF_INET6)
5820 			return -EINVAL;
5821 
5822 		mss = tcp_v6_get_syncookie(sk, iph, th, &cookie);
5823 		break;
5824 #endif /* CONFIG_IPV6 */
5825 
5826 	default:
5827 		return -EPROTONOSUPPORT;
5828 	}
5829 	if (mss == 0)
5830 		return -ENOENT;
5831 
5832 	return cookie | ((u64)mss << 32);
5833 #else
5834 	return -EOPNOTSUPP;
5835 #endif /* CONFIG_SYN_COOKIES */
5836 }
5837 
5838 static const struct bpf_func_proto bpf_tcp_gen_syncookie_proto = {
5839 	.func		= bpf_tcp_gen_syncookie,
5840 	.gpl_only	= true, /* __cookie_v*_init_sequence() is GPL */
5841 	.pkt_access	= true,
5842 	.ret_type	= RET_INTEGER,
5843 	.arg1_type	= ARG_PTR_TO_SOCK_COMMON,
5844 	.arg2_type	= ARG_PTR_TO_MEM,
5845 	.arg3_type	= ARG_CONST_SIZE,
5846 	.arg4_type	= ARG_PTR_TO_MEM,
5847 	.arg5_type	= ARG_CONST_SIZE,
5848 };
5849 
5850 #endif /* CONFIG_INET */
5851 
5852 bool bpf_helper_changes_pkt_data(void *func)
5853 {
5854 	if (func == bpf_skb_vlan_push ||
5855 	    func == bpf_skb_vlan_pop ||
5856 	    func == bpf_skb_store_bytes ||
5857 	    func == bpf_skb_change_proto ||
5858 	    func == bpf_skb_change_head ||
5859 	    func == sk_skb_change_head ||
5860 	    func == bpf_skb_change_tail ||
5861 	    func == sk_skb_change_tail ||
5862 	    func == bpf_skb_adjust_room ||
5863 	    func == bpf_skb_pull_data ||
5864 	    func == sk_skb_pull_data ||
5865 	    func == bpf_clone_redirect ||
5866 	    func == bpf_l3_csum_replace ||
5867 	    func == bpf_l4_csum_replace ||
5868 	    func == bpf_xdp_adjust_head ||
5869 	    func == bpf_xdp_adjust_meta ||
5870 	    func == bpf_msg_pull_data ||
5871 	    func == bpf_msg_push_data ||
5872 	    func == bpf_msg_pop_data ||
5873 	    func == bpf_xdp_adjust_tail ||
5874 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5875 	    func == bpf_lwt_seg6_store_bytes ||
5876 	    func == bpf_lwt_seg6_adjust_srh ||
5877 	    func == bpf_lwt_seg6_action ||
5878 #endif
5879 	    func == bpf_lwt_in_push_encap ||
5880 	    func == bpf_lwt_xmit_push_encap)
5881 		return true;
5882 
5883 	return false;
5884 }
5885 
5886 const struct bpf_func_proto *
5887 bpf_base_func_proto(enum bpf_func_id func_id)
5888 {
5889 	switch (func_id) {
5890 	case BPF_FUNC_map_lookup_elem:
5891 		return &bpf_map_lookup_elem_proto;
5892 	case BPF_FUNC_map_update_elem:
5893 		return &bpf_map_update_elem_proto;
5894 	case BPF_FUNC_map_delete_elem:
5895 		return &bpf_map_delete_elem_proto;
5896 	case BPF_FUNC_map_push_elem:
5897 		return &bpf_map_push_elem_proto;
5898 	case BPF_FUNC_map_pop_elem:
5899 		return &bpf_map_pop_elem_proto;
5900 	case BPF_FUNC_map_peek_elem:
5901 		return &bpf_map_peek_elem_proto;
5902 	case BPF_FUNC_get_prandom_u32:
5903 		return &bpf_get_prandom_u32_proto;
5904 	case BPF_FUNC_get_smp_processor_id:
5905 		return &bpf_get_raw_smp_processor_id_proto;
5906 	case BPF_FUNC_get_numa_node_id:
5907 		return &bpf_get_numa_node_id_proto;
5908 	case BPF_FUNC_tail_call:
5909 		return &bpf_tail_call_proto;
5910 	case BPF_FUNC_ktime_get_ns:
5911 		return &bpf_ktime_get_ns_proto;
5912 	default:
5913 		break;
5914 	}
5915 
5916 	if (!capable(CAP_SYS_ADMIN))
5917 		return NULL;
5918 
5919 	switch (func_id) {
5920 	case BPF_FUNC_spin_lock:
5921 		return &bpf_spin_lock_proto;
5922 	case BPF_FUNC_spin_unlock:
5923 		return &bpf_spin_unlock_proto;
5924 	case BPF_FUNC_trace_printk:
5925 		return bpf_get_trace_printk_proto();
5926 	case BPF_FUNC_jiffies64:
5927 		return &bpf_jiffies64_proto;
5928 	default:
5929 		return NULL;
5930 	}
5931 }
5932 
5933 static const struct bpf_func_proto *
5934 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5935 {
5936 	switch (func_id) {
5937 	/* inet and inet6 sockets are created in a process
5938 	 * context so there is always a valid uid/gid
5939 	 */
5940 	case BPF_FUNC_get_current_uid_gid:
5941 		return &bpf_get_current_uid_gid_proto;
5942 	case BPF_FUNC_get_local_storage:
5943 		return &bpf_get_local_storage_proto;
5944 	default:
5945 		return bpf_base_func_proto(func_id);
5946 	}
5947 }
5948 
5949 static const struct bpf_func_proto *
5950 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5951 {
5952 	switch (func_id) {
5953 	/* inet and inet6 sockets are created in a process
5954 	 * context so there is always a valid uid/gid
5955 	 */
5956 	case BPF_FUNC_get_current_uid_gid:
5957 		return &bpf_get_current_uid_gid_proto;
5958 	case BPF_FUNC_bind:
5959 		switch (prog->expected_attach_type) {
5960 		case BPF_CGROUP_INET4_CONNECT:
5961 		case BPF_CGROUP_INET6_CONNECT:
5962 			return &bpf_bind_proto;
5963 		default:
5964 			return NULL;
5965 		}
5966 	case BPF_FUNC_get_socket_cookie:
5967 		return &bpf_get_socket_cookie_sock_addr_proto;
5968 	case BPF_FUNC_get_local_storage:
5969 		return &bpf_get_local_storage_proto;
5970 #ifdef CONFIG_INET
5971 	case BPF_FUNC_sk_lookup_tcp:
5972 		return &bpf_sock_addr_sk_lookup_tcp_proto;
5973 	case BPF_FUNC_sk_lookup_udp:
5974 		return &bpf_sock_addr_sk_lookup_udp_proto;
5975 	case BPF_FUNC_sk_release:
5976 		return &bpf_sk_release_proto;
5977 	case BPF_FUNC_skc_lookup_tcp:
5978 		return &bpf_sock_addr_skc_lookup_tcp_proto;
5979 #endif /* CONFIG_INET */
5980 	case BPF_FUNC_sk_storage_get:
5981 		return &bpf_sk_storage_get_proto;
5982 	case BPF_FUNC_sk_storage_delete:
5983 		return &bpf_sk_storage_delete_proto;
5984 	default:
5985 		return bpf_base_func_proto(func_id);
5986 	}
5987 }
5988 
5989 static const struct bpf_func_proto *
5990 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5991 {
5992 	switch (func_id) {
5993 	case BPF_FUNC_skb_load_bytes:
5994 		return &bpf_skb_load_bytes_proto;
5995 	case BPF_FUNC_skb_load_bytes_relative:
5996 		return &bpf_skb_load_bytes_relative_proto;
5997 	case BPF_FUNC_get_socket_cookie:
5998 		return &bpf_get_socket_cookie_proto;
5999 	case BPF_FUNC_get_socket_uid:
6000 		return &bpf_get_socket_uid_proto;
6001 	case BPF_FUNC_perf_event_output:
6002 		return &bpf_skb_event_output_proto;
6003 	default:
6004 		return bpf_base_func_proto(func_id);
6005 	}
6006 }
6007 
6008 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6009 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6010 
6011 static const struct bpf_func_proto *
6012 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6013 {
6014 	switch (func_id) {
6015 	case BPF_FUNC_get_local_storage:
6016 		return &bpf_get_local_storage_proto;
6017 	case BPF_FUNC_sk_fullsock:
6018 		return &bpf_sk_fullsock_proto;
6019 	case BPF_FUNC_sk_storage_get:
6020 		return &bpf_sk_storage_get_proto;
6021 	case BPF_FUNC_sk_storage_delete:
6022 		return &bpf_sk_storage_delete_proto;
6023 	case BPF_FUNC_perf_event_output:
6024 		return &bpf_skb_event_output_proto;
6025 #ifdef CONFIG_SOCK_CGROUP_DATA
6026 	case BPF_FUNC_skb_cgroup_id:
6027 		return &bpf_skb_cgroup_id_proto;
6028 #endif
6029 #ifdef CONFIG_INET
6030 	case BPF_FUNC_tcp_sock:
6031 		return &bpf_tcp_sock_proto;
6032 	case BPF_FUNC_get_listener_sock:
6033 		return &bpf_get_listener_sock_proto;
6034 	case BPF_FUNC_skb_ecn_set_ce:
6035 		return &bpf_skb_ecn_set_ce_proto;
6036 #endif
6037 	default:
6038 		return sk_filter_func_proto(func_id, prog);
6039 	}
6040 }
6041 
6042 static const struct bpf_func_proto *
6043 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6044 {
6045 	switch (func_id) {
6046 	case BPF_FUNC_skb_store_bytes:
6047 		return &bpf_skb_store_bytes_proto;
6048 	case BPF_FUNC_skb_load_bytes:
6049 		return &bpf_skb_load_bytes_proto;
6050 	case BPF_FUNC_skb_load_bytes_relative:
6051 		return &bpf_skb_load_bytes_relative_proto;
6052 	case BPF_FUNC_skb_pull_data:
6053 		return &bpf_skb_pull_data_proto;
6054 	case BPF_FUNC_csum_diff:
6055 		return &bpf_csum_diff_proto;
6056 	case BPF_FUNC_csum_update:
6057 		return &bpf_csum_update_proto;
6058 	case BPF_FUNC_l3_csum_replace:
6059 		return &bpf_l3_csum_replace_proto;
6060 	case BPF_FUNC_l4_csum_replace:
6061 		return &bpf_l4_csum_replace_proto;
6062 	case BPF_FUNC_clone_redirect:
6063 		return &bpf_clone_redirect_proto;
6064 	case BPF_FUNC_get_cgroup_classid:
6065 		return &bpf_get_cgroup_classid_proto;
6066 	case BPF_FUNC_skb_vlan_push:
6067 		return &bpf_skb_vlan_push_proto;
6068 	case BPF_FUNC_skb_vlan_pop:
6069 		return &bpf_skb_vlan_pop_proto;
6070 	case BPF_FUNC_skb_change_proto:
6071 		return &bpf_skb_change_proto_proto;
6072 	case BPF_FUNC_skb_change_type:
6073 		return &bpf_skb_change_type_proto;
6074 	case BPF_FUNC_skb_adjust_room:
6075 		return &bpf_skb_adjust_room_proto;
6076 	case BPF_FUNC_skb_change_tail:
6077 		return &bpf_skb_change_tail_proto;
6078 	case BPF_FUNC_skb_get_tunnel_key:
6079 		return &bpf_skb_get_tunnel_key_proto;
6080 	case BPF_FUNC_skb_set_tunnel_key:
6081 		return bpf_get_skb_set_tunnel_proto(func_id);
6082 	case BPF_FUNC_skb_get_tunnel_opt:
6083 		return &bpf_skb_get_tunnel_opt_proto;
6084 	case BPF_FUNC_skb_set_tunnel_opt:
6085 		return bpf_get_skb_set_tunnel_proto(func_id);
6086 	case BPF_FUNC_redirect:
6087 		return &bpf_redirect_proto;
6088 	case BPF_FUNC_get_route_realm:
6089 		return &bpf_get_route_realm_proto;
6090 	case BPF_FUNC_get_hash_recalc:
6091 		return &bpf_get_hash_recalc_proto;
6092 	case BPF_FUNC_set_hash_invalid:
6093 		return &bpf_set_hash_invalid_proto;
6094 	case BPF_FUNC_set_hash:
6095 		return &bpf_set_hash_proto;
6096 	case BPF_FUNC_perf_event_output:
6097 		return &bpf_skb_event_output_proto;
6098 	case BPF_FUNC_get_smp_processor_id:
6099 		return &bpf_get_smp_processor_id_proto;
6100 	case BPF_FUNC_skb_under_cgroup:
6101 		return &bpf_skb_under_cgroup_proto;
6102 	case BPF_FUNC_get_socket_cookie:
6103 		return &bpf_get_socket_cookie_proto;
6104 	case BPF_FUNC_get_socket_uid:
6105 		return &bpf_get_socket_uid_proto;
6106 	case BPF_FUNC_fib_lookup:
6107 		return &bpf_skb_fib_lookup_proto;
6108 	case BPF_FUNC_sk_fullsock:
6109 		return &bpf_sk_fullsock_proto;
6110 	case BPF_FUNC_sk_storage_get:
6111 		return &bpf_sk_storage_get_proto;
6112 	case BPF_FUNC_sk_storage_delete:
6113 		return &bpf_sk_storage_delete_proto;
6114 #ifdef CONFIG_XFRM
6115 	case BPF_FUNC_skb_get_xfrm_state:
6116 		return &bpf_skb_get_xfrm_state_proto;
6117 #endif
6118 #ifdef CONFIG_SOCK_CGROUP_DATA
6119 	case BPF_FUNC_skb_cgroup_id:
6120 		return &bpf_skb_cgroup_id_proto;
6121 	case BPF_FUNC_skb_ancestor_cgroup_id:
6122 		return &bpf_skb_ancestor_cgroup_id_proto;
6123 #endif
6124 #ifdef CONFIG_INET
6125 	case BPF_FUNC_sk_lookup_tcp:
6126 		return &bpf_sk_lookup_tcp_proto;
6127 	case BPF_FUNC_sk_lookup_udp:
6128 		return &bpf_sk_lookup_udp_proto;
6129 	case BPF_FUNC_sk_release:
6130 		return &bpf_sk_release_proto;
6131 	case BPF_FUNC_tcp_sock:
6132 		return &bpf_tcp_sock_proto;
6133 	case BPF_FUNC_get_listener_sock:
6134 		return &bpf_get_listener_sock_proto;
6135 	case BPF_FUNC_skc_lookup_tcp:
6136 		return &bpf_skc_lookup_tcp_proto;
6137 	case BPF_FUNC_tcp_check_syncookie:
6138 		return &bpf_tcp_check_syncookie_proto;
6139 	case BPF_FUNC_skb_ecn_set_ce:
6140 		return &bpf_skb_ecn_set_ce_proto;
6141 	case BPF_FUNC_tcp_gen_syncookie:
6142 		return &bpf_tcp_gen_syncookie_proto;
6143 #endif
6144 	default:
6145 		return bpf_base_func_proto(func_id);
6146 	}
6147 }
6148 
6149 static const struct bpf_func_proto *
6150 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6151 {
