xref: /linux/net/ipv4/tcp_output.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
24  *				:	Fragmentation on mtu decrease
25  *				:	Segment collapse on retransmit
26  *				:	AF independence
27  *
28  *		Linus Torvalds	:	send_delayed_ack
29  *		David S. Miller	:	Charge memory using the right skb
30  *					during syn/ack processing.
31  *		David S. Miller :	Output engine completely rewritten.
32  *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
33  *		Cacophonix Gaul :	draft-minshall-nagle-01
34  *		J Hadi Salim	:	ECN support
35  *
36  */
37 
38 #define pr_fmt(fmt) "TCP: " fmt
39 
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42 
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47 
48 #include <trace/events/tcp.h>
49 
50 /* Refresh clocks of a TCP socket,
51  * ensuring monotically increasing values.
52  */
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 	u64 val = tcp_clock_ns();
56 
57 	tp->tcp_clock_cache = val;
58 	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60 
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 			   int push_one, gfp_t gfp);
63 
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 	struct inet_connection_sock *icsk = inet_csk(sk);
68 	struct tcp_sock *tp = tcp_sk(sk);
69 	unsigned int prior_packets = tp->packets_out;
70 
71 	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72 
73 	__skb_unlink(skb, &sk->sk_write_queue);
74 	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75 
76 	if (tp->highest_sack == NULL)
77 		tp->highest_sack = skb;
78 
79 	tp->packets_out += tcp_skb_pcount(skb);
80 	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 		tcp_rearm_rto(sk);
82 
83 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 		      tcp_skb_pcount(skb));
85 	tcp_check_space(sk);
86 }
87 
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89  * window scaling factor due to loss of precision.
90  * If window has been shrunk, what should we make? It is not clear at all.
91  * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92  * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93  * invalid. OK, let's make this for now:
94  */
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 	const struct tcp_sock *tp = tcp_sk(sk);
98 
99 	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 	    (tp->rx_opt.wscale_ok &&
101 	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 		return tp->snd_nxt;
103 	else
104 		return tcp_wnd_end(tp);
105 }
106 
107 /* Calculate mss to advertise in SYN segment.
108  * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109  *
110  * 1. It is independent of path mtu.
111  * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112  * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113  *    attached devices, because some buggy hosts are confused by
114  *    large MSS.
115  * 4. We do not make 3, we advertise MSS, calculated from first
116  *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
117  *    This may be overridden via information stored in routing table.
118  * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119  *    probably even Jumbo".
120  */
121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 	struct tcp_sock *tp = tcp_sk(sk);
124 	const struct dst_entry *dst = __sk_dst_get(sk);
125 	int mss = tp->advmss;
126 
127 	if (dst) {
128 		unsigned int metric = dst_metric_advmss(dst);
129 
130 		if (metric < mss) {
131 			mss = metric;
132 			tp->advmss = mss;
133 		}
134 	}
135 
136 	return (__u16)mss;
137 }
138 
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140  * This is the first part of cwnd validation mechanism.
141  */
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 	struct tcp_sock *tp = tcp_sk(sk);
145 	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 	u32 cwnd = tcp_snd_cwnd(tp);
147 
148 	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 
150 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 	restart_cwnd = min(restart_cwnd, cwnd);
152 
153 	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 		cwnd >>= 1;
155 	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 	tp->snd_cwnd_stamp = tcp_jiffies32;
157 	tp->snd_cwnd_used = 0;
158 }
159 
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 				struct sock *sk)
163 {
164 	struct inet_connection_sock *icsk = inet_csk(sk);
165 	const u32 now = tcp_jiffies32;
166 
167 	if (tcp_packets_in_flight(tp) == 0)
168 		tcp_ca_event(sk, CA_EVENT_TX_START);
169 
170 	tp->lsndtime = now;
171 
172 	/* If it is a reply for ato after last received
173 	 * packet, increase pingpong count.
174 	 */
175 	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 		inet_csk_inc_pingpong_cnt(sk);
177 }
178 
179 /* Account for an ACK we sent. */
180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 	struct tcp_sock *tp = tcp_sk(sk);
183 
184 	if (unlikely(tp->compressed_ack)) {
185 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 			      tp->compressed_ack);
187 		tp->compressed_ack = 0;
188 		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 			__sock_put(sk);
190 	}
191 
192 	if (unlikely(rcv_nxt != tp->rcv_nxt))
193 		return;  /* Special ACK sent by DCTCP to reflect ECN */
194 	tcp_dec_quickack_mode(sk);
195 	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197 
198 /* Determine a window scaling and initial window to offer.
199  * Based on the assumption that the given amount of space
200  * will be offered. Store the results in the tp structure.
201  * NOTE: for smooth operation initial space offering should
202  * be a multiple of mss if possible. We assume here that mss >= 1.
203  * This MUST be enforced by all callers.
204  */
205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 			       __u32 *rcv_wnd, __u32 *window_clamp,
207 			       int wscale_ok, __u8 *rcv_wscale,
208 			       __u32 init_rcv_wnd)
209 {
210 	unsigned int space = (__space < 0 ? 0 : __space);
211 
212 	/* If no clamp set the clamp to the max possible scaled window */
213 	if (*window_clamp == 0)
214 		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215 	space = min(*window_clamp, space);
216 
217 	/* Quantize space offering to a multiple of mss if possible. */
218 	if (space > mss)
219 		space = rounddown(space, mss);
220 
221 	/* NOTE: offering an initial window larger than 32767
222 	 * will break some buggy TCP stacks. If the admin tells us
223 	 * it is likely we could be speaking with such a buggy stack
224 	 * we will truncate our initial window offering to 32K-1
225 	 * unless the remote has sent us a window scaling option,
226 	 * which we interpret as a sign the remote TCP is not
227 	 * misinterpreting the window field as a signed quantity.
228 	 */
229 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
230 		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 	else
232 		(*rcv_wnd) = min_t(u32, space, U16_MAX);
233 
234 	if (init_rcv_wnd)
235 		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236 
237 	*rcv_wscale = 0;
238 	if (wscale_ok) {
239 		/* Set window scaling on max possible window */
240 		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
241 		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
242 		space = min_t(u32, space, *window_clamp);
243 		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
244 				      0, TCP_MAX_WSCALE);
245 	}
246 	/* Set the clamp no higher than max representable value */
247 	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248 }
249 EXPORT_SYMBOL(tcp_select_initial_window);
250 
251 /* Chose a new window to advertise, update state in tcp_sock for the
252  * socket, and return result with RFC1323 scaling applied.  The return
253  * value can be stuffed directly into th->window for an outgoing
254  * frame.
255  */
256 static u16 tcp_select_window(struct sock *sk)
257 {
258 	struct tcp_sock *tp = tcp_sk(sk);
259 	struct net *net = sock_net(sk);
260 	u32 old_win = tp->rcv_wnd;
261 	u32 cur_win, new_win;
262 
263 	/* Make the window 0 if we failed to queue the data because we
264 	 * are out of memory. The window is temporary, so we don't store
265 	 * it on the socket.
266 	 */
267 	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
268 		return 0;
269 
270 	cur_win = tcp_receive_window(tp);
271 	new_win = __tcp_select_window(sk);
272 	if (new_win < cur_win) {
273 		/* Danger Will Robinson!
274 		 * Don't update rcv_wup/rcv_wnd here or else
275 		 * we will not be able to advertise a zero
276 		 * window in time.  --DaveM
277 		 *
278 		 * Relax Will Robinson.
279 		 */
280 		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
281 			/* Never shrink the offered window */
282 			if (new_win == 0)
283 				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
284 			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 		}
286 	}
287 
288 	tp->rcv_wnd = new_win;
289 	tp->rcv_wup = tp->rcv_nxt;
290 
291 	/* Make sure we do not exceed the maximum possible
292 	 * scaled window.
293 	 */
294 	if (!tp->rx_opt.rcv_wscale &&
295 	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
296 		new_win = min(new_win, MAX_TCP_WINDOW);
297 	else
298 		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
299 
300 	/* RFC1323 scaling applied */
301 	new_win >>= tp->rx_opt.rcv_wscale;
302 
303 	/* If we advertise zero window, disable fast path. */
304 	if (new_win == 0) {
305 		tp->pred_flags = 0;
306 		if (old_win)
307 			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
308 	} else if (old_win == 0) {
309 		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
310 	}
311 
312 	return new_win;
313 }
314 
315 /* Packet ECN state for a SYN-ACK */
316 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
317 {
318 	const struct tcp_sock *tp = tcp_sk(sk);
319 
320 	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
321 	if (!(tp->ecn_flags & TCP_ECN_OK))
322 		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
323 	else if (tcp_ca_needs_ecn(sk) ||
324 		 tcp_bpf_ca_needs_ecn(sk))
325 		INET_ECN_xmit(sk);
326 }
327 
328 /* Packet ECN state for a SYN.  */
329 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
330 {
331 	struct tcp_sock *tp = tcp_sk(sk);
332 	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
333 	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
334 		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
335 
336 	if (!use_ecn) {
337 		const struct dst_entry *dst = __sk_dst_get(sk);
338 
339 		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 			use_ecn = true;
341 	}
342 
343 	tp->ecn_flags = 0;
344 
345 	if (use_ecn) {
346 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 		tp->ecn_flags = TCP_ECN_OK;
348 		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
349 			INET_ECN_xmit(sk);
350 	}
351 }
352 
353 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
354 {
355 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
356 		/* tp->ecn_flags are cleared at a later point in time when
357 		 * SYN ACK is ultimatively being received.
358 		 */
359 		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
360 }
361 
362 static void
363 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
364 {
365 	if (inet_rsk(req)->ecn_ok)
366 		th->ece = 1;
367 }
368 
369 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
370  * be sent.
371  */
372 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
373 			 struct tcphdr *th, int tcp_header_len)
374 {
375 	struct tcp_sock *tp = tcp_sk(sk);
376 
377 	if (tp->ecn_flags & TCP_ECN_OK) {
378 		/* Not-retransmitted data segment: set ECT and inject CWR. */
379 		if (skb->len != tcp_header_len &&
380 		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
381 			INET_ECN_xmit(sk);
382 			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
383 				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
384 				th->cwr = 1;
385 				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
386 			}
387 		} else if (!tcp_ca_needs_ecn(sk)) {
388 			/* ACK or retransmitted segment: clear ECT|CE */
389 			INET_ECN_dontxmit(sk);
390 		}
391 		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
392 			th->ece = 1;
393 	}
394 }
395 
396 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
397  * auto increment end seqno.
398  */
399 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
400 {
401 	skb->ip_summed = CHECKSUM_PARTIAL;
402 
403 	TCP_SKB_CB(skb)->tcp_flags = flags;
404 
405 	tcp_skb_pcount_set(skb, 1);
406 
407 	TCP_SKB_CB(skb)->seq = seq;
408 	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
409 		seq++;
410 	TCP_SKB_CB(skb)->end_seq = seq;
411 }
412 
413 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
414 {
415 	return tp->snd_una != tp->snd_up;
416 }
417 
418 #define OPTION_SACK_ADVERTISE	BIT(0)
419 #define OPTION_TS		BIT(1)
420 #define OPTION_MD5		BIT(2)
421 #define OPTION_WSCALE		BIT(3)
422 #define OPTION_FAST_OPEN_COOKIE	BIT(8)
423 #define OPTION_SMC		BIT(9)
424 #define OPTION_MPTCP		BIT(10)
425 #define OPTION_AO		BIT(11)
426 
427 static void smc_options_write(__be32 *ptr, u16 *options)
428 {
429 #if IS_ENABLED(CONFIG_SMC)
430 	if (static_branch_unlikely(&tcp_have_smc)) {
431 		if (unlikely(OPTION_SMC & *options)) {
432 			*ptr++ = htonl((TCPOPT_NOP  << 24) |
433 				       (TCPOPT_NOP  << 16) |
434 				       (TCPOPT_EXP <<  8) |
435 				       (TCPOLEN_EXP_SMC_BASE));
436 			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
437 		}
438 	}
439 #endif
440 }
441 
442 struct tcp_out_options {
443 	u16 options;		/* bit field of OPTION_* */
444 	u16 mss;		/* 0 to disable */
445 	u8 ws;			/* window scale, 0 to disable */
446 	u8 num_sack_blocks;	/* number of SACK blocks to include */
447 	u8 hash_size;		/* bytes in hash_location */
448 	u8 bpf_opt_len;		/* length of BPF hdr option */
449 	__u8 *hash_location;	/* temporary pointer, overloaded */
450 	__u32 tsval, tsecr;	/* need to include OPTION_TS */
451 	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
452 	struct mptcp_out_options mptcp;
453 };
454 
455 static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
456 				struct tcp_sock *tp,
457 				struct tcp_out_options *opts)
458 {
459 #if IS_ENABLED(CONFIG_MPTCP)
460 	if (unlikely(OPTION_MPTCP & opts->options))
461 		mptcp_write_options(th, ptr, tp, &opts->mptcp);
462 #endif
463 }
464 
465 #ifdef CONFIG_CGROUP_BPF
466 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
467 					enum tcp_synack_type synack_type)
468 {
469 	if (unlikely(!skb))
470 		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
471 
472 	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
473 		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
474 
475 	return 0;
476 }
477 
478 /* req, syn_skb and synack_type are used when writing synack */
479 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
480 				  struct request_sock *req,
481 				  struct sk_buff *syn_skb,
482 				  enum tcp_synack_type synack_type,
483 				  struct tcp_out_options *opts,
484 				  unsigned int *remaining)
485 {
486 	struct bpf_sock_ops_kern sock_ops;
487 	int err;
488 
489 	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
490 					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
491 	    !*remaining)
492 		return;
493 
494 	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
495 
496 	/* init sock_ops */
497 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
498 
499 	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
500 
501 	if (req) {
502 		/* The listen "sk" cannot be passed here because
503 		 * it is not locked.  It would not make too much
504 		 * sense to do bpf_setsockopt(listen_sk) based
505 		 * on individual connection request also.
506 		 *
507 		 * Thus, "req" is passed here and the cgroup-bpf-progs
508 		 * of the listen "sk" will be run.
509 		 *
510 		 * "req" is also used here for fastopen even the "sk" here is
511 		 * a fullsock "child" sk.  It is to keep the behavior
512 		 * consistent between fastopen and non-fastopen on
513 		 * the bpf programming side.
514 		 */
515 		sock_ops.sk = (struct sock *)req;
516 		sock_ops.syn_skb = syn_skb;
517 	} else {
518 		sock_owned_by_me(sk);
519 
520 		sock_ops.is_fullsock = 1;
521 		sock_ops.sk = sk;
522 	}
523 
524 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
525 	sock_ops.remaining_opt_len = *remaining;
526 	/* tcp_current_mss() does not pass a skb */
527 	if (skb)
528 		bpf_skops_init_skb(&sock_ops, skb, 0);
529 
530 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
531 
532 	if (err || sock_ops.remaining_opt_len == *remaining)
533 		return;
534 
535 	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
536 	/* round up to 4 bytes */
537 	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
538 
539 	*remaining -= opts->bpf_opt_len;
540 }
541 
542 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
543 				    struct request_sock *req,
544 				    struct sk_buff *syn_skb,
545 				    enum tcp_synack_type synack_type,
546 				    struct tcp_out_options *opts)
547 {
548 	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
549 	struct bpf_sock_ops_kern sock_ops;
550 	int err;
551 
552 	if (likely(!max_opt_len))
553 		return;
554 
555 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
556 
557 	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
558 
559 	if (req) {
560 		sock_ops.sk = (struct sock *)req;
561 		sock_ops.syn_skb = syn_skb;
562 	} else {
563 		sock_owned_by_me(sk);
564 
565 		sock_ops.is_fullsock = 1;
566 		sock_ops.sk = sk;
567 	}
568 
569 	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
570 	sock_ops.remaining_opt_len = max_opt_len;
571 	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
572 	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
573 
574 	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
575 
576 	if (err)
577 		nr_written = 0;
578 	else
579 		nr_written = max_opt_len - sock_ops.remaining_opt_len;
580 
581 	if (nr_written < max_opt_len)
582 		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
583 		       max_opt_len - nr_written);
584 }
585 #else
586 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
587 				  struct request_sock *req,
588 				  struct sk_buff *syn_skb,
589 				  enum tcp_synack_type synack_type,
590 				  struct tcp_out_options *opts,
591 				  unsigned int *remaining)
592 {
593 }
594 
595 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
596 				    struct request_sock *req,
597 				    struct sk_buff *syn_skb,
598 				    enum tcp_synack_type synack_type,
599 				    struct tcp_out_options *opts)
600 {
601 }
602 #endif
603 
604 static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
605 				      const struct tcp_request_sock *tcprsk,
606 				      struct tcp_out_options *opts,
607 				      struct tcp_key *key, __be32 *ptr)
608 {
609 #ifdef CONFIG_TCP_AO
610 	u8 maclen = tcp_ao_maclen(key->ao_key);
611 
612 	if (tcprsk) {
613 		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
614 
615 		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
616 			       (tcprsk->ao_keyid << 8) |
617 			       (tcprsk->ao_rcv_next));
618 	} else {
619 		struct tcp_ao_key *rnext_key;
620 		struct tcp_ao_info *ao_info;
621 
622 		ao_info = rcu_dereference_check(tp->ao_info,
623 			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
624 		rnext_key = READ_ONCE(ao_info->rnext_key);
625 		if (WARN_ON_ONCE(!rnext_key))
626 			return ptr;
627 		*ptr++ = htonl((TCPOPT_AO << 24) |
628 			       (tcp_ao_len(key->ao_key) << 16) |
629 			       (key->ao_key->sndid << 8) |
630 			       (rnext_key->rcvid));
631 	}
632 	opts->hash_location = (__u8 *)ptr;
633 	ptr += maclen / sizeof(*ptr);
634 	if (unlikely(maclen % sizeof(*ptr))) {
635 		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
636 		ptr++;
637 	}
638 #endif
639 	return ptr;
640 }
641 
642 /* Write previously computed TCP options to the packet.
