xref: /linux/net/netrom/af_netrom.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Copyright Jonathan Naylor G4KLX (g4klx@g4klx.demon.co.uk)
5  * Copyright Alan Cox GW4PTS (alan@lxorguk.ukuu.org.uk)
6  * Copyright Darryl Miles G7LED (dlm@g7led.demon.co.uk)
7  */
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/capability.h>
11 #include <linux/errno.h>
12 #include <linux/types.h>
13 #include <linux/socket.h>
14 #include <linux/in.h>
15 #include <linux/slab.h>
16 #include <linux/kernel.h>
17 #include <linux/sched/signal.h>
18 #include <linux/timer.h>
19 #include <linux/string.h>
20 #include <linux/sockios.h>
21 #include <linux/net.h>
22 #include <linux/stat.h>
23 #include <net/ax25.h>
24 #include <linux/inet.h>
25 #include <linux/netdevice.h>
26 #include <linux/if_arp.h>
27 #include <linux/skbuff.h>
28 #include <net/net_namespace.h>
29 #include <net/sock.h>
30 #include <linux/uaccess.h>
31 #include <linux/fcntl.h>
32 #include <linux/termios.h>	/* For TIOCINQ/OUTQ */
33 #include <linux/mm.h>
34 #include <linux/interrupt.h>
35 #include <linux/notifier.h>
36 #include <net/netrom.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <net/ip.h>
40 #include <net/tcp_states.h>
41 #include <net/arp.h>
42 #include <linux/init.h>
43 
44 static int nr_ndevs = 4;
45 
46 int sysctl_netrom_default_path_quality            = NR_DEFAULT_QUAL;
47 int sysctl_netrom_obsolescence_count_initialiser  = NR_DEFAULT_OBS;
48 int sysctl_netrom_network_ttl_initialiser         = NR_DEFAULT_TTL;
49 int sysctl_netrom_transport_timeout               = NR_DEFAULT_T1;
50 int sysctl_netrom_transport_maximum_tries         = NR_DEFAULT_N2;
51 int sysctl_netrom_transport_acknowledge_delay     = NR_DEFAULT_T2;
52 int sysctl_netrom_transport_busy_delay            = NR_DEFAULT_T4;
53 int sysctl_netrom_transport_requested_window_size = NR_DEFAULT_WINDOW;
54 int sysctl_netrom_transport_no_activity_timeout   = NR_DEFAULT_IDLE;
55 int sysctl_netrom_routing_control                 = NR_DEFAULT_ROUTING;
56 int sysctl_netrom_link_fails_count                = NR_DEFAULT_FAILS;
57 int sysctl_netrom_reset_circuit                   = NR_DEFAULT_RESET;
58 
59 static unsigned short circuit = 0x101;
60 
61 static HLIST_HEAD(nr_list);
62 static DEFINE_SPINLOCK(nr_list_lock);
63 
64 static const struct proto_ops nr_proto_ops;
65 
66 /*
67  * NETROM network devices are virtual network devices encapsulating NETROM
68  * frames into AX.25 which will be sent through an AX.25 device, so form a
69  * special "super class" of normal net devices; split their locks off into a
70  * separate class since they always nest.
71  */
72 static struct lock_class_key nr_netdev_xmit_lock_key;
73 static struct lock_class_key nr_netdev_addr_lock_key;
74 
75 static void nr_set_lockdep_one(struct net_device *dev,
76 			       struct netdev_queue *txq,
77 			       void *_unused)
78 {
79 	lockdep_set_class(&txq->_xmit_lock, &nr_netdev_xmit_lock_key);
80 }
81 
82 static void nr_set_lockdep_key(struct net_device *dev)
83 {
84 	lockdep_set_class(&dev->addr_list_lock, &nr_netdev_addr_lock_key);
85 	netdev_for_each_tx_queue(dev, nr_set_lockdep_one, NULL);
86 }
87 
88 /*
89  *	Socket removal during an interrupt is now safe.
90  */
91 static void nr_remove_socket(struct sock *sk)
92 {
93 	spin_lock_bh(&nr_list_lock);
94 	sk_del_node_init(sk);
95 	spin_unlock_bh(&nr_list_lock);
96 }
97 
98 /*
99  *	Kill all bound sockets on a dropped device.
100  */
101 static void nr_kill_by_device(struct net_device *dev)
102 {
103 	struct sock *s;
104 
105 	spin_lock_bh(&nr_list_lock);
106 	sk_for_each(s, &nr_list)
107 		if (nr_sk(s)->device == dev)
108 			nr_disconnect(s, ENETUNREACH);
109 	spin_unlock_bh(&nr_list_lock);
110 }
111 
112 /*
113  *	Handle device status changes.
114  */
115 static int nr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
116 {
117 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
118 
119 	if (!net_eq(dev_net(dev), &init_net))
120 		return NOTIFY_DONE;
121 
122 	if (event != NETDEV_DOWN)
123 		return NOTIFY_DONE;
124 
125 	nr_kill_by_device(dev);
126 	nr_rt_device_down(dev);
127 
128 	return NOTIFY_DONE;
129 }
130 
131 /*
132  *	Add a socket to the bound sockets list.
133  */
134 static void nr_insert_socket(struct sock *sk)
135 {
136 	spin_lock_bh(&nr_list_lock);
137 	sk_add_node(sk, &nr_list);
138 	spin_unlock_bh(&nr_list_lock);
139 }
140 
141 /*
142  *	Find a socket that wants to accept the Connect Request we just
143  *	received.
144  */
145 static struct sock *nr_find_listener(ax25_address *addr)
146 {
147 	struct sock *s;
148 
149 	spin_lock_bh(&nr_list_lock);
150 	sk_for_each(s, &nr_list)
151 		if (!ax25cmp(&nr_sk(s)->source_addr, addr) &&
152 		    s->sk_state == TCP_LISTEN) {
153 			sock_hold(s);
154 			goto found;
155 		}
156 	s = NULL;
157 found:
158 	spin_unlock_bh(&nr_list_lock);
159 	return s;
160 }
161 
162 /*
163  *	Find a connected NET/ROM socket given my circuit IDs.
164  */
165 static struct sock *nr_find_socket(unsigned char index, unsigned char id)
166 {
167 	struct sock *s;
168 
169 	spin_lock_bh(&nr_list_lock);
170 	sk_for_each(s, &nr_list) {
171 		struct nr_sock *nr = nr_sk(s);
172 
173 		if (nr->my_index == index && nr->my_id == id) {
174 			sock_hold(s);
175 			goto found;
176 		}
177 	}
178 	s = NULL;
179 found:
180 	spin_unlock_bh(&nr_list_lock);
181 	return s;
182 }
183 
184 /*
185  *	Find a connected NET/ROM socket given their circuit IDs.
