xref: /linux/net/unix/af_unix.c (revision 021bc4b9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET4:	Implementation of BSD Unix domain sockets.
4  *
5  * Authors:	Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *
7  * Fixes:
8  *		Linus Torvalds	:	Assorted bug cures.
9  *		Niibe Yutaka	:	async I/O support.
10  *		Carsten Paeth	:	PF_UNIX check, address fixes.
11  *		Alan Cox	:	Limit size of allocated blocks.
12  *		Alan Cox	:	Fixed the stupid socketpair bug.
13  *		Alan Cox	:	BSD compatibility fine tuning.
14  *		Alan Cox	:	Fixed a bug in connect when interrupted.
15  *		Alan Cox	:	Sorted out a proper draft version of
16  *					file descriptor passing hacked up from
17  *					Mike Shaver's work.
18  *		Marty Leisner	:	Fixes to fd passing
19  *		Nick Nevin	:	recvmsg bugfix.
20  *		Alan Cox	:	Started proper garbage collector
21  *		Heiko EiBfeldt	:	Missing verify_area check
22  *		Alan Cox	:	Started POSIXisms
23  *		Andreas Schwab	:	Replace inode by dentry for proper
24  *					reference counting
25  *		Kirk Petersen	:	Made this a module
26  *	    Christoph Rohland	:	Elegant non-blocking accept/connect algorithm.
27  *					Lots of bug fixes.
28  *	     Alexey Kuznetosv	:	Repaired (I hope) bugs introduces
29  *					by above two patches.
30  *	     Andrea Arcangeli	:	If possible we block in connect(2)
31  *					if the max backlog of the listen socket
32  *					is been reached. This won't break
33  *					old apps and it will avoid huge amount
34  *					of socks hashed (this for unix_gc()
35  *					performances reasons).
36  *					Security fix that limits the max
37  *					number of socks to 2*max_files and
38  *					the number of skb queueable in the
39  *					dgram receiver.
40  *		Artur Skawina   :	Hash function optimizations
41  *	     Alexey Kuznetsov   :	Full scale SMP. Lot of bugs are introduced 8)
42  *	      Malcolm Beattie   :	Set peercred for socketpair
43  *	     Michal Ostrowski   :       Module initialization cleanup.
44  *	     Arnaldo C. Melo	:	Remove MOD_{INC,DEC}_USE_COUNT,
45  *	     				the core infrastructure is doing that
46  *	     				for all net proto families now (2.5.69+)
47  *
48  * Known differences from reference BSD that was tested:
49  *
50  *	[TO FIX]
51  *	ECONNREFUSED is not returned from one end of a connected() socket to the
52  *		other the moment one end closes.
53  *	fstat() doesn't return st_dev=0, and give the blksize as high water mark
54  *		and a fake inode identifier (nor the BSD first socket fstat twice bug).
55  *	[NOT TO FIX]
56  *	accept() returns a path name even if the connecting socket has closed
57  *		in the meantime (BSD loses the path and gives up).
58  *	accept() returns 0 length path for an unbound connector. BSD returns 16
59  *		and a null first byte in the path (but not for gethost/peername - BSD bug ??)
60  *	socketpair(...SOCK_RAW..) doesn't panic the kernel.
61  *	BSD af_unix apparently has connect forgetting to block properly.
62  *		(need to check this with the POSIX spec in detail)
63  *
64  * Differences from 2.0.0-11-... (ANK)
65  *	Bug fixes and improvements.
66  *		- client shutdown killed server socket.
67  *		- removed all useless cli/sti pairs.
68  *
69  *	Semantic changes/extensions.
70  *		- generic control message passing.
71  *		- SCM_CREDENTIALS control message.
72  *		- "Abstract" (not FS based) socket bindings.
73  *		  Abstract names are sequences of bytes (not zero terminated)
74  *		  started by 0, so that this name space does not intersect
75  *		  with BSD names.
76  */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/signal.h>
83 #include <linux/sched/signal.h>
84 #include <linux/errno.h>
85 #include <linux/string.h>
86 #include <linux/stat.h>
87 #include <linux/dcache.h>
88 #include <linux/namei.h>
89 #include <linux/socket.h>
90 #include <linux/un.h>
91 #include <linux/fcntl.h>
92 #include <linux/filter.h>
93 #include <linux/termios.h>
94 #include <linux/sockios.h>
95 #include <linux/net.h>
96 #include <linux/in.h>
97 #include <linux/fs.h>
98 #include <linux/slab.h>
99 #include <linux/uaccess.h>
100 #include <linux/skbuff.h>
101 #include <linux/netdevice.h>
102 #include <net/net_namespace.h>
103 #include <net/sock.h>
104 #include <net/tcp_states.h>
105 #include <net/af_unix.h>
106 #include <linux/proc_fs.h>
107 #include <linux/seq_file.h>
108 #include <net/scm.h>
109 #include <linux/init.h>
110 #include <linux/poll.h>
111 #include <linux/rtnetlink.h>
112 #include <linux/mount.h>
113 #include <net/checksum.h>
114 #include <linux/security.h>
115 #include <linux/splice.h>
116 #include <linux/freezer.h>
117 #include <linux/file.h>
118 #include <linux/btf_ids.h>
119 #include <linux/bpf-cgroup.h>
120 
121 #include "scm.h"
122 
123 static atomic_long_t unix_nr_socks;
124 static struct hlist_head bsd_socket_buckets[UNIX_HASH_SIZE / 2];
125 static spinlock_t bsd_socket_locks[UNIX_HASH_SIZE / 2];
126 
127 /* SMP locking strategy:
128  *    hash table is protected with spinlock.
129  *    each socket state is protected by separate spinlock.
130  */
131 
132 static unsigned int unix_unbound_hash(struct sock *sk)
133 {
134 	unsigned long hash = (unsigned long)sk;
135 
136 	hash ^= hash >> 16;
137 	hash ^= hash >> 8;
138 	hash ^= sk->sk_type;
139 
140 	return hash & UNIX_HASH_MOD;
141 }
142 
143 static unsigned int unix_bsd_hash(struct inode *i)
144 {
145 	return i->i_ino & UNIX_HASH_MOD;
146 }
147 
148 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr,
149 				       int addr_len, int type)
150 {
151 	__wsum csum = csum_partial(sunaddr, addr_len, 0);
152 	unsigned int hash;
153 
154 	hash = (__force unsigned int)csum_fold(csum);
155 	hash ^= hash >> 8;
156 	hash ^= type;
157 
158 	return UNIX_HASH_MOD + 1 + (hash & UNIX_HASH_MOD);
159 }
160 
161 static void unix_table_double_lock(struct net *net,
162 				   unsigned int hash1, unsigned int hash2)
163 {
164 	if (hash1 == hash2) {
165 		spin_lock(&net->unx.table.locks[hash1]);
166 		return;
167 	}
168 
169 	if (hash1 > hash2)
170 		swap(hash1, hash2);
171 
172 	spin_lock(&net->unx.table.locks[hash1]);
173 	spin_lock_nested(&net->unx.table.locks[hash2], SINGLE_DEPTH_NESTING);
174 }
175 
176 static void unix_table_double_unlock(struct net *net,
177 				     unsigned int hash1, unsigned int hash2)
178 {
179 	if (hash1 == hash2) {
180 		spin_unlock(&net->unx.table.locks[hash1]);
181 		return;
182 	}
183 
184 	spin_unlock(&net->unx.table.locks[hash1]);
185 	spin_unlock(&net->unx.table.locks[hash2]);
186 }
187 
188 #ifdef CONFIG_SECURITY_NETWORK
189 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
190 {
191 	UNIXCB(skb).secid = scm->secid;
192 }
193 
194 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
195 {
196 	scm->secid = UNIXCB(skb).secid;
197 }
198 
199 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
200 {
201 	return (scm->secid == UNIXCB(skb).secid);
202 }
203 #else
204 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
205 { }
206 
207 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
208 { }
209 
210 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
211 {
212 	return true;
213 }
214 #endif /* CONFIG_SECURITY_NETWORK */
215 
216 static inline int unix_our_peer(struct sock *sk, struct sock *osk)
217 {
218 	return unix_peer(osk) == sk;
219 }
220 
221 static inline int unix_may_send(struct sock *sk, struct sock *osk)
222 {
223 	return unix_peer(osk) == NULL || unix_our_peer(sk, osk);
224 }
225 
226 static inline int unix_recvq_full(const struct sock *sk)
227 {
228 	return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog;
229 }
230 
231 static inline int unix_recvq_full_lockless(const struct sock *sk)
232 {
233 	return skb_queue_len_lockless(&sk->sk_receive_queue) >
234 		READ_ONCE(sk->sk_max_ack_backlog);
235 }
236 
237 struct sock *unix_peer_get(struct sock *s)
238 {
239 	struct sock *peer;
240 
241 	unix_state_lock(s);
242 	peer = unix_peer(s);
243 	if (peer)
244 		sock_hold(peer);
245 	unix_state_unlock(s);
246 	return peer;
247 }
248 EXPORT_SYMBOL_GPL(unix_peer_get);
249 
250 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr,
251 					     int addr_len)
252 {
253 	struct unix_address *addr;
254 
255 	addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL);
256 	if (!addr)
257 		return NULL;
258 
259 	refcount_set(&addr->refcnt, 1);
260 	addr->len = addr_len;
261 	memcpy(addr->name, sunaddr, addr_len);
262 
263 	return addr;
264 }
265 
266 static inline void unix_release_addr(struct unix_address *addr)
267 {
268 	if (refcount_dec_and_test(&addr->refcnt))
269 		kfree(addr);
270 }
271 
272 /*
273  *	Check unix socket name:
274  *		- should be not zero length.
275  *	        - if started by not zero, should be NULL terminated (FS object)
276  *		- if started by zero, it is abstract name.
277  */
278 
279 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len)
280 {
281 	if (addr_len <= offsetof(struct sockaddr_un, sun_path) ||
282 	    addr_len > sizeof(*sunaddr))
283 		return -EINVAL;
284 
285 	if (sunaddr->sun_family != AF_UNIX)
286 		return -EINVAL;
287 
288 	return 0;
289 }
290 
291 static int unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len)
292 {
293 	struct sockaddr_storage *addr = (struct sockaddr_storage *)sunaddr;
294 	short offset = offsetof(struct sockaddr_storage, __data);
295 
296 	BUILD_BUG_ON(offset != offsetof(struct sockaddr_un, sun_path));
297 
298 	/* This may look like an off by one error but it is a bit more
299 	 * subtle.  108 is the longest valid AF_UNIX path for a binding.
300 	 * sun_path[108] doesn't as such exist.  However in kernel space
301 	 * we are guaranteed that it is a valid memory location in our
302 	 * kernel address buffer because syscall functions always pass
303 	 * a pointer of struct sockaddr_storage which has a bigger buffer
304 	 * than 108.  Also, we must terminate sun_path for strlen() in
305 	 * getname_kernel().
306 	 */
307 	addr->__data[addr_len - offset] = 0;
308 
309 	/* Don't pass sunaddr->sun_path to strlen().  Otherwise, 108 will
310 	 * cause panic if CONFIG_FORTIFY_SOURCE=y.  Let __fortify_strlen()
311 	 * know the actual buffer.
312 	 */
313 	return strlen(addr->__data) + offset + 1;
314 }
315 
316 static void __unix_remove_socket(struct sock *sk)
317 {
318 	sk_del_node_init(sk);
319 }
320 
321 static void __unix_insert_socket(struct net *net, struct sock *sk)
322 {
323 	DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk));
324 	sk_add_node(sk, &net->unx.table.buckets[sk->sk_hash]);
325 }
326 
327 static void __unix_set_addr_hash(struct net *net, struct sock *sk,
328 				 struct unix_address *addr, unsigned int hash)
329 {
330 	__unix_remove_socket(sk);
331 	smp_store_release(&unix_sk(sk)->addr, addr);
332 
333 	sk->sk_hash = hash;
334 	__unix_insert_socket(net, sk);
335 }
336 
337 static void unix_remove_socket(struct net *net, struct sock *sk)
338 {
339 	spin_lock(&net->unx.table.locks[sk->sk_hash]);
340 	__unix_remove_socket(sk);
341 	spin_unlock(&net->unx.table.locks[sk->sk_hash]);
342 }
343 
344 static void unix_insert_unbound_socket(struct net *net, struct sock *sk)
345 {
346 	spin_lock(&net->unx.table.locks[sk->sk_hash]);
347 	__unix_insert_socket(net, sk);
348 	spin_unlock(&net->unx.table.locks[sk->sk_hash]);
349 }
350 
351 static void unix_insert_bsd_socket(struct sock *sk)
352 {
353 	spin_lock(&bsd_socket_locks[sk->sk_hash]);
354 	sk_add_bind_node(sk, &bsd_socket_buckets[sk->sk_hash]);
355 	spin_unlock(&bsd_socket_locks[sk->sk_hash]);
356 }
357 
358 static void unix_remove_bsd_socket(struct sock *sk)
359 {
360 	if (!hlist_unhashed(&sk->sk_bind_node)) {
361 		spin_lock(&bsd_socket_locks[sk->sk_hash]);
362 		__sk_del_bind_node(sk);
363 		spin_unlock(&bsd_socket_locks[sk->sk_hash]);
364 
365 		sk_node_init(&sk->sk_bind_node);
366 	}
367 }
368 
369 static struct sock *__unix_find_socket_byname(struct net *net,
370 					      struct sockaddr_un *sunname,
371 					      int len, unsigned int hash)
372 {
373 	struct sock *s;
374 
375 	sk_for_each(s, &net->unx.table.buckets[hash]) {
376 		struct unix_sock *u = unix_sk(s);
377 
378 		if (u->addr->len == len &&
379 		    !memcmp(u->addr->name, sunname, len))
380 			return s;
381 	}
382 	return NULL;
383 }
384 
385 static inline struct sock *unix_find_socket_byname(struct net *net,
386 						   struct sockaddr_un *sunname,
387 						   int len, unsigned int hash)
388 {
389 	struct sock *s;
390 
391 	spin_lock(&net->unx.table.locks[hash]);
392 	s = __unix_find_socket_byname(net, sunname, len, hash);
393 	if (s)
394 		sock_hold(s);
395 	spin_unlock(&net->unx.table.locks[hash]);
396 	return s;
397 }
398 
399 static struct sock *unix_find_socket_byinode(struct inode *i)
400 {
401 	unsigned int hash = unix_bsd_hash(i);
402 	struct sock *s;
403 
404 	spin_lock(&bsd_socket_locks[hash]);
405 	sk_for_each_bound(s, &bsd_socket_buckets[hash]) {
406 		struct dentry *dentry = unix_sk(s)->path.dentry;
407 
408 		if (dentry && d_backing_inode(dentry) == i) {
409 			sock_hold(s);
410 			spin_unlock(&bsd_socket_locks[hash]);
411 			return s;
412 		}
413 	}
414 	spin_unlock(&bsd_socket_locks[hash]);
415 	return NULL;
416 }
417 
418 /* Support code for asymmetrically connected dgram sockets
419  *
420  * If a datagram socket is connected to a socket not itself connected
421  * to the first socket (eg, /dev/log), clients may only enqueue more
422  * messages if the present receive queue of the server socket is not
423  * "too large". This means there's a second writeability condition
424  * poll and sendmsg need to test. The dgram recv code will do a wake
425  * up on the peer_wait wait queue of a socket upon reception of a
426  * datagram which needs to be propagated to sleeping would-be writers
427  * since these might not have sent anything so far. This can't be
428  * accomplished via poll_wait because the lifetime of the server
429  * socket might be less than that of its clients if these break their
430  * association with it or if the server socket is closed while clients
431  * are still connected to it and there's no way to inform "a polling
432  * implementation" that it should let go of a certain wait queue
433  *
434  * In order to propagate a wake up, a wait_queue_entry_t of the client
435  * socket is enqueued on the peer_wait queue of the server socket
436  * whose wake function does a wake_up on the ordinary client socket
437  * wait queue. This connection is established whenever a write (or
438  * poll for write) hit the flow control condition and broken when the
439  * association to the server socket is dissolved or after a wake up
440  * was relayed.
