xref: /linux/net/openvswitch/actions.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2017 Nicira, Inc.
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18 
19 #include <net/dst.h>
20 #include <net/ip.h>
21 #include <net/ipv6.h>
22 #include <net/ip6_fib.h>
23 #include <net/checksum.h>
24 #include <net/dsfield.h>
25 #include <net/mpls.h>
26 #include <net/sctp/checksum.h>
27 
28 #include "datapath.h"
29 #include "flow.h"
30 #include "conntrack.h"
31 #include "vport.h"
32 #include "flow_netlink.h"
33 #include "openvswitch_trace.h"
34 
35 struct deferred_action {
36 	struct sk_buff *skb;
37 	const struct nlattr *actions;
38 	int actions_len;
39 
40 	/* Store pkt_key clone when creating deferred action. */
41 	struct sw_flow_key pkt_key;
42 };
43 
44 #define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
45 struct ovs_frag_data {
46 	unsigned long dst;
47 	struct vport *vport;
48 	struct ovs_skb_cb cb;
49 	__be16 inner_protocol;
50 	u16 network_offset;	/* valid only for MPLS */
51 	u16 vlan_tci;
52 	__be16 vlan_proto;
53 	unsigned int l2_len;
54 	u8 mac_proto;
55 	u8 l2_data[MAX_L2_LEN];
56 };
57 
58 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
59 
60 #define DEFERRED_ACTION_FIFO_SIZE 10
61 #define OVS_RECURSION_LIMIT 5
62 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
63 struct action_fifo {
64 	int head;
65 	int tail;
66 	/* Deferred action fifo queue storage. */
67 	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
68 };
69 
70 struct action_flow_keys {
71 	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
72 };
73 
74 static struct action_fifo __percpu *action_fifos;
75 static struct action_flow_keys __percpu *flow_keys;
76 static DEFINE_PER_CPU(int, exec_actions_level);
77 
78 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
79  * space. Return NULL if out of key spaces.
80  */
81 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
82 {
83 	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
84 	int level = this_cpu_read(exec_actions_level);
85 	struct sw_flow_key *key = NULL;
86 
87 	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
88 		key = &keys->key[level - 1];
89 		*key = *key_;
90 	}
91 
92 	return key;
93 }
94 
95 static void action_fifo_init(struct action_fifo *fifo)
96 {
97 	fifo->head = 0;
98 	fifo->tail = 0;
99 }
100 
101 static bool action_fifo_is_empty(const struct action_fifo *fifo)
102 {
103 	return (fifo->head == fifo->tail);
104 }
105 
106 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
107 {
108 	if (action_fifo_is_empty(fifo))
109 		return NULL;
110 
111 	return &fifo->fifo[fifo->tail++];
112 }
113 
114 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
115 {
116 	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
117 		return NULL;
118 
119 	return &fifo->fifo[fifo->head++];
120 }
121 
122 /* Return true if fifo is not full */
123 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
124 				    const struct sw_flow_key *key,
125 				    const struct nlattr *actions,
126 				    const int actions_len)
127 {
128 	struct action_fifo *fifo;
129 	struct deferred_action *da;
130 
131 	fifo = this_cpu_ptr(action_fifos);
132 	da = action_fifo_put(fifo);
133 	if (da) {
134 		da->skb = skb;
135 		da->actions = actions;
136 		da->actions_len = actions_len;
137 		da->pkt_key = *key;
138 	}
139 
140 	return da;
141 }
142 
143 static void invalidate_flow_key(struct sw_flow_key *key)
144 {
145 	key->mac_proto |= SW_FLOW_KEY_INVALID;
146 }
147 
148 static bool is_flow_key_valid(const struct sw_flow_key *key)
149 {
150 	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
151 }
152 
153 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
154 			 struct sw_flow_key *key,
155 			 u32 recirc_id,
156 			 const struct nlattr *actions, int len,
157 			 bool last, bool clone_flow_key);
158 
159 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
160 			      struct sw_flow_key *key,
161 			      const struct nlattr *attr, int len);
162 
163 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
164 		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
165 {
166 	int err;
167 
168 	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
169 	if (err)
170 		return err;
171 
172 	if (!mac_len)
173 		key->mac_proto = MAC_PROTO_NONE;
174 
175 	invalidate_flow_key(key);
176 	return 0;
177 }
178 
179 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
180 		    const __be16 ethertype)
181 {
182 	int err;
183 
184 	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
185 			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
186 	if (err)
187 		return err;
188 
189 	if (ethertype == htons(ETH_P_TEB))
190 		key->mac_proto = MAC_PROTO_ETHERNET;
191 
192 	invalidate_flow_key(key);
193 	return 0;
194 }
195 
196 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
197 		    const __be32 *mpls_lse, const __be32 *mask)
198 {
199 	struct mpls_shim_hdr *stack;
200 	__be32 lse;
201 	int err;
202 
203 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
204 		return -ENOMEM;
205 
206 	stack = mpls_hdr(skb);
207 	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
208 	err = skb_mpls_update_lse(skb, lse);
209 	if (err)
210 		return err;
211 
212 	flow_key->mpls.lse[0] = lse;
213 	return 0;
214 }
215 
216 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
217 {
218 	int err;
219 
220 	err = skb_vlan_pop(skb);
221 	if (skb_vlan_tag_present(skb)) {
222 		invalidate_flow_key(key);
223 	} else {
224 		key->eth.vlan.tci = 0;
225 		key->eth.vlan.tpid = 0;
226 	}
227 	return err;
228 }
229 
230 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
231 		     const struct ovs_action_push_vlan *vlan)
232 {
233 	if (skb_vlan_tag_present(skb)) {
234 		invalidate_flow_key(key);
235 	} else {
236 		key->eth.vlan.tci = vlan->vlan_tci;
237 		key->eth.vlan.tpid = vlan->vlan_tpid;
238 	}
239 	return skb_vlan_push(skb, vlan->vlan_tpid,
240 			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
241 }
242 
243 /* 'src' is already properly masked. */
244 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
245 {
246 	u16 *dst = (u16 *)dst_;
247 	const u16 *src = (const u16 *)src_;
248 	const u16 *mask = (const u16 *)mask_;
249 
250 	OVS_SET_MASKED(dst[0], src[0], mask[0]);
251 	OVS_SET_MASKED(dst[1], src[1], mask[1]);
252 	OVS_SET_MASKED(dst[2], src[2], mask[2]);
253 }
254 
255 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
256 			const struct ovs_key_ethernet *key,
257 			const struct ovs_key_ethernet *mask)
258 {
259 	int err;
260 
261 	err = skb_ensure_writable(skb, ETH_HLEN);
262 	if (unlikely(err))
263 		return err;
264 
265 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
266 
267 	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
268 			       mask->eth_src);
269 	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
270 			       mask->eth_dst);
271 
272 	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
273 
274 	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
275 	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
276 	return 0;
277 }
278 
279 /* pop_eth does not support VLAN packets as this action is never called
280  * for them.
