xref: /linux/net/ipv4/ip_output.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The Internet Protocol (IP) output module.
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Donald Becker, <becker@super.org>
12  *		Alan Cox, <Alan.Cox@linux.org>
13  *		Richard Underwood
14  *		Stefan Becker, <stefanb@yello.ping.de>
15  *		Jorge Cwik, <jorge@laser.satlink.net>
16  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
17  *		Hirokazu Takahashi, <taka@valinux.co.jp>
18  *
19  *	See ip_input.c for original log
20  *
21  *	Fixes:
22  *		Alan Cox	:	Missing nonblock feature in ip_build_xmit.
23  *		Mike Kilburn	:	htons() missing in ip_build_xmit.
24  *		Bradford Johnson:	Fix faulty handling of some frames when
25  *					no route is found.
26  *		Alexander Demenshin:	Missing sk/skb free in ip_queue_xmit
27  *					(in case if packet not accepted by
28  *					output firewall rules)
29  *		Mike McLagan	:	Routing by source
30  *		Alexey Kuznetsov:	use new route cache
31  *		Andi Kleen:		Fix broken PMTU recovery and remove
32  *					some redundant tests.
33  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
34  *		Andi Kleen	: 	Replace ip_reply with ip_send_reply.
35  *		Andi Kleen	:	Split fast and slow ip_build_xmit path
36  *					for decreased register pressure on x86
37  *					and more readibility.
38  *		Marc Boucher	:	When call_out_firewall returns FW_QUEUE,
39  *					silently drop skb instead of failing with -EPERM.
40  *		Detlev Wengorz	:	Copy protocol for fragments.
41  *		Hirokazu Takahashi:	HW checksumming for outgoing UDP
42  *					datagrams.
43  *		Hirokazu Takahashi:	sendfile() on UDP works now.
44  */
45 
46 #include <linux/uaccess.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
55 
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
65 
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <net/lwtunnel.h>
78 #include <linux/bpf-cgroup.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/netlink.h>
83 #include <linux/tcp.h>
84 
85 static int
86 ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
87 	    unsigned int mtu,
88 	    int (*output)(struct net *, struct sock *, struct sk_buff *));
89 
90 /* Generate a checksum for an outgoing IP datagram. */
91 void ip_send_check(struct iphdr *iph)
92 {
93 	iph->check = 0;
94 	iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 }
96 EXPORT_SYMBOL(ip_send_check);
97 
98 int __ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
99 {
100 	struct iphdr *iph = ip_hdr(skb);
101 
102 	iph->tot_len = htons(skb->len);
103 	ip_send_check(iph);
104 
105 	/* if egress device is enslaved to an L3 master device pass the
106 	 * skb to its handler for processing
107 	 */
108 	skb = l3mdev_ip_out(sk, skb);
109 	if (unlikely(!skb))
110 		return 0;
111 
112 	skb->protocol = htons(ETH_P_IP);
113 
114 	return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT,
115 		       net, sk, skb, NULL, skb_dst(skb)->dev,
116 		       dst_output);
117 }
118 
119 int ip_local_out(struct net *net, struct sock *sk, struct sk_buff *skb)
120 {
121 	int err;
122 
123 	err = __ip_local_out(net, sk, skb);
124 	if (likely(err == 1))
125 		err = dst_output(net, sk, skb);
126 
127 	return err;
128 }
129 EXPORT_SYMBOL_GPL(ip_local_out);
130 
131 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
132 {
133 	int ttl = inet->uc_ttl;
134 
135 	if (ttl < 0)
136 		ttl = ip4_dst_hoplimit(dst);
137 	return ttl;
138 }
139 
140 /*
141  *		Add an ip header to a skbuff and send it out.
142  *
143  */
144 int ip_build_and_send_pkt(struct sk_buff *skb, const struct sock *sk,
145 			  __be32 saddr, __be32 daddr, struct ip_options_rcu *opt)
146 {
147 	struct inet_sock *inet = inet_sk(sk);
148 	struct rtable *rt = skb_rtable(skb);
149 	struct net *net = sock_net(sk);
150 	struct iphdr *iph;
151 
152 	/* Build the IP header. */
153 	skb_push(skb, sizeof(struct iphdr) + (opt ? opt->opt.optlen : 0));
154 	skb_reset_network_header(skb);
155 	iph = ip_hdr(skb);
156 	iph->version  = 4;
157 	iph->ihl      = 5;
158 	iph->tos      = inet->tos;
159 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
160 	iph->daddr    = (opt && opt->opt.srr ? opt->opt.faddr : daddr);
161 	iph->saddr    = saddr;
162 	iph->protocol = sk->sk_protocol;
163 	if (ip_dont_fragment(sk, &rt->dst)) {
164 		iph->frag_off = htons(IP_DF);
165 		iph->id = 0;
166 	} else {
167 		iph->frag_off = 0;
168 		__ip_select_ident(net, iph, 1);
169 	}
170 
171 	if (opt && opt->opt.optlen) {
172 		iph->ihl += opt->opt.optlen>>2;
173 		ip_options_build(skb, &opt->opt, daddr, rt, 0);
174 	}
175 
176 	skb->priority = sk->sk_priority;
177 	if (!skb->mark)
178 		skb->mark = sk->sk_mark;
179 
180 	/* Send it out. */
181 	return ip_local_out(net, skb->sk, skb);
182 }
183 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
184 
185 static int ip_finish_output2(struct net *net, struct sock *sk, struct sk_buff *skb)
186 {
187 	struct dst_entry *dst = skb_dst(skb);
188 	struct rtable *rt = (struct rtable *)dst;
189 	struct net_device *dev = dst->dev;
190 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
191 	struct neighbour *neigh;
192 	bool is_v6gw = false;
193 
194 	if (rt->rt_type == RTN_MULTICAST) {
195 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTMCAST, skb->len);
196 	} else if (rt->rt_type == RTN_BROADCAST)
197 		IP_UPD_PO_STATS(net, IPSTATS_MIB_OUTBCAST, skb->len);
198 
199 	/* Be paranoid, rather than too clever. */
200 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
201 		struct sk_buff *skb2;
202 
203 		skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
204 		if (!skb2) {
205 			kfree_skb(skb);
206 			return -ENOMEM;
207 		}
208 		if (skb->sk)
209 			skb_set_owner_w(skb2, skb->sk);
210 		consume_skb(skb);
211 		skb = skb2;
212 	}
213 
214 	if (lwtunnel_xmit_redirect(dst->lwtstate)) {
215 		int res = lwtunnel_xmit(skb);
216 
217 		if (res < 0 || res == LWTUNNEL_XMIT_DONE)
218 			return res;
219 	}
220 
221 	rcu_read_lock_bh();
222 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
223 	if (!IS_ERR(neigh)) {
224 		int res;
225 
226 		sock_confirm_neigh(skb, neigh);
227 		/* if crossing protocols, can not use the cached header */
228 		res = neigh_output(neigh, skb, is_v6gw);
229 		rcu_read_unlock_bh();
230 		return res;
231 	}
232 	rcu_read_unlock_bh();
233 
234 	net_dbg_ratelimited("%s: No header cache and no neighbour!\n",
235 			    __func__);
236 	kfree_skb(skb);
237 	return -EINVAL;
238 }
239 
240 static int ip_finish_output_gso(struct net *net, struct sock *sk,
241 				struct sk_buff *skb, unsigned int mtu)
242 {
243 	netdev_features_t features;
244 	struct sk_buff *segs;
245 	int ret = 0;
246 
247 	/* common case: seglen is <= mtu
248 	 */
249 	if (skb_gso_validate_network_len(skb, mtu))
250 		return ip_finish_output2(net, sk, skb);
251 
252 	/* Slowpath -  GSO segment length exceeds the egress MTU.
