xref: /linux/net/sunrpc/xprtrdma/frwr_ops.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  */
6 
7 /* Lightweight memory registration using Fast Registration Work
8  * Requests (FRWR).
9  *
10  * FRWR features ordered asynchronous registration and deregistration
11  * of arbitrarily sized memory regions. This is the fastest and safest
12  * but most complex memory registration mode.
13  */
14 
15 /* Normal operation
16  *
17  * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG
18  * Work Request (frwr_map). When the RDMA operation is finished, this
19  * Memory Region is invalidated using a LOCAL_INV Work Request
20  * (frwr_unmap_sync).
21  *
22  * Typically these Work Requests are not signaled, and neither are RDMA
23  * SEND Work Requests (with the exception of signaling occasionally to
24  * prevent provider work queue overflows). This greatly reduces HCA
25  * interrupt workload.
26  *
27  * As an optimization, frwr_unmap marks MRs INVALID before the
28  * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on
29  * rb_mrs immediately so that no work (like managing a linked list
30  * under a spinlock) is needed in the completion upcall.
31  *
32  * But this means that frwr_map() can occasionally encounter an MR
33  * that is INVALID but the LOCAL_INV WR has not completed. Work Queue
34  * ordering prevents a subsequent FAST_REG WR from executing against
35  * that MR while it is still being invalidated.
36  */
37 
38 /* Transport recovery
39  *
40  * ->op_map and the transport connect worker cannot run at the same
41  * time, but ->op_unmap can fire while the transport connect worker
42  * is running. Thus MR recovery is handled in ->op_map, to guarantee
43  * that recovered MRs are owned by a sending RPC, and not one where
44  * ->op_unmap could fire at the same time transport reconnect is
45  * being done.
46  *
47  * When the underlying transport disconnects, MRs are left in one of
48  * four states:
49  *
50  * INVALID:	The MR was not in use before the QP entered ERROR state.
51  *
52  * VALID:	The MR was registered before the QP entered ERROR state.
53  *
54  * FLUSHED_FR:	The MR was being registered when the QP entered ERROR
55  *		state, and the pending WR was flushed.
56  *
57  * FLUSHED_LI:	The MR was being invalidated when the QP entered ERROR
58  *		state, and the pending WR was flushed.
59  *
60  * When frwr_map encounters FLUSHED and VALID MRs, they are recovered
61  * with ib_dereg_mr and then are re-initialized. Because MR recovery
62  * allocates fresh resources, it is deferred to a workqueue, and the
63  * recovered MRs are placed back on the rb_mrs list when recovery is
64  * complete. frwr_map allocates another MR for the current RPC while
65  * the broken MR is reset.
66  *
67  * To ensure that frwr_map doesn't encounter an MR that is marked
68  * INVALID but that is about to be flushed due to a previous transport
69  * disconnect, the transport connect worker attempts to drain all
70  * pending send queue WRs before the transport is reconnected.
71  */
72 
73 #include <linux/sunrpc/rpc_rdma.h>
74 #include <linux/sunrpc/svc_rdma.h>
75 
76 #include "xprt_rdma.h"
77 #include <trace/events/rpcrdma.h>
78 
79 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
80 # define RPCDBG_FACILITY	RPCDBG_TRANS
81 #endif
82 
83 /**
84  * frwr_is_supported - Check if device supports FRWR
85  * @device: interface adapter to check
86  *
87  * Returns true if device supports FRWR, otherwise false
88  */
89 bool frwr_is_supported(struct ib_device *device)
90 {
91 	struct ib_device_attr *attrs = &device->attrs;
92 
93 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
94 		goto out_not_supported;
95 	if (attrs->max_fast_reg_page_list_len == 0)
96 		goto out_not_supported;
97 	return true;
98 
99 out_not_supported:
100 	pr_info("rpcrdma: 'frwr' mode is not supported by device %s\n",
101 		device->name);
102 	return false;
103 }
104 
105 /**
106  * frwr_release_mr - Destroy one MR
107  * @mr: MR allocated by frwr_init_mr
108  *
109  */
110 void frwr_release_mr(struct rpcrdma_mr *mr)
111 {
112 	int rc;
113 
114 	rc = ib_dereg_mr(mr->frwr.fr_mr);
115 	if (rc)
116 		trace_xprtrdma_frwr_dereg(mr, rc);
117 	kfree(mr->mr_sg);
118 	kfree(mr);
119 }
120 
121 /* MRs are dynamically allocated, so simply clean up and release the MR.
