xref: /linux/net/netfilter/nft_set_rbtree.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2008-2009 Patrick McHardy <kaber@trash.net>
4  *
5  * Development of this code funded by Astaro AG (http://www.astaro.com/)
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/list.h>
12 #include <linux/rbtree.h>
13 #include <linux/netlink.h>
14 #include <linux/netfilter.h>
15 #include <linux/netfilter/nf_tables.h>
16 #include <net/netfilter/nf_tables_core.h>
17 
18 struct nft_rbtree {
19 	struct rb_root		root;
20 	rwlock_t		lock;
21 	seqcount_rwlock_t	count;
22 	unsigned long		last_gc;
23 };
24 
25 struct nft_rbtree_elem {
26 	struct nft_elem_priv	priv;
27 	struct rb_node		node;
28 	struct nft_set_ext	ext;
29 };
30 
31 static bool nft_rbtree_interval_end(const struct nft_rbtree_elem *rbe)
32 {
33 	return nft_set_ext_exists(&rbe->ext, NFT_SET_EXT_FLAGS) &&
34 	       (*nft_set_ext_flags(&rbe->ext) & NFT_SET_ELEM_INTERVAL_END);
35 }
36 
37 static bool nft_rbtree_interval_start(const struct nft_rbtree_elem *rbe)
38 {
39 	return !nft_rbtree_interval_end(rbe);
40 }
41 
42 static int nft_rbtree_cmp(const struct nft_set *set,
43 			  const struct nft_rbtree_elem *e1,
44 			  const struct nft_rbtree_elem *e2)
45 {
46 	return memcmp(nft_set_ext_key(&e1->ext), nft_set_ext_key(&e2->ext),
47 		      set->klen);
48 }
49 
50 static bool nft_rbtree_elem_expired(const struct nft_rbtree_elem *rbe)
51 {
52 	return nft_set_elem_expired(&rbe->ext);
53 }
54 
55 static bool __nft_rbtree_lookup(const struct net *net, const struct nft_set *set,
56 				const u32 *key, const struct nft_set_ext **ext,
57 				unsigned int seq)
58 {
59 	struct nft_rbtree *priv = nft_set_priv(set);
60 	const struct nft_rbtree_elem *rbe, *interval = NULL;
61 	u8 genmask = nft_genmask_cur(net);
62 	const struct rb_node *parent;
63 	int d;
64 
65 	parent = rcu_dereference_raw(priv->root.rb_node);
66 	while (parent != NULL) {
67 		if (read_seqcount_retry(&priv->count, seq))
68 			return false;
69 
70 		rbe = rb_entry(parent, struct nft_rbtree_elem, node);
71 
72 		d = memcmp(nft_set_ext_key(&rbe->ext), key, set->klen);
73 		if (d < 0) {
74 			parent = rcu_dereference_raw(parent->rb_left);
75 			if (interval &&
76 			    !nft_rbtree_cmp(set, rbe, interval) &&
77 			    nft_rbtree_interval_end(rbe) &&
78 			    nft_rbtree_interval_start(interval))
79 				continue;
80 			interval = rbe;
81 		} else if (d > 0)
82 			parent = rcu_dereference_raw(parent->rb_right);
83 		else {
84 			if (!nft_set_elem_active(&rbe->ext, genmask)) {
85 				parent = rcu_dereference_raw(parent->rb_left);
86 				continue;
87 			}
88 
89 			if (nft_rbtree_elem_expired(rbe))
90 				return false;
91 
92 			if (nft_rbtree_interval_end(rbe)) {
93 				if (nft_set_is_anonymous(set))
94 					return false;
95 				parent = rcu_dereference_raw(parent->rb_left);
