xref: /linux/net/netfilter/nf_conntrack_core.c (revision d6fd48ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5 
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35 
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54 
55 #include "nf_internals.h"
56 
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62 
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65 
66 struct conntrack_gc_work {
67 	struct delayed_work	dwork;
68 	u32			next_bucket;
69 	u32			avg_timeout;
70 	u32			count;
71 	u32			start_time;
72 	bool			exiting;
73 	bool			early_drop;
74 };
75 
76 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
77 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78 static __read_mostly bool nf_conntrack_locks_all;
79 
80 /* serialize hash resizes and nf_ct_iterate_cleanup */
81 static DEFINE_MUTEX(nf_conntrack_mutex);
82 
83 #define GC_SCAN_INTERVAL_MAX	(60ul * HZ)
84 #define GC_SCAN_INTERVAL_MIN	(1ul * HZ)
85 
86 /* clamp timeouts to this value (TCP unacked) */
87 #define GC_SCAN_INTERVAL_CLAMP	(300ul * HZ)
88 
89 /* Initial bias pretending we have 100 entries at the upper bound so we don't
90  * wakeup often just because we have three entries with a 1s timeout while still
91  * allowing non-idle machines to wakeup more often when needed.
92  */
93 #define GC_SCAN_INITIAL_COUNT	100
94 #define GC_SCAN_INTERVAL_INIT	GC_SCAN_INTERVAL_MAX
95 
96 #define GC_SCAN_MAX_DURATION	msecs_to_jiffies(10)
97 #define GC_SCAN_EXPIRED_MAX	(64000u / HZ)
98 
99 #define MIN_CHAINLEN	50u
100 #define MAX_CHAINLEN	(80u - MIN_CHAINLEN)
101 
102 static struct conntrack_gc_work conntrack_gc_work;
103 
104 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
105 {
106 	/* 1) Acquire the lock */
107 	spin_lock(lock);
108 
109 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
110 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
111 	 */
112 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
113 		return;
114 
115 	/* fast path failed, unlock */
116 	spin_unlock(lock);
117 
118 	/* Slow path 1) get global lock */
119 	spin_lock(&nf_conntrack_locks_all_lock);
120 
121 	/* Slow path 2) get the lock we want */
122 	spin_lock(lock);
123 
124 	/* Slow path 3) release the global lock */
125 	spin_unlock(&nf_conntrack_locks_all_lock);
126 }
127 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
128 
129 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
130 {
131 	h1 %= CONNTRACK_LOCKS;
132 	h2 %= CONNTRACK_LOCKS;
133 	spin_unlock(&nf_conntrack_locks[h1]);
134 	if (h1 != h2)
135 		spin_unlock(&nf_conntrack_locks[h2]);
136 }
137 
138 /* return true if we need to recompute hashes (in case hash table was resized) */
139 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
140 				     unsigned int h2, unsigned int sequence)
141 {
142 	h1 %= CONNTRACK_LOCKS;
143 	h2 %= CONNTRACK_LOCKS;
144 	if (h1 <= h2) {
145 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
146 		if (h1 != h2)
147 			spin_lock_nested(&nf_conntrack_locks[h2],
148 					 SINGLE_DEPTH_NESTING);
149 	} else {
150 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
151 		spin_lock_nested(&nf_conntrack_locks[h1],
152 				 SINGLE_DEPTH_NESTING);
153 	}
154 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
155 		nf_conntrack_double_unlock(h1, h2);
156 		return true;
157 	}
158 	return false;
159 }
160 
161 static void nf_conntrack_all_lock(void)
162 	__acquires(&nf_conntrack_locks_all_lock)
163 {
164 	int i;
165 
166 	spin_lock(&nf_conntrack_locks_all_lock);
167 
168 	/* For nf_contrack_locks_all, only the latest time when another
169 	 * CPU will see an update is controlled, by the "release" of the
170 	 * spin_lock below.
171 	 * The earliest time is not controlled, an thus KCSAN could detect
172 	 * a race when nf_conntract_lock() reads the variable.
173 	 * WRITE_ONCE() is used to ensure the compiler will not
174 	 * optimize the write.
175 	 */
176 	WRITE_ONCE(nf_conntrack_locks_all, true);
177 
178 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
179 		spin_lock(&nf_conntrack_locks[i]);
180 
181 		/* This spin_unlock provides the "release" to ensure that
182 		 * nf_conntrack_locks_all==true is visible to everyone that
183 		 * acquired spin_lock(&nf_conntrack_locks[]).
184 		 */
185 		spin_unlock(&nf_conntrack_locks[i]);
186 	}
187 }
188 
189 static void nf_conntrack_all_unlock(void)
190 	__releases(&nf_conntrack_locks_all_lock)
191 {
192 	/* All prior stores must be complete before we clear
193 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
194 	 * might observe the false value but not the entire
195 	 * critical section.
196 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
197 	 */
198 	smp_store_release(&nf_conntrack_locks_all, false);
199 	spin_unlock(&nf_conntrack_locks_all_lock);
200 }
201 
202 unsigned int nf_conntrack_htable_size __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
204 
205 unsigned int nf_conntrack_max __read_mostly;
206 EXPORT_SYMBOL_GPL(nf_conntrack_max);
207 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
208 static siphash_aligned_key_t nf_conntrack_hash_rnd;
209 
210 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
211 			      unsigned int zoneid,
212 			      const struct net *net)
213 {
214 	u64 a, b, c, d;
215 
216 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
217 
218 	/* The direction must be ignored, handle usable tuplehash members manually */
219 	a = (u64)tuple->src.u3.all[0] << 32 | tuple->src.u3.all[3];
220 	b = (u64)tuple->dst.u3.all[0] << 32 | tuple->dst.u3.all[3];
221 
222 	c = (__force u64)tuple->src.u.all << 32 | (__force u64)tuple->dst.u.all << 16;
223 	c |= tuple->dst.protonum;
224 
225 	d = (u64)zoneid << 32 | net_hash_mix(net);
226 
227 	/* IPv4: u3.all[1,2,3] == 0 */
228 	c ^= (u64)tuple->src.u3.all[1] << 32 | tuple->src.u3.all[2];
229 	d += (u64)tuple->dst.u3.all[1] << 32 | tuple->dst.u3.all[2];
230 
231 	return (u32)siphash_4u64(a, b, c, d, &nf_conntrack_hash_rnd);
232 }
233 
234 static u32 scale_hash(u32 hash)
235 {
236 	return reciprocal_scale(hash, nf_conntrack_htable_size);
237 }
238 
239 static u32 __hash_conntrack(const struct net *net,
240 			    const struct nf_conntrack_tuple *tuple,
241 			    unsigned int zoneid,
242 			    unsigned int size)
243 {
244 	return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
245 }
246 
247 static u32 hash_conntrack(const struct net *net,
248 			  const struct nf_conntrack_tuple *tuple,
249 			  unsigned int zoneid)
250 {
251 	return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
252 }
253 
254 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
255 				  unsigned int dataoff,
256 				  struct nf_conntrack_tuple *tuple)
257 {	struct {
258 		__be16 sport;
259 		__be16 dport;
260 	} _inet_hdr, *inet_hdr;
261 
262 	/* Actually only need first 4 bytes to get ports. */
263 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
264 	if (!inet_hdr)
265 		return false;
266 
267 	tuple->src.u.udp.port = inet_hdr->sport;
268 	tuple->dst.u.udp.port = inet_hdr->dport;
269 	return true;
270 }
271 
272 static bool
273 nf_ct_get_tuple(const struct sk_buff *skb,
274 		unsigned int nhoff,
275 		unsigned int dataoff,
276 		u_int16_t l3num,
277 		u_int8_t protonum,
278 		struct net *net,
279 		struct nf_conntrack_tuple *tuple)
280 {
281 	unsigned int size;
282 	const __be32 *ap;
283 	__be32 _addrs[8];
284 
285 	memset(tuple, 0, sizeof(*tuple));
286 
287 	tuple->src.l3num = l3num;
288 	switch (l3num) {
289 	case NFPROTO_IPV4:
290 		nhoff += offsetof(struct iphdr, saddr);
291 		size = 2 * sizeof(__be32);
292 		break;
293 	case NFPROTO_IPV6:
294 		nhoff += offsetof(struct ipv6hdr, saddr);
295 		size = sizeof(_addrs);
296 		break;
297 	default:
298 		return true;
299 	}
300 
301 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
302 	if (!ap)
303 		return false;
304 
305 	switch (l3num) {
306 	case NFPROTO_IPV4:
307 		tuple->src.u3.ip = ap[0];
308 		tuple->dst.u3.ip = ap[1];
309 		break;
310 	case NFPROTO_IPV6:
311 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
312 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
313 		break;
314 	}
315 
316 	tuple->dst.protonum = protonum;
317 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
318 
319 	switch (protonum) {
320 #if IS_ENABLED(CONFIG_IPV6)
321 	case IPPROTO_ICMPV6:
322 		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
323 #endif
324 	case IPPROTO_ICMP:
325 		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
326 #ifdef CONFIG_NF_CT_PROTO_GRE
327 	case IPPROTO_GRE:
328 		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
329 #endif
330 	case IPPROTO_TCP:
331 	case IPPROTO_UDP:
332 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
333 	case IPPROTO_UDPLITE:
334 #endif
335 #ifdef CONFIG_NF_CT_PROTO_SCTP
336 	case IPPROTO_SCTP:
337 #endif
338 #ifdef CONFIG_NF_CT_PROTO_DCCP
339 	case IPPROTO_DCCP:
340 #endif
341 		/* fallthrough */
342 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
343 	default:
344 		break;
345 	}
346 
347 	return true;
348 }
349 
350 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
351 			    u_int8_t *protonum)
352 {
353 	int dataoff = -1;
354 	const struct iphdr *iph;
355 	struct iphdr _iph;
356 
357 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
358 	if (!iph)
359 		return -1;
360 
361 	/* Conntrack defragments packets, we might still see fragments
362 	 * inside ICMP packets though.
