xref: /linux/net/ethernet/eth.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Ethernet-type device handling.
8  *
9  * Version:	@(#)eth.c	1.0.7	05/25/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
14  *		Florian  La Roche, <rzsfl@rz.uni-sb.de>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *
17  * Fixes:
18  *		Mr Linux	: Arp problems
19  *		Alan Cox	: Generic queue tidyup (very tiny here)
20  *		Alan Cox	: eth_header ntohs should be htons
21  *		Alan Cox	: eth_rebuild_header missing an htons and
22  *				  minor other things.
23  *		Tegge		: Arp bug fixes.
24  *		Florian		: Removed many unnecessary functions, code cleanup
25  *				  and changes for new arp and skbuff.
26  *		Alan Cox	: Redid header building to reflect new format.
27  *		Alan Cox	: ARP only when compiled with CONFIG_INET
28  *		Greg Page	: 802.2 and SNAP stuff.
29  *		Alan Cox	: MAC layer pointers/new format.
30  *		Paul Gortmaker	: eth_copy_and_sum shouldn't csum padding.
31  *		Alan Cox	: Protect against forwarding explosions with
32  *				  older network drivers and IFF_ALLMULTI.
33  *	Christer Weinigel	: Better rebuild header message.
34  *             Andrew Morton    : 26Feb01: kill ether_setup() - use netdev_boot_setup().
35  */
36 #include <linux/module.h>
37 #include <linux/types.h>
38 #include <linux/kernel.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/socket.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/ip.h>
45 #include <linux/netdevice.h>
46 #include <linux/nvmem-consumer.h>
47 #include <linux/etherdevice.h>
48 #include <linux/skbuff.h>
49 #include <linux/errno.h>
50 #include <linux/init.h>
51 #include <linux/if_ether.h>
52 #include <linux/of_net.h>
53 #include <linux/pci.h>
54 #include <net/dst.h>
55 #include <net/arp.h>
56 #include <net/sock.h>
57 #include <net/ipv6.h>
58 #include <net/ip.h>
59 #include <net/dsa.h>
60 #include <net/flow_dissector.h>
61 #include <linux/uaccess.h>
62 #include <net/pkt_sched.h>
63 
64 __setup("ether=", netdev_boot_setup);
65 
66 /**
67  * eth_header - create the Ethernet header
68  * @skb:	buffer to alter
69  * @dev:	source device
70  * @type:	Ethernet type field
71  * @daddr: destination address (NULL leave destination address)
72  * @saddr: source address (NULL use device source address)
73  * @len:   packet length (<= skb->len)
74  *
75  *
76  * Set the protocol type. For a packet of type ETH_P_802_3/2 we put the length
77  * in here instead.
78  */
79 int eth_header(struct sk_buff *skb, struct net_device *dev,
80 	       unsigned short type,
81 	       const void *daddr, const void *saddr, unsigned int len)
82 {
83 	struct ethhdr *eth = skb_push(skb, ETH_HLEN);
84 
85 	if (type != ETH_P_802_3 && type != ETH_P_802_2)
86 		eth->h_proto = htons(type);
87 	else
88 		eth->h_proto = htons(len);
89 
90 	/*
91 	 *      Set the source hardware address.
92 	 */
93 
94 	if (!saddr)
95 		saddr = dev->dev_addr;
96 	memcpy(eth->h_source, saddr, ETH_ALEN);
97 
98 	if (daddr) {
99 		memcpy(eth->h_dest, daddr, ETH_ALEN);
100 		return ETH_HLEN;
101 	}
102 
103 	/*
104 	 *      Anyway, the loopback-device should never use this function...
105 	 */
106 
107 	if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
108 		eth_zero_addr(eth->h_dest);
109 		return ETH_HLEN;
110 	}
111 
112 	return -ETH_HLEN;
113 }
114 EXPORT_SYMBOL(eth_header);
115 
116 /**
117  * eth_get_headlen - determine the length of header for an ethernet frame
118  * @dev: pointer to network device
119  * @data: pointer to start of frame
120  * @len: total length of frame
121  *
122  * Make a best effort attempt to pull the length for all of the headers for
123  * a given frame in a linear buffer.