6152 	switch (func_id) {
6153 	case BPF_FUNC_perf_event_output:
6154 		return &bpf_xdp_event_output_proto;
6155 	case BPF_FUNC_get_smp_processor_id:
6156 		return &bpf_get_smp_processor_id_proto;
6157 	case BPF_FUNC_csum_diff:
6158 		return &bpf_csum_diff_proto;
6159 	case BPF_FUNC_xdp_adjust_head:
6160 		return &bpf_xdp_adjust_head_proto;
6161 	case BPF_FUNC_xdp_adjust_meta:
6162 		return &bpf_xdp_adjust_meta_proto;
6163 	case BPF_FUNC_redirect:
6164 		return &bpf_xdp_redirect_proto;
6165 	case BPF_FUNC_redirect_map:
6166 		return &bpf_xdp_redirect_map_proto;
6167 	case BPF_FUNC_xdp_adjust_tail:
6168 		return &bpf_xdp_adjust_tail_proto;
6169 	case BPF_FUNC_fib_lookup:
6170 		return &bpf_xdp_fib_lookup_proto;
6171 #ifdef CONFIG_INET
6172 	case BPF_FUNC_sk_lookup_udp:
6173 		return &bpf_xdp_sk_lookup_udp_proto;
6174 	case BPF_FUNC_sk_lookup_tcp:
6175 		return &bpf_xdp_sk_lookup_tcp_proto;
6176 	case BPF_FUNC_sk_release:
6177 		return &bpf_sk_release_proto;
6178 	case BPF_FUNC_skc_lookup_tcp:
6179 		return &bpf_xdp_skc_lookup_tcp_proto;
6180 	case BPF_FUNC_tcp_check_syncookie:
6181 		return &bpf_tcp_check_syncookie_proto;
6182 	case BPF_FUNC_tcp_gen_syncookie:
6183 		return &bpf_tcp_gen_syncookie_proto;
6184 #endif
6185 	default:
6186 		return bpf_base_func_proto(func_id);
6187 	}
6188 }
6189 
6190 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6191 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6192 
6193 static const struct bpf_func_proto *
6194 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6195 {
6196 	switch (func_id) {
6197 	case BPF_FUNC_setsockopt:
6198 		return &bpf_setsockopt_proto;
6199 	case BPF_FUNC_getsockopt:
6200 		return &bpf_getsockopt_proto;
6201 	case BPF_FUNC_sock_ops_cb_flags_set:
6202 		return &bpf_sock_ops_cb_flags_set_proto;
6203 	case BPF_FUNC_sock_map_update:
6204 		return &bpf_sock_map_update_proto;
6205 	case BPF_FUNC_sock_hash_update:
6206 		return &bpf_sock_hash_update_proto;
6207 	case BPF_FUNC_get_socket_cookie:
6208 		return &bpf_get_socket_cookie_sock_ops_proto;
6209 	case BPF_FUNC_get_local_storage:
6210 		return &bpf_get_local_storage_proto;
6211 	case BPF_FUNC_perf_event_output:
6212 		return &bpf_sockopt_event_output_proto;
6213 	case BPF_FUNC_sk_storage_get:
6214 		return &bpf_sk_storage_get_proto;
6215 	case BPF_FUNC_sk_storage_delete:
6216 		return &bpf_sk_storage_delete_proto;
6217 #ifdef CONFIG_INET
6218 	case BPF_FUNC_tcp_sock:
6219 		return &bpf_tcp_sock_proto;
6220 #endif /* CONFIG_INET */
6221 	default:
6222 		return bpf_base_func_proto(func_id);
6223 	}
6224 }
6225 
6226 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6227 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6228 
6229 static const struct bpf_func_proto *
6230 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6231 {
6232 	switch (func_id) {
6233 	case BPF_FUNC_msg_redirect_map:
6234 		return &bpf_msg_redirect_map_proto;
6235 	case BPF_FUNC_msg_redirect_hash:
6236 		return &bpf_msg_redirect_hash_proto;
6237 	case BPF_FUNC_msg_apply_bytes:
6238 		return &bpf_msg_apply_bytes_proto;
6239 	case BPF_FUNC_msg_cork_bytes:
6240 		return &bpf_msg_cork_bytes_proto;
6241 	case BPF_FUNC_msg_pull_data:
6242 		return &bpf_msg_pull_data_proto;
6243 	case BPF_FUNC_msg_push_data:
6244 		return &bpf_msg_push_data_proto;
6245 	case BPF_FUNC_msg_pop_data:
6246 		return &bpf_msg_pop_data_proto;
6247 	default:
6248 		return bpf_base_func_proto(func_id);
6249 	}
6250 }
6251 
6252 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6253 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6254 
6255 static const struct bpf_func_proto *
6256 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6257 {
6258 	switch (func_id) {
6259 	case BPF_FUNC_skb_store_bytes:
6260 		return &bpf_skb_store_bytes_proto;
6261 	case BPF_FUNC_skb_load_bytes:
6262 		return &bpf_skb_load_bytes_proto;
6263 	case BPF_FUNC_skb_pull_data:
6264 		return &sk_skb_pull_data_proto;
6265 	case BPF_FUNC_skb_change_tail:
6266 		return &sk_skb_change_tail_proto;
6267 	case BPF_FUNC_skb_change_head:
6268 		return &sk_skb_change_head_proto;
6269 	case BPF_FUNC_get_socket_cookie:
6270 		return &bpf_get_socket_cookie_proto;
6271 	case BPF_FUNC_get_socket_uid:
6272 		return &bpf_get_socket_uid_proto;
6273 	case BPF_FUNC_sk_redirect_map:
6274 		return &bpf_sk_redirect_map_proto;
6275 	case BPF_FUNC_sk_redirect_hash:
6276 		return &bpf_sk_redirect_hash_proto;
6277 	case BPF_FUNC_perf_event_output:
6278 		return &bpf_skb_event_output_proto;
6279 #ifdef CONFIG_INET
6280 	case BPF_FUNC_sk_lookup_tcp:
6281 		return &bpf_sk_lookup_tcp_proto;
6282 	case BPF_FUNC_sk_lookup_udp:
6283 		return &bpf_sk_lookup_udp_proto;
6284 	case BPF_FUNC_sk_release:
6285 		return &bpf_sk_release_proto;
6286 	case BPF_FUNC_skc_lookup_tcp:
6287 		return &bpf_skc_lookup_tcp_proto;
6288 #endif
6289 	default:
6290 		return bpf_base_func_proto(func_id);
6291 	}
6292 }
6293 
6294 static const struct bpf_func_proto *
6295 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6296 {
6297 	switch (func_id) {
6298 	case BPF_FUNC_skb_load_bytes:
6299 		return &bpf_flow_dissector_load_bytes_proto;
6300 	default:
6301 		return bpf_base_func_proto(func_id);
6302 	}
6303 }
6304 
6305 static const struct bpf_func_proto *
6306 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6307 {
6308 	switch (func_id) {
6309 	case BPF_FUNC_skb_load_bytes:
6310 		return &bpf_skb_load_bytes_proto;
6311 	case BPF_FUNC_skb_pull_data:
6312 		return &bpf_skb_pull_data_proto;
6313 	case BPF_FUNC_csum_diff:
6314 		return &bpf_csum_diff_proto;
6315 	case BPF_FUNC_get_cgroup_classid:
6316 		return &bpf_get_cgroup_classid_proto;
6317 	case BPF_FUNC_get_route_realm:
6318 		return &bpf_get_route_realm_proto;
6319 	case BPF_FUNC_get_hash_recalc:
6320 		return &bpf_get_hash_recalc_proto;
6321 	case BPF_FUNC_perf_event_output:
6322 		return &bpf_skb_event_output_proto;
6323 	case BPF_FUNC_get_smp_processor_id:
6324 		return &bpf_get_smp_processor_id_proto;
6325 	case BPF_FUNC_skb_under_cgroup:
6326 		return &bpf_skb_under_cgroup_proto;
6327 	default:
6328 		return bpf_base_func_proto(func_id);
6329 	}
6330 }
6331 
6332 static const struct bpf_func_proto *
6333 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6334 {
6335 	switch (func_id) {
6336 	case BPF_FUNC_lwt_push_encap:
6337 		return &bpf_lwt_in_push_encap_proto;
6338 	default:
6339 		return lwt_out_func_proto(func_id, prog);
6340 	}
6341 }
6342 
6343 static const struct bpf_func_proto *
6344 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6345 {
6346 	switch (func_id) {
6347 	case BPF_FUNC_skb_get_tunnel_key:
6348 		return &bpf_skb_get_tunnel_key_proto;
6349 	case BPF_FUNC_skb_set_tunnel_key:
6350 		return bpf_get_skb_set_tunnel_proto(func_id);
6351 	case BPF_FUNC_skb_get_tunnel_opt:
6352 		return &bpf_skb_get_tunnel_opt_proto;
6353 	case BPF_FUNC_skb_set_tunnel_opt:
6354 		return bpf_get_skb_set_tunnel_proto(func_id);
6355 	case BPF_FUNC_redirect:
6356 		return &bpf_redirect_proto;
6357 	case BPF_FUNC_clone_redirect:
6358 		return &bpf_clone_redirect_proto;
6359 	case BPF_FUNC_skb_change_tail:
6360 		return &bpf_skb_change_tail_proto;
6361 	case BPF_FUNC_skb_change_head:
6362 		return &bpf_skb_change_head_proto;
6363 	case BPF_FUNC_skb_store_bytes:
6364 		return &bpf_skb_store_bytes_proto;
6365 	case BPF_FUNC_csum_update:
6366 		return &bpf_csum_update_proto;
6367 	case BPF_FUNC_l3_csum_replace:
6368 		return &bpf_l3_csum_replace_proto;
6369 	case BPF_FUNC_l4_csum_replace:
6370 		return &bpf_l4_csum_replace_proto;
6371 	case BPF_FUNC_set_hash_invalid:
6372 		return &bpf_set_hash_invalid_proto;
6373 	case BPF_FUNC_lwt_push_encap:
6374 		return &bpf_lwt_xmit_push_encap_proto;
6375 	default:
6376 		return lwt_out_func_proto(func_id, prog);
6377 	}
6378 }
6379 
6380 static const struct bpf_func_proto *
6381 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6382 {
6383 	switch (func_id) {
6384 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6385 	case BPF_FUNC_lwt_seg6_store_bytes:
6386 		return &bpf_lwt_seg6_store_bytes_proto;
6387 	case BPF_FUNC_lwt_seg6_action:
6388 		return &bpf_lwt_seg6_action_proto;
6389 	case BPF_FUNC_lwt_seg6_adjust_srh:
6390 		return &bpf_lwt_seg6_adjust_srh_proto;
6391 #endif
6392 	default:
6393 		return lwt_out_func_proto(func_id, prog);
6394 	}
6395 }
6396 
6397 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6398 				    const struct bpf_prog *prog,
6399 				    struct bpf_insn_access_aux *info)
6400 {
6401 	const int size_default = sizeof(__u32);
6402 
6403 	if (off < 0 || off >= sizeof(struct __sk_buff))
6404 		return false;
6405 
6406 	/* The verifier guarantees that size > 0. */
6407 	if (off % size != 0)
6408 		return false;
6409 
6410 	switch (off) {
6411 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6412 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
6413 			return false;
6414 		break;
6415 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6416 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6417 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6418 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6419 	case bpf_ctx_range(struct __sk_buff, data):
6420 	case bpf_ctx_range(struct __sk_buff, data_meta):
6421 	case bpf_ctx_range(struct __sk_buff, data_end):
6422 		if (size != size_default)
6423 			return false;
6424 		break;
6425 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6426 		return false;
6427 	case bpf_ctx_range(struct __sk_buff, tstamp):
6428 		if (size != sizeof(__u64))
6429 			return false;
6430 		break;
6431 	case offsetof(struct __sk_buff, sk):
6432 		if (type == BPF_WRITE || size != sizeof(__u64))
6433 			return false;
6434 		info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6435 		break;
6436 	default:
6437 		/* Only narrow read access allowed for now. */
6438 		if (type == BPF_WRITE) {
6439 			if (size != size_default)
6440 				return false;
6441 		} else {
6442 			bpf_ctx_record_field_size(info, size_default);
6443 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6444 				return false;
6445 		}
6446 	}
6447 
6448 	return true;
6449 }
6450 
6451 static bool sk_filter_is_valid_access(int off, int size,
6452 				      enum bpf_access_type type,
6453 				      const struct bpf_prog *prog,
6454 				      struct bpf_insn_access_aux *info)
6455 {
6456 	switch (off) {
6457 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6458 	case bpf_ctx_range(struct __sk_buff, data):
6459 	case bpf_ctx_range(struct __sk_buff, data_meta):
6460 	case bpf_ctx_range(struct __sk_buff, data_end):
6461 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6462 	case bpf_ctx_range(struct __sk_buff, tstamp):
6463 	case bpf_ctx_range(struct __sk_buff, wire_len):
6464 		return false;
6465 	}
6466 
6467 	if (type == BPF_WRITE) {
6468 		switch (off) {
6469 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6470 			break;
6471 		default:
6472 			return false;
6473 		}
6474 	}
6475 
6476 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6477 }
6478 
6479 static bool cg_skb_is_valid_access(int off, int size,
6480 				   enum bpf_access_type type,
6481 				   const struct bpf_prog *prog,
6482 				   struct bpf_insn_access_aux *info)