643  *
644  * Beware: Something in the Internet is very sensitive to the ordering of
645  * TCP options, we learned this through the hard way, so be careful here.
646  * Luckily we can at least blame others for their non-compliance but from
647  * inter-operability perspective it seems that we're somewhat stuck with
648  * the ordering which we have been using if we want to keep working with
649  * those broken things (not that it currently hurts anybody as there isn't
650  * particular reason why the ordering would need to be changed).
651  *
652  * At least SACK_PERM as the first option is known to lead to a disaster
653  * (but it may well be that other scenarios fail similarly).
654  */
655 static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
656 			      const struct tcp_request_sock *tcprsk,
657 			      struct tcp_out_options *opts,
658 			      struct tcp_key *key)
659 {
660 	__be32 *ptr = (__be32 *)(th + 1);
661 	u16 options = opts->options;	/* mungable copy */
662 
663 	if (tcp_key_is_md5(key)) {
664 		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
665 			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
666 		/* overload cookie hash location */
667 		opts->hash_location = (__u8 *)ptr;
668 		ptr += 4;
669 	} else if (tcp_key_is_ao(key)) {
670 		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
671 	}
672 	if (unlikely(opts->mss)) {
673 		*ptr++ = htonl((TCPOPT_MSS << 24) |
674 			       (TCPOLEN_MSS << 16) |
675 			       opts->mss);
676 	}
677 
678 	if (likely(OPTION_TS & options)) {
679 		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
680 			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
681 				       (TCPOLEN_SACK_PERM << 16) |
682 				       (TCPOPT_TIMESTAMP << 8) |
683 				       TCPOLEN_TIMESTAMP);
684 			options &= ~OPTION_SACK_ADVERTISE;
685 		} else {
686 			*ptr++ = htonl((TCPOPT_NOP << 24) |
687 				       (TCPOPT_NOP << 16) |
688 				       (TCPOPT_TIMESTAMP << 8) |
689 				       TCPOLEN_TIMESTAMP);
690 		}
691 		*ptr++ = htonl(opts->tsval);
692 		*ptr++ = htonl(opts->tsecr);
693 	}
694 
695 	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
696 		*ptr++ = htonl((TCPOPT_NOP << 24) |
697 			       (TCPOPT_NOP << 16) |
698 			       (TCPOPT_SACK_PERM << 8) |
699 			       TCPOLEN_SACK_PERM);
700 	}
701 
702 	if (unlikely(OPTION_WSCALE & options)) {
703 		*ptr++ = htonl((TCPOPT_NOP << 24) |
704 			       (TCPOPT_WINDOW << 16) |
705 			       (TCPOLEN_WINDOW << 8) |
706 			       opts->ws);
707 	}
708 
709 	if (unlikely(opts->num_sack_blocks)) {
710 		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
711 			tp->duplicate_sack : tp->selective_acks;
712 		int this_sack;
713 
714 		*ptr++ = htonl((TCPOPT_NOP  << 24) |
715 			       (TCPOPT_NOP  << 16) |
716 			       (TCPOPT_SACK <<  8) |
717 			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
718 						     TCPOLEN_SACK_PERBLOCK)));
719 
720 		for (this_sack = 0; this_sack < opts->num_sack_blocks;
721 		     ++this_sack) {
722 			*ptr++ = htonl(sp[this_sack].start_seq);
723 			*ptr++ = htonl(sp[this_sack].end_seq);
724 		}
725 
726 		tp->rx_opt.dsack = 0;
727 	}
728 
729 	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
730 		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
731 		u8 *p = (u8 *)ptr;
732 		u32 len; /* Fast Open option length */
733 
734 		if (foc->exp) {
735 			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
736 			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
737 				     TCPOPT_FASTOPEN_MAGIC);
738 			p += TCPOLEN_EXP_FASTOPEN_BASE;
739 		} else {
740 			len = TCPOLEN_FASTOPEN_BASE + foc->len;
741 			*p++ = TCPOPT_FASTOPEN;
742 			*p++ = len;
743 		}
744 
745 		memcpy(p, foc->val, foc->len);
746 		if ((len & 3) == 2) {
747 			p[foc->len] = TCPOPT_NOP;
748 			p[foc->len + 1] = TCPOPT_NOP;
749 		}
750 		ptr += (len + 3) >> 2;
751 	}
752 
753 	smc_options_write(ptr, &options);
754 
755 	mptcp_options_write(th, ptr, tp, opts);
756 }
757 
758 static void smc_set_option(const struct tcp_sock *tp,
759 			   struct tcp_out_options *opts,
760 			   unsigned int *remaining)
761 {
762 #if IS_ENABLED(CONFIG_SMC)
763 	if (static_branch_unlikely(&tcp_have_smc)) {
764 		if (tp->syn_smc) {
765 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
766 				opts->options |= OPTION_SMC;
767 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
768 			}
769 		}
770 	}
771 #endif
772 }
773 
774 static void smc_set_option_cond(const struct tcp_sock *tp,
775 				const struct inet_request_sock *ireq,
776 				struct tcp_out_options *opts,
777 				unsigned int *remaining)
778 {
779 #if IS_ENABLED(CONFIG_SMC)
780 	if (static_branch_unlikely(&tcp_have_smc)) {
781 		if (tp->syn_smc && ireq->smc_ok) {
782 			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
783 				opts->options |= OPTION_SMC;
784 				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
785 			}
786 		}
787 	}
788 #endif
789 }
790 
791 static void mptcp_set_option_cond(const struct request_sock *req,
792 				  struct tcp_out_options *opts,
793 				  unsigned int *remaining)
794 {
795 	if (rsk_is_mptcp(req)) {
796 		unsigned int size;
797 
798 		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
799 			if (*remaining >= size) {
800 				opts->options |= OPTION_MPTCP;
801 				*remaining -= size;
802 			}
803 		}
804 	}
805 }
806 
807 /* Compute TCP options for SYN packets. This is not the final
808  * network wire format yet.
809  */
810 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
811 				struct tcp_out_options *opts,
812 				struct tcp_key *key)
813 {
814 	struct tcp_sock *tp = tcp_sk(sk);
815 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
816 	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
817 	bool timestamps;
818 
819 	/* Better than switch (key.type) as it has static branches */
820 	if (tcp_key_is_md5(key)) {
821 		timestamps = false;
822 		opts->options |= OPTION_MD5;
823 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
824 	} else {
825 		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
826 		if (tcp_key_is_ao(key)) {
827 			opts->options |= OPTION_AO;
828 			remaining -= tcp_ao_len_aligned(key->ao_key);
829 		}
830 	}
831 
832 	/* We always get an MSS option.  The option bytes which will be seen in
833 	 * normal data packets should timestamps be used, must be in the MSS
834 	 * advertised.  But we subtract them from tp->mss_cache so that
835 	 * calculations in tcp_sendmsg are simpler etc.  So account for this
836 	 * fact here if necessary.  If we don't do this correctly, as a
837 	 * receiver we won't recognize data packets as being full sized when we
838 	 * should, and thus we won't abide by the delayed ACK rules correctly.
839 	 * SACKs don't matter, we never delay an ACK when we have any of those
840 	 * going out.  */
841 	opts->mss = tcp_advertise_mss(sk);
842 	remaining -= TCPOLEN_MSS_ALIGNED;
843 
844 	if (likely(timestamps)) {
845 		opts->options |= OPTION_TS;
846 		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
847 		opts->tsecr = tp->rx_opt.ts_recent;
848 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
849 	}
850 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
851 		opts->ws = tp->rx_opt.rcv_wscale;
852 		opts->options |= OPTION_WSCALE;
853 		remaining -= TCPOLEN_WSCALE_ALIGNED;
854 	}
855 	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
856 		opts->options |= OPTION_SACK_ADVERTISE;
857 		if (unlikely(!(OPTION_TS & opts->options)))
858 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
859 	}
860 
861 	if (fastopen && fastopen->cookie.len >= 0) {
862 		u32 need = fastopen->cookie.len;
863 
864 		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
865 					       TCPOLEN_FASTOPEN_BASE;
866 		need = (need + 3) & ~3U;  /* Align to 32 bits */
867 		if (remaining >= need) {
868 			opts->options |= OPTION_FAST_OPEN_COOKIE;
869 			opts->fastopen_cookie = &fastopen->cookie;
870 			remaining -= need;
871 			tp->syn_fastopen = 1;
872 			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
873 		}
874 	}
875 
876 	smc_set_option(tp, opts, &remaining);
877 
878 	if (sk_is_mptcp(sk)) {
879 		unsigned int size;
880 
881 		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
882 			opts->options |= OPTION_MPTCP;
883 			remaining -= size;
884 		}
885 	}
886 
887 	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
888 
889 	return MAX_TCP_OPTION_SPACE - remaining;
890 }
891 
892 /* Set up TCP options for SYN-ACKs. */
893 static unsigned int tcp_synack_options(const struct sock *sk,
894 				       struct request_sock *req,
895 				       unsigned int mss, struct sk_buff *skb,
896 				       struct tcp_out_options *opts,
897 				       const struct tcp_key *key,
898 				       struct tcp_fastopen_cookie *foc,
899 				       enum tcp_synack_type synack_type,
900 				       struct sk_buff *syn_skb)
901 {
902 	struct inet_request_sock *ireq = inet_rsk(req);
903 	unsigned int remaining = MAX_TCP_OPTION_SPACE;
904 
905 	if (tcp_key_is_md5(key)) {
906 		opts->options |= OPTION_MD5;
907 		remaining -= TCPOLEN_MD5SIG_ALIGNED;
908 
909 		/* We can't fit any SACK blocks in a packet with MD5 + TS
910 		 * options. There was discussion about disabling SACK
911 		 * rather than TS in order to fit in better with old,
912 		 * buggy kernels, but that was deemed to be unnecessary.
913 		 */
914 		if (synack_type != TCP_SYNACK_COOKIE)
915 			ireq->tstamp_ok &= !ireq->sack_ok;
916 	} else if (tcp_key_is_ao(key)) {
917 		opts->options |= OPTION_AO;
918 		remaining -= tcp_ao_len_aligned(key->ao_key);
919 		ireq->tstamp_ok &= !ireq->sack_ok;
920 	}
921 
922 	/* We always send an MSS option. */
923 	opts->mss = mss;
924 	remaining -= TCPOLEN_MSS_ALIGNED;
925 
926 	if (likely(ireq->wscale_ok)) {
927 		opts->ws = ireq->rcv_wscale;
928 		opts->options |= OPTION_WSCALE;
929 		remaining -= TCPOLEN_WSCALE_ALIGNED;
930 	}
931 	if (likely(ireq->tstamp_ok)) {
932 		opts->options |= OPTION_TS;
933 		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
934 			      tcp_rsk(req)->ts_off;
935 		opts->tsecr = READ_ONCE(req->ts_recent);
936 		remaining -= TCPOLEN_TSTAMP_ALIGNED;
937 	}
938 	if (likely(ireq->sack_ok)) {
939 		opts->options |= OPTION_SACK_ADVERTISE;
940 		if (unlikely(!ireq->tstamp_ok))
941 			remaining -= TCPOLEN_SACKPERM_ALIGNED;
942 	}
943 	if (foc != NULL && foc->len >= 0) {
944 		u32 need = foc->len;
945 
946 		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
947 				   TCPOLEN_FASTOPEN_BASE;
948 		need = (need + 3) & ~3U;  /* Align to 32 bits */
949 		if (remaining >= need) {
950 			opts->options |= OPTION_FAST_OPEN_COOKIE;
951 			opts->fastopen_cookie = foc;
952 			remaining -= need;
953 		}
954 	}
955 
956 	mptcp_set_option_cond(req, opts, &remaining);
957 
958 	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
959 
960 	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
961 			      synack_type, opts, &remaining);
962 
963 	return MAX_TCP_OPTION_SPACE - remaining;
964 }
965 
966 /* Compute TCP options for ESTABLISHED sockets. This is not the
967  * final wire format yet.
968  */
969 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
970 					struct tcp_out_options *opts,
971 					struct tcp_key *key)
972 {
973 	struct tcp_sock *tp = tcp_sk(sk);
974 	unsigned int size = 0;
975 	unsigned int eff_sacks;
976 
977 	opts->options = 0;
978 
979 	/* Better than switch (key.type) as it has static branches */
980 	if (tcp_key_is_md5(key)) {
981 		opts->options |= OPTION_MD5;
982 		size += TCPOLEN_MD5SIG_ALIGNED;
983 	} else if (tcp_key_is_ao(key)) {
984 		opts->options |= OPTION_AO;
985 		size += tcp_ao_len_aligned(key->ao_key);
986 	}
987 
988 	if (likely(tp->rx_opt.tstamp_ok)) {
989 		opts->options |= OPTION_TS;
990 		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
991 				tp->tsoffset : 0;
992 		opts->tsecr = tp->rx_opt.ts_recent;
993 		size += TCPOLEN_TSTAMP_ALIGNED;
994 	}
995 
996 	/* MPTCP options have precedence over SACK for the limited TCP
997 	 * option space because a MPTCP connection would be forced to
998 	 * fall back to regular TCP if a required multipath option is
999 	 * missing. SACK still gets a chance to use whatever space is
1000 	 * left.
1001 	 */
1002 	if (sk_is_mptcp(sk)) {
1003 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1004 		unsigned int opt_size = 0;
1005 
1006 		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1007 					      &opts->mptcp)) {
1008 			opts->options |= OPTION_MPTCP;
1009 			size += opt_size;
1010 		}
1011 	}
1012 
1013 	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1014 	if (unlikely(eff_sacks)) {
1015 		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1016 		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1017 					 TCPOLEN_SACK_PERBLOCK))
1018 			return size;
1019 
1020 		opts->num_sack_blocks =
1021 			min_t(unsigned int, eff_sacks,
1022 			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1023 			      TCPOLEN_SACK_PERBLOCK);
1024 
1025 		size += TCPOLEN_SACK_BASE_ALIGNED +
1026 			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1027 	}
1028 
1029 	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1030 					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1031 		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1032 
1033 		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1034 
1035 		size = MAX_TCP_OPTION_SPACE - remaining;
1036 	}
1037 
1038 	return size;
1039 }
1040 
1041 
1042 /* TCP SMALL QUEUES (TSQ)
1043  *
1044  * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1045  * to reduce RTT and bufferbloat.
1046  * We do this using a special skb destructor (tcp_wfree).
1047  *
1048  * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1049  * needs to be reallocated in a driver.
1050  * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1051  *
1052  * Since transmit from skb destructor is forbidden, we use a tasklet
1053  * to process all sockets that eventually need to send more skbs.
1054  * We use one tasklet per cpu, with its own queue of sockets.
1055  */
1056 struct tsq_tasklet {
1057 	struct tasklet_struct	tasklet;
1058 	struct list_head	head; /* queue of tcp sockets */
1059 };
1060 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1061 
1062 static void tcp_tsq_write(struct sock *sk)
1063 {
1064 	if ((1 << sk->sk_state) &
1065 	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1066 	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1067 		struct tcp_sock *tp = tcp_sk(sk);
1068 
1069 		if (tp->lost_out > tp->retrans_out &&
1070 		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1071 			tcp_mstamp_refresh(tp);
1072 			tcp_xmit_retransmit_queue(sk);
1073 		}
1074 
1075 		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1076 			       0, GFP_ATOMIC);
1077 	}
1078 }
1079 
1080 static void tcp_tsq_handler(struct sock *sk)
1081 {
1082 	bh_lock_sock(sk);
1083 	if (!sock_owned_by_user(sk))
1084 		tcp_tsq_write(sk);
1085 	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1086 		sock_hold(sk);
1087 	bh_unlock_sock(sk);
1088 }
1089 /*
1090  * One tasklet per cpu tries to send more skbs.
1091  * We run in tasklet context but need to disable irqs when
1092  * transferring tsq->head because tcp_wfree() might
1093  * interrupt us (non NAPI drivers)
1094  */
1095 static void tcp_tasklet_func(struct tasklet_struct *t)
1096 {
1097 	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1098 	LIST_HEAD(list);
1099 	unsigned long flags;
1100 	struct list_head *q, *n;
1101 	struct tcp_sock *tp;
1102 	struct sock *sk;
1103 
1104 	local_irq_save(flags);
1105 	list_splice_init(&tsq->head, &list);
1106 	local_irq_restore(flags);
1107 
1108 	list_for_each_safe(q, n, &list) {
1109 		tp = list_entry(q, struct tcp_sock, tsq_node);
1110 		list_del(&tp->tsq_node);
1111 
1112 		sk = (struct sock *)tp;
1113 		smp_mb__before_atomic();
1114 		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1115 
1116 		tcp_tsq_handler(sk);
1117 		sk_free(sk);
1118 	}
1119 }
1120 
1121 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1122 			  TCPF_WRITE_TIMER_DEFERRED |	\
1123 			  TCPF_DELACK_TIMER_DEFERRED |	\
1124 			  TCPF_MTU_REDUCED_DEFERRED |	\
1125 			  TCPF_ACK_DEFERRED)
1126 /**
1127  * tcp_release_cb - tcp release_sock() callback
1128  * @sk: socket
1129  *
1130  * called from release_sock() to perform protocol dependent
1131  * actions before socket release.