363 	 */
364 	if (iph->frag_off & htons(IP_OFFSET))
365 		return -1;
366 
367 	dataoff = nhoff + (iph->ihl << 2);
368 	*protonum = iph->protocol;
369 
370 	/* Check bogus IP headers */
371 	if (dataoff > skb->len) {
372 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
373 			 nhoff, iph->ihl << 2, skb->len);
374 		return -1;
375 	}
376 	return dataoff;
377 }
378 
379 #if IS_ENABLED(CONFIG_IPV6)
380 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
381 			    u8 *protonum)
382 {
383 	int protoff = -1;
384 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
385 	__be16 frag_off;
386 	u8 nexthdr;
387 
388 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
389 			  &nexthdr, sizeof(nexthdr)) != 0) {
390 		pr_debug("can't get nexthdr\n");
391 		return -1;
392 	}
393 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
394 	/*
395 	 * (protoff == skb->len) means the packet has not data, just
396 	 * IPv6 and possibly extensions headers, but it is tracked anyway
397 	 */
398 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
399 		pr_debug("can't find proto in pkt\n");
400 		return -1;
401 	}
402 
403 	*protonum = nexthdr;
404 	return protoff;
405 }
406 #endif
407 
408 static int get_l4proto(const struct sk_buff *skb,
409 		       unsigned int nhoff, u8 pf, u8 *l4num)
410 {
411 	switch (pf) {
412 	case NFPROTO_IPV4:
413 		return ipv4_get_l4proto(skb, nhoff, l4num);
414 #if IS_ENABLED(CONFIG_IPV6)
415 	case NFPROTO_IPV6:
416 		return ipv6_get_l4proto(skb, nhoff, l4num);
417 #endif
418 	default:
419 		*l4num = 0;
420 		break;
421 	}
422 	return -1;
423 }
424 
425 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
426 		       u_int16_t l3num,
427 		       struct net *net, struct nf_conntrack_tuple *tuple)
428 {
429 	u8 protonum;
430 	int protoff;
431 
432 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
433 	if (protoff <= 0)
434 		return false;
435 
436 	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
437 }
438 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
439 
440 bool
441 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
442 		   const struct nf_conntrack_tuple *orig)
443 {
444 	memset(inverse, 0, sizeof(*inverse));
445 
446 	inverse->src.l3num = orig->src.l3num;
447 
448 	switch (orig->src.l3num) {
449 	case NFPROTO_IPV4:
450 		inverse->src.u3.ip = orig->dst.u3.ip;
451 		inverse->dst.u3.ip = orig->src.u3.ip;
452 		break;
453 	case NFPROTO_IPV6:
454 		inverse->src.u3.in6 = orig->dst.u3.in6;
455 		inverse->dst.u3.in6 = orig->src.u3.in6;
456 		break;
457 	default:
458 		break;
459 	}
460 
461 	inverse->dst.dir = !orig->dst.dir;
462 
463 	inverse->dst.protonum = orig->dst.protonum;
464 
465 	switch (orig->dst.protonum) {
466 	case IPPROTO_ICMP:
467 		return nf_conntrack_invert_icmp_tuple(inverse, orig);
468 #if IS_ENABLED(CONFIG_IPV6)
469 	case IPPROTO_ICMPV6:
470 		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
471 #endif
472 	}
473 
474 	inverse->src.u.all = orig->dst.u.all;
475 	inverse->dst.u.all = orig->src.u.all;
476 	return true;
477 }
478 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
479 
480 /* Generate a almost-unique pseudo-id for a given conntrack.
481  *
482  * intentionally doesn't re-use any of the seeds used for hash
483  * table location, we assume id gets exposed to userspace.
484  *
485  * Following nf_conn items do not change throughout lifetime
486  * of the nf_conn:
487  *
488  * 1. nf_conn address
489  * 2. nf_conn->master address (normally NULL)
490  * 3. the associated net namespace
491  * 4. the original direction tuple
492  */
493 u32 nf_ct_get_id(const struct nf_conn *ct)
494 {
495 	static siphash_aligned_key_t ct_id_seed;
496 	unsigned long a, b, c, d;
497 
498 	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
499 
500 	a = (unsigned long)ct;
501 	b = (unsigned long)ct->master;
502 	c = (unsigned long)nf_ct_net(ct);
503 	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
504 				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
505 				   &ct_id_seed);
506 #ifdef CONFIG_64BIT
507 	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
508 #else
509 	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
510 #endif
511 }
512 EXPORT_SYMBOL_GPL(nf_ct_get_id);
513 
514 static void
515 clean_from_lists(struct nf_conn *ct)
516 {
517 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
518 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
519 
520 	/* Destroy all pending expectations */
521 	nf_ct_remove_expectations(ct);
522 }
523 
524 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
525 
526 /* Released via nf_ct_destroy() */
527 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
528 				 const struct nf_conntrack_zone *zone,
529 				 gfp_t flags)
530 {
531 	struct nf_conn *tmpl, *p;
532 
533 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
534 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
535 		if (!tmpl)
536 			return NULL;
537 
538 		p = tmpl;
539 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
540 		if (tmpl != p) {
541 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
542 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
543 		}
544 	} else {
545 		tmpl = kzalloc(sizeof(*tmpl), flags);
546 		if (!tmpl)
547 			return NULL;
548 	}
549 
550 	tmpl->status = IPS_TEMPLATE;
551 	write_pnet(&tmpl->ct_net, net);
552 	nf_ct_zone_add(tmpl, zone);
553 	refcount_set(&tmpl->ct_general.use, 1);
554 
555 	return tmpl;
556 }
557 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
558 
559 void nf_ct_tmpl_free(struct nf_conn *tmpl)
560 {
561 	kfree(tmpl->ext);
562 
563 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
564 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
565 	else
566 		kfree(tmpl);
567 }
568 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
569 
570 static void destroy_gre_conntrack(struct nf_conn *ct)
571 {
572 #ifdef CONFIG_NF_CT_PROTO_GRE
573 	struct nf_conn *master = ct->master;
574 
575 	if (master)
576 		nf_ct_gre_keymap_destroy(master);
577 #endif
578 }
579 
580 void nf_ct_destroy(struct nf_conntrack *nfct)
581 {
582 	struct nf_conn *ct = (struct nf_conn *)nfct;
583 
584 	WARN_ON(refcount_read(&nfct->use) != 0);
585 
586 	if (unlikely(nf_ct_is_template(ct))) {
587 		nf_ct_tmpl_free(ct);
588 		return;
589 	}
590 
591 	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
592 		destroy_gre_conntrack(ct);
593 
594 	/* Expectations will have been removed in clean_from_lists,
595 	 * except TFTP can create an expectation on the first packet,
596 	 * before connection is in the list, so we need to clean here,
597 	 * too.
598 	 */
599 	nf_ct_remove_expectations(ct);
600 
601 	if (ct->master)
602 		nf_ct_put(ct->master);
603 
604 	nf_conntrack_free(ct);
605 }
606 EXPORT_SYMBOL(nf_ct_destroy);
607 
608 static void __nf_ct_delete_from_lists(struct nf_conn *ct)
609 {
610 	struct net *net = nf_ct_net(ct);
611 	unsigned int hash, reply_hash;
612 	unsigned int sequence;
613 
614 	do {
615 		sequence = read_seqcount_begin(&nf_conntrack_generation);
616 		hash = hash_conntrack(net,
617 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
618 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
619 		reply_hash = hash_conntrack(net,
620 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
621 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
622 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
623 
624 	clean_from_lists(ct);
625 	nf_conntrack_double_unlock(hash, reply_hash);
626 }
627 
628 static void nf_ct_delete_from_lists(struct nf_conn *ct)
629 {
630 	nf_ct_helper_destroy(ct);
631 	local_bh_disable();
632 
633 	__nf_ct_delete_from_lists(ct);
634 
635 	local_bh_enable();
636 }
637 
638 static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
639 {
640 #ifdef CONFIG_NF_CONNTRACK_EVENTS
641 	struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
642 
643 	spin_lock(&cnet->ecache.dying_lock);
644 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
645 				 &cnet->ecache.dying_list);
646 	spin_unlock(&cnet->ecache.dying_lock);
647 #endif
648 }
649 
650 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
651 {
652 	struct nf_conn_tstamp *tstamp;
653 	struct net *net;
654 
655 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
656 		return false;
657 
658 	tstamp = nf_conn_tstamp_find(ct);
659 	if (tstamp) {
660 		s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
661 
662 		tstamp->stop = ktime_get_real_ns();
663 		if (timeout < 0)
664 			tstamp->stop -= jiffies_to_nsecs(-timeout);
665 	}
666 
667 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
668 				    portid, report) < 0) {
669 		/* destroy event was not delivered. nf_ct_put will
670 		 * be done by event cache worker on redelivery.
671 		 */
672 		nf_ct_helper_destroy(ct);
673 		local_bh_disable();
674 		__nf_ct_delete_from_lists(ct);
675 		nf_ct_add_to_ecache_list(ct);
676 		local_bh_enable();
677 
678 		nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
679 		return false;
680 	}
681 
682 	net = nf_ct_net(ct);
683 	if (nf_conntrack_ecache_dwork_pending(net))
684 		nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
685 	nf_ct_delete_from_lists(ct);
686 	nf_ct_put(ct);
687 	return true;
688 }
689 EXPORT_SYMBOL_GPL(nf_ct_delete);
690 
691 static inline bool
692 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
693 		const struct nf_conntrack_tuple *tuple,
694 		const struct nf_conntrack_zone *zone,
695 		const struct net *net)
696 {
697 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
698 
699 	/* A conntrack can be recreated with the equal tuple,
700 	 * so we need to check that the conntrack is confirmed
701 	 */
702 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
703 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
704 	       nf_ct_is_confirmed(ct) &&
705 	       net_eq(net, nf_ct_net(ct));
706 }
707 
708 static inline bool
709 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
710 {
711 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
712 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
713 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
714 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
715 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
716 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
717 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
718 }
719 
720 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
721 static void nf_ct_gc_expired(struct nf_conn *ct)
722 {
723 	if (!refcount_inc_not_zero(&ct->ct_general.use))
724 		return;
725 
726 	/* load ->status after refcount increase */
727 	smp_acquire__after_ctrl_dep();
728 
729 	if (nf_ct_should_gc(ct))
730 		nf_ct_kill(ct);
731 
732 	nf_ct_put(ct);
733 }
734 
735 /*
736  * Warning :
737  * - Caller must take a reference on returned object
738  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
739  */
740 static struct nf_conntrack_tuple_hash *
741 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
742 		      const struct nf_conntrack_tuple *tuple, u32 hash)
743 {
744 	struct nf_conntrack_tuple_hash *h;
745 	struct hlist_nulls_head *ct_hash;
746 	struct hlist_nulls_node *n;
747 	unsigned int bucket, hsize;
748 
749 begin:
750 	nf_conntrack_get_ht(&ct_hash, &hsize);
751 	bucket = reciprocal_scale(hash, hsize);
752 
753 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
754 		struct nf_conn *ct;
755 
756 		ct = nf_ct_tuplehash_to_ctrack(h);
757 		if (nf_ct_is_expired(ct)) {
758 			nf_ct_gc_expired(ct);
759 			continue;
760 		}
761 
762 		if (nf_ct_key_equal(h, tuple, zone, net))
763 			return h;
764 	}
765 	/*
766 	 * if the nulls value we got at the end of this lookup is
767 	 * not the expected one, we must restart lookup.
768 	 * We probably met an item that was moved to another chain.