253 	 *
254 	 * This can happen in several cases:
255 	 *  - Forwarding of a TCP GRO skb, when DF flag is not set.
256 	 *  - Forwarding of an skb that arrived on a virtualization interface
257 	 *    (virtio-net/vhost/tap) with TSO/GSO size set by other network
258 	 *    stack.
259 	 *  - Local GSO skb transmitted on an NETIF_F_TSO tunnel stacked over an
260 	 *    interface with a smaller MTU.
261 	 *  - Arriving GRO skb (or GSO skb in a virtualized environment) that is
262 	 *    bridged to a NETIF_F_TSO tunnel stacked over an interface with an
263 	 *    insufficent MTU.
264 	 */
265 	features = netif_skb_features(skb);
266 	BUILD_BUG_ON(sizeof(*IPCB(skb)) > SKB_SGO_CB_OFFSET);
267 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
268 	if (IS_ERR_OR_NULL(segs)) {
269 		kfree_skb(skb);
270 		return -ENOMEM;
271 	}
272 
273 	consume_skb(skb);
274 
275 	do {
276 		struct sk_buff *nskb = segs->next;
277 		int err;
278 
279 		skb_mark_not_on_list(segs);
280 		err = ip_fragment(net, sk, segs, mtu, ip_finish_output2);
281 
282 		if (err && ret == 0)
283 			ret = err;
284 		segs = nskb;
285 	} while (segs);
286 
287 	return ret;
288 }
289 
290 static int __ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
291 {
292 	unsigned int mtu;
293 
294 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
295 	/* Policy lookup after SNAT yielded a new policy */
296 	if (skb_dst(skb)->xfrm) {
297 		IPCB(skb)->flags |= IPSKB_REROUTED;
298 		return dst_output(net, sk, skb);
299 	}
300 #endif
301 	mtu = ip_skb_dst_mtu(sk, skb);
302 	if (skb_is_gso(skb))
303 		return ip_finish_output_gso(net, sk, skb, mtu);
304 
305 	if (skb->len > mtu || (IPCB(skb)->flags & IPSKB_FRAG_PMTU))
306 		return ip_fragment(net, sk, skb, mtu, ip_finish_output2);
307 
308 	return ip_finish_output2(net, sk, skb);
309 }
310 
311 static int ip_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
312 {
313 	int ret;
314 
315 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
316 	switch (ret) {
317 	case NET_XMIT_SUCCESS:
318 		return __ip_finish_output(net, sk, skb);
319 	case NET_XMIT_CN:
320 		return __ip_finish_output(net, sk, skb) ? : ret;
321 	default:
322 		kfree_skb(skb);
323 		return ret;
324 	}
325 }
326 
327 static int ip_mc_finish_output(struct net *net, struct sock *sk,
328 			       struct sk_buff *skb)
329 {
330 	struct rtable *new_rt;
331 	bool do_cn = false;
332 	int ret, err;
333 
334 	ret = BPF_CGROUP_RUN_PROG_INET_EGRESS(sk, skb);
335 	switch (ret) {
336 	case NET_XMIT_CN:
337 		do_cn = true;
338 		/* fall through */
339 	case NET_XMIT_SUCCESS:
340 		break;
341 	default:
342 		kfree_skb(skb);
343 		return ret;
344 	}
345 
346 	/* Reset rt_iif so that inet_iif() will return skb->skb_iif. Setting
347 	 * this to non-zero causes ipi_ifindex in in_pktinfo to be overwritten,
348 	 * see ipv4_pktinfo_prepare().
349 	 */
350 	new_rt = rt_dst_clone(net->loopback_dev, skb_rtable(skb));
351 	if (new_rt) {
352 		new_rt->rt_iif = 0;
353 		skb_dst_drop(skb);
354 		skb_dst_set(skb, &new_rt->dst);
355 	}
356 
357 	err = dev_loopback_xmit(net, sk, skb);
358 	return (do_cn && err) ? ret : err;
359 }
360 
361 int ip_mc_output(struct net *net, struct sock *sk, struct sk_buff *skb)
362 {
363 	struct rtable *rt = skb_rtable(skb);
364 	struct net_device *dev = rt->dst.dev;
365 
366 	/*
367 	 *	If the indicated interface is up and running, send the packet.
368 	 */
369 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
370 
371 	skb->dev = dev;
372 	skb->protocol = htons(ETH_P_IP);
373 
374 	/*
375 	 *	Multicasts are looped back for other local users
376 	 */
377 
378 	if (rt->rt_flags&RTCF_MULTICAST) {
379 		if (sk_mc_loop(sk)
380 #ifdef CONFIG_IP_MROUTE
381 		/* Small optimization: do not loopback not local frames,
382 		   which returned after forwarding; they will be  dropped
383 		   by ip_mr_input in any case.
384 		   Note, that local frames are looped back to be delivered
385 		   to local recipients.
386 
387 		   This check is duplicated in ip_mr_input at the moment.
388 		 */
389 		    &&
390 		    ((rt->rt_flags & RTCF_LOCAL) ||
391 		     !(IPCB(skb)->flags & IPSKB_FORWARDED))
392 #endif
393 		   ) {
394 			struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
395 			if (newskb)
396 				NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
397 					net, sk, newskb, NULL, newskb->dev,
398 					ip_mc_finish_output);
399 		}
400 
401 		/* Multicasts with ttl 0 must not go beyond the host */
402 
403 		if (ip_hdr(skb)->ttl == 0) {
404 			kfree_skb(skb);
405 			return 0;
406 		}
407 	}
408 
409 	if (rt->rt_flags&RTCF_BROADCAST) {
410 		struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
411 		if (newskb)
412 			NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
413 				net, sk, newskb, NULL, newskb->dev,
414 				ip_mc_finish_output);
415 	}
416 
417 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
418 			    net, sk, skb, NULL, skb->dev,
419 			    ip_finish_output,
420 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
421 }
422 
423 int ip_output(struct net *net, struct sock *sk, struct sk_buff *skb)
424 {
425 	struct net_device *dev = skb_dst(skb)->dev;
426 
427 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
428 
429 	skb->dev = dev;
430 	skb->protocol = htons(ETH_P_IP);
431 
432 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
433 			    net, sk, skb, NULL, dev,
434 			    ip_finish_output,
435 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
436 }
437 
438 /*
439  * copy saddr and daddr, possibly using 64bit load/stores
440  * Equivalent to :
441  *   iph->saddr = fl4->saddr;
442  *   iph->daddr = fl4->daddr;
443  */
444 static void ip_copy_addrs(struct iphdr *iph, const struct flowi4 *fl4)
445 {
446 	BUILD_BUG_ON(offsetof(typeof(*fl4), daddr) !=
447 		     offsetof(typeof(*fl4), saddr) + sizeof(fl4->saddr));
448 	memcpy(&iph->saddr, &fl4->saddr,
449 	       sizeof(fl4->saddr) + sizeof(fl4->daddr));
450 }
451 
452 /* Note: skb->sk can be different from sk, in case of tunnels */
453 int __ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl,
454 		    __u8 tos)
455 {
456 	struct inet_sock *inet = inet_sk(sk);
457 	struct net *net = sock_net(sk);
458 	struct ip_options_rcu *inet_opt;
459 	struct flowi4 *fl4;
460 	struct rtable *rt;
461 	struct iphdr *iph;
462 	int res;
463 
464 	/* Skip all of this if the packet is already routed,
465 	 * f.e. by something like SCTP.