1132  */
1133 void tcp_release_cb(struct sock *sk)
1134 {
1135 	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1136 	unsigned long nflags;
1137 
1138 	/* perform an atomic operation only if at least one flag is set */
1139 	do {
1140 		if (!(flags & TCP_DEFERRED_ALL))
1141 			return;
1142 		nflags = flags & ~TCP_DEFERRED_ALL;
1143 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1144 
1145 	if (flags & TCPF_TSQ_DEFERRED) {
1146 		tcp_tsq_write(sk);
1147 		__sock_put(sk);
1148 	}
1149 
1150 	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1151 		tcp_write_timer_handler(sk);
1152 		__sock_put(sk);
1153 	}
1154 	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1155 		tcp_delack_timer_handler(sk);
1156 		__sock_put(sk);
1157 	}
1158 	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1159 		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1160 		__sock_put(sk);
1161 	}
1162 	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1163 		tcp_send_ack(sk);
1164 }
1165 EXPORT_SYMBOL(tcp_release_cb);
1166 
1167 void __init tcp_tasklet_init(void)
1168 {
1169 	int i;
1170 
1171 	for_each_possible_cpu(i) {
1172 		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1173 
1174 		INIT_LIST_HEAD(&tsq->head);
1175 		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1176 	}
1177 }
1178 
1179 /*
1180  * Write buffer destructor automatically called from kfree_skb.
1181  * We can't xmit new skbs from this context, as we might already
1182  * hold qdisc lock.
1183  */
1184 void tcp_wfree(struct sk_buff *skb)
1185 {
1186 	struct sock *sk = skb->sk;
1187 	struct tcp_sock *tp = tcp_sk(sk);
1188 	unsigned long flags, nval, oval;
1189 	struct tsq_tasklet *tsq;
1190 	bool empty;
1191 
1192 	/* Keep one reference on sk_wmem_alloc.
1193 	 * Will be released by sk_free() from here or tcp_tasklet_func()
1194 	 */
1195 	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1196 
1197 	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1198 	 * Wait until our queues (qdisc + devices) are drained.
1199 	 * This gives :
1200 	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1201 	 * - chance for incoming ACK (processed by another cpu maybe)
1202 	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1203 	 */
1204 	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1205 		goto out;
1206 
1207 	oval = smp_load_acquire(&sk->sk_tsq_flags);
1208 	do {
1209 		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1210 			goto out;
1211 
1212 		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1213 	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1214 
1215 	/* queue this socket to tasklet queue */
1216 	local_irq_save(flags);
1217 	tsq = this_cpu_ptr(&tsq_tasklet);
1218 	empty = list_empty(&tsq->head);
1219 	list_add(&tp->tsq_node, &tsq->head);
1220 	if (empty)
1221 		tasklet_schedule(&tsq->tasklet);
1222 	local_irq_restore(flags);
1223 	return;
1224 out:
1225 	sk_free(sk);
1226 }
1227 
1228 /* Note: Called under soft irq.
1229  * We can call TCP stack right away, unless socket is owned by user.
1230  */
1231 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1232 {
1233 	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1234 	struct sock *sk = (struct sock *)tp;
1235 
1236 	tcp_tsq_handler(sk);
1237 	sock_put(sk);
1238 
1239 	return HRTIMER_NORESTART;
1240 }
1241 
1242 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1243 				      u64 prior_wstamp)
1244 {
1245 	struct tcp_sock *tp = tcp_sk(sk);
1246 
1247 	if (sk->sk_pacing_status != SK_PACING_NONE) {
1248 		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1249 
1250 		/* Original sch_fq does not pace first 10 MSS
1251 		 * Note that tp->data_segs_out overflows after 2^32 packets,
1252 		 * this is a minor annoyance.
1253 		 */
1254 		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1255 			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1256 			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1257 
1258 			/* take into account OS jitter */
1259 			len_ns -= min_t(u64, len_ns / 2, credit);
1260 			tp->tcp_wstamp_ns += len_ns;
1261 		}
1262 	}
1263 	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1264 }
1265 
1266 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1267 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1268 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1269 
1270 /* This routine actually transmits TCP packets queued in by
1271  * tcp_do_sendmsg().  This is used by both the initial
1272  * transmission and possible later retransmissions.
1273  * All SKB's seen here are completely headerless.  It is our
1274  * job to build the TCP header, and pass the packet down to
1275  * IP so it can do the same plus pass the packet off to the
1276  * device.
1277  *
1278  * We are working here with either a clone of the original
1279  * SKB, or a fresh unique copy made by the retransmit engine.
1280  */
1281 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1282 			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1283 {
1284 	const struct inet_connection_sock *icsk = inet_csk(sk);
1285 	struct inet_sock *inet;
1286 	struct tcp_sock *tp;
1287 	struct tcp_skb_cb *tcb;
1288 	struct tcp_out_options opts;
1289 	unsigned int tcp_options_size, tcp_header_size;
1290 	struct sk_buff *oskb = NULL;
1291 	struct tcp_key key;
1292 	struct tcphdr *th;
1293 	u64 prior_wstamp;
1294 	int err;
1295 
1296 	BUG_ON(!skb || !tcp_skb_pcount(skb));
1297 	tp = tcp_sk(sk);
1298 	prior_wstamp = tp->tcp_wstamp_ns;
1299 	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1300 	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1301 	if (clone_it) {
1302 		oskb = skb;
1303 
1304 		tcp_skb_tsorted_save(oskb) {
1305 			if (unlikely(skb_cloned(oskb)))
1306 				skb = pskb_copy(oskb, gfp_mask);
1307 			else
1308 				skb = skb_clone(oskb, gfp_mask);
1309 		} tcp_skb_tsorted_restore(oskb);
1310 
1311 		if (unlikely(!skb))
1312 			return -ENOBUFS;
1313 		/* retransmit skbs might have a non zero value in skb->dev
1314 		 * because skb->dev is aliased with skb->rbnode.rb_left
1315 		 */
1316 		skb->dev = NULL;
1317 	}
1318 
1319 	inet = inet_sk(sk);
1320 	tcb = TCP_SKB_CB(skb);
1321 	memset(&opts, 0, sizeof(opts));
1322 
1323 	tcp_get_current_key(sk, &key);
1324 	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1325 		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1326 	} else {
1327 		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1328 		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1329 		 * at receiver : This slightly improve GRO performance.
1330 		 * Note that we do not force the PSH flag for non GSO packets,
1331 		 * because they might be sent under high congestion events,
1332 		 * and in this case it is better to delay the delivery of 1-MSS
1333 		 * packets and thus the corresponding ACK packet that would
1334 		 * release the following packet.
1335 		 */
1336 		if (tcp_skb_pcount(skb) > 1)
1337 			tcb->tcp_flags |= TCPHDR_PSH;
1338 	}
1339 	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1340 
1341 	/* We set skb->ooo_okay to one if this packet can select
1342 	 * a different TX queue than prior packets of this flow,
1343 	 * to avoid self inflicted reorders.
1344 	 * The 'other' queue decision is based on current cpu number
1345 	 * if XPS is enabled, or sk->sk_txhash otherwise.
1346 	 * We can switch to another (and better) queue if:
1347 	 * 1) No packet with payload is in qdisc/device queues.
1348 	 *    Delays in TX completion can defeat the test
1349 	 *    even if packets were already sent.
1350 	 * 2) Or rtx queue is empty.
1351 	 *    This mitigates above case if ACK packets for
1352 	 *    all prior packets were already processed.
1353 	 */
1354 	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1355 			tcp_rtx_queue_empty(sk);
1356 
1357 	/* If we had to use memory reserve to allocate this skb,
1358 	 * this might cause drops if packet is looped back :
1359 	 * Other socket might not have SOCK_MEMALLOC.
1360 	 * Packets not looped back do not care about pfmemalloc.
1361 	 */
1362 	skb->pfmemalloc = 0;
1363 
1364 	skb_push(skb, tcp_header_size);
1365 	skb_reset_transport_header(skb);
1366 
1367 	skb_orphan(skb);
1368 	skb->sk = sk;
1369 	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1370 	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1371 
1372 	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1373 
1374 	/* Build TCP header and checksum it. */
1375 	th = (struct tcphdr *)skb->data;
1376 	th->source		= inet->inet_sport;
1377 	th->dest		= inet->inet_dport;
1378 	th->seq			= htonl(tcb->seq);
1379 	th->ack_seq		= htonl(rcv_nxt);
1380 	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1381 					tcb->tcp_flags);
1382 
1383 	th->check		= 0;
1384 	th->urg_ptr		= 0;
1385 
1386 	/* The urg_mode check is necessary during a below snd_una win probe */
1387 	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1388 		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1389 			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1390 			th->urg = 1;
1391 		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1392 			th->urg_ptr = htons(0xFFFF);
1393 			th->urg = 1;
1394 		}
1395 	}
1396 
1397 	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1398 	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1399 		th->window      = htons(tcp_select_window(sk));
1400 		tcp_ecn_send(sk, skb, th, tcp_header_size);
1401 	} else {
1402 		/* RFC1323: The window in SYN & SYN/ACK segments
1403 		 * is never scaled.
1404 		 */
1405 		th->window	= htons(min(tp->rcv_wnd, 65535U));
1406 	}
1407 
1408 	tcp_options_write(th, tp, NULL, &opts, &key);
1409 
1410 	if (tcp_key_is_md5(&key)) {
1411 #ifdef CONFIG_TCP_MD5SIG
1412 		/* Calculate the MD5 hash, as we have all we need now */
1413 		sk_gso_disable(sk);
1414 		tp->af_specific->calc_md5_hash(opts.hash_location,
1415 					       key.md5_key, sk, skb);
1416 #endif
1417 	} else if (tcp_key_is_ao(&key)) {
1418 		int err;
1419 
1420 		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1421 					  opts.hash_location);
1422 		if (err) {
1423 			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1424 			return -ENOMEM;
1425 		}
1426 	}
1427 
1428 	/* BPF prog is the last one writing header option */
1429 	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1430 
1431 	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1432 			   tcp_v6_send_check, tcp_v4_send_check,
1433 			   sk, skb);
1434 
1435 	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1436 		tcp_event_ack_sent(sk, rcv_nxt);
1437 
1438 	if (skb->len != tcp_header_size) {
1439 		tcp_event_data_sent(tp, sk);
1440 		tp->data_segs_out += tcp_skb_pcount(skb);
1441 		tp->bytes_sent += skb->len - tcp_header_size;
1442 	}
1443 
1444 	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1445 		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1446 			      tcp_skb_pcount(skb));
1447 
1448 	tp->segs_out += tcp_skb_pcount(skb);
1449 	skb_set_hash_from_sk(skb, sk);
1450 	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1451 	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1452 	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1453 
1454 	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1455 
1456 	/* Cleanup our debris for IP stacks */
1457 	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1458 			       sizeof(struct inet6_skb_parm)));
1459 
1460 	tcp_add_tx_delay(skb, tp);
1461 
1462 	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1463 				 inet6_csk_xmit, ip_queue_xmit,
1464 				 sk, skb, &inet->cork.fl);
1465 
1466 	if (unlikely(err > 0)) {
1467 		tcp_enter_cwr(sk);
1468 		err = net_xmit_eval(err);
1469 	}
1470 	if (!err && oskb) {
1471 		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1472 		tcp_rate_skb_sent(sk, oskb);
1473 	}
1474 	return err;
1475 }
1476 
1477 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1478 			    gfp_t gfp_mask)
1479 {
1480 	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1481 				  tcp_sk(sk)->rcv_nxt);
1482 }
1483 
1484 /* This routine just queues the buffer for sending.
1485  *
1486  * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1487  * otherwise socket can stall.
1488  */
1489 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1490 {
1491 	struct tcp_sock *tp = tcp_sk(sk);
1492 
1493 	/* Advance write_seq and place onto the write_queue. */
1494 	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1495 	__skb_header_release(skb);
1496 	tcp_add_write_queue_tail(sk, skb);
1497 	sk_wmem_queued_add(sk, skb->truesize);
1498 	sk_mem_charge(sk, skb->truesize);
1499 }
1500 
1501 /* Initialize TSO segments for a packet. */
1502 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1503 {
1504 	if (skb->len <= mss_now) {
1505 		/* Avoid the costly divide in the normal
1506 		 * non-TSO case.
1507 		 */
1508 		tcp_skb_pcount_set(skb, 1);
1509 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1510 	} else {
1511 		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1512 		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1513 	}
1514 }
1515 
1516 /* Pcount in the middle of the write queue got changed, we need to do various
1517  * tweaks to fix counters
1518  */
1519 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1520 {
1521 	struct tcp_sock *tp = tcp_sk(sk);
1522 
1523 	tp->packets_out -= decr;
1524 
1525 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1526 		tp->sacked_out -= decr;
1527 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1528 		tp->retrans_out -= decr;
1529 	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1530 		tp->lost_out -= decr;
1531 
1532 	/* Reno case is special. Sigh... */
1533 	if (tcp_is_reno(tp) && decr > 0)
1534 		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1535 
1536 	if (tp->lost_skb_hint &&
1537 	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1538 	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1539 		tp->lost_cnt_hint -= decr;
1540 
1541 	tcp_verify_left_out(tp);
1542 }
1543 
1544 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1545 {
1546 	return TCP_SKB_CB(skb)->txstamp_ack ||
1547 		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1548 }
1549 
1550 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1551 {
1552 	struct skb_shared_info *shinfo = skb_shinfo(skb);
1553 
1554 	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1555 	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1556 		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1557 		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1558 
1559 		shinfo->tx_flags &= ~tsflags;
1560 		shinfo2->tx_flags |= tsflags;
1561 		swap(shinfo->tskey, shinfo2->tskey);
1562 		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1563 		TCP_SKB_CB(skb)->txstamp_ack = 0;
1564 	}
1565 }
1566 
1567 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1568 {
1569 	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1570 	TCP_SKB_CB(skb)->eor = 0;
1571 }
1572 
1573 /* Insert buff after skb on the write or rtx queue of sk.  */
1574 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1575 					 struct sk_buff *buff,
1576 					 struct sock *sk,
1577 					 enum tcp_queue tcp_queue)
1578 {
1579 	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1580 		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1581 	else
1582 		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1583 }
1584 
1585 /* Function to create two new TCP segments.  Shrinks the given segment
1586  * to the specified size and appends a new segment with the rest of the
1587  * packet to the list.  This won't be called frequently, I hope.
1588  * Remember, these are still headerless SKBs at this point.
1589  */
1590 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1591 		 struct sk_buff *skb, u32 len,
1592 		 unsigned int mss_now, gfp_t gfp)
1593 {
1594 	struct tcp_sock *tp = tcp_sk(sk);
1595 	struct sk_buff *buff;
1596 	int old_factor;
1597 	long limit;
1598 	int nlen;
1599 	u8 flags;
1600 
1601 	if (WARN_ON(len > skb->len))
1602 		return -EINVAL;
1603 
1604 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1605 
1606 	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1607 	 * We need some allowance to not penalize applications setting small
1608 	 * SO_SNDBUF values.
1609 	 * Also allow first and last skb in retransmit queue to be split.
1610 	 */
1611 	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1612 	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1613 		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1614 		     skb != tcp_rtx_queue_head(sk) &&
1615 		     skb != tcp_rtx_queue_tail(sk))) {
1616 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1617 		return -ENOMEM;
1618 	}
1619 
1620 	if (skb_unclone_keeptruesize(skb, gfp))
1621 		return -ENOMEM;
1622 
1623 	/* Get a new skb... force flag on. */
1624 	buff = tcp_stream_alloc_skb(sk, gfp, true);
1625 	if (!buff)
1626 		return -ENOMEM; /* We'll just try again later. */
1627 	skb_copy_decrypted(buff, skb);
1628 	mptcp_skb_ext_copy(buff, skb);
1629 
1630 	sk_wmem_queued_add(sk, buff->truesize);
1631 	sk_mem_charge(sk, buff->truesize);
1632 	nlen = skb->len - len;
1633 	buff->truesize += nlen;
1634 	skb->truesize -= nlen;
1635 
1636 	/* Correct the sequence numbers. */
1637 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1638 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1639 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1640 
1641 	/* PSH and FIN should only be set in the second packet. */
1642 	flags = TCP_SKB_CB(skb)->tcp_flags;
1643 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1644 	TCP_SKB_CB(buff)->tcp_flags = flags;
1645 	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1646 	tcp_skb_fragment_eor(skb, buff);
1647 
1648 	skb_split(skb, buff, len);
1649 
1650 	skb_set_delivery_time(buff, skb->tstamp, true);
1651 	tcp_fragment_tstamp(skb, buff);
1652 
1653 	old_factor = tcp_skb_pcount(skb);
1654 
1655 	/* Fix up tso_factor for both original and new SKB.  */
1656 	tcp_set_skb_tso_segs(skb, mss_now);
1657 	tcp_set_skb_tso_segs(buff, mss_now);
1658 
1659 	/* Update delivered info for the new segment */
1660 	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1661 
1662 	/* If this packet has been sent out already, we must
1663 	 * adjust the various packet counters.
1664 	 */
1665 	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1666 		int diff = old_factor - tcp_skb_pcount(skb) -
1667 			tcp_skb_pcount(buff);
1668 
1669 		if (diff)
1670 			tcp_adjust_pcount(sk, skb, diff);
1671 	}
1672 
1673 	/* Link BUFF into the send queue. */
1674 	__skb_header_release(buff);
1675 	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1676 	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1677 		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1678 
1679 	return 0;
1680 }
1681 
1682 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1683  * data is not copied, but immediately discarded.
