xref: /linux/net/unix/af_unix.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET4:	Implementation of BSD Unix domain sockets.
4  *
5  * Authors:	Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *
7  * Fixes:
8  *		Linus Torvalds	:	Assorted bug cures.
9  *		Niibe Yutaka	:	async I/O support.
10  *		Carsten Paeth	:	PF_UNIX check, address fixes.
11  *		Alan Cox	:	Limit size of allocated blocks.
12  *		Alan Cox	:	Fixed the stupid socketpair bug.
13  *		Alan Cox	:	BSD compatibility fine tuning.
14  *		Alan Cox	:	Fixed a bug in connect when interrupted.
15  *		Alan Cox	:	Sorted out a proper draft version of
16  *					file descriptor passing hacked up from
17  *					Mike Shaver's work.
18  *		Marty Leisner	:	Fixes to fd passing
19  *		Nick Nevin	:	recvmsg bugfix.
20  *		Alan Cox	:	Started proper garbage collector
21  *		Heiko EiBfeldt	:	Missing verify_area check
22  *		Alan Cox	:	Started POSIXisms
23  *		Andreas Schwab	:	Replace inode by dentry for proper
24  *					reference counting
25  *		Kirk Petersen	:	Made this a module
26  *	    Christoph Rohland	:	Elegant non-blocking accept/connect algorithm.
27  *					Lots of bug fixes.
28  *	     Alexey Kuznetosv	:	Repaired (I hope) bugs introduces
29  *					by above two patches.
30  *	     Andrea Arcangeli	:	If possible we block in connect(2)
31  *					if the max backlog of the listen socket
32  *					is been reached. This won't break
33  *					old apps and it will avoid huge amount
34  *					of socks hashed (this for unix_gc()
35  *					performances reasons).
36  *					Security fix that limits the max
37  *					number of socks to 2*max_files and
38  *					the number of skb queueable in the
39  *					dgram receiver.
40  *		Artur Skawina   :	Hash function optimizations
41  *	     Alexey Kuznetsov   :	Full scale SMP. Lot of bugs are introduced 8)
42  *	      Malcolm Beattie   :	Set peercred for socketpair
43  *	     Michal Ostrowski   :       Module initialization cleanup.
44  *	     Arnaldo C. Melo	:	Remove MOD_{INC,DEC}_USE_COUNT,
45  *	     				the core infrastructure is doing that
46  *	     				for all net proto families now (2.5.69+)
47  *
48  * Known differences from reference BSD that was tested:
49  *
50  *	[TO FIX]
51  *	ECONNREFUSED is not returned from one end of a connected() socket to the
52  *		other the moment one end closes.
53  *	fstat() doesn't return st_dev=0, and give the blksize as high water mark
54  *		and a fake inode identifier (nor the BSD first socket fstat twice bug).
55  *	[NOT TO FIX]
56  *	accept() returns a path name even if the connecting socket has closed
57  *		in the meantime (BSD loses the path and gives up).
58  *	accept() returns 0 length path for an unbound connector. BSD returns 16
59  *		and a null first byte in the path (but not for gethost/peername - BSD bug ??)
60  *	socketpair(...SOCK_RAW..) doesn't panic the kernel.
61  *	BSD af_unix apparently has connect forgetting to block properly.
62  *		(need to check this with the POSIX spec in detail)
63  *
64  * Differences from 2.0.0-11-... (ANK)
65  *	Bug fixes and improvements.
66  *		- client shutdown killed server socket.
67  *		- removed all useless cli/sti pairs.
68  *
69  *	Semantic changes/extensions.
70  *		- generic control message passing.
71  *		- SCM_CREDENTIALS control message.
72  *		- "Abstract" (not FS based) socket bindings.
73  *		  Abstract names are sequences of bytes (not zero terminated)
74  *		  started by 0, so that this name space does not intersect
75  *		  with BSD names.