96 				interval = NULL;
97 				continue;
98 			}
99 
100 			*ext = &rbe->ext;
101 			return true;
102 		}
103 	}
104 
105 	if (set->flags & NFT_SET_INTERVAL && interval != NULL &&
106 	    nft_set_elem_active(&interval->ext, genmask) &&
107 	    !nft_rbtree_elem_expired(interval) &&
108 	    nft_rbtree_interval_start(interval)) {
109 		*ext = &interval->ext;
110 		return true;
111 	}
112 
113 	return false;
114 }
115 
116 INDIRECT_CALLABLE_SCOPE
117 bool nft_rbtree_lookup(const struct net *net, const struct nft_set *set,
118 		       const u32 *key, const struct nft_set_ext **ext)
119 {
120 	struct nft_rbtree *priv = nft_set_priv(set);
121 	unsigned int seq = read_seqcount_begin(&priv->count);
122 	bool ret;
123 
124 	ret = __nft_rbtree_lookup(net, set, key, ext, seq);
125 	if (ret || !read_seqcount_retry(&priv->count, seq))
126 		return ret;
127 
128 	read_lock_bh(&priv->lock);
129 	seq = read_seqcount_begin(&priv->count);
130 	ret = __nft_rbtree_lookup(net, set, key, ext, seq);
131 	read_unlock_bh(&priv->lock);
132 
133 	return ret;
134 }
135 
136 static bool __nft_rbtree_get(const struct net *net, const struct nft_set *set,
137 			     const u32 *key, struct nft_rbtree_elem **elem,
138 			     unsigned int seq, unsigned int flags, u8 genmask)
139 {
140 	struct nft_rbtree_elem *rbe, *interval = NULL;
141 	struct nft_rbtree *priv = nft_set_priv(set);
142 	const struct rb_node *parent;
143 	const void *this;
144 	int d;
145 
146 	parent = rcu_dereference_raw(priv->root.rb_node);
147 	while (parent != NULL) {
148 		if (read_seqcount_retry(&priv->count, seq))
149 			return false;
150 
151 		rbe = rb_entry(parent, struct nft_rbtree_elem, node);
152 
153 		this = nft_set_ext_key(&rbe->ext);
154 		d = memcmp(this, key, set->klen);
155 		if (d < 0) {
156 			parent = rcu_dereference_raw(parent->rb_left);
157 			if (!(flags & NFT_SET_ELEM_INTERVAL_END))
158 				interval = rbe;
159 		} else if (d > 0) {
160 			parent = rcu_dereference_raw(parent->rb_right);
161 			if (flags & NFT_SET_ELEM_INTERVAL_END)
162 				interval = rbe;
163 		} else {
164 			if (!nft_set_elem_active(&rbe->ext, genmask)) {
165 				parent = rcu_dereference_raw(parent->rb_left);
166 				continue;
167 			}
168 
169 			if (nft_set_elem_expired(&rbe->ext))
170 				return false;
171 
172 			if (!nft_set_ext_exists(&rbe->ext, NFT_SET_EXT_FLAGS) ||
173 			    (*nft_set_ext_flags(&rbe->ext) & NFT_SET_ELEM_INTERVAL_END) ==
174 			    (flags & NFT_SET_ELEM_INTERVAL_END)) {
175 				*elem = rbe;
176 				return true;
177 			}
178 
179 			if (nft_rbtree_interval_end(rbe))
180 				interval = NULL;
181 
182 			parent = rcu_dereference_raw(parent->rb_left);
183 		}
184 	}
185 
186 	if (set->flags & NFT_SET_INTERVAL && interval != NULL &&
187 	    nft_set_elem_active(&interval->ext, genmask) &&
188 	    !nft_set_elem_expired(&interval->ext) &&