281  */
282 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
283 {
284 	int err;
285 
286 	err = skb_eth_pop(skb);
287 	if (err)
288 		return err;
289 
290 	/* safe right before invalidate_flow_key */
291 	key->mac_proto = MAC_PROTO_NONE;
292 	invalidate_flow_key(key);
293 	return 0;
294 }
295 
296 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
297 		    const struct ovs_action_push_eth *ethh)
298 {
299 	int err;
300 
301 	err = skb_eth_push(skb, ethh->addresses.eth_dst,
302 			   ethh->addresses.eth_src);
303 	if (err)
304 		return err;
305 
306 	/* safe right before invalidate_flow_key */
307 	key->mac_proto = MAC_PROTO_ETHERNET;
308 	invalidate_flow_key(key);
309 	return 0;
310 }
311 
312 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
313 		    const struct nshhdr *nh)
314 {
315 	int err;
316 
317 	err = nsh_push(skb, nh);
318 	if (err)
319 		return err;
320 
321 	/* safe right before invalidate_flow_key */
322 	key->mac_proto = MAC_PROTO_NONE;
323 	invalidate_flow_key(key);
324 	return 0;
325 }
326 
327 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
328 {
329 	int err;
330 
331 	err = nsh_pop(skb);
332 	if (err)
333 		return err;
334 
335 	/* safe right before invalidate_flow_key */
336 	if (skb->protocol == htons(ETH_P_TEB))
337 		key->mac_proto = MAC_PROTO_ETHERNET;
338 	else
339 		key->mac_proto = MAC_PROTO_NONE;
340 	invalidate_flow_key(key);
341 	return 0;
342 }
343 
344 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
345 				  __be32 addr, __be32 new_addr)
346 {
347 	int transport_len = skb->len - skb_transport_offset(skb);
348 
349 	if (nh->frag_off & htons(IP_OFFSET))
350 		return;
351 
352 	if (nh->protocol == IPPROTO_TCP) {
353 		if (likely(transport_len >= sizeof(struct tcphdr)))
354 			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
355 						 addr, new_addr, true);
356 	} else if (nh->protocol == IPPROTO_UDP) {
357 		if (likely(transport_len >= sizeof(struct udphdr))) {
358 			struct udphdr *uh = udp_hdr(skb);
359 
360 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
361 				inet_proto_csum_replace4(&uh->check, skb,
362 							 addr, new_addr, true);
363 				if (!uh->check)
364 					uh->check = CSUM_MANGLED_0;
365 			}
366 		}
367 	}
368 }
369 
370 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
371 			__be32 *addr, __be32 new_addr)
372 {
373 	update_ip_l4_checksum(skb, nh, *addr, new_addr);
374 	csum_replace4(&nh->check, *addr, new_addr);
375 	skb_clear_hash(skb);
376 	ovs_ct_clear(skb, NULL);
377 	*addr = new_addr;
378 }
379 
380 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
381 				 __be32 addr[4], const __be32 new_addr[4])
382 {
383 	int transport_len = skb->len - skb_transport_offset(skb);
384 
385 	if (l4_proto == NEXTHDR_TCP) {
386 		if (likely(transport_len >= sizeof(struct tcphdr)))
387 			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
388 						  addr, new_addr, true);
389 	} else if (l4_proto == NEXTHDR_UDP) {
390 		if (likely(transport_len >= sizeof(struct udphdr))) {
391 			struct udphdr *uh = udp_hdr(skb);
392 
393 			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
394 				inet_proto_csum_replace16(&uh->check, skb,
395 							  addr, new_addr, true);
396 				if (!uh->check)
397 					uh->check = CSUM_MANGLED_0;
398 			}
399 		}
400 	} else if (l4_proto == NEXTHDR_ICMP) {
401 		if (likely(transport_len >= sizeof(struct icmp6hdr)))
402 			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
403 						  skb, addr, new_addr, true);
404 	}
405 }
406 
407 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
408 			   const __be32 mask[4], __be32 masked[4])
409 {
410 	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
411 	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
412 	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
413 	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
414 }
415 
416 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
417 			  __be32 addr[4], const __be32 new_addr[4],
418 			  bool recalculate_csum)
419 {
420 	if (recalculate_csum)
421 		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
422 
423 	skb_clear_hash(skb);
424 	ovs_ct_clear(skb, NULL);
425 	memcpy(addr, new_addr, sizeof(__be32[4]));
426 }
427 
428 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
429 {
430 	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
431 
432 	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
433 
434 	if (skb->ip_summed == CHECKSUM_COMPLETE)
435 		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
436 			     (__force __wsum)(ipv6_tclass << 12));
437 
438 	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
439 }
440 
441 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
442 {
443 	u32 ofl;
444 
445 	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
446 	fl = OVS_MASKED(ofl, fl, mask);
447 
448 	/* Bits 21-24 are always unmasked, so this retains their values. */
449 	nh->flow_lbl[0] = (u8)(fl >> 16);
450 	nh->flow_lbl[1] = (u8)(fl >> 8);
451 	nh->flow_lbl[2] = (u8)fl;
452 
453 	if (skb->ip_summed == CHECKSUM_COMPLETE)
454 		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
455 }
456 
457 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
458 {
459 	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
460 
461 	if (skb->ip_summed == CHECKSUM_COMPLETE)
462 		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
463 			     (__force __wsum)(new_ttl << 8));
464 	nh->hop_limit = new_ttl;
465 }
466 
467 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
468 		       u8 mask)
469 {
470 	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
471 
472 	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
473 	nh->ttl = new_ttl;
474 }
475 
476 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
477 		    const struct ovs_key_ipv4 *key,
478 		    const struct ovs_key_ipv4 *mask)
479 {
480 	struct iphdr *nh;
481 	__be32 new_addr;
482 	int err;
483 
484 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
485 				  sizeof(struct iphdr));
486 	if (unlikely(err))
487 		return err;
488 
489 	nh = ip_hdr(skb);
490 
491 	/* Setting an IP addresses is typically only a side effect of
492 	 * matching on them in the current userspace implementation, so it
493 	 * makes sense to check if the value actually changed.