76  */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/signal.h>
83 #include <linux/sched/signal.h>
84 #include <linux/errno.h>
85 #include <linux/string.h>
86 #include <linux/stat.h>
87 #include <linux/dcache.h>
88 #include <linux/namei.h>
89 #include <linux/socket.h>
90 #include <linux/un.h>
91 #include <linux/fcntl.h>
92 #include <linux/filter.h>
93 #include <linux/termios.h>
94 #include <linux/sockios.h>
95 #include <linux/net.h>
96 #include <linux/in.h>
97 #include <linux/fs.h>
98 #include <linux/slab.h>
99 #include <linux/uaccess.h>
100 #include <linux/skbuff.h>
101 #include <linux/netdevice.h>
102 #include <net/net_namespace.h>
103 #include <net/sock.h>
104 #include <net/tcp_states.h>
105 #include <net/af_unix.h>
106 #include <linux/proc_fs.h>
107 #include <linux/seq_file.h>
108 #include <net/scm.h>
109 #include <linux/init.h>
110 #include <linux/poll.h>
111 #include <linux/rtnetlink.h>
112 #include <linux/mount.h>
113 #include <net/checksum.h>
114 #include <linux/security.h>
115 #include <linux/freezer.h>
116 #include <linux/file.h>
117 #include <linux/btf_ids.h>
118 
119 #include "scm.h"
120 
121 spinlock_t unix_table_locks[2 * UNIX_HASH_SIZE];
122 EXPORT_SYMBOL_GPL(unix_table_locks);
123 struct hlist_head unix_socket_table[2 * UNIX_HASH_SIZE];
124 EXPORT_SYMBOL_GPL(unix_socket_table);
125 static atomic_long_t unix_nr_socks;
126 
127 /* SMP locking strategy:
128  *    hash table is protected with spinlock unix_table_locks
129  *    each socket state is protected by separate spin lock.
130  */
131 
132 static unsigned int unix_unbound_hash(struct sock *sk)
133 {
134 	unsigned long hash = (unsigned long)sk;
135 
136 	hash ^= hash >> 16;
137 	hash ^= hash >> 8;
138 	hash ^= sk->sk_type;
139 
140 	return UNIX_HASH_SIZE + (hash & (UNIX_HASH_SIZE - 1));
141 }
142 
143 static unsigned int unix_bsd_hash(struct inode *i)
144 {
145 	return i->i_ino & (UNIX_HASH_SIZE - 1);
146 }
147 
148 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr,
149 				       int addr_len, int type)
150 {
151 	__wsum csum = csum_partial(sunaddr, addr_len, 0);
152 	unsigned int hash;
153 
154 	hash = (__force unsigned int)csum_fold(csum);
155 	hash ^= hash >> 8;
156 	hash ^= type;
157 
158 	return hash & (UNIX_HASH_SIZE - 1);
159 }
160 
161 static void unix_table_double_lock(unsigned int hash1, unsigned int hash2)
162 {
163 	/* hash1 and hash2 is never the same because
164 	 * one is between 0 and UNIX_HASH_SIZE - 1, and
165 	 * another is between UNIX_HASH_SIZE and UNIX_HASH_SIZE * 2.