1684  */
1685 static int __pskb_trim_head(struct sk_buff *skb, int len)
1686 {
1687 	struct skb_shared_info *shinfo;
1688 	int i, k, eat;
1689 
1690 	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1691 	eat = len;
1692 	k = 0;
1693 	shinfo = skb_shinfo(skb);
1694 	for (i = 0; i < shinfo->nr_frags; i++) {
1695 		int size = skb_frag_size(&shinfo->frags[i]);
1696 
1697 		if (size <= eat) {
1698 			skb_frag_unref(skb, i);
1699 			eat -= size;
1700 		} else {
1701 			shinfo->frags[k] = shinfo->frags[i];
1702 			if (eat) {
1703 				skb_frag_off_add(&shinfo->frags[k], eat);
1704 				skb_frag_size_sub(&shinfo->frags[k], eat);
1705 				eat = 0;
1706 			}
1707 			k++;
1708 		}
1709 	}
1710 	shinfo->nr_frags = k;
1711 
1712 	skb->data_len -= len;
1713 	skb->len = skb->data_len;
1714 	return len;
1715 }
1716 
1717 /* Remove acked data from a packet in the transmit queue. */
1718 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1719 {
1720 	u32 delta_truesize;
1721 
1722 	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1723 		return -ENOMEM;
1724 
1725 	delta_truesize = __pskb_trim_head(skb, len);
1726 
1727 	TCP_SKB_CB(skb)->seq += len;
1728 
1729 	skb->truesize	   -= delta_truesize;
1730 	sk_wmem_queued_add(sk, -delta_truesize);
1731 	if (!skb_zcopy_pure(skb))
1732 		sk_mem_uncharge(sk, delta_truesize);
1733 
1734 	/* Any change of skb->len requires recalculation of tso factor. */
1735 	if (tcp_skb_pcount(skb) > 1)
1736 		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1737 
1738 	return 0;
1739 }
1740 
1741 /* Calculate MSS not accounting any TCP options.  */
1742 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1743 {
1744 	const struct tcp_sock *tp = tcp_sk(sk);
1745 	const struct inet_connection_sock *icsk = inet_csk(sk);
1746 	int mss_now;
1747 
1748 	/* Calculate base mss without TCP options:
1749 	   It is MMS_S - sizeof(tcphdr) of rfc1122
1750 	 */
1751 	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1752 
1753 	/* Clamp it (mss_clamp does not include tcp options) */
1754 	if (mss_now > tp->rx_opt.mss_clamp)
1755 		mss_now = tp->rx_opt.mss_clamp;
1756 
1757 	/* Now subtract optional transport overhead */
1758 	mss_now -= icsk->icsk_ext_hdr_len;
1759 
1760 	/* Then reserve room for full set of TCP options and 8 bytes of data */
1761 	mss_now = max(mss_now,
1762 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1763 	return mss_now;
1764 }
1765 
1766 /* Calculate MSS. Not accounting for SACKs here.  */
1767 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1768 {
1769 	/* Subtract TCP options size, not including SACKs */
1770 	return __tcp_mtu_to_mss(sk, pmtu) -
1771 	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1772 }
1773 EXPORT_SYMBOL(tcp_mtu_to_mss);
1774 
1775 /* Inverse of above */
1776 int tcp_mss_to_mtu(struct sock *sk, int mss)
1777 {
1778 	const struct tcp_sock *tp = tcp_sk(sk);
1779 	const struct inet_connection_sock *icsk = inet_csk(sk);
1780 
1781 	return mss +
1782 	      tp->tcp_header_len +
1783 	      icsk->icsk_ext_hdr_len +
1784 	      icsk->icsk_af_ops->net_header_len;
1785 }
1786 EXPORT_SYMBOL(tcp_mss_to_mtu);
1787 
1788 /* MTU probing init per socket */
1789 void tcp_mtup_init(struct sock *sk)
1790 {
1791 	struct tcp_sock *tp = tcp_sk(sk);
1792 	struct inet_connection_sock *icsk = inet_csk(sk);
1793 	struct net *net = sock_net(sk);
1794 
1795 	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1796 	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1797 			       icsk->icsk_af_ops->net_header_len;
1798 	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1799 	icsk->icsk_mtup.probe_size = 0;
1800 	if (icsk->icsk_mtup.enabled)
1801 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1802 }
1803 EXPORT_SYMBOL(tcp_mtup_init);
1804 
1805 /* This function synchronize snd mss to current pmtu/exthdr set.
1806 
1807    tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1808    for TCP options, but includes only bare TCP header.
1809 
1810    tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1811    It is minimum of user_mss and mss received with SYN.
1812    It also does not include TCP options.
1813 
1814    inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1815 
1816    tp->mss_cache is current effective sending mss, including
1817    all tcp options except for SACKs. It is evaluated,
1818    taking into account current pmtu, but never exceeds
1819    tp->rx_opt.mss_clamp.
1820 
1821    NOTE1. rfc1122 clearly states that advertised MSS
1822    DOES NOT include either tcp or ip options.
1823 
1824    NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1825    are READ ONLY outside this function.		--ANK (980731)
1826  */
1827 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1828 {
1829 	struct tcp_sock *tp = tcp_sk(sk);
1830 	struct inet_connection_sock *icsk = inet_csk(sk);
1831 	int mss_now;
1832 
1833 	if (icsk->icsk_mtup.search_high > pmtu)
1834 		icsk->icsk_mtup.search_high = pmtu;
1835 
1836 	mss_now = tcp_mtu_to_mss(sk, pmtu);
1837 	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1838 
1839 	/* And store cached results */
1840 	icsk->icsk_pmtu_cookie = pmtu;
1841 	if (icsk->icsk_mtup.enabled)
1842 		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1843 	tp->mss_cache = mss_now;
1844 
1845 	return mss_now;
1846 }
1847 EXPORT_SYMBOL(tcp_sync_mss);
1848 
1849 /* Compute the current effective MSS, taking SACKs and IP options,
1850  * and even PMTU discovery events into account.
1851  */
1852 unsigned int tcp_current_mss(struct sock *sk)
1853 {
1854 	const struct tcp_sock *tp = tcp_sk(sk);
1855 	const struct dst_entry *dst = __sk_dst_get(sk);
1856 	u32 mss_now;
1857 	unsigned int header_len;
1858 	struct tcp_out_options opts;
1859 	struct tcp_key key;
1860 
1861 	mss_now = tp->mss_cache;
1862 
1863 	if (dst) {
1864 		u32 mtu = dst_mtu(dst);
1865 		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1866 			mss_now = tcp_sync_mss(sk, mtu);
1867 	}
1868 	tcp_get_current_key(sk, &key);
1869 	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1870 		     sizeof(struct tcphdr);
1871 	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1872 	 * some common options. If this is an odd packet (because we have SACK
1873 	 * blocks etc) then our calculated header_len will be different, and
1874 	 * we have to adjust mss_now correspondingly */
1875 	if (header_len != tp->tcp_header_len) {
1876 		int delta = (int) header_len - tp->tcp_header_len;
1877 		mss_now -= delta;
1878 	}
1879 
1880 	return mss_now;
1881 }
1882 
1883 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1884  * As additional protections, we do not touch cwnd in retransmission phases,
1885  * and if application hit its sndbuf limit recently.
1886  */
1887 static void tcp_cwnd_application_limited(struct sock *sk)
1888 {
1889 	struct tcp_sock *tp = tcp_sk(sk);
1890 
1891 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1892 	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1893 		/* Limited by application or receiver window. */
1894 		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1895 		u32 win_used = max(tp->snd_cwnd_used, init_win);
1896 		if (win_used < tcp_snd_cwnd(tp)) {
1897 			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1898 			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1899 		}
1900 		tp->snd_cwnd_used = 0;
1901 	}
1902 	tp->snd_cwnd_stamp = tcp_jiffies32;
1903 }
1904 
1905 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1906 {
1907 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1908 	struct tcp_sock *tp = tcp_sk(sk);
1909 
1910 	/* Track the strongest available signal of the degree to which the cwnd
1911 	 * is fully utilized. If cwnd-limited then remember that fact for the
1912 	 * current window. If not cwnd-limited then track the maximum number of
1913 	 * outstanding packets in the current window. (If cwnd-limited then we
1914 	 * chose to not update tp->max_packets_out to avoid an extra else
1915 	 * clause with no functional impact.)
1916 	 */
1917 	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1918 	    is_cwnd_limited ||
1919 	    (!tp->is_cwnd_limited &&
1920 	     tp->packets_out > tp->max_packets_out)) {
1921 		tp->is_cwnd_limited = is_cwnd_limited;
1922 		tp->max_packets_out = tp->packets_out;
1923 		tp->cwnd_usage_seq = tp->snd_nxt;
1924 	}
1925 
1926 	if (tcp_is_cwnd_limited(sk)) {
1927 		/* Network is feed fully. */
1928 		tp->snd_cwnd_used = 0;
1929 		tp->snd_cwnd_stamp = tcp_jiffies32;
1930 	} else {
1931 		/* Network starves. */
1932 		if (tp->packets_out > tp->snd_cwnd_used)
1933 			tp->snd_cwnd_used = tp->packets_out;
1934 
1935 		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1936 		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1937 		    !ca_ops->cong_control)
1938 			tcp_cwnd_application_limited(sk);
1939 
1940 		/* The following conditions together indicate the starvation
1941 		 * is caused by insufficient sender buffer:
1942 		 * 1) just sent some data (see tcp_write_xmit)
1943 		 * 2) not cwnd limited (this else condition)
1944 		 * 3) no more data to send (tcp_write_queue_empty())
1945 		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1946 		 */
1947 		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1948 		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1949 		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1950 			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1951 	}
1952 }
1953 
1954 /* Minshall's variant of the Nagle send check. */
1955 static bool tcp_minshall_check(const struct tcp_sock *tp)
1956 {
1957 	return after(tp->snd_sml, tp->snd_una) &&
1958 		!after(tp->snd_sml, tp->snd_nxt);
1959 }
1960 
1961 /* Update snd_sml if this skb is under mss
1962  * Note that a TSO packet might end with a sub-mss segment
1963  * The test is really :
1964  * if ((skb->len % mss) != 0)
1965  *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1966  * But we can avoid doing the divide again given we already have
1967  *  skb_pcount = skb->len / mss_now
1968  */
1969 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1970 				const struct sk_buff *skb)
1971 {
1972 	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1973 		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1974 }
1975 
1976 /* Return false, if packet can be sent now without violation Nagle's rules:
1977  * 1. It is full sized. (provided by caller in %partial bool)
1978  * 2. Or it contains FIN. (already checked by caller)
1979  * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1980  * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1981  *    With Minshall's modification: all sent small packets are ACKed.
1982  */
1983 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1984 			    int nonagle)
1985 {
1986 	return partial &&
1987 		((nonagle & TCP_NAGLE_CORK) ||
1988 		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1989 }
1990 
1991 /* Return how many segs we'd like on a TSO packet,
1992  * depending on current pacing rate, and how close the peer is.
1993  *
1994  * Rationale is:
1995  * - For close peers, we rather send bigger packets to reduce
1996  *   cpu costs, because occasional losses will be repaired fast.
1997  * - For long distance/rtt flows, we would like to get ACK clocking
1998  *   with 1 ACK per ms.
1999  *
2000  * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2001  * in bigger TSO bursts. We we cut the RTT-based allowance in half
2002  * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2003  * is below 1500 bytes after 6 * ~500 usec = 3ms.
2004  */
2005 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2006 			    int min_tso_segs)
2007 {
2008 	unsigned long bytes;
2009 	u32 r;
2010 
2011 	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2012 
2013 	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2014 	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2015 		bytes += sk->sk_gso_max_size >> r;
2016 
2017 	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2018 
2019 	return max_t(u32, bytes / mss_now, min_tso_segs);
2020 }
2021 
2022 /* Return the number of segments we want in the skb we are transmitting.
2023  * See if congestion control module wants to decide; otherwise, autosize.
2024  */
2025 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2026 {
2027 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2028 	u32 min_tso, tso_segs;
2029 
2030 	min_tso = ca_ops->min_tso_segs ?
2031 			ca_ops->min_tso_segs(sk) :
2032 			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2033 
2034 	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2035 	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2036 }
2037 
2038 /* Returns the portion of skb which can be sent right away */
2039 static unsigned int tcp_mss_split_point(const struct sock *sk,
2040 					const struct sk_buff *skb,
2041 					unsigned int mss_now,
2042 					unsigned int max_segs,
2043 					int nonagle)
2044 {
2045 	const struct tcp_sock *tp = tcp_sk(sk);
2046 	u32 partial, needed, window, max_len;
2047 
2048 	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2049 	max_len = mss_now * max_segs;
2050 
2051 	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2052 		return max_len;
2053 
2054 	needed = min(skb->len, window);
2055 
2056 	if (max_len <= needed)
2057 		return max_len;
2058 
2059 	partial = needed % mss_now;
2060 	/* If last segment is not a full MSS, check if Nagle rules allow us
2061 	 * to include this last segment in this skb.
2062 	 * Otherwise, we'll split the skb at last MSS boundary
2063 	 */
2064 	if (tcp_nagle_check(partial != 0, tp, nonagle))
2065 		return needed - partial;
2066 
2067 	return needed;
2068 }
2069 
2070 /* Can at least one segment of SKB be sent right now, according to the
2071  * congestion window rules?  If so, return how many segments are allowed.
2072  */
2073 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2074 					 const struct sk_buff *skb)
2075 {
2076 	u32 in_flight, cwnd, halfcwnd;
2077 
2078 	/* Don't be strict about the congestion window for the final FIN.  */
2079 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2080 	    tcp_skb_pcount(skb) == 1)
2081 		return 1;
2082 
2083 	in_flight = tcp_packets_in_flight(tp);
2084 	cwnd = tcp_snd_cwnd(tp);
2085 	if (in_flight >= cwnd)
2086 		return 0;
2087 
2088 	/* For better scheduling, ensure we have at least
2089 	 * 2 GSO packets in flight.
2090 	 */
2091 	halfcwnd = max(cwnd >> 1, 1U);
2092 	return min(halfcwnd, cwnd - in_flight);
2093 }
2094 
2095 /* Initialize TSO state of a skb.
2096  * This must be invoked the first time we consider transmitting
2097  * SKB onto the wire.
2098  */
2099 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2100 {
2101 	int tso_segs = tcp_skb_pcount(skb);
2102 
2103 	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2104 		tcp_set_skb_tso_segs(skb, mss_now);
2105 		tso_segs = tcp_skb_pcount(skb);
2106 	}
2107 	return tso_segs;
2108 }
2109 
2110 
2111 /* Return true if the Nagle test allows this packet to be
2112  * sent now.
2113  */
2114 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2115 				  unsigned int cur_mss, int nonagle)
2116 {
2117 	/* Nagle rule does not apply to frames, which sit in the middle of the
2118 	 * write_queue (they have no chances to get new data).
2119 	 *
2120 	 * This is implemented in the callers, where they modify the 'nonagle'
2121 	 * argument based upon the location of SKB in the send queue.
2122 	 */
2123 	if (nonagle & TCP_NAGLE_PUSH)
2124 		return true;
2125 
2126 	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2127 	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2128 		return true;
2129 
2130 	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2131 		return true;
2132 
2133 	return false;
2134 }
2135 
2136 /* Does at least the first segment of SKB fit into the send window? */
2137 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2138 			     const struct sk_buff *skb,
2139 			     unsigned int cur_mss)
2140 {
2141 	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2142 
2143 	if (skb->len > cur_mss)
2144 		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2145 
2146 	return !after(end_seq, tcp_wnd_end(tp));
2147 }
2148 
2149 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2150  * which is put after SKB on the list.  It is very much like
2151  * tcp_fragment() except that it may make several kinds of assumptions
2152  * in order to speed up the splitting operation.  In particular, we
2153  * know that all the data is in scatter-gather pages, and that the
2154  * packet has never been sent out before (and thus is not cloned).
2155  */
2156 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2157 			unsigned int mss_now, gfp_t gfp)
2158 {
2159 	int nlen = skb->len - len;
2160 	struct sk_buff *buff;
2161 	u8 flags;
2162 
2163 	/* All of a TSO frame must be composed of paged data.  */
2164 	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2165 
2166 	buff = tcp_stream_alloc_skb(sk, gfp, true);
2167 	if (unlikely(!buff))
2168 		return -ENOMEM;
2169 	skb_copy_decrypted(buff, skb);
2170 	mptcp_skb_ext_copy(buff, skb);
2171 
2172 	sk_wmem_queued_add(sk, buff->truesize);
2173 	sk_mem_charge(sk, buff->truesize);
2174 	buff->truesize += nlen;
2175 	skb->truesize -= nlen;
2176 
2177 	/* Correct the sequence numbers. */
2178 	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2179 	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2180 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2181 
2182 	/* PSH and FIN should only be set in the second packet. */
2183 	flags = TCP_SKB_CB(skb)->tcp_flags;
2184 	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2185 	TCP_SKB_CB(buff)->tcp_flags = flags;
2186 
2187 	tcp_skb_fragment_eor(skb, buff);
2188 
2189 	skb_split(skb, buff, len);
2190 	tcp_fragment_tstamp(skb, buff);
2191 
2192 	/* Fix up tso_factor for both original and new SKB.  */
2193 	tcp_set_skb_tso_segs(skb, mss_now);
2194 	tcp_set_skb_tso_segs(buff, mss_now);
2195 
2196 	/* Link BUFF into the send queue. */
2197 	__skb_header_release(buff);
2198 	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2199 
2200 	return 0;
2201 }
2202 
2203 /* Try to defer sending, if possible, in order to minimize the amount
2204  * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2205  *
2206  * This algorithm is from John Heffner.
2207  */
2208 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2209 				 bool *is_cwnd_limited,
2210 				 bool *is_rwnd_limited,
2211 				 u32 max_segs)
2212 {
2213 	const struct inet_connection_sock *icsk = inet_csk(sk);
2214 	u32 send_win, cong_win, limit, in_flight;
2215 	struct tcp_sock *tp = tcp_sk(sk);
2216 	struct sk_buff *head;
2217 	int win_divisor;
2218 	s64 delta;
2219 
2220 	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2221 		goto send_now;
2222 
2223 	/* Avoid bursty behavior by allowing defer
2224 	 * only if the last write was recent (1 ms).