494 	 */
495 	if (mask->ipv4_src) {
496 		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
497 
498 		if (unlikely(new_addr != nh->saddr)) {
499 			set_ip_addr(skb, nh, &nh->saddr, new_addr);
500 			flow_key->ipv4.addr.src = new_addr;
501 		}
502 	}
503 	if (mask->ipv4_dst) {
504 		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
505 
506 		if (unlikely(new_addr != nh->daddr)) {
507 			set_ip_addr(skb, nh, &nh->daddr, new_addr);
508 			flow_key->ipv4.addr.dst = new_addr;
509 		}
510 	}
511 	if (mask->ipv4_tos) {
512 		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
513 		flow_key->ip.tos = nh->tos;
514 	}
515 	if (mask->ipv4_ttl) {
516 		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
517 		flow_key->ip.ttl = nh->ttl;
518 	}
519 
520 	return 0;
521 }
522 
523 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
524 {
525 	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
526 }
527 
528 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
529 		    const struct ovs_key_ipv6 *key,
530 		    const struct ovs_key_ipv6 *mask)
531 {
532 	struct ipv6hdr *nh;
533 	int err;
534 
535 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
536 				  sizeof(struct ipv6hdr));
537 	if (unlikely(err))
538 		return err;
539 
540 	nh = ipv6_hdr(skb);
541 
542 	/* Setting an IP addresses is typically only a side effect of
543 	 * matching on them in the current userspace implementation, so it
544 	 * makes sense to check if the value actually changed.
545 	 */
546 	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
547 		__be32 *saddr = (__be32 *)&nh->saddr;
548 		__be32 masked[4];
549 
550 		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
551 
552 		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
553 			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
554 				      true);
555 			memcpy(&flow_key->ipv6.addr.src, masked,
556 			       sizeof(flow_key->ipv6.addr.src));
557 		}
558 	}
559 	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
560 		unsigned int offset = 0;
561 		int flags = IP6_FH_F_SKIP_RH;
562 		bool recalc_csum = true;
563 		__be32 *daddr = (__be32 *)&nh->daddr;
564 		__be32 masked[4];
565 
566 		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
567 
568 		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
569 			if (ipv6_ext_hdr(nh->nexthdr))
570 				recalc_csum = (ipv6_find_hdr(skb, &offset,
571 							     NEXTHDR_ROUTING,
572 							     NULL, &flags)
573 					       != NEXTHDR_ROUTING);
574 
575 			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
576 				      recalc_csum);
577 			memcpy(&flow_key->ipv6.addr.dst, masked,
578 			       sizeof(flow_key->ipv6.addr.dst));
579 		}
580 	}
581 	if (mask->ipv6_tclass) {
582 		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
583 		flow_key->ip.tos = ipv6_get_dsfield(nh);
584 	}
585 	if (mask->ipv6_label) {
586 		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
587 			    ntohl(mask->ipv6_label));
588 		flow_key->ipv6.label =
589 		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
590 	}
591 	if (mask->ipv6_hlimit) {
592 		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
593 		flow_key->ip.ttl = nh->hop_limit;
594 	}
595 	return 0;
596 }
597 
598 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
599 		   const struct nlattr *a)
600 {
601 	struct nshhdr *nh;
602 	size_t length;
603 	int err;
604 	u8 flags;
605 	u8 ttl;
606 	int i;
607 
608 	struct ovs_key_nsh key;
609 	struct ovs_key_nsh mask;
610 
611 	err = nsh_key_from_nlattr(a, &key, &mask);
612 	if (err)
613 		return err;
614 
615 	/* Make sure the NSH base header is there */
616 	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
617 		return -ENOMEM;
618 
619 	nh = nsh_hdr(skb);
620 	length = nsh_hdr_len(nh);
621 
622 	/* Make sure the whole NSH header is there */
623 	err = skb_ensure_writable(skb, skb_network_offset(skb) +
624 				       length);
625 	if (unlikely(err))
626 		return err;
627 
628 	nh = nsh_hdr(skb);
629 	skb_postpull_rcsum(skb, nh, length);
630 	flags = nsh_get_flags(nh);
631 	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
632 	flow_key->nsh.base.flags = flags;
633 	ttl = nsh_get_ttl(nh);
634 	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
635 	flow_key->nsh.base.ttl = ttl;
636 	nsh_set_flags_and_ttl(nh, flags, ttl);
637 	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
638 				  mask.base.path_hdr);
639 	flow_key->nsh.base.path_hdr = nh->path_hdr;
640 	switch (nh->mdtype) {
641 	case NSH_M_TYPE1:
642 		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
643 			nh->md1.context[i] =
644 			    OVS_MASKED(nh->md1.context[i], key.context[i],
645 				       mask.context[i]);
646 		}
647 		memcpy(flow_key->nsh.context, nh->md1.context,
648 		       sizeof(nh->md1.context));
649 		break;
650 	case NSH_M_TYPE2:
651 		memset(flow_key->nsh.context, 0,
652 		       sizeof(flow_key->nsh.context));
653 		break;
654 	default:
655 		return -EINVAL;
656 	}
657 	skb_postpush_rcsum(skb, nh, length);
658 	return 0;
659 }
660 
661 /* Must follow skb_ensure_writable() since that can move the skb data. */
662 static void set_tp_port(struct sk_buff *skb, __be16 *port,
663 			__be16 new_port, __sum16 *check)
664 {
665 	ovs_ct_clear(skb, NULL);
666 	inet_proto_csum_replace2(check, skb, *port, new_port, false);
667 	*port = new_port;
668 }
669 
670 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
671 		   const struct ovs_key_udp *key,
672 		   const struct ovs_key_udp *mask)
673 {
674 	struct udphdr *uh;
