xref: /linux/net/tls/tls_main.c (revision f86fd32d)
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43 
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47 
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52 
53 enum {
54 	TLSV4,
55 	TLSV6,
56 	TLS_NUM_PROTS,
57 };
58 
59 static struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 			 struct proto *base);
67 
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71 
72 	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
73 }
74 
75 int wait_on_pending_writer(struct sock *sk, long *timeo)
76 {
77 	int rc = 0;
78 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
79 
80 	add_wait_queue(sk_sleep(sk), &wait);
81 	while (1) {
82 		if (!*timeo) {
83 			rc = -EAGAIN;
84 			break;
85 		}
86 
87 		if (signal_pending(current)) {
88 			rc = sock_intr_errno(*timeo);
89 			break;
90 		}
91 
92 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
93 			break;
94 	}
95 	remove_wait_queue(sk_sleep(sk), &wait);
96 	return rc;
97 }
98 
99 int tls_push_sg(struct sock *sk,
100 		struct tls_context *ctx,
101 		struct scatterlist *sg,
102 		u16 first_offset,
103 		int flags)
104 {
105 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106 	int ret = 0;
107 	struct page *p;
108 	size_t size;
109 	int offset = first_offset;
110 
111 	size = sg->length - offset;
112 	offset += sg->offset;
113 
114 	ctx->in_tcp_sendpages = true;
115 	while (1) {
116 		if (sg_is_last(sg))
117 			sendpage_flags = flags;
118 
119 		/* is sending application-limited? */
120 		tcp_rate_check_app_limited(sk);
121 		p = sg_page(sg);
122 retry:
123 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124 
125 		if (ret != size) {
126 			if (ret > 0) {
127 				offset += ret;
128 				size -= ret;
129 				goto retry;
130 			}
131 
132 			offset -= sg->offset;
133 			ctx->partially_sent_offset = offset;
134 			ctx->partially_sent_record = (void *)sg;
135 			ctx->in_tcp_sendpages = false;
136 			return ret;
137 		}
138 
139 		put_page(p);
140 		sk_mem_uncharge(sk, sg->length);
141 		sg = sg_next(sg);
142 		if (!sg)
143 			break;
144 
145 		offset = sg->offset;
146 		size = sg->length;
147 	}
148 
149 	ctx->in_tcp_sendpages = false;
150 
151 	return 0;
152 }
153 
154 static int tls_handle_open_record(struct sock *sk, int flags)
155 {
156 	struct tls_context *ctx = tls_get_ctx(sk);
157 
158 	if (tls_is_pending_open_record(ctx))
159 		return ctx->push_pending_record(sk, flags);
160 
161 	return 0;
162 }
163 
164 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165 		      unsigned char *record_type)
166 {
167 	struct cmsghdr *cmsg;
168 	int rc = -EINVAL;
169 
170 	for_each_cmsghdr(cmsg, msg) {
171 		if (!CMSG_OK(msg, cmsg))
172 			return -EINVAL;
173 		if (cmsg->cmsg_level != SOL_TLS)
174 			continue;
175 
176 		switch (cmsg->cmsg_type) {
177 		case TLS_SET_RECORD_TYPE:
178 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179 				return -EINVAL;
180 
181 			if (msg->msg_flags & MSG_MORE)
182 				return -EINVAL;
183 
184 			rc = tls_handle_open_record(sk, msg->msg_flags);
185 			if (rc)
186 				return rc;
187 
188 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
189 			rc = 0;
190 			break;
191 		default:
192 			return -EINVAL;
193 		}
194 	}
195 
196 	return rc;
197 }
198 
199 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200 			    int flags)
201 {
202 	struct scatterlist *sg;
203 	u16 offset;
204 
205 	sg = ctx->partially_sent_record;
206 	offset = ctx->partially_sent_offset;
207 
208 	ctx->partially_sent_record = NULL;
209 	return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211 
212 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213 {
214 	struct scatterlist *sg;
215 
216 	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
217 		put_page(sg_page(sg));
218 		sk_mem_uncharge(sk, sg->length);
219 	}
220 	ctx->partially_sent_record = NULL;
221 }
222 
223 static void tls_write_space(struct sock *sk)
224 {
225 	struct tls_context *ctx = tls_get_ctx(sk);
226 
227 	/* If in_tcp_sendpages call lower protocol write space handler
228 	 * to ensure we wake up any waiting operations there. For example
229 	 * if do_tcp_sendpages where to call sk_wait_event.