189 	    ((!nft_rbtree_interval_end(interval) &&
190 	      !(flags & NFT_SET_ELEM_INTERVAL_END)) ||
191 	     (nft_rbtree_interval_end(interval) &&
192 	      (flags & NFT_SET_ELEM_INTERVAL_END)))) {
193 		*elem = interval;
194 		return true;
195 	}
196 
197 	return false;
198 }
199 
200 static struct nft_elem_priv *
201 nft_rbtree_get(const struct net *net, const struct nft_set *set,
202 	       const struct nft_set_elem *elem, unsigned int flags)
203 {
204 	struct nft_rbtree *priv = nft_set_priv(set);
205 	unsigned int seq = read_seqcount_begin(&priv->count);
206 	struct nft_rbtree_elem *rbe = ERR_PTR(-ENOENT);
207 	const u32 *key = (const u32 *)&elem->key.val;
208 	u8 genmask = nft_genmask_cur(net);
209 	bool ret;
210 
211 	ret = __nft_rbtree_get(net, set, key, &rbe, seq, flags, genmask);
212 	if (ret || !read_seqcount_retry(&priv->count, seq))
213 		return &rbe->priv;
214 
215 	read_lock_bh(&priv->lock);
216 	seq = read_seqcount_begin(&priv->count);
217 	ret = __nft_rbtree_get(net, set, key, &rbe, seq, flags, genmask);
218 	read_unlock_bh(&priv->lock);
219 
220 	if (!ret)
221 		return ERR_PTR(-ENOENT);
222 
223 	return &rbe->priv;
224 }
225 
226 static void nft_rbtree_gc_elem_remove(struct net *net, struct nft_set *set,
227 				      struct nft_rbtree *priv,
228 				      struct nft_rbtree_elem *rbe)
229 {
230 	lockdep_assert_held_write(&priv->lock);
231 	nft_setelem_data_deactivate(net, set, &rbe->priv);
232 	rb_erase(&rbe->node, &priv->root);
233 }
234 
235 static const struct nft_rbtree_elem *
236 nft_rbtree_gc_elem(const struct nft_set *__set, struct nft_rbtree *priv,
237 		   struct nft_rbtree_elem *rbe)
238 {
239 	struct nft_set *set = (struct nft_set *)__set;
240 	struct rb_node *prev = rb_prev(&rbe->node);
241 	struct net *net = read_pnet(&set->net);
242 	struct nft_rbtree_elem *rbe_prev;
243 	struct nft_trans_gc *gc;
244 
245 	gc = nft_trans_gc_alloc(set, 0, GFP_ATOMIC);
246 	if (!gc)
247 		return ERR_PTR(-ENOMEM);
248 
249 	/* search for end interval coming before this element.
250 	 * end intervals don't carry a timeout extension, they
251 	 * are coupled with the interval start element.
252 	 */
253 	while (prev) {
254 		rbe_prev = rb_entry(prev, struct nft_rbtree_elem, node);
255 		if (nft_rbtree_interval_end(rbe_prev) &&
256 		    nft_set_elem_active(&rbe_prev->ext, NFT_GENMASK_ANY))
257 			break;
258 
259 		prev = rb_prev(prev);
260 	}
261 
262 	rbe_prev = NULL;
263 	if (prev) {
264 		rbe_prev = rb_entry(prev, struct nft_rbtree_elem, node);
265 		nft_rbtree_gc_elem_remove(net, set, priv, rbe_prev);
266 
267 		/* There is always room in this trans gc for this element,
268 		 * memory allocation never actually happens, hence, the warning
269 		 * splat in such case. No need to set NFT_SET_ELEM_DEAD_BIT,
270 		 * this is synchronous gc which never fails.