675 	__be16 src, dst;
676 	int err;
677 
678 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
679 				  sizeof(struct udphdr));
680 	if (unlikely(err))
681 		return err;
682 
683 	uh = udp_hdr(skb);
684 	/* Either of the masks is non-zero, so do not bother checking them. */
685 	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
686 	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
687 
688 	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
689 		if (likely(src != uh->source)) {
690 			set_tp_port(skb, &uh->source, src, &uh->check);
691 			flow_key->tp.src = src;
692 		}
693 		if (likely(dst != uh->dest)) {
694 			set_tp_port(skb, &uh->dest, dst, &uh->check);
695 			flow_key->tp.dst = dst;
696 		}
697 
698 		if (unlikely(!uh->check))
699 			uh->check = CSUM_MANGLED_0;
700 	} else {
701 		uh->source = src;
702 		uh->dest = dst;
703 		flow_key->tp.src = src;
704 		flow_key->tp.dst = dst;
705 		ovs_ct_clear(skb, NULL);
706 	}
707 
708 	skb_clear_hash(skb);
709 
710 	return 0;
711 }
712 
713 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
714 		   const struct ovs_key_tcp *key,
715 		   const struct ovs_key_tcp *mask)
716 {
717 	struct tcphdr *th;
718 	__be16 src, dst;
719 	int err;
720 
721 	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
722 				  sizeof(struct tcphdr));
723 	if (unlikely(err))
724 		return err;
725 
726 	th = tcp_hdr(skb);
727 	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
728 	if (likely(src != th->source)) {
729 		set_tp_port(skb, &th->source, src, &th->check);
730 		flow_key->tp.src = src;
731 	}
732 	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
733 	if (likely(dst != th->dest)) {
734 		set_tp_port(skb, &th->dest, dst, &th->check);
735 		flow_key->tp.dst = dst;
736 	}
737 	skb_clear_hash(skb);
738 
739 	return 0;
740 }
741 
742 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
743 		    const struct ovs_key_sctp *key,
744 		    const struct ovs_key_sctp *mask)
745 {
746 	unsigned int sctphoff = skb_transport_offset(skb);
747 	struct sctphdr *sh;
748 	__le32 old_correct_csum, new_csum, old_csum;
749 	int err;
750 
751 	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
752 	if (unlikely(err))
753 		return err;
754 
755 	sh = sctp_hdr(skb);
756 	old_csum = sh->checksum;
757 	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
758 
759 	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
760 	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
761 
762 	new_csum = sctp_compute_cksum(skb, sctphoff);
763 
764 	/* Carry any checksum errors through. */
765 	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
766 
767 	skb_clear_hash(skb);
768 	ovs_ct_clear(skb, NULL);
769 
770 	flow_key->tp.src = sh->source;
771 	flow_key->tp.dst = sh->dest;
772 
773 	return 0;
774 }
775 
776 static int ovs_vport_output(struct net *net, struct sock *sk,
777 			    struct sk_buff *skb)
778 {
779 	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
780 	struct vport *vport = data->vport;
781 
782 	if (skb_cow_head(skb, data->l2_len) < 0) {
783 		kfree_skb(skb);
784 		return -ENOMEM;
785 	}
786 
787 	__skb_dst_copy(skb, data->dst);
788 	*OVS_CB(skb) = data->cb;
789 	skb->inner_protocol = data->inner_protocol;
790 	if (data->vlan_tci & VLAN_CFI_MASK)
791 		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
792 	else
793 		__vlan_hwaccel_clear_tag(skb);
794 
795 	/* Reconstruct the MAC header.  */
796 	skb_push(skb, data->l2_len);
797 	memcpy(skb->data, &data->l2_data, data->l2_len);
798 	skb_postpush_rcsum(skb, skb->data, data->l2_len);
799 	skb_reset_mac_header(skb);
800 
801 	if (eth_p_mpls(skb->protocol)) {
802 		skb->inner_network_header = skb->network_header;
803 		skb_set_network_header(skb, data->network_offset);
804 		skb_reset_mac_len(skb);
805 	}
806 
807 	ovs_vport_send(vport, skb, data->mac_proto);
808 	return 0;
809 }
810 
811 static unsigned int
812 ovs_dst_get_mtu(const struct dst_entry *dst)
813 {
814 	return dst->dev->mtu;
815 }
816 
817 static struct dst_ops ovs_dst_ops = {
818 	.family = AF_UNSPEC,
819 	.mtu = ovs_dst_get_mtu,
820 };
821 
822 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
823  * ovs_vport_output(), which is called once per fragmented packet.
824  */
825 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
826 			 u16 orig_network_offset, u8 mac_proto)
827 {
828 	unsigned int hlen = skb_network_offset(skb);
829 	struct ovs_frag_data *data;
830 
831 	data = this_cpu_ptr(&ovs_frag_data_storage);
832 	data->dst = skb->_skb_refdst;
833 	data->vport = vport;
834 	data->cb = *OVS_CB(skb);
835 	data->inner_protocol = skb->inner_protocol;
836 	data->network_offset = orig_network_offset;
837 	if (skb_vlan_tag_present(skb))
838 		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
839 	else
840 		data->vlan_tci = 0;
841 	data->vlan_proto = skb->vlan_proto;
842 	data->mac_proto = mac_proto;
843 	data->l2_len = hlen;
844 	memcpy(&data->l2_data, skb->data, hlen);
845 
846 	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
847 	skb_pull(skb, hlen);
848 }
849 
850 static void ovs_fragment(struct net *net, struct vport *vport,
851 			 struct sk_buff *skb, u16 mru,
852 			 struct sw_flow_key *key)
853 {
854 	u16 orig_network_offset = 0;
855 
856 	if (eth_p_mpls(skb->protocol)) {
857 		orig_network_offset = skb_network_offset(skb);
858 		skb->network_header = skb->inner_network_header;
859 	}
860 
861 	if (skb_network_offset(skb) > MAX_L2_LEN) {
862 		OVS_NLERR(1, "L2 header too long to fragment");
863 		goto err;
864 	}
865 