2225 	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2226 	 * packets waiting in a qdisc or device for EDT delivery.
2227 	 */
2228 	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2229 	if (delta > 0)
2230 		goto send_now;
2231 
2232 	in_flight = tcp_packets_in_flight(tp);
2233 
2234 	BUG_ON(tcp_skb_pcount(skb) <= 1);
2235 	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2236 
2237 	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2238 
2239 	/* From in_flight test above, we know that cwnd > in_flight.  */
2240 	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2241 
2242 	limit = min(send_win, cong_win);
2243 
2244 	/* If a full-sized TSO skb can be sent, do it. */
2245 	if (limit >= max_segs * tp->mss_cache)
2246 		goto send_now;
2247 
2248 	/* Middle in queue won't get any more data, full sendable already? */
2249 	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2250 		goto send_now;
2251 
2252 	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2253 	if (win_divisor) {
2254 		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2255 
2256 		/* If at least some fraction of a window is available,
2257 		 * just use it.
2258 		 */
2259 		chunk /= win_divisor;
2260 		if (limit >= chunk)
2261 			goto send_now;
2262 	} else {
2263 		/* Different approach, try not to defer past a single
2264 		 * ACK.  Receiver should ACK every other full sized
2265 		 * frame, so if we have space for more than 3 frames
2266 		 * then send now.
2267 		 */
2268 		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2269 			goto send_now;
2270 	}
2271 
2272 	/* TODO : use tsorted_sent_queue ? */
2273 	head = tcp_rtx_queue_head(sk);
2274 	if (!head)
2275 		goto send_now;
2276 	delta = tp->tcp_clock_cache - head->tstamp;
2277 	/* If next ACK is likely to come too late (half srtt), do not defer */
2278 	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2279 		goto send_now;
2280 
2281 	/* Ok, it looks like it is advisable to defer.
2282 	 * Three cases are tracked :
2283 	 * 1) We are cwnd-limited
2284 	 * 2) We are rwnd-limited
2285 	 * 3) We are application limited.
2286 	 */
2287 	if (cong_win < send_win) {
2288 		if (cong_win <= skb->len) {
2289 			*is_cwnd_limited = true;
2290 			return true;
2291 		}
2292 	} else {
2293 		if (send_win <= skb->len) {
2294 			*is_rwnd_limited = true;
2295 			return true;
2296 		}
2297 	}
2298 
2299 	/* If this packet won't get more data, do not wait. */
2300 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2301 	    TCP_SKB_CB(skb)->eor)
2302 		goto send_now;
2303 
2304 	return true;
2305 
2306 send_now:
2307 	return false;
2308 }
2309 
2310 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2311 {
2312 	struct inet_connection_sock *icsk = inet_csk(sk);
2313 	struct tcp_sock *tp = tcp_sk(sk);
2314 	struct net *net = sock_net(sk);
2315 	u32 interval;
2316 	s32 delta;
2317 
2318 	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2319 	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2320 	if (unlikely(delta >= interval * HZ)) {
2321 		int mss = tcp_current_mss(sk);
2322 
2323 		/* Update current search range */
2324 		icsk->icsk_mtup.probe_size = 0;
2325 		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2326 			sizeof(struct tcphdr) +
2327 			icsk->icsk_af_ops->net_header_len;
2328 		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2329 
2330 		/* Update probe time stamp */
2331 		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2332 	}
2333 }
2334 
2335 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2336 {
2337 	struct sk_buff *skb, *next;
2338 
2339 	skb = tcp_send_head(sk);
2340 	tcp_for_write_queue_from_safe(skb, next, sk) {
2341 		if (len <= skb->len)
2342 			break;
2343 
2344 		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2345 		    tcp_has_tx_tstamp(skb) ||
2346 		    !skb_pure_zcopy_same(skb, next))
2347 			return false;
2348 
2349 		len -= skb->len;
2350 	}
2351 
2352 	return true;
2353 }
2354 
2355 static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2356 			     int probe_size)
2357 {
2358 	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2359 	int i, todo, len = 0, nr_frags = 0;
2360 	const struct sk_buff *skb;
2361 
2362 	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2363 		return -ENOMEM;
2364 
2365 	skb_queue_walk(&sk->sk_write_queue, skb) {
2366 		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2367 
2368 		if (skb_headlen(skb))
2369 			return -EINVAL;
2370 
2371 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2372 			if (len >= probe_size)
2373 				goto commit;
2374 			todo = min_t(int, skb_frag_size(fragfrom),
2375 				     probe_size - len);
2376 			len += todo;
2377 			if (lastfrag &&
2378 			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2379 			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2380 						      skb_frag_size(lastfrag)) {
2381 				skb_frag_size_add(lastfrag, todo);
2382 				continue;
2383 			}
2384 			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2385 				return -E2BIG;
2386 			skb_frag_page_copy(fragto, fragfrom);
2387 			skb_frag_off_copy(fragto, fragfrom);
2388 			skb_frag_size_set(fragto, todo);
2389 			nr_frags++;
2390 			lastfrag = fragto++;
2391 		}
2392 	}
2393 commit:
2394 	WARN_ON_ONCE(len != probe_size);
2395 	for (i = 0; i < nr_frags; i++)
2396 		skb_frag_ref(to, i);
2397 
2398 	skb_shinfo(to)->nr_frags = nr_frags;
2399 	to->truesize += probe_size;
2400 	to->len += probe_size;
2401 	to->data_len += probe_size;
2402 	__skb_header_release(to);
2403 	return 0;
2404 }
2405 
2406 /* Create a new MTU probe if we are ready.
2407  * MTU probe is regularly attempting to increase the path MTU by
2408  * deliberately sending larger packets.  This discovers routing
2409  * changes resulting in larger path MTUs.
2410  *
2411  * Returns 0 if we should wait to probe (no cwnd available),
2412  *         1 if a probe was sent,
2413  *         -1 otherwise
2414  */
2415 static int tcp_mtu_probe(struct sock *sk)
2416 {
2417 	struct inet_connection_sock *icsk = inet_csk(sk);
2418 	struct tcp_sock *tp = tcp_sk(sk);
2419 	struct sk_buff *skb, *nskb, *next;
2420 	struct net *net = sock_net(sk);
2421 	int probe_size;
2422 	int size_needed;
2423 	int copy, len;
2424 	int mss_now;
2425 	int interval;
2426 
2427 	/* Not currently probing/verifying,
2428 	 * not in recovery,
2429 	 * have enough cwnd, and
2430 	 * not SACKing (the variable headers throw things off)
2431 	 */
2432 	if (likely(!icsk->icsk_mtup.enabled ||
2433 		   icsk->icsk_mtup.probe_size ||
2434 		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2435 		   tcp_snd_cwnd(tp) < 11 ||
2436 		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2437 		return -1;
2438 
2439 	/* Use binary search for probe_size between tcp_mss_base,
2440 	 * and current mss_clamp. if (search_high - search_low)
2441 	 * smaller than a threshold, backoff from probing.
2442 	 */
2443 	mss_now = tcp_current_mss(sk);
2444 	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2445 				    icsk->icsk_mtup.search_low) >> 1);
2446 	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2447 	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2448 	/* When misfortune happens, we are reprobing actively,
2449 	 * and then reprobe timer has expired. We stick with current
2450 	 * probing process by not resetting search range to its orignal.
2451 	 */
2452 	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2453 	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2454 		/* Check whether enough time has elaplased for
2455 		 * another round of probing.
2456 		 */
2457 		tcp_mtu_check_reprobe(sk);
2458 		return -1;
2459 	}
2460 
2461 	/* Have enough data in the send queue to probe? */
2462 	if (tp->write_seq - tp->snd_nxt < size_needed)
2463 		return -1;
2464 
2465 	if (tp->snd_wnd < size_needed)
2466 		return -1;
2467 	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2468 		return 0;
2469 
2470 	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2471 	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2472 		if (!tcp_packets_in_flight(tp))
2473 			return -1;
2474 		else
2475 			return 0;
2476 	}
2477 
2478 	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2479 		return -1;
2480 
2481 	/* We're allowed to probe.  Build it now. */
2482 	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2483 	if (!nskb)
2484 		return -1;
2485 
2486 	/* build the payload, and be prepared to abort if this fails. */
2487 	if (tcp_clone_payload(sk, nskb, probe_size)) {
2488 		tcp_skb_tsorted_anchor_cleanup(nskb);
2489 		consume_skb(nskb);
2490 		return -1;
2491 	}
2492 	sk_wmem_queued_add(sk, nskb->truesize);
2493 	sk_mem_charge(sk, nskb->truesize);
2494 
2495 	skb = tcp_send_head(sk);
2496 	skb_copy_decrypted(nskb, skb);
2497 	mptcp_skb_ext_copy(nskb, skb);
2498 
2499 	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2500 	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2501 	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2502 
2503 	tcp_insert_write_queue_before(nskb, skb, sk);
2504 	tcp_highest_sack_replace(sk, skb, nskb);
2505 
2506 	len = 0;
2507 	tcp_for_write_queue_from_safe(skb, next, sk) {
2508 		copy = min_t(int, skb->len, probe_size - len);
2509 
2510 		if (skb->len <= copy) {
2511 			/* We've eaten all the data from this skb.
2512 			 * Throw it away. */
2513 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2514 			/* If this is the last SKB we copy and eor is set
2515 			 * we need to propagate it to the new skb.
2516 			 */
2517 			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2518 			tcp_skb_collapse_tstamp(nskb, skb);
2519 			tcp_unlink_write_queue(skb, sk);
2520 			tcp_wmem_free_skb(sk, skb);
2521 		} else {
2522 			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2523 						   ~(TCPHDR_FIN|TCPHDR_PSH);
2524 			__pskb_trim_head(skb, copy);
2525 			tcp_set_skb_tso_segs(skb, mss_now);
2526 			TCP_SKB_CB(skb)->seq += copy;
2527 		}
2528 
2529 		len += copy;
2530 
2531 		if (len >= probe_size)
2532 			break;
2533 	}
2534 	tcp_init_tso_segs(nskb, nskb->len);
2535 
2536 	/* We're ready to send.  If this fails, the probe will
2537 	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2538 	 */
2539 	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2540 		/* Decrement cwnd here because we are sending
2541 		 * effectively two packets. */
2542 		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2543 		tcp_event_new_data_sent(sk, nskb);
2544 
2545 		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2546 		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2547 		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2548 
2549 		return 1;
2550 	}
2551 
2552 	return -1;
2553 }
2554 
2555 static bool tcp_pacing_check(struct sock *sk)
2556 {
2557 	struct tcp_sock *tp = tcp_sk(sk);
2558 
2559 	if (!tcp_needs_internal_pacing(sk))
2560 		return false;
2561 
2562 	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2563 		return false;
2564 
2565 	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2566 		hrtimer_start(&tp->pacing_timer,
2567 			      ns_to_ktime(tp->tcp_wstamp_ns),
2568 			      HRTIMER_MODE_ABS_PINNED_SOFT);
2569 		sock_hold(sk);
2570 	}
2571 	return true;
2572 }
2573 
2574 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2575 {
2576 	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2577 
2578 	/* No skb in the rtx queue. */
2579 	if (!node)
2580 		return true;
2581 
2582 	/* Only one skb in rtx queue. */
2583 	return !node->rb_left && !node->rb_right;
2584 }
2585 
2586 /* TCP Small Queues :
2587  * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2588  * (These limits are doubled for retransmits)
2589  * This allows for :
2590  *  - better RTT estimation and ACK scheduling
2591  *  - faster recovery
2592  *  - high rates
2593  * Alas, some drivers / subsystems require a fair amount
2594  * of queued bytes to ensure line rate.
2595  * One example is wifi aggregation (802.11 AMPDU)
2596  */
2597 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2598 				  unsigned int factor)
2599 {
2600 	unsigned long limit;
2601 
2602 	limit = max_t(unsigned long,
2603 		      2 * skb->truesize,
2604 		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2605 	if (sk->sk_pacing_status == SK_PACING_NONE)
2606 		limit = min_t(unsigned long, limit,
2607 			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2608 	limit <<= factor;
2609 
2610 	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2611 	    tcp_sk(sk)->tcp_tx_delay) {
2612 		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2613 				  tcp_sk(sk)->tcp_tx_delay;
2614 
2615 		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2616 		 * approximate our needs assuming an ~100% skb->truesize overhead.
2617 		 * USEC_PER_SEC is approximated by 2^20.
2618 		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2619 		 */
2620 		extra_bytes >>= (20 - 1);
2621 		limit += extra_bytes;
2622 	}
2623 	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2624 		/* Always send skb if rtx queue is empty or has one skb.
2625 		 * No need to wait for TX completion to call us back,
2626 		 * after softirq/tasklet schedule.
2627 		 * This helps when TX completions are delayed too much.
2628 		 */
2629 		if (tcp_rtx_queue_empty_or_single_skb(sk))
2630 			return false;
2631 
2632 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2633 		/* It is possible TX completion already happened
2634 		 * before we set TSQ_THROTTLED, so we must
2635 		 * test again the condition.
2636 		 */
2637 		smp_mb__after_atomic();
2638 		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2639 			return true;
2640 	}
2641 	return false;
2642 }
2643 
2644 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2645 {
2646 	const u32 now = tcp_jiffies32;
2647 	enum tcp_chrono old = tp->chrono_type;
2648 
2649 	if (old > TCP_CHRONO_UNSPEC)
2650 		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2651 	tp->chrono_start = now;
2652 	tp->chrono_type = new;
2653 }
2654 
2655 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2656 {
2657 	struct tcp_sock *tp = tcp_sk(sk);
2658 
2659 	/* If there are multiple conditions worthy of tracking in a
2660 	 * chronograph then the highest priority enum takes precedence
2661 	 * over the other conditions. So that if something "more interesting"
2662 	 * starts happening, stop the previous chrono and start a new one.
2663 	 */
2664 	if (type > tp->chrono_type)
2665 		tcp_chrono_set(tp, type);
2666 }
2667 
2668 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2669 {
2670 	struct tcp_sock *tp = tcp_sk(sk);
2671 
2672 
2673 	/* There are multiple conditions worthy of tracking in a
2674 	 * chronograph, so that the highest priority enum takes
2675 	 * precedence over the other conditions (see tcp_chrono_start).
2676 	 * If a condition stops, we only stop chrono tracking if
2677 	 * it's the "most interesting" or current chrono we are
2678 	 * tracking and starts busy chrono if we have pending data.
2679 	 */
2680 	if (tcp_rtx_and_write_queues_empty(sk))
2681 		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2682 	else if (type == tp->chrono_type)
2683 		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2684 }
2685 
2686 /* This routine writes packets to the network.  It advances the
2687  * send_head.  This happens as incoming acks open up the remote
2688  * window for us.
2689  *
2690  * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2691  * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2692  * account rare use of URG, this is not a big flaw.
2693  *
2694  * Send at most one packet when push_one > 0. Temporarily ignore
2695  * cwnd limit to force at most one packet out when push_one == 2.
2696 
2697  * Returns true, if no segments are in flight and we have queued segments,
2698  * but cannot send anything now because of SWS or another problem.
2699  */
2700 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2701 			   int push_one, gfp_t gfp)
2702 {
2703 	struct tcp_sock *tp = tcp_sk(sk);
2704 	struct sk_buff *skb;
2705 	unsigned int tso_segs, sent_pkts;
2706 	int cwnd_quota;
2707 	int result;
2708 	bool is_cwnd_limited = false, is_rwnd_limited = false;
2709 	u32 max_segs;
2710 
2711 	sent_pkts = 0;
2712 
2713 	tcp_mstamp_refresh(tp);
2714 	if (!push_one) {
2715 		/* Do MTU probing. */
2716 		result = tcp_mtu_probe(sk);
2717 		if (!result) {
2718 			return false;
2719 		} else if (result > 0) {
2720 			sent_pkts = 1;
2721 		}
2722 	}
2723 
2724 	max_segs = tcp_tso_segs(sk, mss_now);
2725 	while ((skb = tcp_send_head(sk))) {
2726 		unsigned int limit;
2727 
2728 		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2729 			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2730 			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2731 			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2732 			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2733 			tcp_init_tso_segs(skb, mss_now);
2734 			goto repair; /* Skip network transmission */
2735 		}
2736 
2737 		if (tcp_pacing_check(sk))
2738 			break;
2739 
2740 		tso_segs = tcp_init_tso_segs(skb, mss_now);
2741 		BUG_ON(!tso_segs);
2742 
2743 		cwnd_quota = tcp_cwnd_test(tp, skb);
2744 		if (!cwnd_quota) {
2745 			if (push_one == 2)
2746 				/* Force out a loss probe pkt. */
2747 				cwnd_quota = 1;
2748 			else
2749 				break;
2750 		}
2751 
2752 		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2753 			is_rwnd_limited = true;
2754 			break;
2755 		}
2756 
2757 		if (tso_segs == 1) {
2758 			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2759 						     (tcp_skb_is_last(sk, skb) ?
2760 						      nonagle : TCP_NAGLE_PUSH))))
2761 				break;
2762 		} else {
2763 			if (!push_one &&
2764 			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2765 						 &is_rwnd_limited, max_segs))
2766 				break;
2767 		}
2768 
2769 		limit = mss_now;
2770 		if (tso_segs > 1 && !tcp_urg_mode(tp))
2771 			limit = tcp_mss_split_point(sk, skb, mss_now,
2772 						    min_t(unsigned int,
2773 							  cwnd_quota,
2774 							  max_segs),
2775 						    nonagle);
2776 
2777 		if (skb->len > limit &&
2778 		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2779 			break;
2780 
2781 		if (tcp_small_queue_check(sk, skb, 0))
2782 			break;
2783 
2784 		/* Argh, we hit an empty skb(), presumably a thread
2785 		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2786 		 * We do not want to send a pure-ack packet and have
2787 		 * a strange looking rtx queue with empty packet(s).