122  * A replacement MR will subsequently be allocated on demand.
123  */
124 static void
125 frwr_mr_recycle_worker(struct work_struct *work)
126 {
127 	struct rpcrdma_mr *mr = container_of(work, struct rpcrdma_mr, mr_recycle);
128 	struct rpcrdma_xprt *r_xprt = mr->mr_xprt;
129 
130 	trace_xprtrdma_mr_recycle(mr);
131 
132 	if (mr->mr_dir != DMA_NONE) {
133 		trace_xprtrdma_mr_unmap(mr);
134 		ib_dma_unmap_sg(r_xprt->rx_ia.ri_id->device,
135 				mr->mr_sg, mr->mr_nents, mr->mr_dir);
136 		mr->mr_dir = DMA_NONE;
137 	}
138 
139 	spin_lock(&r_xprt->rx_buf.rb_mrlock);
140 	list_del(&mr->mr_all);
141 	r_xprt->rx_stats.mrs_recycled++;
142 	spin_unlock(&r_xprt->rx_buf.rb_mrlock);
143 
144 	frwr_release_mr(mr);
145 }
146 
147 /**
148  * frwr_init_mr - Initialize one MR
149  * @ia: interface adapter
150  * @mr: generic MR to prepare for FRWR
151  *
152  * Returns zero if successful. Otherwise a negative errno
153  * is returned.
154  */
155 int frwr_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mr *mr)
156 {
157 	unsigned int depth = ia->ri_max_frwr_depth;
158 	struct scatterlist *sg;
159 	struct ib_mr *frmr;
160 	int rc;
161 
162 	frmr = ib_alloc_mr(ia->ri_pd, ia->ri_mrtype, depth);
163 	if (IS_ERR(frmr))
164 		goto out_mr_err;
165 
166 	sg = kcalloc(depth, sizeof(*sg), GFP_KERNEL);
167 	if (!sg)
168 		goto out_list_err;
169 
170 	mr->frwr.fr_mr = frmr;
171 	mr->frwr.fr_state = FRWR_IS_INVALID;
172 	mr->mr_dir = DMA_NONE;
173 	INIT_LIST_HEAD(&mr->mr_list);
174 	INIT_WORK(&mr->mr_recycle, frwr_mr_recycle_worker);
175 	init_completion(&mr->frwr.fr_linv_done);
176 
177 	sg_init_table(sg, depth);
178 	mr->mr_sg = sg;
179 	return 0;
180 
181 out_mr_err:
182 	rc = PTR_ERR(frmr);
183 	trace_xprtrdma_frwr_alloc(mr, rc);
184 	return rc;
185 
186 out_list_err:
187 	dprintk("RPC:       %s: sg allocation failure\n",
188 		__func__);
189 	ib_dereg_mr(frmr);
190 	return -ENOMEM;
191 }
192 
193 /**
194  * frwr_open - Prepare an endpoint for use with FRWR
195  * @ia: interface adapter this endpoint will use
196  * @ep: endpoint to prepare
197  *
198  * On success, sets:
199  *	ep->rep_attr.cap.max_send_wr
200  *	ep->rep_attr.cap.max_recv_wr
201  *	ep->rep_max_requests
202  *	ia->ri_max_segs
203  *
204  * And these FRWR-related fields:
205  *	ia->ri_max_frwr_depth
206  *	ia->ri_mrtype
207  *
208  * On failure, a negative errno is returned.