186  */
187 static struct sock *nr_find_peer(unsigned char index, unsigned char id,
188 	ax25_address *dest)
189 {
190 	struct sock *s;
191 
192 	spin_lock_bh(&nr_list_lock);
193 	sk_for_each(s, &nr_list) {
194 		struct nr_sock *nr = nr_sk(s);
195 
196 		if (nr->your_index == index && nr->your_id == id &&
197 		    !ax25cmp(&nr->dest_addr, dest)) {
198 			sock_hold(s);
199 			goto found;
200 		}
201 	}
202 	s = NULL;
203 found:
204 	spin_unlock_bh(&nr_list_lock);
205 	return s;
206 }
207 
208 /*
209  *	Find next free circuit ID.
210  */
211 static unsigned short nr_find_next_circuit(void)
212 {
213 	unsigned short id = circuit;
214 	unsigned char i, j;
215 	struct sock *sk;
216 
217 	for (;;) {
218 		i = id / 256;
219 		j = id % 256;
220 
221 		if (i != 0 && j != 0) {
222 			if ((sk=nr_find_socket(i, j)) == NULL)
223 				break;
224 			sock_put(sk);
225 		}
226 
227 		id++;
228 	}
229 
230 	return id;
231 }
232 
233 /*
234  *	Deferred destroy.
235  */
236 void nr_destroy_socket(struct sock *);
237 
238 /*
239  *	Handler for deferred kills.
240  */
241 static void nr_destroy_timer(struct timer_list *t)
242 {
243 	struct sock *sk = from_timer(sk, t, sk_timer);
244 	bh_lock_sock(sk);
245 	sock_hold(sk);
246 	nr_destroy_socket(sk);
247 	bh_unlock_sock(sk);
248 	sock_put(sk);
249 }
250 
251 /*
252  *	This is called from user mode and the timers. Thus it protects itself
253  *	against interrupt users but doesn't worry about being called during
254  *	work. Once it is removed from the queue no interrupt or bottom half
255  *	will touch it and we are (fairly 8-) ) safe.
256  */
257 void nr_destroy_socket(struct sock *sk)
258 {
259 	struct sk_buff *skb;
260 
261 	nr_remove_socket(sk);
262 
263 	nr_stop_heartbeat(sk);
264 	nr_stop_t1timer(sk);
265 	nr_stop_t2timer(sk);
266 	nr_stop_t4timer(sk);
267 	nr_stop_idletimer(sk);
268 
269 	nr_clear_queues(sk);		/* Flush the queues */
270 
271 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
272 		if (skb->sk != sk) { /* A pending connection */
273 			/* Queue the unaccepted socket for death */
274 			sock_set_flag(skb->sk, SOCK_DEAD);
275 			nr_start_heartbeat(skb->sk);
276 			nr_sk(skb->sk)->state = NR_STATE_0;
277 		}
278 
279 		kfree_skb(skb);
280 	}
281 
282 	if (sk_has_allocations(sk)) {
283 		/* Defer: outstanding buffers */
284 		sk->sk_timer.function = nr_destroy_timer;
285 		sk->sk_timer.expires  = jiffies + 2 * HZ;
286 		add_timer(&sk->sk_timer);
287 	} else
288 		sock_put(sk);
289 }
290 
291 /*
292  *	Handling for system calls applied via the various interfaces to a
293  *	NET/ROM socket object.
294  */
295 
296 static int nr_setsockopt(struct socket *sock, int level, int optname,
297 	char __user *optval, unsigned int optlen)
298 {
299 	struct sock *sk = sock->sk;
300 	struct nr_sock *nr = nr_sk(sk);
301 	unsigned long opt;
302 
303 	if (level != SOL_NETROM)
304 		return -ENOPROTOOPT;
305 
306 	if (optlen < sizeof(unsigned int))
307 		return -EINVAL;
308 
309 	if (get_user(opt, (unsigned int __user *)optval))
310 		return -EFAULT;
311 
312 	switch (optname) {
313 	case NETROM_T1:
314 		if (opt < 1 || opt > ULONG_MAX / HZ)
315 			return -EINVAL;
316 		nr->t1 = opt * HZ;
317 		return 0;
318 
319 	case NETROM_T2:
320 		if (opt < 1 || opt > ULONG_MAX / HZ)
321 			return -EINVAL;
322 		nr->t2 = opt * HZ;
323 		return 0;
324 
325 	case NETROM_N2:
326 		if (opt < 1 || opt > 31)
327 			return -EINVAL;
328 		nr->n2 = opt;
329 		return 0;
330 
331 	case NETROM_T4:
332 		if (opt < 1 || opt > ULONG_MAX / HZ)
333 			return -EINVAL;
334 		nr->t4 = opt * HZ;
335 		return 0;
336 
337 	case NETROM_IDLE:
338 		if (opt > ULONG_MAX / (60 * HZ))
339 			return -EINVAL;
340 		nr->idle = opt * 60 * HZ;
341 		return 0;
342 
343 	default:
344 		return -ENOPROTOOPT;
345 	}
346 }
347 
348 static int nr_getsockopt(struct socket *sock, int level, int optname,
349 	char __user *optval, int __user *optlen)
350 {
351 	struct sock *sk = sock->sk;
352 	struct nr_sock *nr = nr_sk(sk);
353 	int val = 0;
354 	int len;
355 
356 	if (level != SOL_NETROM)
357 		return -ENOPROTOOPT;
358 
359 	if (get_user(len, optlen))
360 		return -EFAULT;
361 
362 	if (len < 0)
363 		return -EINVAL;
364 
365 	switch (optname) {
366 	case NETROM_T1:
367 		val = nr->t1 / HZ;
368 		break;
369 
370 	case NETROM_T2:
371 		val = nr->t2 / HZ;
372 		break;
373 
374 	case NETROM_N2:
375 		val = nr->n2;
376 		break;
377 
378 	case NETROM_T4:
379 		val = nr->t4 / HZ;
380 		break;
381 
382 	case NETROM_IDLE:
383 		val = nr->idle / (60 * HZ);
384 		break;
385 
386 	default:
387 		return -ENOPROTOOPT;
388 	}
389 
390 	len = min_t(unsigned int, len, sizeof(int));
391 
392 	if (put_user(len, optlen))
393 		return -EFAULT;
394 
395 	return copy_to_user(optval, &val, len) ? -EFAULT : 0;
396 }
397 
398 static int nr_listen(struct socket *sock, int backlog)
399 {
400 	struct sock *sk = sock->sk;