441  */
442 
443 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags,
444 				      void *key)
445 {
446 	struct unix_sock *u;
447 	wait_queue_head_t *u_sleep;
448 
449 	u = container_of(q, struct unix_sock, peer_wake);
450 
451 	__remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait,
452 			    q);
453 	u->peer_wake.private = NULL;
454 
455 	/* relaying can only happen while the wq still exists */
456 	u_sleep = sk_sleep(&u->sk);
457 	if (u_sleep)
458 		wake_up_interruptible_poll(u_sleep, key_to_poll(key));
459 
460 	return 0;
461 }
462 
463 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other)
464 {
465 	struct unix_sock *u, *u_other;
466 	int rc;
467 
468 	u = unix_sk(sk);
469 	u_other = unix_sk(other);
470 	rc = 0;
471 	spin_lock(&u_other->peer_wait.lock);
472 
473 	if (!u->peer_wake.private) {
474 		u->peer_wake.private = other;
475 		__add_wait_queue(&u_other->peer_wait, &u->peer_wake);
476 
477 		rc = 1;
478 	}
479 
480 	spin_unlock(&u_other->peer_wait.lock);
481 	return rc;
482 }
483 
484 static void unix_dgram_peer_wake_disconnect(struct sock *sk,
485 					    struct sock *other)
486 {
487 	struct unix_sock *u, *u_other;
488 
489 	u = unix_sk(sk);
490 	u_other = unix_sk(other);
491 	spin_lock(&u_other->peer_wait.lock);
492 
493 	if (u->peer_wake.private == other) {
494 		__remove_wait_queue(&u_other->peer_wait, &u->peer_wake);
495 		u->peer_wake.private = NULL;
496 	}
497 
498 	spin_unlock(&u_other->peer_wait.lock);
499 }
500 
501 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk,
502 						   struct sock *other)
503 {
504 	unix_dgram_peer_wake_disconnect(sk, other);
505 	wake_up_interruptible_poll(sk_sleep(sk),
506 				   EPOLLOUT |
507 				   EPOLLWRNORM |
508 				   EPOLLWRBAND);
509 }
510 
511 /* preconditions:
512  *	- unix_peer(sk) == other
513  *	- association is stable
514  */
515 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other)
516 {
517 	int connected;
518 
519 	connected = unix_dgram_peer_wake_connect(sk, other);
520 
521 	/* If other is SOCK_DEAD, we want to make sure we signal
522 	 * POLLOUT, such that a subsequent write() can get a
523 	 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs
524 	 * to other and its full, we will hang waiting for POLLOUT.
525 	 */
526 	if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD))
527 		return 1;
528 
529 	if (connected)
530 		unix_dgram_peer_wake_disconnect(sk, other);
531 
532 	return 0;
533 }
534 
535 static int unix_writable(const struct sock *sk)
536 {
537 	return sk->sk_state != TCP_LISTEN &&
538 	       (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf;
539 }
540 
541 static void unix_write_space(struct sock *sk)
542 {
543 	struct socket_wq *wq;
544 
545 	rcu_read_lock();
546 	if (unix_writable(sk)) {
547 		wq = rcu_dereference(sk->sk_wq);
548 		if (skwq_has_sleeper(wq))
549 			wake_up_interruptible_sync_poll(&wq->wait,
550 				EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND);
551 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
552 	}
553 	rcu_read_unlock();
554 }
555 
556 /* When dgram socket disconnects (or changes its peer), we clear its receive
557  * queue of packets arrived from previous peer. First, it allows to do
558  * flow control based only on wmem_alloc; second, sk connected to peer
559  * may receive messages only from that peer. */
560 static void unix_dgram_disconnected(struct sock *sk, struct sock *other)
561 {
562 	if (!skb_queue_empty(&sk->sk_receive_queue)) {
563 		skb_queue_purge(&sk->sk_receive_queue);
564 		wake_up_interruptible_all(&unix_sk(sk)->peer_wait);
565 
566 		/* If one link of bidirectional dgram pipe is disconnected,
567 		 * we signal error. Messages are lost. Do not make this,
568 		 * when peer was not connected to us.
569 		 */
570 		if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) {
571 			WRITE_ONCE(other->sk_err, ECONNRESET);
572 			sk_error_report(other);
573 		}
574 	}
575 	other->sk_state = TCP_CLOSE;
576 }
577 
578 static void unix_sock_destructor(struct sock *sk)
579 {
580 	struct unix_sock *u = unix_sk(sk);
581 
582 	skb_queue_purge(&sk->sk_receive_queue);
583 
584 	DEBUG_NET_WARN_ON_ONCE(refcount_read(&sk->sk_wmem_alloc));
585 	DEBUG_NET_WARN_ON_ONCE(!sk_unhashed(sk));
586 	DEBUG_NET_WARN_ON_ONCE(sk->sk_socket);
587 	if (!sock_flag(sk, SOCK_DEAD)) {
588 		pr_info("Attempt to release alive unix socket: %p\n", sk);
589 		return;
590 	}
591 
592 	if (u->addr)
593 		unix_release_addr(u->addr);
594 
595 	atomic_long_dec(&unix_nr_socks);
596 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
597 #ifdef UNIX_REFCNT_DEBUG
598 	pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk,
599 		atomic_long_read(&unix_nr_socks));
600 #endif
601 }
602 
603 static void unix_release_sock(struct sock *sk, int embrion)
604 {
605 	struct unix_sock *u = unix_sk(sk);
606 	struct sock *skpair;
607 	struct sk_buff *skb;
608 	struct path path;
609 	int state;
610 
611 	unix_remove_socket(sock_net(sk), sk);
612 	unix_remove_bsd_socket(sk);
613 
614 	/* Clear state */
615 	unix_state_lock(sk);
616 	sock_orphan(sk);
617 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
618 	path	     = u->path;
619 	u->path.dentry = NULL;
620 	u->path.mnt = NULL;
621 	state = sk->sk_state;
622 	sk->sk_state = TCP_CLOSE;
623 
624 	skpair = unix_peer(sk);
625 	unix_peer(sk) = NULL;
626 
627 	unix_state_unlock(sk);
628 
629 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
630 	if (u->oob_skb) {
631 		kfree_skb(u->oob_skb);
632 		u->oob_skb = NULL;
633 	}
634 #endif
635 
636 	wake_up_interruptible_all(&u->peer_wait);
637 
638 	if (skpair != NULL) {
639 		if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) {
640 			unix_state_lock(skpair);
641 			/* No more writes */
642 			WRITE_ONCE(skpair->sk_shutdown, SHUTDOWN_MASK);
643 			if (!skb_queue_empty(&sk->sk_receive_queue) || embrion)
644 				WRITE_ONCE(skpair->sk_err, ECONNRESET);
645 			unix_state_unlock(skpair);
646 			skpair->sk_state_change(skpair);
647 			sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP);
648 		}
649 
650 		unix_dgram_peer_wake_disconnect(sk, skpair);
651 		sock_put(skpair); /* It may now die */
652 	}
653 
654 	/* Try to flush out this socket. Throw out buffers at least */
655 
656 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
657 		if (state == TCP_LISTEN)
658 			unix_release_sock(skb->sk, 1);
659 		/* passed fds are erased in the kfree_skb hook	      */
660 		UNIXCB(skb).consumed = skb->len;
661 		kfree_skb(skb);
662 	}
663 
664 	if (path.dentry)
665 		path_put(&path);
666 
667 	sock_put(sk);
668 
669 	/* ---- Socket is dead now and most probably destroyed ---- */
670 
671 	/*
672 	 * Fixme: BSD difference: In BSD all sockets connected to us get
673 	 *	  ECONNRESET and we die on the spot. In Linux we behave
674 	 *	  like files and pipes do and wait for the last
675 	 *	  dereference.
676 	 *
677 	 * Can't we simply set sock->err?
678 	 *
679 	 *	  What the above comment does talk about? --ANK(980817)
680 	 */
681 
682 	if (READ_ONCE(unix_tot_inflight))
683 		unix_gc();		/* Garbage collect fds */
684 }
685 
686 static void init_peercred(struct sock *sk)
687 {
688 	const struct cred *old_cred;
689 	struct pid *old_pid;
690 
691 	spin_lock(&sk->sk_peer_lock);
692 	old_pid = sk->sk_peer_pid;
693 	old_cred = sk->sk_peer_cred;
694 	sk->sk_peer_pid  = get_pid(task_tgid(current));
695 	sk->sk_peer_cred = get_current_cred();
696 	spin_unlock(&sk->sk_peer_lock);
697 
698 	put_pid(old_pid);
699 	put_cred(old_cred);
700 }
701 
702 static void copy_peercred(struct sock *sk, struct sock *peersk)
703 {
704 	const struct cred *old_cred;
705 	struct pid *old_pid;
706 
707 	if (sk < peersk) {
708 		spin_lock(&sk->sk_peer_lock);
709 		spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING);
710 	} else {
711 		spin_lock(&peersk->sk_peer_lock);
712 		spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING);
713 	}
714 	old_pid = sk->sk_peer_pid;
715 	old_cred = sk->sk_peer_cred;
716 	sk->sk_peer_pid  = get_pid(peersk->sk_peer_pid);
717 	sk->sk_peer_cred = get_cred(peersk->sk_peer_cred);
718 
719 	spin_unlock(&sk->sk_peer_lock);
720 	spin_unlock(&peersk->sk_peer_lock);
721 
722 	put_pid(old_pid);
723 	put_cred(old_cred);
724 }
725 
726 static int unix_listen(struct socket *sock, int backlog)
727 {
728 	int err;
729 	struct sock *sk = sock->sk;
730 	struct unix_sock *u = unix_sk(sk);
731 
732 	err = -EOPNOTSUPP;
733 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
734 		goto out;	/* Only stream/seqpacket sockets accept */
735 	err = -EINVAL;
736 	if (!u->addr)
737 		goto out;	/* No listens on an unbound socket */
738 	unix_state_lock(sk);
739 	if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN)
740 		goto out_unlock;
741 	if (backlog > sk->sk_max_ack_backlog)
742 		wake_up_interruptible_all(&u->peer_wait);
743 	sk->sk_max_ack_backlog	= backlog;
744 	sk->sk_state		= TCP_LISTEN;
745 	/* set credentials so connect can copy them */
746 	init_peercred(sk);
747 	err = 0;
748 
749 out_unlock:
750 	unix_state_unlock(sk);
751 out:
752 	return err;
753 }
754 
755 static int unix_release(struct socket *);
756 static int unix_bind(struct socket *, struct sockaddr *, int);
757 static int unix_stream_connect(struct socket *, struct sockaddr *,
758 			       int addr_len, int flags);
759 static int unix_socketpair(struct socket *, struct socket *);
760 static int unix_accept(struct socket *, struct socket *, int, bool);
761 static int unix_getname(struct socket *, struct sockaddr *, int);
762 static __poll_t unix_poll(struct file *, struct socket *, poll_table *);
763 static __poll_t unix_dgram_poll(struct file *, struct socket *,
764 				    poll_table *);
765 static int unix_ioctl(struct socket *, unsigned int, unsigned long);
766 #ifdef CONFIG_COMPAT
767 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
768 #endif
769 static int unix_shutdown(struct socket *, int);
770 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t);
771 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int);
772 static ssize_t unix_stream_splice_read(struct socket *,  loff_t *ppos,
773 				       struct pipe_inode_info *, size_t size,
774 				       unsigned int flags);
775 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t);
776 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int);
777 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
778 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
779 static int unix_dgram_connect(struct socket *, struct sockaddr *,
780 			      int, int);
781 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t);
782 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t,
783 				  int);
784 
785 static int unix_set_peek_off(struct sock *sk, int val)
786 {
787 	struct unix_sock *u = unix_sk(sk);
788 
789 	if (mutex_lock_interruptible(&u->iolock))
790 		return -EINTR;
791 
792 	WRITE_ONCE(sk->sk_peek_off, val);
793 	mutex_unlock(&u->iolock);
794 
795 	return 0;
796 }
797 
798 #ifdef CONFIG_PROC_FS
799 static int unix_count_nr_fds(struct sock *sk)
800 {
801 	struct sk_buff *skb;
802 	struct unix_sock *u;
803 	int nr_fds = 0;
804 
805 	spin_lock(&sk->sk_receive_queue.lock);
806 	skb = skb_peek(&sk->sk_receive_queue);
807 	while (skb) {
808 		u = unix_sk(skb->sk);
809 		nr_fds += atomic_read(&u->scm_stat.nr_fds);
810 		skb = skb_peek_next(skb, &sk->sk_receive_queue);
811 	}
812 	spin_unlock(&sk->sk_receive_queue.lock);
813 
814 	return nr_fds;
815 }
816 
817 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock)
818 {
819 	struct sock *sk = sock->sk;
820 	unsigned char s_state;
821 	struct unix_sock *u;
822 	int nr_fds = 0;
823 
824 	if (sk) {
825 		s_state = READ_ONCE(sk->sk_state);
826 		u = unix_sk(sk);
827 
828 		/* SOCK_STREAM and SOCK_SEQPACKET sockets never change their
829 		 * sk_state after switching to TCP_ESTABLISHED or TCP_LISTEN.
830 		 * SOCK_DGRAM is ordinary. So, no lock is needed.
831 		 */
832 		if (sock->type == SOCK_DGRAM || s_state == TCP_ESTABLISHED)
833 			nr_fds = atomic_read(&u->scm_stat.nr_fds);
834 		else if (s_state == TCP_LISTEN)
835 			nr_fds = unix_count_nr_fds(sk);
836 
837 		seq_printf(m, "scm_fds: %u\n", nr_fds);
838 	}
839 }
840 #else
841 #define unix_show_fdinfo NULL
842 #endif
843 
844 static const struct proto_ops unix_stream_ops = {
845 	.family =	PF_UNIX,
846 	.owner =	THIS_MODULE,
847 	.release =	unix_release,
848 	.bind =		unix_bind,
849 	.connect =	unix_stream_connect,
850 	.socketpair =	unix_socketpair,
851 	.accept =	unix_accept,
852 	.getname =	unix_getname,
853 	.poll =		unix_poll,
854 	.ioctl =	unix_ioctl,
855 #ifdef CONFIG_COMPAT
856 	.compat_ioctl =	unix_compat_ioctl,
857 #endif
858 	.listen =	unix_listen,
859 	.shutdown =	unix_shutdown,
860 	.sendmsg =	unix_stream_sendmsg,
861 	.recvmsg =	unix_stream_recvmsg,
862 	.read_skb =	unix_stream_read_skb,
863 	.mmap =		sock_no_mmap,
864 	.splice_read =	unix_stream_splice_read,
865 	.set_peek_off =	unix_set_peek_off,
866 	.show_fdinfo =	unix_show_fdinfo,
867 };
868 
869 static const struct proto_ops unix_dgram_ops = {
870 	.family =	PF_UNIX,
871 	.owner =	THIS_MODULE,
872 	.release =	unix_release,
873 	.bind =		unix_bind,
874 	.connect =	unix_dgram_connect,
875 	.socketpair =	unix_socketpair,
876 	.accept =	sock_no_accept,
877 	.getname =	unix_getname,
878 	.poll =		unix_dgram_poll,
879 	.ioctl =	unix_ioctl,
880 #ifdef CONFIG_COMPAT
881 	.compat_ioctl =	unix_compat_ioctl,
882 #endif
883 	.listen =	sock_no_listen,
884 	.shutdown =	unix_shutdown,
885 	.sendmsg =	unix_dgram_sendmsg,
886 	.read_skb =	unix_read_skb,
887 	.recvmsg =	unix_dgram_recvmsg,
888 	.mmap =		sock_no_mmap,
889 	.set_peek_off =	unix_set_peek_off,
890 	.show_fdinfo =	unix_show_fdinfo,
891 };
892 
893 static const struct proto_ops unix_seqpacket_ops = {
894 	.family =	PF_UNIX,
895 	.owner =	THIS_MODULE,
896 	.release =	unix_release,
897 	.bind =		unix_bind,
898 	.connect =	unix_stream_connect,
899 	.socketpair =	unix_socketpair,
900 	.accept =	unix_accept,
901 	.getname =	unix_getname,
902 	.poll =		unix_dgram_poll,
903 	.ioctl =	unix_ioctl,
904 #ifdef CONFIG_COMPAT
905 	.compat_ioctl =	unix_compat_ioctl,
906 #endif
907 	.listen =	unix_listen,
908 	.shutdown =	unix_shutdown,
909 	.sendmsg =	unix_seqpacket_sendmsg,
910 	.recvmsg =	unix_seqpacket_recvmsg,
911 	.mmap =		sock_no_mmap,
912 	.set_peek_off =	unix_set_peek_off,
913 	.show_fdinfo =	unix_show_fdinfo,
914 };
915 
916 static void unix_close(struct sock *sk, long timeout)
917 {
918 	/* Nothing to do here, unix socket does not need a ->close().