466 	 */
467 	rcu_read_lock();
468 	inet_opt = rcu_dereference(inet->inet_opt);
469 	fl4 = &fl->u.ip4;
470 	rt = skb_rtable(skb);
471 	if (rt)
472 		goto packet_routed;
473 
474 	/* Make sure we can route this packet. */
475 	rt = (struct rtable *)__sk_dst_check(sk, 0);
476 	if (!rt) {
477 		__be32 daddr;
478 
479 		/* Use correct destination address if we have options. */
480 		daddr = inet->inet_daddr;
481 		if (inet_opt && inet_opt->opt.srr)
482 			daddr = inet_opt->opt.faddr;
483 
484 		/* If this fails, retransmit mechanism of transport layer will
485 		 * keep trying until route appears or the connection times
486 		 * itself out.
487 		 */
488 		rt = ip_route_output_ports(net, fl4, sk,
489 					   daddr, inet->inet_saddr,
490 					   inet->inet_dport,
491 					   inet->inet_sport,
492 					   sk->sk_protocol,
493 					   RT_CONN_FLAGS_TOS(sk, tos),
494 					   sk->sk_bound_dev_if);
495 		if (IS_ERR(rt))
496 			goto no_route;
497 		sk_setup_caps(sk, &rt->dst);
498 	}
499 	skb_dst_set_noref(skb, &rt->dst);
500 
501 packet_routed:
502 	if (inet_opt && inet_opt->opt.is_strictroute && rt->rt_uses_gateway)
503 		goto no_route;
504 
505 	/* OK, we know where to send it, allocate and build IP header. */
506 	skb_push(skb, sizeof(struct iphdr) + (inet_opt ? inet_opt->opt.optlen : 0));
507 	skb_reset_network_header(skb);
508 	iph = ip_hdr(skb);
509 	*((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (tos & 0xff));
510 	if (ip_dont_fragment(sk, &rt->dst) && !skb->ignore_df)
511 		iph->frag_off = htons(IP_DF);
512 	else
513 		iph->frag_off = 0;
514 	iph->ttl      = ip_select_ttl(inet, &rt->dst);
515 	iph->protocol = sk->sk_protocol;
516 	ip_copy_addrs(iph, fl4);
517 
518 	/* Transport layer set skb->h.foo itself. */
519 
520 	if (inet_opt && inet_opt->opt.optlen) {
521 		iph->ihl += inet_opt->opt.optlen >> 2;
522 		ip_options_build(skb, &inet_opt->opt, inet->inet_daddr, rt, 0);
523 	}
524 
525 	ip_select_ident_segs(net, skb, sk,
526 			     skb_shinfo(skb)->gso_segs ?: 1);
527 
528 	/* TODO : should we use skb->sk here instead of sk ? */
529 	skb->priority = sk->sk_priority;
530 	skb->mark = sk->sk_mark;
531 
532 	res = ip_local_out(net, sk, skb);
533 	rcu_read_unlock();
534 	return res;
535 
536 no_route:
537 	rcu_read_unlock();
538 	IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
539 	kfree_skb(skb);
540 	return -EHOSTUNREACH;
541 }
542 EXPORT_SYMBOL(__ip_queue_xmit);
543 
544 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
545 {
546 	to->pkt_type = from->pkt_type;
547 	to->priority = from->priority;
548 	to->protocol = from->protocol;
549 	to->skb_iif = from->skb_iif;
550 	skb_dst_drop(to);
551 	skb_dst_copy(to, from);
552 	to->dev = from->dev;
553 	to->mark = from->mark;
554 
555 	skb_copy_hash(to, from);
556 
557 #ifdef CONFIG_NET_SCHED
558 	to->tc_index = from->tc_index;
559 #endif
560 	nf_copy(to, from);
561 	skb_ext_copy(to, from);
562 #if IS_ENABLED(CONFIG_IP_VS)
563 	to->ipvs_property = from->ipvs_property;
564 #endif
565 	skb_copy_secmark(to, from);
566 }
567 
568 static int ip_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
569 		       unsigned int mtu,
570 		       int (*output)(struct net *, struct sock *, struct sk_buff *))
571 {
572 	struct iphdr *iph = ip_hdr(skb);
573 
574 	if ((iph->frag_off & htons(IP_DF)) == 0)
575 		return ip_do_fragment(net, sk, skb, output);
576 
577 	if (unlikely(!skb->ignore_df ||
578 		     (IPCB(skb)->frag_max_size &&
579 		      IPCB(skb)->frag_max_size > mtu))) {
580 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
581 		icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
582 			  htonl(mtu));
583 		kfree_skb(skb);
584 		return -EMSGSIZE;
585 	}
586 
587 	return ip_do_fragment(net, sk, skb, output);
588 }
589 
590 void ip_fraglist_init(struct sk_buff *skb, struct iphdr *iph,
591 		      unsigned int hlen, struct ip_fraglist_iter *iter)
592 {
593 	unsigned int first_len = skb_pagelen(skb);
594 
595 	iter->frag = skb_shinfo(skb)->frag_list;
596 	skb_frag_list_init(skb);
597 
598 	iter->offset = 0;
599 	iter->iph = iph;
600 	iter->hlen = hlen;
601 
602 	skb->data_len = first_len - skb_headlen(skb);
603 	skb->len = first_len;
604 	iph->tot_len = htons(first_len);
605 	iph->frag_off = htons(IP_MF);
606 	ip_send_check(iph);
607 }
608 EXPORT_SYMBOL(ip_fraglist_init);
609 
610 static void ip_fraglist_ipcb_prepare(struct sk_buff *skb,
611 				     struct ip_fraglist_iter *iter)
612 {
613 	struct sk_buff *to = iter->frag;
614 
615 	/* Copy the flags to each fragment. */
616 	IPCB(to)->flags = IPCB(skb)->flags;
617 
618 	if (iter->offset == 0)
619 		ip_options_fragment(to);
620 }
621 
622 void ip_fraglist_prepare(struct sk_buff *skb, struct ip_fraglist_iter *iter)
623 {
624 	unsigned int hlen = iter->hlen;
625 	struct iphdr *iph = iter->iph;
626 	struct sk_buff *frag;
627 
628 	frag = iter->frag;
629 	frag->ip_summed = CHECKSUM_NONE;
630 	skb_reset_transport_header(frag);
631 	__skb_push(frag, hlen);
632 	skb_reset_network_header(frag);
633 	memcpy(skb_network_header(frag), iph, hlen);
634 	iter->iph = ip_hdr(frag);
635 	iph = iter->iph;
636 	iph->tot_len = htons(frag->len);
637 	ip_copy_metadata(frag, skb);
638 	iter->offset += skb->len - hlen;
639 	iph->frag_off = htons(iter->offset >> 3);
640 	if (frag->next)
641 		iph->frag_off |= htons(IP_MF);
642 	/* Ready, complete checksum */
643 	ip_send_check(iph);
644 }
645 EXPORT_SYMBOL(ip_fraglist_prepare);
646 
647 void ip_frag_init(struct sk_buff *skb, unsigned int hlen,
648 		  unsigned int ll_rs, unsigned int mtu, bool DF,
649 		  struct ip_frag_state *state)
650 {
651 	struct iphdr *iph = ip_hdr(skb);
652 
653 	state->DF = DF;
654 	state->hlen = hlen;
655 	state->ll_rs = ll_rs;
656 	state->mtu = mtu;
657 
658 	state->left = skb->len - hlen;	/* Space per frame */
659 	state->ptr = hlen;		/* Where to start from */
660 
661 	state->offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
662 	state->not_last_frag = iph->frag_off & htons(IP_MF);
663 }
664 EXPORT_SYMBOL(ip_frag_init);
665 
666 static void ip_frag_ipcb(struct sk_buff *from, struct sk_buff *to,
667 			 bool first_frag, struct ip_frag_state *state)
668 {
669 	/* Copy the flags to each fragment. */
670 	IPCB(to)->flags = IPCB(from)->flags;
671 
672 	/* ANK: dirty, but effective trick. Upgrade options only if
673 	 * the segment to be fragmented was THE FIRST (otherwise,
674 	 * options are already fixed) and make it ONCE
675 	 * on the initial skb, so that all the following fragments
676 	 * will inherit fixed options.