230 	 */
231 	if (ctx->in_tcp_sendpages) {
232 		ctx->sk_write_space(sk);
233 		return;
234 	}
235 
236 #ifdef CONFIG_TLS_DEVICE
237 	if (ctx->tx_conf == TLS_HW)
238 		tls_device_write_space(sk, ctx);
239 	else
240 #endif
241 		tls_sw_write_space(sk, ctx);
242 
243 	ctx->sk_write_space(sk);
244 }
245 
246 /**
247  * tls_ctx_free() - free TLS ULP context
248  * @sk:  socket to with @ctx is attached
249  * @ctx: TLS context structure
250  *
251  * Free TLS context. If @sk is %NULL caller guarantees that the socket
252  * to which @ctx was attached has no outstanding references.
253  */
254 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
255 {
256 	if (!ctx)
257 		return;
258 
259 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
260 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
261 	mutex_destroy(&ctx->tx_lock);
262 
263 	if (sk)
264 		kfree_rcu(ctx, rcu);
265 	else
266 		kfree(ctx);
267 }
268 
269 static void tls_sk_proto_cleanup(struct sock *sk,
270 				 struct tls_context *ctx, long timeo)
271 {
272 	if (unlikely(sk->sk_write_pending) &&
273 	    !wait_on_pending_writer(sk, &timeo))
274 		tls_handle_open_record(sk, 0);
275 
276 	/* We need these for tls_sw_fallback handling of other packets */
277 	if (ctx->tx_conf == TLS_SW) {
278 		kfree(ctx->tx.rec_seq);
279 		kfree(ctx->tx.iv);
280 		tls_sw_release_resources_tx(sk);
281 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
282 	} else if (ctx->tx_conf == TLS_HW) {
283 		tls_device_free_resources_tx(sk);
284 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
285 	}
286 
287 	if (ctx->rx_conf == TLS_SW) {
288 		tls_sw_release_resources_rx(sk);
289 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
290 	} else if (ctx->rx_conf == TLS_HW) {
291 		tls_device_offload_cleanup_rx(sk);
292 		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
293 	}
294 }
295 
296 static void tls_sk_proto_close(struct sock *sk, long timeout)
297 {
298 	struct inet_connection_sock *icsk = inet_csk(sk);
299 	struct tls_context *ctx = tls_get_ctx(sk);
300 	long timeo = sock_sndtimeo(sk, 0);
301 	bool free_ctx;
302 
303 	if (ctx->tx_conf == TLS_SW)
304 		tls_sw_cancel_work_tx(ctx);
305 
306 	lock_sock(sk);
307 	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
308 
309 	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
310 		tls_sk_proto_cleanup(sk, ctx, timeo);
311 
312 	write_lock_bh(&sk->sk_callback_lock);
313 	if (free_ctx)
314 		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
315 	sk->sk_prot = ctx->sk_proto;
316 	if (sk->sk_write_space == tls_write_space)
317 		sk->sk_write_space = ctx->sk_write_space;
318 	write_unlock_bh(&sk->sk_callback_lock);
319 	release_sock(sk);
320 	if (ctx->tx_conf == TLS_SW)
321 		tls_sw_free_ctx_tx(ctx);
322 	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
323 		tls_sw_strparser_done(ctx);
324 	if (ctx->rx_conf == TLS_SW)
325 		tls_sw_free_ctx_rx(ctx);
326 	ctx->sk_proto->close(sk, timeout);
327 
328 	if (free_ctx)
329 		tls_ctx_free(sk, ctx);
330 }
331 
332 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
333 				int __user *optlen)
334 {
335 	int rc = 0;
336 	struct tls_context *ctx = tls_get_ctx(sk);
337 	struct tls_crypto_info *crypto_info;
338 	int len;
339 
340 	if (get_user(len, optlen))
341 		return -EFAULT;
342 
343 	if (!optval || (len < sizeof(*crypto_info))) {
344 		rc = -EINVAL;
345 		goto out;
346 	}
347 
348 	if (!ctx) {
349 		rc = -EBUSY;
350 		goto out;
351 	}
352 
353 	/* get user crypto info */
354 	crypto_info = &ctx->crypto_send.info;
355 
356 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
357 		rc = -EBUSY;
358 		goto out;
359 	}
360 
361 	if (len == sizeof(*crypto_info)) {
362 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
363 			rc = -EFAULT;
364 		goto out;
365 	}
366 
367 	switch (crypto_info->cipher_type) {
368 	case TLS_CIPHER_AES_GCM_128: {
369 		struct tls12_crypto_info_aes_gcm_128 *
370 		  crypto_info_aes_gcm_128 =
371 		  container_of(crypto_info,
372 			       struct tls12_crypto_info_aes_gcm_128,
373 			       info);
374 
375 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
376 			rc = -EINVAL;
377 			goto out;
378 		}
379 		lock_sock(sk);
380 		memcpy(crypto_info_aes_gcm_128->iv,
381 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
382 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
383 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
384 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
385 		release_sock(sk);
386 		if (copy_to_user(optval,
387 				 crypto_info_aes_gcm_128,
388 				 sizeof(*crypto_info_aes_gcm_128)))
389 			rc = -EFAULT;
390 		break;
391 	}
392 	case TLS_CIPHER_AES_GCM_256: {