6483 {
6484 	switch (off) {
6485 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6486 	case bpf_ctx_range(struct __sk_buff, data_meta):
6487 	case bpf_ctx_range(struct __sk_buff, wire_len):
6488 		return false;
6489 	case bpf_ctx_range(struct __sk_buff, data):
6490 	case bpf_ctx_range(struct __sk_buff, data_end):
6491 		if (!capable(CAP_SYS_ADMIN))
6492 			return false;
6493 		break;
6494 	}
6495 
6496 	if (type == BPF_WRITE) {
6497 		switch (off) {
6498 		case bpf_ctx_range(struct __sk_buff, mark):
6499 		case bpf_ctx_range(struct __sk_buff, priority):
6500 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6501 			break;
6502 		case bpf_ctx_range(struct __sk_buff, tstamp):
6503 			if (!capable(CAP_SYS_ADMIN))
6504 				return false;
6505 			break;
6506 		default:
6507 			return false;
6508 		}
6509 	}
6510 
6511 	switch (off) {
6512 	case bpf_ctx_range(struct __sk_buff, data):
6513 		info->reg_type = PTR_TO_PACKET;
6514 		break;
6515 	case bpf_ctx_range(struct __sk_buff, data_end):
6516 		info->reg_type = PTR_TO_PACKET_END;
6517 		break;
6518 	}
6519 
6520 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6521 }
6522 
6523 static bool lwt_is_valid_access(int off, int size,
6524 				enum bpf_access_type type,
6525 				const struct bpf_prog *prog,
6526 				struct bpf_insn_access_aux *info)
6527 {
6528 	switch (off) {
6529 	case bpf_ctx_range(struct __sk_buff, tc_classid):
6530 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6531 	case bpf_ctx_range(struct __sk_buff, data_meta):
6532 	case bpf_ctx_range(struct __sk_buff, tstamp):
6533 	case bpf_ctx_range(struct __sk_buff, wire_len):
6534 		return false;
6535 	}
6536 
6537 	if (type == BPF_WRITE) {
6538 		switch (off) {
6539 		case bpf_ctx_range(struct __sk_buff, mark):
6540 		case bpf_ctx_range(struct __sk_buff, priority):
6541 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6542 			break;
6543 		default:
6544 			return false;
6545 		}
6546 	}
6547 
6548 	switch (off) {
6549 	case bpf_ctx_range(struct __sk_buff, data):
6550 		info->reg_type = PTR_TO_PACKET;
6551 		break;
6552 	case bpf_ctx_range(struct __sk_buff, data_end):
6553 		info->reg_type = PTR_TO_PACKET_END;
6554 		break;
6555 	}
6556 
6557 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6558 }
6559 
6560 /* Attach type specific accesses */
6561 static bool __sock_filter_check_attach_type(int off,
6562 					    enum bpf_access_type access_type,
6563 					    enum bpf_attach_type attach_type)
6564 {
6565 	switch (off) {
6566 	case offsetof(struct bpf_sock, bound_dev_if):
6567 	case offsetof(struct bpf_sock, mark):
6568 	case offsetof(struct bpf_sock, priority):
6569 		switch (attach_type) {
6570 		case BPF_CGROUP_INET_SOCK_CREATE:
6571 			goto full_access;
6572 		default:
6573 			return false;
6574 		}
6575 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6576 		switch (attach_type) {
6577 		case BPF_CGROUP_INET4_POST_BIND:
6578 			goto read_only;
6579 		default:
6580 			return false;
6581 		}
6582 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6583 		switch (attach_type) {
6584 		case BPF_CGROUP_INET6_POST_BIND:
6585 			goto read_only;
6586 		default:
6587 			return false;
6588 		}
6589 	case bpf_ctx_range(struct bpf_sock, src_port):
6590 		switch (attach_type) {
6591 		case BPF_CGROUP_INET4_POST_BIND:
6592 		case BPF_CGROUP_INET6_POST_BIND:
6593 			goto read_only;
6594 		default:
6595 			return false;
6596 		}
6597 	}
6598 read_only:
6599 	return access_type == BPF_READ;
6600 full_access:
6601 	return true;
6602 }
6603 
6604 bool bpf_sock_common_is_valid_access(int off, int size,
6605 				     enum bpf_access_type type,
6606 				     struct bpf_insn_access_aux *info)
6607 {
6608 	switch (off) {
6609 	case bpf_ctx_range_till(struct bpf_sock, type, priority):
6610 		return false;
6611 	default:
6612 		return bpf_sock_is_valid_access(off, size, type, info);
6613 	}
6614 }
6615 
6616 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6617 			      struct bpf_insn_access_aux *info)
6618 {
6619 	const int size_default = sizeof(__u32);
6620 
6621 	if (off < 0 || off >= sizeof(struct bpf_sock))
6622 		return false;
6623 	if (off % size != 0)
6624 		return false;
6625 
6626 	switch (off) {
6627 	case offsetof(struct bpf_sock, state):
6628 	case offsetof(struct bpf_sock, family):
6629 	case offsetof(struct bpf_sock, type):
6630 	case offsetof(struct bpf_sock, protocol):
6631 	case offsetof(struct bpf_sock, dst_port):
6632 	case offsetof(struct bpf_sock, src_port):
6633 	case bpf_ctx_range(struct bpf_sock, src_ip4):
6634 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6635 	case bpf_ctx_range(struct bpf_sock, dst_ip4):
6636 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6637 		bpf_ctx_record_field_size(info, size_default);
6638 		return bpf_ctx_narrow_access_ok(off, size, size_default);
6639 	}
6640 
6641 	return size == size_default;
6642 }
6643 
6644 static bool sock_filter_is_valid_access(int off, int size,
6645 					enum bpf_access_type type,
6646 					const struct bpf_prog *prog,
6647 					struct bpf_insn_access_aux *info)
6648 {
6649 	if (!bpf_sock_is_valid_access(off, size, type, info))
6650 		return false;
6651 	return __sock_filter_check_attach_type(off, type,
6652 					       prog->expected_attach_type);
6653 }
6654 
6655 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6656 			     const struct bpf_prog *prog)
6657 {
6658 	/* Neither direct read nor direct write requires any preliminary
6659 	 * action.
6660 	 */
6661 	return 0;
6662 }
6663 
6664 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6665 				const struct bpf_prog *prog, int drop_verdict)
6666 {
6667 	struct bpf_insn *insn = insn_buf;
6668 
6669 	if (!direct_write)
6670 		return 0;
6671 
6672 	/* if (!skb->cloned)
6673 	 *       goto start;
6674 	 *
6675 	 * (Fast-path, otherwise approximation that we might be
6676 	 *  a clone, do the rest in helper.)
6677 	 */
6678 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6679 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6680 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6681 
6682 	/* ret = bpf_skb_pull_data(skb, 0); */
6683 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6684 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6685 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6686 			       BPF_FUNC_skb_pull_data);
6687 	/* if (!ret)
6688 	 *      goto restore;
6689 	 * return TC_ACT_SHOT;
6690 	 */
6691 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6692 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6693 	*insn++ = BPF_EXIT_INSN();
6694 
6695 	/* restore: */
6696 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6697 	/* start: */
6698 	*insn++ = prog->insnsi[0];
6699 
6700 	return insn - insn_buf;
6701 }
6702 
6703 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6704 			  struct bpf_insn *insn_buf)
6705 {
6706 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
6707 	struct bpf_insn *insn = insn_buf;
6708 
6709 	/* We're guaranteed here that CTX is in R6. */
6710 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6711 	if (!indirect) {
6712 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6713 	} else {
6714 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6715 		if (orig->imm)
6716 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6717 	}
6718 
6719 	switch (BPF_SIZE(orig->code)) {
6720 	case BPF_B:
6721 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6722 		break;
6723 	case BPF_H:
6724 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6725 		break;
6726 	case BPF_W:
6727 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6728 		break;
6729 	}
6730 
6731 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6732 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6733 	*insn++ = BPF_EXIT_INSN();
6734 
6735 	return insn - insn_buf;
6736 }
6737 
6738 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6739 			       const struct bpf_prog *prog)
6740 {
6741 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6742 }
6743 
6744 static bool tc_cls_act_is_valid_access(int off, int size,
6745 				       enum bpf_access_type type,
6746 				       const struct bpf_prog *prog,
6747 				       struct bpf_insn_access_aux *info)
6748 {
6749 	if (type == BPF_WRITE) {
6750 		switch (off) {
6751 		case bpf_ctx_range(struct __sk_buff, mark):
6752 		case bpf_ctx_range(struct __sk_buff, tc_index):
6753 		case bpf_ctx_range(struct __sk_buff, priority):
6754 		case bpf_ctx_range(struct __sk_buff, tc_classid):
6755 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6756 		case bpf_ctx_range(struct __sk_buff, tstamp):
6757 		case bpf_ctx_range(struct __sk_buff, queue_mapping):
6758 			break;
6759 		default:
6760 			return false;
6761 		}
6762 	}
6763 
6764 	switch (off) {
6765 	case bpf_ctx_range(struct __sk_buff, data):
6766 		info->reg_type = PTR_TO_PACKET;
6767 		break;
6768 	case bpf_ctx_range(struct __sk_buff, data_meta):
6769 		info->reg_type = PTR_TO_PACKET_META;
6770 		break;
6771 	case bpf_ctx_range(struct __sk_buff, data_end):
6772 		info->reg_type = PTR_TO_PACKET_END;
6773 		break;
6774 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6775 		return false;
6776 	}
6777 
6778 	return bpf_skb_is_valid_access(off, size, type, prog, info);
6779 }
6780 
6781 static bool __is_valid_xdp_access(int off, int size)
6782 {
6783 	if (off < 0 || off >= sizeof(struct xdp_md))
6784 		return false;
6785 	if (off % size != 0)
6786 		return false;
6787 	if (size != sizeof(__u32))
6788 		return false;
6789 
6790 	return true;
6791 }
6792 
6793 static bool xdp_is_valid_access(int off, int size,
6794 				enum bpf_access_type type,
6795 				const struct bpf_prog *prog,
6796 				struct bpf_insn_access_aux *info)
6797 {
6798 	if (type == BPF_WRITE) {
6799 		if (bpf_prog_is_dev_bound(prog->aux)) {
6800 			switch (off) {
6801 			case offsetof(struct xdp_md, rx_queue_index):
6802 				return __is_valid_xdp_access(off, size);
6803 			}
6804 		}
6805 		return false;
6806 	}
6807 
6808 	switch (off) {
6809 	case offsetof(struct xdp_md, data):
6810 		info->reg_type = PTR_TO_PACKET;
6811 		break;
6812 	case offsetof(struct xdp_md, data_meta):
6813 		info->reg_type = PTR_TO_PACKET_META;
6814 		break;
6815 	case offsetof(struct xdp_md, data_end):
6816 		info->reg_type = PTR_TO_PACKET_END;
6817 		break;
6818 	}
6819 
6820 	return __is_valid_xdp_access(off, size);
6821 }
6822 
6823 void bpf_warn_invalid_xdp_action(u32 act)
6824 {
6825 	const u32 act_max = XDP_REDIRECT;
6826 
6827 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6828 		  act > act_max ? "Illegal" : "Driver unsupported",
6829 		  act);
6830 }
6831 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6832 
6833 static bool sock_addr_is_valid_access(int off, int size,
6834 				      enum bpf_access_type type,
6835 				      const struct bpf_prog *prog,
6836 				      struct bpf_insn_access_aux *info)
6837 {
6838 	const int size_default = sizeof(__u32);
6839 
6840 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6841 		return false;
6842 	if (off % size != 0)
6843 		return false;
6844 
6845 	/* Disallow access to IPv6 fields from IPv4 contex and vise
6846 	 * versa.