677 	 */
678 	if (first_frag)
679 		ip_options_fragment(from);
680 }
681 
682 struct sk_buff *ip_frag_next(struct sk_buff *skb, struct ip_frag_state *state)
683 {
684 	unsigned int len = state->left;
685 	struct sk_buff *skb2;
686 	struct iphdr *iph;
687 
688 	len = state->left;
689 	/* IF: it doesn't fit, use 'mtu' - the data space left */
690 	if (len > state->mtu)
691 		len = state->mtu;
692 	/* IF: we are not sending up to and including the packet end
693 	   then align the next start on an eight byte boundary */
694 	if (len < state->left)	{
695 		len &= ~7;
696 	}
697 
698 	/* Allocate buffer */
699 	skb2 = alloc_skb(len + state->hlen + state->ll_rs, GFP_ATOMIC);
700 	if (!skb2)
701 		return ERR_PTR(-ENOMEM);
702 
703 	/*
704 	 *	Set up data on packet
705 	 */
706 
707 	ip_copy_metadata(skb2, skb);
708 	skb_reserve(skb2, state->ll_rs);
709 	skb_put(skb2, len + state->hlen);
710 	skb_reset_network_header(skb2);
711 	skb2->transport_header = skb2->network_header + state->hlen;
712 
713 	/*
714 	 *	Charge the memory for the fragment to any owner
715 	 *	it might possess
716 	 */
717 
718 	if (skb->sk)
719 		skb_set_owner_w(skb2, skb->sk);
720 
721 	/*
722 	 *	Copy the packet header into the new buffer.
723 	 */
724 
725 	skb_copy_from_linear_data(skb, skb_network_header(skb2), state->hlen);
726 
727 	/*
728 	 *	Copy a block of the IP datagram.
729 	 */
730 	if (skb_copy_bits(skb, state->ptr, skb_transport_header(skb2), len))
731 		BUG();
732 	state->left -= len;
733 
734 	/*
735 	 *	Fill in the new header fields.
736 	 */
737 	iph = ip_hdr(skb2);
738 	iph->frag_off = htons((state->offset >> 3));
739 	if (state->DF)
740 		iph->frag_off |= htons(IP_DF);
741 
742 	/*
743 	 *	Added AC : If we are fragmenting a fragment that's not the
744 	 *		   last fragment then keep MF on each bit
745 	 */
746 	if (state->left > 0 || state->not_last_frag)
747 		iph->frag_off |= htons(IP_MF);
748 	state->ptr += len;
749 	state->offset += len;
750 
751 	iph->tot_len = htons(len + state->hlen);
752 
753 	ip_send_check(iph);
754 
755 	return skb2;
756 }
757 EXPORT_SYMBOL(ip_frag_next);
758 
759 /*
760  *	This IP datagram is too large to be sent in one piece.  Break it up into
761  *	smaller pieces (each of size equal to IP header plus
762  *	a block of the data of the original IP data part) that will yet fit in a
763  *	single device frame, and queue such a frame for sending.
764  */
765 
766 int ip_do_fragment(struct net *net, struct sock *sk, struct sk_buff *skb,
767 		   int (*output)(struct net *, struct sock *, struct sk_buff *))
768 {
769 	struct iphdr *iph;
770 	struct sk_buff *skb2;
771 	struct rtable *rt = skb_rtable(skb);
772 	unsigned int mtu, hlen, ll_rs;
773 	struct ip_fraglist_iter iter;
774 	ktime_t tstamp = skb->tstamp;
775 	struct ip_frag_state state;
776 	int err = 0;
777 
778 	/* for offloaded checksums cleanup checksum before fragmentation */
779 	if (skb->ip_summed == CHECKSUM_PARTIAL &&
780 	    (err = skb_checksum_help(skb)))
781 		goto fail;
782 
783 	/*
784 	 *	Point into the IP datagram header.
785 	 */
786 
787 	iph = ip_hdr(skb);
788 
789 	mtu = ip_skb_dst_mtu(sk, skb);
790 	if (IPCB(skb)->frag_max_size && IPCB(skb)->frag_max_size < mtu)
791 		mtu = IPCB(skb)->frag_max_size;
792 
793 	/*
794 	 *	Setup starting values.
795 	 */
796 
797 	hlen = iph->ihl * 4;
798 	mtu = mtu - hlen;	/* Size of data space */
799 	IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
800 	ll_rs = LL_RESERVED_SPACE(rt->dst.dev);
801 
802 	/* When frag_list is given, use it. First, check its validity:
803 	 * some transformers could create wrong frag_list or break existing
804 	 * one, it is not prohibited. In this case fall back to copying.
805 	 *
806 	 * LATER: this step can be merged to real generation of fragments,
807 	 * we can switch to copy when see the first bad fragment.
808 	 */
809 	if (skb_has_frag_list(skb)) {
810 		struct sk_buff *frag, *frag2;
811 		unsigned int first_len = skb_pagelen(skb);
812 
813 		if (first_len - hlen > mtu ||
814 		    ((first_len - hlen) & 7) ||
815 		    ip_is_fragment(iph) ||
816 		    skb_cloned(skb) ||
817 		    skb_headroom(skb) < ll_rs)
818 			goto slow_path;
819 
820 		skb_walk_frags(skb, frag) {
821 			/* Correct geometry. */
822 			if (frag->len > mtu ||
823 			    ((frag->len & 7) && frag->next) ||
824 			    skb_headroom(frag) < hlen + ll_rs)
825 				goto slow_path_clean;
826 
827 			/* Partially cloned skb? */
828 			if (skb_shared(frag))
829 				goto slow_path_clean;
830 
831 			BUG_ON(frag->sk);
832 			if (skb->sk) {
833 				frag->sk = skb->sk;
834 				frag->destructor = sock_wfree;
835 			}
836 			skb->truesize -= frag->truesize;
837 		}
838 
839 		/* Everything is OK. Generate! */
840 		ip_fraglist_init(skb, iph, hlen, &iter);
841 
842 		for (;;) {
843 			/* Prepare header of the next frame,
844 			 * before previous one went down. */
845 			if (iter.frag) {
846 				ip_fraglist_ipcb_prepare(skb, &iter);
847 				ip_fraglist_prepare(skb, &iter);
848 			}
849 
850 			skb->tstamp = tstamp;
851 			err = output(net, sk, skb);
852 
853 			if (!err)
854 				IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
855 			if (err || !iter.frag)
856 				break;
857 
858 			skb = ip_fraglist_next(&iter);
859 		}
860 
861 		if (err == 0) {
862 			IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
863 			return 0;
864 		}
865 
866 		kfree_skb_list(iter.frag);
867 
868 		IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
869 		return err;
870 
871 slow_path_clean:
872 		skb_walk_frags(skb, frag2) {
873 			if (frag2 == frag)
874 				break;
875 			frag2->sk = NULL;
876 			frag2->destructor = NULL;
877 			skb->truesize += frag2->truesize;
878 		}
879 	}
880 
881 slow_path:
882 	/*
883 	 *	Fragment the datagram.
884 	 */
885 
886 	ip_frag_init(skb, hlen, ll_rs, mtu, IPCB(skb)->flags & IPSKB_FRAG_PMTU,
887 		     &state);
888 
889 	/*
890 	 *	Keep copying data until we run out.
891 	 */
892 
893 	while (state.left > 0) {
894 		bool first_frag = (state.offset == 0);
895 
896 		skb2 = ip_frag_next(skb, &state);
897 		if (IS_ERR(skb2)) {
898 			err = PTR_ERR(skb2);
899 			goto fail;
900 		}
901 		ip_frag_ipcb(skb, skb2, first_frag, &state);
902 
903 		/*
904 		 *	Put this fragment into the sending queue.