271 		 */
272 		gc = nft_trans_gc_queue_sync(gc, GFP_ATOMIC);
273 		if (WARN_ON_ONCE(!gc))
274 			return ERR_PTR(-ENOMEM);
275 
276 		nft_trans_gc_elem_add(gc, rbe_prev);
277 	}
278 
279 	nft_rbtree_gc_elem_remove(net, set, priv, rbe);
280 	gc = nft_trans_gc_queue_sync(gc, GFP_ATOMIC);
281 	if (WARN_ON_ONCE(!gc))
282 		return ERR_PTR(-ENOMEM);
283 
284 	nft_trans_gc_elem_add(gc, rbe);
285 
286 	nft_trans_gc_queue_sync_done(gc);
287 
288 	return rbe_prev;
289 }
290 
291 static bool nft_rbtree_update_first(const struct nft_set *set,
292 				    struct nft_rbtree_elem *rbe,
293 				    struct rb_node *first)
294 {
295 	struct nft_rbtree_elem *first_elem;
296 
297 	first_elem = rb_entry(first, struct nft_rbtree_elem, node);
298 	/* this element is closest to where the new element is to be inserted:
299 	 * update the first element for the node list path.
300 	 */
301 	if (nft_rbtree_cmp(set, rbe, first_elem) < 0)
302 		return true;
303 
304 	return false;
305 }
306 
307 static int __nft_rbtree_insert(const struct net *net, const struct nft_set *set,
308 			       struct nft_rbtree_elem *new,
309 			       struct nft_elem_priv **elem_priv)
310 {
311 	struct nft_rbtree_elem *rbe, *rbe_le = NULL, *rbe_ge = NULL;
312 	struct rb_node *node, *next, *parent, **p, *first = NULL;
313 	struct nft_rbtree *priv = nft_set_priv(set);
314 	u8 cur_genmask = nft_genmask_cur(net);
315 	u8 genmask = nft_genmask_next(net);
316 	u64 tstamp = nft_net_tstamp(net);
317 	int d;
318 
319 	/* Descend the tree to search for an existing element greater than the
320 	 * key value to insert that is greater than the new element. This is the
321 	 * first element to walk the ordered elements to find possible overlap.
322 	 */
323 	parent = NULL;
324 	p = &priv->root.rb_node;
325 	while (*p != NULL) {
326 		parent = *p;
327 		rbe = rb_entry(parent, struct nft_rbtree_elem, node);
328 		d = nft_rbtree_cmp(set, rbe, new);
329 
330 		if (d < 0) {
331 			p = &parent->rb_left;
332 		} else if (d > 0) {
333 			if (!first ||
334 			    nft_rbtree_update_first(set, rbe, first))
335 				first = &rbe->node;
336 
337 			p = &parent->rb_right;
338 		} else {
339 			if (nft_rbtree_interval_end(rbe))
340 				p = &parent->rb_left;
341 			else
342 				p = &parent->rb_right;
343 		}
344 	}
345 
346 	if (!first)
347 		first = rb_first(&priv->root);
348 
349 	/* Detect overlap by going through the list of valid tree nodes.
350 	 * Values stored in the tree are in reversed order, starting from
351 	 * highest to lowest value.
352 	 */
353 	for (node = first; node != NULL; node = next) {
354 		next = rb_next(node);
355 
356 		rbe = rb_entry(node, struct nft_rbtree_elem, node);
357 
358 		if (!nft_set_elem_active(&rbe->ext, genmask))
359 			continue;
360 
361 		/* perform garbage collection to avoid bogus overlap reports
362 		 * but skip new elements in this transaction.
363 		 */
364 		if (__nft_set_elem_expired(&rbe->ext, tstamp) &&
365 		    nft_set_elem_active(&rbe->ext, cur_genmask)) {
366 			const struct nft_rbtree_elem *removed_end;
367 
368 			removed_end = nft_rbtree_gc_elem(set, priv, rbe);
369 			if (IS_ERR(removed_end))
370 				return PTR_ERR(removed_end);
371 
372 			if (removed_end == rbe_le || removed_end == rbe_ge)
373 				return -EAGAIN;
374 
375 			continue;
376 		}
377 
378 		d = nft_rbtree_cmp(set, rbe, new);
379 		if (d == 0) {
380 			/* Matching end element: no need to look for an
381 			 * overlapping greater or equal element.