769 	 */
770 	if (get_nulls_value(n) != bucket) {
771 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
772 		goto begin;
773 	}
774 
775 	return NULL;
776 }
777 
778 /* Find a connection corresponding to a tuple. */
779 static struct nf_conntrack_tuple_hash *
780 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
781 			const struct nf_conntrack_tuple *tuple, u32 hash)
782 {
783 	struct nf_conntrack_tuple_hash *h;
784 	struct nf_conn *ct;
785 
786 	h = ____nf_conntrack_find(net, zone, tuple, hash);
787 	if (h) {
788 		/* We have a candidate that matches the tuple we're interested
789 		 * in, try to obtain a reference and re-check tuple
790 		 */
791 		ct = nf_ct_tuplehash_to_ctrack(h);
792 		if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
793 			/* re-check key after refcount */
794 			smp_acquire__after_ctrl_dep();
795 
796 			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
797 				return h;
798 
799 			/* TYPESAFE_BY_RCU recycled the candidate */
800 			nf_ct_put(ct);
801 		}
802 
803 		h = NULL;
804 	}
805 
806 	return h;
807 }
808 
809 struct nf_conntrack_tuple_hash *
810 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
811 		      const struct nf_conntrack_tuple *tuple)
812 {
813 	unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
814 	struct nf_conntrack_tuple_hash *thash;
815 
816 	rcu_read_lock();
817 
818 	thash = __nf_conntrack_find_get(net, zone, tuple,
819 					hash_conntrack_raw(tuple, zone_id, net));
820 
821 	if (thash)
822 		goto out_unlock;
823 
824 	rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
825 	if (rid != zone_id)
826 		thash = __nf_conntrack_find_get(net, zone, tuple,
827 						hash_conntrack_raw(tuple, rid, net));
828 
829 out_unlock:
830 	rcu_read_unlock();
831 	return thash;
832 }
833 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
834 
835 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
836 				       unsigned int hash,
837 				       unsigned int reply_hash)
838 {
839 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
840 			   &nf_conntrack_hash[hash]);
841 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
842 			   &nf_conntrack_hash[reply_hash]);
843 }
844 
845 static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
846 {
847 	/* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
848 	 * may contain stale pointers to e.g. helper that has been removed.
849 	 *
850 	 * The helper can't clear this because the nf_conn object isn't in
851 	 * any hash and synchronize_rcu() isn't enough because associated skb
852 	 * might sit in a queue.
853 	 */
854 	return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
855 }
856 
857 static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
858 {
859 	if (!ext)
860 		return true;
861 
862 	if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
863 		return false;
864 
865 	/* inserted into conntrack table, nf_ct_iterate_cleanup()
866 	 * will find it.  Disable nf_ct_ext_find() id check.
867 	 */
868 	WRITE_ONCE(ext->gen_id, 0);
869 	return true;
870 }
871 
872 int
873 nf_conntrack_hash_check_insert(struct nf_conn *ct)
874 {
875 	const struct nf_conntrack_zone *zone;
876 	struct net *net = nf_ct_net(ct);
877 	unsigned int hash, reply_hash;
878 	struct nf_conntrack_tuple_hash *h;
879 	struct hlist_nulls_node *n;
880 	unsigned int max_chainlen;
881 	unsigned int chainlen = 0;
882 	unsigned int sequence;
883 	int err = -EEXIST;
884 
885 	zone = nf_ct_zone(ct);
886 
887 	if (!nf_ct_ext_valid_pre(ct->ext))
888 		return -EAGAIN;
889 
890 	local_bh_disable();
891 	do {
892 		sequence = read_seqcount_begin(&nf_conntrack_generation);
893 		hash = hash_conntrack(net,
894 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
895 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
896 		reply_hash = hash_conntrack(net,
897 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
898 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
899 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
900 
901 	max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
902 
903 	/* See if there's one in the list already, including reverse */
904 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
905 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
906 				    zone, net))
907 			goto out;
908 
909 		if (chainlen++ > max_chainlen)
910 			goto chaintoolong;
911 	}
912 
913 	chainlen = 0;
914 
915 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
916 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
917 				    zone, net))
918 			goto out;
919 		if (chainlen++ > max_chainlen)
920 			goto chaintoolong;
921 	}
922 
923 	/* If genid has changed, we can't insert anymore because ct
924 	 * extensions could have stale pointers and nf_ct_iterate_destroy
925 	 * might have completed its table scan already.
926 	 *
927 	 * Increment of the ext genid right after this check is fine:
928 	 * nf_ct_iterate_destroy blocks until locks are released.
929 	 */
930 	if (!nf_ct_ext_valid_post(ct->ext)) {
931 		err = -EAGAIN;
932 		goto out;
933 	}
934 
935 	ct->status |= IPS_CONFIRMED;
936 	smp_wmb();
937 	/* The caller holds a reference to this object */
938 	refcount_set(&ct->ct_general.use, 2);
939 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
940 	nf_conntrack_double_unlock(hash, reply_hash);
941 	NF_CT_STAT_INC(net, insert);
942 	local_bh_enable();
943 
944 	return 0;
945 chaintoolong:
946 	NF_CT_STAT_INC(net, chaintoolong);
947 	err = -ENOSPC;
948 out:
949 	nf_conntrack_double_unlock(hash, reply_hash);
950 	local_bh_enable();
951 	return err;
952 }
953 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
954 
955 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
956 		    unsigned int bytes)
957 {
958 	struct nf_conn_acct *acct;
959 
960 	acct = nf_conn_acct_find(ct);
961 	if (acct) {
962 		struct nf_conn_counter *counter = acct->counter;
963 
964 		atomic64_add(packets, &counter[dir].packets);
965 		atomic64_add(bytes, &counter[dir].bytes);
966 	}
967 }
968 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
969 
970 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
971 			     const struct nf_conn *loser_ct)
972 {
973 	struct nf_conn_acct *acct;
974 
975 	acct = nf_conn_acct_find(loser_ct);
976 	if (acct) {
977 		struct nf_conn_counter *counter = acct->counter;
978 		unsigned int bytes;
979 
980 		/* u32 should be fine since we must have seen one packet. */
981 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
982 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
983 	}
984 }
985 
986 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
987 {
988 	struct nf_conn_tstamp *tstamp;
989 
990 	refcount_inc(&ct->ct_general.use);
991 
992 	/* set conntrack timestamp, if enabled. */
993 	tstamp = nf_conn_tstamp_find(ct);
994 	if (tstamp)
995 		tstamp->start = ktime_get_real_ns();
996 }
997 
998 /* caller must hold locks to prevent concurrent changes */
999 static int __nf_ct_resolve_clash(struct sk_buff *skb,
1000 				 struct nf_conntrack_tuple_hash *h)
1001 {
1002 	/* This is the conntrack entry already in hashes that won race. */
1003 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1004 	enum ip_conntrack_info ctinfo;
1005 	struct nf_conn *loser_ct;
1006 
1007 	loser_ct = nf_ct_get(skb, &ctinfo);
1008 
1009 	if (nf_ct_is_dying(ct))
1010 		return NF_DROP;
1011 
1012 	if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1013 	    nf_ct_match(ct, loser_ct)) {
1014 		struct net *net = nf_ct_net(ct);
1015 
1016 		nf_conntrack_get(&ct->ct_general);
1017 
1018 		nf_ct_acct_merge(ct, ctinfo, loser_ct);
1019 		nf_ct_put(loser_ct);
1020 		nf_ct_set(skb, ct, ctinfo);
1021 
1022 		NF_CT_STAT_INC(net, clash_resolve);
1023 		return NF_ACCEPT;
1024 	}
1025 
1026 	return NF_DROP;
1027 }
1028 
1029 /**
1030  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1031  *
1032  * @skb: skb that causes the collision
1033  * @repl_idx: hash slot for reply direction
1034  *
1035  * Called when origin or reply direction had a clash.
1036  * The skb can be handled without packet drop provided the reply direction
1037  * is unique or there the existing entry has the identical tuple in both
1038  * directions.
1039  *
1040  * Caller must hold conntrack table locks to prevent concurrent updates.
1041  *
1042  * Returns NF_DROP if the clash could not be handled.
1043  */
1044 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1045 {
1046 	struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1047 	const struct nf_conntrack_zone *zone;
1048 	struct nf_conntrack_tuple_hash *h;
1049 	struct hlist_nulls_node *n;
1050 	struct net *net;
1051 
1052 	zone = nf_ct_zone(loser_ct);
1053 	net = nf_ct_net(loser_ct);
1054 
1055 	/* Reply direction must never result in a clash, unless both origin
1056 	 * and reply tuples are identical.
1057 	 */
1058 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1059 		if (nf_ct_key_equal(h,
1060 				    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1061 				    zone, net))
1062 			return __nf_ct_resolve_clash(skb, h);
1063 	}
1064 
1065 	/* We want the clashing entry to go away real soon: 1 second timeout. */
1066 	WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1067 
1068 	/* IPS_NAT_CLASH removes the entry automatically on the first
1069 	 * reply.  Also prevents UDP tracker from moving the entry to
1070 	 * ASSURED state, i.e. the entry can always be evicted under
1071 	 * pressure.
1072 	 */
1073 	loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1074 
1075 	__nf_conntrack_insert_prepare(loser_ct);
1076 
1077 	/* fake add for ORIGINAL dir: we want lookups to only find the entry
1078 	 * already in the table.  This also hides the clashing entry from
1079 	 * ctnetlink iteration, i.e. conntrack -L won't show them.
1080 	 */
1081 	hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1082 
1083 	hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1084 				 &nf_conntrack_hash[repl_idx]);
1085 
1086 	NF_CT_STAT_INC(net, clash_resolve);
1087 	return NF_ACCEPT;
1088 }
1089 
1090 /**
1091  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1092  *
1093  * @skb: skb that causes the clash
1094  * @h: tuplehash of the clashing entry already in table
1095  * @reply_hash: hash slot for reply direction
1096  *
1097  * A conntrack entry can be inserted to the connection tracking table
1098  * if there is no existing entry with an identical tuple.
1099  *
1100  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1101  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1102  * will find the already-existing entry.
1103  *
1104  * The major problem with such packet drop is the extra delay added by
1105  * the packet loss -- it will take some time for a retransmit to occur
1106  * (or the sender to time out when waiting for a reply).
1107  *
1108  * This function attempts to handle the situation without packet drop.
1109  *
1110  * If @skb has no NAT transformation or if the colliding entries are
1111  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1112  * and @skb is associated with the conntrack entry already in the table.
1113  *
1114  * Failing that, the new, unconfirmed conntrack is still added to the table
1115  * provided that the collision only occurs in the ORIGINAL direction.
1116  * The new entry will be added only in the non-clashing REPLY direction,
1117  * so packets in the ORIGINAL direction will continue to match the existing
1118  * entry.  The new entry will also have a fixed timeout so it expires --
1119  * due to the collision, it will only see reply traffic.
1120  *
1121  * Returns NF_DROP if the clash could not be resolved.