124  */
125 u32 eth_get_headlen(const struct net_device *dev, void *data, unsigned int len)
126 {
127 	const unsigned int flags = FLOW_DISSECTOR_F_PARSE_1ST_FRAG;
128 	const struct ethhdr *eth = (const struct ethhdr *)data;
129 	struct flow_keys_basic keys;
130 
131 	/* this should never happen, but better safe than sorry */
132 	if (unlikely(len < sizeof(*eth)))
133 		return len;
134 
135 	/* parse any remaining L2/L3 headers, check for L4 */
136 	if (!skb_flow_dissect_flow_keys_basic(dev_net(dev), NULL, &keys, data,
137 					      eth->h_proto, sizeof(*eth),
138 					      len, flags))
139 		return max_t(u32, keys.control.thoff, sizeof(*eth));
140 
141 	/* parse for any L4 headers */
142 	return min_t(u32, __skb_get_poff(NULL, data, &keys, len), len);
143 }
144 EXPORT_SYMBOL(eth_get_headlen);
145 
146 /**
147  * eth_type_trans - determine the packet's protocol ID.
148  * @skb: received socket data
149  * @dev: receiving network device
150  *
151  * The rule here is that we
152  * assume 802.3 if the type field is short enough to be a length.
153  * This is normal practice and works for any 'now in use' protocol.
154  */
155 __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev)
156 {
157 	unsigned short _service_access_point;
158 	const unsigned short *sap;
159 	const struct ethhdr *eth;
160 
161 	skb->dev = dev;
162 	skb_reset_mac_header(skb);
163 
164 	eth = (struct ethhdr *)skb->data;
165 	skb_pull_inline(skb, ETH_HLEN);
166 
167 	if (unlikely(!ether_addr_equal_64bits(eth->h_dest,
168 					      dev->dev_addr))) {
169 		if (unlikely(is_multicast_ether_addr_64bits(eth->h_dest))) {
170 			if (ether_addr_equal_64bits(eth->h_dest, dev->broadcast))
171 				skb->pkt_type = PACKET_BROADCAST;
172 			else
173 				skb->pkt_type = PACKET_MULTICAST;
174 		} else {
175 			skb->pkt_type = PACKET_OTHERHOST;
176 		}
177 	}
178 
179 	/*
180 	 * Some variants of DSA tagging don't have an ethertype field
181 	 * at all, so we check here whether one of those tagging
182 	 * variants has been configured on the receiving interface,
183 	 * and if so, set skb->protocol without looking at the packet.
184 	 * The DSA tagging protocol may be able to decode some but not all
185 	 * traffic (for example only for management). In that case give it the
186 	 * option to filter the packets from which it can decode source port
187 	 * information.
188 	 */
189 	if (unlikely(netdev_uses_dsa(dev)) && dsa_can_decode(skb, dev))
190 		return htons(ETH_P_XDSA);
191 
192 	if (likely(eth_proto_is_802_3(eth->h_proto)))
193 		return eth->h_proto;
194 
195 	/*
196 	 *      This is a magic hack to spot IPX packets. Older Novell breaks
197 	 *      the protocol design and runs IPX over 802.3 without an 802.2 LLC
198 	 *      layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This
199 	 *      won't work for fault tolerant netware but does for the rest.
200 	 */
201 	sap = skb_header_pointer(skb, 0, sizeof(*sap), &_service_access_point);
202 	if (sap && *sap == 0xFFFF)
203 		return htons(ETH_P_802_3);
204 
205 	/*
206 	 *      Real 802.2 LLC
207 	 */
208 	return htons(ETH_P_802_2);
209 }
210 EXPORT_SYMBOL(eth_type_trans);
211 
212 /**
213  * eth_header_parse - extract hardware address from packet
214  * @skb: packet to extract header from
215  * @haddr: destination buffer
216  */
217 int eth_header_parse(const struct sk_buff *skb, unsigned char *haddr)
218 {
219 	const struct ethhdr *eth = eth_hdr(skb);
220 	memcpy(haddr, eth->h_source, ETH_ALEN);
221 	return ETH_ALEN;
222 }
223 EXPORT_SYMBOL(eth_header_parse);
224 
225 /**
226  * eth_header_cache - fill cache entry from neighbour
227  * @neigh: source neighbour
228  * @hh: destination cache entry
229  * @type: Ethernet type field
230  *
231  * Create an Ethernet header template from the neighbour.