382 			 */
383 			if (nft_rbtree_interval_end(rbe)) {
384 				rbe_le = rbe;
385 				break;
386 			}
387 
388 			/* first element that is greater or equal to key value. */
389 			if (!rbe_ge) {
390 				rbe_ge = rbe;
391 				continue;
392 			}
393 
394 			/* this is a closer more or equal element, update it. */
395 			if (nft_rbtree_cmp(set, rbe_ge, new) != 0) {
396 				rbe_ge = rbe;
397 				continue;
398 			}
399 
400 			/* element is equal to key value, make sure flags are
401 			 * the same, an existing more or equal start element
402 			 * must not be replaced by more or equal end element.
403 			 */
404 			if ((nft_rbtree_interval_start(new) &&
405 			     nft_rbtree_interval_start(rbe_ge)) ||
406 			    (nft_rbtree_interval_end(new) &&
407 			     nft_rbtree_interval_end(rbe_ge))) {
408 				rbe_ge = rbe;
409 				continue;
410 			}
411 		} else if (d > 0) {
412 			/* annotate element greater than the new element. */
413 			rbe_ge = rbe;
414 			continue;
415 		} else if (d < 0) {
416 			/* annotate element less than the new element. */
417 			rbe_le = rbe;
418 			break;
419 		}
420 	}
421 
422 	/* - new start element matching existing start element: full overlap
423 	 *   reported as -EEXIST, cleared by caller if NLM_F_EXCL is not given.
424 	 */
425 	if (rbe_ge && !nft_rbtree_cmp(set, new, rbe_ge) &&
426 	    nft_rbtree_interval_start(rbe_ge) == nft_rbtree_interval_start(new)) {
427 		*elem_priv = &rbe_ge->priv;
428 		return -EEXIST;
429 	}
430 
431 	/* - new end element matching existing end element: full overlap
432 	 *   reported as -EEXIST, cleared by caller if NLM_F_EXCL is not given.
433 	 */
434 	if (rbe_le && !nft_rbtree_cmp(set, new, rbe_le) &&
435 	    nft_rbtree_interval_end(rbe_le) == nft_rbtree_interval_end(new)) {
436 		*elem_priv = &rbe_le->priv;
437 		return -EEXIST;
438 	}
439 
440 	/* - new start element with existing closest, less or equal key value
441 	 *   being a start element: partial overlap, reported as -ENOTEMPTY.
442 	 *   Anonymous sets allow for two consecutive start element since they
443 	 *   are constant, skip them to avoid bogus overlap reports.
444 	 */
445 	if (!nft_set_is_anonymous(set) && rbe_le &&
446 	    nft_rbtree_interval_start(rbe_le) && nft_rbtree_interval_start(new))
447 		return -ENOTEMPTY;
448 
449 	/* - new end element with existing closest, less or equal key value
450 	 *   being a end element: partial overlap, reported as -ENOTEMPTY.