393 		struct tls12_crypto_info_aes_gcm_256 *
394 		  crypto_info_aes_gcm_256 =
395 		  container_of(crypto_info,
396 			       struct tls12_crypto_info_aes_gcm_256,
397 			       info);
398 
399 		if (len != sizeof(*crypto_info_aes_gcm_256)) {
400 			rc = -EINVAL;
401 			goto out;
402 		}
403 		lock_sock(sk);
404 		memcpy(crypto_info_aes_gcm_256->iv,
405 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
406 		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
407 		memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
408 		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
409 		release_sock(sk);
410 		if (copy_to_user(optval,
411 				 crypto_info_aes_gcm_256,
412 				 sizeof(*crypto_info_aes_gcm_256)))
413 			rc = -EFAULT;
414 		break;
415 	}
416 	default:
417 		rc = -EINVAL;
418 	}
419 
420 out:
421 	return rc;
422 }
423 
424 static int do_tls_getsockopt(struct sock *sk, int optname,
425 			     char __user *optval, int __user *optlen)
426 {
427 	int rc = 0;
428 
429 	switch (optname) {
430 	case TLS_TX:
431 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
432 		break;
433 	default:
434 		rc = -ENOPROTOOPT;
435 		break;
436 	}
437 	return rc;
438 }
439 
440 static int tls_getsockopt(struct sock *sk, int level, int optname,
441 			  char __user *optval, int __user *optlen)
442 {
443 	struct tls_context *ctx = tls_get_ctx(sk);
444 
445 	if (level != SOL_TLS)
446 		return ctx->sk_proto->getsockopt(sk, level,
447 						 optname, optval, optlen);
448 
449 	return do_tls_getsockopt(sk, optname, optval, optlen);
450 }
451 
452 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
453 				  unsigned int optlen, int tx)
454 {
455 	struct tls_crypto_info *crypto_info;
456 	struct tls_crypto_info *alt_crypto_info;
457 	struct tls_context *ctx = tls_get_ctx(sk);
458 	size_t optsize;
459 	int rc = 0;
460 	int conf;
461 
462 	if (!optval || (optlen < sizeof(*crypto_info))) {
463 		rc = -EINVAL;
464 		goto out;
465 	}
466 
467 	if (tx) {
468 		crypto_info = &ctx->crypto_send.info;
469 		alt_crypto_info = &ctx->crypto_recv.info;
470 	} else {
471 		crypto_info = &ctx->crypto_recv.info;
472 		alt_crypto_info = &ctx->crypto_send.info;
473 	}
474 
475 	/* Currently we don't support set crypto info more than one time */
476 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
477 		rc = -EBUSY;
478 		goto out;
479 	}
480 
481 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
482 	if (rc) {
483 		rc = -EFAULT;
484 		goto err_crypto_info;
485 	}
486 
487 	/* check version */
488 	if (crypto_info->version != TLS_1_2_VERSION &&
489 	    crypto_info->version != TLS_1_3_VERSION) {
490 		rc = -EINVAL;
491 		goto err_crypto_info;
492 	}
493 
494 	/* Ensure that TLS version and ciphers are same in both directions */
495 	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
496 		if (alt_crypto_info->version != crypto_info->version ||
497 		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
498 			rc = -EINVAL;
499 			goto err_crypto_info;
500 		}
501 	}
502 
503 	switch (crypto_info->cipher_type) {
504 	case TLS_CIPHER_AES_GCM_128:
505 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
506 		break;
507 	case TLS_CIPHER_AES_GCM_256: {
508 		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
509 		break;
510 	}
511 	case TLS_CIPHER_AES_CCM_128:
512 		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
513 		break;
514 	default:
515 		rc = -EINVAL;
516 		goto err_crypto_info;
517 	}
518 
519 	if (optlen != optsize) {
520 		rc = -EINVAL;
521 		goto err_crypto_info;
522 	}
523 
524 	rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
525 			    optlen - sizeof(*crypto_info));
526 	if (rc) {
527 		rc = -EFAULT;
528 		goto err_crypto_info;
529 	}
530 
531 	if (tx) {
532 		rc = tls_set_device_offload(sk, ctx);
533 		conf = TLS_HW;
534 		if (!rc) {
535 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
536 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
537 		} else {
538 			rc = tls_set_sw_offload(sk, ctx, 1);
539 			if (rc)
540 				goto err_crypto_info;
541 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
542 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
543 			conf = TLS_SW;
544 		}
545 	} else {
546 		rc = tls_set_device_offload_rx(sk, ctx);
547 		conf = TLS_HW;
548 		if (!rc) {
549 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
550 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
551 		} else {
552 			rc = tls_set_sw_offload(sk, ctx, 0);
553 			if (rc)
554 				goto err_crypto_info;
555 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
556 			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
557 			conf = TLS_SW;