1122  */
1123 static __cold noinline int
1124 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1125 		    u32 reply_hash)
1126 {
1127 	/* This is the conntrack entry already in hashes that won race. */
1128 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1129 	const struct nf_conntrack_l4proto *l4proto;
1130 	enum ip_conntrack_info ctinfo;
1131 	struct nf_conn *loser_ct;
1132 	struct net *net;
1133 	int ret;
1134 
1135 	loser_ct = nf_ct_get(skb, &ctinfo);
1136 	net = nf_ct_net(loser_ct);
1137 
1138 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1139 	if (!l4proto->allow_clash)
1140 		goto drop;
1141 
1142 	ret = __nf_ct_resolve_clash(skb, h);
1143 	if (ret == NF_ACCEPT)
1144 		return ret;
1145 
1146 	ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1147 	if (ret == NF_ACCEPT)
1148 		return ret;
1149 
1150 drop:
1151 	NF_CT_STAT_INC(net, drop);
1152 	NF_CT_STAT_INC(net, insert_failed);
1153 	return NF_DROP;
1154 }
1155 
1156 /* Confirm a connection given skb; places it in hash table */
1157 int
1158 __nf_conntrack_confirm(struct sk_buff *skb)
1159 {
1160 	unsigned int chainlen = 0, sequence, max_chainlen;
1161 	const struct nf_conntrack_zone *zone;
1162 	unsigned int hash, reply_hash;
1163 	struct nf_conntrack_tuple_hash *h;
1164 	struct nf_conn *ct;
1165 	struct nf_conn_help *help;
1166 	struct hlist_nulls_node *n;
1167 	enum ip_conntrack_info ctinfo;
1168 	struct net *net;
1169 	int ret = NF_DROP;
1170 
1171 	ct = nf_ct_get(skb, &ctinfo);
1172 	net = nf_ct_net(ct);
1173 
1174 	/* ipt_REJECT uses nf_conntrack_attach to attach related
1175 	   ICMP/TCP RST packets in other direction.  Actual packet
1176 	   which created connection will be IP_CT_NEW or for an
1177 	   expected connection, IP_CT_RELATED. */
1178 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1179 		return NF_ACCEPT;
1180 
1181 	zone = nf_ct_zone(ct);
1182 	local_bh_disable();
1183 
1184 	do {
1185 		sequence = read_seqcount_begin(&nf_conntrack_generation);
1186 		/* reuse the hash saved before */
1187 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1188 		hash = scale_hash(hash);
1189 		reply_hash = hash_conntrack(net,
1190 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1191 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1192 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1193 
1194 	/* We're not in hash table, and we refuse to set up related
1195 	 * connections for unconfirmed conns.  But packet copies and
1196 	 * REJECT will give spurious warnings here.
1197 	 */
1198 
1199 	/* Another skb with the same unconfirmed conntrack may
1200 	 * win the race. This may happen for bridge(br_flood)
1201 	 * or broadcast/multicast packets do skb_clone with
1202 	 * unconfirmed conntrack.
1203 	 */
1204 	if (unlikely(nf_ct_is_confirmed(ct))) {
1205 		WARN_ON_ONCE(1);
1206 		nf_conntrack_double_unlock(hash, reply_hash);
1207 		local_bh_enable();
1208 		return NF_DROP;
1209 	}
1210 
1211 	if (!nf_ct_ext_valid_pre(ct->ext)) {
1212 		NF_CT_STAT_INC(net, insert_failed);
1213 		goto dying;
1214 	}
1215 
1216 	/* We have to check the DYING flag after unlink to prevent
1217 	 * a race against nf_ct_get_next_corpse() possibly called from
1218 	 * user context, else we insert an already 'dead' hash, blocking
1219 	 * further use of that particular connection -JM.
1220 	 */
1221 	ct->status |= IPS_CONFIRMED;
1222 
1223 	if (unlikely(nf_ct_is_dying(ct))) {
1224 		NF_CT_STAT_INC(net, insert_failed);
1225 		goto dying;
1226 	}
1227 
1228 	max_chainlen = MIN_CHAINLEN + get_random_u32_below(MAX_CHAINLEN);
1229 	/* See if there's one in the list already, including reverse:
1230 	   NAT could have grabbed it without realizing, since we're
1231 	   not in the hash.  If there is, we lost race. */
1232 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1233 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1234 				    zone, net))
1235 			goto out;
1236 		if (chainlen++ > max_chainlen)
1237 			goto chaintoolong;
1238 	}
1239 
1240 	chainlen = 0;
1241 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1242 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1243 				    zone, net))
1244 			goto out;
1245 		if (chainlen++ > max_chainlen) {
1246 chaintoolong:
1247 			NF_CT_STAT_INC(net, chaintoolong);
1248 			NF_CT_STAT_INC(net, insert_failed);
1249 			ret = NF_DROP;
1250 			goto dying;
1251 		}
1252 	}
1253 
1254 	/* Timer relative to confirmation time, not original
1255 	   setting time, otherwise we'd get timer wrap in
1256 	   weird delay cases. */
1257 	ct->timeout += nfct_time_stamp;
1258 
1259 	__nf_conntrack_insert_prepare(ct);
1260 
1261 	/* Since the lookup is lockless, hash insertion must be done after
1262 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1263 	 * guarantee that no other CPU can find the conntrack before the above
1264 	 * stores are visible.
1265 	 */
1266 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1267 	nf_conntrack_double_unlock(hash, reply_hash);
1268 	local_bh_enable();
1269 
1270 	/* ext area is still valid (rcu read lock is held,
1271 	 * but will go out of scope soon, we need to remove
1272 	 * this conntrack again.
1273 	 */
1274 	if (!nf_ct_ext_valid_post(ct->ext)) {
1275 		nf_ct_kill(ct);
1276 		NF_CT_STAT_INC_ATOMIC(net, drop);
1277 		return NF_DROP;
1278 	}
1279 
1280 	help = nfct_help(ct);
1281 	if (help && help->helper)
1282 		nf_conntrack_event_cache(IPCT_HELPER, ct);
1283 
1284 	nf_conntrack_event_cache(master_ct(ct) ?
1285 				 IPCT_RELATED : IPCT_NEW, ct);
1286 	return NF_ACCEPT;
1287 
1288 out:
1289 	ret = nf_ct_resolve_clash(skb, h, reply_hash);
1290 dying:
1291 	nf_conntrack_double_unlock(hash, reply_hash);
1292 	local_bh_enable();
1293 	return ret;
1294 }
1295 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1296 
1297 /* Returns true if a connection correspondings to the tuple (required
1298    for NAT). */
1299 int
1300 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1301 			 const struct nf_conn *ignored_conntrack)
1302 {
1303 	struct net *net = nf_ct_net(ignored_conntrack);
1304 	const struct nf_conntrack_zone *zone;
1305 	struct nf_conntrack_tuple_hash *h;
1306 	struct hlist_nulls_head *ct_hash;
1307 	unsigned int hash, hsize;
1308 	struct hlist_nulls_node *n;
1309 	struct nf_conn *ct;
1310 
1311 	zone = nf_ct_zone(ignored_conntrack);
1312 
1313 	rcu_read_lock();
1314  begin:
1315 	nf_conntrack_get_ht(&ct_hash, &hsize);
1316 	hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1317 
1318 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1319 		ct = nf_ct_tuplehash_to_ctrack(h);
1320 
1321 		if (ct == ignored_conntrack)
1322 			continue;
1323 
1324 		if (nf_ct_is_expired(ct)) {
1325 			nf_ct_gc_expired(ct);
1326 			continue;
1327 		}
1328 
1329 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1330 			/* Tuple is taken already, so caller will need to find
1331 			 * a new source port to use.
1332 			 *
1333 			 * Only exception:
1334 			 * If the *original tuples* are identical, then both
1335 			 * conntracks refer to the same flow.
1336 			 * This is a rare situation, it can occur e.g. when
1337 			 * more than one UDP packet is sent from same socket
1338 			 * in different threads.
1339 			 *
1340 			 * Let nf_ct_resolve_clash() deal with this later.
1341 			 */
1342 			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1343 					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1344 					      nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1345 				continue;
1346 
1347 			NF_CT_STAT_INC_ATOMIC(net, found);
1348 			rcu_read_unlock();
1349 			return 1;
1350 		}
1351 	}
1352 
1353 	if (get_nulls_value(n) != hash) {
1354 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1355 		goto begin;
1356 	}
1357 
1358 	rcu_read_unlock();
1359 
1360 	return 0;
1361 }
1362 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1363 
1364 #define NF_CT_EVICTION_RANGE	8
1365 
1366 /* There's a small race here where we may free a just-assured
1367    connection.  Too bad: we're in trouble anyway. */
1368 static unsigned int early_drop_list(struct net *net,
1369 				    struct hlist_nulls_head *head)
1370 {
1371 	struct nf_conntrack_tuple_hash *h;
1372 	struct hlist_nulls_node *n;
1373 	unsigned int drops = 0;
1374 	struct nf_conn *tmp;
1375 
1376 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1377 		tmp = nf_ct_tuplehash_to_ctrack(h);
1378 
1379 		if (nf_ct_is_expired(tmp)) {
1380 			nf_ct_gc_expired(tmp);
1381 			continue;
1382 		}
1383 
1384 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1385 		    !net_eq(nf_ct_net(tmp), net) ||
1386 		    nf_ct_is_dying(tmp))
1387 			continue;
1388 
1389 		if (!refcount_inc_not_zero(&tmp->ct_general.use))
1390 			continue;
1391 
1392 		/* load ->ct_net and ->status after refcount increase */
1393 		smp_acquire__after_ctrl_dep();
1394 
1395 		/* kill only if still in same netns -- might have moved due to
1396 		 * SLAB_TYPESAFE_BY_RCU rules.
1397 		 *
1398 		 * We steal the timer reference.  If that fails timer has
1399 		 * already fired or someone else deleted it. Just drop ref
1400 		 * and move to next entry.