2788 		 */
2789 		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2790 			break;
2791 
2792 		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2793 			break;
2794 
2795 repair:
2796 		/* Advance the send_head.  This one is sent out.
2797 		 * This call will increment packets_out.
2798 		 */
2799 		tcp_event_new_data_sent(sk, skb);
2800 
2801 		tcp_minshall_update(tp, mss_now, skb);
2802 		sent_pkts += tcp_skb_pcount(skb);
2803 
2804 		if (push_one)
2805 			break;
2806 	}
2807 
2808 	if (is_rwnd_limited)
2809 		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2810 	else
2811 		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2812 
2813 	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2814 	if (likely(sent_pkts || is_cwnd_limited))
2815 		tcp_cwnd_validate(sk, is_cwnd_limited);
2816 
2817 	if (likely(sent_pkts)) {
2818 		if (tcp_in_cwnd_reduction(sk))
2819 			tp->prr_out += sent_pkts;
2820 
2821 		/* Send one loss probe per tail loss episode. */
2822 		if (push_one != 2)
2823 			tcp_schedule_loss_probe(sk, false);
2824 		return false;
2825 	}
2826 	return !tp->packets_out && !tcp_write_queue_empty(sk);
2827 }
2828 
2829 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2830 {
2831 	struct inet_connection_sock *icsk = inet_csk(sk);
2832 	struct tcp_sock *tp = tcp_sk(sk);
2833 	u32 timeout, timeout_us, rto_delta_us;
2834 	int early_retrans;
2835 
2836 	/* Don't do any loss probe on a Fast Open connection before 3WHS
2837 	 * finishes.
2838 	 */
2839 	if (rcu_access_pointer(tp->fastopen_rsk))
2840 		return false;
2841 
2842 	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2843 	/* Schedule a loss probe in 2*RTT for SACK capable connections
2844 	 * not in loss recovery, that are either limited by cwnd or application.
2845 	 */
2846 	if ((early_retrans != 3 && early_retrans != 4) ||
2847 	    !tp->packets_out || !tcp_is_sack(tp) ||
2848 	    (icsk->icsk_ca_state != TCP_CA_Open &&
2849 	     icsk->icsk_ca_state != TCP_CA_CWR))
2850 		return false;
2851 
2852 	/* Probe timeout is 2*rtt. Add minimum RTO to account
2853 	 * for delayed ack when there's one outstanding packet. If no RTT
2854 	 * sample is available then probe after TCP_TIMEOUT_INIT.
2855 	 */
2856 	if (tp->srtt_us) {
2857 		timeout_us = tp->srtt_us >> 2;
2858 		if (tp->packets_out == 1)
2859 			timeout_us += tcp_rto_min_us(sk);
2860 		else
2861 			timeout_us += TCP_TIMEOUT_MIN_US;
2862 		timeout = usecs_to_jiffies(timeout_us);
2863 	} else {
2864 		timeout = TCP_TIMEOUT_INIT;
2865 	}
2866 
2867 	/* If the RTO formula yields an earlier time, then use that time. */
2868 	rto_delta_us = advancing_rto ?
2869 			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2870 			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2871 	if (rto_delta_us > 0)
2872 		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2873 
2874 	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2875 	return true;
2876 }
2877 
2878 /* Thanks to skb fast clones, we can detect if a prior transmit of
2879  * a packet is still in a qdisc or driver queue.
2880  * In this case, there is very little point doing a retransmit !
2881  */
2882 static bool skb_still_in_host_queue(struct sock *sk,
2883 				    const struct sk_buff *skb)
2884 {
2885 	if (unlikely(skb_fclone_busy(sk, skb))) {
2886 		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2887 		smp_mb__after_atomic();
2888 		if (skb_fclone_busy(sk, skb)) {
2889 			NET_INC_STATS(sock_net(sk),
2890 				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2891 			return true;
2892 		}
2893 	}
2894 	return false;
2895 }
2896 
2897 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2898  * retransmit the last segment.
2899  */
2900 void tcp_send_loss_probe(struct sock *sk)
2901 {
2902 	struct tcp_sock *tp = tcp_sk(sk);
2903 	struct sk_buff *skb;
2904 	int pcount;
2905 	int mss = tcp_current_mss(sk);
2906 
2907 	/* At most one outstanding TLP */
2908 	if (tp->tlp_high_seq)
2909 		goto rearm_timer;
2910 
2911 	tp->tlp_retrans = 0;
2912 	skb = tcp_send_head(sk);
2913 	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2914 		pcount = tp->packets_out;
2915 		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2916 		if (tp->packets_out > pcount)
2917 			goto probe_sent;
2918 		goto rearm_timer;
2919 	}
2920 	skb = skb_rb_last(&sk->tcp_rtx_queue);
2921 	if (unlikely(!skb)) {
2922 		WARN_ONCE(tp->packets_out,
2923 			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2924 			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2925 		inet_csk(sk)->icsk_pending = 0;
2926 		return;
2927 	}
2928 
2929 	if (skb_still_in_host_queue(sk, skb))
2930 		goto rearm_timer;
2931 
2932 	pcount = tcp_skb_pcount(skb);
2933 	if (WARN_ON(!pcount))
2934 		goto rearm_timer;
2935 
2936 	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2937 		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2938 					  (pcount - 1) * mss, mss,
2939 					  GFP_ATOMIC)))
2940 			goto rearm_timer;
2941 		skb = skb_rb_next(skb);
2942 	}
2943 
2944 	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2945 		goto rearm_timer;
2946 
2947 	if (__tcp_retransmit_skb(sk, skb, 1))
2948 		goto rearm_timer;
2949 
2950 	tp->tlp_retrans = 1;
2951 
2952 probe_sent:
2953 	/* Record snd_nxt for loss detection. */
2954 	tp->tlp_high_seq = tp->snd_nxt;
2955 
2956 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2957 	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2958 	inet_csk(sk)->icsk_pending = 0;
2959 rearm_timer:
2960 	tcp_rearm_rto(sk);
2961 }
2962 
2963 /* Push out any pending frames which were held back due to
2964  * TCP_CORK or attempt at coalescing tiny packets.
2965  * The socket must be locked by the caller.
2966  */
2967 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2968 			       int nonagle)
2969 {
2970 	/* If we are closed, the bytes will have to remain here.
2971 	 * In time closedown will finish, we empty the write queue and
2972 	 * all will be happy.
2973 	 */
2974 	if (unlikely(sk->sk_state == TCP_CLOSE))
2975 		return;
2976 
2977 	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2978 			   sk_gfp_mask(sk, GFP_ATOMIC)))
2979 		tcp_check_probe_timer(sk);
2980 }
2981 
2982 /* Send _single_ skb sitting at the send head. This function requires
2983  * true push pending frames to setup probe timer etc.
2984  */
2985 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2986 {
2987 	struct sk_buff *skb = tcp_send_head(sk);
2988 
2989 	BUG_ON(!skb || skb->len < mss_now);
2990 
2991 	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2992 }
2993 
2994 /* This function returns the amount that we can raise the
2995  * usable window based on the following constraints
2996  *
2997  * 1. The window can never be shrunk once it is offered (RFC 793)
2998  * 2. We limit memory per socket
2999  *
3000  * RFC 1122:
3001  * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3002  *  RECV.NEXT + RCV.WIN fixed until:
3003  *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3004  *
3005  * i.e. don't raise the right edge of the window until you can raise
3006  * it at least MSS bytes.
3007  *
3008  * Unfortunately, the recommended algorithm breaks header prediction,
3009  * since header prediction assumes th->window stays fixed.
3010  *
3011  * Strictly speaking, keeping th->window fixed violates the receiver
3012  * side SWS prevention criteria. The problem is that under this rule
3013  * a stream of single byte packets will cause the right side of the
3014  * window to always advance by a single byte.
3015  *
3016  * Of course, if the sender implements sender side SWS prevention
3017  * then this will not be a problem.
3018  *
3019  * BSD seems to make the following compromise:
3020  *
3021  *	If the free space is less than the 1/4 of the maximum
3022  *	space available and the free space is less than 1/2 mss,
3023  *	then set the window to 0.
3024  *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3025  *	Otherwise, just prevent the window from shrinking
3026  *	and from being larger than the largest representable value.
3027  *
3028  * This prevents incremental opening of the window in the regime
3029  * where TCP is limited by the speed of the reader side taking
3030  * data out of the TCP receive queue. It does nothing about
3031  * those cases where the window is constrained on the sender side
3032  * because the pipeline is full.
3033  *
3034  * BSD also seems to "accidentally" limit itself to windows that are a
3035  * multiple of MSS, at least until the free space gets quite small.
3036  * This would appear to be a side effect of the mbuf implementation.
3037  * Combining these two algorithms results in the observed behavior
3038  * of having a fixed window size at almost all times.
3039  *
3040  * Below we obtain similar behavior by forcing the offered window to
3041  * a multiple of the mss when it is feasible to do so.
3042  *
3043  * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3044  * Regular options like TIMESTAMP are taken into account.
3045  */
3046 u32 __tcp_select_window(struct sock *sk)
3047 {
3048 	struct inet_connection_sock *icsk = inet_csk(sk);
3049 	struct tcp_sock *tp = tcp_sk(sk);
3050 	struct net *net = sock_net(sk);
3051 	/* MSS for the peer's data.  Previous versions used mss_clamp
3052 	 * here.  I don't know if the value based on our guesses
3053 	 * of peer's MSS is better for the performance.  It's more correct
3054 	 * but may be worse for the performance because of rcv_mss
3055 	 * fluctuations.  --SAW  1998/11/1
3056 	 */
3057 	int mss = icsk->icsk_ack.rcv_mss;
3058 	int free_space = tcp_space(sk);
3059 	int allowed_space = tcp_full_space(sk);
3060 	int full_space, window;
3061 
3062 	if (sk_is_mptcp(sk))
3063 		mptcp_space(sk, &free_space, &allowed_space);
3064 
3065 	full_space = min_t(int, tp->window_clamp, allowed_space);
3066 
3067 	if (unlikely(mss > full_space)) {
3068 		mss = full_space;
3069 		if (mss <= 0)
3070 			return 0;
3071 	}
3072 
3073 	/* Only allow window shrink if the sysctl is enabled and we have
3074 	 * a non-zero scaling factor in effect.
3075 	 */
3076 	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3077 		goto shrink_window_allowed;
3078 
3079 	/* do not allow window to shrink */
3080 
3081 	if (free_space < (full_space >> 1)) {
3082 		icsk->icsk_ack.quick = 0;
3083 
3084 		if (tcp_under_memory_pressure(sk))
3085 			tcp_adjust_rcv_ssthresh(sk);
3086 
3087 		/* free_space might become our new window, make sure we don't
3088 		 * increase it due to wscale.
3089 		 */
3090 		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3091 
3092 		/* if free space is less than mss estimate, or is below 1/16th
3093 		 * of the maximum allowed, try to move to zero-window, else
3094 		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3095 		 * new incoming data is dropped due to memory limits.
3096 		 * With large window, mss test triggers way too late in order
3097 		 * to announce zero window in time before rmem limit kicks in.
3098 		 */
3099 		if (free_space < (allowed_space >> 4) || free_space < mss)
3100 			return 0;
3101 	}
3102 
3103 	if (free_space > tp->rcv_ssthresh)
3104 		free_space = tp->rcv_ssthresh;
3105 
3106 	/* Don't do rounding if we are using window scaling, since the
3107 	 * scaled window will not line up with the MSS boundary anyway.
3108 	 */
3109 	if (tp->rx_opt.rcv_wscale) {
3110 		window = free_space;
3111 
3112 		/* Advertise enough space so that it won't get scaled away.
3113 		 * Import case: prevent zero window announcement if
3114 		 * 1<<rcv_wscale > mss.
3115 		 */
3116 		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3117 	} else {
3118 		window = tp->rcv_wnd;
3119 		/* Get the largest window that is a nice multiple of mss.
3120 		 * Window clamp already applied above.
3121 		 * If our current window offering is within 1 mss of the
3122 		 * free space we just keep it. This prevents the divide
3123 		 * and multiply from happening most of the time.
3124 		 * We also don't do any window rounding when the free space
3125 		 * is too small.
3126 		 */
3127 		if (window <= free_space - mss || window > free_space)
3128 			window = rounddown(free_space, mss);
3129 		else if (mss == full_space &&
3130 			 free_space > window + (full_space >> 1))
3131 			window = free_space;
3132 	}
3133 
3134 	return window;
3135 
3136 shrink_window_allowed:
3137 	/* new window should always be an exact multiple of scaling factor */
3138 	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3139 
3140 	if (free_space < (full_space >> 1)) {
3141 		icsk->icsk_ack.quick = 0;
3142 
3143 		if (tcp_under_memory_pressure(sk))
3144 			tcp_adjust_rcv_ssthresh(sk);
3145 
3146 		/* if free space is too low, return a zero window */
3147 		if (free_space < (allowed_space >> 4) || free_space < mss ||
3148 			free_space < (1 << tp->rx_opt.rcv_wscale))
3149 			return 0;
3150 	}
3151 
3152 	if (free_space > tp->rcv_ssthresh) {
3153 		free_space = tp->rcv_ssthresh;
3154 		/* new window should always be an exact multiple of scaling factor
3155 		 *
3156 		 * For this case, we ALIGN "up" (increase free_space) because
3157 		 * we know free_space is not zero here, it has been reduced from
3158 		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3159 		 * (unlike sk_rcvbuf).
3160 		 */
3161 		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3162 	}
3163 
3164 	return free_space;
3165 }
3166 
3167 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3168 			     const struct sk_buff *next_skb)
3169 {
3170 	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3171 		const struct skb_shared_info *next_shinfo =
3172 			skb_shinfo(next_skb);
3173 		struct skb_shared_info *shinfo = skb_shinfo(skb);
3174 
3175 		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3176 		shinfo->tskey = next_shinfo->tskey;
3177 		TCP_SKB_CB(skb)->txstamp_ack |=
3178 			TCP_SKB_CB(next_skb)->txstamp_ack;
3179 	}
3180 }
3181 
3182 /* Collapses two adjacent SKB's during retransmission. */
3183 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3184 {
3185 	struct tcp_sock *tp = tcp_sk(sk);
3186 	struct sk_buff *next_skb = skb_rb_next(skb);
3187 	int next_skb_size;
3188 
3189 	next_skb_size = next_skb->len;
3190 
3191 	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3192 
3193 	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3194 		return false;
3195 
3196 	tcp_highest_sack_replace(sk, next_skb, skb);
3197 
3198 	/* Update sequence range on original skb. */
3199 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3200 
3201 	/* Merge over control information. This moves PSH/FIN etc. over */
3202 	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3203 
3204 	/* All done, get rid of second SKB and account for it so
3205 	 * packet counting does not break.
3206 	 */
3207 	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3208 	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3209 
3210 	/* changed transmit queue under us so clear hints */
3211 	tcp_clear_retrans_hints_partial(tp);
3212 	if (next_skb == tp->retransmit_skb_hint)
3213 		tp->retransmit_skb_hint = skb;
3214 
3215 	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3216 
3217 	tcp_skb_collapse_tstamp(skb, next_skb);
3218 
3219 	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3220 	return true;
3221 }
3222 
3223 /* Check if coalescing SKBs is legal. */
3224 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3225 {
3226 	if (tcp_skb_pcount(skb) > 1)
3227 		return false;
3228 	if (skb_cloned(skb))
3229 		return false;
3230 	/* Some heuristics for collapsing over SACK'd could be invented */
3231 	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3232 		return false;
3233 
3234 	return true;
3235 }
3236 
3237 /* Collapse packets in the retransmit queue to make to create
3238  * less packets on the wire. This is only done on retransmission.
3239  */
3240 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3241 				     int space)
3242 {
3243 	struct tcp_sock *tp = tcp_sk(sk);
3244 	struct sk_buff *skb = to, *tmp;
3245 	bool first = true;
3246 
3247 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3248 		return;
3249 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3250 		return;
3251 
3252 	skb_rbtree_walk_from_safe(skb, tmp) {
3253 		if (!tcp_can_collapse(sk, skb))
3254 			break;
3255 
3256 		if (!tcp_skb_can_collapse(to, skb))
3257 			break;
3258 
3259 		space -= skb->len;
3260 
3261 		if (first) {
3262 			first = false;
3263 			continue;
3264 		}
3265 
3266 		if (space < 0)
3267 			break;
3268 
3269 		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3270 			break;
3271 
3272 		if (!tcp_collapse_retrans(sk, to))
3273 			break;
3274 	}
3275 }
3276 
3277 /* This retransmits one SKB.  Policy decisions and retransmit queue
3278  * state updates are done by the caller.  Returns non-zero if an
3279  * error occurred which prevented the send.
3280  */
3281 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3282 {
3283 	struct inet_connection_sock *icsk = inet_csk(sk);
3284 	struct tcp_sock *tp = tcp_sk(sk);
3285 	unsigned int cur_mss;
3286 	int diff, len, err;
3287 	int avail_wnd;
3288 
3289 	/* Inconclusive MTU probe */
3290 	if (icsk->icsk_mtup.probe_size)
3291 		icsk->icsk_mtup.probe_size = 0;
3292 
3293 	if (skb_still_in_host_queue(sk, skb))
3294 		return -EBUSY;
3295 
3296 start:
3297 	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3298 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3299 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3300 			TCP_SKB_CB(skb)->seq++;
3301 			goto start;
3302 		}
3303 		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3304 			WARN_ON_ONCE(1);
3305 			return -EINVAL;
3306 		}
3307 		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3308 			return -ENOMEM;
3309 	}
3310 
3311 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3312 		return -EHOSTUNREACH; /* Routing failure or similar. */
3313 
3314 	cur_mss = tcp_current_mss(sk);
3315 	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3316 
3317 	/* If receiver has shrunk his window, and skb is out of
3318 	 * new window, do not retransmit it. The exception is the
3319 	 * case, when window is shrunk to zero. In this case
3320 	 * our retransmit of one segment serves as a zero window probe.