401 
402 	lock_sock(sk);
403 	if (sk->sk_state != TCP_LISTEN) {
404 		memset(&nr_sk(sk)->user_addr, 0, AX25_ADDR_LEN);
405 		sk->sk_max_ack_backlog = backlog;
406 		sk->sk_state           = TCP_LISTEN;
407 		release_sock(sk);
408 		return 0;
409 	}
410 	release_sock(sk);
411 
412 	return -EOPNOTSUPP;
413 }
414 
415 static struct proto nr_proto = {
416 	.name	  = "NETROM",
417 	.owner	  = THIS_MODULE,
418 	.obj_size = sizeof(struct nr_sock),
419 };
420 
421 static int nr_create(struct net *net, struct socket *sock, int protocol,
422 		     int kern)
423 {
424 	struct sock *sk;
425 	struct nr_sock *nr;
426 
427 	if (!net_eq(net, &init_net))
428 		return -EAFNOSUPPORT;
429 
430 	if (sock->type != SOCK_SEQPACKET || protocol != 0)
431 		return -ESOCKTNOSUPPORT;
432 
433 	sk = sk_alloc(net, PF_NETROM, GFP_ATOMIC, &nr_proto, kern);
434 	if (sk  == NULL)
435 		return -ENOMEM;
436 
437 	nr = nr_sk(sk);
438 
439 	sock_init_data(sock, sk);
440 
441 	sock->ops    = &nr_proto_ops;
442 	sk->sk_protocol = protocol;
443 
444 	skb_queue_head_init(&nr->ack_queue);
445 	skb_queue_head_init(&nr->reseq_queue);
446 	skb_queue_head_init(&nr->frag_queue);
447 
448 	nr_init_timers(sk);
449 
450 	nr->t1     =
451 		msecs_to_jiffies(sysctl_netrom_transport_timeout);
452 	nr->t2     =
453 		msecs_to_jiffies(sysctl_netrom_transport_acknowledge_delay);
454 	nr->n2     =
455 		msecs_to_jiffies(sysctl_netrom_transport_maximum_tries);
456 	nr->t4     =
457 		msecs_to_jiffies(sysctl_netrom_transport_busy_delay);
458 	nr->idle   =
459 		msecs_to_jiffies(sysctl_netrom_transport_no_activity_timeout);
460 	nr->window = sysctl_netrom_transport_requested_window_size;
461 
462 	nr->bpqext = 1;
463 	nr->state  = NR_STATE_0;
464 
465 	return 0;
466 }
467 
468 static struct sock *nr_make_new(struct sock *osk)
469 {
470 	struct sock *sk;
471 	struct nr_sock *nr, *onr;
472 
473 	if (osk->sk_type != SOCK_SEQPACKET)
474 		return NULL;
475 
476 	sk = sk_alloc(sock_net(osk), PF_NETROM, GFP_ATOMIC, osk->sk_prot, 0);
477 	if (sk == NULL)
478 		return NULL;
479 
480 	nr = nr_sk(sk);
481 
482 	sock_init_data(NULL, sk);
483 
484 	sk->sk_type     = osk->sk_type;
485 	sk->sk_priority = osk->sk_priority;
486 	sk->sk_protocol = osk->sk_protocol;
487 	sk->sk_rcvbuf   = osk->sk_rcvbuf;
488 	sk->sk_sndbuf   = osk->sk_sndbuf;
489 	sk->sk_state    = TCP_ESTABLISHED;
490 	sock_copy_flags(sk, osk);
491 
492 	skb_queue_head_init(&nr->ack_queue);
493 	skb_queue_head_init(&nr->reseq_queue);
494 	skb_queue_head_init(&nr->frag_queue);
495 
496 	nr_init_timers(sk);
497 
498 	onr = nr_sk(osk);
499 
500 	nr->t1      = onr->t1;
501 	nr->t2      = onr->t2;
502 	nr->n2      = onr->n2;
503 	nr->t4      = onr->t4;
504 	nr->idle    = onr->idle;
505 	nr->window  = onr->window;
506 
507 	nr->device  = onr->device;
508 	nr->bpqext  = onr->bpqext;
509 
510 	return sk;
511 }
512 
513 static int nr_release(struct socket *sock)
514 {
515 	struct sock *sk = sock->sk;
516 	struct nr_sock *nr;
517 
518 	if (sk == NULL) return 0;
519 
520 	sock_hold(sk);
521 	sock_orphan(sk);
522 	lock_sock(sk);
523 	nr = nr_sk(sk);
524 
525 	switch (nr->state) {
526 	case NR_STATE_0:
527 	case NR_STATE_1:
528 	case NR_STATE_2:
529 		nr_disconnect(sk, 0);
530 		nr_destroy_socket(sk);
531 		break;
532 
533 	case NR_STATE_3:
534 		nr_clear_queues(sk);
535 		nr->n2count = 0;
536 		nr_write_internal(sk, NR_DISCREQ);
537 		nr_start_t1timer(sk);
538 		nr_stop_t2timer(sk);
539 		nr_stop_t4timer(sk);
540 		nr_stop_idletimer(sk);
541 		nr->state    = NR_STATE_2;
542 		sk->sk_state    = TCP_CLOSE;
543 		sk->sk_shutdown |= SEND_SHUTDOWN;
544 		sk->sk_state_change(sk);
545 		sock_set_flag(sk, SOCK_DESTROY);
546 		break;
547 
548 	default:
549 		break;
550 	}
551 
552 	sock->sk   = NULL;
553 	release_sock(sk);
554 	sock_put(sk);
555 
556 	return 0;
557 }
558 
559 static int nr_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
560 {
561 	struct sock *sk = sock->sk;
562 	struct nr_sock *nr = nr_sk(sk);
563 	struct full_sockaddr_ax25 *addr = (struct full_sockaddr_ax25 *)uaddr;
564 	struct net_device *dev;
565 	ax25_uid_assoc *user;
566 	ax25_address *source;
567 
568 	lock_sock(sk);
569 	if (!sock_flag(sk, SOCK_ZAPPED)) {
570 		release_sock(sk);
571 		return -EINVAL;
572 	}
573 	if (addr_len < sizeof(struct sockaddr_ax25) || addr_len > sizeof(struct full_sockaddr_ax25)) {
574 		release_sock(sk);
575 		return -EINVAL;
576 	}
577 	if (addr_len < (addr->fsa_ax25.sax25_ndigis * sizeof(ax25_address) + sizeof(struct sockaddr_ax25))) {
578 		release_sock(sk);
579 		return -EINVAL;
580 	}
581 	if (addr->fsa_ax25.sax25_family != AF_NETROM) {
582 		release_sock(sk);
583 		return -EINVAL;
584 	}
585 	if ((dev = nr_dev_get(&addr->fsa_ax25.sax25_call)) == NULL) {
586 		release_sock(sk);
587 		return -EADDRNOTAVAIL;
588 	}
589 
590 	/*
591 	 * Only the super user can set an arbitrary user callsign.