1401 		 */
1402 		if (net_eq(nf_ct_net(tmp), net) &&
1403 		    nf_ct_is_confirmed(tmp) &&
1404 		    nf_ct_delete(tmp, 0, 0))
1405 			drops++;
1406 
1407 		nf_ct_put(tmp);
1408 	}
1409 
1410 	return drops;
1411 }
1412 
1413 static noinline int early_drop(struct net *net, unsigned int hash)
1414 {
1415 	unsigned int i, bucket;
1416 
1417 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1418 		struct hlist_nulls_head *ct_hash;
1419 		unsigned int hsize, drops;
1420 
1421 		rcu_read_lock();
1422 		nf_conntrack_get_ht(&ct_hash, &hsize);
1423 		if (!i)
1424 			bucket = reciprocal_scale(hash, hsize);
1425 		else
1426 			bucket = (bucket + 1) % hsize;
1427 
1428 		drops = early_drop_list(net, &ct_hash[bucket]);
1429 		rcu_read_unlock();
1430 
1431 		if (drops) {
1432 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1433 			return true;
1434 		}
1435 	}
1436 
1437 	return false;
1438 }
1439 
1440 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1441 {
1442 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1443 }
1444 
1445 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1446 {
1447 	const struct nf_conntrack_l4proto *l4proto;
1448 	u8 protonum = nf_ct_protonum(ct);
1449 
1450 	if (test_bit(IPS_OFFLOAD_BIT, &ct->status) && protonum != IPPROTO_UDP)
1451 		return false;
1452 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1453 		return true;
1454 
1455 	l4proto = nf_ct_l4proto_find(protonum);
1456 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1457 		return true;
1458 
1459 	return false;
1460 }
1461 
1462 static void gc_worker(struct work_struct *work)
1463 {
1464 	unsigned int i, hashsz, nf_conntrack_max95 = 0;
1465 	u32 end_time, start_time = nfct_time_stamp;
1466 	struct conntrack_gc_work *gc_work;
1467 	unsigned int expired_count = 0;
1468 	unsigned long next_run;
1469 	s32 delta_time;
1470 	long count;
1471 
1472 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1473 
1474 	i = gc_work->next_bucket;
1475 	if (gc_work->early_drop)
1476 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1477 
1478 	if (i == 0) {
1479 		gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1480 		gc_work->count = GC_SCAN_INITIAL_COUNT;
1481 		gc_work->start_time = start_time;
1482 	}
1483 
1484 	next_run = gc_work->avg_timeout;
1485 	count = gc_work->count;
1486 
1487 	end_time = start_time + GC_SCAN_MAX_DURATION;
1488 
1489 	do {
1490 		struct nf_conntrack_tuple_hash *h;
1491 		struct hlist_nulls_head *ct_hash;
1492 		struct hlist_nulls_node *n;
1493 		struct nf_conn *tmp;
1494 
1495 		rcu_read_lock();
1496 
1497 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1498 		if (i >= hashsz) {
1499 			rcu_read_unlock();
1500 			break;
1501 		}
1502 
1503 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1504 			struct nf_conntrack_net *cnet;
1505 			struct net *net;
1506 			long expires;
1507 
1508 			tmp = nf_ct_tuplehash_to_ctrack(h);
1509 
1510 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1511 				nf_ct_offload_timeout(tmp);
1512 				if (!nf_conntrack_max95)
1513 					continue;
1514 			}
1515 
1516 			if (expired_count > GC_SCAN_EXPIRED_MAX) {
1517 				rcu_read_unlock();
1518 
1519 				gc_work->next_bucket = i;
1520 				gc_work->avg_timeout = next_run;
1521 				gc_work->count = count;
1522 
1523 				delta_time = nfct_time_stamp - gc_work->start_time;
1524 
1525 				/* re-sched immediately if total cycle time is exceeded */
1526 				next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1527 				goto early_exit;
1528 			}
1529 
1530 			if (nf_ct_is_expired(tmp)) {
1531 				nf_ct_gc_expired(tmp);
1532 				expired_count++;
1533 				continue;
1534 			}
1535 
1536 			expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1537 			expires = (expires - (long)next_run) / ++count;
1538 			next_run += expires;
1539 
1540 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1541 				continue;
1542 
1543 			net = nf_ct_net(tmp);
1544 			cnet = nf_ct_pernet(net);
1545 			if (atomic_read(&cnet->count) < nf_conntrack_max95)
1546 				continue;
1547 
1548 			/* need to take reference to avoid possible races */
1549 			if (!refcount_inc_not_zero(&tmp->ct_general.use))
1550 				continue;
1551 
1552 			/* load ->status after refcount increase */
1553 			smp_acquire__after_ctrl_dep();
1554 
1555 			if (gc_worker_skip_ct(tmp)) {
1556 				nf_ct_put(tmp);
1557 				continue;
1558 			}
1559 
1560 			if (gc_worker_can_early_drop(tmp)) {
1561 				nf_ct_kill(tmp);
1562 				expired_count++;
1563 			}
1564 
1565 			nf_ct_put(tmp);
1566 		}
1567 
1568 		/* could check get_nulls_value() here and restart if ct
1569 		 * was moved to another chain.  But given gc is best-effort
1570 		 * we will just continue with next hash slot.
1571 		 */
1572 		rcu_read_unlock();
1573 		cond_resched();
1574 		i++;
1575 
1576 		delta_time = nfct_time_stamp - end_time;
1577 		if (delta_time > 0 && i < hashsz) {
1578 			gc_work->avg_timeout = next_run;
1579 			gc_work->count = count;
1580 			gc_work->next_bucket = i;
1581 			next_run = 0;
1582 			goto early_exit;
1583 		}
1584 	} while (i < hashsz);
1585 
1586 	gc_work->next_bucket = 0;
1587 
1588 	next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1589 
1590 	delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1591 	if (next_run > (unsigned long)delta_time)
1592 		next_run -= delta_time;
1593 	else
1594 		next_run = 1;
1595 
1596 early_exit:
1597 	if (gc_work->exiting)
1598 		return;
1599 
1600 	if (next_run)
1601 		gc_work->early_drop = false;
1602 
1603 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1604 }
1605 
1606 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1607 {
1608 	INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1609 	gc_work->exiting = false;
1610 }
1611 
1612 static struct nf_conn *
1613 __nf_conntrack_alloc(struct net *net,
1614 		     const struct nf_conntrack_zone *zone,
1615 		     const struct nf_conntrack_tuple *orig,
1616 		     const struct nf_conntrack_tuple *repl,
1617 		     gfp_t gfp, u32 hash)
1618 {
1619 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1620 	unsigned int ct_count;
1621 	struct nf_conn *ct;
1622 
1623 	/* We don't want any race condition at early drop stage */
1624 	ct_count = atomic_inc_return(&cnet->count);
1625 
1626 	if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1627 		if (!early_drop(net, hash)) {
1628 			if (!conntrack_gc_work.early_drop)
1629 				conntrack_gc_work.early_drop = true;
1630 			atomic_dec(&cnet->count);
1631 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1632 			return ERR_PTR(-ENOMEM);
1633 		}
1634 	}
1635 
1636 	/*
1637 	 * Do not use kmem_cache_zalloc(), as this cache uses
1638 	 * SLAB_TYPESAFE_BY_RCU.
1639 	 */
1640 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1641 	if (ct == NULL)
1642 		goto out;
1643 
1644 	spin_lock_init(&ct->lock);
1645 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1646 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1647 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1648 	/* save hash for reusing when confirming */
1649 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1650 	ct->status = 0;
1651 	WRITE_ONCE(ct->timeout, 0);
1652 	write_pnet(&ct->ct_net, net);
1653 	memset_after(ct, 0, __nfct_init_offset);
1654 
1655 	nf_ct_zone_add(ct, zone);
1656 
1657 	/* Because we use RCU lookups, we set ct_general.use to zero before
1658 	 * this is inserted in any list.
1659 	 */
1660 	refcount_set(&ct->ct_general.use, 0);
1661 	return ct;
1662 out:
1663 	atomic_dec(&cnet->count);
1664 	return ERR_PTR(-ENOMEM);
1665 }
1666 
1667 struct nf_conn *nf_conntrack_alloc(struct net *net,
1668 				   const struct nf_conntrack_zone *zone,
1669 				   const struct nf_conntrack_tuple *orig,
1670 				   const struct nf_conntrack_tuple *repl,
1671 				   gfp_t gfp)
1672 {
1673 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1674 }
1675 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1676 
1677 void nf_conntrack_free(struct nf_conn *ct)
1678 {
1679 	struct net *net = nf_ct_net(ct);
1680 	struct nf_conntrack_net *cnet;
1681 
1682 	/* A freed object has refcnt == 0, that's
1683 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1684 	 */
1685 	WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1686 
1687 	if (ct->status & IPS_SRC_NAT_DONE) {
1688 		const struct nf_nat_hook *nat_hook;
1689 
1690 		rcu_read_lock();
1691 		nat_hook = rcu_dereference(nf_nat_hook);
1692 		if (nat_hook)
1693 			nat_hook->remove_nat_bysrc(ct);
1694 		rcu_read_unlock();
1695 	}
1696 
1697 	kfree(ct->ext);
1698 	kmem_cache_free(nf_conntrack_cachep, ct);
1699 	cnet = nf_ct_pernet(net);
1700 
1701 	smp_mb__before_atomic();
1702 	atomic_dec(&cnet->count);
1703 }
1704 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1705 
1706 
1707 /* Allocate a new conntrack: we return -ENOMEM if classification
1708    failed due to stress.  Otherwise it really is unclassifiable. */
1709 static noinline struct nf_conntrack_tuple_hash *
1710 init_conntrack(struct net *net, struct nf_conn *tmpl,
1711 	       const struct nf_conntrack_tuple *tuple,
1712 	       struct sk_buff *skb,
1713 	       unsigned int dataoff, u32 hash)
1714 {
1715 	struct nf_conn *ct;
1716 	struct nf_conn_help *help;
1717 	struct nf_conntrack_tuple repl_tuple;
1718 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1719 	struct nf_conntrack_ecache *ecache;
1720 #endif
1721 	struct nf_conntrack_expect *exp = NULL;
1722 	const struct nf_conntrack_zone *zone;
1723 	struct nf_conn_timeout *timeout_ext;
1724 	struct nf_conntrack_zone tmp;
1725 	struct nf_conntrack_net *cnet;
1726 
1727 	if (!nf_ct_invert_tuple(&repl_tuple, tuple))
1728 		return NULL;
1729 
1730 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1731 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1732 				  hash);
1733 	if (IS_ERR(ct))
1734 		return (struct nf_conntrack_tuple_hash *)ct;
1735 
1736 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1737 		nf_conntrack_free(ct);
1738 		return ERR_PTR(-ENOMEM);
1739 	}
1740 
1741 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1742 
1743 	if (timeout_ext)
1744 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1745 				      GFP_ATOMIC);
1746 
1747 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1748 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1749 	nf_ct_labels_ext_add(ct);
1750 
1751 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1752 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1753 
1754 	if ((ecache || net->ct.sysctl_events) &&
1755 	    !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1756 				  ecache ? ecache->expmask : 0,
1757 				  GFP_ATOMIC)) {
1758 		nf_conntrack_free(ct);
1759 		return ERR_PTR(-ENOMEM);
1760 	}
1761 #endif
1762 
1763 	cnet = nf_ct_pernet(net);
1764 	if (cnet->expect_count) {
1765 		spin_lock_bh(&nf_conntrack_expect_lock);
1766 		exp = nf_ct_find_expectation(net, zone, tuple);
1767 		if (exp) {
1768 			/* Welcome, Mr. Bond.  We've been expecting you... */
1769 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1770 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1771 			ct->master = exp->master;
1772 			if (exp->helper) {
1773 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1774 				if (help)
1775 					rcu_assign_pointer(help->helper, exp->helper);
1776 			}
1777 
1778 #ifdef CONFIG_NF_CONNTRACK_MARK
1779 			ct->mark = READ_ONCE(exp->master->mark);
1780 #endif
1781 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1782 			ct->secmark = exp->master->secmark;
1783 #endif
1784 			NF_CT_STAT_INC(net, expect_new);
1785 		}
1786 		spin_unlock_bh(&nf_conntrack_expect_lock);
1787 	}
1788 	if (!exp && tmpl)
1789 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1790 
1791 	/* Other CPU might have obtained a pointer to this object before it was
1792 	 * released.  Because refcount is 0, refcount_inc_not_zero() will fail.