3321 	 */
3322 	if (avail_wnd <= 0) {
3323 		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3324 			return -EAGAIN;
3325 		avail_wnd = cur_mss;
3326 	}
3327 
3328 	len = cur_mss * segs;
3329 	if (len > avail_wnd) {
3330 		len = rounddown(avail_wnd, cur_mss);
3331 		if (!len)
3332 			len = avail_wnd;
3333 	}
3334 	if (skb->len > len) {
3335 		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3336 				 cur_mss, GFP_ATOMIC))
3337 			return -ENOMEM; /* We'll try again later. */
3338 	} else {
3339 		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3340 			return -ENOMEM;
3341 
3342 		diff = tcp_skb_pcount(skb);
3343 		tcp_set_skb_tso_segs(skb, cur_mss);
3344 		diff -= tcp_skb_pcount(skb);
3345 		if (diff)
3346 			tcp_adjust_pcount(sk, skb, diff);
3347 		avail_wnd = min_t(int, avail_wnd, cur_mss);
3348 		if (skb->len < avail_wnd)
3349 			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3350 	}
3351 
3352 	/* RFC3168, section 6.1.1.1. ECN fallback */
3353 	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3354 		tcp_ecn_clear_syn(sk, skb);
3355 
3356 	/* Update global and local TCP statistics. */
3357 	segs = tcp_skb_pcount(skb);
3358 	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3359 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3360 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3361 	tp->total_retrans += segs;
3362 	tp->bytes_retrans += skb->len;
3363 
3364 	/* make sure skb->data is aligned on arches that require it
3365 	 * and check if ack-trimming & collapsing extended the headroom
3366 	 * beyond what csum_start can cover.
3367 	 */
3368 	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3369 		     skb_headroom(skb) >= 0xFFFF)) {
3370 		struct sk_buff *nskb;
3371 
3372 		tcp_skb_tsorted_save(skb) {
3373 			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3374 			if (nskb) {
3375 				nskb->dev = NULL;
3376 				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3377 			} else {
3378 				err = -ENOBUFS;
3379 			}
3380 		} tcp_skb_tsorted_restore(skb);
3381 
3382 		if (!err) {
3383 			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3384 			tcp_rate_skb_sent(sk, skb);
3385 		}
3386 	} else {
3387 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3388 	}
3389 
3390 	/* To avoid taking spuriously low RTT samples based on a timestamp
3391 	 * for a transmit that never happened, always mark EVER_RETRANS
3392 	 */
3393 	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3394 
3395 	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3396 		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3397 				  TCP_SKB_CB(skb)->seq, segs, err);
3398 
3399 	if (likely(!err)) {
3400 		trace_tcp_retransmit_skb(sk, skb);
3401 	} else if (err != -EBUSY) {
3402 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3403 	}
3404 	return err;
3405 }
3406 
3407 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3408 {
3409 	struct tcp_sock *tp = tcp_sk(sk);
3410 	int err = __tcp_retransmit_skb(sk, skb, segs);
3411 
3412 	if (err == 0) {
3413 #if FASTRETRANS_DEBUG > 0
3414 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3415 			net_dbg_ratelimited("retrans_out leaked\n");
3416 		}
3417 #endif
3418 		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3419 		tp->retrans_out += tcp_skb_pcount(skb);
3420 	}
3421 
3422 	/* Save stamp of the first (attempted) retransmit. */
3423 	if (!tp->retrans_stamp)
3424 		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3425 
3426 	if (tp->undo_retrans < 0)
3427 		tp->undo_retrans = 0;
3428 	tp->undo_retrans += tcp_skb_pcount(skb);
3429 	return err;
3430 }
3431 
3432 /* This gets called after a retransmit timeout, and the initially
3433  * retransmitted data is acknowledged.  It tries to continue
3434  * resending the rest of the retransmit queue, until either
3435  * we've sent it all or the congestion window limit is reached.
3436  */
3437 void tcp_xmit_retransmit_queue(struct sock *sk)
3438 {
3439 	const struct inet_connection_sock *icsk = inet_csk(sk);
3440 	struct sk_buff *skb, *rtx_head, *hole = NULL;
3441 	struct tcp_sock *tp = tcp_sk(sk);
3442 	bool rearm_timer = false;
3443 	u32 max_segs;
3444 	int mib_idx;
3445 
3446 	if (!tp->packets_out)
3447 		return;
3448 
3449 	rtx_head = tcp_rtx_queue_head(sk);
3450 	skb = tp->retransmit_skb_hint ?: rtx_head;
3451 	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3452 	skb_rbtree_walk_from(skb) {
3453 		__u8 sacked;
3454 		int segs;
3455 
3456 		if (tcp_pacing_check(sk))
3457 			break;
3458 
3459 		/* we could do better than to assign each time */
3460 		if (!hole)
3461 			tp->retransmit_skb_hint = skb;
3462 
3463 		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3464 		if (segs <= 0)
3465 			break;
3466 		sacked = TCP_SKB_CB(skb)->sacked;
3467 		/* In case tcp_shift_skb_data() have aggregated large skbs,
3468 		 * we need to make sure not sending too bigs TSO packets
3469 		 */
3470 		segs = min_t(int, segs, max_segs);
3471 
3472 		if (tp->retrans_out >= tp->lost_out) {
3473 			break;
3474 		} else if (!(sacked & TCPCB_LOST)) {
3475 			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3476 				hole = skb;
3477 			continue;
3478 
3479 		} else {
3480 			if (icsk->icsk_ca_state != TCP_CA_Loss)
3481 				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3482 			else
3483 				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3484 		}
3485 
3486 		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3487 			continue;
3488 
3489 		if (tcp_small_queue_check(sk, skb, 1))
3490 			break;
3491 
3492 		if (tcp_retransmit_skb(sk, skb, segs))
3493 			break;
3494 
3495 		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3496 
3497 		if (tcp_in_cwnd_reduction(sk))
3498 			tp->prr_out += tcp_skb_pcount(skb);
3499 
3500 		if (skb == rtx_head &&
3501 		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3502 			rearm_timer = true;
3503 
3504 	}
3505 	if (rearm_timer)
3506 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3507 				     inet_csk(sk)->icsk_rto,
3508 				     TCP_RTO_MAX);
3509 }
3510 
3511 /* We allow to exceed memory limits for FIN packets to expedite
3512  * connection tear down and (memory) recovery.
3513  * Otherwise tcp_send_fin() could be tempted to either delay FIN
3514  * or even be forced to close flow without any FIN.
3515  * In general, we want to allow one skb per socket to avoid hangs
3516  * with edge trigger epoll()
3517  */
3518 void sk_forced_mem_schedule(struct sock *sk, int size)
3519 {
3520 	int delta, amt;
3521 
3522 	delta = size - sk->sk_forward_alloc;
3523 	if (delta <= 0)
3524 		return;
3525 	amt = sk_mem_pages(delta);
3526 	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3527 	sk_memory_allocated_add(sk, amt);
3528 
3529 	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3530 		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3531 					gfp_memcg_charge() | __GFP_NOFAIL);
3532 }
3533 
3534 /* Send a FIN. The caller locks the socket for us.
3535  * We should try to send a FIN packet really hard, but eventually give up.
3536  */
3537 void tcp_send_fin(struct sock *sk)
3538 {
3539 	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3540 	struct tcp_sock *tp = tcp_sk(sk);
3541 
3542 	/* Optimization, tack on the FIN if we have one skb in write queue and
3543 	 * this skb was not yet sent, or we are under memory pressure.
3544 	 * Note: in the latter case, FIN packet will be sent after a timeout,
3545 	 * as TCP stack thinks it has already been transmitted.
3546 	 */
3547 	tskb = tail;
3548 	if (!tskb && tcp_under_memory_pressure(sk))
3549 		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3550 
3551 	if (tskb) {
3552 		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3553 		TCP_SKB_CB(tskb)->end_seq++;
3554 		tp->write_seq++;
3555 		if (!tail) {
3556 			/* This means tskb was already sent.
3557 			 * Pretend we included the FIN on previous transmit.
3558 			 * We need to set tp->snd_nxt to the value it would have
3559 			 * if FIN had been sent. This is because retransmit path
3560 			 * does not change tp->snd_nxt.
3561 			 */
3562 			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3563 			return;
3564 		}
3565 	} else {
3566 		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3567 		if (unlikely(!skb))
3568 			return;
3569 
3570 		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3571 		skb_reserve(skb, MAX_TCP_HEADER);
3572 		sk_forced_mem_schedule(sk, skb->truesize);
3573 		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3574 		tcp_init_nondata_skb(skb, tp->write_seq,
3575 				     TCPHDR_ACK | TCPHDR_FIN);
3576 		tcp_queue_skb(sk, skb);
3577 	}
3578 	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3579 }
3580 
3581 /* We get here when a process closes a file descriptor (either due to
3582  * an explicit close() or as a byproduct of exit()'ing) and there
3583  * was unread data in the receive queue.  This behavior is recommended
3584  * by RFC 2525, section 2.17.  -DaveM
3585  */
3586 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3587 {
3588 	struct sk_buff *skb;
3589 
3590 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3591 
3592 	/* NOTE: No TCP options attached and we never retransmit this. */
3593 	skb = alloc_skb(MAX_TCP_HEADER, priority);
3594 	if (!skb) {
3595 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3596 		return;
3597 	}
3598 
3599 	/* Reserve space for headers and prepare control bits. */
3600 	skb_reserve(skb, MAX_TCP_HEADER);
3601 	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3602 			     TCPHDR_ACK | TCPHDR_RST);
3603 	tcp_mstamp_refresh(tcp_sk(sk));
3604 	/* Send it off. */
3605 	if (tcp_transmit_skb(sk, skb, 0, priority))
3606 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3607 
3608 	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3609 	 * skb here is different to the troublesome skb, so use NULL
3610 	 */
3611 	trace_tcp_send_reset(sk, NULL);
3612 }
3613 
3614 /* Send a crossed SYN-ACK during socket establishment.
3615  * WARNING: This routine must only be called when we have already sent
3616  * a SYN packet that crossed the incoming SYN that caused this routine
3617  * to get called. If this assumption fails then the initial rcv_wnd
3618  * and rcv_wscale values will not be correct.
3619  */
3620 int tcp_send_synack(struct sock *sk)
3621 {
3622 	struct sk_buff *skb;
3623 
3624 	skb = tcp_rtx_queue_head(sk);
3625 	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3626 		pr_err("%s: wrong queue state\n", __func__);
3627 		return -EFAULT;
3628 	}
3629 	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3630 		if (skb_cloned(skb)) {
3631 			struct sk_buff *nskb;
3632 
3633 			tcp_skb_tsorted_save(skb) {
3634 				nskb = skb_copy(skb, GFP_ATOMIC);
3635 			} tcp_skb_tsorted_restore(skb);
3636 			if (!nskb)
3637 				return -ENOMEM;
3638 			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3639 			tcp_highest_sack_replace(sk, skb, nskb);
3640 			tcp_rtx_queue_unlink_and_free(skb, sk);
3641 			__skb_header_release(nskb);
3642 			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3643 			sk_wmem_queued_add(sk, nskb->truesize);
3644 			sk_mem_charge(sk, nskb->truesize);
3645 			skb = nskb;
3646 		}
3647 
3648 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3649 		tcp_ecn_send_synack(sk, skb);
3650 	}
3651 	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3652 }
3653 
3654 /**
3655  * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3656  * @sk: listener socket
3657  * @dst: dst entry attached to the SYNACK. It is consumed and caller
3658  *       should not use it again.
3659  * @req: request_sock pointer
3660  * @foc: cookie for tcp fast open
3661  * @synack_type: Type of synack to prepare
3662  * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3663  */
3664 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3665 				struct request_sock *req,
3666 				struct tcp_fastopen_cookie *foc,
3667 				enum tcp_synack_type synack_type,
3668 				struct sk_buff *syn_skb)
3669 {
3670 	struct inet_request_sock *ireq = inet_rsk(req);
3671 	const struct tcp_sock *tp = tcp_sk(sk);
3672 	struct tcp_out_options opts;
3673 	struct tcp_key key = {};
3674 	struct sk_buff *skb;
3675 	int tcp_header_size;
3676 	struct tcphdr *th;
3677 	int mss;
3678 	u64 now;
3679 
3680 	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3681 	if (unlikely(!skb)) {
3682 		dst_release(dst);
3683 		return NULL;
3684 	}
3685 	/* Reserve space for headers. */
3686 	skb_reserve(skb, MAX_TCP_HEADER);
3687 
3688 	switch (synack_type) {
3689 	case TCP_SYNACK_NORMAL:
3690 		skb_set_owner_w(skb, req_to_sk(req));
3691 		break;
3692 	case TCP_SYNACK_COOKIE:
3693 		/* Under synflood, we do not attach skb to a socket,
3694 		 * to avoid false sharing.
3695 		 */
3696 		break;
3697 	case TCP_SYNACK_FASTOPEN:
3698 		/* sk is a const pointer, because we want to express multiple
3699 		 * cpu might call us concurrently.
3700 		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3701 		 */
3702 		skb_set_owner_w(skb, (struct sock *)sk);
3703 		break;
3704 	}
3705 	skb_dst_set(skb, dst);
3706 
3707 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3708 
3709 	memset(&opts, 0, sizeof(opts));
3710 	now = tcp_clock_ns();
3711 #ifdef CONFIG_SYN_COOKIES
3712 	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3713 		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3714 				      true);
3715 	else
3716 #endif
3717 	{
3718 		skb_set_delivery_time(skb, now, true);
3719 		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3720 			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3721 	}
3722 
3723 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3724 	rcu_read_lock();
3725 #endif
3726 	if (tcp_rsk_used_ao(req)) {
3727 #ifdef CONFIG_TCP_AO
3728 		struct tcp_ao_key *ao_key = NULL;
3729 		u8 keyid = tcp_rsk(req)->ao_keyid;
3730 
3731 		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3732 							    keyid, -1);
3733 		/* If there is no matching key - avoid sending anything,
3734 		 * especially usigned segments. It could try harder and lookup
3735 		 * for another peer-matching key, but the peer has requested
3736 		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3737 		 */
3738 		if (unlikely(!ao_key)) {
3739 			rcu_read_unlock();
3740 			kfree_skb(skb);
3741 			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3742 					     keyid);
3743 			return NULL;
3744 		}
3745 		key.ao_key = ao_key;
3746 		key.type = TCP_KEY_AO;
3747 #endif
3748 	} else {
3749 #ifdef CONFIG_TCP_MD5SIG
3750 		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3751 					req_to_sk(req));
3752 		if (key.md5_key)
3753 			key.type = TCP_KEY_MD5;
3754 #endif
3755 	}
3756 	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3757 	/* bpf program will be interested in the tcp_flags */
3758 	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3759 	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3760 					     &key, foc, synack_type, syn_skb)
3761 					+ sizeof(*th);
3762 
3763 	skb_push(skb, tcp_header_size);
3764 	skb_reset_transport_header(skb);
3765 
3766 	th = (struct tcphdr *)skb->data;
3767 	memset(th, 0, sizeof(struct tcphdr));
3768 	th->syn = 1;
3769 	th->ack = 1;
3770 	tcp_ecn_make_synack(req, th);
3771 	th->source = htons(ireq->ir_num);
3772 	th->dest = ireq->ir_rmt_port;
3773 	skb->mark = ireq->ir_mark;
3774 	skb->ip_summed = CHECKSUM_PARTIAL;
3775 	th->seq = htonl(tcp_rsk(req)->snt_isn);
3776 	/* XXX data is queued and acked as is. No buffer/window check */
3777 	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3778 
3779 	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3780 	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3781 	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3782 	th->doff = (tcp_header_size >> 2);
3783 	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3784 
3785 	/* Okay, we have all we need - do the md5 hash if needed */
3786 	if (tcp_key_is_md5(&key)) {
3787 #ifdef CONFIG_TCP_MD5SIG
3788 		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3789 					key.md5_key, req_to_sk(req), skb);
3790 #endif
3791 	} else if (tcp_key_is_ao(&key)) {
3792 #ifdef CONFIG_TCP_AO
3793 		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3794 					key.ao_key, req, skb,
3795 					opts.hash_location - (u8 *)th, 0);
3796 #endif
3797 	}
3798 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3799 	rcu_read_unlock();
3800 #endif
3801 
3802 	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3803 				synack_type, &opts);
3804 
3805 	skb_set_delivery_time(skb, now, true);
3806 	tcp_add_tx_delay(skb, tp);
3807 
3808 	return skb;
3809 }
3810 EXPORT_SYMBOL(tcp_make_synack);
3811 
3812 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3813 {
3814 	struct inet_connection_sock *icsk = inet_csk(sk);
3815 	const struct tcp_congestion_ops *ca;
3816 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3817 
3818 	if (ca_key == TCP_CA_UNSPEC)
3819 		return;
3820 
3821 	rcu_read_lock();
3822 	ca = tcp_ca_find_key(ca_key);
3823 	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3824 		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3825 		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3826 		icsk->icsk_ca_ops = ca;
3827 	}
3828 	rcu_read_unlock();
3829 }
3830 
3831 /* Do all connect socket setups that can be done AF independent. */
3832 static void tcp_connect_init(struct sock *sk)
3833 {
3834 	const struct dst_entry *dst = __sk_dst_get(sk);
3835 	struct tcp_sock *tp = tcp_sk(sk);
3836 	__u8 rcv_wscale;
3837 	u32 rcv_wnd;
3838 
3839 	/* We'll fix this up when we get a response from the other end.