905 		 */
906 		skb2->tstamp = tstamp;
907 		err = output(net, sk, skb2);
908 		if (err)
909 			goto fail;
910 
911 		IP_INC_STATS(net, IPSTATS_MIB_FRAGCREATES);
912 	}
913 	consume_skb(skb);
914 	IP_INC_STATS(net, IPSTATS_MIB_FRAGOKS);
915 	return err;
916 
917 fail:
918 	kfree_skb(skb);
919 	IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
920 	return err;
921 }
922 EXPORT_SYMBOL(ip_do_fragment);
923 
924 int
925 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
926 {
927 	struct msghdr *msg = from;
928 
929 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
930 		if (!copy_from_iter_full(to, len, &msg->msg_iter))
931 			return -EFAULT;
932 	} else {
933 		__wsum csum = 0;
934 		if (!csum_and_copy_from_iter_full(to, len, &csum, &msg->msg_iter))
935 			return -EFAULT;
936 		skb->csum = csum_block_add(skb->csum, csum, odd);
937 	}
938 	return 0;
939 }
940 EXPORT_SYMBOL(ip_generic_getfrag);
941 
942 static inline __wsum
943 csum_page(struct page *page, int offset, int copy)
944 {
945 	char *kaddr;
946 	__wsum csum;
947 	kaddr = kmap(page);
948 	csum = csum_partial(kaddr + offset, copy, 0);
949 	kunmap(page);
950 	return csum;
951 }
952 
953 static int __ip_append_data(struct sock *sk,
954 			    struct flowi4 *fl4,
955 			    struct sk_buff_head *queue,
956 			    struct inet_cork *cork,
957 			    struct page_frag *pfrag,
958 			    int getfrag(void *from, char *to, int offset,
959 					int len, int odd, struct sk_buff *skb),
960 			    void *from, int length, int transhdrlen,
961 			    unsigned int flags)
962 {
963 	struct inet_sock *inet = inet_sk(sk);
964 	struct ubuf_info *uarg = NULL;
965 	struct sk_buff *skb;
966 
967 	struct ip_options *opt = cork->opt;
968 	int hh_len;
969 	int exthdrlen;
970 	int mtu;
971 	int copy;
972 	int err;
973 	int offset = 0;
974 	unsigned int maxfraglen, fragheaderlen, maxnonfragsize;
975 	int csummode = CHECKSUM_NONE;
976 	struct rtable *rt = (struct rtable *)cork->dst;
977 	unsigned int wmem_alloc_delta = 0;
978 	bool paged, extra_uref = false;
979 	u32 tskey = 0;
980 
981 	skb = skb_peek_tail(queue);
982 
983 	exthdrlen = !skb ? rt->dst.header_len : 0;
984 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
985 	paged = !!cork->gso_size;
986 
987 	if (cork->tx_flags & SKBTX_ANY_SW_TSTAMP &&
988 	    sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)
989 		tskey = sk->sk_tskey++;
990 
991 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
992 
993 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
994 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
995 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
996 
997 	if (cork->length + length > maxnonfragsize - fragheaderlen) {
998 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
999 			       mtu - (opt ? opt->optlen : 0));
1000 		return -EMSGSIZE;
1001 	}
1002 
1003 	/*
1004 	 * transhdrlen > 0 means that this is the first fragment and we wish
1005 	 * it won't be fragmented in the future.
1006 	 */
1007 	if (transhdrlen &&
1008 	    length + fragheaderlen <= mtu &&
1009 	    rt->dst.dev->features & (NETIF_F_HW_CSUM | NETIF_F_IP_CSUM) &&
1010 	    (!(flags & MSG_MORE) || cork->gso_size) &&
1011 	    (!exthdrlen || (rt->dst.dev->features & NETIF_F_HW_ESP_TX_CSUM)))
1012 		csummode = CHECKSUM_PARTIAL;
1013 
1014 	if (flags & MSG_ZEROCOPY && length && sock_flag(sk, SOCK_ZEROCOPY)) {
1015 		uarg = sock_zerocopy_realloc(sk, length, skb_zcopy(skb));
1016 		if (!uarg)
1017 			return -ENOBUFS;
1018 		extra_uref = !skb_zcopy(skb);	/* only ref on new uarg */
1019 		if (rt->dst.dev->features & NETIF_F_SG &&
1020 		    csummode == CHECKSUM_PARTIAL) {
1021 			paged = true;
1022 		} else {
1023 			uarg->zerocopy = 0;
1024 			skb_zcopy_set(skb, uarg, &extra_uref);
1025 		}
1026 	}
1027 
1028 	cork->length += length;
1029 
1030 	/* So, what's going on in the loop below?
1031 	 *
1032 	 * We use calculated fragment length to generate chained skb,
1033 	 * each of segments is IP fragment ready for sending to network after
1034 	 * adding appropriate IP header.
1035 	 */
1036 
1037 	if (!skb)
1038 		goto alloc_new_skb;
1039 
1040 	while (length > 0) {
1041 		/* Check if the remaining data fits into current packet. */
1042 		copy = mtu - skb->len;
1043 		if (copy < length)
1044 			copy = maxfraglen - skb->len;
1045 		if (copy <= 0) {
1046 			char *data;
1047 			unsigned int datalen;
1048 			unsigned int fraglen;
1049 			unsigned int fraggap;
1050 			unsigned int alloclen;
1051 			unsigned int pagedlen;
1052 			struct sk_buff *skb_prev;
1053 alloc_new_skb:
1054 			skb_prev = skb;
1055 			if (skb_prev)
1056 				fraggap = skb_prev->len - maxfraglen;
1057 			else
1058 				fraggap = 0;
1059 
1060 			/*
1061 			 * If remaining data exceeds the mtu,
1062 			 * we know we need more fragment(s).
1063 			 */
1064 			datalen = length + fraggap;
1065 			if (datalen > mtu - fragheaderlen)
1066 				datalen = maxfraglen - fragheaderlen;
1067 			fraglen = datalen + fragheaderlen;
1068 			pagedlen = 0;
1069 
1070 			if ((flags & MSG_MORE) &&
1071 			    !(rt->dst.dev->features&NETIF_F_SG))
1072 				alloclen = mtu;
1073 			else if (!paged)
1074 				alloclen = fraglen;
1075 			else {
1076 				alloclen = min_t(int, fraglen, MAX_HEADER);
1077 				pagedlen = fraglen - alloclen;
1078 			}
1079 
1080 			alloclen += exthdrlen;
1081 
1082 			/* The last fragment gets additional space at tail.
1083 			 * Note, with MSG_MORE we overallocate on fragments,
1084 			 * because we have no idea what fragment will be
1085 			 * the last.
1086 			 */
1087 			if (datalen == length + fraggap)
1088 				alloclen += rt->dst.trailer_len;
1089 
1090 			if (transhdrlen) {
1091 				skb = sock_alloc_send_skb(sk,
1092 						alloclen + hh_len + 15,
1093 						(flags & MSG_DONTWAIT), &err);
1094 			} else {
1095 				skb = NULL;
1096 				if (refcount_read(&sk->sk_wmem_alloc) + wmem_alloc_delta <=
1097 				    2 * sk->sk_sndbuf)
1098 					skb = alloc_skb(alloclen + hh_len + 15,
1099 							sk->sk_allocation);
1100 				if (unlikely(!skb))
1101 					err = -ENOBUFS;
1102 			}
1103 			if (!skb)
1104 				goto error;
1105 
1106 			/*
1107 			 *	Fill in the control structures
1108 			 */
1109 			skb->ip_summed = csummode;
1110 			skb->csum = 0;
1111 			skb_reserve(skb, hh_len);
1112 
1113 			/*
1114 			 *	Find where to start putting bytes.