919 	 * This is merely for sockmap.
920 	 */
921 }
922 
923 static void unix_unhash(struct sock *sk)
924 {
925 	/* Nothing to do here, unix socket does not need a ->unhash().
926 	 * This is merely for sockmap.
927 	 */
928 }
929 
930 static bool unix_bpf_bypass_getsockopt(int level, int optname)
931 {
932 	if (level == SOL_SOCKET) {
933 		switch (optname) {
934 		case SO_PEERPIDFD:
935 			return true;
936 		default:
937 			return false;
938 		}
939 	}
940 
941 	return false;
942 }
943 
944 struct proto unix_dgram_proto = {
945 	.name			= "UNIX",
946 	.owner			= THIS_MODULE,
947 	.obj_size		= sizeof(struct unix_sock),
948 	.close			= unix_close,
949 	.bpf_bypass_getsockopt	= unix_bpf_bypass_getsockopt,
950 #ifdef CONFIG_BPF_SYSCALL
951 	.psock_update_sk_prot	= unix_dgram_bpf_update_proto,
952 #endif
953 };
954 
955 struct proto unix_stream_proto = {
956 	.name			= "UNIX-STREAM",
957 	.owner			= THIS_MODULE,
958 	.obj_size		= sizeof(struct unix_sock),
959 	.close			= unix_close,
960 	.unhash			= unix_unhash,
961 	.bpf_bypass_getsockopt	= unix_bpf_bypass_getsockopt,
962 #ifdef CONFIG_BPF_SYSCALL
963 	.psock_update_sk_prot	= unix_stream_bpf_update_proto,
964 #endif
965 };
966 
967 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type)
968 {
969 	struct unix_sock *u;
970 	struct sock *sk;
971 	int err;
972 
973 	atomic_long_inc(&unix_nr_socks);
974 	if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) {
975 		err = -ENFILE;
976 		goto err;
977 	}
978 
979 	if (type == SOCK_STREAM)
980 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern);
981 	else /*dgram and  seqpacket */
982 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern);
983 
984 	if (!sk) {
985 		err = -ENOMEM;
986 		goto err;
987 	}
988 
989 	sock_init_data(sock, sk);
990 
991 	sk->sk_hash		= unix_unbound_hash(sk);
992 	sk->sk_allocation	= GFP_KERNEL_ACCOUNT;
993 	sk->sk_write_space	= unix_write_space;
994 	sk->sk_max_ack_backlog	= net->unx.sysctl_max_dgram_qlen;
995 	sk->sk_destruct		= unix_sock_destructor;
996 	u	  = unix_sk(sk);
997 	u->path.dentry = NULL;
998 	u->path.mnt = NULL;
999 	spin_lock_init(&u->lock);
1000 	atomic_long_set(&u->inflight, 0);
1001 	INIT_LIST_HEAD(&u->link);
1002 	mutex_init(&u->iolock); /* single task reading lock */
1003 	mutex_init(&u->bindlock); /* single task binding lock */
1004 	init_waitqueue_head(&u->peer_wait);
1005 	init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay);
1006 	memset(&u->scm_stat, 0, sizeof(struct scm_stat));
1007 	unix_insert_unbound_socket(net, sk);
1008 
1009 	sock_prot_inuse_add(net, sk->sk_prot, 1);
1010 
1011 	return sk;
1012 
1013 err:
1014 	atomic_long_dec(&unix_nr_socks);
1015 	return ERR_PTR(err);
1016 }
1017 
1018 static int unix_create(struct net *net, struct socket *sock, int protocol,
1019 		       int kern)
1020 {
1021 	struct sock *sk;
1022 
1023 	if (protocol && protocol != PF_UNIX)
1024 		return -EPROTONOSUPPORT;
1025 
1026 	sock->state = SS_UNCONNECTED;
1027 
1028 	switch (sock->type) {
1029 	case SOCK_STREAM:
1030 		sock->ops = &unix_stream_ops;
1031 		break;
1032 		/*
1033 		 *	Believe it or not BSD has AF_UNIX, SOCK_RAW though
1034 		 *	nothing uses it.
1035 		 */
1036 	case SOCK_RAW:
1037 		sock->type = SOCK_DGRAM;
1038 		fallthrough;
1039 	case SOCK_DGRAM:
1040 		sock->ops = &unix_dgram_ops;
1041 		break;
1042 	case SOCK_SEQPACKET:
1043 		sock->ops = &unix_seqpacket_ops;
1044 		break;
1045 	default:
1046 		return -ESOCKTNOSUPPORT;
1047 	}
1048 
1049 	sk = unix_create1(net, sock, kern, sock->type);
1050 	if (IS_ERR(sk))
1051 		return PTR_ERR(sk);
1052 
1053 	return 0;
1054 }
1055 
1056 static int unix_release(struct socket *sock)
1057 {
1058 	struct sock *sk = sock->sk;
1059 
1060 	if (!sk)
1061 		return 0;
1062 
1063 	sk->sk_prot->close(sk, 0);
1064 	unix_release_sock(sk, 0);
1065 	sock->sk = NULL;
1066 
1067 	return 0;
1068 }
1069 
1070 static struct sock *unix_find_bsd(struct sockaddr_un *sunaddr, int addr_len,
1071 				  int type)
1072 {
1073 	struct inode *inode;
1074 	struct path path;
1075 	struct sock *sk;
1076 	int err;
1077 
1078 	unix_mkname_bsd(sunaddr, addr_len);
1079 	err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path);
1080 	if (err)
1081 		goto fail;
1082 
1083 	err = path_permission(&path, MAY_WRITE);
1084 	if (err)
1085 		goto path_put;
1086 
1087 	err = -ECONNREFUSED;
1088 	inode = d_backing_inode(path.dentry);
1089 	if (!S_ISSOCK(inode->i_mode))
1090 		goto path_put;
1091 
1092 	sk = unix_find_socket_byinode(inode);
1093 	if (!sk)
1094 		goto path_put;
1095 
1096 	err = -EPROTOTYPE;
1097 	if (sk->sk_type == type)
1098 		touch_atime(&path);
1099 	else
1100 		goto sock_put;
1101 
1102 	path_put(&path);
1103 
1104 	return sk;
1105 
1106 sock_put:
1107 	sock_put(sk);
1108 path_put:
1109 	path_put(&path);
1110 fail:
1111 	return ERR_PTR(err);
1112 }
1113 
1114 static struct sock *unix_find_abstract(struct net *net,
1115 				       struct sockaddr_un *sunaddr,
1116 				       int addr_len, int type)
1117 {
1118 	unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type);
1119 	struct dentry *dentry;
1120 	struct sock *sk;
1121 
1122 	sk = unix_find_socket_byname(net, sunaddr, addr_len, hash);
1123 	if (!sk)
1124 		return ERR_PTR(-ECONNREFUSED);
1125 
1126 	dentry = unix_sk(sk)->path.dentry;
1127 	if (dentry)
1128 		touch_atime(&unix_sk(sk)->path);
1129 
1130 	return sk;
1131 }
1132 
1133 static struct sock *unix_find_other(struct net *net,
1134 				    struct sockaddr_un *sunaddr,
1135 				    int addr_len, int type)
1136 {
1137 	struct sock *sk;
1138 
1139 	if (sunaddr->sun_path[0])
1140 		sk = unix_find_bsd(sunaddr, addr_len, type);
1141 	else
1142 		sk = unix_find_abstract(net, sunaddr, addr_len, type);
1143 
1144 	return sk;
1145 }
1146 
1147 static int unix_autobind(struct sock *sk)
1148 {
1149 	unsigned int new_hash, old_hash = sk->sk_hash;
1150 	struct unix_sock *u = unix_sk(sk);
1151 	struct net *net = sock_net(sk);
1152 	struct unix_address *addr;
1153 	u32 lastnum, ordernum;
1154 	int err;
1155 
1156 	err = mutex_lock_interruptible(&u->bindlock);
1157 	if (err)
1158 		return err;
1159 
1160 	if (u->addr)
1161 		goto out;
1162 
1163 	err = -ENOMEM;
1164 	addr = kzalloc(sizeof(*addr) +
1165 		       offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL);
1166 	if (!addr)
1167 		goto out;
1168 
1169 	addr->len = offsetof(struct sockaddr_un, sun_path) + 6;
1170 	addr->name->sun_family = AF_UNIX;
1171 	refcount_set(&addr->refcnt, 1);
1172 
1173 	ordernum = get_random_u32();
1174 	lastnum = ordernum & 0xFFFFF;
1175 retry:
1176 	ordernum = (ordernum + 1) & 0xFFFFF;
1177 	sprintf(addr->name->sun_path + 1, "%05x", ordernum);
1178 
1179 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1180 	unix_table_double_lock(net, old_hash, new_hash);
1181 
1182 	if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash)) {
1183 		unix_table_double_unlock(net, old_hash, new_hash);
1184 
1185 		/* __unix_find_socket_byname() may take long time if many names
1186 		 * are already in use.
1187 		 */
1188 		cond_resched();
1189 
1190 		if (ordernum == lastnum) {
1191 			/* Give up if all names seems to be in use. */
1192 			err = -ENOSPC;
1193 			unix_release_addr(addr);
1194 			goto out;
1195 		}
1196 
1197 		goto retry;
1198 	}
1199 
1200 	__unix_set_addr_hash(net, sk, addr, new_hash);
1201 	unix_table_double_unlock(net, old_hash, new_hash);
1202 	err = 0;
1203 
1204 out:	mutex_unlock(&u->bindlock);
1205 	return err;
1206 }
1207 
1208 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr,
1209 			 int addr_len)
1210 {
1211 	umode_t mode = S_IFSOCK |
1212 	       (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask());
1213 	unsigned int new_hash, old_hash = sk->sk_hash;
1214 	struct unix_sock *u = unix_sk(sk);
1215 	struct net *net = sock_net(sk);
1216 	struct mnt_idmap *idmap;
1217 	struct unix_address *addr;
1218 	struct dentry *dentry;
1219 	struct path parent;
1220 	int err;
1221 
1222 	addr_len = unix_mkname_bsd(sunaddr, addr_len);
1223 	addr = unix_create_addr(sunaddr, addr_len);
1224 	if (!addr)
1225 		return -ENOMEM;
1226 
1227 	/*
1228 	 * Get the parent directory, calculate the hash for last
1229 	 * component.
1230 	 */
1231 	dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0);
1232 	if (IS_ERR(dentry)) {
1233 		err = PTR_ERR(dentry);
1234 		goto out;
1235 	}
1236 
1237 	/*
1238 	 * All right, let's create it.
1239 	 */
1240 	idmap = mnt_idmap(parent.mnt);
1241 	err = security_path_mknod(&parent, dentry, mode, 0);
1242 	if (!err)
1243 		err = vfs_mknod(idmap, d_inode(parent.dentry), dentry, mode, 0);
1244 	if (err)
1245 		goto out_path;
1246 	err = mutex_lock_interruptible(&u->bindlock);
1247 	if (err)
1248 		goto out_unlink;
1249 	if (u->addr)
1250 		goto out_unlock;
1251 
1252 	new_hash = unix_bsd_hash(d_backing_inode(dentry));
1253 	unix_table_double_lock(net, old_hash, new_hash);
1254 	u->path.mnt = mntget(parent.mnt);
1255 	u->path.dentry = dget(dentry);
1256 	__unix_set_addr_hash(net, sk, addr, new_hash);
1257 	unix_table_double_unlock(net, old_hash, new_hash);
1258 	unix_insert_bsd_socket(sk);
1259 	mutex_unlock(&u->bindlock);
1260 	done_path_create(&parent, dentry);
1261 	return 0;
1262 
1263 out_unlock:
1264 	mutex_unlock(&u->bindlock);
1265 	err = -EINVAL;
1266 out_unlink:
1267 	/* failed after successful mknod?  unlink what we'd created... */
1268 	vfs_unlink(idmap, d_inode(parent.dentry), dentry, NULL);
1269 out_path:
1270 	done_path_create(&parent, dentry);
1271 out:
1272 	unix_release_addr(addr);
1273 	return err == -EEXIST ? -EADDRINUSE : err;
1274 }
1275 
1276 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr,
1277 			      int addr_len)
1278 {
1279 	unsigned int new_hash, old_hash = sk->sk_hash;
1280 	struct unix_sock *u = unix_sk(sk);
1281 	struct net *net = sock_net(sk);
1282 	struct unix_address *addr;
1283 	int err;
1284 
1285 	addr = unix_create_addr(sunaddr, addr_len);
1286 	if (!addr)
1287 		return -ENOMEM;
1288 
1289 	err = mutex_lock_interruptible(&u->bindlock);
1290 	if (err)
1291 		goto out;
1292 
1293 	if (u->addr) {
1294 		err = -EINVAL;
1295 		goto out_mutex;
1296 	}
1297 
1298 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1299 	unix_table_double_lock(net, old_hash, new_hash);
1300 
1301 	if (__unix_find_socket_byname(net, addr->name, addr->len, new_hash))
1302 		goto out_spin;
1303 
1304 	__unix_set_addr_hash(net, sk, addr, new_hash);
1305 	unix_table_double_unlock(net, old_hash, new_hash);
1306 	mutex_unlock(&u->bindlock);
1307 	return 0;
1308 
1309 out_spin:
1310 	unix_table_double_unlock(net, old_hash, new_hash);
1311 	err = -EADDRINUSE;
1312 out_mutex:
1313 	mutex_unlock(&u->bindlock);
1314 out:
1315 	unix_release_addr(addr);
1316 	return err;
1317 }
1318 
1319 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
1320 {
1321 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1322 	struct sock *sk = sock->sk;
1323 	int err;
1324 
1325 	if (addr_len == offsetof(struct sockaddr_un, sun_path) &&
1326 	    sunaddr->sun_family == AF_UNIX)
1327 		return unix_autobind(sk);
1328 
1329 	err = unix_validate_addr(sunaddr, addr_len);
1330 	if (err)
1331 		return err;
1332 
1333 	if (sunaddr->sun_path[0])
1334 		err = unix_bind_bsd(sk, sunaddr, addr_len);
1335 	else
1336 		err = unix_bind_abstract(sk, sunaddr, addr_len);
1337 
1338 	return err;
1339 }
1340 
1341 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2)
1342 {
1343 	if (unlikely(sk1 == sk2) || !sk2) {
1344 		unix_state_lock(sk1);
1345 		return;
1346 	}
1347 	if (sk1 > sk2)
1348 		swap(sk1, sk2);
1349 
1350 	unix_state_lock(sk1);
1351 	unix_state_lock_nested(sk2, U_LOCK_SECOND);
1352 }
1353 
1354 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2)
1355 {
1356 	if (unlikely(sk1 == sk2) || !sk2) {
1357 		unix_state_unlock(sk1);
1358 		return;
1359 	}
1360 	unix_state_unlock(sk1);
1361 	unix_state_unlock(sk2);
1362 }
1363 
1364 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr,
1365 			      int alen, int flags)
1366 {
1367 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr;
1368 	struct sock *sk = sock->sk;
1369 	struct sock *other;
1370 	int err;
1371 
1372 	err = -EINVAL;
1373 	if (alen < offsetofend(struct sockaddr, sa_family))
1374 		goto out;
1375 
1376 	if (addr->sa_family != AF_UNSPEC) {
1377 		err = unix_validate_addr(sunaddr, alen);
1378 		if (err)
1379 			goto out;
1380 
1381 		err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, addr, &alen);
1382 		if (err)
1383 			goto out;
1384 
1385 		if ((test_bit(SOCK_PASSCRED, &sock->flags) ||
1386 		     test_bit(SOCK_PASSPIDFD, &sock->flags)) &&
1387 		    !unix_sk(sk)->addr) {
1388 			err = unix_autobind(sk);
1389 			if (err)
1390 				goto out;
1391 		}
1392 
1393 restart:
1394 		other = unix_find_other(sock_net(sk), sunaddr, alen, sock->type);
1395 		if (IS_ERR(other)) {
1396 			err = PTR_ERR(other);
1397 			goto out;
1398 		}
1399 
1400 		unix_state_double_lock(sk, other);
1401 
1402 		/* Apparently VFS overslept socket death. Retry. */
1403 		if (sock_flag(other, SOCK_DEAD)) {
1404 			unix_state_double_unlock(sk, other);
1405 			sock_put(other);
1406 			goto restart;
1407 		}
1408 
1409 		err = -EPERM;
1410 		if (!unix_may_send(sk, other))
1411 			goto out_unlock;
1412 
1413 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1414 		if (err)
1415 			goto out_unlock;
1416 
1417 		sk->sk_state = other->sk_state = TCP_ESTABLISHED;
1418 	} else {
1419 		/*
1420 		 *	1003.1g breaking connected state with AF_UNSPEC
1421 		 */
1422 		other = NULL;
1423 		unix_state_double_lock(sk, other);
1424 	}
1425 
1426 	/*
1427 	 * If it was connected, reconnect.