866 	if (key->eth.type == htons(ETH_P_IP)) {
867 		struct rtable ovs_rt = { 0 };
868 		unsigned long orig_dst;
869 
870 		prepare_frag(vport, skb, orig_network_offset,
871 			     ovs_key_mac_proto(key));
872 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
873 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
874 		ovs_rt.dst.dev = vport->dev;
875 
876 		orig_dst = skb->_skb_refdst;
877 		skb_dst_set_noref(skb, &ovs_rt.dst);
878 		IPCB(skb)->frag_max_size = mru;
879 
880 		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
881 		refdst_drop(orig_dst);
882 	} else if (key->eth.type == htons(ETH_P_IPV6)) {
883 		unsigned long orig_dst;
884 		struct rt6_info ovs_rt;
885 
886 		prepare_frag(vport, skb, orig_network_offset,
887 			     ovs_key_mac_proto(key));
888 		memset(&ovs_rt, 0, sizeof(ovs_rt));
889 		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
890 			 DST_OBSOLETE_NONE, DST_NOCOUNT);
891 		ovs_rt.dst.dev = vport->dev;
892 
893 		orig_dst = skb->_skb_refdst;
894 		skb_dst_set_noref(skb, &ovs_rt.dst);
895 		IP6CB(skb)->frag_max_size = mru;
896 
897 		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
898 		refdst_drop(orig_dst);
899 	} else {
900 		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
901 			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
902 			  vport->dev->mtu);
903 		goto err;
904 	}
905 
906 	return;
907 err:
908 	kfree_skb(skb);
909 }
910 
911 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
912 		      struct sw_flow_key *key)
913 {
914 	struct vport *vport = ovs_vport_rcu(dp, out_port);
915 
916 	if (likely(vport)) {
917 		u16 mru = OVS_CB(skb)->mru;
918 		u32 cutlen = OVS_CB(skb)->cutlen;
919 
920 		if (unlikely(cutlen > 0)) {
921 			if (skb->len - cutlen > ovs_mac_header_len(key))
922 				pskb_trim(skb, skb->len - cutlen);
923 			else
924 				pskb_trim(skb, ovs_mac_header_len(key));
925 		}
926 
927 		if (likely(!mru ||
928 		           (skb->len <= mru + vport->dev->hard_header_len))) {
929 			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
930 		} else if (mru <= vport->dev->mtu) {
931 			struct net *net = read_pnet(&dp->net);
932 
933 			ovs_fragment(net, vport, skb, mru, key);
934 		} else {
935 			kfree_skb(skb);
936 		}
937 	} else {
938 		kfree_skb(skb);
939 	}
940 }
941 
942 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
943 			    struct sw_flow_key *key, const struct nlattr *attr,
944 			    const struct nlattr *actions, int actions_len,
945 			    uint32_t cutlen)
946 {
947 	struct dp_upcall_info upcall;
948 	const struct nlattr *a;
949 	int rem;
950 
951 	memset(&upcall, 0, sizeof(upcall));
952 	upcall.cmd = OVS_PACKET_CMD_ACTION;
953 	upcall.mru = OVS_CB(skb)->mru;
954 
955 	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
956 	     a = nla_next(a, &rem)) {
957 		switch (nla_type(a)) {
958 		case OVS_USERSPACE_ATTR_USERDATA:
959 			upcall.userdata = a;
960 			break;
961 
962 		case OVS_USERSPACE_ATTR_PID:
963 			if (dp->user_features &
964 			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
965 				upcall.portid =
966 				  ovs_dp_get_upcall_portid(dp,
967 							   smp_processor_id());
968 			else
969 				upcall.portid = nla_get_u32(a);
970 			break;
971 
972 		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
973 			/* Get out tunnel info. */
974 			struct vport *vport;
975 
976 			vport = ovs_vport_rcu(dp, nla_get_u32(a));
977 			if (vport) {
978 				int err;
979 
980 				err = dev_fill_metadata_dst(vport->dev, skb);
981 				if (!err)
982 					upcall.egress_tun_info = skb_tunnel_info(skb);
983 			}
984 
985 			break;
986 		}
987 
988 		case OVS_USERSPACE_ATTR_ACTIONS: {
989 			/* Include actions. */
990 			upcall.actions = actions;
991 			upcall.actions_len = actions_len;
992 			break;
993 		}
994 
995 		} /* End of switch. */
996 	}
997 
998 	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
999 }
1000 
1001 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1002 				     struct sw_flow_key *key,
1003 				     const struct nlattr *attr)
1004 {
1005 	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1006 	struct nlattr *actions = nla_data(attr);
1007 
1008 	if (nla_len(actions))
1009 		return clone_execute(dp, skb, key, 0, nla_data(actions),
1010 				     nla_len(actions), true, false);
1011 
1012 	consume_skb(skb);
1013 	return 0;
1014 }
1015 
1016 /* When 'last' is true, sample() should always consume the 'skb'.
1017  * Otherwise, sample() should keep 'skb' intact regardless what
1018  * actions are executed within sample().
1019  */
1020 static int sample(struct datapath *dp, struct sk_buff *skb,
1021 		  struct sw_flow_key *key, const struct nlattr *attr,
1022 		  bool last)
1023 {
1024 	struct nlattr *actions;
1025 	struct nlattr *sample_arg;
1026 	int rem = nla_len(attr);
1027 	const struct sample_arg *arg;
1028 	bool clone_flow_key;
1029 
1030 	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1031 	sample_arg = nla_data(attr);
1032 	arg = nla_data(sample_arg);
1033 	actions = nla_next(sample_arg, &rem);
1034 
1035 	if ((arg->probability != U32_MAX) &&
1036 	    (!arg->probability || get_random_u32() > arg->probability)) {
1037 		if (last)
1038 			consume_skb(skb);
1039 		return 0;
1040 	}
1041 
1042 	clone_flow_key = !arg->exec;
1043 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1044 			     clone_flow_key);
1045 }
1046 
1047 /* When 'last' is true, clone() should always consume the 'skb'.
1048  * Otherwise, clone() should keep 'skb' intact regardless what
1049  * actions are executed within clone().