166 	 */
167 	if (hash1 > hash2)
168 		swap(hash1, hash2);
169 
170 	spin_lock(&unix_table_locks[hash1]);
171 	spin_lock_nested(&unix_table_locks[hash2], SINGLE_DEPTH_NESTING);
172 }
173 
174 static void unix_table_double_unlock(unsigned int hash1, unsigned int hash2)
175 {
176 	spin_unlock(&unix_table_locks[hash1]);
177 	spin_unlock(&unix_table_locks[hash2]);
178 }
179 
180 #ifdef CONFIG_SECURITY_NETWORK
181 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
182 {
183 	UNIXCB(skb).secid = scm->secid;
184 }
185 
186 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
187 {
188 	scm->secid = UNIXCB(skb).secid;
189 }
190 
191 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
192 {
193 	return (scm->secid == UNIXCB(skb).secid);
194 }
195 #else
196 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
197 { }
198 
199 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
200 { }
201 
202 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
203 {
204 	return true;
205 }
206 #endif /* CONFIG_SECURITY_NETWORK */
207 
208 #define unix_peer(sk) (unix_sk(sk)->peer)
209 
210 static inline int unix_our_peer(struct sock *sk, struct sock *osk)
211 {
212 	return unix_peer(osk) == sk;
213 }
214 
215 static inline int unix_may_send(struct sock *sk, struct sock *osk)
216 {
217 	return unix_peer(osk) == NULL || unix_our_peer(sk, osk);
218 }
219 
220 static inline int unix_recvq_full(const struct sock *sk)
221 {
222 	return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog;
223 }
224 
225 static inline int unix_recvq_full_lockless(const struct sock *sk)
226 {
227 	return skb_queue_len_lockless(&sk->sk_receive_queue) >
228 		READ_ONCE(sk->sk_max_ack_backlog);
229 }
230 
231 struct sock *unix_peer_get(struct sock *s)
232 {
233 	struct sock *peer;
234 
235 	unix_state_lock(s);
236 	peer = unix_peer(s);
237 	if (peer)
238 		sock_hold(peer);
239 	unix_state_unlock(s);
240 	return peer;
241 }
242 EXPORT_SYMBOL_GPL(unix_peer_get);
243 
244 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr,
245 					     int addr_len)
246 {
247 	struct unix_address *addr;
248 
249 	addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL);
250 	if (!addr)
251 		return NULL;
252 
253 	refcount_set(&addr->refcnt, 1);
254 	addr->len = addr_len;
255 	memcpy(addr->name, sunaddr, addr_len);
256 
257 	return addr;
258 }
259 
260 static inline void unix_release_addr(struct unix_address *addr)
261 {
262 	if (refcount_dec_and_test(&addr->refcnt))
263 		kfree(addr);
264 }
265 
266 /*
267  *	Check unix socket name:
268  *		- should be not zero length.
269  *	        - if started by not zero, should be NULL terminated (FS object)
270  *		- if started by zero, it is abstract name.
271  */
272 
273 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len)
274 {
275 	if (addr_len <= offsetof(struct sockaddr_un, sun_path) ||
276 	    addr_len > sizeof(*sunaddr))
277 		return -EINVAL;
278 
279 	if (sunaddr->sun_family != AF_UNIX)
280 		return -EINVAL;
281 
282 	return 0;
283 }
284 
285 static void unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len)
286 {
287 	/* This may look like an off by one error but it is a bit more
288 	 * subtle.  108 is the longest valid AF_UNIX path for a binding.
289 	 * sun_path[108] doesn't as such exist.  However in kernel space
290 	 * we are guaranteed that it is a valid memory location in our
291 	 * kernel address buffer because syscall functions always pass
292 	 * a pointer of struct sockaddr_storage which has a bigger buffer
293 	 * than 108.