6847 	 */
6848 	switch (off) {
6849 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6850 		switch (prog->expected_attach_type) {
6851 		case BPF_CGROUP_INET4_BIND:
6852 		case BPF_CGROUP_INET4_CONNECT:
6853 		case BPF_CGROUP_UDP4_SENDMSG:
6854 		case BPF_CGROUP_UDP4_RECVMSG:
6855 			break;
6856 		default:
6857 			return false;
6858 		}
6859 		break;
6860 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6861 		switch (prog->expected_attach_type) {
6862 		case BPF_CGROUP_INET6_BIND:
6863 		case BPF_CGROUP_INET6_CONNECT:
6864 		case BPF_CGROUP_UDP6_SENDMSG:
6865 		case BPF_CGROUP_UDP6_RECVMSG:
6866 			break;
6867 		default:
6868 			return false;
6869 		}
6870 		break;
6871 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6872 		switch (prog->expected_attach_type) {
6873 		case BPF_CGROUP_UDP4_SENDMSG:
6874 			break;
6875 		default:
6876 			return false;
6877 		}
6878 		break;
6879 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6880 				msg_src_ip6[3]):
6881 		switch (prog->expected_attach_type) {
6882 		case BPF_CGROUP_UDP6_SENDMSG:
6883 			break;
6884 		default:
6885 			return false;
6886 		}
6887 		break;
6888 	}
6889 
6890 	switch (off) {
6891 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6892 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6893 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6894 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6895 				msg_src_ip6[3]):
6896 		if (type == BPF_READ) {
6897 			bpf_ctx_record_field_size(info, size_default);
6898 
6899 			if (bpf_ctx_wide_access_ok(off, size,
6900 						   struct bpf_sock_addr,
6901 						   user_ip6))
6902 				return true;
6903 
6904 			if (bpf_ctx_wide_access_ok(off, size,
6905 						   struct bpf_sock_addr,
6906 						   msg_src_ip6))
6907 				return true;
6908 
6909 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6910 				return false;
6911 		} else {
6912 			if (bpf_ctx_wide_access_ok(off, size,
6913 						   struct bpf_sock_addr,
6914 						   user_ip6))
6915 				return true;
6916 
6917 			if (bpf_ctx_wide_access_ok(off, size,
6918 						   struct bpf_sock_addr,
6919 						   msg_src_ip6))
6920 				return true;
6921 
6922 			if (size != size_default)
6923 				return false;
6924 		}
6925 		break;
6926 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
6927 		if (size != size_default)
6928 			return false;
6929 		break;
6930 	case offsetof(struct bpf_sock_addr, sk):
6931 		if (type != BPF_READ)
6932 			return false;
6933 		if (size != sizeof(__u64))
6934 			return false;
6935 		info->reg_type = PTR_TO_SOCKET;
6936 		break;
6937 	default:
6938 		if (type == BPF_READ) {
6939 			if (size != size_default)
6940 				return false;
6941 		} else {
6942 			return false;
6943 		}
6944 	}
6945 
6946 	return true;
6947 }
6948 
6949 static bool sock_ops_is_valid_access(int off, int size,
6950 				     enum bpf_access_type type,
6951 				     const struct bpf_prog *prog,
6952 				     struct bpf_insn_access_aux *info)
6953 {
6954 	const int size_default = sizeof(__u32);
6955 
6956 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
6957 		return false;
6958 
6959 	/* The verifier guarantees that size > 0. */
6960 	if (off % size != 0)
6961 		return false;
6962 
6963 	if (type == BPF_WRITE) {
6964 		switch (off) {
6965 		case offsetof(struct bpf_sock_ops, reply):
6966 		case offsetof(struct bpf_sock_ops, sk_txhash):
6967 			if (size != size_default)
6968 				return false;
6969 			break;
6970 		default:
6971 			return false;
6972 		}
6973 	} else {
6974 		switch (off) {
6975 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
6976 					bytes_acked):
6977 			if (size != sizeof(__u64))
6978 				return false;
6979 			break;
6980 		case offsetof(struct bpf_sock_ops, sk):
6981 			if (size != sizeof(__u64))
6982 				return false;
6983 			info->reg_type = PTR_TO_SOCKET_OR_NULL;
6984 			break;
6985 		default:
6986 			if (size != size_default)
6987 				return false;
6988 			break;
6989 		}
6990 	}
6991 
6992 	return true;
6993 }
6994 
6995 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
6996 			   const struct bpf_prog *prog)
6997 {
6998 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
6999 }
7000 
7001 static bool sk_skb_is_valid_access(int off, int size,
7002 				   enum bpf_access_type type,
7003 				   const struct bpf_prog *prog,
7004 				   struct bpf_insn_access_aux *info)
7005 {
7006 	switch (off) {
7007 	case bpf_ctx_range(struct __sk_buff, tc_classid):
7008 	case bpf_ctx_range(struct __sk_buff, data_meta):
7009 	case bpf_ctx_range(struct __sk_buff, tstamp):
7010 	case bpf_ctx_range(struct __sk_buff, wire_len):
7011 		return false;
7012 	}
7013 
7014 	if (type == BPF_WRITE) {
7015 		switch (off) {
7016 		case bpf_ctx_range(struct __sk_buff, tc_index):
7017 		case bpf_ctx_range(struct __sk_buff, priority):
7018 			break;
7019 		default:
7020 			return false;
7021 		}
7022 	}
7023 
7024 	switch (off) {
7025 	case bpf_ctx_range(struct __sk_buff, mark):
7026 		return false;
7027 	case bpf_ctx_range(struct __sk_buff, data):
7028 		info->reg_type = PTR_TO_PACKET;
7029 		break;
7030 	case bpf_ctx_range(struct __sk_buff, data_end):
7031 		info->reg_type = PTR_TO_PACKET_END;
7032 		break;
7033 	}
7034 
7035 	return bpf_skb_is_valid_access(off, size, type, prog, info);
7036 }
7037 
7038 static bool sk_msg_is_valid_access(int off, int size,
7039 				   enum bpf_access_type type,
7040 				   const struct bpf_prog *prog,
7041 				   struct bpf_insn_access_aux *info)
7042 {
7043 	if (type == BPF_WRITE)
7044 		return false;
7045 
7046 	if (off % size != 0)
7047 		return false;
7048 
7049 	switch (off) {
7050 	case offsetof(struct sk_msg_md, data):
7051 		info->reg_type = PTR_TO_PACKET;
7052 		if (size != sizeof(__u64))
7053 			return false;
7054 		break;
7055 	case offsetof(struct sk_msg_md, data_end):
7056 		info->reg_type = PTR_TO_PACKET_END;
7057 		if (size != sizeof(__u64))
7058 			return false;
7059 		break;
7060 	case bpf_ctx_range(struct sk_msg_md, family):
7061 	case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7062 	case bpf_ctx_range(struct sk_msg_md, local_ip4):
7063 	case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7064 	case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7065 	case bpf_ctx_range(struct sk_msg_md, remote_port):
7066 	case bpf_ctx_range(struct sk_msg_md, local_port):
7067 	case bpf_ctx_range(struct sk_msg_md, size):
7068 		if (size != sizeof(__u32))
7069 			return false;
7070 		break;
7071 	default:
7072 		return false;
7073 	}
7074 	return true;
7075 }
7076 
7077 static bool flow_dissector_is_valid_access(int off, int size,
7078 					   enum bpf_access_type type,
7079 					   const struct bpf_prog *prog,
7080 					   struct bpf_insn_access_aux *info)
7081 {
7082 	const int size_default = sizeof(__u32);
7083 
7084 	if (off < 0 || off >= sizeof(struct __sk_buff))
7085 		return false;
7086 
7087 	if (type == BPF_WRITE)
7088 		return false;
7089 
7090 	switch (off) {
7091 	case bpf_ctx_range(struct __sk_buff, data):
7092 		if (size != size_default)
7093 			return false;
7094 		info->reg_type = PTR_TO_PACKET;
7095 		return true;
7096 	case bpf_ctx_range(struct __sk_buff, data_end):
7097 		if (size != size_default)
7098 			return false;
7099 		info->reg_type = PTR_TO_PACKET_END;
7100 		return true;
7101 	case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7102 		if (size != sizeof(__u64))
7103 			return false;
7104 		info->reg_type = PTR_TO_FLOW_KEYS;
7105 		return true;
7106 	default:
7107 		return false;
7108 	}
7109 }
7110 
7111 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7112 					     const struct bpf_insn *si,
7113 					     struct bpf_insn *insn_buf,
7114 					     struct bpf_prog *prog,
7115 					     u32 *target_size)
7116 
7117 {
7118 	struct bpf_insn *insn = insn_buf;
7119 
7120 	switch (si->off) {
7121 	case offsetof(struct __sk_buff, data):
7122 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7123 				      si->dst_reg, si->src_reg,
7124 				      offsetof(struct bpf_flow_dissector, data));
7125 		break;
7126 
7127 	case offsetof(struct __sk_buff, data_end):
7128 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7129 				      si->dst_reg, si->src_reg,
7130 				      offsetof(struct bpf_flow_dissector, data_end));
7131 		break;
7132 
7133 	case offsetof(struct __sk_buff, flow_keys):
7134 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7135 				      si->dst_reg, si->src_reg,
7136 				      offsetof(struct bpf_flow_dissector, flow_keys));
7137 		break;
7138 	}
7139 
7140 	return insn - insn_buf;
7141 }
7142 
7143 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7144 				  const struct bpf_insn *si,
7145 				  struct bpf_insn *insn_buf,
7146 				  struct bpf_prog *prog, u32 *target_size)
7147 {
7148 	struct bpf_insn *insn = insn_buf;
7149 	int off;
7150 
7151 	switch (si->off) {
7152 	case offsetof(struct __sk_buff, len):
7153 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7154 				      bpf_target_off(struct sk_buff, len, 4,
7155 						     target_size));
7156 		break;
7157 
7158 	case offsetof(struct __sk_buff, protocol):
7159 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7160 				      bpf_target_off(struct sk_buff, protocol, 2,
7161 						     target_size));
7162 		break;
7163 
7164 	case offsetof(struct __sk_buff, vlan_proto):
7165 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7166 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
7167 						     target_size));
7168 		break;
7169 
7170 	case offsetof(struct __sk_buff, priority):
7171 		if (type == BPF_WRITE)
7172 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7173 					      bpf_target_off(struct sk_buff, priority, 4,
7174 							     target_size));
7175 		else
7176 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7177 					      bpf_target_off(struct sk_buff, priority, 4,
7178 							     target_size));
7179 		break;
7180 
7181 	case offsetof(struct __sk_buff, ingress_ifindex):
7182 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7183 				      bpf_target_off(struct sk_buff, skb_iif, 4,
7184 						     target_size));
7185 		break;
7186 
7187 	case offsetof(struct __sk_buff, ifindex):
7188 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7189 				      si->dst_reg, si->src_reg,
7190 				      offsetof(struct sk_buff, dev));
7191 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7192 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7193 				      bpf_target_off(struct net_device, ifindex, 4,
7194 						     target_size));
7195 		break;
7196 
7197 	case offsetof(struct __sk_buff, hash):
7198 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7199 				      bpf_target_off(struct sk_buff, hash, 4,
7200 						     target_size));
7201 		break;
7202 
7203 	case offsetof(struct __sk_buff, mark):
7204 		if (type == BPF_WRITE)
7205 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7206 					      bpf_target_off(struct sk_buff, mark, 4,
7207 							     target_size));
7208 		else
7209 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7210 					      bpf_target_off(struct sk_buff, mark, 4,
7211 							     target_size));
7212 		break;
7213 
7214 	case offsetof(struct __sk_buff, pkt_type):
7215 		*target_size = 1;
7216 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7217 				      PKT_TYPE_OFFSET());
7218 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7219 #ifdef __BIG_ENDIAN_BITFIELD
7220 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7221 #endif
7222 		break;
7223 
7224 	case offsetof(struct __sk_buff, queue_mapping):
7225 		if (type == BPF_WRITE) {
7226 			*insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7227 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7228 					      bpf_target_off(struct sk_buff,
7229 							     queue_mapping,
7230 							     2, target_size));
7231 		} else {
7232 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7233 					      bpf_target_off(struct sk_buff,
7234 							     queue_mapping,
7235 							     2, target_size));
7236 		}
7237 		break;
7238 
7239 	case offsetof(struct __sk_buff, vlan_present):
7240 		*target_size = 1;
7241 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7242 				      PKT_VLAN_PRESENT_OFFSET());
7243 		if (PKT_VLAN_PRESENT_BIT)
7244 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7245 		if (PKT_VLAN_PRESENT_BIT < 7)
7246 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7247 		break;
7248 
7249 	case offsetof(struct __sk_buff, vlan_tci):
7250 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7251 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
7252 						     target_size));
7253 		break;
7254 
7255 	case offsetof(struct __sk_buff, cb[0]) ...