1050  */
1051 static int clone(struct datapath *dp, struct sk_buff *skb,
1052 		 struct sw_flow_key *key, const struct nlattr *attr,
1053 		 bool last)
1054 {
1055 	struct nlattr *actions;
1056 	struct nlattr *clone_arg;
1057 	int rem = nla_len(attr);
1058 	bool dont_clone_flow_key;
1059 
1060 	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1061 	clone_arg = nla_data(attr);
1062 	dont_clone_flow_key = nla_get_u32(clone_arg);
1063 	actions = nla_next(clone_arg, &rem);
1064 
1065 	return clone_execute(dp, skb, key, 0, actions, rem, last,
1066 			     !dont_clone_flow_key);
1067 }
1068 
1069 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1070 			 const struct nlattr *attr)
1071 {
1072 	struct ovs_action_hash *hash_act = nla_data(attr);
1073 	u32 hash = 0;
1074 
1075 	/* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1076 	hash = skb_get_hash(skb);
1077 	hash = jhash_1word(hash, hash_act->hash_basis);
1078 	if (!hash)
1079 		hash = 0x1;
1080 
1081 	key->ovs_flow_hash = hash;
1082 }
1083 
1084 static int execute_set_action(struct sk_buff *skb,
1085 			      struct sw_flow_key *flow_key,
1086 			      const struct nlattr *a)
1087 {
1088 	/* Only tunnel set execution is supported without a mask. */
1089 	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1090 		struct ovs_tunnel_info *tun = nla_data(a);
1091 
1092 		skb_dst_drop(skb);
1093 		dst_hold((struct dst_entry *)tun->tun_dst);
1094 		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1095 		return 0;
1096 	}
1097 
1098 	return -EINVAL;
1099 }
1100 
1101 /* Mask is at the midpoint of the data. */
1102 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1103 
1104 static int execute_masked_set_action(struct sk_buff *skb,
1105 				     struct sw_flow_key *flow_key,
1106 				     const struct nlattr *a)
1107 {
1108 	int err = 0;
1109 
1110 	switch (nla_type(a)) {
1111 	case OVS_KEY_ATTR_PRIORITY:
1112 		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1113 			       *get_mask(a, u32 *));
1114 		flow_key->phy.priority = skb->priority;
1115 		break;
1116 
1117 	case OVS_KEY_ATTR_SKB_MARK:
1118 		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1119 		flow_key->phy.skb_mark = skb->mark;
1120 		break;
1121 
1122 	case OVS_KEY_ATTR_TUNNEL_INFO:
1123 		/* Masked data not supported for tunnel. */
1124 		err = -EINVAL;
1125 		break;
1126 
1127 	case OVS_KEY_ATTR_ETHERNET:
1128 		err = set_eth_addr(skb, flow_key, nla_data(a),
1129 				   get_mask(a, struct ovs_key_ethernet *));
1130 		break;
1131 
1132 	case OVS_KEY_ATTR_NSH:
1133 		err = set_nsh(skb, flow_key, a);
1134 		break;
1135 
1136 	case OVS_KEY_ATTR_IPV4:
1137 		err = set_ipv4(skb, flow_key, nla_data(a),
1138 			       get_mask(a, struct ovs_key_ipv4 *));
1139 		break;
1140 
1141 	case OVS_KEY_ATTR_IPV6:
1142 		err = set_ipv6(skb, flow_key, nla_data(a),
1143 			       get_mask(a, struct ovs_key_ipv6 *));
1144 		break;
1145 
1146 	case OVS_KEY_ATTR_TCP:
1147 		err = set_tcp(skb, flow_key, nla_data(a),
1148 			      get_mask(a, struct ovs_key_tcp *));
1149 		break;
1150 
1151 	case OVS_KEY_ATTR_UDP:
1152 		err = set_udp(skb, flow_key, nla_data(a),
1153 			      get_mask(a, struct ovs_key_udp *));
1154 		break;
1155 
1156 	case OVS_KEY_ATTR_SCTP:
1157 		err = set_sctp(skb, flow_key, nla_data(a),
1158 			       get_mask(a, struct ovs_key_sctp *));
1159 		break;
1160 
1161 	case OVS_KEY_ATTR_MPLS:
1162 		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1163 								    __be32 *));
1164 		break;
1165 
1166 	case OVS_KEY_ATTR_CT_STATE:
1167 	case OVS_KEY_ATTR_CT_ZONE:
1168 	case OVS_KEY_ATTR_CT_MARK:
1169 	case OVS_KEY_ATTR_CT_LABELS:
1170 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1171 	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1172 		err = -EINVAL;
1173 		break;
1174 	}
1175 
1176 	return err;
1177 }
1178 
1179 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1180 			  struct sw_flow_key *key,
1181 			  const struct nlattr *a, bool last)
1182 {
1183 	u32 recirc_id;
1184 
1185 	if (!is_flow_key_valid(key)) {
1186 		int err;
1187 
1188 		err = ovs_flow_key_update(skb, key);
1189 		if (err)
1190 			return err;
1191 	}
1192 	BUG_ON(!is_flow_key_valid(key));
1193 
1194 	recirc_id = nla_get_u32(a);
1195 	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1196 }
1197 
1198 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1199 				 struct sw_flow_key *key,
1200 				 const struct nlattr *attr, bool last)
1201 {
1202 	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1203 	const struct nlattr *actions, *cpl_arg;
1204 	int len, max_len, rem = nla_len(attr);
1205 	const struct check_pkt_len_arg *arg;
1206 	bool clone_flow_key;
1207 
1208 	/* The first netlink attribute in 'attr' is always
1209 	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1210 	 */
1211 	cpl_arg = nla_data(attr);
1212 	arg = nla_data(cpl_arg);
1213 
1214 	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1215 	max_len = arg->pkt_len;
1216 
1217 	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1218 	    len <= max_len) {
1219 		/* Second netlink attribute in 'attr' is always
1220 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1221 		 */
1222 		actions = nla_next(cpl_arg, &rem);
1223 		clone_flow_key = !arg->exec_for_lesser_equal;
1224 	} else {
1225 		/* Third netlink attribute in 'attr' is always
1226 		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1227 		 */
1228 		actions = nla_next(cpl_arg, &rem);
1229 		actions = nla_next(actions, &rem);
1230 		clone_flow_key = !arg->exec_for_greater;
1231 	}
1232 
1233 	return clone_execute(dp, skb, key, 0, nla_data(actions),
1234 			     nla_len(actions), last, clone_flow_key);
1235 }
1236 
1237 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1238 {
1239 	int err;
1240 
1241 	if (skb->protocol == htons(ETH_P_IPV6)) {
1242 		struct ipv6hdr *nh;
1243 
1244 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1245 					  sizeof(*nh));
1246 		if (unlikely(err))
1247 			return err;
1248 
1249 		nh = ipv6_hdr(skb);
1250 
1251 		if (nh->hop_limit <= 1)
1252 			return -EHOSTUNREACH;
1253 
1254 		key->ip.ttl = --nh->hop_limit;
1255 	} else if (skb->protocol == htons(ETH_P_IP)) {
1256 		struct iphdr *nh;
1257 		u8 old_ttl;
1258 
1259 		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1260 					  sizeof(*nh));
1261 		if (unlikely(err))
1262 			return err;
1263 
1264 		nh = ip_hdr(skb);
1265 		if (nh->ttl <= 1)
1266 			return -EHOSTUNREACH;
1267 
1268 		old_ttl = nh->ttl--;
1269 		csum_replace2(&nh->check, htons(old_ttl << 8),
1270 			      htons(nh->ttl << 8));
1271 		key->ip.ttl = nh->ttl;
1272 	}
1273 	return 0;
1274 }
1275 
1276 /* Execute a list of actions against 'skb'. */
1277 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1278 			      struct sw_flow_key *key,
1279 			      const struct nlattr *attr, int len)
1280 {
1281 	const struct nlattr *a;
1282 	int rem;
1283 
1284 	for (a = attr, rem = len; rem > 0;
1285 	     a = nla_next(a, &rem)) {
1286 		int err = 0;
1287 
1288 		if (trace_ovs_do_execute_action_enabled())
1289 			trace_ovs_do_execute_action(dp, skb, key, a, rem);
1290 
1291 		switch (nla_type(a)) {
1292 		case OVS_ACTION_ATTR_OUTPUT: {
1293 			int port = nla_get_u32(a);
1294 			struct sk_buff *clone;
1295 
1296 			/* Every output action needs a separate clone
1297 			 * of 'skb', In case the output action is the
1298 			 * last action, cloning can be avoided.