1793 	 *
1794 	 * After refcount_set(1) it will succeed; ensure that zeroing of
1795 	 * ct->status and the correct ct->net pointer are visible; else other
1796 	 * core might observe CONFIRMED bit which means the entry is valid and
1797 	 * in the hash table, but its not (anymore).
1798 	 */
1799 	smp_wmb();
1800 
1801 	/* Now it is going to be associated with an sk_buff, set refcount to 1. */
1802 	refcount_set(&ct->ct_general.use, 1);
1803 
1804 	if (exp) {
1805 		if (exp->expectfn)
1806 			exp->expectfn(ct, exp);
1807 		nf_ct_expect_put(exp);
1808 	}
1809 
1810 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1811 }
1812 
1813 /* On success, returns 0, sets skb->_nfct | ctinfo */
1814 static int
1815 resolve_normal_ct(struct nf_conn *tmpl,
1816 		  struct sk_buff *skb,
1817 		  unsigned int dataoff,
1818 		  u_int8_t protonum,
1819 		  const struct nf_hook_state *state)
1820 {
1821 	const struct nf_conntrack_zone *zone;
1822 	struct nf_conntrack_tuple tuple;
1823 	struct nf_conntrack_tuple_hash *h;
1824 	enum ip_conntrack_info ctinfo;
1825 	struct nf_conntrack_zone tmp;
1826 	u32 hash, zone_id, rid;
1827 	struct nf_conn *ct;
1828 
1829 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1830 			     dataoff, state->pf, protonum, state->net,
1831 			     &tuple))
1832 		return 0;
1833 
1834 	/* look for tuple match */
1835 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1836 
1837 	zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1838 	hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1839 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1840 
1841 	if (!h) {
1842 		rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1843 		if (zone_id != rid) {
1844 			u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1845 
1846 			h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1847 		}
1848 	}
1849 
1850 	if (!h) {
1851 		h = init_conntrack(state->net, tmpl, &tuple,
1852 				   skb, dataoff, hash);
1853 		if (!h)
1854 			return 0;
1855 		if (IS_ERR(h))
1856 			return PTR_ERR(h);
1857 	}
1858 	ct = nf_ct_tuplehash_to_ctrack(h);
1859 
1860 	/* It exists; we have (non-exclusive) reference. */
1861 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1862 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1863 	} else {
1864 		unsigned long status = READ_ONCE(ct->status);
1865 
1866 		/* Once we've had two way comms, always ESTABLISHED. */
1867 		if (likely(status & IPS_SEEN_REPLY))
1868 			ctinfo = IP_CT_ESTABLISHED;
1869 		else if (status & IPS_EXPECTED)
1870 			ctinfo = IP_CT_RELATED;
1871 		else
1872 			ctinfo = IP_CT_NEW;
1873 	}
1874 	nf_ct_set(skb, ct, ctinfo);
1875 	return 0;
1876 }
1877 
1878 /*
1879  * icmp packets need special treatment to handle error messages that are
1880  * related to a connection.
1881  *
1882  * Callers need to check if skb has a conntrack assigned when this
1883  * helper returns; in such case skb belongs to an already known connection.
1884  */
1885 static unsigned int __cold
1886 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1887 			 struct sk_buff *skb,
1888 			 unsigned int dataoff,
1889 			 u8 protonum,
1890 			 const struct nf_hook_state *state)
1891 {
1892 	int ret;
1893 
1894 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1895 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1896 #if IS_ENABLED(CONFIG_IPV6)
1897 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1898 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1899 #endif
1900 	else
1901 		return NF_ACCEPT;
1902 
1903 	if (ret <= 0)
1904 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1905 
1906 	return ret;
1907 }
1908 
1909 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1910 			  enum ip_conntrack_info ctinfo)
1911 {
1912 	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1913 
1914 	if (!timeout)
1915 		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1916 
1917 	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1918 	return NF_ACCEPT;
1919 }
1920 
1921 /* Returns verdict for packet, or -1 for invalid. */
1922 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1923 				      struct sk_buff *skb,
1924 				      unsigned int dataoff,
1925 				      enum ip_conntrack_info ctinfo,
1926 				      const struct nf_hook_state *state)
1927 {
1928 	switch (nf_ct_protonum(ct)) {
1929 	case IPPROTO_TCP:
1930 		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1931 					       ctinfo, state);
1932 	case IPPROTO_UDP:
1933 		return nf_conntrack_udp_packet(ct, skb, dataoff,
1934 					       ctinfo, state);
1935 	case IPPROTO_ICMP:
1936 		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1937 #if IS_ENABLED(CONFIG_IPV6)
1938 	case IPPROTO_ICMPV6:
1939 		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1940 #endif
1941 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1942 	case IPPROTO_UDPLITE:
1943 		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1944 						   ctinfo, state);
1945 #endif
1946 #ifdef CONFIG_NF_CT_PROTO_SCTP
1947 	case IPPROTO_SCTP:
1948 		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1949 						ctinfo, state);
1950 #endif
1951 #ifdef CONFIG_NF_CT_PROTO_DCCP
1952 	case IPPROTO_DCCP:
1953 		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1954 						ctinfo, state);
1955 #endif
1956 #ifdef CONFIG_NF_CT_PROTO_GRE
1957 	case IPPROTO_GRE:
1958 		return nf_conntrack_gre_packet(ct, skb, dataoff,
1959 					       ctinfo, state);
1960 #endif
1961 	}
1962 
1963 	return generic_packet(ct, skb, ctinfo);
1964 }
1965 
1966 unsigned int
1967 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1968 {
1969 	enum ip_conntrack_info ctinfo;
1970 	struct nf_conn *ct, *tmpl;
1971 	u_int8_t protonum;
1972 	int dataoff, ret;
1973 
1974 	tmpl = nf_ct_get(skb, &ctinfo);
1975 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1976 		/* Previously seen (loopback or untracked)?  Ignore. */
1977 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1978 		     ctinfo == IP_CT_UNTRACKED)
1979 			return NF_ACCEPT;
1980 		skb->_nfct = 0;
1981 	}
1982 
1983 	/* rcu_read_lock()ed by nf_hook_thresh */
1984 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1985 	if (dataoff <= 0) {
1986 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1987 		ret = NF_ACCEPT;
1988 		goto out;
1989 	}
1990 
1991 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1992 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1993 					       protonum, state);
1994 		if (ret <= 0) {
1995 			ret = -ret;
1996 			goto out;
1997 		}
1998 		/* ICMP[v6] protocol trackers may assign one conntrack. */
1999 		if (skb->_nfct)
2000 			goto out;
2001 	}
2002 repeat:
2003 	ret = resolve_normal_ct(tmpl, skb, dataoff,
2004 				protonum, state);
2005 	if (ret < 0) {
2006 		/* Too stressed to deal. */
2007 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
2008 		ret = NF_DROP;
2009 		goto out;
2010 	}
2011 
2012 	ct = nf_ct_get(skb, &ctinfo);
2013 	if (!ct) {
2014 		/* Not valid part of a connection */
2015 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2016 		ret = NF_ACCEPT;
2017 		goto out;
2018 	}
2019 
2020 	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2021 	if (ret <= 0) {
2022 		/* Invalid: inverse of the return code tells
2023 		 * the netfilter core what to do */
2024 		nf_ct_put(ct);
2025 		skb->_nfct = 0;
2026 		/* Special case: TCP tracker reports an attempt to reopen a
2027 		 * closed/aborted connection. We have to go back and create a
2028 		 * fresh conntrack.
2029 		 */
2030 		if (ret == -NF_REPEAT)
2031 			goto repeat;
2032 
2033 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2034 		if (ret == -NF_DROP)
2035 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
2036 
2037 		ret = -ret;
2038 		goto out;
2039 	}
2040 
2041 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2042 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2043 		nf_conntrack_event_cache(IPCT_REPLY, ct);
2044 out:
2045 	if (tmpl)
2046 		nf_ct_put(tmpl);
2047 
2048 	return ret;
2049 }
2050 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2051 
2052 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
2053    implicitly racy: see __nf_conntrack_confirm */
2054 void nf_conntrack_alter_reply(struct nf_conn *ct,
2055 			      const struct nf_conntrack_tuple *newreply)
2056 {
2057 	struct nf_conn_help *help = nfct_help(ct);
2058 
2059 	/* Should be unconfirmed, so not in hash table yet */
2060 	WARN_ON(nf_ct_is_confirmed(ct));
2061 
2062 	nf_ct_dump_tuple(newreply);
2063 
2064 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2065 	if (ct->master || (help && !hlist_empty(&help->expectations)))
2066 		return;
2067 }
2068 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2069 
2070 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
2071 void __nf_ct_refresh_acct(struct nf_conn *ct,
2072 			  enum ip_conntrack_info ctinfo,
2073 			  const struct sk_buff *skb,
2074 			  u32 extra_jiffies,
2075 			  bool do_acct)
2076 {
2077 	/* Only update if this is not a fixed timeout */
2078 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2079 		goto acct;
2080 
2081 	/* If not in hash table, timer will not be active yet */
2082 	if (nf_ct_is_confirmed(ct))
2083 		extra_jiffies += nfct_time_stamp;
2084 
2085 	if (READ_ONCE(ct->timeout) != extra_jiffies)
2086 		WRITE_ONCE(ct->timeout, extra_jiffies);
2087 acct:
2088 	if (do_acct)
2089 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2090 }
2091 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2092 
2093 bool nf_ct_kill_acct(struct nf_conn *ct,
2094 		     enum ip_conntrack_info ctinfo,
2095 		     const struct sk_buff *skb)
2096 {
2097 	nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2098 
2099 	return nf_ct_delete(ct, 0, 0);
2100 }
2101 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2102 
2103 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2104 
2105 #include <linux/netfilter/nfnetlink.h>
2106 #include <linux/netfilter/nfnetlink_conntrack.h>
2107 #include <linux/mutex.h>
2108 
2109 /* Generic function for tcp/udp/sctp/dccp and alike. */
2110 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2111 			       const struct nf_conntrack_tuple *tuple)
2112 {
2113 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2114 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2115 		goto nla_put_failure;
2116 	return 0;
2117 
2118 nla_put_failure:
2119 	return -1;
2120 }
2121 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2122 
2123 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2124 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2125 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2126 };
2127 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2128 
2129 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2130 			       struct nf_conntrack_tuple *t,
2131 			       u_int32_t flags)
2132 {
2133 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2134 		if (!tb[CTA_PROTO_SRC_PORT])
2135 			return -EINVAL;
2136 
2137 		t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2138 	}
2139 
2140 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2141 		if (!tb[CTA_PROTO_DST_PORT])
2142 			return -EINVAL;
2143 
2144 		t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2145 	}
2146 
2147 	return 0;
2148 }
2149 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2150 
2151 unsigned int nf_ct_port_nlattr_tuple_size(void)
2152 {
2153 	static unsigned int size __read_mostly;
2154 
2155 	if (!size)
2156 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2157 
2158 	return size;
2159 }
2160 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2161 #endif
2162 
2163 /* Used by ipt_REJECT and ip6t_REJECT. */
2164 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2165 {
2166 	struct nf_conn *ct;
2167 	enum ip_conntrack_info ctinfo;
2168 
2169 	/* This ICMP is in reverse direction to the packet which caused it */
2170 	ct = nf_ct_get(skb, &ctinfo);
2171 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2172 		ctinfo = IP_CT_RELATED_REPLY;
2173 	else
2174 		ctinfo = IP_CT_RELATED;
2175 
2176 	/* Attach to new skbuff, and increment count */
2177 	nf_ct_set(nskb, ct, ctinfo);
2178 	nf_conntrack_get(skb_nfct(nskb));
2179 }
2180 
2181 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2182 				 struct nf_conn *ct,
2183 				 enum ip_conntrack_info ctinfo)
2184 {
2185 	const struct nf_nat_hook *nat_hook;
2186 	struct nf_conntrack_tuple_hash *h;
2187 	struct nf_conntrack_tuple tuple;
2188 	unsigned int status;
2189 	int dataoff;
2190 	u16 l3num;
2191 	u8 l4num;
2192 
2193 	l3num = nf_ct_l3num(ct);
2194 
2195 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2196 	if (dataoff <= 0)
2197 		return -1;
2198 
2199 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2200 			     l4num, net, &tuple))
2201 		return -1;
2202 
2203 	if (ct->status & IPS_SRC_NAT) {
2204 		memcpy(tuple.src.u3.all,
2205 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2206 		       sizeof(tuple.src.u3.all));
2207 		tuple.src.u.all =
2208 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2209 	}
2210 
2211 	if (ct->status & IPS_DST_NAT) {
2212 		memcpy(tuple.dst.u3.all,
2213 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2214 		       sizeof(tuple.dst.u3.all));
2215 		tuple.dst.u.all =
2216 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2217 	}
2218 
2219 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2220 	if (!h)
2221 		return 0;
2222 
2223 	/* Store status bits of the conntrack that is clashing to re-do NAT
2224 	 * mangling according to what it has been done already to this packet.