294 	 */
295 	((char *)sunaddr)[addr_len] = 0;
296 }
297 
298 static void __unix_remove_socket(struct sock *sk)
299 {
300 	sk_del_node_init(sk);
301 }
302 
303 static void __unix_insert_socket(struct sock *sk)
304 {
305 	WARN_ON(!sk_unhashed(sk));
306 	sk_add_node(sk, &unix_socket_table[sk->sk_hash]);
307 }
308 
309 static void __unix_set_addr_hash(struct sock *sk, struct unix_address *addr,
310 				 unsigned int hash)
311 {
312 	__unix_remove_socket(sk);
313 	smp_store_release(&unix_sk(sk)->addr, addr);
314 
315 	sk->sk_hash = hash;
316 	__unix_insert_socket(sk);
317 }
318 
319 static void unix_remove_socket(struct sock *sk)
320 {
321 	spin_lock(&unix_table_locks[sk->sk_hash]);
322 	__unix_remove_socket(sk);
323 	spin_unlock(&unix_table_locks[sk->sk_hash]);
324 }
325 
326 static void unix_insert_unbound_socket(struct sock *sk)
327 {
328 	spin_lock(&unix_table_locks[sk->sk_hash]);
329 	__unix_insert_socket(sk);
330 	spin_unlock(&unix_table_locks[sk->sk_hash]);
331 }
332 
333 static struct sock *__unix_find_socket_byname(struct net *net,
334 					      struct sockaddr_un *sunname,
335 					      int len, unsigned int hash)
336 {
337 	struct sock *s;
338 
339 	sk_for_each(s, &unix_socket_table[hash]) {
340 		struct unix_sock *u = unix_sk(s);
341 
342 		if (!net_eq(sock_net(s), net))
343 			continue;
344 
345 		if (u->addr->len == len &&
346 		    !memcmp(u->addr->name, sunname, len))
347 			return s;
348 	}
349 	return NULL;
350 }
351 
352 static inline struct sock *unix_find_socket_byname(struct net *net,
353 						   struct sockaddr_un *sunname,
354 						   int len, unsigned int hash)
355 {
356 	struct sock *s;
357 
358 	spin_lock(&unix_table_locks[hash]);
359 	s = __unix_find_socket_byname(net, sunname, len, hash);
360 	if (s)
361 		sock_hold(s);
362 	spin_unlock(&unix_table_locks[hash]);
363 	return s;
364 }
365 
366 static struct sock *unix_find_socket_byinode(struct inode *i)
367 {
368 	unsigned int hash = unix_bsd_hash(i);
369 	struct sock *s;
370 
371 	spin_lock(&unix_table_locks[hash]);
372 	sk_for_each(s, &unix_socket_table[hash]) {
373 		struct dentry *dentry = unix_sk(s)->path.dentry;
374 
375 		if (dentry && d_backing_inode(dentry) == i) {
376 			sock_hold(s);
377 			spin_unlock(&unix_table_locks[hash]);
378 			return s;
379 		}
380 	}
381 	spin_unlock(&unix_table_locks[hash]);
382 	return NULL;
383 }
384 
385 /* Support code for asymmetrically connected dgram sockets
386  *
387  * If a datagram socket is connected to a socket not itself connected
388  * to the first socket (eg, /dev/log), clients may only enqueue more
389  * messages if the present receive queue of the server socket is not
390  * "too large". This means there's a second writeability condition
391  * poll and sendmsg need to test. The dgram recv code will do a wake
392  * up on the peer_wait wait queue of a socket upon reception of a
393  * datagram which needs to be propagated to sleeping would-be writers
394  * since these might not have sent anything so far. This can't be
395  * accomplished via poll_wait because the lifetime of the server
396  * socket might be less than that of its clients if these break their
397  * association with it or if the server socket is closed while clients
398  * are still connected to it and there's no way to inform "a polling
399  * implementation" that it should let go of a certain wait queue
400  *
401  * In order to propagate a wake up, a wait_queue_entry_t of the client
402  * socket is enqueued on the peer_wait queue of the server socket
403  * whose wake function does a wake_up on the ordinary client socket
404  * wait queue. This connection is established whenever a write (or
405  * poll for write) hit the flow control condition and broken when the
406  * association to the server socket is dissolved or after a wake up
407  * was relayed.