232  */
233 int eth_header_cache(const struct neighbour *neigh, struct hh_cache *hh, __be16 type)
234 {
235 	struct ethhdr *eth;
236 	const struct net_device *dev = neigh->dev;
237 
238 	eth = (struct ethhdr *)
239 	    (((u8 *) hh->hh_data) + (HH_DATA_OFF(sizeof(*eth))));
240 
241 	if (type == htons(ETH_P_802_3))
242 		return -1;
243 
244 	eth->h_proto = type;
245 	memcpy(eth->h_source, dev->dev_addr, ETH_ALEN);
246 	memcpy(eth->h_dest, neigh->ha, ETH_ALEN);
247 
248 	/* Pairs with READ_ONCE() in neigh_resolve_output(),
249 	 * neigh_hh_output() and neigh_update_hhs().
250 	 */
251 	smp_store_release(&hh->hh_len, ETH_HLEN);
252 
253 	return 0;
254 }
255 EXPORT_SYMBOL(eth_header_cache);
256 
257 /**
258  * eth_header_cache_update - update cache entry
259  * @hh: destination cache entry
260  * @dev: network device
261  * @haddr: new hardware address
262  *
263  * Called by Address Resolution module to notify changes in address.
264  */
265 void eth_header_cache_update(struct hh_cache *hh,
266 			     const struct net_device *dev,
267 			     const unsigned char *haddr)
268 {
269 	memcpy(((u8 *) hh->hh_data) + HH_DATA_OFF(sizeof(struct ethhdr)),
270 	       haddr, ETH_ALEN);
271 }
272 EXPORT_SYMBOL(eth_header_cache_update);
273 
274 /**
275  * eth_header_parser_protocol - extract protocol from L2 header
276  * @skb: packet to extract protocol from
277  */
278 __be16 eth_header_parse_protocol(const struct sk_buff *skb)
279 {
280 	const struct ethhdr *eth = eth_hdr(skb);
281 
282 	return eth->h_proto;
283 }
284 EXPORT_SYMBOL(eth_header_parse_protocol);
285 
286 /**
287  * eth_prepare_mac_addr_change - prepare for mac change
288  * @dev: network device
289  * @p: socket address
290  */
291 int eth_prepare_mac_addr_change(struct net_device *dev, void *p)
292 {
293 	struct sockaddr *addr = p;
294 
295 	if (!(dev->priv_flags & IFF_LIVE_ADDR_CHANGE) && netif_running(dev))
296 		return -EBUSY;
297 	if (!is_valid_ether_addr(addr->sa_data))
298 		return -EADDRNOTAVAIL;
299 	return 0;
300 }
301 EXPORT_SYMBOL(eth_prepare_mac_addr_change);
302 
303 /**
304  * eth_commit_mac_addr_change - commit mac change
305  * @dev: network device
306  * @p: socket address
307  */
308 void eth_commit_mac_addr_change(struct net_device *dev, void *p)
309 {
310 	struct sockaddr *addr = p;
311 
312 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
313 }
314 EXPORT_SYMBOL(eth_commit_mac_addr_change);
315 
316 /**
317  * eth_mac_addr - set new Ethernet hardware address
318  * @dev: network device
319  * @p: socket address
320  *
321  * Change hardware address of device.
322  *
323  * This doesn't change hardware matching, so needs to be overridden
324  * for most real devices.
325  */
326 int eth_mac_addr(struct net_device *dev, void *p)
327 {
328 	int ret;
329 
330 	ret = eth_prepare_mac_addr_change(dev, p);
331 	if (ret < 0)
332 		return ret;
333 	eth_commit_mac_addr_change(dev, p);
334 	return 0;
335 }
336 EXPORT_SYMBOL(eth_mac_addr);
337 
338 /**
339  * eth_change_mtu - set new MTU size
340  * @dev: network device
341  * @new_mtu: new Maximum Transfer Unit
342  *
343  * Allow changing MTU size. Needs to be overridden for devices
344  * supporting jumbo frames.
345  */
346 int eth_change_mtu(struct net_device *dev, int new_mtu)
347 {
348 	netdev_warn(dev, "%s is deprecated\n", __func__);
349 	dev->mtu = new_mtu;
350 	return 0;
351 }
352 EXPORT_SYMBOL(eth_change_mtu);
353 
354 int eth_validate_addr(struct net_device *dev)
355 {
356 	if (!is_valid_ether_addr(dev->dev_addr))
357 		return -EADDRNOTAVAIL;
358 
359 	return 0;
360 }
361 EXPORT_SYMBOL(eth_validate_addr);
362 
363 const struct header_ops eth_header_ops ____cacheline_aligned = {
364 	.create		= eth_header,
365 	.parse		= eth_header_parse,
366 	.cache		= eth_header_cache,
367 	.cache_update	= eth_header_cache_update,
368 	.parse_protocol	= eth_header_parse_protocol,
369 };
370 
371 /**
372  * ether_setup - setup Ethernet network device
373  * @dev: network device
374  *
375  * Fill in the fields of the device structure with Ethernet-generic values.