2225 	 */
2226 	status = ct->status;
2227 
2228 	nf_ct_put(ct);
2229 	ct = nf_ct_tuplehash_to_ctrack(h);
2230 	nf_ct_set(skb, ct, ctinfo);
2231 
2232 	nat_hook = rcu_dereference(nf_nat_hook);
2233 	if (!nat_hook)
2234 		return 0;
2235 
2236 	if (status & IPS_SRC_NAT &&
2237 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2238 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2239 		return -1;
2240 
2241 	if (status & IPS_DST_NAT &&
2242 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2243 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2244 		return -1;
2245 
2246 	return 0;
2247 }
2248 
2249 /* This packet is coming from userspace via nf_queue, complete the packet
2250  * processing after the helper invocation in nf_confirm().
2251  */
2252 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2253 			       enum ip_conntrack_info ctinfo)
2254 {
2255 	const struct nf_conntrack_helper *helper;
2256 	const struct nf_conn_help *help;
2257 	int protoff;
2258 
2259 	help = nfct_help(ct);
2260 	if (!help)
2261 		return 0;
2262 
2263 	helper = rcu_dereference(help->helper);
2264 	if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2265 		return 0;
2266 
2267 	switch (nf_ct_l3num(ct)) {
2268 	case NFPROTO_IPV4:
2269 		protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2270 		break;
2271 #if IS_ENABLED(CONFIG_IPV6)
2272 	case NFPROTO_IPV6: {
2273 		__be16 frag_off;
2274 		u8 pnum;
2275 
2276 		pnum = ipv6_hdr(skb)->nexthdr;
2277 		protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2278 					   &frag_off);
2279 		if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2280 			return 0;
2281 		break;
2282 	}
2283 #endif
2284 	default:
2285 		return 0;
2286 	}
2287 
2288 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2289 	    !nf_is_loopback_packet(skb)) {
2290 		if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2291 			NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2292 			return -1;
2293 		}
2294 	}
2295 
2296 	/* We've seen it coming out the other side: confirm it */
2297 	return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2298 }
2299 
2300 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2301 {
2302 	enum ip_conntrack_info ctinfo;
2303 	struct nf_conn *ct;
2304 	int err;
2305 
2306 	ct = nf_ct_get(skb, &ctinfo);
2307 	if (!ct)
2308 		return 0;
2309 
2310 	if (!nf_ct_is_confirmed(ct)) {
2311 		err = __nf_conntrack_update(net, skb, ct, ctinfo);
2312 		if (err < 0)
2313 			return err;
2314 
2315 		ct = nf_ct_get(skb, &ctinfo);
2316 	}
2317 
2318 	return nf_confirm_cthelper(skb, ct, ctinfo);
2319 }
2320 
2321 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2322 				       const struct sk_buff *skb)
2323 {
2324 	const struct nf_conntrack_tuple *src_tuple;
2325 	const struct nf_conntrack_tuple_hash *hash;
2326 	struct nf_conntrack_tuple srctuple;
2327 	enum ip_conntrack_info ctinfo;
2328 	struct nf_conn *ct;
2329 
2330 	ct = nf_ct_get(skb, &ctinfo);
2331 	if (ct) {
2332 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2333 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2334 		return true;
2335 	}
2336 
2337 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2338 			       NFPROTO_IPV4, dev_net(skb->dev),
2339 			       &srctuple))
2340 		return false;
2341 
2342 	hash = nf_conntrack_find_get(dev_net(skb->dev),
2343 				     &nf_ct_zone_dflt,
2344 				     &srctuple);
2345 	if (!hash)
2346 		return false;
2347 
2348 	ct = nf_ct_tuplehash_to_ctrack(hash);
2349 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2350 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2351 	nf_ct_put(ct);
2352 
2353 	return true;
2354 }
2355 
2356 /* Bring out ya dead! */
2357 static struct nf_conn *
2358 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2359 		const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2360 {
2361 	struct nf_conntrack_tuple_hash *h;
2362 	struct nf_conn *ct;
2363 	struct hlist_nulls_node *n;
2364 	spinlock_t *lockp;
2365 
2366 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2367 		struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2368 
2369 		if (hlist_nulls_empty(hslot))
2370 			continue;
2371 
2372 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2373 		local_bh_disable();
2374 		nf_conntrack_lock(lockp);
2375 		hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2376 			if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2377 				continue;
2378 			/* All nf_conn objects are added to hash table twice, one
2379 			 * for original direction tuple, once for the reply tuple.
2380 			 *
2381 			 * Exception: In the IPS_NAT_CLASH case, only the reply
2382 			 * tuple is added (the original tuple already existed for
2383 			 * a different object).
2384 			 *
2385 			 * We only need to call the iterator once for each
2386 			 * conntrack, so we just use the 'reply' direction
2387 			 * tuple while iterating.
2388 			 */
2389 			ct = nf_ct_tuplehash_to_ctrack(h);
2390 
2391 			if (iter_data->net &&
2392 			    !net_eq(iter_data->net, nf_ct_net(ct)))
2393 				continue;
2394 
2395 			if (iter(ct, iter_data->data))
2396 				goto found;
2397 		}
2398 		spin_unlock(lockp);
2399 		local_bh_enable();
2400 		cond_resched();
2401 	}
2402 
2403 	return NULL;
2404 found:
2405 	refcount_inc(&ct->ct_general.use);
2406 	spin_unlock(lockp);
2407 	local_bh_enable();
2408 	return ct;
2409 }
2410 
2411 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2412 				  const struct nf_ct_iter_data *iter_data)
2413 {
2414 	unsigned int bucket = 0;
2415 	struct nf_conn *ct;
2416 
2417 	might_sleep();
2418 
2419 	mutex_lock(&nf_conntrack_mutex);
2420 	while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2421 		/* Time to push up daises... */
2422 
2423 		nf_ct_delete(ct, iter_data->portid, iter_data->report);
2424 		nf_ct_put(ct);
2425 		cond_resched();
2426 	}
2427 	mutex_unlock(&nf_conntrack_mutex);
2428 }
2429 
2430 void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2431 			       const struct nf_ct_iter_data *iter_data)
2432 {
2433 	struct net *net = iter_data->net;
2434 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2435 
2436 	might_sleep();
2437 
2438 	if (atomic_read(&cnet->count) == 0)
2439 		return;
2440 
2441 	nf_ct_iterate_cleanup(iter, iter_data);
2442 }
2443 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2444 
2445 /**
2446  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2447  * @iter: callback to invoke for each conntrack
2448  * @data: data to pass to @iter
2449  *
2450  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2451  * unconfirmed list as dying (so they will not be inserted into
2452  * main table).
2453  *
2454  * Can only be called in module exit path.
2455  */
2456 void
2457 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2458 {
2459 	struct nf_ct_iter_data iter_data = {};
2460 	struct net *net;
2461 
2462 	down_read(&net_rwsem);
2463 	for_each_net(net) {
2464 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2465 
2466 		if (atomic_read(&cnet->count) == 0)
2467 			continue;
2468 		nf_queue_nf_hook_drop(net);
2469 	}
2470 	up_read(&net_rwsem);
2471 
2472 	/* Need to wait for netns cleanup worker to finish, if its
2473 	 * running -- it might have deleted a net namespace from
2474 	 * the global list, so hook drop above might not have
2475 	 * affected all namespaces.
2476 	 */
2477 	net_ns_barrier();
2478 
2479 	/* a skb w. unconfirmed conntrack could have been reinjected just
2480 	 * before we called nf_queue_nf_hook_drop().
2481 	 *
2482 	 * This makes sure its inserted into conntrack table.
2483 	 */
2484 	synchronize_net();
2485 
2486 	nf_ct_ext_bump_genid();
2487 	iter_data.data = data;
2488 	nf_ct_iterate_cleanup(iter, &iter_data);
2489 
2490 	/* Another cpu might be in a rcu read section with
2491 	 * rcu protected pointer cleared in iter callback
2492 	 * or hidden via nf_ct_ext_bump_genid() above.
2493 	 *
2494 	 * Wait until those are done.
2495 	 */
2496 	synchronize_rcu();
2497 }
2498 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2499 
2500 static int kill_all(struct nf_conn *i, void *data)
2501 {
2502 	return 1;
2503 }
2504 
2505 void nf_conntrack_cleanup_start(void)
2506 {
2507 	cleanup_nf_conntrack_bpf();
2508 	conntrack_gc_work.exiting = true;
2509 }
2510 
2511 void nf_conntrack_cleanup_end(void)
2512 {
2513 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2514 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2515 	kvfree(nf_conntrack_hash);
2516 
2517 	nf_conntrack_proto_fini();
2518 	nf_conntrack_helper_fini();
2519 	nf_conntrack_expect_fini();
2520 
2521 	kmem_cache_destroy(nf_conntrack_cachep);
2522 }
2523 
2524 /*
2525  * Mishearing the voices in his head, our hero wonders how he's
2526  * supposed to kill the mall.