7256 	     offsetofend(struct __sk_buff, cb[4]) - 1:
7257 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, data) < 20);
7258 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7259 			      offsetof(struct qdisc_skb_cb, data)) %
7260 			     sizeof(__u64));
7261 
7262 		prog->cb_access = 1;
7263 		off  = si->off;
7264 		off -= offsetof(struct __sk_buff, cb[0]);
7265 		off += offsetof(struct sk_buff, cb);
7266 		off += offsetof(struct qdisc_skb_cb, data);
7267 		if (type == BPF_WRITE)
7268 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7269 					      si->src_reg, off);
7270 		else
7271 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7272 					      si->src_reg, off);
7273 		break;
7274 
7275 	case offsetof(struct __sk_buff, tc_classid):
7276 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, tc_classid) != 2);
7277 
7278 		off  = si->off;
7279 		off -= offsetof(struct __sk_buff, tc_classid);
7280 		off += offsetof(struct sk_buff, cb);
7281 		off += offsetof(struct qdisc_skb_cb, tc_classid);
7282 		*target_size = 2;
7283 		if (type == BPF_WRITE)
7284 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7285 					      si->src_reg, off);
7286 		else
7287 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7288 					      si->src_reg, off);
7289 		break;
7290 
7291 	case offsetof(struct __sk_buff, data):
7292 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7293 				      si->dst_reg, si->src_reg,
7294 				      offsetof(struct sk_buff, data));
7295 		break;
7296 
7297 	case offsetof(struct __sk_buff, data_meta):
7298 		off  = si->off;
7299 		off -= offsetof(struct __sk_buff, data_meta);
7300 		off += offsetof(struct sk_buff, cb);
7301 		off += offsetof(struct bpf_skb_data_end, data_meta);
7302 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7303 				      si->src_reg, off);
7304 		break;
7305 
7306 	case offsetof(struct __sk_buff, data_end):
7307 		off  = si->off;
7308 		off -= offsetof(struct __sk_buff, data_end);
7309 		off += offsetof(struct sk_buff, cb);
7310 		off += offsetof(struct bpf_skb_data_end, data_end);
7311 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7312 				      si->src_reg, off);
7313 		break;
7314 
7315 	case offsetof(struct __sk_buff, tc_index):
7316 #ifdef CONFIG_NET_SCHED
7317 		if (type == BPF_WRITE)
7318 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7319 					      bpf_target_off(struct sk_buff, tc_index, 2,
7320 							     target_size));
7321 		else
7322 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7323 					      bpf_target_off(struct sk_buff, tc_index, 2,
7324 							     target_size));
7325 #else
7326 		*target_size = 2;
7327 		if (type == BPF_WRITE)
7328 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7329 		else
7330 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7331 #endif
7332 		break;
7333 
7334 	case offsetof(struct __sk_buff, napi_id):
7335 #if defined(CONFIG_NET_RX_BUSY_POLL)
7336 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7337 				      bpf_target_off(struct sk_buff, napi_id, 4,
7338 						     target_size));
7339 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7340 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7341 #else
7342 		*target_size = 4;
7343 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7344 #endif
7345 		break;
7346 	case offsetof(struct __sk_buff, family):
7347 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7348 
7349 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7350 				      si->dst_reg, si->src_reg,
7351 				      offsetof(struct sk_buff, sk));
7352 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7353 				      bpf_target_off(struct sock_common,
7354 						     skc_family,
7355 						     2, target_size));
7356 		break;
7357 	case offsetof(struct __sk_buff, remote_ip4):
7358 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
7359 
7360 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7361 				      si->dst_reg, si->src_reg,
7362 				      offsetof(struct sk_buff, sk));
7363 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7364 				      bpf_target_off(struct sock_common,
7365 						     skc_daddr,
7366 						     4, target_size));
7367 		break;
7368 	case offsetof(struct __sk_buff, local_ip4):
7369 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7370 					  skc_rcv_saddr) != 4);
7371 
7372 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7373 				      si->dst_reg, si->src_reg,
7374 				      offsetof(struct sk_buff, sk));
7375 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7376 				      bpf_target_off(struct sock_common,
7377 						     skc_rcv_saddr,
7378 						     4, target_size));
7379 		break;
7380 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
7381 	     offsetof(struct __sk_buff, remote_ip6[3]):
7382 #if IS_ENABLED(CONFIG_IPV6)
7383 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7384 					  skc_v6_daddr.s6_addr32[0]) != 4);
7385 
7386 		off = si->off;
7387 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
7388 
7389 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7390 				      si->dst_reg, si->src_reg,
7391 				      offsetof(struct sk_buff, sk));
7392 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7393 				      offsetof(struct sock_common,
7394 					       skc_v6_daddr.s6_addr32[0]) +
7395 				      off);
7396 #else
7397 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7398 #endif
7399 		break;
7400 	case offsetof(struct __sk_buff, local_ip6[0]) ...
7401 	     offsetof(struct __sk_buff, local_ip6[3]):
7402 #if IS_ENABLED(CONFIG_IPV6)
7403 		BUILD_BUG_ON(sizeof_field(struct sock_common,
7404 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7405 
7406 		off = si->off;
7407 		off -= offsetof(struct __sk_buff, local_ip6[0]);
7408 
7409 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7410 				      si->dst_reg, si->src_reg,
7411 				      offsetof(struct sk_buff, sk));
7412 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7413 				      offsetof(struct sock_common,
7414 					       skc_v6_rcv_saddr.s6_addr32[0]) +
7415 				      off);
7416 #else
7417 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7418 #endif
7419 		break;
7420 
7421 	case offsetof(struct __sk_buff, remote_port):
7422 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
7423 
7424 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7425 				      si->dst_reg, si->src_reg,
7426 				      offsetof(struct sk_buff, sk));
7427 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7428 				      bpf_target_off(struct sock_common,
7429 						     skc_dport,
7430 						     2, target_size));
7431 #ifndef __BIG_ENDIAN_BITFIELD
7432 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7433 #endif
7434 		break;
7435 
7436 	case offsetof(struct __sk_buff, local_port):
7437 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
7438 
7439 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7440 				      si->dst_reg, si->src_reg,
7441 				      offsetof(struct sk_buff, sk));
7442 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7443 				      bpf_target_off(struct sock_common,
7444 						     skc_num, 2, target_size));
7445 		break;
7446 
7447 	case offsetof(struct __sk_buff, tstamp):
7448 		BUILD_BUG_ON(sizeof_field(struct sk_buff, tstamp) != 8);
7449 
7450 		if (type == BPF_WRITE)
7451 			*insn++ = BPF_STX_MEM(BPF_DW,
7452 					      si->dst_reg, si->src_reg,
7453 					      bpf_target_off(struct sk_buff,
7454 							     tstamp, 8,
7455 							     target_size));
7456 		else
7457 			*insn++ = BPF_LDX_MEM(BPF_DW,
7458 					      si->dst_reg, si->src_reg,
7459 					      bpf_target_off(struct sk_buff,
7460 							     tstamp, 8,
7461 							     target_size));
7462 		break;
7463 
7464 	case offsetof(struct __sk_buff, gso_segs):
7465 		/* si->dst_reg = skb_shinfo(SKB); */
7466 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7467 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7468 				      BPF_REG_AX, si->src_reg,
7469 				      offsetof(struct sk_buff, end));
7470 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7471 				      si->dst_reg, si->src_reg,
7472 				      offsetof(struct sk_buff, head));
7473 		*insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7474 #else
7475 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7476 				      si->dst_reg, si->src_reg,
7477 				      offsetof(struct sk_buff, end));
7478 #endif
7479 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7480 				      si->dst_reg, si->dst_reg,
7481 				      bpf_target_off(struct skb_shared_info,
7482 						     gso_segs, 2,
7483 						     target_size));
7484 		break;
7485 	case offsetof(struct __sk_buff, wire_len):
7486 		BUILD_BUG_ON(sizeof_field(struct qdisc_skb_cb, pkt_len) != 4);
7487 
7488 		off = si->off;
7489 		off -= offsetof(struct __sk_buff, wire_len);
7490 		off += offsetof(struct sk_buff, cb);
7491 		off += offsetof(struct qdisc_skb_cb, pkt_len);
7492 		*target_size = 4;
7493 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7494 		break;
7495 
7496 	case offsetof(struct __sk_buff, sk):
7497 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7498 				      si->dst_reg, si->src_reg,
7499 				      offsetof(struct sk_buff, sk));
7500 		break;
7501 	}
7502 
7503 	return insn - insn_buf;
7504 }
7505 
7506 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7507 				const struct bpf_insn *si,
7508 				struct bpf_insn *insn_buf,
7509 				struct bpf_prog *prog, u32 *target_size)
7510 {
7511 	struct bpf_insn *insn = insn_buf;
7512 	int off;
7513 
7514 	switch (si->off) {
7515 	case offsetof(struct bpf_sock, bound_dev_if):
7516 		BUILD_BUG_ON(sizeof_field(struct sock, sk_bound_dev_if) != 4);
7517 
7518 		if (type == BPF_WRITE)
7519 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7520 					offsetof(struct sock, sk_bound_dev_if));
7521 		else
7522 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7523 				      offsetof(struct sock, sk_bound_dev_if));
7524 		break;
7525 
7526 	case offsetof(struct bpf_sock, mark):
7527 		BUILD_BUG_ON(sizeof_field(struct sock, sk_mark) != 4);
7528 
7529 		if (type == BPF_WRITE)
7530 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7531 					offsetof(struct sock, sk_mark));
7532 		else
7533 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7534 				      offsetof(struct sock, sk_mark));
7535 		break;
7536 
7537 	case offsetof(struct bpf_sock, priority):
7538 		BUILD_BUG_ON(sizeof_field(struct sock, sk_priority) != 4);
7539 
7540 		if (type == BPF_WRITE)
7541 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7542 					offsetof(struct sock, sk_priority));
7543 		else
7544 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7545 				      offsetof(struct sock, sk_priority));
7546 		break;
7547 
7548 	case offsetof(struct bpf_sock, family):
7549 		*insn++ = BPF_LDX_MEM(
7550 			BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7551 			si->dst_reg, si->src_reg,
7552 			bpf_target_off(struct sock_common,
7553 				       skc_family,
7554 				       sizeof_field(struct sock_common,
7555 						    skc_family),
7556 				       target_size));
7557 		break;
7558 
7559 	case offsetof(struct bpf_sock, type):
7560 		*insn++ = BPF_LDX_MEM(
7561 			BPF_FIELD_SIZEOF(struct sock, sk_type),
7562 			si->dst_reg, si->src_reg,
7563 			bpf_target_off(struct sock, sk_type,
7564 				       sizeof_field(struct sock, sk_type),
7565 				       target_size));
7566 		break;
7567 
7568 	case offsetof(struct bpf_sock, protocol):
7569 		*insn++ = BPF_LDX_MEM(
7570 			BPF_FIELD_SIZEOF(struct sock, sk_protocol),
7571 			si->dst_reg, si->src_reg,
7572 			bpf_target_off(struct sock, sk_protocol,
7573 				       sizeof_field(struct sock, sk_protocol),
7574 				       target_size));
7575 		break;
7576 
7577 	case offsetof(struct bpf_sock, src_ip4):
7578 		*insn++ = BPF_LDX_MEM(
7579 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7580 			bpf_target_off(struct sock_common, skc_rcv_saddr,
7581 				       sizeof_field(struct sock_common,
7582 						    skc_rcv_saddr),
7583 				       target_size));
7584 		break;
7585 
7586 	case offsetof(struct bpf_sock, dst_ip4):
7587 		*insn++ = BPF_LDX_MEM(
7588 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7589 			bpf_target_off(struct sock_common, skc_daddr,
7590 				       sizeof_field(struct sock_common,
7591 						    skc_daddr),
7592 				       target_size));
7593 		break;
7594 
7595 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7596 #if IS_ENABLED(CONFIG_IPV6)
7597 		off = si->off;
7598 		off -= offsetof(struct bpf_sock, src_ip6[0]);
7599 		*insn++ = BPF_LDX_MEM(
7600 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7601 			bpf_target_off(
7602 				struct sock_common,
7603 				skc_v6_rcv_saddr.s6_addr32[0],
7604 				sizeof_field(struct sock_common,
7605 					     skc_v6_rcv_saddr.s6_addr32[0]),
7606 				target_size) + off);
7607 #else
7608 		(void)off;
7609 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7610 #endif
7611 		break;
7612 
7613 	case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7614 #if IS_ENABLED(CONFIG_IPV6)
7615 		off = si->off;
7616 		off -= offsetof(struct bpf_sock, dst_ip6[0]);
7617 		*insn++ = BPF_LDX_MEM(
7618 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7619 			bpf_target_off(struct sock_common,
7620 				       skc_v6_daddr.s6_addr32[0],
7621 				       sizeof_field(struct sock_common,
7622 						    skc_v6_daddr.s6_addr32[0]),
7623 				       target_size) + off);
7624 #else
7625 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7626 		*target_size = 4;
7627 #endif
7628 		break;
7629 
7630 	case offsetof(struct bpf_sock, src_port):
7631 		*insn++ = BPF_LDX_MEM(
7632 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7633 			si->dst_reg, si->src_reg,
7634 			bpf_target_off(struct sock_common, skc_num,
7635 				       sizeof_field(struct sock_common,
7636 						    skc_num),
7637 				       target_size));
7638 		break;
7639 
7640 	case offsetof(struct bpf_sock, dst_port):
7641 		*insn++ = BPF_LDX_MEM(
7642 			BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7643 			si->dst_reg, si->src_reg,
7644 			bpf_target_off(struct sock_common, skc_dport,
7645 				       sizeof_field(struct sock_common,
7646 						    skc_dport),
7647 				       target_size));
7648 		break;
7649 
7650 	case offsetof(struct bpf_sock, state):
7651 		*insn++ = BPF_LDX_MEM(
7652 			BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7653 			si->dst_reg, si->src_reg,
7654 			bpf_target_off(struct sock_common, skc_state,
7655 				       sizeof_field(struct sock_common,
7656 						    skc_state),
7657 				       target_size));
7658 		break;
7659 	}
7660 
7661 	return insn - insn_buf;
7662 }
7663 
7664 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7665 					 const struct bpf_insn *si,
7666 					 struct bpf_insn *insn_buf,
7667 					 struct bpf_prog *prog, u32 *target_size)
7668 {
7669 	struct bpf_insn *insn = insn_buf;
7670 
7671 	switch (si->off) {
7672 	case offsetof(struct __sk_buff, ifindex):
7673 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7674 				      si->dst_reg, si->src_reg,
7675 				      offsetof(struct sk_buff, dev));
7676 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7677 				      bpf_target_off(struct net_device, ifindex, 4,
7678 						     target_size));
7679 		break;
7680 	default:
7681 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
7682 					      target_size);
7683 	}
7684 
7685 	return insn - insn_buf;
7686 }
7687 
7688 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
7689 				  const struct bpf_insn *si,
7690 				  struct bpf_insn *insn_buf,
7691 				  struct bpf_prog *prog, u32 *target_size)
7692 {
7693 	struct bpf_insn *insn = insn_buf;
7694 
7695 	switch (si->off) {
7696 	case offsetof(struct xdp_md, data):
7697 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
7698 				      si->dst_reg, si->src_reg,
7699 				      offsetof(struct xdp_buff, data));
7700 		break;
7701 	case offsetof(struct xdp_md, data_meta):
7702 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
7703 				      si->dst_reg, si->src_reg,
7704 				      offsetof(struct xdp_buff, data_meta));
7705 		break;
7706 	case offsetof(struct xdp_md, data_end):
7707 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
7708 				      si->dst_reg, si->src_reg,
7709 				      offsetof(struct xdp_buff, data_end));
7710 		break;
7711 	case offsetof(struct xdp_md, ingress_ifindex):
7712 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7713 				      si->dst_reg, si->src_reg,
7714 				      offsetof(struct xdp_buff, rxq));
7715 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
7716 				      si->dst_reg, si->dst_reg,
7717 				      offsetof(struct xdp_rxq_info, dev));
7718 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7719 				      offsetof(struct net_device, ifindex));
7720 		break;
7721 	case offsetof(struct xdp_md, rx_queue_index):
7722 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7723 				      si->dst_reg, si->src_reg,
7724 				      offsetof(struct xdp_buff, rxq));
7725 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7726 				      offsetof(struct xdp_rxq_info,
7727 					       queue_index));
7728 		break;
7729 	}
7730 
7731 	return insn - insn_buf;
7732 }
7733 
7734 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
7735  * context Structure, F is Field in context structure that contains a pointer
7736  * to Nested Structure of type NS that has the field NF.