558 		}
559 		tls_sw_strparser_arm(sk, ctx);
560 	}
561 
562 	if (tx)
563 		ctx->tx_conf = conf;
564 	else
565 		ctx->rx_conf = conf;
566 	update_sk_prot(sk, ctx);
567 	if (tx) {
568 		ctx->sk_write_space = sk->sk_write_space;
569 		sk->sk_write_space = tls_write_space;
570 	} else {
571 		sk->sk_socket->ops = &tls_sw_proto_ops;
572 	}
573 	goto out;
574 
575 err_crypto_info:
576 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
577 out:
578 	return rc;
579 }
580 
581 static int do_tls_setsockopt(struct sock *sk, int optname,
582 			     char __user *optval, unsigned int optlen)
583 {
584 	int rc = 0;
585 
586 	switch (optname) {
587 	case TLS_TX:
588 	case TLS_RX:
589 		lock_sock(sk);
590 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
591 					    optname == TLS_TX);
592 		release_sock(sk);
593 		break;
594 	default:
595 		rc = -ENOPROTOOPT;
596 		break;
597 	}
598 	return rc;
599 }
600 
601 static int tls_setsockopt(struct sock *sk, int level, int optname,
602 			  char __user *optval, unsigned int optlen)
603 {
604 	struct tls_context *ctx = tls_get_ctx(sk);
605 
606 	if (level != SOL_TLS)
607 		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
608 						 optlen);
609 
610 	return do_tls_setsockopt(sk, optname, optval, optlen);
611 }
612 
613 struct tls_context *tls_ctx_create(struct sock *sk)
614 {
615 	struct inet_connection_sock *icsk = inet_csk(sk);
616 	struct tls_context *ctx;
617 
618 	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
619 	if (!ctx)
620 		return NULL;
621 
622 	mutex_init(&ctx->tx_lock);
623 	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
624 	ctx->sk_proto = sk->sk_prot;
625 	return ctx;
626 }
627 
628 static void tls_build_proto(struct sock *sk)
629 {
630 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
631 
632 	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
633 	if (ip_ver == TLSV6 &&
634 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
635 		mutex_lock(&tcpv6_prot_mutex);
636 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
637 			build_protos(tls_prots[TLSV6], sk->sk_prot);
638 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
639 		}
640 		mutex_unlock(&tcpv6_prot_mutex);
641 	}
642 
643 	if (ip_ver == TLSV4 &&
644 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
645 		mutex_lock(&tcpv4_prot_mutex);
646 		if (likely(sk->sk_prot != saved_tcpv4_prot)) {
647 			build_protos(tls_prots[TLSV4], sk->sk_prot);
648 			smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
649 		}
650 		mutex_unlock(&tcpv4_prot_mutex);
651 	}
652 }
653 
654 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
655 			 struct proto *base)
656 {
657 	prot[TLS_BASE][TLS_BASE] = *base;
658 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
659 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
660 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
661 
662 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
663 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
664 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
665 
666 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
667 	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
668 	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
669 	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
670 
671 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
672 	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
673 	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
674 	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
675 
676 #ifdef CONFIG_TLS_DEVICE
677 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
678 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
679 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
680 
681 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
682 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
683 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
684 
685 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
686 
687 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
688 
689 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
690 #endif
691 #ifdef CONFIG_TLS_TOE
692 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
693 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
694 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
695 #endif
696 }
697 
698 static int tls_init(struct sock *sk)
699 {
700 	struct tls_context *ctx;
701 	int rc = 0;
702 
703 	tls_build_proto(sk);
704 
705 #ifdef CONFIG_TLS_TOE
706 	if (tls_toe_bypass(sk))
707 		return 0;
708 #endif
709 
710 	/* The TLS ulp is currently supported only for TCP sockets
711 	 * in ESTABLISHED state.