1299 			 */
1300 			if (nla_is_last(a, rem)) {
1301 				do_output(dp, skb, port, key);
1302 				/* 'skb' has been used for output.
1303 				 */
1304 				return 0;
1305 			}
1306 
1307 			clone = skb_clone(skb, GFP_ATOMIC);
1308 			if (clone)
1309 				do_output(dp, clone, port, key);
1310 			OVS_CB(skb)->cutlen = 0;
1311 			break;
1312 		}
1313 
1314 		case OVS_ACTION_ATTR_TRUNC: {
1315 			struct ovs_action_trunc *trunc = nla_data(a);
1316 
1317 			if (skb->len > trunc->max_len)
1318 				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1319 			break;
1320 		}
1321 
1322 		case OVS_ACTION_ATTR_USERSPACE:
1323 			output_userspace(dp, skb, key, a, attr,
1324 						     len, OVS_CB(skb)->cutlen);
1325 			OVS_CB(skb)->cutlen = 0;
1326 			break;
1327 
1328 		case OVS_ACTION_ATTR_HASH:
1329 			execute_hash(skb, key, a);
1330 			break;
1331 
1332 		case OVS_ACTION_ATTR_PUSH_MPLS: {
1333 			struct ovs_action_push_mpls *mpls = nla_data(a);
1334 
1335 			err = push_mpls(skb, key, mpls->mpls_lse,
1336 					mpls->mpls_ethertype, skb->mac_len);
1337 			break;
1338 		}
1339 		case OVS_ACTION_ATTR_ADD_MPLS: {
1340 			struct ovs_action_add_mpls *mpls = nla_data(a);
1341 			__u16 mac_len = 0;
1342 
1343 			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1344 				mac_len = skb->mac_len;
1345 
1346 			err = push_mpls(skb, key, mpls->mpls_lse,
1347 					mpls->mpls_ethertype, mac_len);
1348 			break;
1349 		}
1350 		case OVS_ACTION_ATTR_POP_MPLS:
1351 			err = pop_mpls(skb, key, nla_get_be16(a));
1352 			break;
1353 
1354 		case OVS_ACTION_ATTR_PUSH_VLAN:
1355 			err = push_vlan(skb, key, nla_data(a));
1356 			break;
1357 
1358 		case OVS_ACTION_ATTR_POP_VLAN:
1359 			err = pop_vlan(skb, key);
1360 			break;
1361 
1362 		case OVS_ACTION_ATTR_RECIRC: {
1363 			bool last = nla_is_last(a, rem);
1364 
1365 			err = execute_recirc(dp, skb, key, a, last);
1366 			if (last) {
1367 				/* If this is the last action, the skb has
1368 				 * been consumed or freed.
1369 				 * Return immediately.
1370 				 */
1371 				return err;
1372 			}
1373 			break;
1374 		}
1375 
1376 		case OVS_ACTION_ATTR_SET:
1377 			err = execute_set_action(skb, key, nla_data(a));
1378 			break;
1379 
1380 		case OVS_ACTION_ATTR_SET_MASKED:
1381 		case OVS_ACTION_ATTR_SET_TO_MASKED:
1382 			err = execute_masked_set_action(skb, key, nla_data(a));
1383 			break;
1384 
1385 		case OVS_ACTION_ATTR_SAMPLE: {
1386 			bool last = nla_is_last(a, rem);
1387 
1388 			err = sample(dp, skb, key, a, last);
1389 			if (last)
1390 				return err;
1391 
1392 			break;
1393 		}
1394 
1395 		case OVS_ACTION_ATTR_CT:
1396 			if (!is_flow_key_valid(key)) {
1397 				err = ovs_flow_key_update(skb, key);
1398 				if (err)
1399 					return err;
1400 			}
1401 
1402 			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1403 					     nla_data(a));
1404 
1405 			/* Hide stolen IP fragments from user space. */
1406 			if (err)
1407 				return err == -EINPROGRESS ? 0 : err;
1408 			break;
1409 
1410 		case OVS_ACTION_ATTR_CT_CLEAR:
1411 			err = ovs_ct_clear(skb, key);
1412 			break;
1413 
1414 		case OVS_ACTION_ATTR_PUSH_ETH:
1415 			err = push_eth(skb, key, nla_data(a));
1416 			break;
1417 
1418 		case OVS_ACTION_ATTR_POP_ETH:
1419 			err = pop_eth(skb, key);
1420 			break;
1421 
1422 		case OVS_ACTION_ATTR_PUSH_NSH: {
1423 			u8 buffer[NSH_HDR_MAX_LEN];
1424 			struct nshhdr *nh = (struct nshhdr *)buffer;
1425 
1426 			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1427 						  NSH_HDR_MAX_LEN);
1428 			if (unlikely(err))
1429 				break;
1430 			err = push_nsh(skb, key, nh);
1431 			break;
1432 		}
1433 
1434 		case OVS_ACTION_ATTR_POP_NSH:
1435 			err = pop_nsh(skb, key);
1436 			break;
1437 
1438 		case OVS_ACTION_ATTR_METER:
1439 			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1440 				consume_skb(skb);
1441 				return 0;
1442 			}
1443 			break;
1444 
1445 		case OVS_ACTION_ATTR_CLONE: {
1446 			bool last = nla_is_last(a, rem);
1447 
1448 			err = clone(dp, skb, key, a, last);
1449 			if (last)
1450 				return err;
1451 
1452 			break;
1453 		}
1454 
1455 		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1456 			bool last = nla_is_last(a, rem);
1457 
1458 			err = execute_check_pkt_len(dp, skb, key, a, last);
1459 			if (last)
1460 				return err;
1461 
1462 			break;
1463 		}
1464 
1465 		case OVS_ACTION_ATTR_DEC_TTL:
1466 			err = execute_dec_ttl(skb, key);
1467 			if (err == -EHOSTUNREACH)
1468 				return dec_ttl_exception_handler(dp, skb,
1469 								 key, a);
1470 			break;
1471 		}
1472 
1473 		if (unlikely(err)) {
1474 			kfree_skb(skb);
1475 			return err;
1476 		}
1477 	}
1478 
1479 	consume_skb(skb);
1480 	return 0;
1481 }
1482 
1483 /* Execute the actions on the clone of the packet. The effect of the
1484  * execution does not affect the original 'skb' nor the original 'key'.