408  */
409 
410 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags,
411 				      void *key)
412 {
413 	struct unix_sock *u;
414 	wait_queue_head_t *u_sleep;
415 
416 	u = container_of(q, struct unix_sock, peer_wake);
417 
418 	__remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait,
419 			    q);
420 	u->peer_wake.private = NULL;
421 
422 	/* relaying can only happen while the wq still exists */
423 	u_sleep = sk_sleep(&u->sk);
424 	if (u_sleep)
425 		wake_up_interruptible_poll(u_sleep, key_to_poll(key));
426 
427 	return 0;
428 }
429 
430 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other)
431 {
432 	struct unix_sock *u, *u_other;
433 	int rc;
434 
435 	u = unix_sk(sk);
436 	u_other = unix_sk(other);
437 	rc = 0;
438 	spin_lock(&u_other->peer_wait.lock);
439 
440 	if (!u->peer_wake.private) {
441 		u->peer_wake.private = other;
442 		__add_wait_queue(&u_other->peer_wait, &u->peer_wake);
443 
444 		rc = 1;
445 	}
446 
447 	spin_unlock(&u_other->peer_wait.lock);
448 	return rc;
449 }
450 
451 static void unix_dgram_peer_wake_disconnect(struct sock *sk,
452 					    struct sock *other)
453 {
454 	struct unix_sock *u, *u_other;
455 
456 	u = unix_sk(sk);
457 	u_other = unix_sk(other);
458 	spin_lock(&u_other->peer_wait.lock);
459 
460 	if (u->peer_wake.private == other) {
461 		__remove_wait_queue(&u_other->peer_wait, &u->peer_wake);
462 		u->peer_wake.private = NULL;
463 	}
464 
465 	spin_unlock(&u_other->peer_wait.lock);
466 }
467 
468 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk,
469 						   struct sock *other)
470 {
471 	unix_dgram_peer_wake_disconnect(sk, other);
472 	wake_up_interruptible_poll(sk_sleep(sk),
473 				   EPOLLOUT |
474 				   EPOLLWRNORM |
475 				   EPOLLWRBAND);
476 }
477 
478 /* preconditions:
479  *	- unix_peer(sk) == other
480  *	- association is stable
481  */
482 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other)
483 {
484 	int connected;
485 
486 	connected = unix_dgram_peer_wake_connect(sk, other);
487 
488 	/* If other is SOCK_DEAD, we want to make sure we signal
489 	 * POLLOUT, such that a subsequent write() can get a
490 	 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs
491 	 * to other and its full, we will hang waiting for POLLOUT.
492 	 */
493 	if (unix_recvq_full(other) && !sock_flag(other, SOCK_DEAD))
494 		return 1;
495 
496 	if (connected)
497 		unix_dgram_peer_wake_disconnect(sk, other);
498 
499 	return 0;
500 }
501 
502 static int unix_writable(const struct sock *sk)
503 {
504 	return sk->sk_state != TCP_LISTEN &&
505 	       (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf;
506 }
507 
508 static void unix_write_space(struct sock *sk)
509 {
510 	struct socket_wq *wq;
511 
512 	rcu_read_lock();
513 	if (unix_writable(sk)) {
514 		wq = rcu_dereference(sk->sk_wq);
515 		if (skwq_has_sleeper(wq))
516 			wake_up_interruptible_sync_poll(&wq->wait,
517 				EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND);
518 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
519 	}
520 	rcu_read_unlock();
521 }
522 
523 /* When dgram socket disconnects (or changes its peer), we clear its receive
524  * queue of packets arrived from previous peer. First, it allows to do
525  * flow control based only on wmem_alloc; second, sk connected to peer
526  * may receive messages only from that peer. */
527 static void unix_dgram_disconnected(struct sock *sk, struct sock *other)
528 {
529 	if (!skb_queue_empty(&sk->sk_receive_queue)) {
530 		skb_queue_purge(&sk->sk_receive_queue);
531 		wake_up_interruptible_all(&unix_sk(sk)->peer_wait);
532 
533 		/* If one link of bidirectional dgram pipe is disconnected,
534 		 * we signal error. Messages are lost. Do not make this,
535 		 * when peer was not connected to us.