1115 			 */
1116 			data = skb_put(skb, fraglen + exthdrlen - pagedlen);
1117 			skb_set_network_header(skb, exthdrlen);
1118 			skb->transport_header = (skb->network_header +
1119 						 fragheaderlen);
1120 			data += fragheaderlen + exthdrlen;
1121 
1122 			if (fraggap) {
1123 				skb->csum = skb_copy_and_csum_bits(
1124 					skb_prev, maxfraglen,
1125 					data + transhdrlen, fraggap, 0);
1126 				skb_prev->csum = csum_sub(skb_prev->csum,
1127 							  skb->csum);
1128 				data += fraggap;
1129 				pskb_trim_unique(skb_prev, maxfraglen);
1130 			}
1131 
1132 			copy = datalen - transhdrlen - fraggap - pagedlen;
1133 			if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
1134 				err = -EFAULT;
1135 				kfree_skb(skb);
1136 				goto error;
1137 			}
1138 
1139 			offset += copy;
1140 			length -= copy + transhdrlen;
1141 			transhdrlen = 0;
1142 			exthdrlen = 0;
1143 			csummode = CHECKSUM_NONE;
1144 
1145 			/* only the initial fragment is time stamped */
1146 			skb_shinfo(skb)->tx_flags = cork->tx_flags;
1147 			cork->tx_flags = 0;
1148 			skb_shinfo(skb)->tskey = tskey;
1149 			tskey = 0;
1150 			skb_zcopy_set(skb, uarg, &extra_uref);
1151 
1152 			if ((flags & MSG_CONFIRM) && !skb_prev)
1153 				skb_set_dst_pending_confirm(skb, 1);
1154 
1155 			/*
1156 			 * Put the packet on the pending queue.
1157 			 */
1158 			if (!skb->destructor) {
1159 				skb->destructor = sock_wfree;
1160 				skb->sk = sk;
1161 				wmem_alloc_delta += skb->truesize;
1162 			}
1163 			__skb_queue_tail(queue, skb);
1164 			continue;
1165 		}
1166 
1167 		if (copy > length)
1168 			copy = length;
1169 
1170 		if (!(rt->dst.dev->features&NETIF_F_SG) &&
1171 		    skb_tailroom(skb) >= copy) {
1172 			unsigned int off;
1173 
1174 			off = skb->len;
1175 			if (getfrag(from, skb_put(skb, copy),
1176 					offset, copy, off, skb) < 0) {
1177 				__skb_trim(skb, off);
1178 				err = -EFAULT;
1179 				goto error;
1180 			}
1181 		} else if (!uarg || !uarg->zerocopy) {
1182 			int i = skb_shinfo(skb)->nr_frags;
1183 
1184 			err = -ENOMEM;
1185 			if (!sk_page_frag_refill(sk, pfrag))
1186 				goto error;
1187 
1188 			if (!skb_can_coalesce(skb, i, pfrag->page,
1189 					      pfrag->offset)) {
1190 				err = -EMSGSIZE;
1191 				if (i == MAX_SKB_FRAGS)
1192 					goto error;
1193 
1194 				__skb_fill_page_desc(skb, i, pfrag->page,
1195 						     pfrag->offset, 0);
1196 				skb_shinfo(skb)->nr_frags = ++i;
1197 				get_page(pfrag->page);
1198 			}
1199 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1200 			if (getfrag(from,
1201 				    page_address(pfrag->page) + pfrag->offset,
1202 				    offset, copy, skb->len, skb) < 0)
1203 				goto error_efault;
1204 
1205 			pfrag->offset += copy;
1206 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1207 			skb->len += copy;
1208 			skb->data_len += copy;
1209 			skb->truesize += copy;
1210 			wmem_alloc_delta += copy;
1211 		} else {
1212 			err = skb_zerocopy_iter_dgram(skb, from, copy);
1213 			if (err < 0)
1214 				goto error;
1215 		}
1216 		offset += copy;
1217 		length -= copy;
1218 	}
1219 
1220 	if (wmem_alloc_delta)
1221 		refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1222 	return 0;
1223 
1224 error_efault:
1225 	err = -EFAULT;
1226 error:
1227 	if (uarg)
1228 		sock_zerocopy_put_abort(uarg, extra_uref);
1229 	cork->length -= length;
1230 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1231 	refcount_add(wmem_alloc_delta, &sk->sk_wmem_alloc);
1232 	return err;
1233 }
1234 
1235 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1236 			 struct ipcm_cookie *ipc, struct rtable **rtp)
1237 {
1238 	struct ip_options_rcu *opt;
1239 	struct rtable *rt;
1240 
1241 	rt = *rtp;
1242 	if (unlikely(!rt))
1243 		return -EFAULT;
1244 
1245 	/*
1246 	 * setup for corking.
1247 	 */
1248 	opt = ipc->opt;
1249 	if (opt) {
1250 		if (!cork->opt) {
1251 			cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1252 					    sk->sk_allocation);
1253 			if (unlikely(!cork->opt))
1254 				return -ENOBUFS;
1255 		}
1256 		memcpy(cork->opt, &opt->opt, sizeof(struct ip_options) + opt->opt.optlen);
1257 		cork->flags |= IPCORK_OPT;
1258 		cork->addr = ipc->addr;
1259 	}
1260 
1261 	/*
1262 	 * We steal reference to this route, caller should not release it
1263 	 */
1264 	*rtp = NULL;
1265 	cork->fragsize = ip_sk_use_pmtu(sk) ?
1266 			 dst_mtu(&rt->dst) : rt->dst.dev->mtu;
1267 
1268 	cork->gso_size = ipc->gso_size;
1269 	cork->dst = &rt->dst;
1270 	cork->length = 0;
1271 	cork->ttl = ipc->ttl;
1272 	cork->tos = ipc->tos;
1273 	cork->mark = ipc->sockc.mark;
1274 	cork->priority = ipc->priority;
1275 	cork->transmit_time = ipc->sockc.transmit_time;
1276 	cork->tx_flags = 0;
1277 	sock_tx_timestamp(sk, ipc->sockc.tsflags, &cork->tx_flags);
1278 
1279 	return 0;
1280 }
1281 
1282 /*
1283  *	ip_append_data() and ip_append_page() can make one large IP datagram
1284  *	from many pieces of data. Each pieces will be holded on the socket
1285  *	until ip_push_pending_frames() is called. Each piece can be a page
1286  *	or non-page data.
1287  *
1288  *	Not only UDP, other transport protocols - e.g. raw sockets - can use
1289  *	this interface potentially.
1290  *
1291  *	LATER: length must be adjusted by pad at tail, when it is required.