1428 	 */
1429 	if (unix_peer(sk)) {
1430 		struct sock *old_peer = unix_peer(sk);
1431 
1432 		unix_peer(sk) = other;
1433 		if (!other)
1434 			sk->sk_state = TCP_CLOSE;
1435 		unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer);
1436 
1437 		unix_state_double_unlock(sk, other);
1438 
1439 		if (other != old_peer)
1440 			unix_dgram_disconnected(sk, old_peer);
1441 		sock_put(old_peer);
1442 	} else {
1443 		unix_peer(sk) = other;
1444 		unix_state_double_unlock(sk, other);
1445 	}
1446 
1447 	return 0;
1448 
1449 out_unlock:
1450 	unix_state_double_unlock(sk, other);
1451 	sock_put(other);
1452 out:
1453 	return err;
1454 }
1455 
1456 static long unix_wait_for_peer(struct sock *other, long timeo)
1457 	__releases(&unix_sk(other)->lock)
1458 {
1459 	struct unix_sock *u = unix_sk(other);
1460 	int sched;
1461 	DEFINE_WAIT(wait);
1462 
1463 	prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE);
1464 
1465 	sched = !sock_flag(other, SOCK_DEAD) &&
1466 		!(other->sk_shutdown & RCV_SHUTDOWN) &&
1467 		unix_recvq_full_lockless(other);
1468 
1469 	unix_state_unlock(other);
1470 
1471 	if (sched)
1472 		timeo = schedule_timeout(timeo);
1473 
1474 	finish_wait(&u->peer_wait, &wait);
1475 	return timeo;
1476 }
1477 
1478 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr,
1479 			       int addr_len, int flags)
1480 {
1481 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1482 	struct sock *sk = sock->sk, *newsk = NULL, *other = NULL;
1483 	struct unix_sock *u = unix_sk(sk), *newu, *otheru;
1484 	struct net *net = sock_net(sk);
1485 	struct sk_buff *skb = NULL;
1486 	long timeo;
1487 	int err;
1488 	int st;
1489 
1490 	err = unix_validate_addr(sunaddr, addr_len);
1491 	if (err)
1492 		goto out;
1493 
1494 	err = BPF_CGROUP_RUN_PROG_UNIX_CONNECT_LOCK(sk, uaddr, &addr_len);
1495 	if (err)
1496 		goto out;
1497 
1498 	if ((test_bit(SOCK_PASSCRED, &sock->flags) ||
1499 	     test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) {
1500 		err = unix_autobind(sk);
1501 		if (err)
1502 			goto out;
1503 	}
1504 
1505 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1506 
1507 	/* First of all allocate resources.
1508 	   If we will make it after state is locked,
1509 	   we will have to recheck all again in any case.
1510 	 */
1511 
1512 	/* create new sock for complete connection */
1513 	newsk = unix_create1(net, NULL, 0, sock->type);
1514 	if (IS_ERR(newsk)) {
1515 		err = PTR_ERR(newsk);
1516 		newsk = NULL;
1517 		goto out;
1518 	}
1519 
1520 	err = -ENOMEM;
1521 
1522 	/* Allocate skb for sending to listening sock */
1523 	skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL);
1524 	if (skb == NULL)
1525 		goto out;
1526 
1527 restart:
1528 	/*  Find listening sock. */
1529 	other = unix_find_other(net, sunaddr, addr_len, sk->sk_type);
1530 	if (IS_ERR(other)) {
1531 		err = PTR_ERR(other);
1532 		other = NULL;
1533 		goto out;
1534 	}
1535 
1536 	/* Latch state of peer */
1537 	unix_state_lock(other);
1538 
1539 	/* Apparently VFS overslept socket death. Retry. */
1540 	if (sock_flag(other, SOCK_DEAD)) {
1541 		unix_state_unlock(other);
1542 		sock_put(other);
1543 		goto restart;
1544 	}
1545 
1546 	err = -ECONNREFUSED;
1547 	if (other->sk_state != TCP_LISTEN)
1548 		goto out_unlock;
1549 	if (other->sk_shutdown & RCV_SHUTDOWN)
1550 		goto out_unlock;
1551 
1552 	if (unix_recvq_full(other)) {
1553 		err = -EAGAIN;
1554 		if (!timeo)
1555 			goto out_unlock;
1556 
1557 		timeo = unix_wait_for_peer(other, timeo);
1558 
1559 		err = sock_intr_errno(timeo);
1560 		if (signal_pending(current))
1561 			goto out;
1562 		sock_put(other);
1563 		goto restart;
1564 	}
1565 
1566 	/* Latch our state.
1567 
1568 	   It is tricky place. We need to grab our state lock and cannot
1569 	   drop lock on peer. It is dangerous because deadlock is
1570 	   possible. Connect to self case and simultaneous
1571 	   attempt to connect are eliminated by checking socket
1572 	   state. other is TCP_LISTEN, if sk is TCP_LISTEN we
1573 	   check this before attempt to grab lock.
1574 
1575 	   Well, and we have to recheck the state after socket locked.
1576 	 */
1577 	st = sk->sk_state;
1578 
1579 	switch (st) {
1580 	case TCP_CLOSE:
1581 		/* This is ok... continue with connect */
1582 		break;
1583 	case TCP_ESTABLISHED:
1584 		/* Socket is already connected */
1585 		err = -EISCONN;
1586 		goto out_unlock;
1587 	default:
1588 		err = -EINVAL;
1589 		goto out_unlock;
1590 	}
1591 
1592 	unix_state_lock_nested(sk, U_LOCK_SECOND);
1593 
1594 	if (sk->sk_state != st) {
1595 		unix_state_unlock(sk);
1596 		unix_state_unlock(other);
1597 		sock_put(other);
1598 		goto restart;
1599 	}
1600 
1601 	err = security_unix_stream_connect(sk, other, newsk);
1602 	if (err) {
1603 		unix_state_unlock(sk);
1604 		goto out_unlock;
1605 	}
1606 
1607 	/* The way is open! Fastly set all the necessary fields... */
1608 
1609 	sock_hold(sk);
1610 	unix_peer(newsk)	= sk;
1611 	newsk->sk_state		= TCP_ESTABLISHED;
1612 	newsk->sk_type		= sk->sk_type;
1613 	init_peercred(newsk);
1614 	newu = unix_sk(newsk);
1615 	RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq);
1616 	otheru = unix_sk(other);
1617 
1618 	/* copy address information from listening to new sock
1619 	 *
1620 	 * The contents of *(otheru->addr) and otheru->path
1621 	 * are seen fully set up here, since we have found
1622 	 * otheru in hash under its lock.  Insertion into the
1623 	 * hash chain we'd found it in had been done in an
1624 	 * earlier critical area protected by the chain's lock,
1625 	 * the same one where we'd set *(otheru->addr) contents,
1626 	 * as well as otheru->path and otheru->addr itself.
1627 	 *
1628 	 * Using smp_store_release() here to set newu->addr
1629 	 * is enough to make those stores, as well as stores
1630 	 * to newu->path visible to anyone who gets newu->addr
1631 	 * by smp_load_acquire().  IOW, the same warranties
1632 	 * as for unix_sock instances bound in unix_bind() or
1633 	 * in unix_autobind().
1634 	 */
1635 	if (otheru->path.dentry) {
1636 		path_get(&otheru->path);
1637 		newu->path = otheru->path;
1638 	}
1639 	refcount_inc(&otheru->addr->refcnt);
1640 	smp_store_release(&newu->addr, otheru->addr);
1641 
1642 	/* Set credentials */
1643 	copy_peercred(sk, other);
1644 
1645 	sock->state	= SS_CONNECTED;
1646 	sk->sk_state	= TCP_ESTABLISHED;
1647 	sock_hold(newsk);
1648 
1649 	smp_mb__after_atomic();	/* sock_hold() does an atomic_inc() */
1650 	unix_peer(sk)	= newsk;
1651 
1652 	unix_state_unlock(sk);
1653 
1654 	/* take ten and send info to listening sock */
1655 	spin_lock(&other->sk_receive_queue.lock);
1656 	__skb_queue_tail(&other->sk_receive_queue, skb);
1657 	spin_unlock(&other->sk_receive_queue.lock);
1658 	unix_state_unlock(other);
1659 	other->sk_data_ready(other);
1660 	sock_put(other);
1661 	return 0;
1662 
1663 out_unlock:
1664 	if (other)
1665 		unix_state_unlock(other);
1666 
1667 out:
1668 	kfree_skb(skb);
1669 	if (newsk)
1670 		unix_release_sock(newsk, 0);
1671 	if (other)
1672 		sock_put(other);
1673 	return err;
1674 }
1675 
1676 static int unix_socketpair(struct socket *socka, struct socket *sockb)
1677 {
1678 	struct sock *ska = socka->sk, *skb = sockb->sk;
1679 
1680 	/* Join our sockets back to back */
1681 	sock_hold(ska);
1682 	sock_hold(skb);
1683 	unix_peer(ska) = skb;
1684 	unix_peer(skb) = ska;
1685 	init_peercred(ska);
1686 	init_peercred(skb);
1687 
1688 	ska->sk_state = TCP_ESTABLISHED;
1689 	skb->sk_state = TCP_ESTABLISHED;
1690 	socka->state  = SS_CONNECTED;
1691 	sockb->state  = SS_CONNECTED;
1692 	return 0;
1693 }
1694 
1695 static void unix_sock_inherit_flags(const struct socket *old,
1696 				    struct socket *new)
1697 {
1698 	if (test_bit(SOCK_PASSCRED, &old->flags))
1699 		set_bit(SOCK_PASSCRED, &new->flags);
1700 	if (test_bit(SOCK_PASSPIDFD, &old->flags))
1701 		set_bit(SOCK_PASSPIDFD, &new->flags);
1702 	if (test_bit(SOCK_PASSSEC, &old->flags))
1703 		set_bit(SOCK_PASSSEC, &new->flags);
1704 }
1705 
1706 static int unix_accept(struct socket *sock, struct socket *newsock, int flags,
1707 		       bool kern)
1708 {
1709 	struct sock *sk = sock->sk;
1710 	struct sock *tsk;
1711 	struct sk_buff *skb;
1712 	int err;
1713 
1714 	err = -EOPNOTSUPP;
1715 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
1716 		goto out;
1717 
1718 	err = -EINVAL;
1719 	if (sk->sk_state != TCP_LISTEN)
1720 		goto out;
1721 
1722 	/* If socket state is TCP_LISTEN it cannot change (for now...),
1723 	 * so that no locks are necessary.
1724 	 */
1725 
1726 	skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0,
1727 				&err);
1728 	if (!skb) {
1729 		/* This means receive shutdown. */
1730 		if (err == 0)
1731 			err = -EINVAL;
1732 		goto out;
1733 	}
1734 
1735 	tsk = skb->sk;
1736 	skb_free_datagram(sk, skb);
1737 	wake_up_interruptible(&unix_sk(sk)->peer_wait);
1738 
1739 	/* attach accepted sock to socket */
1740 	unix_state_lock(tsk);
1741 	newsock->state = SS_CONNECTED;
1742 	unix_sock_inherit_flags(sock, newsock);
1743 	sock_graft(tsk, newsock);
1744 	unix_state_unlock(tsk);
1745 	return 0;
1746 
1747 out:
1748 	return err;
1749 }
1750 
1751 
1752 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1753 {
1754 	struct sock *sk = sock->sk;
1755 	struct unix_address *addr;
1756 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr);
1757 	int err = 0;
1758 
1759 	if (peer) {
1760 		sk = unix_peer_get(sk);
1761 
1762 		err = -ENOTCONN;
1763 		if (!sk)
1764 			goto out;
1765 		err = 0;
1766 	} else {
1767 		sock_hold(sk);
1768 	}
1769 
1770 	addr = smp_load_acquire(&unix_sk(sk)->addr);
1771 	if (!addr) {
1772 		sunaddr->sun_family = AF_UNIX;
1773 		sunaddr->sun_path[0] = 0;
1774 		err = offsetof(struct sockaddr_un, sun_path);
1775 	} else {
1776 		err = addr->len;
1777 		memcpy(sunaddr, addr->name, addr->len);
1778 
1779 		if (peer)
1780 			BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err,
1781 					       CGROUP_UNIX_GETPEERNAME);
1782 		else
1783 			BPF_CGROUP_RUN_SA_PROG(sk, uaddr, &err,
1784 					       CGROUP_UNIX_GETSOCKNAME);
1785 	}
1786 	sock_put(sk);
1787 out:
1788 	return err;
1789 }
1790 
1791 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb)
1792 {
1793 	scm->fp = scm_fp_dup(UNIXCB(skb).fp);
1794 
1795 	/*
1796 	 * Garbage collection of unix sockets starts by selecting a set of
1797 	 * candidate sockets which have reference only from being in flight
1798 	 * (total_refs == inflight_refs).  This condition is checked once during
1799 	 * the candidate collection phase, and candidates are marked as such, so
1800 	 * that non-candidates can later be ignored.  While inflight_refs is
1801 	 * protected by unix_gc_lock, total_refs (file count) is not, hence this
1802 	 * is an instantaneous decision.