592 	 */
593 	if (addr->fsa_ax25.sax25_ndigis == 1) {
594 		if (!capable(CAP_NET_BIND_SERVICE)) {
595 			dev_put(dev);
596 			release_sock(sk);
597 			return -EPERM;
598 		}
599 		nr->user_addr   = addr->fsa_digipeater[0];
600 		nr->source_addr = addr->fsa_ax25.sax25_call;
601 	} else {
602 		source = &addr->fsa_ax25.sax25_call;
603 
604 		user = ax25_findbyuid(current_euid());
605 		if (user) {
606 			nr->user_addr   = user->call;
607 			ax25_uid_put(user);
608 		} else {
609 			if (ax25_uid_policy && !capable(CAP_NET_BIND_SERVICE)) {
610 				release_sock(sk);
611 				dev_put(dev);
612 				return -EPERM;
613 			}
614 			nr->user_addr   = *source;
615 		}
616 
617 		nr->source_addr = *source;
618 	}
619 
620 	nr->device = dev;
621 	nr_insert_socket(sk);
622 
623 	sock_reset_flag(sk, SOCK_ZAPPED);
624 	dev_put(dev);
625 	release_sock(sk);
626 
627 	return 0;
628 }
629 
630 static int nr_connect(struct socket *sock, struct sockaddr *uaddr,
631 	int addr_len, int flags)
632 {
633 	struct sock *sk = sock->sk;
634 	struct nr_sock *nr = nr_sk(sk);
635 	struct sockaddr_ax25 *addr = (struct sockaddr_ax25 *)uaddr;
636 	ax25_address *source = NULL;
637 	ax25_uid_assoc *user;
638 	struct net_device *dev;
639 	int err = 0;
640 
641 	lock_sock(sk);
642 	if (sk->sk_state == TCP_ESTABLISHED && sock->state == SS_CONNECTING) {
643 		sock->state = SS_CONNECTED;
644 		goto out_release;	/* Connect completed during a ERESTARTSYS event */
645 	}
646 
647 	if (sk->sk_state == TCP_CLOSE && sock->state == SS_CONNECTING) {
648 		sock->state = SS_UNCONNECTED;
649 		err = -ECONNREFUSED;
650 		goto out_release;
651 	}
652 
653 	if (sk->sk_state == TCP_ESTABLISHED) {
654 		err = -EISCONN;	/* No reconnect on a seqpacket socket */
655 		goto out_release;
656 	}
657 
658 	sk->sk_state   = TCP_CLOSE;
659 	sock->state = SS_UNCONNECTED;
660 
661 	if (addr_len != sizeof(struct sockaddr_ax25) && addr_len != sizeof(struct full_sockaddr_ax25)) {
662 		err = -EINVAL;
663 		goto out_release;
664 	}
665 	if (addr->sax25_family != AF_NETROM) {
666 		err = -EINVAL;
667 		goto out_release;
668 	}
669 	if (sock_flag(sk, SOCK_ZAPPED)) {	/* Must bind first - autobinding in this may or may not work */
670 		sock_reset_flag(sk, SOCK_ZAPPED);
671 
672 		if ((dev = nr_dev_first()) == NULL) {
673 			err = -ENETUNREACH;
674 			goto out_release;
675 		}
676 		source = (ax25_address *)dev->dev_addr;
677 
678 		user = ax25_findbyuid(current_euid());
679 		if (user) {
680 			nr->user_addr   = user->call;
681 			ax25_uid_put(user);
682 		} else {
683 			if (ax25_uid_policy && !capable(CAP_NET_ADMIN)) {
684 				dev_put(dev);
685 				err = -EPERM;
686 				goto out_release;
687 			}
688 			nr->user_addr   = *source;
689 		}
690 
691 		nr->source_addr = *source;
692 		nr->device      = dev;
693 
694 		dev_put(dev);
695 		nr_insert_socket(sk);		/* Finish the bind */
696 	}
697 
698 	nr->dest_addr = addr->sax25_call;
699 
700 	release_sock(sk);
701 	circuit = nr_find_next_circuit();
702 	lock_sock(sk);
703 
704 	nr->my_index = circuit / 256;
705 	nr->my_id    = circuit % 256;
706 
707 	circuit++;
708 
709 	/* Move to connecting socket, start sending Connect Requests */
710 	sock->state  = SS_CONNECTING;
711 	sk->sk_state = TCP_SYN_SENT;
712 
713 	nr_establish_data_link(sk);
714 
715 	nr->state = NR_STATE_1;
716 
717 	nr_start_heartbeat(sk);
718 
719 	/* Now the loop */
720 	if (sk->sk_state != TCP_ESTABLISHED && (flags & O_NONBLOCK)) {
721 		err = -EINPROGRESS;
722 		goto out_release;
723 	}
724 
725 	/*
726 	 * A Connect Ack with Choke or timeout or failed routing will go to
727 	 * closed.