451 	 */
452 	if (rbe_le &&
453 	    nft_rbtree_interval_end(rbe_le) && nft_rbtree_interval_end(new))
454 		return -ENOTEMPTY;
455 
456 	/* - new end element with existing closest, greater or equal key value
457 	 *   being an end element: partial overlap, reported as -ENOTEMPTY
458 	 */
459 	if (rbe_ge &&
460 	    nft_rbtree_interval_end(rbe_ge) && nft_rbtree_interval_end(new))
461 		return -ENOTEMPTY;
462 
463 	/* Accepted element: pick insertion point depending on key value */
464 	parent = NULL;
465 	p = &priv->root.rb_node;
466 	while (*p != NULL) {
467 		parent = *p;
468 		rbe = rb_entry(parent, struct nft_rbtree_elem, node);
469 		d = nft_rbtree_cmp(set, rbe, new);
470 
471 		if (d < 0)
472 			p = &parent->rb_left;
473 		else if (d > 0)
474 			p = &parent->rb_right;
475 		else if (nft_rbtree_interval_end(rbe))
476 			p = &parent->rb_left;
477 		else
478 			p = &parent->rb_right;
479 	}
480 
481 	rb_link_node_rcu(&new->node, parent, p);
482 	rb_insert_color(&new->node, &priv->root);
483 	return 0;
484 }
485 
486 static int nft_rbtree_insert(const struct net *net, const struct nft_set *set,
487 			     const struct nft_set_elem *elem,
488 			     struct nft_elem_priv **elem_priv)
489 {
490 	struct nft_rbtree_elem *rbe = nft_elem_priv_cast(elem->priv);
491 	struct nft_rbtree *priv = nft_set_priv(set);
492 	int err;
493 
494 	do {
495 		if (fatal_signal_pending(current))
496 			return -EINTR;
497 
498 		cond_resched();
499 
500 		write_lock_bh(&priv->lock);
501 		write_seqcount_begin(&priv->count);
502 		err = __nft_rbtree_insert(net, set, rbe, elem_priv);
503 		write_seqcount_end(&priv->count);
504 		write_unlock_bh(&priv->lock);
505 	} while (err == -EAGAIN);
506 
507 	return err;
508 }
509 
510 static void nft_rbtree_erase(struct nft_rbtree *priv, struct nft_rbtree_elem *rbe)
511 {
512 	write_lock_bh(&priv->lock);
513 	write_seqcount_begin(&priv->count);
514 	rb_erase(&rbe->node, &priv->root);
515 	write_seqcount_end(&priv->count);
516 	write_unlock_bh(&priv->lock);
517 }
518 
519 static void nft_rbtree_remove(const struct net *net,
520 			      const struct nft_set *set,
521 			      struct nft_elem_priv *elem_priv)
522 {
523 	struct nft_rbtree_elem *rbe = nft_elem_priv_cast(elem_priv);
524 	struct nft_rbtree *priv = nft_set_priv(set);
525 
526 	nft_rbtree_erase(priv, rbe);
527 }
528 
529 static void nft_rbtree_activate(const struct net *net,
530 				const struct nft_set *set,
531 				struct nft_elem_priv *elem_priv)
532 {
533 	struct nft_rbtree_elem *rbe = nft_elem_priv_cast(elem_priv);
534 
535 	nft_set_elem_change_active(net, set, &rbe->ext);
536 }
537 
538 static void nft_rbtree_flush(const struct net *net,
539 			     const struct nft_set *set,
540 			     struct nft_elem_priv *elem_priv)
541 {
542 	struct nft_rbtree_elem *rbe = nft_elem_priv_cast(elem_priv);
543 
544 	nft_set_elem_change_active(net, set, &rbe->ext);
545 }
546 
547 static struct nft_elem_priv *
548 nft_rbtree_deactivate(const struct net *net, const struct nft_set *set,
549 		      const struct nft_set_elem *elem)
550 {
551 	struct nft_rbtree_elem *rbe, *this = nft_elem_priv_cast(elem->priv);
552 	const struct nft_rbtree *priv = nft_set_priv(set);
553 	const struct rb_node *parent = priv->root.rb_node;