209  */
210 int frwr_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep)
211 {
212 	struct ib_device_attr *attrs = &ia->ri_id->device->attrs;
213 	int max_qp_wr, depth, delta;
214 
215 	ia->ri_mrtype = IB_MR_TYPE_MEM_REG;
216 	if (attrs->device_cap_flags & IB_DEVICE_SG_GAPS_REG)
217 		ia->ri_mrtype = IB_MR_TYPE_SG_GAPS;
218 
219 	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
220 	 * capability, but perform optimally when the MRs are not larger
221 	 * than a page.
222 	 */
223 	if (attrs->max_sge_rd > 1)
224 		ia->ri_max_frwr_depth = attrs->max_sge_rd;
225 	else
226 		ia->ri_max_frwr_depth = attrs->max_fast_reg_page_list_len;
227 	if (ia->ri_max_frwr_depth > RPCRDMA_MAX_DATA_SEGS)
228 		ia->ri_max_frwr_depth = RPCRDMA_MAX_DATA_SEGS;
229 	dprintk("RPC:       %s: max FR page list depth = %u\n",
230 		__func__, ia->ri_max_frwr_depth);
231 
232 	/* Add room for frwr register and invalidate WRs.
233 	 * 1. FRWR reg WR for head
234 	 * 2. FRWR invalidate WR for head
235 	 * 3. N FRWR reg WRs for pagelist
236 	 * 4. N FRWR invalidate WRs for pagelist
237 	 * 5. FRWR reg WR for tail
238 	 * 6. FRWR invalidate WR for tail
239 	 * 7. The RDMA_SEND WR
240 	 */
241 	depth = 7;
242 
243 	/* Calculate N if the device max FRWR depth is smaller than
244 	 * RPCRDMA_MAX_DATA_SEGS.
245 	 */
246 	if (ia->ri_max_frwr_depth < RPCRDMA_MAX_DATA_SEGS) {
247 		delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frwr_depth;
248 		do {
249 			depth += 2; /* FRWR reg + invalidate */
250 			delta -= ia->ri_max_frwr_depth;
251 		} while (delta > 0);
252 	}
253 
254 	max_qp_wr = ia->ri_id->device->attrs.max_qp_wr;
255 	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
256 	max_qp_wr -= 1;
257 	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
258 		return -ENOMEM;
259 	if (ep->rep_max_requests > max_qp_wr)
260 		ep->rep_max_requests = max_qp_wr;
261 	ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth;
262 	if (ep->rep_attr.cap.max_send_wr > max_qp_wr) {
263 		ep->rep_max_requests = max_qp_wr / depth;
264 		if (!ep->rep_max_requests)
265 			return -EINVAL;
266 		ep->rep_attr.cap.max_send_wr = ep->rep_max_requests * depth;
267 	}
268 	ep->rep_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
269 	ep->rep_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
270 	ep->rep_attr.cap.max_recv_wr = ep->rep_max_requests;
271 	ep->rep_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
272 	ep->rep_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
273 
274 	ia->ri_max_segs = max_t(unsigned int, 1, RPCRDMA_MAX_DATA_SEGS /
275 				ia->ri_max_frwr_depth);
276 	/* Reply chunks require segments for head and tail buffers */
277 	ia->ri_max_segs += 2;
278 	if (ia->ri_max_segs > RPCRDMA_MAX_HDR_SEGS)
279 		ia->ri_max_segs = RPCRDMA_MAX_HDR_SEGS;
280 	return 0;
281 }
282 
283 /**
284  * frwr_maxpages - Compute size of largest payload
285  * @r_xprt: transport
286  *
287  * Returns maximum size of an RPC message, in pages.
288  *
289  * FRWR mode conveys a list of pages per chunk segment. The
290  * maximum length of that list is the FRWR page list depth.