728 	 */
729 	if (sk->sk_state == TCP_SYN_SENT) {
730 		DEFINE_WAIT(wait);
731 
732 		for (;;) {
733 			prepare_to_wait(sk_sleep(sk), &wait,
734 					TASK_INTERRUPTIBLE);
735 			if (sk->sk_state != TCP_SYN_SENT)
736 				break;
737 			if (!signal_pending(current)) {
738 				release_sock(sk);
739 				schedule();
740 				lock_sock(sk);
741 				continue;
742 			}
743 			err = -ERESTARTSYS;
744 			break;
745 		}
746 		finish_wait(sk_sleep(sk), &wait);
747 		if (err)
748 			goto out_release;
749 	}
750 
751 	if (sk->sk_state != TCP_ESTABLISHED) {
752 		sock->state = SS_UNCONNECTED;
753 		err = sock_error(sk);	/* Always set at this point */
754 		goto out_release;
755 	}
756 
757 	sock->state = SS_CONNECTED;
758 
759 out_release:
760 	release_sock(sk);
761 
762 	return err;
763 }
764 
765 static int nr_accept(struct socket *sock, struct socket *newsock, int flags,
766 		     bool kern)
767 {
768 	struct sk_buff *skb;
769 	struct sock *newsk;
770 	DEFINE_WAIT(wait);
771 	struct sock *sk;
772 	int err = 0;
773 
774 	if ((sk = sock->sk) == NULL)
775 		return -EINVAL;
776 
777 	lock_sock(sk);
778 	if (sk->sk_type != SOCK_SEQPACKET) {
779 		err = -EOPNOTSUPP;
780 		goto out_release;
781 	}
782 
783 	if (sk->sk_state != TCP_LISTEN) {
784 		err = -EINVAL;
785 		goto out_release;
786 	}
787 
788 	/*
789 	 *	The write queue this time is holding sockets ready to use
790 	 *	hooked into the SABM we saved
791 	 */
792 	for (;;) {
793 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
794 		skb = skb_dequeue(&sk->sk_receive_queue);
795 		if (skb)
796 			break;
797 
798 		if (flags & O_NONBLOCK) {
799 			err = -EWOULDBLOCK;
800 			break;
801 		}
802 		if (!signal_pending(current)) {
803 			release_sock(sk);
804 			schedule();
805 			lock_sock(sk);
806 			continue;
807 		}
808 		err = -ERESTARTSYS;
809 		break;
810 	}
811 	finish_wait(sk_sleep(sk), &wait);
812 	if (err)
813 		goto out_release;
814 
815 	newsk = skb->sk;
816 	sock_graft(newsk, newsock);
817 
818 	/* Now attach up the new socket */
819 	kfree_skb(skb);
820 	sk_acceptq_removed(sk);
821 
822 out_release:
823 	release_sock(sk);
824 
825 	return err;
826 }
827 
828 static int nr_getname(struct socket *sock, struct sockaddr *uaddr,
829 	int peer)
830 {
831 	struct full_sockaddr_ax25 *sax = (struct full_sockaddr_ax25 *)uaddr;
832 	struct sock *sk = sock->sk;
833 	struct nr_sock *nr = nr_sk(sk);
834 	int uaddr_len;
835 
836 	memset(&sax->fsa_ax25, 0, sizeof(struct sockaddr_ax25));
837 
838 	lock_sock(sk);
839 	if (peer != 0) {
840 		if (sk->sk_state != TCP_ESTABLISHED) {
841 			release_sock(sk);
842 			return -ENOTCONN;
843 		}
844 		sax->fsa_ax25.sax25_family = AF_NETROM;
845 		sax->fsa_ax25.sax25_ndigis = 1;
846 		sax->fsa_ax25.sax25_call   = nr->user_addr;
847 		memset(sax->fsa_digipeater, 0, sizeof(sax->fsa_digipeater));
848 		sax->fsa_digipeater[0]     = nr->dest_addr;
849 		uaddr_len = sizeof(struct full_sockaddr_ax25);
850 	} else {
851 		sax->fsa_ax25.sax25_family = AF_NETROM;
852 		sax->fsa_ax25.sax25_ndigis = 0;
853 		sax->fsa_ax25.sax25_call   = nr->source_addr;
854 		uaddr_len = sizeof(struct sockaddr_ax25);
855 	}
856 	release_sock(sk);
857 
858 	return uaddr_len;
859 }
860 
861 int nr_rx_frame(struct sk_buff *skb, struct net_device *dev)
862 {
863 	struct sock *sk;
864 	struct sock *make;
865 	struct nr_sock *nr_make;
866 	ax25_address *src, *dest, *user;
867 	unsigned short circuit_index, circuit_id;
868 	unsigned short peer_circuit_index, peer_circuit_id;
869 	unsigned short frametype, flags, window, timeout;
870 	int ret;
871 
872 	skb->sk = NULL;		/* Initially we don't know who it's for */
873 
874 	/*
875 	 *	skb->data points to the netrom frame start
876 	 */
877 
878 	src  = (ax25_address *)(skb->data + 0);
879 	dest = (ax25_address *)(skb->data + 7);
880 
881 	circuit_index      = skb->data[15];
882 	circuit_id         = skb->data[16];
883 	peer_circuit_index = skb->data[17];
884 	peer_circuit_id    = skb->data[18];
885 	frametype          = skb->data[19] & 0x0F;
886 	flags              = skb->data[19] & 0xF0;
887 
888 	/*
889 	 * Check for an incoming IP over NET/ROM frame.
890 	 */
891 	if (frametype == NR_PROTOEXT &&
892 	    circuit_index == NR_PROTO_IP && circuit_id == NR_PROTO_IP) {
893 		skb_pull(skb, NR_NETWORK_LEN + NR_TRANSPORT_LEN);
894 		skb_reset_transport_header(skb);
895 
896 		return nr_rx_ip(skb, dev);
897 	}
898 
899 	/*
900 	 * Find an existing socket connection, based on circuit ID, if it's
901 	 * a Connect Request base it on their circuit ID.
902 	 *
903 	 * Circuit ID 0/0 is not valid but it could still be a "reset" for a
904 	 * circuit that no longer exists at the other end ...
905 	 */
906 
907 	sk = NULL;
908 
909 	if (circuit_index == 0 && circuit_id == 0) {
910 		if (frametype == NR_CONNACK && flags == NR_CHOKE_FLAG)
911 			sk = nr_find_peer(peer_circuit_index, peer_circuit_id, src);
912 	} else {
913 		if (frametype == NR_CONNREQ)
914 			sk = nr_find_peer(circuit_index, circuit_id, src);
915 		else
916 			sk = nr_find_socket(circuit_index, circuit_id);
917 	}
918 
919 	if (sk != NULL) {
920 		bh_lock_sock(sk);
921 		skb_reset_transport_header(skb);
922 
923 		if (frametype == NR_CONNACK && skb->len == 22)
924 			nr_sk(sk)->bpqext = 1;
925 		else
926 			nr_sk(sk)->bpqext = 0;
927 
928 		ret = nr_process_rx_frame(sk, skb);
929 		bh_unlock_sock(sk);
930 		sock_put(sk);
931 		return ret;
932 	}
933 
934 	/*
935 	 * Now it should be a CONNREQ.
936 	 */
937 	if (frametype != NR_CONNREQ) {
938 		/*
939 		 * Here it would be nice to be able to send a reset but
940 		 * NET/ROM doesn't have one.  We've tried to extend the protocol
941 		 * by sending NR_CONNACK | NR_CHOKE_FLAGS replies but that
942 		 * apparently kills BPQ boxes... :-(
943 		 * So now we try to follow the established behaviour of
944 		 * G8PZT's Xrouter which is sending packets with command type 7
945 		 * as an extension of the protocol.