554 	u8 genmask = nft_genmask_next(net);
555 	u64 tstamp = nft_net_tstamp(net);
556 	int d;
557 
558 	while (parent != NULL) {
559 		rbe = rb_entry(parent, struct nft_rbtree_elem, node);
560 
561 		d = memcmp(nft_set_ext_key(&rbe->ext), &elem->key.val,
562 					   set->klen);
563 		if (d < 0)
564 			parent = parent->rb_left;
565 		else if (d > 0)
566 			parent = parent->rb_right;
567 		else {
568 			if (nft_rbtree_interval_end(rbe) &&
569 			    nft_rbtree_interval_start(this)) {
570 				parent = parent->rb_left;
571 				continue;
572 			} else if (nft_rbtree_interval_start(rbe) &&
573 				   nft_rbtree_interval_end(this)) {
574 				parent = parent->rb_right;
575 				continue;
576 			} else if (__nft_set_elem_expired(&rbe->ext, tstamp)) {
577 				break;
578 			} else if (!nft_set_elem_active(&rbe->ext, genmask)) {
579 				parent = parent->rb_left;
580 				continue;
581 			}
582 			nft_rbtree_flush(net, set, &rbe->priv);
583 			return &rbe->priv;
584 		}
585 	}
586 	return NULL;
587 }
588 
589 static void nft_rbtree_walk(const struct nft_ctx *ctx,
590 			    struct nft_set *set,
591 			    struct nft_set_iter *iter)
592 {
593 	struct nft_rbtree *priv = nft_set_priv(set);
594 	struct nft_rbtree_elem *rbe;
595 	struct rb_node *node;
596 
597 	read_lock_bh(&priv->lock);
598 	for (node = rb_first(&priv->root); node != NULL; node = rb_next(node)) {
599 		rbe = rb_entry(node, struct nft_rbtree_elem, node);
600 
601 		if (iter->count < iter->skip)
602 			goto cont;
603 		if (!nft_set_elem_active(&rbe->ext, iter->genmask))
604 			goto cont;
605 
606 		iter->err = iter->fn(ctx, set, iter, &rbe->priv);
607 		if (iter->err < 0) {
608 			read_unlock_bh(&priv->lock);
609 			return;
610 		}
611 cont:
612 		iter->count++;
613 	}
614 	read_unlock_bh(&priv->lock);
615 }
616 
617 static void nft_rbtree_gc_remove(struct net *net, struct nft_set *set,
618 				 struct nft_rbtree *priv,
619 				 struct nft_rbtree_elem *rbe)
620 {
621 	nft_setelem_data_deactivate(net, set, &rbe->priv);
622 	nft_rbtree_erase(priv, rbe);
623 }
624 
625 static void nft_rbtree_gc(struct nft_set *set)
626 {
627 	struct nft_rbtree *priv = nft_set_priv(set);
628 	struct nft_rbtree_elem *rbe, *rbe_end = NULL;
629 	struct net *net = read_pnet(&set->net);
630 	u64 tstamp = nft_net_tstamp(net);
631 	struct rb_node *node, *next;
632 	struct nft_trans_gc *gc;
633 
634 	set  = nft_set_container_of(priv);
635 	net  = read_pnet(&set->net);
636 
637 	gc = nft_trans_gc_alloc(set, 0, GFP_KERNEL);
638 	if (!gc)
639 		return;
640 
641 	for (node = rb_first(&priv->root); node ; node = next) {
642 		next = rb_next(node);
643 
644 		rbe = rb_entry(node, struct nft_rbtree_elem, node);
645 
646 		/* elements are reversed in the rbtree for historical reasons,
647 		 * from highest to lowest value, that is why end element is
648 		 * always visited before the start element.
649 		 */
650 		if (nft_rbtree_interval_end(rbe)) {
651 			rbe_end = rbe;
652 			continue;
653 		}
654 		if (!__nft_set_elem_expired(&rbe->ext, tstamp))
655 			continue;
656 
657 		gc = nft_trans_gc_queue_sync(gc, GFP_KERNEL);
658 		if (!gc)
659 			goto try_later;
660 
661 		/* end element needs to be removed first, it has
662 		 * no timeout extension.