376  */
377 void ether_setup(struct net_device *dev)
378 {
379 	dev->header_ops		= &eth_header_ops;
380 	dev->type		= ARPHRD_ETHER;
381 	dev->hard_header_len 	= ETH_HLEN;
382 	dev->min_header_len	= ETH_HLEN;
383 	dev->mtu		= ETH_DATA_LEN;
384 	dev->min_mtu		= ETH_MIN_MTU;
385 	dev->max_mtu		= ETH_DATA_LEN;
386 	dev->addr_len		= ETH_ALEN;
387 	dev->tx_queue_len	= DEFAULT_TX_QUEUE_LEN;
388 	dev->flags		= IFF_BROADCAST|IFF_MULTICAST;
389 	dev->priv_flags		|= IFF_TX_SKB_SHARING;
390 
391 	eth_broadcast_addr(dev->broadcast);
392 
393 }
394 EXPORT_SYMBOL(ether_setup);
395 
396 /**
397  * alloc_etherdev_mqs - Allocates and sets up an Ethernet device
398  * @sizeof_priv: Size of additional driver-private structure to be allocated
399  *	for this Ethernet device
400  * @txqs: The number of TX queues this device has.
401  * @rxqs: The number of RX queues this device has.
402  *
403  * Fill in the fields of the device structure with Ethernet-generic
404  * values. Basically does everything except registering the device.
405  *
406  * Constructs a new net device, complete with a private data area of
407  * size (sizeof_priv).  A 32-byte (not bit) alignment is enforced for
408  * this private data area.
409  */
410 
411 struct net_device *alloc_etherdev_mqs(int sizeof_priv, unsigned int txqs,
412 				      unsigned int rxqs)
413 {
414 	return alloc_netdev_mqs(sizeof_priv, "eth%d", NET_NAME_UNKNOWN,
415 				ether_setup, txqs, rxqs);
416 }
417 EXPORT_SYMBOL(alloc_etherdev_mqs);
418 
419 static void devm_free_netdev(struct device *dev, void *res)
420 {
421 	free_netdev(*(struct net_device **)res);
422 }
423 
424 struct net_device *devm_alloc_etherdev_mqs(struct device *dev, int sizeof_priv,
425 					   unsigned int txqs, unsigned int rxqs)
426 {
427 	struct net_device **dr;
428 	struct net_device *netdev;
429 
430 	dr = devres_alloc(devm_free_netdev, sizeof(*dr), GFP_KERNEL);
431 	if (!dr)
432 		return NULL;
433 
434 	netdev = alloc_etherdev_mqs(sizeof_priv, txqs, rxqs);
435 	if (!netdev) {
436 		devres_free(dr);
437 		return NULL;
438 	}
439 
440 	*dr = netdev;
441 	devres_add(dev, dr);
442 
443 	return netdev;
444 }
445 EXPORT_SYMBOL(devm_alloc_etherdev_mqs);
446 
447 ssize_t sysfs_format_mac(char *buf, const unsigned char *addr, int len)
448 {
449 	return scnprintf(buf, PAGE_SIZE, "%*phC\n", len, addr);
450 }
451 EXPORT_SYMBOL(sysfs_format_mac);
452 
453 struct sk_buff *eth_gro_receive(struct list_head *head, struct sk_buff *skb)
454 {
455 	const struct packet_offload *ptype;
456 	unsigned int hlen, off_eth;
457 	struct sk_buff *pp = NULL;
458 	struct ethhdr *eh, *eh2;
459 	struct sk_buff *p;
460 	__be16 type;
461 	int flush = 1;
462 
463 	off_eth = skb_gro_offset(skb);
464 	hlen = off_eth + sizeof(*eh);
465 	eh = skb_gro_header_fast(skb, off_eth);
466 	if (skb_gro_header_hard(skb, hlen)) {
467 		eh = skb_gro_header_slow(skb, hlen, off_eth);
468 		if (unlikely(!eh))
469 			goto out;
470 	}
471 
472 	flush = 0;
473 
474 	list_for_each_entry(p, head, list) {
475 		if (!NAPI_GRO_CB(p)->same_flow)
476 			continue;
477 
478 		eh2 = (struct ethhdr *)(p->data + off_eth);