291  */
292 size_t frwr_maxpages(struct rpcrdma_xprt *r_xprt)
293 {
294 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
295 
296 	return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
297 		     (ia->ri_max_segs - 2) * ia->ri_max_frwr_depth);
298 }
299 
300 /**
301  * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
302  * @cq:	completion queue (ignored)
303  * @wc:	completed WR
304  *
305  */
306 static void
307 frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
308 {
309 	struct ib_cqe *cqe = wc->wr_cqe;
310 	struct rpcrdma_frwr *frwr =
311 			container_of(cqe, struct rpcrdma_frwr, fr_cqe);
312 
313 	/* WARNING: Only wr_cqe and status are reliable at this point */
314 	if (wc->status != IB_WC_SUCCESS)
315 		frwr->fr_state = FRWR_FLUSHED_FR;
316 	trace_xprtrdma_wc_fastreg(wc, frwr);
317 }
318 
319 /**
320  * frwr_wc_localinv - Invoked by RDMA provider for a flushed LocalInv WC
321  * @cq:	completion queue (ignored)
322  * @wc:	completed WR
323  *
324  */
325 static void
326 frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
327 {
328 	struct ib_cqe *cqe = wc->wr_cqe;
329 	struct rpcrdma_frwr *frwr = container_of(cqe, struct rpcrdma_frwr,
330 						 fr_cqe);
331 
332 	/* WARNING: Only wr_cqe and status are reliable at this point */
333 	if (wc->status != IB_WC_SUCCESS)
334 		frwr->fr_state = FRWR_FLUSHED_LI;
335 	trace_xprtrdma_wc_li(wc, frwr);
336 }
337 
338 /**
339  * frwr_wc_localinv_wake - Invoked by RDMA provider for a signaled LocalInv WC
340  * @cq:	completion queue (ignored)
341  * @wc:	completed WR
342  *
343  * Awaken anyone waiting for an MR to finish being fenced.
344  */
345 static void
346 frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
347 {
348 	struct ib_cqe *cqe = wc->wr_cqe;
349 	struct rpcrdma_frwr *frwr = container_of(cqe, struct rpcrdma_frwr,
350 						 fr_cqe);
351 
352 	/* WARNING: Only wr_cqe and status are reliable at this point */
353 	if (wc->status != IB_WC_SUCCESS)
354 		frwr->fr_state = FRWR_FLUSHED_LI;
355 	trace_xprtrdma_wc_li_wake(wc, frwr);
356 	complete(&frwr->fr_linv_done);
357 }
358 
359 /**
360  * frwr_map - Register a memory region
361  * @r_xprt: controlling transport
362  * @seg: memory region co-ordinates
363  * @nsegs: number of segments remaining
364  * @writing: true when RDMA Write will be used
365  * @xid: XID of RPC using the registered memory
366  * @out: initialized MR
367  *
368  * Prepare a REG_MR Work Request to register a memory region
369  * for remote access via RDMA READ or RDMA WRITE.
370  *
371  * Returns the next segment or a negative errno pointer.
372  * On success, the prepared MR is planted in @out.
373  */
374 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
375 				struct rpcrdma_mr_seg *seg,
376 				int nsegs, bool writing, __be32 xid,
377 				struct rpcrdma_mr **out)
378 {
379 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
380 	bool holes_ok = ia->ri_mrtype == IB_MR_TYPE_SG_GAPS;
381 	struct rpcrdma_frwr *frwr;
382 	struct rpcrdma_mr *mr;
383 	struct ib_mr *ibmr;
384 	struct ib_reg_wr *reg_wr;
385 	int i, n;
386 	u8 key;
387 
388 	mr = NULL;