7737  *
7738  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
7739  * sure that SIZE is not greater than actual size of S.F.NF.
7740  *
7741  * If offset OFF is provided, the load happens from that offset relative to
7742  * offset of NF.
7743  */
7744 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
7745 	do {								       \
7746 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
7747 				      si->src_reg, offsetof(S, F));	       \
7748 		*insn++ = BPF_LDX_MEM(					       \
7749 			SIZE, si->dst_reg, si->dst_reg,			       \
7750 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
7751 				       target_size)			       \
7752 				+ OFF);					       \
7753 	} while (0)
7754 
7755 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
7756 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
7757 					     BPF_FIELD_SIZEOF(NS, NF), 0)
7758 
7759 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
7760  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
7761  *
7762  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
7763  * "register" since two registers available in convert_ctx_access are not
7764  * enough: we can't override neither SRC, since it contains value to store, nor
7765  * DST since it contains pointer to context that may be used by later
7766  * instructions. But we need a temporary place to save pointer to nested
7767  * structure whose field we want to store to.
7768  */
7769 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)	       \
7770 	do {								       \
7771 		int tmp_reg = BPF_REG_9;				       \
7772 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
7773 			--tmp_reg;					       \
7774 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
7775 			--tmp_reg;					       \
7776 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
7777 				      offsetof(S, TF));			       \
7778 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
7779 				      si->dst_reg, offsetof(S, F));	       \
7780 		*insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,	       \
7781 			bpf_target_off(NS, NF, sizeof_field(NS, NF),	       \
7782 				       target_size)			       \
7783 				+ OFF);					       \
7784 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
7785 				      offsetof(S, TF));			       \
7786 	} while (0)
7787 
7788 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
7789 						      TF)		       \
7790 	do {								       \
7791 		if (type == BPF_WRITE) {				       \
7792 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
7793 							 OFF, TF);	       \
7794 		} else {						       \
7795 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
7796 				S, NS, F, NF, SIZE, OFF);  \
7797 		}							       \
7798 	} while (0)
7799 
7800 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
7801 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
7802 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
7803 
7804 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
7805 					const struct bpf_insn *si,
7806 					struct bpf_insn *insn_buf,
7807 					struct bpf_prog *prog, u32 *target_size)
7808 {
7809 	struct bpf_insn *insn = insn_buf;
7810 	int off;
7811 
7812 	switch (si->off) {
7813 	case offsetof(struct bpf_sock_addr, user_family):
7814 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7815 					    struct sockaddr, uaddr, sa_family);
7816 		break;
7817 
7818 	case offsetof(struct bpf_sock_addr, user_ip4):
7819 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7820 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
7821 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
7822 		break;
7823 
7824 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7825 		off = si->off;
7826 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
7827 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7828 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
7829 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
7830 			tmp_reg);
7831 		break;
7832 
7833 	case offsetof(struct bpf_sock_addr, user_port):
7834 		/* To get port we need to know sa_family first and then treat
7835 		 * sockaddr as either sockaddr_in or sockaddr_in6.
7836 		 * Though we can simplify since port field has same offset and
7837 		 * size in both structures.
7838 		 * Here we check this invariant and use just one of the
7839 		 * structures if it's true.
7840 		 */
7841 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7842 			     offsetof(struct sockaddr_in6, sin6_port));
7843 		BUILD_BUG_ON(sizeof_field(struct sockaddr_in, sin_port) !=
7844 			     sizeof_field(struct sockaddr_in6, sin6_port));
7845 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
7846 						     struct sockaddr_in6, uaddr,
7847 						     sin6_port, tmp_reg);
7848 		break;
7849 
7850 	case offsetof(struct bpf_sock_addr, family):
7851 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7852 					    struct sock, sk, sk_family);
7853 		break;
7854 
7855 	case offsetof(struct bpf_sock_addr, type):
7856 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7857 					    struct sock, sk, sk_type);
7858 		break;
7859 
7860 	case offsetof(struct bpf_sock_addr, protocol):
7861 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7862 					    struct sock, sk, sk_protocol);
7863 		break;
7864 
7865 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
7866 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
7867 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7868 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
7869 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
7870 		break;
7871 
7872 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7873 				msg_src_ip6[3]):
7874 		off = si->off;
7875 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
7876 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
7877 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7878 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
7879 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
7880 		break;
7881 	case offsetof(struct bpf_sock_addr, sk):
7882 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
7883 				      si->dst_reg, si->src_reg,
7884 				      offsetof(struct bpf_sock_addr_kern, sk));
7885 		break;
7886 	}
7887 
7888 	return insn - insn_buf;
7889 }
7890 
7891 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
7892 				       const struct bpf_insn *si,
7893 				       struct bpf_insn *insn_buf,
7894 				       struct bpf_prog *prog,
7895 				       u32 *target_size)
7896 {
7897 	struct bpf_insn *insn = insn_buf;
7898 	int off;
7899 
7900 /* Helper macro for adding read access to tcp_sock or sock fields. */
7901 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
7902 	do {								      \
7903 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
7904 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
7905 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
7906 						struct bpf_sock_ops_kern,     \
7907 						is_fullsock),		      \
7908 				      si->dst_reg, si->src_reg,		      \
7909 				      offsetof(struct bpf_sock_ops_kern,      \
7910 					       is_fullsock));		      \
7911 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
7912 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
7913 						struct bpf_sock_ops_kern, sk),\
7914 				      si->dst_reg, si->src_reg,		      \
7915 				      offsetof(struct bpf_sock_ops_kern, sk));\
7916 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
7917 						       OBJ_FIELD),	      \
7918 				      si->dst_reg, si->dst_reg,		      \
7919 				      offsetof(OBJ, OBJ_FIELD));	      \
7920 	} while (0)
7921 
7922 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
7923 		SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
7924 
7925 /* Helper macro for adding write access to tcp_sock or sock fields.
7926  * The macro is called with two registers, dst_reg which contains a pointer
7927  * to ctx (context) and src_reg which contains the value that should be
7928  * stored. However, we need an additional register since we cannot overwrite
7929  * dst_reg because it may be used later in the program.
7930  * Instead we "borrow" one of the other register. We first save its value
7931  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
7932  * it at the end of the macro.
7933  */
7934 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
7935 	do {								      \
7936 		int reg = BPF_REG_9;					      \
7937 		BUILD_BUG_ON(sizeof_field(OBJ, OBJ_FIELD) >		      \
7938 			     sizeof_field(struct bpf_sock_ops, BPF_FIELD));   \
7939 		if (si->dst_reg == reg || si->src_reg == reg)		      \
7940 			reg--;						      \
7941 		if (si->dst_reg == reg || si->src_reg == reg)		      \
7942 			reg--;						      \
7943 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
7944 				      offsetof(struct bpf_sock_ops_kern,      \
7945 					       temp));			      \
7946 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
7947 						struct bpf_sock_ops_kern,     \
7948 						is_fullsock),		      \
7949 				      reg, si->dst_reg,			      \
7950 				      offsetof(struct bpf_sock_ops_kern,      \
7951 					       is_fullsock));		      \
7952 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
7953 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
7954 						struct bpf_sock_ops_kern, sk),\
7955 				      reg, si->dst_reg,			      \
7956 				      offsetof(struct bpf_sock_ops_kern, sk));\
7957 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
7958 				      reg, si->src_reg,			      \
7959 				      offsetof(OBJ, OBJ_FIELD));	      \
7960 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
7961 				      offsetof(struct bpf_sock_ops_kern,      \
7962 					       temp));			      \
7963 	} while (0)
7964 
7965 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
7966 	do {								      \
7967 		if (TYPE == BPF_WRITE)					      \
7968 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
7969 		else							      \
7970 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
7971 	} while (0)
7972 
7973 	if (insn > insn_buf)
7974 		return insn - insn_buf;
7975 
7976 	switch (si->off) {
7977 	case offsetof(struct bpf_sock_ops, op) ...