663 		 */
664 		if (rbe_end) {
665 			nft_rbtree_gc_remove(net, set, priv, rbe_end);
666 			nft_trans_gc_elem_add(gc, rbe_end);
667 			rbe_end = NULL;
668 		}
669 
670 		gc = nft_trans_gc_queue_sync(gc, GFP_KERNEL);
671 		if (!gc)
672 			goto try_later;
673 
674 		nft_rbtree_gc_remove(net, set, priv, rbe);
675 		nft_trans_gc_elem_add(gc, rbe);
676 	}
677 
678 try_later:
679 
680 	if (gc) {
681 		gc = nft_trans_gc_catchall_sync(gc);
682 		nft_trans_gc_queue_sync_done(gc);
683 		priv->last_gc = jiffies;
684 	}
685 }
686 
687 static u64 nft_rbtree_privsize(const struct nlattr * const nla[],
688 			       const struct nft_set_desc *desc)
689 {
690 	return sizeof(struct nft_rbtree);
691 }
692 
693 static int nft_rbtree_init(const struct nft_set *set,
694 			   const struct nft_set_desc *desc,
695 			   const struct nlattr * const nla[])
696 {
697 	struct nft_rbtree *priv = nft_set_priv(set);
698 
699 	BUILD_BUG_ON(offsetof(struct nft_rbtree_elem, priv) != 0);
700 
701 	rwlock_init(&priv->lock);
702 	seqcount_rwlock_init(&priv->count, &priv->lock);
703 	priv->root = RB_ROOT;
704 
705 	return 0;
706 }
707 
708 static void nft_rbtree_destroy(const struct nft_ctx *ctx,
709 			       const struct nft_set *set)
710 {
711 	struct nft_rbtree *priv = nft_set_priv(set);
712 	struct nft_rbtree_elem *rbe;
713 	struct rb_node *node;
714 
715 	while ((node = priv->root.rb_node) != NULL) {
716 		rb_erase(node, &priv->root);
717 		rbe = rb_entry(node, struct nft_rbtree_elem, node);
718 		nf_tables_set_elem_destroy(ctx, set, &rbe->priv);
719 	}
720 }
721 
722 static bool nft_rbtree_estimate(const struct nft_set_desc *desc, u32 features,
723 				struct nft_set_estimate *est)
724 {
725 	if (desc->field_count > 1)
726 		return false;
727 
728 	if (desc->size)
729 		est->size = sizeof(struct nft_rbtree) +
730 			    desc->size * sizeof(struct nft_rbtree_elem);
731 	else
732 		est->size = ~0;
733 
734 	est->lookup = NFT_SET_CLASS_O_LOG_N;
735 	est->space  = NFT_SET_CLASS_O_N;
736 
737 	return true;
738 }
739 
740 static void nft_rbtree_commit(struct nft_set *set)
741 {
742 	struct nft_rbtree *priv = nft_set_priv(set);
743 
744 	if (time_after_eq(jiffies, priv->last_gc + nft_set_gc_interval(set)))
745 		nft_rbtree_gc(set);
746 }
747 
748 static void nft_rbtree_gc_init(const struct nft_set *set)
749 {
750 	struct nft_rbtree *priv = nft_set_priv(set);
751 
752 	priv->last_gc = jiffies;
753 }
754 
755 const struct nft_set_type nft_set_rbtree_type = {
756 	.features	= NFT_SET_INTERVAL | NFT_SET_MAP | NFT_SET_OBJECT | NFT_SET_TIMEOUT,
757 	.ops		= {
758 		.privsize	= nft_rbtree_privsize,
759 		.elemsize	= offsetof(struct nft_rbtree_elem, ext),
760 		.estimate	= nft_rbtree_estimate,
761 		.init		= nft_rbtree_init,
762 		.destroy	= nft_rbtree_destroy,
763 		.insert		= nft_rbtree_insert,
764 		.remove		= nft_rbtree_remove,
765 		.deactivate	= nft_rbtree_deactivate,
766 		.flush		= nft_rbtree_flush,
767 		.activate	= nft_rbtree_activate,
768 		.commit		= nft_rbtree_commit,
769 		.gc_init	= nft_rbtree_gc_init,
770 		.lookup		= nft_rbtree_lookup,
771 		.walk		= nft_rbtree_walk,
772 		.get		= nft_rbtree_get,
773 	},
774 };
775