389 	do {
390 		if (mr)
391 			rpcrdma_mr_recycle(mr);
392 		mr = rpcrdma_mr_get(r_xprt);
393 		if (!mr)
394 			return ERR_PTR(-EAGAIN);
395 	} while (mr->frwr.fr_state != FRWR_IS_INVALID);
396 	frwr = &mr->frwr;
397 	frwr->fr_state = FRWR_IS_VALID;
398 
399 	if (nsegs > ia->ri_max_frwr_depth)
400 		nsegs = ia->ri_max_frwr_depth;
401 	for (i = 0; i < nsegs;) {
402 		if (seg->mr_page)
403 			sg_set_page(&mr->mr_sg[i],
404 				    seg->mr_page,
405 				    seg->mr_len,
406 				    offset_in_page(seg->mr_offset));
407 		else
408 			sg_set_buf(&mr->mr_sg[i], seg->mr_offset,
409 				   seg->mr_len);
410 
411 		++seg;
412 		++i;
413 		if (holes_ok)
414 			continue;
415 		if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
416 		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
417 			break;
418 	}
419 	mr->mr_dir = rpcrdma_data_dir(writing);
420 
421 	mr->mr_nents =
422 		ib_dma_map_sg(ia->ri_id->device, mr->mr_sg, i, mr->mr_dir);
423 	if (!mr->mr_nents)
424 		goto out_dmamap_err;
425 
426 	ibmr = frwr->fr_mr;
427 	n = ib_map_mr_sg(ibmr, mr->mr_sg, mr->mr_nents, NULL, PAGE_SIZE);
428 	if (unlikely(n != mr->mr_nents))
429 		goto out_mapmr_err;
430 
431 	ibmr->iova &= 0x00000000ffffffff;
432 	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
433 	key = (u8)(ibmr->rkey & 0x000000FF);
434 	ib_update_fast_reg_key(ibmr, ++key);
435 
436 	reg_wr = &frwr->fr_regwr;
437 	reg_wr->mr = ibmr;
438 	reg_wr->key = ibmr->rkey;
439 	reg_wr->access = writing ?
440 			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
441 			 IB_ACCESS_REMOTE_READ;
442 
443 	mr->mr_handle = ibmr->rkey;
444 	mr->mr_length = ibmr->length;
445 	mr->mr_offset = ibmr->iova;
446 	trace_xprtrdma_mr_map(mr);
447 
448 	*out = mr;
449 	return seg;
450 
451 out_dmamap_err:
452 	mr->mr_dir = DMA_NONE;
453 	trace_xprtrdma_frwr_sgerr(mr, i);
454 	rpcrdma_mr_put(mr);
455 	return ERR_PTR(-EIO);
456 
457 out_mapmr_err:
458 	trace_xprtrdma_frwr_maperr(mr, n);
459 	rpcrdma_mr_recycle(mr);
460 	return ERR_PTR(-EIO);
461 }
462 
463 /**
464  * frwr_send - post Send WR containing the RPC Call message
465  * @ia: interface adapter
466  * @req: Prepared RPC Call
467  *
468  * For FRWR, chain any FastReg WRs to the Send WR. Only a
469  * single ib_post_send call is needed to register memory
470  * and then post the Send WR.
471  *
472  * Returns the result of ib_post_send.
473  */
474 int frwr_send(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
475 {
476 	struct ib_send_wr *post_wr;
477 	struct rpcrdma_mr *mr;
478 
479 	post_wr = &req->rl_sendctx->sc_wr;
480 	list_for_each_entry(mr, &req->rl_registered, mr_list) {
481 		struct rpcrdma_frwr *frwr;
482 
483 		frwr = &mr->frwr;
484 
485 		frwr->fr_cqe.done = frwr_wc_fastreg;
486 		frwr->fr_regwr.wr.next = post_wr;
487 		frwr->fr_regwr.wr.wr_cqe = &frwr->fr_cqe;
488 		frwr->fr_regwr.wr.num_sge = 0;
489 		frwr->fr_regwr.wr.opcode = IB_WR_REG_MR;
490 		frwr->fr_regwr.wr.send_flags = 0;
491 
492 		post_wr = &frwr->fr_regwr.wr;
493 	}
494 
495 	/* If ib_post_send fails, the next ->send_request for
496 	 * @req will queue these MRs for recovery.