1292  */
1293 int ip_append_data(struct sock *sk, struct flowi4 *fl4,
1294 		   int getfrag(void *from, char *to, int offset, int len,
1295 			       int odd, struct sk_buff *skb),
1296 		   void *from, int length, int transhdrlen,
1297 		   struct ipcm_cookie *ipc, struct rtable **rtp,
1298 		   unsigned int flags)
1299 {
1300 	struct inet_sock *inet = inet_sk(sk);
1301 	int err;
1302 
1303 	if (flags&MSG_PROBE)
1304 		return 0;
1305 
1306 	if (skb_queue_empty(&sk->sk_write_queue)) {
1307 		err = ip_setup_cork(sk, &inet->cork.base, ipc, rtp);
1308 		if (err)
1309 			return err;
1310 	} else {
1311 		transhdrlen = 0;
1312 	}
1313 
1314 	return __ip_append_data(sk, fl4, &sk->sk_write_queue, &inet->cork.base,
1315 				sk_page_frag(sk), getfrag,
1316 				from, length, transhdrlen, flags);
1317 }
1318 
1319 ssize_t	ip_append_page(struct sock *sk, struct flowi4 *fl4, struct page *page,
1320 		       int offset, size_t size, int flags)
1321 {
1322 	struct inet_sock *inet = inet_sk(sk);
1323 	struct sk_buff *skb;
1324 	struct rtable *rt;
1325 	struct ip_options *opt = NULL;
1326 	struct inet_cork *cork;
1327 	int hh_len;
1328 	int mtu;
1329 	int len;
1330 	int err;
1331 	unsigned int maxfraglen, fragheaderlen, fraggap, maxnonfragsize;
1332 
1333 	if (inet->hdrincl)
1334 		return -EPERM;
1335 
1336 	if (flags&MSG_PROBE)
1337 		return 0;
1338 
1339 	if (skb_queue_empty(&sk->sk_write_queue))
1340 		return -EINVAL;
1341 
1342 	cork = &inet->cork.base;
1343 	rt = (struct rtable *)cork->dst;
1344 	if (cork->flags & IPCORK_OPT)
1345 		opt = cork->opt;
1346 
1347 	if (!(rt->dst.dev->features&NETIF_F_SG))
1348 		return -EOPNOTSUPP;
1349 
1350 	hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1351 	mtu = cork->gso_size ? IP_MAX_MTU : cork->fragsize;
1352 
1353 	fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1354 	maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1355 	maxnonfragsize = ip_sk_ignore_df(sk) ? 0xFFFF : mtu;
1356 
1357 	if (cork->length + size > maxnonfragsize - fragheaderlen) {
1358 		ip_local_error(sk, EMSGSIZE, fl4->daddr, inet->inet_dport,
1359 			       mtu - (opt ? opt->optlen : 0));
1360 		return -EMSGSIZE;
1361 	}
1362 
1363 	skb = skb_peek_tail(&sk->sk_write_queue);
1364 	if (!skb)
1365 		return -EINVAL;
1366 
1367 	cork->length += size;
1368 
1369 	while (size > 0) {
1370 		/* Check if the remaining data fits into current packet. */
1371 		len = mtu - skb->len;
1372 		if (len < size)
1373 			len = maxfraglen - skb->len;
1374 
1375 		if (len <= 0) {
1376 			struct sk_buff *skb_prev;
1377 			int alloclen;
1378 
1379 			skb_prev = skb;
1380 			fraggap = skb_prev->len - maxfraglen;
1381 
1382 			alloclen = fragheaderlen + hh_len + fraggap + 15;
1383 			skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1384 			if (unlikely(!skb)) {
1385 				err = -ENOBUFS;
1386 				goto error;
1387 			}
1388 
1389 			/*
1390 			 *	Fill in the control structures
1391 			 */
1392 			skb->ip_summed = CHECKSUM_NONE;
1393 			skb->csum = 0;
1394 			skb_reserve(skb, hh_len);
1395 
1396 			/*
1397 			 *	Find where to start putting bytes.
1398 			 */
1399 			skb_put(skb, fragheaderlen + fraggap);
1400 			skb_reset_network_header(skb);
1401 			skb->transport_header = (skb->network_header +
1402 						 fragheaderlen);
1403 			if (fraggap) {
1404 				skb->csum = skb_copy_and_csum_bits(skb_prev,
1405 								   maxfraglen,
1406 						    skb_transport_header(skb),
1407 								   fraggap, 0);
1408 				skb_prev->csum = csum_sub(skb_prev->csum,
1409 							  skb->csum);
1410 				pskb_trim_unique(skb_prev, maxfraglen);
1411 			}
1412 
1413 			/*
1414 			 * Put the packet on the pending queue.
1415 			 */
1416 			__skb_queue_tail(&sk->sk_write_queue, skb);
1417 			continue;
1418 		}
1419 
1420 		if (len > size)
1421 			len = size;
1422 
1423 		if (skb_append_pagefrags(skb, page, offset, len)) {
1424 			err = -EMSGSIZE;
1425 			goto error;
1426 		}
1427 
1428 		if (skb->ip_summed == CHECKSUM_NONE) {
1429 			__wsum csum;
1430 			csum = csum_page(page, offset, len);
1431 			skb->csum = csum_block_add(skb->csum, csum, skb->len);
1432 		}
1433 
1434 		skb->len += len;
1435 		skb->data_len += len;
1436 		skb->truesize += len;
1437 		refcount_add(len, &sk->sk_wmem_alloc);
1438 		offset += len;
1439 		size -= len;
1440 	}
1441 	return 0;
1442 
1443 error:
1444 	cork->length -= size;
1445 	IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1446 	return err;
1447 }
1448 
1449 static void ip_cork_release(struct inet_cork *cork)
1450 {
1451 	cork->flags &= ~IPCORK_OPT;
1452 	kfree(cork->opt);
1453 	cork->opt = NULL;
1454 	dst_release(cork->dst);
1455 	cork->dst = NULL;
1456 }
1457 
1458 /*
1459  *	Combined all pending IP fragments on the socket as one IP datagram
1460  *	and push them out.
1461  */
1462 struct sk_buff *__ip_make_skb(struct sock *sk,
1463 			      struct flowi4 *fl4,
1464 			      struct sk_buff_head *queue,
1465 			      struct inet_cork *cork)
1466 {
1467 	struct sk_buff *skb, *tmp_skb;
1468 	struct sk_buff **tail_skb;
1469 	struct inet_sock *inet = inet_sk(sk);
1470 	struct net *net = sock_net(sk);
1471 	struct ip_options *opt = NULL;
1472 	struct rtable *rt = (struct rtable *)cork->dst;
1473 	struct iphdr *iph;
1474 	__be16 df = 0;
1475 	__u8 ttl;
1476 
1477 	skb = __skb_dequeue(queue);
1478 	if (!skb)
1479 		goto out;
1480 	tail_skb = &(skb_shinfo(skb)->frag_list);
1481 
1482 	/* move skb->data to ip header from ext header */
1483 	if (skb->data < skb_network_header(skb))
1484 		__skb_pull(skb, skb_network_offset(skb));
1485 	while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1486 		__skb_pull(tmp_skb, skb_network_header_len(skb));
1487 		*tail_skb = tmp_skb;
1488 		tail_skb = &(tmp_skb->next);
1489 		skb->len += tmp_skb->len;
1490 		skb->data_len += tmp_skb->len;
1491 		skb->truesize += tmp_skb->truesize;
1492 		tmp_skb->destructor = NULL;
1493 		tmp_skb->sk = NULL;
1494 	}
1495 
1496 	/* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1497 	 * to fragment the frame generated here. No matter, what transforms
1498 	 * how transforms change size of the packet, it will come out.
1499 	 */
1500 	skb->ignore_df = ip_sk_ignore_df(sk);
1501 
1502 	/* DF bit is set when we want to see DF on outgoing frames.