3840 	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3841 	 */
3842 	tp->tcp_header_len = sizeof(struct tcphdr);
3843 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3844 		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3845 
3846 	tcp_ao_connect_init(sk);
3847 
3848 	/* If user gave his TCP_MAXSEG, record it to clamp */
3849 	if (tp->rx_opt.user_mss)
3850 		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3851 	tp->max_window = 0;
3852 	tcp_mtup_init(sk);
3853 	tcp_sync_mss(sk, dst_mtu(dst));
3854 
3855 	tcp_ca_dst_init(sk, dst);
3856 
3857 	if (!tp->window_clamp)
3858 		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3859 	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3860 
3861 	tcp_initialize_rcv_mss(sk);
3862 
3863 	/* limit the window selection if the user enforce a smaller rx buffer */
3864 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3865 	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3866 		tp->window_clamp = tcp_full_space(sk);
3867 
3868 	rcv_wnd = tcp_rwnd_init_bpf(sk);
3869 	if (rcv_wnd == 0)
3870 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3871 
3872 	tcp_select_initial_window(sk, tcp_full_space(sk),
3873 				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3874 				  &tp->rcv_wnd,
3875 				  &tp->window_clamp,
3876 				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3877 				  &rcv_wscale,
3878 				  rcv_wnd);
3879 
3880 	tp->rx_opt.rcv_wscale = rcv_wscale;
3881 	tp->rcv_ssthresh = tp->rcv_wnd;
3882 
3883 	WRITE_ONCE(sk->sk_err, 0);
3884 	sock_reset_flag(sk, SOCK_DONE);
3885 	tp->snd_wnd = 0;
3886 	tcp_init_wl(tp, 0);
3887 	tcp_write_queue_purge(sk);
3888 	tp->snd_una = tp->write_seq;
3889 	tp->snd_sml = tp->write_seq;
3890 	tp->snd_up = tp->write_seq;
3891 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3892 
3893 	if (likely(!tp->repair))
3894 		tp->rcv_nxt = 0;
3895 	else
3896 		tp->rcv_tstamp = tcp_jiffies32;
3897 	tp->rcv_wup = tp->rcv_nxt;
3898 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3899 
3900 	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3901 	inet_csk(sk)->icsk_retransmits = 0;
3902 	tcp_clear_retrans(tp);
3903 }
3904 
3905 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3906 {
3907 	struct tcp_sock *tp = tcp_sk(sk);
3908 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3909 
3910 	tcb->end_seq += skb->len;
3911 	__skb_header_release(skb);
3912 	sk_wmem_queued_add(sk, skb->truesize);
3913 	sk_mem_charge(sk, skb->truesize);
3914 	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3915 	tp->packets_out += tcp_skb_pcount(skb);
3916 }
3917 
3918 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3919  * queue a data-only packet after the regular SYN, such that regular SYNs
3920  * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3921  * only the SYN sequence, the data are retransmitted in the first ACK.
3922  * If cookie is not cached or other error occurs, falls back to send a
3923  * regular SYN with Fast Open cookie request option.
3924  */
3925 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3926 {
3927 	struct inet_connection_sock *icsk = inet_csk(sk);
3928 	struct tcp_sock *tp = tcp_sk(sk);
3929 	struct tcp_fastopen_request *fo = tp->fastopen_req;
3930 	struct page_frag *pfrag = sk_page_frag(sk);
3931 	struct sk_buff *syn_data;
3932 	int space, err = 0;
3933 
3934 	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3935 	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3936 		goto fallback;
3937 
3938 	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3939 	 * user-MSS. Reserve maximum option space for middleboxes that add
3940 	 * private TCP options. The cost is reduced data space in SYN :(
3941 	 */
3942 	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3943 	/* Sync mss_cache after updating the mss_clamp */
3944 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3945 
3946 	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3947 		MAX_TCP_OPTION_SPACE;
3948 
3949 	space = min_t(size_t, space, fo->size);
3950 
3951 	if (space &&
3952 	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3953 				  pfrag, sk->sk_allocation))
3954 		goto fallback;
3955 	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3956 	if (!syn_data)
3957 		goto fallback;
3958 	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3959 	if (space) {
3960 		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3961 		space = tcp_wmem_schedule(sk, space);
3962 	}
3963 	if (space) {
3964 		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3965 					    space, &fo->data->msg_iter);
3966 		if (unlikely(!space)) {
3967 			tcp_skb_tsorted_anchor_cleanup(syn_data);
3968 			kfree_skb(syn_data);
3969 			goto fallback;
3970 		}
3971 		skb_fill_page_desc(syn_data, 0, pfrag->page,
3972 				   pfrag->offset, space);
3973 		page_ref_inc(pfrag->page);
3974 		pfrag->offset += space;
3975 		skb_len_add(syn_data, space);
3976 		skb_zcopy_set(syn_data, fo->uarg, NULL);
3977 	}
3978 	/* No more data pending in inet_wait_for_connect() */
3979 	if (space == fo->size)
3980 		fo->data = NULL;
3981 	fo->copied = space;
3982 
3983 	tcp_connect_queue_skb(sk, syn_data);
3984 	if (syn_data->len)
3985 		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3986 
3987 	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3988 
3989 	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3990 
3991 	/* Now full SYN+DATA was cloned and sent (or not),
3992 	 * remove the SYN from the original skb (syn_data)
3993 	 * we keep in write queue in case of a retransmit, as we
3994 	 * also have the SYN packet (with no data) in the same queue.
3995 	 */
3996 	TCP_SKB_CB(syn_data)->seq++;
3997 	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3998 	if (!err) {
3999 		tp->syn_data = (fo->copied > 0);
4000 		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4001 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4002 		goto done;
4003 	}
4004 
4005 	/* data was not sent, put it in write_queue */
4006 	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4007 	tp->packets_out -= tcp_skb_pcount(syn_data);
4008 
4009 fallback:
4010 	/* Send a regular SYN with Fast Open cookie request option */
4011 	if (fo->cookie.len > 0)
4012 		fo->cookie.len = 0;
4013 	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4014 	if (err)
4015 		tp->syn_fastopen = 0;
4016 done:
4017 	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4018 	return err;
4019 }
4020 
4021 /* Build a SYN and send it off. */
4022 int tcp_connect(struct sock *sk)
4023 {
4024 	struct tcp_sock *tp = tcp_sk(sk);
4025 	struct sk_buff *buff;
4026 	int err;
4027 
4028 	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4029 
4030 #if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4031 	/* Has to be checked late, after setting daddr/saddr/ops.
4032 	 * Return error if the peer has both a md5 and a tcp-ao key
4033 	 * configured as this is ambiguous.
4034 	 */
4035 	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4036 					       lockdep_sock_is_held(sk)))) {
4037 		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4038 		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4039 		struct tcp_ao_info *ao_info;
4040 
4041 		ao_info = rcu_dereference_check(tp->ao_info,
4042 						lockdep_sock_is_held(sk));
4043 		if (ao_info) {
4044 			/* This is an extra check: tcp_ao_required() in
4045 			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4046 			 * md5 keys on ao_required socket.
4047 			 */
4048 			needs_ao |= ao_info->ao_required;
4049 			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4050 		}
4051 		if (needs_md5 && needs_ao)
4052 			return -EKEYREJECTED;
4053 
4054 		/* If we have a matching md5 key and no matching tcp-ao key
4055 		 * then free up ao_info if allocated.
4056 		 */
4057 		if (needs_md5) {
4058 			tcp_ao_destroy_sock(sk, false);
4059 		} else if (needs_ao) {
4060 			tcp_clear_md5_list(sk);
4061 			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4062 						  lockdep_sock_is_held(sk)));
4063 		}
4064 	}
4065 #endif
4066 #ifdef CONFIG_TCP_AO
4067 	if (unlikely(rcu_dereference_protected(tp->ao_info,
4068 					       lockdep_sock_is_held(sk)))) {
4069 		/* Don't allow connecting if ao is configured but no
4070 		 * matching key is found.
4071 		 */
4072 		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4073 			return -EKEYREJECTED;
4074 	}
4075 #endif
4076 
4077 	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4078 		return -EHOSTUNREACH; /* Routing failure or similar. */
4079 
4080 	tcp_connect_init(sk);
4081 
4082 	if (unlikely(tp->repair)) {
4083 		tcp_finish_connect(sk, NULL);
4084 		return 0;
4085 	}
4086 
4087 	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4088 	if (unlikely(!buff))
4089 		return -ENOBUFS;
4090 
4091 	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4092 	tcp_mstamp_refresh(tp);
4093 	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4094 	tcp_connect_queue_skb(sk, buff);
4095 	tcp_ecn_send_syn(sk, buff);
4096 	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4097 
4098 	/* Send off SYN; include data in Fast Open. */
4099 	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4100 	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4101 	if (err == -ECONNREFUSED)
4102 		return err;
4103 
4104 	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4105 	 * in order to make this packet get counted in tcpOutSegs.
4106 	 */
4107 	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4108 	tp->pushed_seq = tp->write_seq;
4109 	buff = tcp_send_head(sk);
4110 	if (unlikely(buff)) {
4111 		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4112 		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4113 	}
4114 	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4115 
4116 	/* Timer for repeating the SYN until an answer. */
4117 	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4118 				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4119 	return 0;
4120 }
4121 EXPORT_SYMBOL(tcp_connect);
4122 
4123 u32 tcp_delack_max(const struct sock *sk)
4124 {
4125 	const struct dst_entry *dst = __sk_dst_get(sk);
4126 	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4127 
4128 	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4129 		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4130 		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4131 
4132 		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4133 	}
4134 	return delack_max;
4135 }
4136 
4137 /* Send out a delayed ack, the caller does the policy checking
4138  * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4139  * for details.
4140  */
4141 void tcp_send_delayed_ack(struct sock *sk)
4142 {
4143 	struct inet_connection_sock *icsk = inet_csk(sk);
4144 	int ato = icsk->icsk_ack.ato;
4145 	unsigned long timeout;
4146 
4147 	if (ato > TCP_DELACK_MIN) {
4148 		const struct tcp_sock *tp = tcp_sk(sk);
4149 		int max_ato = HZ / 2;
4150 
4151 		if (inet_csk_in_pingpong_mode(sk) ||
4152 		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4153 			max_ato = TCP_DELACK_MAX;
4154 
4155 		/* Slow path, intersegment interval is "high". */
4156 
4157 		/* If some rtt estimate is known, use it to bound delayed ack.
4158 		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4159 		 * directly.
4160 		 */
4161 		if (tp->srtt_us) {
4162 			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4163 					TCP_DELACK_MIN);
4164 
4165 			if (rtt < max_ato)
4166 				max_ato = rtt;
4167 		}
4168 
4169 		ato = min(ato, max_ato);
4170 	}
4171 
4172 	ato = min_t(u32, ato, tcp_delack_max(sk));
4173 
4174 	/* Stay within the limit we were given */
4175 	timeout = jiffies + ato;
4176 
4177 	/* Use new timeout only if there wasn't a older one earlier. */
4178 	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4179 		/* If delack timer is about to expire, send ACK now. */
4180 		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4181 			tcp_send_ack(sk);
4182 			return;
4183 		}
4184 
4185 		if (!time_before(timeout, icsk->icsk_ack.timeout))
4186 			timeout = icsk->icsk_ack.timeout;
4187 	}
4188 	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4189 	icsk->icsk_ack.timeout = timeout;
4190 	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4191 }
4192 
4193 /* This routine sends an ack and also updates the window. */
4194 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4195 {
4196 	struct sk_buff *buff;
4197 
4198 	/* If we have been reset, we may not send again. */
4199 	if (sk->sk_state == TCP_CLOSE)
4200 		return;
4201 
4202 	/* We are not putting this on the write queue, so
4203 	 * tcp_transmit_skb() will set the ownership to this
4204 	 * sock.
4205 	 */
4206 	buff = alloc_skb(MAX_TCP_HEADER,
4207 			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4208 	if (unlikely(!buff)) {
4209 		struct inet_connection_sock *icsk = inet_csk(sk);
4210 		unsigned long delay;
4211 
4212 		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4213 		if (delay < TCP_RTO_MAX)
4214 			icsk->icsk_ack.retry++;
4215 		inet_csk_schedule_ack(sk);
4216 		icsk->icsk_ack.ato = TCP_ATO_MIN;
4217 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
4218 		return;
4219 	}
4220 
4221 	/* Reserve space for headers and prepare control bits. */
4222 	skb_reserve(buff, MAX_TCP_HEADER);
4223 	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4224 
4225 	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4226 	 * too much.
4227 	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4228 	 */
4229 	skb_set_tcp_pure_ack(buff);
4230 
4231 	/* Send it off, this clears delayed acks for us. */
4232 	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4233 }
4234 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4235 
4236 void tcp_send_ack(struct sock *sk)
4237 {
4238 	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4239 }
4240 
4241 /* This routine sends a packet with an out of date sequence
4242  * number. It assumes the other end will try to ack it.
4243  *
4244  * Question: what should we make while urgent mode?
4245  * 4.4BSD forces sending single byte of data. We cannot send
4246  * out of window data, because we have SND.NXT==SND.MAX...
4247  *
4248  * Current solution: to send TWO zero-length segments in urgent mode:
4249  * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4250  * out-of-date with SND.UNA-1 to probe window.
4251  */
4252 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4253 {
4254 	struct tcp_sock *tp = tcp_sk(sk);
4255 	struct sk_buff *skb;
4256 
4257 	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4258 	skb = alloc_skb(MAX_TCP_HEADER,
4259 			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4260 	if (!skb)
4261 		return -1;
4262 
4263 	/* Reserve space for headers and set control bits. */
4264 	skb_reserve(skb, MAX_TCP_HEADER);
4265 	/* Use a previous sequence.  This should cause the other
4266 	 * end to send an ack.  Don't queue or clone SKB, just
4267 	 * send it.
4268 	 */
4269 	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4270 	NET_INC_STATS(sock_net(sk), mib);
4271 	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4272 }
4273 
4274 /* Called from setsockopt( ... TCP_REPAIR ) */
4275 void tcp_send_window_probe(struct sock *sk)
4276 {
4277 	if (sk->sk_state == TCP_ESTABLISHED) {
4278 		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4279 		tcp_mstamp_refresh(tcp_sk(sk));
4280 		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4281 	}
4282 }
4283 
4284 /* Initiate keepalive or window probe from timer. */
4285 int tcp_write_wakeup(struct sock *sk, int mib)
4286 {
4287 	struct tcp_sock *tp = tcp_sk(sk);
4288 	struct sk_buff *skb;
4289 
4290 	if (sk->sk_state == TCP_CLOSE)
4291 		return -1;
4292 
4293 	skb = tcp_send_head(sk);
4294 	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4295 		int err;
4296 		unsigned int mss = tcp_current_mss(sk);
4297 		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4298 
4299 		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4300 			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4301 
4302 		/* We are probing the opening of a window
4303 		 * but the window size is != 0
4304 		 * must have been a result SWS avoidance ( sender )
4305 		 */
4306 		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4307 		    skb->len > mss) {
4308 			seg_size = min(seg_size, mss);
4309 			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4310 			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4311 					 skb, seg_size, mss, GFP_ATOMIC))
4312 				return -1;
4313 		} else if (!tcp_skb_pcount(skb))
4314 			tcp_set_skb_tso_segs(skb, mss);
4315 
4316 		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4317 		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4318 		if (!err)
4319 			tcp_event_new_data_sent(sk, skb);
4320 		return err;
4321 	} else {
4322 		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4323 			tcp_xmit_probe_skb(sk, 1, mib);
4324 		return tcp_xmit_probe_skb(sk, 0, mib);
4325 	}
4326 }
4327 
4328 /* A window probe timeout has occurred.  If window is not closed send
4329  * a partial packet else a zero probe.
4330  */
4331 void tcp_send_probe0(struct sock *sk)
4332 {
4333 	struct inet_connection_sock *icsk = inet_csk(sk);
4334 	struct tcp_sock *tp = tcp_sk(sk);
4335 	struct net *net = sock_net(sk);
4336 	unsigned long timeout;
4337 	int err;
4338 
4339 	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4340 
4341 	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4342 		/* Cancel probe timer, if it is not required. */
4343 		icsk->icsk_probes_out = 0;
4344 		icsk->icsk_backoff = 0;
4345 		icsk->icsk_probes_tstamp = 0;
4346 		return;
4347 	}
4348 
4349 	icsk->icsk_probes_out++;
4350 	if (err <= 0) {
4351 		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4352 			icsk->icsk_backoff++;
4353 		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4354 	} else {
4355 		/* If packet was not sent due to local congestion,
4356 		 * Let senders fight for local resources conservatively.
4357 		 */
4358 		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4359 	}
4360 
4361 	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4362 	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4363 }
4364 
4365 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4366 {
4367 	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4368 	struct flowi fl;
4369 	int res;
4370 
4371 	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4372 	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4373 		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4374 	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4375 				  NULL);
4376 	if (!res) {
4377 		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4378 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4379 		if (unlikely(tcp_passive_fastopen(sk))) {
4380 			/* sk has const attribute because listeners are lockless.
4381 			 * However in this case, we are dealing with a passive fastopen
4382 			 * socket thus we can change total_retrans value.
4383 			 */
4384 			tcp_sk_rw(sk)->total_retrans++;
4385 		}
4386 		trace_tcp_retransmit_synack(sk, req);
4387 	}
4388 	return res;
4389 }
4390 EXPORT_SYMBOL(tcp_rtx_synack);
4391