497 	 */
498 	return ib_post_send(ia->ri_id->qp, post_wr, NULL);
499 }
500 
501 /**
502  * frwr_reminv - handle a remotely invalidated mr on the @mrs list
503  * @rep: Received reply
504  * @mrs: list of MRs to check
505  *
506  */
507 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
508 {
509 	struct rpcrdma_mr *mr;
510 
511 	list_for_each_entry(mr, mrs, mr_list)
512 		if (mr->mr_handle == rep->rr_inv_rkey) {
513 			list_del_init(&mr->mr_list);
514 			trace_xprtrdma_mr_remoteinv(mr);
515 			mr->frwr.fr_state = FRWR_IS_INVALID;
516 			rpcrdma_mr_unmap_and_put(mr);
517 			break;	/* only one invalidated MR per RPC */
518 		}
519 }
520 
521 /**
522  * frwr_unmap_sync - invalidate memory regions that were registered for @req
523  * @r_xprt: controlling transport
524  * @mrs: list of MRs to process
525  *
526  * Sleeps until it is safe for the host CPU to access the
527  * previously mapped memory regions.
528  *
529  * Caller ensures that @mrs is not empty before the call. This
530  * function empties the list.
531  */
532 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct list_head *mrs)
533 {
534 	struct ib_send_wr *first, **prev, *last;
535 	const struct ib_send_wr *bad_wr;
536 	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
537 	struct rpcrdma_frwr *frwr;
538 	struct rpcrdma_mr *mr;
539 	int count, rc;
540 
541 	/* ORDER: Invalidate all of the MRs first
542 	 *
543 	 * Chain the LOCAL_INV Work Requests and post them with
544 	 * a single ib_post_send() call.
545 	 */
546 	frwr = NULL;
547 	count = 0;
548 	prev = &first;
549 	list_for_each_entry(mr, mrs, mr_list) {
550 		mr->frwr.fr_state = FRWR_IS_INVALID;
551 
552 		frwr = &mr->frwr;
553 		trace_xprtrdma_mr_localinv(mr);
554 
555 		frwr->fr_cqe.done = frwr_wc_localinv;
556 		last = &frwr->fr_invwr;
557 		memset(last, 0, sizeof(*last));
558 		last->wr_cqe = &frwr->fr_cqe;
559 		last->opcode = IB_WR_LOCAL_INV;
560 		last->ex.invalidate_rkey = mr->mr_handle;
561 		count++;
562 
563 		*prev = last;
564 		prev = &last->next;
565 	}
566 	if (!frwr)
567 		goto unmap;
568 
569 	/* Strong send queue ordering guarantees that when the
570 	 * last WR in the chain completes, all WRs in the chain
571 	 * are complete.
572 	 */
573 	last->send_flags = IB_SEND_SIGNALED;
574 	frwr->fr_cqe.done = frwr_wc_localinv_wake;
575 	reinit_completion(&frwr->fr_linv_done);
576 
577 	/* Transport disconnect drains the receive CQ before it
578 	 * replaces the QP. The RPC reply handler won't call us
579 	 * unless ri_id->qp is a valid pointer.
580 	 */
581 	r_xprt->rx_stats.local_inv_needed++;
582 	bad_wr = NULL;
583 	rc = ib_post_send(ia->ri_id->qp, first, &bad_wr);
584 	if (bad_wr != first)
585 		wait_for_completion(&frwr->fr_linv_done);
586 	if (rc)
587 		goto out_release;
588 
589 	/* ORDER: Now DMA unmap all of the MRs, and return
590 	 * them to the free MR list.
591 	 */
592 unmap:
593 	while (!list_empty(mrs)) {
594 		mr = rpcrdma_mr_pop(mrs);
595 		rpcrdma_mr_unmap_and_put(mr);
596 	}
597 	return;
598 
599 out_release:
600 	pr_err("rpcrdma: FRWR invalidate ib_post_send returned %i\n", rc);
601 
602 	/* Unmap and release the MRs in the LOCAL_INV WRs that did not
603 	 * get posted.
604 	 */
605 	while (bad_wr) {
606 		frwr = container_of(bad_wr, struct rpcrdma_frwr,
607 				    fr_invwr);
608 		mr = container_of(frwr, struct rpcrdma_mr, frwr);
609 		bad_wr = bad_wr->next;
610 
611 		list_del_init(&mr->mr_list);
612 		rpcrdma_mr_recycle(mr);
613 	}
614 }
615