1803 	 *
1804 	 * Once a candidate, however, the socket must not be reinstalled into a
1805 	 * file descriptor while the garbage collection is in progress.
1806 	 *
1807 	 * If the above conditions are met, then the directed graph of
1808 	 * candidates (*) does not change while unix_gc_lock is held.
1809 	 *
1810 	 * Any operations that changes the file count through file descriptors
1811 	 * (dup, close, sendmsg) does not change the graph since candidates are
1812 	 * not installed in fds.
1813 	 *
1814 	 * Dequeing a candidate via recvmsg would install it into an fd, but
1815 	 * that takes unix_gc_lock to decrement the inflight count, so it's
1816 	 * serialized with garbage collection.
1817 	 *
1818 	 * MSG_PEEK is special in that it does not change the inflight count,
1819 	 * yet does install the socket into an fd.  The following lock/unlock
1820 	 * pair is to ensure serialization with garbage collection.  It must be
1821 	 * done between incrementing the file count and installing the file into
1822 	 * an fd.
1823 	 *
1824 	 * If garbage collection starts after the barrier provided by the
1825 	 * lock/unlock, then it will see the elevated refcount and not mark this
1826 	 * as a candidate.  If a garbage collection is already in progress
1827 	 * before the file count was incremented, then the lock/unlock pair will
1828 	 * ensure that garbage collection is finished before progressing to
1829 	 * installing the fd.
1830 	 *
1831 	 * (*) A -> B where B is on the queue of A or B is on the queue of C
1832 	 * which is on the queue of listening socket A.
1833 	 */
1834 	spin_lock(&unix_gc_lock);
1835 	spin_unlock(&unix_gc_lock);
1836 }
1837 
1838 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds)
1839 {
1840 	int err = 0;
1841 
1842 	UNIXCB(skb).pid  = get_pid(scm->pid);
1843 	UNIXCB(skb).uid = scm->creds.uid;
1844 	UNIXCB(skb).gid = scm->creds.gid;
1845 	UNIXCB(skb).fp = NULL;
1846 	unix_get_secdata(scm, skb);
1847 	if (scm->fp && send_fds)
1848 		err = unix_attach_fds(scm, skb);
1849 
1850 	skb->destructor = unix_destruct_scm;
1851 	return err;
1852 }
1853 
1854 static bool unix_passcred_enabled(const struct socket *sock,
1855 				  const struct sock *other)
1856 {
1857 	return test_bit(SOCK_PASSCRED, &sock->flags) ||
1858 	       test_bit(SOCK_PASSPIDFD, &sock->flags) ||
1859 	       !other->sk_socket ||
1860 	       test_bit(SOCK_PASSCRED, &other->sk_socket->flags) ||
1861 	       test_bit(SOCK_PASSPIDFD, &other->sk_socket->flags);
1862 }
1863 
1864 /*
1865  * Some apps rely on write() giving SCM_CREDENTIALS
1866  * We include credentials if source or destination socket
1867  * asserted SOCK_PASSCRED.
1868  */
1869 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock,
1870 			    const struct sock *other)
1871 {
1872 	if (UNIXCB(skb).pid)
1873 		return;
1874 	if (unix_passcred_enabled(sock, other)) {
1875 		UNIXCB(skb).pid  = get_pid(task_tgid(current));
1876 		current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid);
1877 	}
1878 }
1879 
1880 static bool unix_skb_scm_eq(struct sk_buff *skb,
1881 			    struct scm_cookie *scm)
1882 {
1883 	return UNIXCB(skb).pid == scm->pid &&
1884 	       uid_eq(UNIXCB(skb).uid, scm->creds.uid) &&
1885 	       gid_eq(UNIXCB(skb).gid, scm->creds.gid) &&
1886 	       unix_secdata_eq(scm, skb);
1887 }
1888 
1889 static void scm_stat_add(struct sock *sk, struct sk_buff *skb)
1890 {
1891 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1892 	struct unix_sock *u = unix_sk(sk);
1893 
1894 	if (unlikely(fp && fp->count))
1895 		atomic_add(fp->count, &u->scm_stat.nr_fds);
1896 }
1897 
1898 static void scm_stat_del(struct sock *sk, struct sk_buff *skb)
1899 {
1900 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1901 	struct unix_sock *u = unix_sk(sk);
1902 
1903 	if (unlikely(fp && fp->count))
1904 		atomic_sub(fp->count, &u->scm_stat.nr_fds);
1905 }
1906 
1907 /*
1908  *	Send AF_UNIX data.
1909  */
1910 
1911 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1912 			      size_t len)
1913 {
1914 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name);
1915 	struct sock *sk = sock->sk, *other = NULL;
1916 	struct unix_sock *u = unix_sk(sk);
1917 	struct scm_cookie scm;
1918 	struct sk_buff *skb;
1919 	int data_len = 0;
1920 	int sk_locked;
1921 	long timeo;
1922 	int err;
1923 
1924 	wait_for_unix_gc();
1925 	err = scm_send(sock, msg, &scm, false);
1926 	if (err < 0)
1927 		return err;
1928 
1929 	err = -EOPNOTSUPP;
1930 	if (msg->msg_flags&MSG_OOB)
1931 		goto out;
1932 
1933 	if (msg->msg_namelen) {
1934 		err = unix_validate_addr(sunaddr, msg->msg_namelen);
1935 		if (err)
1936 			goto out;
1937 
1938 		err = BPF_CGROUP_RUN_PROG_UNIX_SENDMSG_LOCK(sk,
1939 							    msg->msg_name,
1940 							    &msg->msg_namelen,
1941 							    NULL);
1942 		if (err)
1943 			goto out;
1944 	} else {
1945 		sunaddr = NULL;
1946 		err = -ENOTCONN;
1947 		other = unix_peer_get(sk);
1948 		if (!other)
1949 			goto out;
1950 	}
1951 
1952 	if ((test_bit(SOCK_PASSCRED, &sock->flags) ||
1953 	     test_bit(SOCK_PASSPIDFD, &sock->flags)) && !u->addr) {
1954 		err = unix_autobind(sk);
1955 		if (err)
1956 			goto out;
1957 	}
1958 
1959 	err = -EMSGSIZE;
1960 	if (len > sk->sk_sndbuf - 32)
1961 		goto out;
1962 
1963 	if (len > SKB_MAX_ALLOC) {
1964 		data_len = min_t(size_t,
1965 				 len - SKB_MAX_ALLOC,
1966 				 MAX_SKB_FRAGS * PAGE_SIZE);
1967 		data_len = PAGE_ALIGN(data_len);
1968 
1969 		BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE);
1970 	}
1971 
1972 	skb = sock_alloc_send_pskb(sk, len - data_len, data_len,
1973 				   msg->msg_flags & MSG_DONTWAIT, &err,
1974 				   PAGE_ALLOC_COSTLY_ORDER);
1975 	if (skb == NULL)
1976 		goto out;
1977 
1978 	err = unix_scm_to_skb(&scm, skb, true);
1979 	if (err < 0)
1980 		goto out_free;
1981 
1982 	skb_put(skb, len - data_len);
1983 	skb->data_len = data_len;
1984 	skb->len = len;
1985 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
1986 	if (err)
1987 		goto out_free;
1988 
1989 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1990 
1991 restart:
1992 	if (!other) {
1993 		err = -ECONNRESET;
1994 		if (sunaddr == NULL)
1995 			goto out_free;
1996 
1997 		other = unix_find_other(sock_net(sk), sunaddr, msg->msg_namelen,
1998 					sk->sk_type);
1999 		if (IS_ERR(other)) {
2000 			err = PTR_ERR(other);
2001 			other = NULL;
2002 			goto out_free;
2003 		}
2004 	}
2005 
2006 	if (sk_filter(other, skb) < 0) {
2007 		/* Toss the packet but do not return any error to the sender */
2008 		err = len;
2009 		goto out_free;
2010 	}
2011 
2012 	sk_locked = 0;
2013 	unix_state_lock(other);
2014 restart_locked:
2015 	err = -EPERM;
2016 	if (!unix_may_send(sk, other))
2017 		goto out_unlock;
2018 
2019 	if (unlikely(sock_flag(other, SOCK_DEAD))) {
2020 		/*
2021 		 *	Check with 1003.1g - what should
2022 		 *	datagram error
2023 		 */
2024 		unix_state_unlock(other);
2025 		sock_put(other);
2026 
2027 		if (!sk_locked)
2028 			unix_state_lock(sk);
2029 
2030 		err = 0;
2031 		if (sk->sk_type == SOCK_SEQPACKET) {
2032 			/* We are here only when racing with unix_release_sock()
2033 			 * is clearing @other. Never change state to TCP_CLOSE
2034 			 * unlike SOCK_DGRAM wants.
2035 			 */
2036 			unix_state_unlock(sk);
2037 			err = -EPIPE;
2038 		} else if (unix_peer(sk) == other) {
2039 			unix_peer(sk) = NULL;
2040 			unix_dgram_peer_wake_disconnect_wakeup(sk, other);
2041 
2042 			sk->sk_state = TCP_CLOSE;
2043 			unix_state_unlock(sk);
2044 
2045 			unix_dgram_disconnected(sk, other);
2046 			sock_put(other);
2047 			err = -ECONNREFUSED;
2048 		} else {
2049 			unix_state_unlock(sk);
2050 		}
2051 
2052 		other = NULL;
2053 		if (err)
2054 			goto out_free;
2055 		goto restart;
2056 	}
2057 
2058 	err = -EPIPE;
2059 	if (other->sk_shutdown & RCV_SHUTDOWN)
2060 		goto out_unlock;
2061 
2062 	if (sk->sk_type != SOCK_SEQPACKET) {
2063 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
2064 		if (err)
2065 			goto out_unlock;
2066 	}
2067 
2068 	/* other == sk && unix_peer(other) != sk if
2069 	 * - unix_peer(sk) == NULL, destination address bound to sk
2070 	 * - unix_peer(sk) == sk by time of get but disconnected before lock
2071 	 */
2072 	if (other != sk &&
2073 	    unlikely(unix_peer(other) != sk &&
2074 	    unix_recvq_full_lockless(other))) {
2075 		if (timeo) {
2076 			timeo = unix_wait_for_peer(other, timeo);
2077 
2078 			err = sock_intr_errno(timeo);
2079 			if (signal_pending(current))
2080 				goto out_free;
2081 
2082 			goto restart;
2083 		}
2084 
2085 		if (!sk_locked) {
2086 			unix_state_unlock(other);
2087 			unix_state_double_lock(sk, other);
2088 		}
2089 
2090 		if (unix_peer(sk) != other ||
2091 		    unix_dgram_peer_wake_me(sk, other)) {
2092 			err = -EAGAIN;
2093 			sk_locked = 1;
2094 			goto out_unlock;
2095 		}
2096 
2097 		if (!sk_locked) {
2098 			sk_locked = 1;
2099 			goto restart_locked;
2100 		}
2101 	}
2102 
2103 	if (unlikely(sk_locked))
2104 		unix_state_unlock(sk);
2105 
2106 	if (sock_flag(other, SOCK_RCVTSTAMP))
2107 		__net_timestamp(skb);
2108 	maybe_add_creds(skb, sock, other);
2109 	scm_stat_add(other, skb);
2110 	skb_queue_tail(&other->sk_receive_queue, skb);
2111 	unix_state_unlock(other);
2112 	other->sk_data_ready(other);
2113 	sock_put(other);
2114 	scm_destroy(&scm);
2115 	return len;
2116 
2117 out_unlock:
2118 	if (sk_locked)
2119 		unix_state_unlock(sk);
2120 	unix_state_unlock(other);
2121 out_free:
2122 	kfree_skb(skb);
2123 out:
2124 	if (other)
2125 		sock_put(other);
2126 	scm_destroy(&scm);
2127 	return err;
2128 }
2129 
2130 /* We use paged skbs for stream sockets, and limit occupancy to 32768
2131  * bytes, and a minimum of a full page.