536 		 */
537 		if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) {
538 			other->sk_err = ECONNRESET;
539 			sk_error_report(other);
540 		}
541 	}
542 	other->sk_state = TCP_CLOSE;
543 }
544 
545 static void unix_sock_destructor(struct sock *sk)
546 {
547 	struct unix_sock *u = unix_sk(sk);
548 
549 	skb_queue_purge(&sk->sk_receive_queue);
550 
551 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
552 	if (u->oob_skb) {
553 		kfree_skb(u->oob_skb);
554 		u->oob_skb = NULL;
555 	}
556 #endif
557 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
558 	WARN_ON(!sk_unhashed(sk));
559 	WARN_ON(sk->sk_socket);
560 	if (!sock_flag(sk, SOCK_DEAD)) {
561 		pr_info("Attempt to release alive unix socket: %p\n", sk);
562 		return;
563 	}
564 
565 	if (u->addr)
566 		unix_release_addr(u->addr);
567 
568 	atomic_long_dec(&unix_nr_socks);
569 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
570 #ifdef UNIX_REFCNT_DEBUG
571 	pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk,
572 		atomic_long_read(&unix_nr_socks));
573 #endif
574 }
575 
576 static void unix_release_sock(struct sock *sk, int embrion)
577 {
578 	struct unix_sock *u = unix_sk(sk);
579 	struct path path;
580 	struct sock *skpair;
581 	struct sk_buff *skb;
582 	int state;
583 
584 	unix_remove_socket(sk);
585 
586 	/* Clear state */
587 	unix_state_lock(sk);
588 	sock_orphan(sk);
589 	sk->sk_shutdown = SHUTDOWN_MASK;
590 	path	     = u->path;
591 	u->path.dentry = NULL;
592 	u->path.mnt = NULL;
593 	state = sk->sk_state;
594 	sk->sk_state = TCP_CLOSE;
595 
596 	skpair = unix_peer(sk);
597 	unix_peer(sk) = NULL;
598 
599 	unix_state_unlock(sk);
600 
601 	wake_up_interruptible_all(&u->peer_wait);
602 
603 	if (skpair != NULL) {
604 		if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) {
605 			unix_state_lock(skpair);
606 			/* No more writes */
607 			skpair->sk_shutdown = SHUTDOWN_MASK;
608 			if (!skb_queue_empty(&sk->sk_receive_queue) || embrion)
609 				skpair->sk_err = ECONNRESET;
610 			unix_state_unlock(skpair);
611 			skpair->sk_state_change(skpair);
612 			sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP);
613 		}
614 
615 		unix_dgram_peer_wake_disconnect(sk, skpair);
616 		sock_put(skpair); /* It may now die */
617 	}
618 
619 	/* Try to flush out this socket. Throw out buffers at least */
620 
621 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
622 		if (state == TCP_LISTEN)
623 			unix_release_sock(skb->sk, 1);
624 		/* passed fds are erased in the kfree_skb hook	      */
625 		UNIXCB(skb).consumed = skb->len;
626 		kfree_skb(skb);
627 	}
628 
629 	if (path.dentry)
630 		path_put(&path);
631 
632 	sock_put(sk);
633 
634 	/* ---- Socket is dead now and most probably destroyed ---- */
635 
636 	/*
637 	 * Fixme: BSD difference: In BSD all sockets connected to us get
638 	 *	  ECONNRESET and we die on the spot. In Linux we behave
639 	 *	  like files and pipes do and wait for the last
640 	 *	  dereference.
641 	 *
642 	 * Can't we simply set sock->err?