946 		 */
947 		if (sysctl_netrom_reset_circuit &&
948 		    (frametype != NR_RESET || flags != 0))
949 			nr_transmit_reset(skb, 1);
950 
951 		return 0;
952 	}
953 
954 	sk = nr_find_listener(dest);
955 
956 	user = (ax25_address *)(skb->data + 21);
957 
958 	if (sk == NULL || sk_acceptq_is_full(sk) ||
959 	    (make = nr_make_new(sk)) == NULL) {
960 		nr_transmit_refusal(skb, 0);
961 		if (sk)
962 			sock_put(sk);
963 		return 0;
964 	}
965 
966 	bh_lock_sock(sk);
967 
968 	window = skb->data[20];
969 
970 	skb->sk             = make;
971 	make->sk_state	    = TCP_ESTABLISHED;
972 
973 	/* Fill in his circuit details */
974 	nr_make = nr_sk(make);
975 	nr_make->source_addr = *dest;
976 	nr_make->dest_addr   = *src;
977 	nr_make->user_addr   = *user;
978 
979 	nr_make->your_index  = circuit_index;
980 	nr_make->your_id     = circuit_id;
981 
982 	bh_unlock_sock(sk);
983 	circuit = nr_find_next_circuit();
984 	bh_lock_sock(sk);
985 
986 	nr_make->my_index    = circuit / 256;
987 	nr_make->my_id       = circuit % 256;
988 
989 	circuit++;
990 
991 	/* Window negotiation */
992 	if (window < nr_make->window)
993 		nr_make->window = window;
994 
995 	/* L4 timeout negotiation */
996 	if (skb->len == 37) {
997 		timeout = skb->data[36] * 256 + skb->data[35];
998 		if (timeout * HZ < nr_make->t1)
999 			nr_make->t1 = timeout * HZ;
1000 		nr_make->bpqext = 1;
1001 	} else {
1002 		nr_make->bpqext = 0;
1003 	}
1004 
1005 	nr_write_internal(make, NR_CONNACK);
1006 
1007 	nr_make->condition = 0x00;
1008 	nr_make->vs        = 0;
1009 	nr_make->va        = 0;
1010 	nr_make->vr        = 0;
1011 	nr_make->vl        = 0;
1012 	nr_make->state     = NR_STATE_3;
1013 	sk_acceptq_added(sk);
1014 	skb_queue_head(&sk->sk_receive_queue, skb);
1015 
1016 	if (!sock_flag(sk, SOCK_DEAD))
1017 		sk->sk_data_ready(sk);
1018 
1019 	bh_unlock_sock(sk);
1020 	sock_put(sk);
1021 
1022 	nr_insert_socket(make);
1023 
1024 	nr_start_heartbeat(make);
1025 	nr_start_idletimer(make);
1026 
1027 	return 1;
1028 }
1029 
1030 static int nr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
1031 {
1032 	struct sock *sk = sock->sk;
1033 	struct nr_sock *nr = nr_sk(sk);
1034 	DECLARE_SOCKADDR(struct sockaddr_ax25 *, usax, msg->msg_name);
1035 	int err;
1036 	struct sockaddr_ax25 sax;
1037 	struct sk_buff *skb;
1038 	unsigned char *asmptr;
1039 	int size;
1040 
1041 	if (msg->msg_flags & ~(MSG_DONTWAIT|MSG_EOR|MSG_CMSG_COMPAT))
1042 		return -EINVAL;
1043 
1044 	lock_sock(sk);
1045 	if (sock_flag(sk, SOCK_ZAPPED)) {
1046 		err = -EADDRNOTAVAIL;
1047 		goto out;
1048 	}
1049 
1050 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
1051 		send_sig(SIGPIPE, current, 0);
1052 		err = -EPIPE;
1053 		goto out;
1054 	}
1055 
1056 	if (nr->device == NULL) {
1057 		err = -ENETUNREACH;
1058 		goto out;
1059 	}
1060 
1061 	if (usax) {
1062 		if (msg->msg_namelen < sizeof(sax)) {
1063 			err = -EINVAL;
1064 			goto out;
1065 		}
1066 		sax = *usax;
1067 		if (ax25cmp(&nr->dest_addr, &sax.sax25_call) != 0) {
1068 			err = -EISCONN;
1069 			goto out;
1070 		}
1071 		if (sax.sax25_family != AF_NETROM) {
1072 			err = -EINVAL;
1073 			goto out;
1074 		}
1075 	} else {
1076 		if (sk->sk_state != TCP_ESTABLISHED) {
1077 			err = -ENOTCONN;
1078 			goto out;
1079 		}
1080 		sax.sax25_family = AF_NETROM;
1081 		sax.sax25_call   = nr->dest_addr;
1082 	}
1083 
1084 	/* Build a packet - the conventional user limit is 236 bytes. We can
1085 	   do ludicrously large NetROM frames but must not overflow */
1086 	if (len > 65536) {
1087 		err = -EMSGSIZE;
1088 		goto out;
1089 	}
1090 
1091 	size = len + NR_NETWORK_LEN + NR_TRANSPORT_LEN;
1092 
1093 	if ((skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT, &err)) == NULL)
1094 		goto out;
1095 
1096 	skb_reserve(skb, size - len);
1097 	skb_reset_transport_header(skb);
1098 
1099 	/*
1100 	 *	Push down the NET/ROM header
1101 	 */
1102 
1103 	asmptr = skb_push(skb, NR_TRANSPORT_LEN);
1104 
1105 	/* Build a NET/ROM Transport header */
1106 
1107 	*asmptr++ = nr->your_index;
1108 	*asmptr++ = nr->your_id;
1109 	*asmptr++ = 0;		/* To be filled in later */
1110 	*asmptr++ = 0;		/*      Ditto            */
1111 	*asmptr++ = NR_INFO;
1112 
1113 	/*
1114 	 *	Put the data on the end
1115 	 */
1116 	skb_put(skb, len);
1117 
1118 	/* User data follows immediately after the NET/ROM transport header */
1119 	if (memcpy_from_msg(skb_transport_header(skb), msg, len)) {
1120 		kfree_skb(skb);
1121 		err = -EFAULT;
1122 		goto out;
1123 	}
1124 
1125 	if (sk->sk_state != TCP_ESTABLISHED) {
1126 		kfree_skb(skb);
1127 		err = -ENOTCONN;
1128 		goto out;
1129 	}
1130 
1131 	nr_output(sk, skb);	/* Shove it onto the queue */
1132 
1133 	err = len;
1134 out:
1135 	release_sock(sk);
1136 	return err;
1137 }
1138 
1139 static int nr_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1140 		      int flags)
1141 {
1142 	struct sock *sk = sock->sk;
1143 	DECLARE_SOCKADDR(struct sockaddr_ax25 *, sax, msg->msg_name);