2132  */
2133 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768))
2134 
2135 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2136 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other,
2137 		     struct scm_cookie *scm, bool fds_sent)
2138 {
2139 	struct unix_sock *ousk = unix_sk(other);
2140 	struct sk_buff *skb;
2141 	int err = 0;
2142 
2143 	skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err);
2144 
2145 	if (!skb)
2146 		return err;
2147 
2148 	err = unix_scm_to_skb(scm, skb, !fds_sent);
2149 	if (err < 0) {
2150 		kfree_skb(skb);
2151 		return err;
2152 	}
2153 	skb_put(skb, 1);
2154 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1);
2155 
2156 	if (err) {
2157 		kfree_skb(skb);
2158 		return err;
2159 	}
2160 
2161 	unix_state_lock(other);
2162 
2163 	if (sock_flag(other, SOCK_DEAD) ||
2164 	    (other->sk_shutdown & RCV_SHUTDOWN)) {
2165 		unix_state_unlock(other);
2166 		kfree_skb(skb);
2167 		return -EPIPE;
2168 	}
2169 
2170 	maybe_add_creds(skb, sock, other);
2171 	skb_get(skb);
2172 
2173 	if (ousk->oob_skb)
2174 		consume_skb(ousk->oob_skb);
2175 
2176 	WRITE_ONCE(ousk->oob_skb, skb);
2177 
2178 	scm_stat_add(other, skb);
2179 	skb_queue_tail(&other->sk_receive_queue, skb);
2180 	sk_send_sigurg(other);
2181 	unix_state_unlock(other);
2182 	other->sk_data_ready(other);
2183 
2184 	return err;
2185 }
2186 #endif
2187 
2188 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg,
2189 			       size_t len)
2190 {
2191 	struct sock *sk = sock->sk;
2192 	struct sock *other = NULL;
2193 	int err, size;
2194 	struct sk_buff *skb;
2195 	int sent = 0;
2196 	struct scm_cookie scm;
2197 	bool fds_sent = false;
2198 	int data_len;
2199 
2200 	wait_for_unix_gc();
2201 	err = scm_send(sock, msg, &scm, false);
2202 	if (err < 0)
2203 		return err;
2204 
2205 	err = -EOPNOTSUPP;
2206 	if (msg->msg_flags & MSG_OOB) {
2207 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2208 		if (len)
2209 			len--;
2210 		else
2211 #endif
2212 			goto out_err;
2213 	}
2214 
2215 	if (msg->msg_namelen) {
2216 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2217 		goto out_err;
2218 	} else {
2219 		err = -ENOTCONN;
2220 		other = unix_peer(sk);
2221 		if (!other)
2222 			goto out_err;
2223 	}
2224 
2225 	if (sk->sk_shutdown & SEND_SHUTDOWN)
2226 		goto pipe_err;
2227 
2228 	while (sent < len) {
2229 		size = len - sent;
2230 
2231 		if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) {
2232 			skb = sock_alloc_send_pskb(sk, 0, 0,
2233 						   msg->msg_flags & MSG_DONTWAIT,
2234 						   &err, 0);
2235 		} else {
2236 			/* Keep two messages in the pipe so it schedules better */
2237 			size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64);
2238 
2239 			/* allow fallback to order-0 allocations */
2240 			size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ);
2241 
2242 			data_len = max_t(int, 0, size - SKB_MAX_HEAD(0));
2243 
2244 			data_len = min_t(size_t, size, PAGE_ALIGN(data_len));
2245 
2246 			skb = sock_alloc_send_pskb(sk, size - data_len, data_len,
2247 						   msg->msg_flags & MSG_DONTWAIT, &err,
2248 						   get_order(UNIX_SKB_FRAGS_SZ));
2249 		}
2250 		if (!skb)
2251 			goto out_err;
2252 
2253 		/* Only send the fds in the first buffer */
2254 		err = unix_scm_to_skb(&scm, skb, !fds_sent);
2255 		if (err < 0) {
2256 			kfree_skb(skb);
2257 			goto out_err;
2258 		}
2259 		fds_sent = true;
2260 
2261 		if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES)) {
2262 			err = skb_splice_from_iter(skb, &msg->msg_iter, size,
2263 						   sk->sk_allocation);
2264 			if (err < 0) {
2265 				kfree_skb(skb);
2266 				goto out_err;
2267 			}
2268 			size = err;
2269 			refcount_add(size, &sk->sk_wmem_alloc);
2270 		} else {
2271 			skb_put(skb, size - data_len);
2272 			skb->data_len = data_len;
2273 			skb->len = size;
2274 			err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
2275 			if (err) {
2276 				kfree_skb(skb);
2277 				goto out_err;
2278 			}
2279 		}
2280 
2281 		unix_state_lock(other);
2282 
2283 		if (sock_flag(other, SOCK_DEAD) ||
2284 		    (other->sk_shutdown & RCV_SHUTDOWN))
2285 			goto pipe_err_free;
2286 
2287 		maybe_add_creds(skb, sock, other);
2288 		scm_stat_add(other, skb);
2289 		skb_queue_tail(&other->sk_receive_queue, skb);
2290 		unix_state_unlock(other);
2291 		other->sk_data_ready(other);
2292 		sent += size;
2293 	}
2294 
2295 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2296 	if (msg->msg_flags & MSG_OOB) {
2297 		err = queue_oob(sock, msg, other, &scm, fds_sent);
2298 		if (err)
2299 			goto out_err;
2300 		sent++;
2301 	}
2302 #endif
2303 
2304 	scm_destroy(&scm);
2305 
2306 	return sent;
2307 
2308 pipe_err_free:
2309 	unix_state_unlock(other);
2310 	kfree_skb(skb);
2311 pipe_err:
2312 	if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL))
2313 		send_sig(SIGPIPE, current, 0);
2314 	err = -EPIPE;
2315 out_err:
2316 	scm_destroy(&scm);
2317 	return sent ? : err;
2318 }
2319 
2320 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg,
2321 				  size_t len)
2322 {
2323 	int err;
2324 	struct sock *sk = sock->sk;
2325 
2326 	err = sock_error(sk);
2327 	if (err)
2328 		return err;
2329 
2330 	if (sk->sk_state != TCP_ESTABLISHED)
2331 		return -ENOTCONN;
2332 
2333 	if (msg->msg_namelen)
2334 		msg->msg_namelen = 0;
2335 
2336 	return unix_dgram_sendmsg(sock, msg, len);
2337 }
2338 
2339 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg,
2340 				  size_t size, int flags)
2341 {
2342 	struct sock *sk = sock->sk;
2343 
2344 	if (sk->sk_state != TCP_ESTABLISHED)
2345 		return -ENOTCONN;
2346 
2347 	return unix_dgram_recvmsg(sock, msg, size, flags);
2348 }
2349 
2350 static void unix_copy_addr(struct msghdr *msg, struct sock *sk)
2351 {
2352 	struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr);
2353 
2354 	if (addr) {
2355 		msg->msg_namelen = addr->len;
2356 		memcpy(msg->msg_name, addr->name, addr->len);
2357 	}
2358 }
2359 
2360 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size,
2361 			 int flags)
2362 {
2363 	struct scm_cookie scm;
2364 	struct socket *sock = sk->sk_socket;
2365 	struct unix_sock *u = unix_sk(sk);
2366 	struct sk_buff *skb, *last;
2367 	long timeo;
2368 	int skip;
2369 	int err;
2370 
2371 	err = -EOPNOTSUPP;
2372 	if (flags&MSG_OOB)
2373 		goto out;
2374 
2375 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2376 
2377 	do {
2378 		mutex_lock(&u->iolock);
2379 
2380 		skip = sk_peek_offset(sk, flags);
2381 		skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags,
2382 					      &skip, &err, &last);
2383 		if (skb) {
2384 			if (!(flags & MSG_PEEK))
2385 				scm_stat_del(sk, skb);
2386 			break;
2387 		}
2388 
2389 		mutex_unlock(&u->iolock);
2390 
2391 		if (err != -EAGAIN)
2392 			break;
2393 	} while (timeo &&
2394 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
2395 					      &err, &timeo, last));
2396 
2397 	if (!skb) { /* implies iolock unlocked */
2398 		unix_state_lock(sk);
2399 		/* Signal EOF on disconnected non-blocking SEQPACKET socket. */
2400 		if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN &&
2401 		    (sk->sk_shutdown & RCV_SHUTDOWN))
2402 			err = 0;
2403 		unix_state_unlock(sk);
2404 		goto out;
2405 	}
2406 
2407 	if (wq_has_sleeper(&u->peer_wait))
2408 		wake_up_interruptible_sync_poll(&u->peer_wait,
2409 						EPOLLOUT | EPOLLWRNORM |
2410 						EPOLLWRBAND);
2411 
2412 	if (msg->msg_name) {
2413 		unix_copy_addr(msg, skb->sk);
2414 
2415 		BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk,
2416 						      msg->msg_name,
2417 						      &msg->msg_namelen);
2418 	}
2419 
2420 	if (size > skb->len - skip)
2421 		size = skb->len - skip;
2422 	else if (size < skb->len - skip)
2423 		msg->msg_flags |= MSG_TRUNC;
2424 
2425 	err = skb_copy_datagram_msg(skb, skip, msg, size);
2426 	if (err)
2427 		goto out_free;
2428 
2429 	if (sock_flag(sk, SOCK_RCVTSTAMP))
2430 		__sock_recv_timestamp(msg, sk, skb);
2431 
2432 	memset(&scm, 0, sizeof(scm));
2433 
2434 	scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2435 	unix_set_secdata(&scm, skb);
2436 
2437 	if (!(flags & MSG_PEEK)) {
2438 		if (UNIXCB(skb).fp)
2439 			unix_detach_fds(&scm, skb);
2440 
2441 		sk_peek_offset_bwd(sk, skb->len);
2442 	} else {
2443 		/* It is questionable: on PEEK we could:
2444 		   - do not return fds - good, but too simple 8)
2445 		   - return fds, and do not return them on read (old strategy,
2446 		     apparently wrong)
2447 		   - clone fds (I chose it for now, it is the most universal
2448 		     solution)
2449 
2450 		   POSIX 1003.1g does not actually define this clearly
2451 		   at all. POSIX 1003.1g doesn't define a lot of things
2452 		   clearly however!
2453 
2454 		*/
2455 
2456 		sk_peek_offset_fwd(sk, size);
2457 
2458 		if (UNIXCB(skb).fp)
2459 			unix_peek_fds(&scm, skb);
2460 	}
2461 	err = (flags & MSG_TRUNC) ? skb->len - skip : size;
2462 
2463 	scm_recv_unix(sock, msg, &scm, flags);
2464 
2465 out_free:
2466 	skb_free_datagram(sk, skb);
2467 	mutex_unlock(&u->iolock);
2468 out:
2469 	return err;
2470 }
2471 
2472 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2473 			      int flags)
2474 {
2475 	struct sock *sk = sock->sk;
2476 
2477 #ifdef CONFIG_BPF_SYSCALL
2478 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2479 
2480 	if (prot != &unix_dgram_proto)
2481 		return prot->recvmsg(sk, msg, size, flags, NULL);
2482 #endif
2483 	return __unix_dgram_recvmsg(sk, msg, size, flags);
2484 }
2485 
2486 static int unix_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
2487 {
2488 	struct unix_sock *u = unix_sk(sk);
2489 	struct sk_buff *skb;
2490 	int err;
2491 
2492 	mutex_lock(&u->iolock);
2493 	skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err);
2494 	mutex_unlock(&u->iolock);
2495 	if (!skb)
2496 		return err;
2497 
2498 	return recv_actor(sk, skb);
2499 }
2500 
2501 /*
2502  *	Sleep until more data has arrived. But check for races..
2503  */
2504 static long unix_stream_data_wait(struct sock *sk, long timeo,
2505 				  struct sk_buff *last, unsigned int last_len,
2506 				  bool freezable)
2507 {
2508 	unsigned int state = TASK_INTERRUPTIBLE | freezable * TASK_FREEZABLE;
2509 	struct sk_buff *tail;
2510 	DEFINE_WAIT(wait);
2511 
2512 	unix_state_lock(sk);
2513 
2514 	for (;;) {
2515 		prepare_to_wait(sk_sleep(sk), &wait, state);
2516 
2517 		tail = skb_peek_tail(&sk->sk_receive_queue);
2518 		if (tail != last ||
2519 		    (tail && tail->len != last_len) ||
2520 		    sk->sk_err ||
2521 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2522 		    signal_pending(current) ||
2523 		    !timeo)
2524 			break;
2525 
2526 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2527 		unix_state_unlock(sk);
2528 		timeo = schedule_timeout(timeo);
2529 		unix_state_lock(sk);
2530 
2531 		if (sock_flag(sk, SOCK_DEAD))
2532 			break;
2533 
2534 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2535 	}
2536 
2537 	finish_wait(sk_sleep(sk), &wait);
2538 	unix_state_unlock(sk);
2539 	return timeo;
2540 }
2541 
2542 static unsigned int unix_skb_len(const struct sk_buff *skb)
2543 {
2544 	return skb->len - UNIXCB(skb).consumed;
2545 }
2546 
2547 struct unix_stream_read_state {
2548 	int (*recv_actor)(struct sk_buff *, int, int,
2549 			  struct unix_stream_read_state *);
2550 	struct socket *socket;
2551 	struct msghdr *msg;
2552 	struct pipe_inode_info *pipe;
2553 	size_t size;
2554 	int flags;
2555 	unsigned int splice_flags;
2556 };
2557 
2558 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2559 static int unix_stream_recv_urg(struct unix_stream_read_state *state)
2560 {
2561 	struct socket *sock = state->socket;
2562 	struct sock *sk = sock->sk;
2563 	struct unix_sock *u = unix_sk(sk);
2564 	int chunk = 1;
2565 	struct sk_buff *oob_skb;
2566 
2567 	mutex_lock(&u->iolock);
2568 	unix_state_lock(sk);
2569 
2570 	if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) {
2571 		unix_state_unlock(sk);
2572 		mutex_unlock(&u->iolock);
2573 		return -EINVAL;
2574 	}
2575 
2576 	oob_skb = u->oob_skb;
2577 
2578 	if (!(state->flags & MSG_PEEK))
2579 		WRITE_ONCE(u->oob_skb, NULL);
2580 	else
2581 		skb_get(oob_skb);
2582 	unix_state_unlock(sk);
2583 
2584 	chunk = state->recv_actor(oob_skb, 0, chunk, state);
2585 
2586 	if (!(state->flags & MSG_PEEK))
2587 		UNIXCB(oob_skb).consumed += 1;
2588 
2589 	consume_skb(oob_skb);
2590 
2591 	mutex_unlock(&u->iolock);
2592 
2593 	if (chunk < 0)
2594 		return -EFAULT;
2595 
2596 	state->msg->msg_flags |= MSG_OOB;
2597 	return 1;
2598 }
2599 
2600 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk,
2601 				  int flags, int copied)
2602 {
2603 	struct unix_sock *u = unix_sk(sk);
2604 
2605 	if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) {
2606 		skb_unlink(skb, &sk->sk_receive_queue);
2607 		consume_skb(skb);
2608 		skb = NULL;
2609 	} else {
2610 		if (skb == u->oob_skb) {
2611 			if (copied) {
2612 				skb = NULL;
2613 			} else if (sock_flag(sk, SOCK_URGINLINE)) {
2614 				if (!(flags & MSG_PEEK)) {
2615 					WRITE_ONCE(u->oob_skb, NULL);
2616 					consume_skb(skb);
2617 				}
2618 			} else if (!(flags & MSG_PEEK)) {
2619 				skb_unlink(skb, &sk->sk_receive_queue);
2620 				consume_skb(skb);
2621 				skb = skb_peek(&sk->sk_receive_queue);
2622 			}
2623 		}
2624 	}
2625 	return skb;
2626 }
2627 #endif
2628 
2629 static int unix_stream_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
2630 {
2631 	if (unlikely(sk->sk_state != TCP_ESTABLISHED))
2632 		return -ENOTCONN;
2633 
2634 	return unix_read_skb(sk, recv_actor);
2635 }
2636 
2637 static int unix_stream_read_generic(struct unix_stream_read_state *state,
2638 				    bool freezable)
2639 {
2640 	struct scm_cookie scm;
2641 	struct socket *sock = state->socket;
2642 	struct sock *sk = sock->sk;
2643 	struct unix_sock *u = unix_sk(sk);
2644 	int copied = 0;
2645 	int flags = state->flags;
2646 	int noblock = flags & MSG_DONTWAIT;
2647 	bool check_creds = false;
2648 	int target;
2649 	int err = 0;
2650 	long timeo;
2651 	int skip;
2652 	size_t size = state->size;
2653 	unsigned int last_len;
2654 
2655 	if (unlikely(sk->sk_state != TCP_ESTABLISHED)) {
2656 		err = -EINVAL;
2657 		goto out;
2658 	}
2659 
2660 	if (unlikely(flags & MSG_OOB)) {
2661 		err = -EOPNOTSUPP;
2662 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2663 		err = unix_stream_recv_urg(state);
2664 #endif
2665 		goto out;
2666 	}
2667 
2668 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
2669 	timeo = sock_rcvtimeo(sk, noblock);
2670 
2671 	memset(&scm, 0, sizeof(scm));
2672 
2673 	/* Lock the socket to prevent queue disordering
2674 	 * while sleeps in memcpy_tomsg
2675 	 */
2676 	mutex_lock(&u->iolock);
2677 
2678 	skip = max(sk_peek_offset(sk, flags), 0);
2679 
2680 	do {
2681 		int chunk;
2682 		bool drop_skb;
2683 		struct sk_buff *skb, *last;
2684 
2685 redo:
2686 		unix_state_lock(sk);
2687 		if (sock_flag(sk, SOCK_DEAD)) {
2688 			err = -ECONNRESET;
2689 			goto unlock;
2690 		}
2691 		last = skb = skb_peek(&sk->sk_receive_queue);
2692 		last_len = last ? last->len : 0;
2693 
2694 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2695 		if (skb) {
2696 			skb = manage_oob(skb, sk, flags, copied);
2697 			if (!skb) {
2698 				unix_state_unlock(sk);
2699 				if (copied)
2700 					break;
2701 				goto redo;
2702 			}
2703 		}
2704 #endif
2705 again:
2706 		if (skb == NULL) {
2707 			if (copied >= target)
2708 				goto unlock;
2709 
2710 			/*
2711 			 *	POSIX 1003.1g mandates this order.