643 	 *
644 	 *	  What the above comment does talk about? --ANK(980817)
645 	 */
646 
647 	if (unix_tot_inflight)
648 		unix_gc();		/* Garbage collect fds */
649 }
650 
651 static void init_peercred(struct sock *sk)
652 {
653 	const struct cred *old_cred;
654 	struct pid *old_pid;
655 
656 	spin_lock(&sk->sk_peer_lock);
657 	old_pid = sk->sk_peer_pid;
658 	old_cred = sk->sk_peer_cred;
659 	sk->sk_peer_pid  = get_pid(task_tgid(current));
660 	sk->sk_peer_cred = get_current_cred();
661 	spin_unlock(&sk->sk_peer_lock);
662 
663 	put_pid(old_pid);
664 	put_cred(old_cred);
665 }
666 
667 static void copy_peercred(struct sock *sk, struct sock *peersk)
668 {
669 	const struct cred *old_cred;
670 	struct pid *old_pid;
671 
672 	if (sk < peersk) {
673 		spin_lock(&sk->sk_peer_lock);
674 		spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING);
675 	} else {
676 		spin_lock(&peersk->sk_peer_lock);
677 		spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING);
678 	}
679 	old_pid = sk->sk_peer_pid;
680 	old_cred = sk->sk_peer_cred;
681 	sk->sk_peer_pid  = get_pid(peersk->sk_peer_pid);
682 	sk->sk_peer_cred = get_cred(peersk->sk_peer_cred);
683 
684 	spin_unlock(&sk->sk_peer_lock);
685 	spin_unlock(&peersk->sk_peer_lock);
686 
687 	put_pid(old_pid);
688 	put_cred(old_cred);
689 }
690 
691 static int unix_listen(struct socket *sock, int backlog)
692 {
693 	int err;
694 	struct sock *sk = sock->sk;
695 	struct unix_sock *u = unix_sk(sk);
696 
697 	err = -EOPNOTSUPP;
698 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
699 		goto out;	/* Only stream/seqpacket sockets accept */
700 	err = -EINVAL;
701 	if (!u->addr)
702 		goto out;	/* No listens on an unbound socket */
703 	unix_state_lock(sk);
704 	if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN)
705 		goto out_unlock;
706 	if (backlog > sk->sk_max_ack_backlog)
707 		wake_up_interruptible_all(&u->peer_wait);
708 	sk->sk_max_ack_backlog	= backlog;
709 	sk->sk_state		= TCP_LISTEN;
710 	/* set credentials so connect can copy them */
711 	init_peercred(sk);
712 	err = 0;
713 
714 out_unlock:
715 	unix_state_unlock(sk);
716 out:
717 	return err;
718 }
719 
720 static int unix_release(struct socket *);
721 static int unix_bind(struct socket *, struct sockaddr *, int);
722 static int unix_stream_connect(struct socket *, struct sockaddr *,
723 			       int addr_len, int flags);
724 static int unix_socketpair(struct socket *, struct socket *);
725 static int unix_accept(struct socket *, struct socket *, int, bool);
726 static int unix_getname(struct socket *, struct sockaddr *, int);
727 static __poll_t unix_poll(struct file *, struct socket *, poll_table *);
728 static __poll_t unix_dgram_poll(struct file *, struct socket *,
729 				    poll_table *);
730 static int unix_ioctl(struct socket *, unsigned int, unsigned long);
731 #ifdef CONFIG_COMPAT
732 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
733 #endif
734 static int unix_shutdown(struct socket *, int);
735 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t);
736 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int);
737 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset,
738 				    size_t size, int flags);
739 static ssize_t unix_stream_splice_read(struct socket *,  loff_t *ppos,
740 				       struct pipe_inode_info *, size_t size,
741 				       unsigned int flags);
742 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t);
743 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int);