2527  */
2528 void nf_conntrack_cleanup_net(struct net *net)
2529 {
2530 	LIST_HEAD(single);
2531 
2532 	list_add(&net->exit_list, &single);
2533 	nf_conntrack_cleanup_net_list(&single);
2534 }
2535 
2536 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2537 {
2538 	struct nf_ct_iter_data iter_data = {};
2539 	struct net *net;
2540 	int busy;
2541 
2542 	/*
2543 	 * This makes sure all current packets have passed through
2544 	 *  netfilter framework.  Roll on, two-stage module
2545 	 *  delete...
2546 	 */
2547 	synchronize_net();
2548 i_see_dead_people:
2549 	busy = 0;
2550 	list_for_each_entry(net, net_exit_list, exit_list) {
2551 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2552 
2553 		iter_data.net = net;
2554 		nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2555 		if (atomic_read(&cnet->count) != 0)
2556 			busy = 1;
2557 	}
2558 	if (busy) {
2559 		schedule();
2560 		goto i_see_dead_people;
2561 	}
2562 
2563 	list_for_each_entry(net, net_exit_list, exit_list) {
2564 		nf_conntrack_ecache_pernet_fini(net);
2565 		nf_conntrack_expect_pernet_fini(net);
2566 		free_percpu(net->ct.stat);
2567 	}
2568 }
2569 
2570 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2571 {
2572 	struct hlist_nulls_head *hash;
2573 	unsigned int nr_slots, i;
2574 
2575 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2576 		return NULL;
2577 
2578 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2579 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2580 
2581 	hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2582 
2583 	if (hash && nulls)
2584 		for (i = 0; i < nr_slots; i++)
2585 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2586 
2587 	return hash;
2588 }
2589 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2590 
2591 int nf_conntrack_hash_resize(unsigned int hashsize)
2592 {
2593 	int i, bucket;
2594 	unsigned int old_size;
2595 	struct hlist_nulls_head *hash, *old_hash;
2596 	struct nf_conntrack_tuple_hash *h;
2597 	struct nf_conn *ct;
2598 
2599 	if (!hashsize)
2600 		return -EINVAL;
2601 
2602 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2603 	if (!hash)
2604 		return -ENOMEM;
2605 
2606 	mutex_lock(&nf_conntrack_mutex);
2607 	old_size = nf_conntrack_htable_size;
2608 	if (old_size == hashsize) {
2609 		mutex_unlock(&nf_conntrack_mutex);
2610 		kvfree(hash);
2611 		return 0;
2612 	}
2613 
2614 	local_bh_disable();
2615 	nf_conntrack_all_lock();
2616 	write_seqcount_begin(&nf_conntrack_generation);
2617 
2618 	/* Lookups in the old hash might happen in parallel, which means we
2619 	 * might get false negatives during connection lookup. New connections
2620 	 * created because of a false negative won't make it into the hash
2621 	 * though since that required taking the locks.
2622 	 */
2623 
2624 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2625 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2626 			unsigned int zone_id;
2627 
2628 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2629 					      struct nf_conntrack_tuple_hash, hnnode);
2630 			ct = nf_ct_tuplehash_to_ctrack(h);
2631 			hlist_nulls_del_rcu(&h->hnnode);
2632 
2633 			zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2634 			bucket = __hash_conntrack(nf_ct_net(ct),
2635 						  &h->tuple, zone_id, hashsize);
2636 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2637 		}
2638 	}
2639 	old_hash = nf_conntrack_hash;
2640 
2641 	nf_conntrack_hash = hash;
2642 	nf_conntrack_htable_size = hashsize;
2643 
2644 	write_seqcount_end(&nf_conntrack_generation);
2645 	nf_conntrack_all_unlock();
2646 	local_bh_enable();
2647 
2648 	mutex_unlock(&nf_conntrack_mutex);
2649 
2650 	synchronize_net();
2651 	kvfree(old_hash);
2652 	return 0;
2653 }
2654 
2655 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2656 {
2657 	unsigned int hashsize;
2658 	int rc;
2659 
2660 	if (current->nsproxy->net_ns != &init_net)
2661 		return -EOPNOTSUPP;
2662 
2663 	/* On boot, we can set this without any fancy locking. */
2664 	if (!nf_conntrack_hash)
2665 		return param_set_uint(val, kp);
2666 
2667 	rc = kstrtouint(val, 0, &hashsize);
2668 	if (rc)
2669 		return rc;
2670 
2671 	return nf_conntrack_hash_resize(hashsize);
2672 }
2673 
2674 int nf_conntrack_init_start(void)
2675 {
2676 	unsigned long nr_pages = totalram_pages();
2677 	int max_factor = 8;
2678 	int ret = -ENOMEM;
2679 	int i;
2680 
2681 	seqcount_spinlock_init(&nf_conntrack_generation,
2682 			       &nf_conntrack_locks_all_lock);
2683 
2684 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2685 		spin_lock_init(&nf_conntrack_locks[i]);
2686 
2687 	if (!nf_conntrack_htable_size) {
2688 		nf_conntrack_htable_size
2689 			= (((nr_pages << PAGE_SHIFT) / 16384)
2690 			   / sizeof(struct hlist_head));
2691 		if (BITS_PER_LONG >= 64 &&
2692 		    nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2693 			nf_conntrack_htable_size = 262144;
2694 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2695 			nf_conntrack_htable_size = 65536;
2696 
2697 		if (nf_conntrack_htable_size < 1024)
2698 			nf_conntrack_htable_size = 1024;
2699 		/* Use a max. factor of one by default to keep the average
2700 		 * hash chain length at 2 entries.  Each entry has to be added
2701 		 * twice (once for original direction, once for reply).
2702 		 * When a table size is given we use the old value of 8 to
2703 		 * avoid implicit reduction of the max entries setting.
2704 		 */
2705 		max_factor = 1;
2706 	}
2707 
2708 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2709 	if (!nf_conntrack_hash)
2710 		return -ENOMEM;
2711 
2712 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2713 
2714 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2715 						sizeof(struct nf_conn),
2716 						NFCT_INFOMASK + 1,
2717 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2718 	if (!nf_conntrack_cachep)
2719 		goto err_cachep;
2720 
2721 	ret = nf_conntrack_expect_init();
2722 	if (ret < 0)
2723 		goto err_expect;
2724 
2725 	ret = nf_conntrack_helper_init();
2726 	if (ret < 0)
2727 		goto err_helper;
2728 
2729 	ret = nf_conntrack_proto_init();
2730 	if (ret < 0)
2731 		goto err_proto;
2732 
2733 	conntrack_gc_work_init(&conntrack_gc_work);
2734 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2735 
2736 	ret = register_nf_conntrack_bpf();
2737 	if (ret < 0)
2738 		goto err_kfunc;
2739 
2740 	return 0;
2741 
2742 err_kfunc:
2743 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2744 	nf_conntrack_proto_fini();
2745 err_proto:
2746 	nf_conntrack_helper_fini();
2747 err_helper:
2748 	nf_conntrack_expect_fini();
2749 err_expect:
2750 	kmem_cache_destroy(nf_conntrack_cachep);
2751 err_cachep:
2752 	kvfree(nf_conntrack_hash);
2753 	return ret;
2754 }
2755 
2756 static void nf_conntrack_set_closing(struct nf_conntrack *nfct)
2757 {
2758 	struct nf_conn *ct = nf_ct_to_nf_conn(nfct);
2759 
2760 	switch (nf_ct_protonum(ct)) {
2761 	case IPPROTO_TCP:
2762 		nf_conntrack_tcp_set_closing(ct);
2763 		break;
2764 	}
2765 }
2766 
2767 static const struct nf_ct_hook nf_conntrack_hook = {
2768 	.update		= nf_conntrack_update,
2769 	.destroy	= nf_ct_destroy,
2770 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2771 	.attach		= nf_conntrack_attach,
2772 	.set_closing	= nf_conntrack_set_closing,
2773 };
2774 
2775 void nf_conntrack_init_end(void)
2776 {
2777 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2778 }
2779 
2780 /*
2781  * We need to use special "null" values, not used in hash table
2782  */
2783 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2784 
2785 int nf_conntrack_init_net(struct net *net)
2786 {
2787 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2788 	int ret = -ENOMEM;
2789 
2790 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2791 	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2792 	atomic_set(&cnet->count, 0);
2793 
2794 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2795 	if (!net->ct.stat)
2796 		return ret;
2797 
2798 	ret = nf_conntrack_expect_pernet_init(net);
2799 	if (ret < 0)
2800 		goto err_expect;
2801 
2802 	nf_conntrack_acct_pernet_init(net);
2803 	nf_conntrack_tstamp_pernet_init(net);
2804 	nf_conntrack_ecache_pernet_init(net);
2805 	nf_conntrack_proto_pernet_init(net);
2806 
2807 	return 0;
2808 
2809 err_expect:
2810 	free_percpu(net->ct.stat);
2811 	return ret;
2812 }
2813 
2814 /* ctnetlink code shared by both ctnetlink and nf_conntrack_bpf */
2815 
2816 int __nf_ct_change_timeout(struct nf_conn *ct, u64 timeout)
2817 {
2818 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2819 		return -EPERM;
2820 
2821 	__nf_ct_set_timeout(ct, timeout);
2822 
2823 	if (test_bit(IPS_DYING_BIT, &ct->status))
2824 		return -ETIME;
2825 
2826 	return 0;
2827 }
2828 EXPORT_SYMBOL_GPL(__nf_ct_change_timeout);
2829 
2830 void __nf_ct_change_status(struct nf_conn *ct, unsigned long on, unsigned long off)
2831 {
2832 	unsigned int bit;
2833 
2834 	/* Ignore these unchangable bits */
2835 	on &= ~IPS_UNCHANGEABLE_MASK;
2836 	off &= ~IPS_UNCHANGEABLE_MASK;
2837 
2838 	for (bit = 0; bit < __IPS_MAX_BIT; bit++) {
2839 		if (on & (1 << bit))
2840 			set_bit(bit, &ct->status);
2841 		else if (off & (1 << bit))
2842 			clear_bit(bit, &ct->status);
2843 	}
2844 }
2845 EXPORT_SYMBOL_GPL(__nf_ct_change_status);
2846 
2847 int nf_ct_change_status_common(struct nf_conn *ct, unsigned int status)
2848 {
2849 	unsigned long d;
2850 
2851 	d = ct->status ^ status;
2852 
2853 	if (d & (IPS_EXPECTED|IPS_CONFIRMED|IPS_DYING))
2854 		/* unchangeable */
2855 		return -EBUSY;
2856 
2857 	if (d & IPS_SEEN_REPLY && !(status & IPS_SEEN_REPLY))
2858 		/* SEEN_REPLY bit can only be set */
2859 		return -EBUSY;
2860 
2861 	if (d & IPS_ASSURED && !(status & IPS_ASSURED))
2862 		/* ASSURED bit can only be set */
2863 		return -EBUSY;
2864 
2865 	__nf_ct_change_status(ct, status, 0);
2866 	return 0;
2867 }
2868 EXPORT_SYMBOL_GPL(nf_ct_change_status_common);
2869