2712 			 */
2713 
2714 			err = sock_error(sk);
2715 			if (err)
2716 				goto unlock;
2717 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2718 				goto unlock;
2719 
2720 			unix_state_unlock(sk);
2721 			if (!timeo) {
2722 				err = -EAGAIN;
2723 				break;
2724 			}
2725 
2726 			mutex_unlock(&u->iolock);
2727 
2728 			timeo = unix_stream_data_wait(sk, timeo, last,
2729 						      last_len, freezable);
2730 
2731 			if (signal_pending(current)) {
2732 				err = sock_intr_errno(timeo);
2733 				scm_destroy(&scm);
2734 				goto out;
2735 			}
2736 
2737 			mutex_lock(&u->iolock);
2738 			goto redo;
2739 unlock:
2740 			unix_state_unlock(sk);
2741 			break;
2742 		}
2743 
2744 		while (skip >= unix_skb_len(skb)) {
2745 			skip -= unix_skb_len(skb);
2746 			last = skb;
2747 			last_len = skb->len;
2748 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2749 			if (!skb)
2750 				goto again;
2751 		}
2752 
2753 		unix_state_unlock(sk);
2754 
2755 		if (check_creds) {
2756 			/* Never glue messages from different writers */
2757 			if (!unix_skb_scm_eq(skb, &scm))
2758 				break;
2759 		} else if (test_bit(SOCK_PASSCRED, &sock->flags) ||
2760 			   test_bit(SOCK_PASSPIDFD, &sock->flags)) {
2761 			/* Copy credentials */
2762 			scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2763 			unix_set_secdata(&scm, skb);
2764 			check_creds = true;
2765 		}
2766 
2767 		/* Copy address just once */
2768 		if (state->msg && state->msg->msg_name) {
2769 			DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr,
2770 					 state->msg->msg_name);
2771 			unix_copy_addr(state->msg, skb->sk);
2772 
2773 			BPF_CGROUP_RUN_PROG_UNIX_RECVMSG_LOCK(sk,
2774 							      state->msg->msg_name,
2775 							      &state->msg->msg_namelen);
2776 
2777 			sunaddr = NULL;
2778 		}
2779 
2780 		chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size);
2781 		skb_get(skb);
2782 		chunk = state->recv_actor(skb, skip, chunk, state);
2783 		drop_skb = !unix_skb_len(skb);
2784 		/* skb is only safe to use if !drop_skb */
2785 		consume_skb(skb);
2786 		if (chunk < 0) {
2787 			if (copied == 0)
2788 				copied = -EFAULT;
2789 			break;
2790 		}
2791 		copied += chunk;
2792 		size -= chunk;
2793 
2794 		if (drop_skb) {
2795 			/* the skb was touched by a concurrent reader;
2796 			 * we should not expect anything from this skb
2797 			 * anymore and assume it invalid - we can be
2798 			 * sure it was dropped from the socket queue
2799 			 *
2800 			 * let's report a short read
2801 			 */
2802 			err = 0;
2803 			break;
2804 		}
2805 
2806 		/* Mark read part of skb as used */
2807 		if (!(flags & MSG_PEEK)) {
2808 			UNIXCB(skb).consumed += chunk;
2809 
2810 			sk_peek_offset_bwd(sk, chunk);
2811 
2812 			if (UNIXCB(skb).fp) {
2813 				scm_stat_del(sk, skb);
2814 				unix_detach_fds(&scm, skb);
2815 			}
2816 
2817 			if (unix_skb_len(skb))
2818 				break;
2819 
2820 			skb_unlink(skb, &sk->sk_receive_queue);
2821 			consume_skb(skb);
2822 
2823 			if (scm.fp)
2824 				break;
2825 		} else {
2826 			/* It is questionable, see note in unix_dgram_recvmsg.
2827 			 */
2828 			if (UNIXCB(skb).fp)
2829 				unix_peek_fds(&scm, skb);
2830 
2831 			sk_peek_offset_fwd(sk, chunk);
2832 
2833 			if (UNIXCB(skb).fp)
2834 				break;
2835 
2836 			skip = 0;
2837 			last = skb;
2838 			last_len = skb->len;
2839 			unix_state_lock(sk);
2840 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2841 			if (skb)
2842 				goto again;
2843 			unix_state_unlock(sk);
2844 			break;
2845 		}
2846 	} while (size);
2847 
2848 	mutex_unlock(&u->iolock);
2849 	if (state->msg)
2850 		scm_recv_unix(sock, state->msg, &scm, flags);
2851 	else
2852 		scm_destroy(&scm);
2853 out:
2854 	return copied ? : err;
2855 }
2856 
2857 static int unix_stream_read_actor(struct sk_buff *skb,
2858 				  int skip, int chunk,
2859 				  struct unix_stream_read_state *state)
2860 {
2861 	int ret;
2862 
2863 	ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip,
2864 				    state->msg, chunk);
2865 	return ret ?: chunk;
2866 }
2867 
2868 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2869 			  size_t size, int flags)
2870 {
2871 	struct unix_stream_read_state state = {
2872 		.recv_actor = unix_stream_read_actor,
2873 		.socket = sk->sk_socket,
2874 		.msg = msg,
2875 		.size = size,
2876 		.flags = flags
2877 	};
2878 
2879 	return unix_stream_read_generic(&state, true);
2880 }
2881 
2882 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg,
2883 			       size_t size, int flags)
2884 {
2885 	struct unix_stream_read_state state = {
2886 		.recv_actor = unix_stream_read_actor,
2887 		.socket = sock,
2888 		.msg = msg,
2889 		.size = size,
2890 		.flags = flags
2891 	};
2892 
2893 #ifdef CONFIG_BPF_SYSCALL
2894 	struct sock *sk = sock->sk;
2895 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2896 
2897 	if (prot != &unix_stream_proto)
2898 		return prot->recvmsg(sk, msg, size, flags, NULL);
2899 #endif
2900 	return unix_stream_read_generic(&state, true);
2901 }
2902 
2903 static int unix_stream_splice_actor(struct sk_buff *skb,
2904 				    int skip, int chunk,
2905 				    struct unix_stream_read_state *state)
2906 {
2907 	return skb_splice_bits(skb, state->socket->sk,
2908 			       UNIXCB(skb).consumed + skip,
2909 			       state->pipe, chunk, state->splice_flags);
2910 }
2911 
2912 static ssize_t unix_stream_splice_read(struct socket *sock,  loff_t *ppos,
2913 				       struct pipe_inode_info *pipe,
2914 				       size_t size, unsigned int flags)
2915 {
2916 	struct unix_stream_read_state state = {
2917 		.recv_actor = unix_stream_splice_actor,
2918 		.socket = sock,
2919 		.pipe = pipe,
2920 		.size = size,
2921 		.splice_flags = flags,
2922 	};
2923 
2924 	if (unlikely(*ppos))
2925 		return -ESPIPE;
2926 
2927 	if (sock->file->f_flags & O_NONBLOCK ||
2928 	    flags & SPLICE_F_NONBLOCK)
2929 		state.flags = MSG_DONTWAIT;
2930 
2931 	return unix_stream_read_generic(&state, false);
2932 }
2933 
2934 static int unix_shutdown(struct socket *sock, int mode)
2935 {
2936 	struct sock *sk = sock->sk;
2937 	struct sock *other;
2938 
2939 	if (mode < SHUT_RD || mode > SHUT_RDWR)
2940 		return -EINVAL;
2941 	/* This maps:
2942 	 * SHUT_RD   (0) -> RCV_SHUTDOWN  (1)
2943 	 * SHUT_WR   (1) -> SEND_SHUTDOWN (2)
2944 	 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3)
2945 	 */
2946 	++mode;
2947 
2948 	unix_state_lock(sk);
2949 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | mode);
2950 	other = unix_peer(sk);
2951 	if (other)
2952 		sock_hold(other);
2953 	unix_state_unlock(sk);
2954 	sk->sk_state_change(sk);
2955 
2956 	if (other &&
2957 		(sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) {
2958 
2959 		int peer_mode = 0;
2960 		const struct proto *prot = READ_ONCE(other->sk_prot);
2961 
2962 		if (prot->unhash)
2963 			prot->unhash(other);
2964 		if (mode&RCV_SHUTDOWN)
2965 			peer_mode |= SEND_SHUTDOWN;
2966 		if (mode&SEND_SHUTDOWN)
2967 			peer_mode |= RCV_SHUTDOWN;
2968 		unix_state_lock(other);
2969 		WRITE_ONCE(other->sk_shutdown, other->sk_shutdown | peer_mode);
2970 		unix_state_unlock(other);
2971 		other->sk_state_change(other);
2972 		if (peer_mode == SHUTDOWN_MASK)
2973 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP);
2974 		else if (peer_mode & RCV_SHUTDOWN)
2975 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN);
2976 	}
2977 	if (other)
2978 		sock_put(other);
2979 
2980 	return 0;
2981 }
2982 
2983 long unix_inq_len(struct sock *sk)
2984 {
2985 	struct sk_buff *skb;
2986 	long amount = 0;
2987 
2988 	if (sk->sk_state == TCP_LISTEN)
2989 		return -EINVAL;
2990 
2991 	spin_lock(&sk->sk_receive_queue.lock);
2992 	if (sk->sk_type == SOCK_STREAM ||
2993 	    sk->sk_type == SOCK_SEQPACKET) {
2994 		skb_queue_walk(&sk->sk_receive_queue, skb)
2995 			amount += unix_skb_len(skb);
2996 	} else {
2997 		skb = skb_peek(&sk->sk_receive_queue);
2998 		if (skb)
2999 			amount = skb->len;
3000 	}
3001 	spin_unlock(&sk->sk_receive_queue.lock);
3002 
3003 	return amount;
3004 }
3005 EXPORT_SYMBOL_GPL(unix_inq_len);
3006 
3007 long unix_outq_len(struct sock *sk)
3008 {
3009 	return sk_wmem_alloc_get(sk);
3010 }
3011 EXPORT_SYMBOL_GPL(unix_outq_len);
3012 
3013 static int unix_open_file(struct sock *sk)
3014 {
3015 	struct path path;
3016 	struct file *f;
3017 	int fd;
3018 
3019 	if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
3020 		return -EPERM;
3021 
3022 	if (!smp_load_acquire(&unix_sk(sk)->addr))
3023 		return -ENOENT;
3024 
3025 	path = unix_sk(sk)->path;
3026 	if (!path.dentry)
3027 		return -ENOENT;
3028 
3029 	path_get(&path);
3030 
3031 	fd = get_unused_fd_flags(O_CLOEXEC);
3032 	if (fd < 0)
3033 		goto out;
3034 
3035 	f = dentry_open(&path, O_PATH, current_cred());
3036 	if (IS_ERR(f)) {
3037 		put_unused_fd(fd);
3038 		fd = PTR_ERR(f);
3039 		goto out;
3040 	}
3041 
3042 	fd_install(fd, f);
3043 out:
3044 	path_put(&path);
3045 
3046 	return fd;
3047 }
3048 
3049 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3050 {
3051 	struct sock *sk = sock->sk;
3052 	long amount = 0;
3053 	int err;
3054 
3055 	switch (cmd) {
3056 	case SIOCOUTQ:
3057 		amount = unix_outq_len(sk);
3058 		err = put_user(amount, (int __user *)arg);
3059 		break;
3060 	case SIOCINQ:
3061 		amount = unix_inq_len(sk);
3062 		if (amount < 0)
3063 			err = amount;
3064 		else
3065 			err = put_user(amount, (int __user *)arg);
3066 		break;
3067 	case SIOCUNIXFILE:
3068 		err = unix_open_file(sk);
3069 		break;
3070 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3071 	case SIOCATMARK:
3072 		{
3073 			struct sk_buff *skb;
3074 			int answ = 0;
3075 
3076 			skb = skb_peek(&sk->sk_receive_queue);
3077 			if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb))
3078 				answ = 1;
3079 			err = put_user(answ, (int __user *)arg);
3080 		}
3081 		break;
3082 #endif
3083 	default:
3084 		err = -ENOIOCTLCMD;
3085 		break;
3086 	}
3087 	return err;
3088 }
3089 
3090 #ifdef CONFIG_COMPAT
3091 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3092 {
3093 	return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
3094 }
3095 #endif
3096 
3097 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait)
3098 {
3099 	struct sock *sk = sock->sk;
3100 	__poll_t mask;
3101 	u8 shutdown;
3102 
3103 	sock_poll_wait(file, sock, wait);
3104 	mask = 0;
3105 	shutdown = READ_ONCE(sk->sk_shutdown);
3106 
3107 	/* exceptional events? */
3108 	if (READ_ONCE(sk->sk_err))
3109 		mask |= EPOLLERR;
3110 	if (shutdown == SHUTDOWN_MASK)
3111 		mask |= EPOLLHUP;
3112 	if (shutdown & RCV_SHUTDOWN)
3113 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3114 
3115 	/* readable? */
3116 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3117 		mask |= EPOLLIN | EPOLLRDNORM;
3118 	if (sk_is_readable(sk))
3119 		mask |= EPOLLIN | EPOLLRDNORM;
3120 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3121 	if (READ_ONCE(unix_sk(sk)->oob_skb))
3122 		mask |= EPOLLPRI;
3123 #endif
3124 
3125 	/* Connection-based need to check for termination and startup */
3126 	if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) &&
3127 	    sk->sk_state == TCP_CLOSE)
3128 		mask |= EPOLLHUP;
3129 
3130 	/*
3131 	 * we set writable also when the other side has shut down the
3132 	 * connection. This prevents stuck sockets.
3133 	 */
3134 	if (unix_writable(sk))
3135 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3136 
3137 	return mask;
3138 }
3139 
3140 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock,
3141 				    poll_table *wait)
3142 {
3143 	struct sock *sk = sock->sk, *other;
3144 	unsigned int writable;
3145 	__poll_t mask;
3146 	u8 shutdown;
3147 
3148 	sock_poll_wait(file, sock, wait);
3149 	mask = 0;
3150 	shutdown = READ_ONCE(sk->sk_shutdown);
3151 
3152 	/* exceptional events? */
3153 	if (READ_ONCE(sk->sk_err) ||
3154 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
3155 		mask |= EPOLLERR |
3156 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
3157 
3158 	if (shutdown & RCV_SHUTDOWN)
3159 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3160 	if (shutdown == SHUTDOWN_MASK)
3161 		mask |= EPOLLHUP;
3162 
3163 	/* readable? */
3164 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3165 		mask |= EPOLLIN | EPOLLRDNORM;
3166 	if (sk_is_readable(sk))
3167 		mask |= EPOLLIN | EPOLLRDNORM;
3168 
3169 	/* Connection-based need to check for termination and startup */
3170 	if (sk->sk_type == SOCK_SEQPACKET) {
3171 		if (sk->sk_state == TCP_CLOSE)
3172 			mask |= EPOLLHUP;
3173 		/* connection hasn't started yet? */
3174 		if (sk->sk_state == TCP_SYN_SENT)
3175 			return mask;
3176 	}
3177 
3178 	/* No write status requested, avoid expensive OUT tests. */
3179 	if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT)))
3180 		return mask;
3181 
3182 	writable = unix_writable(sk);
3183 	if (writable) {
3184 		unix_state_lock(sk);
3185 
3186 		other = unix_peer(sk);
3187 		if (other && unix_peer(other) != sk &&
3188 		    unix_recvq_full_lockless(other) &&
3189 		    unix_dgram_peer_wake_me(sk, other))
3190 			writable = 0;
3191 
3192 		unix_state_unlock(sk);
3193 	}
3194 
3195 	if (writable)
3196 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3197 	else
3198 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
3199 
3200 	return mask;
3201 }
3202 
3203 #ifdef CONFIG_PROC_FS
3204 
3205 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1)
3206 
3207 #define get_bucket(x) ((x) >> BUCKET_SPACE)
3208 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1))
3209 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
3210 
3211 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos)
3212 {
3213 	unsigned long offset = get_offset(*pos);
3214 	unsigned long bucket = get_bucket(*pos);
3215 	unsigned long count = 0;
3216 	struct sock *sk;
3217 
3218 	for (sk = sk_head(&seq_file_net(seq)->unx.table.buckets[bucket]);
3219 	     sk; sk = sk_next(sk)) {
3220 		if (++count == offset)
3221 			break;
3222 	}
3223 
3224 	return sk;
3225 }
3226 
3227 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos)
3228 {
3229 	unsigned long bucket = get_bucket(*pos);
3230 	struct net *net = seq_file_net(seq);
3231 	struct sock *sk;
3232 
3233 	while (bucket < UNIX_HASH_SIZE) {
3234 		spin_lock(&net->unx.table.locks[bucket]);
3235 
3236 		sk = unix_from_bucket(seq, pos);
3237 		if (sk)
3238 			return sk;
3239 
3240 		spin_unlock(&net->unx.table.locks[bucket]);
3241 
3242 		*pos = set_bucket_offset(++bucket, 1);
3243 	}
3244 
3245 	return NULL;
3246 }
3247 
3248 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk,
3249 				  loff_t *pos)
3250 {
3251 	unsigned long bucket = get_bucket(*pos);
3252 
3253 	sk = sk_next(sk);
3254 	if (sk)
3255 		return sk;
3256 
3257 
3258 	spin_unlock(&seq_file_net(seq)->unx.table.locks[bucket]);
3259 
3260 	*pos = set_bucket_offset(++bucket, 1);
3261 
3262 	return unix_get_first(seq, pos);
3263 }
3264 
3265 static void *unix_seq_start(struct seq_file *seq, loff_t *pos)
3266 {
3267 	if (!*pos)
3268 		return SEQ_START_TOKEN;
3269 
3270 	return unix_get_first(seq, pos);
3271 }
3272 
3273 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3274 {
3275 	++*pos;
3276 
3277 	if (v == SEQ_START_TOKEN)
3278 		return unix_get_first(seq, pos);
3279 
3280 	return unix_get_next(seq, v, pos);
3281 }
3282 
3283 static void unix_seq_stop(struct seq_file *seq, void *v)
3284 {
3285 	struct sock *sk = v;
3286 
3287 	if (sk)
3288 		spin_unlock(&seq_file_net(seq)->unx.table.locks[sk->sk_hash]);
3289 }
3290 
3291 static int unix_seq_show(struct seq_file *seq, void *v)
3292 {
3293 
3294 	if (v == SEQ_START_TOKEN)
3295 		seq_puts(seq, "Num       RefCount Protocol Flags    Type St "
3296 			 "Inode Path\n");
3297 	else {
3298 		struct sock *s = v;
3299 		struct unix_sock *u = unix_sk(s);
3300 		unix_state_lock(s);
3301 
3302 		seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu",
3303 			s,
3304 			refcount_read(&s->sk_refcnt),
3305 			0,
3306 			s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0,
3307 			s->sk_type,
3308 			s->sk_socket ?