1485  *
1486  * The execution may be deferred in case the actions can not be executed
1487  * immediately.
1488  */
1489 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1490 			 struct sw_flow_key *key, u32 recirc_id,
1491 			 const struct nlattr *actions, int len,
1492 			 bool last, bool clone_flow_key)
1493 {
1494 	struct deferred_action *da;
1495 	struct sw_flow_key *clone;
1496 
1497 	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1498 	if (!skb) {
1499 		/* Out of memory, skip this action.
1500 		 */
1501 		return 0;
1502 	}
1503 
1504 	/* When clone_flow_key is false, the 'key' will not be change
1505 	 * by the actions, then the 'key' can be used directly.
1506 	 * Otherwise, try to clone key from the next recursion level of
1507 	 * 'flow_keys'. If clone is successful, execute the actions
1508 	 * without deferring.
1509 	 */
1510 	clone = clone_flow_key ? clone_key(key) : key;
1511 	if (clone) {
1512 		int err = 0;
1513 
1514 		if (actions) { /* Sample action */
1515 			if (clone_flow_key)
1516 				__this_cpu_inc(exec_actions_level);
1517 
1518 			err = do_execute_actions(dp, skb, clone,
1519 						 actions, len);
1520 
1521 			if (clone_flow_key)
1522 				__this_cpu_dec(exec_actions_level);
1523 		} else { /* Recirc action */
1524 			clone->recirc_id = recirc_id;
1525 			ovs_dp_process_packet(skb, clone);
1526 		}
1527 		return err;
1528 	}
1529 
1530 	/* Out of 'flow_keys' space. Defer actions */
1531 	da = add_deferred_actions(skb, key, actions, len);
1532 	if (da) {
1533 		if (!actions) { /* Recirc action */
1534 			key = &da->pkt_key;
1535 			key->recirc_id = recirc_id;
1536 		}
1537 	} else {
1538 		/* Out of per CPU action FIFO space. Drop the 'skb' and
1539 		 * log an error.
1540 		 */
1541 		kfree_skb(skb);
1542 
1543 		if (net_ratelimit()) {
1544 			if (actions) { /* Sample action */
1545 				pr_warn("%s: deferred action limit reached, drop sample action\n",
1546 					ovs_dp_name(dp));
1547 			} else {  /* Recirc action */
1548 				pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1549 					ovs_dp_name(dp), recirc_id);
1550 			}
1551 		}
1552 	}
1553 	return 0;
1554 }
1555 
1556 static void process_deferred_actions(struct datapath *dp)
1557 {
1558 	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1559 
1560 	/* Do not touch the FIFO in case there is no deferred actions. */
1561 	if (action_fifo_is_empty(fifo))
1562 		return;
1563 
1564 	/* Finishing executing all deferred actions. */
1565 	do {
1566 		struct deferred_action *da = action_fifo_get(fifo);
1567 		struct sk_buff *skb = da->skb;
1568 		struct sw_flow_key *key = &da->pkt_key;
1569 		const struct nlattr *actions = da->actions;
1570 		int actions_len = da->actions_len;
1571 
1572 		if (actions)
1573 			do_execute_actions(dp, skb, key, actions, actions_len);
1574 		else
1575 			ovs_dp_process_packet(skb, key);
1576 	} while (!action_fifo_is_empty(fifo));
1577 
1578 	/* Reset FIFO for the next packet.  */
1579 	action_fifo_init(fifo);
1580 }
1581 
1582 /* Execute a list of actions against 'skb'. */
1583 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1584 			const struct sw_flow_actions *acts,
1585 			struct sw_flow_key *key)
1586 {
1587 	int err, level;
1588 
1589 	level = __this_cpu_inc_return(exec_actions_level);
1590 	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1591 		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1592 				     ovs_dp_name(dp));
1593 		kfree_skb(skb);
1594 		err = -ENETDOWN;
1595 		goto out;
1596 	}
1597 
1598 	OVS_CB(skb)->acts_origlen = acts->orig_len;
1599 	err = do_execute_actions(dp, skb, key,
1600 				 acts->actions, acts->actions_len);
1601 
1602 	if (level == 1)
1603 		process_deferred_actions(dp);
1604 
1605 out:
1606 	__this_cpu_dec(exec_actions_level);
1607 	return err;
1608 }
1609 
1610 int action_fifos_init(void)
1611 {
1612 	action_fifos = alloc_percpu(struct action_fifo);
1613 	if (!action_fifos)
1614 		return -ENOMEM;
1615 
1616 	flow_keys = alloc_percpu(struct action_flow_keys);
1617 	if (!flow_keys) {
1618 		free_percpu(action_fifos);
1619 		return -ENOMEM;
1620 	}
1621 
1622 	return 0;
1623 }
1624 
1625 void action_fifos_exit(void)
1626 {
1627 	free_percpu(action_fifos);
1628 	free_percpu(flow_keys);
1629 }
1630