1503 	 * If ignore_df is set too, we still allow to fragment this frame
1504 	 * locally. */
1505 	if (inet->pmtudisc == IP_PMTUDISC_DO ||
1506 	    inet->pmtudisc == IP_PMTUDISC_PROBE ||
1507 	    (skb->len <= dst_mtu(&rt->dst) &&
1508 	     ip_dont_fragment(sk, &rt->dst)))
1509 		df = htons(IP_DF);
1510 
1511 	if (cork->flags & IPCORK_OPT)
1512 		opt = cork->opt;
1513 
1514 	if (cork->ttl != 0)
1515 		ttl = cork->ttl;
1516 	else if (rt->rt_type == RTN_MULTICAST)
1517 		ttl = inet->mc_ttl;
1518 	else
1519 		ttl = ip_select_ttl(inet, &rt->dst);
1520 
1521 	iph = ip_hdr(skb);
1522 	iph->version = 4;
1523 	iph->ihl = 5;
1524 	iph->tos = (cork->tos != -1) ? cork->tos : inet->tos;
1525 	iph->frag_off = df;
1526 	iph->ttl = ttl;
1527 	iph->protocol = sk->sk_protocol;
1528 	ip_copy_addrs(iph, fl4);
1529 	ip_select_ident(net, skb, sk);
1530 
1531 	if (opt) {
1532 		iph->ihl += opt->optlen>>2;
1533 		ip_options_build(skb, opt, cork->addr, rt, 0);
1534 	}
1535 
1536 	skb->priority = (cork->tos != -1) ? cork->priority: sk->sk_priority;
1537 	skb->mark = cork->mark;
1538 	skb->tstamp = cork->transmit_time;
1539 	/*
1540 	 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1541 	 * on dst refcount
1542 	 */
1543 	cork->dst = NULL;
1544 	skb_dst_set(skb, &rt->dst);
1545 
1546 	if (iph->protocol == IPPROTO_ICMP)
1547 		icmp_out_count(net, ((struct icmphdr *)
1548 			skb_transport_header(skb))->type);
1549 
1550 	ip_cork_release(cork);
1551 out:
1552 	return skb;
1553 }
1554 
1555 int ip_send_skb(struct net *net, struct sk_buff *skb)
1556 {
1557 	int err;
1558 
1559 	err = ip_local_out(net, skb->sk, skb);
1560 	if (err) {
1561 		if (err > 0)
1562 			err = net_xmit_errno(err);
1563 		if (err)
1564 			IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1565 	}
1566 
1567 	return err;
1568 }
1569 
1570 int ip_push_pending_frames(struct sock *sk, struct flowi4 *fl4)
1571 {
1572 	struct sk_buff *skb;
1573 
1574 	skb = ip_finish_skb(sk, fl4);
1575 	if (!skb)
1576 		return 0;
1577 
1578 	/* Netfilter gets whole the not fragmented skb. */
1579 	return ip_send_skb(sock_net(sk), skb);
1580 }
1581 
1582 /*
1583  *	Throw away all pending data on the socket.
1584  */
1585 static void __ip_flush_pending_frames(struct sock *sk,
1586 				      struct sk_buff_head *queue,
1587 				      struct inet_cork *cork)
1588 {
1589 	struct sk_buff *skb;
1590 
1591 	while ((skb = __skb_dequeue_tail(queue)) != NULL)
1592 		kfree_skb(skb);
1593 
1594 	ip_cork_release(cork);
1595 }
1596 
1597 void ip_flush_pending_frames(struct sock *sk)
1598 {
1599 	__ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork.base);
1600 }
1601 
1602 struct sk_buff *ip_make_skb(struct sock *sk,
1603 			    struct flowi4 *fl4,
1604 			    int getfrag(void *from, char *to, int offset,
1605 					int len, int odd, struct sk_buff *skb),
1606 			    void *from, int length, int transhdrlen,
1607 			    struct ipcm_cookie *ipc, struct rtable **rtp,
1608 			    struct inet_cork *cork, unsigned int flags)
1609 {
1610 	struct sk_buff_head queue;
1611 	int err;
1612 
1613 	if (flags & MSG_PROBE)
1614 		return NULL;
1615 
1616 	__skb_queue_head_init(&queue);
1617 
1618 	cork->flags = 0;
1619 	cork->addr = 0;
1620 	cork->opt = NULL;
1621 	err = ip_setup_cork(sk, cork, ipc, rtp);
1622 	if (err)
1623 		return ERR_PTR(err);
1624 
1625 	err = __ip_append_data(sk, fl4, &queue, cork,
1626 			       &current->task_frag, getfrag,
1627 			       from, length, transhdrlen, flags);
1628 	if (err) {
1629 		__ip_flush_pending_frames(sk, &queue, cork);
1630 		return ERR_PTR(err);
1631 	}
1632 
1633 	return __ip_make_skb(sk, fl4, &queue, cork);
1634 }
1635 
1636 /*
1637  *	Fetch data from kernel space and fill in checksum if needed.
1638  */
1639 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1640 			      int len, int odd, struct sk_buff *skb)
1641 {
1642 	__wsum csum;
1643 
1644 	csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1645 	skb->csum = csum_block_add(skb->csum, csum, odd);
1646 	return 0;
1647 }
1648 
1649 /*
1650  *	Generic function to send a packet as reply to another packet.
1651  *	Used to send some TCP resets/acks so far.
1652  */
1653 void ip_send_unicast_reply(struct sock *sk, struct sk_buff *skb,
1654 			   const struct ip_options *sopt,
1655 			   __be32 daddr, __be32 saddr,
1656 			   const struct ip_reply_arg *arg,
1657 			   unsigned int len, u64 transmit_time)
1658 {
1659 	struct ip_options_data replyopts;
1660 	struct ipcm_cookie ipc;
1661 	struct flowi4 fl4;
1662 	struct rtable *rt = skb_rtable(skb);
1663 	struct net *net = sock_net(sk);
1664 	struct sk_buff *nskb;
1665 	int err;
1666 	int oif;
1667 
1668 	if (__ip_options_echo(net, &replyopts.opt.opt, skb, sopt))
1669 		return;
1670 
1671 	ipcm_init(&ipc);
1672 	ipc.addr = daddr;
1673 	ipc.sockc.transmit_time = transmit_time;
1674 
1675 	if (replyopts.opt.opt.optlen) {
1676 		ipc.opt = &replyopts.opt;
1677 
1678 		if (replyopts.opt.opt.srr)
1679 			daddr = replyopts.opt.opt.faddr;
1680 	}
1681 
1682 	oif = arg->bound_dev_if;
1683 	if (!oif && netif_index_is_l3_master(net, skb->skb_iif))
1684 		oif = skb->skb_iif;
1685 
1686 	flowi4_init_output(&fl4, oif,
1687 			   IP4_REPLY_MARK(net, skb->mark) ?: sk->sk_mark,
1688 			   RT_TOS(arg->tos),
1689 			   RT_SCOPE_UNIVERSE, ip_hdr(skb)->protocol,
1690 			   ip_reply_arg_flowi_flags(arg),
1691 			   daddr, saddr,
1692 			   tcp_hdr(skb)->source, tcp_hdr(skb)->dest,
1693 			   arg->uid);
1694 	security_skb_classify_flow(skb, flowi4_to_flowi(&fl4));
1695 	rt = ip_route_output_key(net, &fl4);
1696 	if (IS_ERR(rt))
1697 		return;
1698 
1699 	inet_sk(sk)->tos = arg->tos;
1700 
1701 	sk->sk_protocol = ip_hdr(skb)->protocol;
1702 	sk->sk_bound_dev_if = arg->bound_dev_if;
1703 	sk->sk_sndbuf = sysctl_wmem_default;
1704 	sk->sk_mark = fl4.flowi4_mark;
1705 	err = ip_append_data(sk, &fl4, ip_reply_glue_bits, arg->iov->iov_base,
1706 			     len, 0, &ipc, &rt, MSG_DONTWAIT);
1707 	if (unlikely(err)) {
1708 		ip_flush_pending_frames(sk);
1709 		goto out;
1710 	}
1711 
1712 	nskb = skb_peek(&sk->sk_write_queue);
1713 	if (nskb) {
1714 		if (arg->csumoffset >= 0)
1715 			*((__sum16 *)skb_transport_header(nskb) +
1716 			  arg->csumoffset) = csum_fold(csum_add(nskb->csum,
1717 								arg->csum));
1718 		nskb->ip_summed = CHECKSUM_NONE;
1719 		ip_push_pending_frames(sk, &fl4);
1720 	}
1721 out:
1722 	ip_rt_put(rt);
1723 }
1724 
1725 void __init ip_init(void)
1726 {
1727 	ip_rt_init();
1728 	inet_initpeers();
1729 
1730 #if defined(CONFIG_IP_MULTICAST)
1731 	igmp_mc_init();
1732 #endif
1733 }
1734