3309 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) :
3310 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING),
3311 			sock_i_ino(s));
3312 
3313 		if (u->addr) {	// under a hash table lock here
3314 			int i, len;
3315 			seq_putc(seq, ' ');
3316 
3317 			i = 0;
3318 			len = u->addr->len -
3319 				offsetof(struct sockaddr_un, sun_path);
3320 			if (u->addr->name->sun_path[0]) {
3321 				len--;
3322 			} else {
3323 				seq_putc(seq, '@');
3324 				i++;
3325 			}
3326 			for ( ; i < len; i++)
3327 				seq_putc(seq, u->addr->name->sun_path[i] ?:
3328 					 '@');
3329 		}
3330 		unix_state_unlock(s);
3331 		seq_putc(seq, '\n');
3332 	}
3333 
3334 	return 0;
3335 }
3336 
3337 static const struct seq_operations unix_seq_ops = {
3338 	.start  = unix_seq_start,
3339 	.next   = unix_seq_next,
3340 	.stop   = unix_seq_stop,
3341 	.show   = unix_seq_show,
3342 };
3343 
3344 #ifdef CONFIG_BPF_SYSCALL
3345 struct bpf_unix_iter_state {
3346 	struct seq_net_private p;
3347 	unsigned int cur_sk;
3348 	unsigned int end_sk;
3349 	unsigned int max_sk;
3350 	struct sock **batch;
3351 	bool st_bucket_done;
3352 };
3353 
3354 struct bpf_iter__unix {
3355 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3356 	__bpf_md_ptr(struct unix_sock *, unix_sk);
3357 	uid_t uid __aligned(8);
3358 };
3359 
3360 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3361 			      struct unix_sock *unix_sk, uid_t uid)
3362 {
3363 	struct bpf_iter__unix ctx;
3364 
3365 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3366 	ctx.meta = meta;
3367 	ctx.unix_sk = unix_sk;
3368 	ctx.uid = uid;
3369 	return bpf_iter_run_prog(prog, &ctx);
3370 }
3371 
3372 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk)
3373 
3374 {
3375 	struct bpf_unix_iter_state *iter = seq->private;
3376 	unsigned int expected = 1;
3377 	struct sock *sk;
3378 
3379 	sock_hold(start_sk);
3380 	iter->batch[iter->end_sk++] = start_sk;
3381 
3382 	for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) {
3383 		if (iter->end_sk < iter->max_sk) {
3384 			sock_hold(sk);
3385 			iter->batch[iter->end_sk++] = sk;
3386 		}
3387 
3388 		expected++;
3389 	}
3390 
3391 	spin_unlock(&seq_file_net(seq)->unx.table.locks[start_sk->sk_hash]);
3392 
3393 	return expected;
3394 }
3395 
3396 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter)
3397 {
3398 	while (iter->cur_sk < iter->end_sk)
3399 		sock_put(iter->batch[iter->cur_sk++]);
3400 }
3401 
3402 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter,
3403 				       unsigned int new_batch_sz)
3404 {
3405 	struct sock **new_batch;
3406 
3407 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3408 			     GFP_USER | __GFP_NOWARN);
3409 	if (!new_batch)
3410 		return -ENOMEM;
3411 
3412 	bpf_iter_unix_put_batch(iter);
3413 	kvfree(iter->batch);
3414 	iter->batch = new_batch;
3415 	iter->max_sk = new_batch_sz;
3416 
3417 	return 0;
3418 }
3419 
3420 static struct sock *bpf_iter_unix_batch(struct seq_file *seq,
3421 					loff_t *pos)
3422 {
3423 	struct bpf_unix_iter_state *iter = seq->private;
3424 	unsigned int expected;
3425 	bool resized = false;
3426 	struct sock *sk;
3427 
3428 	if (iter->st_bucket_done)
3429 		*pos = set_bucket_offset(get_bucket(*pos) + 1, 1);
3430 
3431 again:
3432 	/* Get a new batch */
3433 	iter->cur_sk = 0;
3434 	iter->end_sk = 0;
3435 
3436 	sk = unix_get_first(seq, pos);
3437 	if (!sk)
3438 		return NULL; /* Done */
3439 
3440 	expected = bpf_iter_unix_hold_batch(seq, sk);
3441 
3442 	if (iter->end_sk == expected) {
3443 		iter->st_bucket_done = true;
3444 		return sk;
3445 	}
3446 
3447 	if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) {
3448 		resized = true;
3449 		goto again;
3450 	}
3451 
3452 	return sk;
3453 }
3454 
3455 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos)
3456 {
3457 	if (!*pos)
3458 		return SEQ_START_TOKEN;
3459 
3460 	/* bpf iter does not support lseek, so it always
3461 	 * continue from where it was stop()-ped.
3462 	 */
3463 	return bpf_iter_unix_batch(seq, pos);
3464 }
3465 
3466 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3467 {
3468 	struct bpf_unix_iter_state *iter = seq->private;
3469 	struct sock *sk;
3470 
3471 	/* Whenever seq_next() is called, the iter->cur_sk is
3472 	 * done with seq_show(), so advance to the next sk in
3473 	 * the batch.
3474 	 */
3475 	if (iter->cur_sk < iter->end_sk)
3476 		sock_put(iter->batch[iter->cur_sk++]);
3477 
3478 	++*pos;
3479 
3480 	if (iter->cur_sk < iter->end_sk)
3481 		sk = iter->batch[iter->cur_sk];
3482 	else
3483 		sk = bpf_iter_unix_batch(seq, pos);
3484 
3485 	return sk;
3486 }
3487 
3488 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v)
3489 {
3490 	struct bpf_iter_meta meta;
3491 	struct bpf_prog *prog;
3492 	struct sock *sk = v;
3493 	uid_t uid;
3494 	bool slow;
3495 	int ret;
3496 
3497 	if (v == SEQ_START_TOKEN)
3498 		return 0;
3499 
3500 	slow = lock_sock_fast(sk);
3501 
3502 	if (unlikely(sk_unhashed(sk))) {
3503 		ret = SEQ_SKIP;
3504 		goto unlock;
3505 	}
3506 
3507 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3508 	meta.seq = seq;
3509 	prog = bpf_iter_get_info(&meta, false);
3510 	ret = unix_prog_seq_show(prog, &meta, v, uid);
3511 unlock:
3512 	unlock_sock_fast(sk, slow);
3513 	return ret;
3514 }
3515 
3516 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v)
3517 {
3518 	struct bpf_unix_iter_state *iter = seq->private;
3519 	struct bpf_iter_meta meta;
3520 	struct bpf_prog *prog;
3521 
3522 	if (!v) {
3523 		meta.seq = seq;
3524 		prog = bpf_iter_get_info(&meta, true);
3525 		if (prog)
3526 			(void)unix_prog_seq_show(prog, &meta, v, 0);
3527 	}
3528 
3529 	if (iter->cur_sk < iter->end_sk)
3530 		bpf_iter_unix_put_batch(iter);
3531 }
3532 
3533 static const struct seq_operations bpf_iter_unix_seq_ops = {
3534 	.start	= bpf_iter_unix_seq_start,
3535 	.next	= bpf_iter_unix_seq_next,
3536 	.stop	= bpf_iter_unix_seq_stop,
3537 	.show	= bpf_iter_unix_seq_show,
3538 };
3539 #endif
3540 #endif
3541 
3542 static const struct net_proto_family unix_family_ops = {
3543 	.family = PF_UNIX,
3544 	.create = unix_create,
3545 	.owner	= THIS_MODULE,
3546 };
3547 
3548 
3549 static int __net_init unix_net_init(struct net *net)
3550 {
3551 	int i;
3552 
3553 	net->unx.sysctl_max_dgram_qlen = 10;
3554 	if (unix_sysctl_register(net))
3555 		goto out;
3556 
3557 #ifdef CONFIG_PROC_FS
3558 	if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops,
3559 			     sizeof(struct seq_net_private)))
3560 		goto err_sysctl;
3561 #endif
3562 
3563 	net->unx.table.locks = kvmalloc_array(UNIX_HASH_SIZE,
3564 					      sizeof(spinlock_t), GFP_KERNEL);
3565 	if (!net->unx.table.locks)
3566 		goto err_proc;
3567 
3568 	net->unx.table.buckets = kvmalloc_array(UNIX_HASH_SIZE,
3569 						sizeof(struct hlist_head),
3570 						GFP_KERNEL);
3571 	if (!net->unx.table.buckets)
3572 		goto free_locks;
3573 
3574 	for (i = 0; i < UNIX_HASH_SIZE; i++) {
3575 		spin_lock_init(&net->unx.table.locks[i]);
3576 		INIT_HLIST_HEAD(&net->unx.table.buckets[i]);
3577 	}
3578 
3579 	return 0;
3580 
3581 free_locks:
3582 	kvfree(net->unx.table.locks);
3583 err_proc:
3584 #ifdef CONFIG_PROC_FS
3585 	remove_proc_entry("unix", net->proc_net);
3586 err_sysctl:
3587 #endif
3588 	unix_sysctl_unregister(net);
3589 out:
3590 	return -ENOMEM;
3591 }
3592 
3593 static void __net_exit unix_net_exit(struct net *net)
3594 {
3595 	kvfree(net->unx.table.buckets);
3596 	kvfree(net->unx.table.locks);
3597 	unix_sysctl_unregister(net);
3598 	remove_proc_entry("unix", net->proc_net);
3599 }
3600 
3601 static struct pernet_operations unix_net_ops = {
3602 	.init = unix_net_init,
3603 	.exit = unix_net_exit,
3604 };
3605 
3606 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3607 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta,
3608 		     struct unix_sock *unix_sk, uid_t uid)
3609 
3610 #define INIT_BATCH_SZ 16
3611 
3612 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux)
3613 {
3614 	struct bpf_unix_iter_state *iter = priv_data;
3615 	int err;
3616 
3617 	err = bpf_iter_init_seq_net(priv_data, aux);
3618 	if (err)
3619 		return err;
3620 
3621 	err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ);
3622 	if (err) {
3623 		bpf_iter_fini_seq_net(priv_data);
3624 		return err;
3625 	}
3626 
3627 	return 0;
3628 }
3629 
3630 static void bpf_iter_fini_unix(void *priv_data)
3631 {
3632 	struct bpf_unix_iter_state *iter = priv_data;
3633 
3634 	bpf_iter_fini_seq_net(priv_data);
3635 	kvfree(iter->batch);
3636 }
3637 
3638 static const struct bpf_iter_seq_info unix_seq_info = {
3639 	.seq_ops		= &bpf_iter_unix_seq_ops,
3640 	.init_seq_private	= bpf_iter_init_unix,
3641 	.fini_seq_private	= bpf_iter_fini_unix,
3642 	.seq_priv_size		= sizeof(struct bpf_unix_iter_state),
3643 };
3644 
3645 static const struct bpf_func_proto *
3646 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id,
3647 			     const struct bpf_prog *prog)
3648 {
3649 	switch (func_id) {
3650 	case BPF_FUNC_setsockopt:
3651 		return &bpf_sk_setsockopt_proto;
3652 	case BPF_FUNC_getsockopt:
3653 		return &bpf_sk_getsockopt_proto;
3654 	default:
3655 		return NULL;
3656 	}
3657 }
3658 
3659 static struct bpf_iter_reg unix_reg_info = {
3660 	.target			= "unix",
3661 	.ctx_arg_info_size	= 1,
3662 	.ctx_arg_info		= {
3663 		{ offsetof(struct bpf_iter__unix, unix_sk),
3664 		  PTR_TO_BTF_ID_OR_NULL },
3665 	},
3666 	.get_func_proto         = bpf_iter_unix_get_func_proto,
3667 	.seq_info		= &unix_seq_info,
3668 };
3669 
3670 static void __init bpf_iter_register(void)
3671 {
3672 	unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX];
3673 	if (bpf_iter_reg_target(&unix_reg_info))
3674 		pr_warn("Warning: could not register bpf iterator unix\n");
3675 }
3676 #endif
3677 
3678 static int __init af_unix_init(void)
3679 {
3680 	int i, rc = -1;
3681 
3682 	BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb));
3683 
3684 	for (i = 0; i < UNIX_HASH_SIZE / 2; i++) {
3685 		spin_lock_init(&bsd_socket_locks[i]);
3686 		INIT_HLIST_HEAD(&bsd_socket_buckets[i]);
3687 	}
3688 
3689 	rc = proto_register(&unix_dgram_proto, 1);
3690 	if (rc != 0) {
3691 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3692 		goto out;
3693 	}
3694 
3695 	rc = proto_register(&unix_stream_proto, 1);
3696 	if (rc != 0) {
3697 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3698 		proto_unregister(&unix_dgram_proto);
3699 		goto out;
3700 	}
3701 
3702 	sock_register(&unix_family_ops);
3703 	register_pernet_subsys(&unix_net_ops);
3704 	unix_bpf_build_proto();
3705 
3706 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3707 	bpf_iter_register();
3708 #endif
3709 
3710 out:
3711 	return rc;
3712 }
3713 
3714 /* Later than subsys_initcall() because we depend on stuff initialised there */
3715 fs_initcall(af_unix_init);
3716