1144 	size_t copied;
1145 	struct sk_buff *skb;
1146 	int er;
1147 
1148 	/*
1149 	 * This works for seqpacket too. The receiver has ordered the queue for
1150 	 * us! We do one quick check first though
1151 	 */
1152 
1153 	lock_sock(sk);
1154 	if (sk->sk_state != TCP_ESTABLISHED) {
1155 		release_sock(sk);
1156 		return -ENOTCONN;
1157 	}
1158 
1159 	/* Now we can treat all alike */
1160 	if ((skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT, flags & MSG_DONTWAIT, &er)) == NULL) {
1161 		release_sock(sk);
1162 		return er;
1163 	}
1164 
1165 	skb_reset_transport_header(skb);
1166 	copied     = skb->len;
1167 
1168 	if (copied > size) {
1169 		copied = size;
1170 		msg->msg_flags |= MSG_TRUNC;
1171 	}
1172 
1173 	er = skb_copy_datagram_msg(skb, 0, msg, copied);
1174 	if (er < 0) {
1175 		skb_free_datagram(sk, skb);
1176 		release_sock(sk);
1177 		return er;
1178 	}
1179 
1180 	if (sax != NULL) {
1181 		memset(sax, 0, sizeof(*sax));
1182 		sax->sax25_family = AF_NETROM;
1183 		skb_copy_from_linear_data_offset(skb, 7, sax->sax25_call.ax25_call,
1184 			      AX25_ADDR_LEN);
1185 		msg->msg_namelen = sizeof(*sax);
1186 	}
1187 
1188 	skb_free_datagram(sk, skb);
1189 
1190 	release_sock(sk);
1191 	return copied;
1192 }
1193 
1194 
1195 static int nr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1196 {
1197 	struct sock *sk = sock->sk;
1198 	void __user *argp = (void __user *)arg;
1199 
1200 	switch (cmd) {
1201 	case TIOCOUTQ: {
1202 		long amount;
1203 
1204 		lock_sock(sk);
1205 		amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1206 		if (amount < 0)
1207 			amount = 0;
1208 		release_sock(sk);
1209 		return put_user(amount, (int __user *)argp);
1210 	}
1211 
1212 	case TIOCINQ: {
1213 		struct sk_buff *skb;
1214 		long amount = 0L;
1215 
1216 		lock_sock(sk);
1217 		/* These two are safe on a single CPU system as only user tasks fiddle here */
1218 		if ((skb = skb_peek(&sk->sk_receive_queue)) != NULL)
1219 			amount = skb->len;
1220 		release_sock(sk);
1221 		return put_user(amount, (int __user *)argp);
1222 	}
1223 
1224 	case SIOCGIFADDR:
1225 	case SIOCSIFADDR:
1226 	case SIOCGIFDSTADDR:
1227 	case SIOCSIFDSTADDR:
1228 	case SIOCGIFBRDADDR:
1229 	case SIOCSIFBRDADDR:
1230 	case SIOCGIFNETMASK:
1231 	case SIOCSIFNETMASK:
1232 	case SIOCGIFMETRIC:
1233 	case SIOCSIFMETRIC:
1234 		return -EINVAL;
1235 
1236 	case SIOCADDRT:
1237 	case SIOCDELRT:
1238 	case SIOCNRDECOBS:
1239 		if (!capable(CAP_NET_ADMIN))
1240 			return -EPERM;
1241 		return nr_rt_ioctl(cmd, argp);
1242 
1243 	default:
1244 		return -ENOIOCTLCMD;
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 #ifdef CONFIG_PROC_FS
1251 
1252 static void *nr_info_start(struct seq_file *seq, loff_t *pos)
1253 {
1254 	spin_lock_bh(&nr_list_lock);
1255 	return seq_hlist_start_head(&nr_list, *pos);
1256 }
1257 
1258 static void *nr_info_next(struct seq_file *seq, void *v, loff_t *pos)
1259 {
1260 	return seq_hlist_next(v, &nr_list, pos);
1261 }
1262 
1263 static void nr_info_stop(struct seq_file *seq, void *v)
1264 {
1265 	spin_unlock_bh(&nr_list_lock);
1266 }
1267 
1268 static int nr_info_show(struct seq_file *seq, void *v)
1269 {
1270 	struct sock *s = sk_entry(v);
1271 	struct net_device *dev;
1272 	struct nr_sock *nr;
1273 	const char *devname;
1274 	char buf[11];
1275 
1276 	if (v == SEQ_START_TOKEN)
1277 		seq_puts(seq,
1278 "user_addr dest_node src_node  dev    my  your  st  vs  vr  va    t1     t2     t4      idle   n2  wnd Snd-Q Rcv-Q inode\n");
1279 
1280 	else {
1281 
1282 		bh_lock_sock(s);
1283 		nr = nr_sk(s);
1284 
1285 		if ((dev = nr->device) == NULL)
1286 			devname = "???";
1287 		else
1288 			devname = dev->name;
1289 
1290 		seq_printf(seq, "%-9s ", ax2asc(buf, &nr->user_addr));
1291 		seq_printf(seq, "%-9s ", ax2asc(buf, &nr->dest_addr));
1292 		seq_printf(seq,
1293 "%-9s %-3s  %02X/%02X %02X/%02X %2d %3d %3d %3d %3lu/%03lu %2lu/%02lu %3lu/%03lu %3lu/%03lu %2d/%02d %3d %5d %5d %ld\n",
1294 			ax2asc(buf, &nr->source_addr),
1295 			devname,
1296 			nr->my_index,
1297 			nr->my_id,
1298 			nr->your_index,
1299 			nr->your_id,
1300 			nr->state,
1301 			nr->vs,
1302 			nr->vr,
1303 			nr->va,
1304 			ax25_display_timer(&nr->t1timer) / HZ,
1305 			nr->t1 / HZ,
1306 			ax25_display_timer(&nr->t2timer) / HZ,
1307 			nr->t2 / HZ,
1308 			ax25_display_timer(&nr->t4timer) / HZ,
1309 			nr->t4 / HZ,
1310 			ax25_display_timer(&nr->idletimer) / (60 * HZ),
1311 			nr->idle / (60 * HZ),
1312 			nr->n2count,
1313 			nr->n2,
1314 			nr->window,
1315 			sk_wmem_alloc_get(s),
1316 			sk_rmem_alloc_get(s),
1317 			s->sk_socket ? SOCK_INODE(s->sk_socket)->i_ino : 0L);
1318 
1319 		bh_unlock_sock(s);
1320 	}
1321 	return 0;
1322 }
1323 
1324 static const struct seq_operations nr_info_seqops = {
1325 	.start = nr_info_start,
1326 	.next = nr_info_next,
1327 	.stop = nr_info_stop,
1328 	.show = nr_info_show,
1329 };
1330 #endif	/* CONFIG_PROC_FS */
1331 
1332 static const struct net_proto_family nr_family_ops = {