7978 	     offsetof(struct bpf_sock_ops, replylong[3]):
7979 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, op) !=
7980 			     sizeof_field(struct bpf_sock_ops_kern, op));
7981 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, reply) !=
7982 			     sizeof_field(struct bpf_sock_ops_kern, reply));
7983 		BUILD_BUG_ON(sizeof_field(struct bpf_sock_ops, replylong) !=
7984 			     sizeof_field(struct bpf_sock_ops_kern, replylong));
7985 		off = si->off;
7986 		off -= offsetof(struct bpf_sock_ops, op);
7987 		off += offsetof(struct bpf_sock_ops_kern, op);
7988 		if (type == BPF_WRITE)
7989 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7990 					      off);
7991 		else
7992 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7993 					      off);
7994 		break;
7995 
7996 	case offsetof(struct bpf_sock_ops, family):
7997 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
7998 
7999 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8000 					      struct bpf_sock_ops_kern, sk),
8001 				      si->dst_reg, si->src_reg,
8002 				      offsetof(struct bpf_sock_ops_kern, sk));
8003 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8004 				      offsetof(struct sock_common, skc_family));
8005 		break;
8006 
8007 	case offsetof(struct bpf_sock_ops, remote_ip4):
8008 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8009 
8010 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8011 						struct bpf_sock_ops_kern, sk),
8012 				      si->dst_reg, si->src_reg,
8013 				      offsetof(struct bpf_sock_ops_kern, sk));
8014 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8015 				      offsetof(struct sock_common, skc_daddr));
8016 		break;
8017 
8018 	case offsetof(struct bpf_sock_ops, local_ip4):
8019 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8020 					  skc_rcv_saddr) != 4);
8021 
8022 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8023 					      struct bpf_sock_ops_kern, sk),
8024 				      si->dst_reg, si->src_reg,
8025 				      offsetof(struct bpf_sock_ops_kern, sk));
8026 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8027 				      offsetof(struct sock_common,
8028 					       skc_rcv_saddr));
8029 		break;
8030 
8031 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8032 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
8033 #if IS_ENABLED(CONFIG_IPV6)
8034 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8035 					  skc_v6_daddr.s6_addr32[0]) != 4);
8036 
8037 		off = si->off;
8038 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8039 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8040 						struct bpf_sock_ops_kern, sk),
8041 				      si->dst_reg, si->src_reg,
8042 				      offsetof(struct bpf_sock_ops_kern, sk));
8043 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8044 				      offsetof(struct sock_common,
8045 					       skc_v6_daddr.s6_addr32[0]) +
8046 				      off);
8047 #else
8048 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8049 #endif
8050 		break;
8051 
8052 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8053 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
8054 #if IS_ENABLED(CONFIG_IPV6)
8055 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8056 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8057 
8058 		off = si->off;
8059 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8060 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8061 						struct bpf_sock_ops_kern, sk),
8062 				      si->dst_reg, si->src_reg,
8063 				      offsetof(struct bpf_sock_ops_kern, sk));
8064 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8065 				      offsetof(struct sock_common,
8066 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8067 				      off);
8068 #else
8069 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8070 #endif
8071 		break;
8072 
8073 	case offsetof(struct bpf_sock_ops, remote_port):
8074 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8075 
8076 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8077 						struct bpf_sock_ops_kern, sk),
8078 				      si->dst_reg, si->src_reg,
8079 				      offsetof(struct bpf_sock_ops_kern, sk));
8080 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8081 				      offsetof(struct sock_common, skc_dport));
8082 #ifndef __BIG_ENDIAN_BITFIELD
8083 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8084 #endif
8085 		break;
8086 
8087 	case offsetof(struct bpf_sock_ops, local_port):
8088 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8089 
8090 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8091 						struct bpf_sock_ops_kern, sk),
8092 				      si->dst_reg, si->src_reg,
8093 				      offsetof(struct bpf_sock_ops_kern, sk));
8094 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8095 				      offsetof(struct sock_common, skc_num));
8096 		break;
8097 
8098 	case offsetof(struct bpf_sock_ops, is_fullsock):
8099 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8100 						struct bpf_sock_ops_kern,
8101 						is_fullsock),
8102 				      si->dst_reg, si->src_reg,
8103 				      offsetof(struct bpf_sock_ops_kern,
8104 					       is_fullsock));
8105 		break;
8106 
8107 	case offsetof(struct bpf_sock_ops, state):
8108 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_state) != 1);
8109 
8110 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8111 						struct bpf_sock_ops_kern, sk),
8112 				      si->dst_reg, si->src_reg,
8113 				      offsetof(struct bpf_sock_ops_kern, sk));
8114 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8115 				      offsetof(struct sock_common, skc_state));
8116 		break;
8117 
8118 	case offsetof(struct bpf_sock_ops, rtt_min):
8119 		BUILD_BUG_ON(sizeof_field(struct tcp_sock, rtt_min) !=
8120 			     sizeof(struct minmax));
8121 		BUILD_BUG_ON(sizeof(struct minmax) <
8122 			     sizeof(struct minmax_sample));
8123 
8124 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8125 						struct bpf_sock_ops_kern, sk),
8126 				      si->dst_reg, si->src_reg,
8127 				      offsetof(struct bpf_sock_ops_kern, sk));
8128 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8129 				      offsetof(struct tcp_sock, rtt_min) +
8130 				      sizeof_field(struct minmax_sample, t));
8131 		break;
8132 
8133 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8134 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8135 				   struct tcp_sock);
8136 		break;
8137 
8138 	case offsetof(struct bpf_sock_ops, sk_txhash):
8139 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8140 					  struct sock, type);
8141 		break;
8142 	case offsetof(struct bpf_sock_ops, snd_cwnd):
8143 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8144 		break;
8145 	case offsetof(struct bpf_sock_ops, srtt_us):
8146 		SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8147 		break;
8148 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
8149 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8150 		break;
8151 	case offsetof(struct bpf_sock_ops, rcv_nxt):
8152 		SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8153 		break;
8154 	case offsetof(struct bpf_sock_ops, snd_nxt):
8155 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8156 		break;
8157 	case offsetof(struct bpf_sock_ops, snd_una):
8158 		SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8159 		break;
8160 	case offsetof(struct bpf_sock_ops, mss_cache):
8161 		SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8162 		break;
8163 	case offsetof(struct bpf_sock_ops, ecn_flags):
8164 		SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8165 		break;
8166 	case offsetof(struct bpf_sock_ops, rate_delivered):
8167 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8168 		break;
8169 	case offsetof(struct bpf_sock_ops, rate_interval_us):
8170 		SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8171 		break;
8172 	case offsetof(struct bpf_sock_ops, packets_out):
8173 		SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8174 		break;
8175 	case offsetof(struct bpf_sock_ops, retrans_out):
8176 		SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8177 		break;
8178 	case offsetof(struct bpf_sock_ops, total_retrans):
8179 		SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8180 		break;
8181 	case offsetof(struct bpf_sock_ops, segs_in):
8182 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8183 		break;
8184 	case offsetof(struct bpf_sock_ops, data_segs_in):
8185 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8186 		break;
8187 	case offsetof(struct bpf_sock_ops, segs_out):
8188 		SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8189 		break;
8190 	case offsetof(struct bpf_sock_ops, data_segs_out):
8191 		SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8192 		break;
8193 	case offsetof(struct bpf_sock_ops, lost_out):
8194 		SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8195 		break;
8196 	case offsetof(struct bpf_sock_ops, sacked_out):
8197 		SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8198 		break;
8199 	case offsetof(struct bpf_sock_ops, bytes_received):
8200 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8201 		break;
8202 	case offsetof(struct bpf_sock_ops, bytes_acked):
8203 		SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8204 		break;
8205 	case offsetof(struct bpf_sock_ops, sk):
8206 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8207 						struct bpf_sock_ops_kern,
8208 						is_fullsock),
8209 				      si->dst_reg, si->src_reg,
8210 				      offsetof(struct bpf_sock_ops_kern,
8211 					       is_fullsock));
8212 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8213 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8214 						struct bpf_sock_ops_kern, sk),
8215 				      si->dst_reg, si->src_reg,
8216 				      offsetof(struct bpf_sock_ops_kern, sk));
8217 		break;
8218 	}
8219 	return insn - insn_buf;
8220 }
8221 
8222 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8223 				     const struct bpf_insn *si,
8224 				     struct bpf_insn *insn_buf,
8225 				     struct bpf_prog *prog, u32 *target_size)
8226 {
8227 	struct bpf_insn *insn = insn_buf;
8228 	int off;
8229 
8230 	switch (si->off) {
8231 	case offsetof(struct __sk_buff, data_end):
8232 		off  = si->off;
8233 		off -= offsetof(struct __sk_buff, data_end);
8234 		off += offsetof(struct sk_buff, cb);
8235 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
8236 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8237 				      si->src_reg, off);
8238 		break;
8239 	default:
8240 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
8241 					      target_size);
8242 	}
8243 
8244 	return insn - insn_buf;
8245 }
8246 
8247 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8248 				     const struct bpf_insn *si,
8249 				     struct bpf_insn *insn_buf,
8250 				     struct bpf_prog *prog, u32 *target_size)
8251 {
8252 	struct bpf_insn *insn = insn_buf;
8253 #if IS_ENABLED(CONFIG_IPV6)
8254 	int off;
8255 #endif
8256 
8257 	/* convert ctx uses the fact sg element is first in struct */
8258 	BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8259 
8260 	switch (si->off) {
8261 	case offsetof(struct sk_msg_md, data):
8262 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8263 				      si->dst_reg, si->src_reg,
8264 				      offsetof(struct sk_msg, data));
8265 		break;
8266 	case offsetof(struct sk_msg_md, data_end):
8267 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8268 				      si->dst_reg, si->src_reg,
8269 				      offsetof(struct sk_msg, data_end));
8270 		break;
8271 	case offsetof(struct sk_msg_md, family):
8272 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_family) != 2);
8273 
8274 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8275 					      struct sk_msg, sk),
8276 				      si->dst_reg, si->src_reg,
8277 				      offsetof(struct sk_msg, sk));
8278 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8279 				      offsetof(struct sock_common, skc_family));
8280 		break;
8281 
8282 	case offsetof(struct sk_msg_md, remote_ip4):
8283 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_daddr) != 4);
8284 
8285 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8286 						struct sk_msg, sk),
8287 				      si->dst_reg, si->src_reg,
8288 				      offsetof(struct sk_msg, sk));
8289 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8290 				      offsetof(struct sock_common, skc_daddr));
8291 		break;
8292 
8293 	case offsetof(struct sk_msg_md, local_ip4):
8294 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8295 					  skc_rcv_saddr) != 4);
8296 
8297 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8298 					      struct sk_msg, sk),
8299 				      si->dst_reg, si->src_reg,
8300 				      offsetof(struct sk_msg, sk));
8301 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8302 				      offsetof(struct sock_common,
8303 					       skc_rcv_saddr));
8304 		break;
8305 
8306 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8307 	     offsetof(struct sk_msg_md, remote_ip6[3]):
8308 #if IS_ENABLED(CONFIG_IPV6)
8309 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8310 					  skc_v6_daddr.s6_addr32[0]) != 4);
8311 
8312 		off = si->off;
8313 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8314 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8315 						struct sk_msg, sk),
8316 				      si->dst_reg, si->src_reg,
8317 				      offsetof(struct sk_msg, sk));
8318 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8319 				      offsetof(struct sock_common,
8320 					       skc_v6_daddr.s6_addr32[0]) +
8321 				      off);
8322 #else
8323 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8324 #endif
8325 		break;
8326 
8327 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
8328 	     offsetof(struct sk_msg_md, local_ip6[3]):
8329 #if IS_ENABLED(CONFIG_IPV6)
8330 		BUILD_BUG_ON(sizeof_field(struct sock_common,
8331 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8332 
8333 		off = si->off;
8334 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
8335 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8336 						struct sk_msg, sk),
8337 				      si->dst_reg, si->src_reg,
8338 				      offsetof(struct sk_msg, sk));
8339 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8340 				      offsetof(struct sock_common,
8341 					       skc_v6_rcv_saddr.s6_addr32[0]) +
8342 				      off);
8343 #else
8344 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8345 #endif
8346 		break;
8347 
8348 	case offsetof(struct sk_msg_md, remote_port):
8349 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_dport) != 2);
8350 
8351 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8352 						struct sk_msg, sk),
8353 				      si->dst_reg, si->src_reg,
8354 				      offsetof(struct sk_msg, sk));
8355 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8356 				      offsetof(struct sock_common, skc_dport));
8357 #ifndef __BIG_ENDIAN_BITFIELD
8358 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8359 #endif
8360 		break;
8361 
8362 	case offsetof(struct sk_msg_md, local_port):
8363 		BUILD_BUG_ON(sizeof_field(struct sock_common, skc_num) != 2);
8364 
8365 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8366 						struct sk_msg, sk),
8367 				      si->dst_reg, si->src_reg,
8368 				      offsetof(struct sk_msg, sk));
8369 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8370 				      offsetof(struct sock_common, skc_num));
8371 		break;
8372 
8373 	case offsetof(struct sk_msg_md, size):
8374 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8375 				      si->dst_reg, si->src_reg,
8376 				      offsetof(struct sk_msg_sg, size));
8377 		break;
8378 	}
8379 
8380 	return insn - insn_buf;
8381 }
8382 
8383 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8384 	.get_func_proto		= sk_filter_func_proto,
8385 	.is_valid_access	= sk_filter_is_valid_access,
8386 	.convert_ctx_access	= bpf_convert_ctx_access,
8387 	.gen_ld_abs		= bpf_gen_ld_abs,
8388 };
8389 
8390 const struct bpf_prog_ops sk_filter_prog_ops = {
8391 	.test_run		= bpf_prog_test_run_skb,
8392 };
8393 
8394 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8395 	.get_func_proto		= tc_cls_act_func_proto,
8396 	.is_valid_access	= tc_cls_act_is_valid_access,
8397 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
8398 	.gen_prologue		= tc_cls_act_prologue,
8399 	.gen_ld_abs		= bpf_gen_ld_abs,
8400 };
8401 
8402 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8403 	.test_run		= bpf_prog_test_run_skb,
8404 };
8405 
8406 const struct bpf_verifier_ops xdp_verifier_ops = {
8407 	.get_func_proto		= xdp_func_proto,
8408 	.is_valid_access	= xdp_is_valid_access,
8409 	.convert_ctx_access	= xdp_convert_ctx_access,
8410 	.gen_prologue		= bpf_noop_prologue,
8411 };
8412 
8413 const struct bpf_prog_ops xdp_prog_ops = {
8414 	.test_run		= bpf_prog_test_run_xdp,
8415 };
8416 
8417 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8418 	.get_func_proto		= cg_skb_func_proto,
8419 	.is_valid_access	= cg_skb_is_valid_access,
8420 	.convert_ctx_access	= bpf_convert_ctx_access,
8421 };
8422 
8423 const struct bpf_prog_ops cg_skb_prog_ops = {
8424 	.test_run		= bpf_prog_test_run_skb,
8425 };
8426 
8427 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8428 	.get_func_proto		= lwt_in_func_proto,
8429 	.is_valid_access	= lwt_is_valid_access,
8430 	.convert_ctx_access	= bpf_convert_ctx_access,
8431 };
8432 
8433 const struct bpf_prog_ops lwt_in_prog_ops = {
8434 	.test_run		= bpf_prog_test_run_skb,
8435 };
8436 
8437 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8438 	.get_func_proto		= lwt_out_func_proto,
8439 	.is_valid_access	= lwt_is_valid_access,
8440 	.convert_ctx_access	= bpf_convert_ctx_access,
8441 };
8442 
8443 const struct bpf_prog_ops lwt_out_prog_ops = {
8444 	.test_run		= bpf_prog_test_run_skb,
8445 };
8446 
8447 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8448 	.get_func_proto		= lwt_xmit_func_proto,
8449 	.is_valid_access	= lwt_is_valid_access,
8450 	.convert_ctx_access	= bpf_convert_ctx_access,
8451 	.gen_prologue		= tc_cls_act_prologue,
8452 };
8453 
8454 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8455 	.test_run		= bpf_prog_test_run_skb,
8456 };
8457 
8458 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8459 	.get_func_proto		= lwt_seg6local_func_proto,
8460 	.is_valid_access	= lwt_is_valid_access,
8461 	.convert_ctx_access	= bpf_convert_ctx_access,
8462 };
8463 
8464 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8465 	.test_run		= bpf_prog_test_run_skb,
8466 };
8467 
8468 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8469 	.get_func_proto		= sock_filter_func_proto,
8470 	.is_valid_access	= sock_filter_is_valid_access,
8471 	.convert_ctx_access	= bpf_sock_convert_ctx_access,
8472 };
8473 
8474 const struct bpf_prog_ops cg_sock_prog_ops = {
8475 };
8476 
8477 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8478 	.get_func_proto		= sock_addr_func_proto,
8479 	.is_valid_access	= sock_addr_is_valid_access,
8480 	.convert_ctx_access	= sock_addr_convert_ctx_access,
8481 };
8482 
8483 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8484 };
8485 
8486 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8487 	.get_func_proto		= sock_ops_func_proto,
8488 	.is_valid_access	= sock_ops_is_valid_access,
8489 	.convert_ctx_access	= sock_ops_convert_ctx_access,
8490 };
8491 
8492 const struct bpf_prog_ops sock_ops_prog_ops = {
8493 };
8494 
8495 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8496 	.get_func_proto		= sk_skb_func_proto,
8497 	.is_valid_access	= sk_skb_is_valid_access,
8498 	.convert_ctx_access	= sk_skb_convert_ctx_access,
8499 	.gen_prologue		= sk_skb_prologue,
8500 };
8501 
8502 const struct bpf_prog_ops sk_skb_prog_ops = {
8503 };
8504 
8505 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8506 	.get_func_proto		= sk_msg_func_proto,
8507 	.is_valid_access	= sk_msg_is_valid_access,
8508 	.convert_ctx_access	= sk_msg_convert_ctx_access,
8509 	.gen_prologue		= bpf_noop_prologue,
8510 };
8511 
8512 const struct bpf_prog_ops sk_msg_prog_ops = {
8513 };
8514 
8515 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8516 	.get_func_proto		= flow_dissector_func_proto,
8517 	.is_valid_access	= flow_dissector_is_valid_access,
8518 	.convert_ctx_access	= flow_dissector_convert_ctx_access,
8519 };
8520 
8521 const struct bpf_prog_ops flow_dissector_prog_ops = {
8522 	.test_run		= bpf_prog_test_run_flow_dissector,
8523 };
8524 
8525 int sk_detach_filter(struct sock *sk)
8526 {
8527 	int ret = -ENOENT;
8528 	struct sk_filter *filter;
8529 
8530 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
8531 		return -EPERM;
8532 
8533 	filter = rcu_dereference_protected(sk->sk_filter,
8534 					   lockdep_sock_is_held(sk));
8535 	if (filter) {
8536 		RCU_INIT_POINTER(sk->sk_filter, NULL);
8537 		sk_filter_uncharge(sk, filter);
8538 		ret = 0;
8539 	}
8540 
8541 	return ret;
8542 }
8543 EXPORT_SYMBOL_GPL(sk_detach_filter);
8544 
8545 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8546 		  unsigned int len)
8547 {
8548 	struct sock_fprog_kern *fprog;
8549 	struct sk_filter *filter;
8550 	int ret = 0;
8551 
8552 	lock_sock(sk);
8553 	filter = rcu_dereference_protected(sk->sk_filter,
8554 					   lockdep_sock_is_held(sk));
8555 	if (!filter)
8556 		goto out;
8557 
8558 	/* We're copying the filter that has been originally attached,
8559 	 * so no conversion/decode needed anymore. eBPF programs that
8560 	 * have no original program cannot be dumped through this.