712 	 * Supporting sockets in LISTEN state will require us
713 	 * to modify the accept implementation to clone rather then
714 	 * share the ulp context.
715 	 */
716 	if (sk->sk_state != TCP_ESTABLISHED)
717 		return -ENOTCONN;
718 
719 	/* allocate tls context */
720 	write_lock_bh(&sk->sk_callback_lock);
721 	ctx = tls_ctx_create(sk);
722 	if (!ctx) {
723 		rc = -ENOMEM;
724 		goto out;
725 	}
726 
727 	ctx->tx_conf = TLS_BASE;
728 	ctx->rx_conf = TLS_BASE;
729 	update_sk_prot(sk, ctx);
730 out:
731 	write_unlock_bh(&sk->sk_callback_lock);
732 	return rc;
733 }
734 
735 static void tls_update(struct sock *sk, struct proto *p,
736 		       void (*write_space)(struct sock *sk))
737 {
738 	struct tls_context *ctx;
739 
740 	ctx = tls_get_ctx(sk);
741 	if (likely(ctx)) {
742 		ctx->sk_write_space = write_space;
743 		ctx->sk_proto = p;
744 	} else {
745 		sk->sk_prot = p;
746 		sk->sk_write_space = write_space;
747 	}
748 }
749 
750 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
751 {
752 	u16 version, cipher_type;
753 	struct tls_context *ctx;
754 	struct nlattr *start;
755 	int err;
756 
757 	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
758 	if (!start)
759 		return -EMSGSIZE;
760 
761 	rcu_read_lock();
762 	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
763 	if (!ctx) {
764 		err = 0;
765 		goto nla_failure;
766 	}
767 	version = ctx->prot_info.version;
768 	if (version) {
769 		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
770 		if (err)
771 			goto nla_failure;
772 	}
773 	cipher_type = ctx->prot_info.cipher_type;
774 	if (cipher_type) {
775 		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
776 		if (err)
777 			goto nla_failure;
778 	}
779 	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
780 	if (err)
781 		goto nla_failure;
782 
783 	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
784 	if (err)
785 		goto nla_failure;
786 
787 	rcu_read_unlock();
788 	nla_nest_end(skb, start);
789 	return 0;
790 
791 nla_failure:
792 	rcu_read_unlock();
793 	nla_nest_cancel(skb, start);
794 	return err;
795 }
796 
797 static size_t tls_get_info_size(const struct sock *sk)
798 {
799 	size_t size = 0;
800 
801 	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
802 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
803 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
804 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
805 		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
806 		0;
807 
808 	return size;
809 }
810 
811 static int __net_init tls_init_net(struct net *net)
812 {
813 	int err;
814 
815 	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
816 	if (!net->mib.tls_statistics)
817 		return -ENOMEM;
818 
819 	err = tls_proc_init(net);
820 	if (err)
821 		goto err_free_stats;
822 
823 	return 0;
824 err_free_stats:
825 	free_percpu(net->mib.tls_statistics);
826 	return err;
827 }
828 
829 static void __net_exit tls_exit_net(struct net *net)
830 {
831 	tls_proc_fini(net);
832 	free_percpu(net->mib.tls_statistics);
833 }
834 
835 static struct pernet_operations tls_proc_ops = {
836 	.init = tls_init_net,
837 	.exit = tls_exit_net,
838 };
839 
840 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
841 	.name			= "tls",
842 	.owner			= THIS_MODULE,
843 	.init			= tls_init,
844 	.update			= tls_update,
845 	.get_info		= tls_get_info,
846 	.get_info_size		= tls_get_info_size,
847 };
848 
849 static int __init tls_register(void)
850 {
851 	int err;
852 
853 	err = register_pernet_subsys(&tls_proc_ops);
854 	if (err)
855 		return err;
856 
857 	tls_sw_proto_ops = inet_stream_ops;
858 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
859 	tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked,
860 
861 	tls_device_init();
862 	tcp_register_ulp(&tcp_tls_ulp_ops);
863 
864 	return 0;
865 }
866 
867 static void __exit tls_unregister(void)
868 {
869 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
870 	tls_device_cleanup();
871 	unregister_pernet_subsys(&tls_proc_ops);
872 }
873 
874 module_init(tls_register);
875 module_exit(tls_unregister);
876