1333 	.family		=	PF_NETROM,
1334 	.create		=	nr_create,
1335 	.owner		=	THIS_MODULE,
1336 };
1337 
1338 static const struct proto_ops nr_proto_ops = {
1339 	.family		=	PF_NETROM,
1340 	.owner		=	THIS_MODULE,
1341 	.release	=	nr_release,
1342 	.bind		=	nr_bind,
1343 	.connect	=	nr_connect,
1344 	.socketpair	=	sock_no_socketpair,
1345 	.accept		=	nr_accept,
1346 	.getname	=	nr_getname,
1347 	.poll		=	datagram_poll,
1348 	.ioctl		=	nr_ioctl,
1349 	.gettstamp	=	sock_gettstamp,
1350 	.listen		=	nr_listen,
1351 	.shutdown	=	sock_no_shutdown,
1352 	.setsockopt	=	nr_setsockopt,
1353 	.getsockopt	=	nr_getsockopt,
1354 	.sendmsg	=	nr_sendmsg,
1355 	.recvmsg	=	nr_recvmsg,
1356 	.mmap		=	sock_no_mmap,
1357 	.sendpage	=	sock_no_sendpage,
1358 };
1359 
1360 static struct notifier_block nr_dev_notifier = {
1361 	.notifier_call	=	nr_device_event,
1362 };
1363 
1364 static struct net_device **dev_nr;
1365 
1366 static struct ax25_protocol nr_pid = {
1367 	.pid	= AX25_P_NETROM,
1368 	.func	= nr_route_frame
1369 };
1370 
1371 static struct ax25_linkfail nr_linkfail_notifier = {
1372 	.func	= nr_link_failed,
1373 };
1374 
1375 static int __init nr_proto_init(void)
1376 {
1377 	int i;
1378 	int rc = proto_register(&nr_proto, 0);
1379 
1380 	if (rc)
1381 		return rc;
1382 
1383 	if (nr_ndevs > 0x7fffffff/sizeof(struct net_device *)) {
1384 		pr_err("NET/ROM: %s - nr_ndevs parameter too large\n",
1385 		       __func__);
1386 		rc = -EINVAL;
1387 		goto unregister_proto;
1388 	}
1389 
1390 	dev_nr = kcalloc(nr_ndevs, sizeof(struct net_device *), GFP_KERNEL);
1391 	if (!dev_nr) {
1392 		pr_err("NET/ROM: %s - unable to allocate device array\n",
1393 		       __func__);
1394 		rc = -ENOMEM;
1395 		goto unregister_proto;
1396 	}
1397 
1398 	for (i = 0; i < nr_ndevs; i++) {
1399 		char name[IFNAMSIZ];
1400 		struct net_device *dev;
1401 
1402 		sprintf(name, "nr%d", i);
1403 		dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, nr_setup);
1404 		if (!dev) {
1405 			rc = -ENOMEM;
1406 			goto fail;
1407 		}
1408 
1409 		dev->base_addr = i;
1410 		rc = register_netdev(dev);
1411 		if (rc) {
1412 			free_netdev(dev);
1413 			goto fail;
1414 		}
1415 		nr_set_lockdep_key(dev);
1416 		dev_nr[i] = dev;
1417 	}
1418 
1419 	rc = sock_register(&nr_family_ops);
1420 	if (rc)
1421 		goto fail;
1422 
1423 	rc = register_netdevice_notifier(&nr_dev_notifier);
1424 	if (rc)
1425 		goto out_sock;
1426 
1427 	ax25_register_pid(&nr_pid);
1428 	ax25_linkfail_register(&nr_linkfail_notifier);
1429 
1430 #ifdef CONFIG_SYSCTL
1431 	rc = nr_register_sysctl();
1432 	if (rc)
1433 		goto out_sysctl;
1434 #endif
1435 
1436 	nr_loopback_init();
1437 
1438 	rc = -ENOMEM;
1439 	if (!proc_create_seq("nr", 0444, init_net.proc_net, &nr_info_seqops))
1440 		goto proc_remove1;
1441 	if (!proc_create_seq("nr_neigh", 0444, init_net.proc_net,
1442 			     &nr_neigh_seqops))
1443 		goto proc_remove2;
1444 	if (!proc_create_seq("nr_nodes", 0444, init_net.proc_net,
1445 			     &nr_node_seqops))
1446 		goto proc_remove3;
1447 
1448 	return 0;
1449 
1450 proc_remove3:
1451 	remove_proc_entry("nr_neigh", init_net.proc_net);
1452 proc_remove2:
1453 	remove_proc_entry("nr", init_net.proc_net);
1454 proc_remove1:
1455 
1456 	nr_loopback_clear();
1457 	nr_rt_free();
1458 
1459 #ifdef CONFIG_SYSCTL
1460 	nr_unregister_sysctl();
1461 out_sysctl:
1462 #endif
1463 	ax25_linkfail_release(&nr_linkfail_notifier);
1464 	ax25_protocol_release(AX25_P_NETROM);
1465 	unregister_netdevice_notifier(&nr_dev_notifier);
1466 out_sock:
1467 	sock_unregister(PF_NETROM);
1468 fail:
1469 	while (--i >= 0) {
1470 		unregister_netdev(dev_nr[i]);
1471 		free_netdev(dev_nr[i]);
1472 	}
1473 	kfree(dev_nr);
1474 unregister_proto:
1475 	proto_unregister(&nr_proto);
1476 	return rc;
1477 }
1478 
1479 module_init(nr_proto_init);
1480 
1481 module_param(nr_ndevs, int, 0);
1482 MODULE_PARM_DESC(nr_ndevs, "number of NET/ROM devices");
1483 
1484 MODULE_AUTHOR("Jonathan Naylor G4KLX <g4klx@g4klx.demon.co.uk>");
1485 MODULE_DESCRIPTION("The amateur radio NET/ROM network and transport layer protocol");
1486 MODULE_LICENSE("GPL");
1487 MODULE_ALIAS_NETPROTO(PF_NETROM);
1488 
1489 static void __exit nr_exit(void)
1490 {
1491 	int i;
1492 
1493 	remove_proc_entry("nr", init_net.proc_net);
1494 	remove_proc_entry("nr_neigh", init_net.proc_net);
1495 	remove_proc_entry("nr_nodes", init_net.proc_net);
1496 	nr_loopback_clear();
1497 
1498 	nr_rt_free();
1499 
1500 #ifdef CONFIG_SYSCTL
1501 	nr_unregister_sysctl();
1502 #endif
1503 
1504 	ax25_linkfail_release(&nr_linkfail_notifier);
1505 	ax25_protocol_release(AX25_P_NETROM);
1506 
1507 	unregister_netdevice_notifier(&nr_dev_notifier);
1508 
1509 	sock_unregister(PF_NETROM);
1510 
1511 	for (i = 0; i < nr_ndevs; i++) {
1512 		struct net_device *dev = dev_nr[i];
1513 		if (dev) {
1514 			unregister_netdev(dev);
1515 			free_netdev(dev);
1516 		}
1517 	}
1518 
1519 	kfree(dev_nr);
1520 	proto_unregister(&nr_proto);
1521 }
1522 module_exit(nr_exit);
1523