8561 	 */
8562 	ret = -EACCES;
8563 	fprog = filter->prog->orig_prog;
8564 	if (!fprog)
8565 		goto out;
8566 
8567 	ret = fprog->len;
8568 	if (!len)
8569 		/* User space only enquires number of filter blocks. */
8570 		goto out;
8571 
8572 	ret = -EINVAL;
8573 	if (len < fprog->len)
8574 		goto out;
8575 
8576 	ret = -EFAULT;
8577 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8578 		goto out;
8579 
8580 	/* Instead of bytes, the API requests to return the number
8581 	 * of filter blocks.
8582 	 */
8583 	ret = fprog->len;
8584 out:
8585 	release_sock(sk);
8586 	return ret;
8587 }
8588 
8589 #ifdef CONFIG_INET
8590 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8591 				    struct sock_reuseport *reuse,
8592 				    struct sock *sk, struct sk_buff *skb,
8593 				    u32 hash)
8594 {
8595 	reuse_kern->skb = skb;
8596 	reuse_kern->sk = sk;
8597 	reuse_kern->selected_sk = NULL;
8598 	reuse_kern->data_end = skb->data + skb_headlen(skb);
8599 	reuse_kern->hash = hash;
8600 	reuse_kern->reuseport_id = reuse->reuseport_id;
8601 	reuse_kern->bind_inany = reuse->bind_inany;
8602 }
8603 
8604 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8605 				  struct bpf_prog *prog, struct sk_buff *skb,
8606 				  u32 hash)
8607 {
8608 	struct sk_reuseport_kern reuse_kern;
8609 	enum sk_action action;
8610 
8611 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8612 	action = BPF_PROG_RUN(prog, &reuse_kern);
8613 
8614 	if (action == SK_PASS)
8615 		return reuse_kern.selected_sk;
8616 	else
8617 		return ERR_PTR(-ECONNREFUSED);
8618 }
8619 
8620 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8621 	   struct bpf_map *, map, void *, key, u32, flags)
8622 {
8623 	struct sock_reuseport *reuse;
8624 	struct sock *selected_sk;
8625 
8626 	selected_sk = map->ops->map_lookup_elem(map, key);
8627 	if (!selected_sk)
8628 		return -ENOENT;
8629 
8630 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8631 	if (!reuse)
8632 		/* selected_sk is unhashed (e.g. by close()) after the
8633 		 * above map_lookup_elem().  Treat selected_sk has already
8634 		 * been removed from the map.
8635 		 */
8636 		return -ENOENT;
8637 
8638 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8639 		struct sock *sk;
8640 
8641 		if (unlikely(!reuse_kern->reuseport_id))
8642 			/* There is a small race between adding the
8643 			 * sk to the map and setting the
8644 			 * reuse_kern->reuseport_id.
8645 			 * Treat it as the sk has not been added to
8646 			 * the bpf map yet.
8647 			 */
8648 			return -ENOENT;
8649 
8650 		sk = reuse_kern->sk;
8651 		if (sk->sk_protocol != selected_sk->sk_protocol)
8652 			return -EPROTOTYPE;
8653 		else if (sk->sk_family != selected_sk->sk_family)
8654 			return -EAFNOSUPPORT;
8655 
8656 		/* Catch all. Likely bound to a different sockaddr. */
8657 		return -EBADFD;
8658 	}
8659 
8660 	reuse_kern->selected_sk = selected_sk;
8661 
8662 	return 0;
8663 }
8664 
8665 static const struct bpf_func_proto sk_select_reuseport_proto = {
8666 	.func           = sk_select_reuseport,
8667 	.gpl_only       = false,
8668 	.ret_type       = RET_INTEGER,
8669 	.arg1_type	= ARG_PTR_TO_CTX,
8670 	.arg2_type      = ARG_CONST_MAP_PTR,
8671 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
8672 	.arg4_type	= ARG_ANYTHING,
8673 };
8674 
8675 BPF_CALL_4(sk_reuseport_load_bytes,
8676 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8677 	   void *, to, u32, len)
8678 {
8679 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
8680 }
8681 
8682 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
8683 	.func		= sk_reuseport_load_bytes,
8684 	.gpl_only	= false,
8685 	.ret_type	= RET_INTEGER,
8686 	.arg1_type	= ARG_PTR_TO_CTX,
8687 	.arg2_type	= ARG_ANYTHING,
8688 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
8689 	.arg4_type	= ARG_CONST_SIZE,
8690 };
8691 
8692 BPF_CALL_5(sk_reuseport_load_bytes_relative,
8693 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8694 	   void *, to, u32, len, u32, start_header)
8695 {
8696 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
8697 					       len, start_header);
8698 }
8699 
8700 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
8701 	.func		= sk_reuseport_load_bytes_relative,
8702 	.gpl_only	= false,
8703 	.ret_type	= RET_INTEGER,
8704 	.arg1_type	= ARG_PTR_TO_CTX,
8705 	.arg2_type	= ARG_ANYTHING,
8706 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
8707 	.arg4_type	= ARG_CONST_SIZE,
8708 	.arg5_type	= ARG_ANYTHING,
8709 };
8710 
8711 static const struct bpf_func_proto *
8712 sk_reuseport_func_proto(enum bpf_func_id func_id,
8713 			const struct bpf_prog *prog)
8714 {
8715 	switch (func_id) {
8716 	case BPF_FUNC_sk_select_reuseport:
8717 		return &sk_select_reuseport_proto;
8718 	case BPF_FUNC_skb_load_bytes:
8719 		return &sk_reuseport_load_bytes_proto;
8720 	case BPF_FUNC_skb_load_bytes_relative:
8721 		return &sk_reuseport_load_bytes_relative_proto;
8722 	default:
8723 		return bpf_base_func_proto(func_id);
8724 	}
8725 }
8726 
8727 static bool
8728 sk_reuseport_is_valid_access(int off, int size,
8729 			     enum bpf_access_type type,
8730 			     const struct bpf_prog *prog,
8731 			     struct bpf_insn_access_aux *info)
8732 {
8733 	const u32 size_default = sizeof(__u32);
8734 
8735 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
8736 	    off % size || type != BPF_READ)
8737 		return false;
8738 
8739 	switch (off) {
8740 	case offsetof(struct sk_reuseport_md, data):
8741 		info->reg_type = PTR_TO_PACKET;
8742 		return size == sizeof(__u64);
8743 
8744 	case offsetof(struct sk_reuseport_md, data_end):
8745 		info->reg_type = PTR_TO_PACKET_END;
8746 		return size == sizeof(__u64);
8747 
8748 	case offsetof(struct sk_reuseport_md, hash):
8749 		return size == size_default;
8750 
8751 	/* Fields that allow narrowing */
8752 	case bpf_ctx_range(struct sk_reuseport_md, eth_protocol):
8753 		if (size < sizeof_field(struct sk_buff, protocol))
8754 			return false;
8755 		/* fall through */
8756 	case bpf_ctx_range(struct sk_reuseport_md, ip_protocol):
8757 	case bpf_ctx_range(struct sk_reuseport_md, bind_inany):
8758 	case bpf_ctx_range(struct sk_reuseport_md, len):
8759 		bpf_ctx_record_field_size(info, size_default);
8760 		return bpf_ctx_narrow_access_ok(off, size, size_default);
8761 
8762 	default:
8763 		return false;
8764 	}
8765 }
8766 
8767 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
8768 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8769 			      si->dst_reg, si->src_reg,			\
8770 			      bpf_target_off(struct sk_reuseport_kern, F, \
8771 					     sizeof_field(struct sk_reuseport_kern, F), \
8772 					     target_size));		\
8773 	})
8774 
8775 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
8776 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
8777 				    struct sk_buff,			\
8778 				    skb,				\
8779 				    SKB_FIELD)
8780 
8781 #define SK_REUSEPORT_LOAD_SK_FIELD(SK_FIELD)				\
8782 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
8783 				    struct sock,			\
8784 				    sk,					\
8785 				    SK_FIELD)
8786 
8787 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
8788 					   const struct bpf_insn *si,
8789 					   struct bpf_insn *insn_buf,
8790 					   struct bpf_prog *prog,
8791 					   u32 *target_size)
8792 {
8793 	struct bpf_insn *insn = insn_buf;
8794 
8795 	switch (si->off) {
8796 	case offsetof(struct sk_reuseport_md, data):
8797 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
8798 		break;
8799 
8800 	case offsetof(struct sk_reuseport_md, len):
8801 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
8802 		break;
8803 
8804 	case offsetof(struct sk_reuseport_md, eth_protocol):
8805 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
8806 		break;
8807 
8808 	case offsetof(struct sk_reuseport_md, ip_protocol):
8809 		SK_REUSEPORT_LOAD_SK_FIELD(sk_protocol);
8810 		break;
8811 
8812 	case offsetof(struct sk_reuseport_md, data_end):
8813 		SK_REUSEPORT_LOAD_FIELD(data_end);
8814 		break;
8815 
8816 	case offsetof(struct sk_reuseport_md, hash):
8817 		SK_REUSEPORT_LOAD_FIELD(hash);
8818 		break;
8819 
8820 	case offsetof(struct sk_reuseport_md, bind_inany):
8821 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
8822 		break;
8823 	}
8824 
8825 	return insn - insn_buf;
8826 }
8827 
8828 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8829 	.get_func_proto		= sk_reuseport_func_proto,
8830 	.is_valid_access	= sk_reuseport_is_valid_access,
8831 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
8832 };
8833 
8834 const struct bpf_prog_ops sk_reuseport_prog_ops = {
8835 };
8836 #endif /* CONFIG_INET */
8837 
8838 DEFINE_BPF_DISPATCHER(bpf_dispatcher_xdp)
8839 
8840 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog)
8841 {
8842 	bpf_dispatcher_change_prog(BPF_DISPATCHER_PTR(bpf_dispatcher_xdp),
8843 				   prev_prog, prog);
8844 }
8845