479 		if (compare_ether_header(eh, eh2)) {
480 			NAPI_GRO_CB(p)->same_flow = 0;
481 			continue;
482 		}
483 	}
484 
485 	type = eh->h_proto;
486 
487 	rcu_read_lock();
488 	ptype = gro_find_receive_by_type(type);
489 	if (ptype == NULL) {
490 		flush = 1;
491 		goto out_unlock;
492 	}
493 
494 	skb_gro_pull(skb, sizeof(*eh));
495 	skb_gro_postpull_rcsum(skb, eh, sizeof(*eh));
496 	pp = call_gro_receive(ptype->callbacks.gro_receive, head, skb);
497 
498 out_unlock:
499 	rcu_read_unlock();
500 out:
501 	skb_gro_flush_final(skb, pp, flush);
502 
503 	return pp;
504 }
505 EXPORT_SYMBOL(eth_gro_receive);
506 
507 int eth_gro_complete(struct sk_buff *skb, int nhoff)
508 {
509 	struct ethhdr *eh = (struct ethhdr *)(skb->data + nhoff);
510 	__be16 type = eh->h_proto;
511 	struct packet_offload *ptype;
512 	int err = -ENOSYS;
513 
514 	if (skb->encapsulation)
515 		skb_set_inner_mac_header(skb, nhoff);
516 
517 	rcu_read_lock();
518 	ptype = gro_find_complete_by_type(type);
519 	if (ptype != NULL)
520 		err = ptype->callbacks.gro_complete(skb, nhoff +
521 						    sizeof(struct ethhdr));
522 
523 	rcu_read_unlock();
524 	return err;
525 }
526 EXPORT_SYMBOL(eth_gro_complete);
527 
528 static struct packet_offload eth_packet_offload __read_mostly = {
529 	.type = cpu_to_be16(ETH_P_TEB),
530 	.priority = 10,
531 	.callbacks = {
532 		.gro_receive = eth_gro_receive,
533 		.gro_complete = eth_gro_complete,
534 	},
535 };
536 
537 static int __init eth_offload_init(void)
538 {
539 	dev_add_offload(&eth_packet_offload);
540 
541 	return 0;
542 }
543 
544 fs_initcall(eth_offload_init);
545 
546 unsigned char * __weak arch_get_platform_mac_address(void)
547 {
548 	return NULL;
549 }
550 
551 int eth_platform_get_mac_address(struct device *dev, u8 *mac_addr)
552 {
553 	const unsigned char *addr = NULL;
554 
555 	if (dev->of_node)
556 		addr = of_get_mac_address(dev->of_node);
557 	if (IS_ERR_OR_NULL(addr))
558 		addr = arch_get_platform_mac_address();
559 
560 	if (!addr)
561 		return -ENODEV;
562 
563 	ether_addr_copy(mac_addr, addr);
564 
565 	return 0;
566 }
567 EXPORT_SYMBOL(eth_platform_get_mac_address);
568 
569 /**
570  * Obtain the MAC address from an nvmem cell named 'mac-address' associated
571  * with given device.
572  *
573  * @dev:	Device with which the mac-address cell is associated.
574  * @addrbuf:	Buffer to which the MAC address will be copied on success.
575  *
576  * Returns 0 on success or a negative error number on failure.
577  */
578 int nvmem_get_mac_address(struct device *dev, void *addrbuf)
579 {
580 	struct nvmem_cell *cell;
581 	const void *mac;
582 	size_t len;
583 
584 	cell = nvmem_cell_get(dev, "mac-address");
585 	if (IS_ERR(cell))
586 		return PTR_ERR(cell);
587 
588 	mac = nvmem_cell_read(cell, &len);
589 	nvmem_cell_put(cell);
590 
591 	if (IS_ERR(mac))
592 		return PTR_ERR(mac);
593 
594 	if (len != ETH_ALEN || !is_valid_ether_addr(mac)) {
595 		kfree(mac);
596 		return -EINVAL;
597 	}
598 
599 	ether_addr_copy(addrbuf, mac);
600 	kfree(mac);
601 
602 	return 0;
603 }
604 EXPORT_SYMBOL(nvmem_get_mac_address);
605