744 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc,
745 			  sk_read_actor_t recv_actor);
746 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc,
747 				 sk_read_actor_t recv_actor);
748 static int unix_dgram_connect(struct socket *, struct sockaddr *,
749 			      int, int);
750 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t);
751 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t,
752 				  int);
753 
754 static int unix_set_peek_off(struct sock *sk, int val)
755 {
756 	struct unix_sock *u = unix_sk(sk);
757 
758 	if (mutex_lock_interruptible(&u->iolock))
759 		return -EINTR;
760 
761 	sk->sk_peek_off = val;
762 	mutex_unlock(&u->iolock);
763 
764 	return 0;
765 }
766 
767 #ifdef CONFIG_PROC_FS
768 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock)
769 {
770 	struct sock *sk = sock->sk;
771 	struct unix_sock *u;
772 
773 	if (sk) {
774 		u = unix_sk(sock->sk);
775 		seq_printf(m, "scm_fds: %u\n",
776 			   atomic_read(&u->scm_stat.nr_fds));
777 	}
778 }
779 #else
780 #define unix_show_fdinfo NULL
781 #endif
782 
783 static const struct proto_ops unix_stream_ops = {
784 	.family =	PF_UNIX,
785 	.owner =	THIS_MODULE,
786 	.release =	unix_release,
787 	.bind =		unix_bind,
788 	.connect =	unix_stream_connect,
789 	.socketpair =	unix_socketpair,
790 	.accept =	unix_accept,
791 	.getname =	unix_getname,
792 	.poll =		unix_poll,
793 	.ioctl =	unix_ioctl,
794 #ifdef CONFIG_COMPAT
795 	.compat_ioctl =	unix_compat_ioctl,
796 #endif
797 	.listen =	unix_listen,
798 	.shutdown =	unix_shutdown,
799 	.sendmsg =	unix_stream_sendmsg,
800 	.recvmsg =	unix_stream_recvmsg,
801 	.read_sock =	unix_stream_read_sock,
802 	.mmap =		sock_no_mmap,
803 	.sendpage =	unix_stream_sendpage,
804 	.splice_read =	unix_stream_splice_read,
805 	.set_peek_off =	unix_set_peek_off,
806 	.show_fdinfo =	unix_show_fdinfo,
807 };
808 
809 static const struct proto_ops unix_dgram_ops = {
810 	.family =	PF_UNIX,
811 	.owner =	THIS_MODULE,
812 	.release =	unix_release,
813 	.bind =		unix_bind,
814 	.connect =	unix_dgram_connect,
815 	.socketpair =	unix_socketpair,
816 	.accept =	sock_no_accept,
817 	.getname =	unix_getname,
818 	.poll =		unix_dgram_poll,
819 	.ioctl =	unix_ioctl,
820 #ifdef CONFIG_COMPAT
821 	.compat_ioctl =	unix_compat_ioctl,
822 #endif
823 	.listen =	sock_no_listen,
824 	.shutdown =	unix_shutdown,
825 	.sendmsg =	unix_dgram_sendmsg,
826 	.read_sock =	unix_read_sock,
827 	.recvmsg =	unix_dgram_recvmsg,
828 	.mmap =		sock_no_mmap,
829 	.sendpage =	sock_no_sendpage,
830 	.set_peek_off =	unix_set_peek_off,
831 	.show_fdinfo =	unix_show_fdinfo,
832 };
833 
834 static const struct proto_ops unix_seqpacket_ops = {
835 	.family =	PF_UNIX,
836 	.owner =	THIS_MODULE,
837 	.release =	unix_release,
838 	.bind =		unix_bind,
839 	.connect =	unix_stream_connect,
840 	.socketpair =	unix_socketpair,
841 	.accept =	unix_accept,
842 	.getname =	unix_getname,
843 	.poll =		unix_dgram_poll,
844 	.ioctl =	unix_ioctl,
845 #ifdef CONFIG_COMPAT
846 	.compat_ioctl =	unix_compat_ioctl,
847 #endif
848 	.listen =	unix_listen,
849 	.shutdown =	unix_shutdown,
850 	.sendmsg =	unix_seqpacket_sendmsg,
851 	.recvmsg =	unix_seqpacket_recvmsg,
852 	.mmap =		sock_no_mmap,
853 	.sendpage =	sock_no_sendpage,
854 	.set_peek_off =	unix_set_peek_off,
855 	.show_fdinfo =	unix_show_fdinfo,
856 };
857 
858 static void unix_close(struct sock *sk, long timeout)
859 {
860 	/* Nothing to do here, unix socket does not need a ->close().
861 	 * This is merely for sockmap.
862 	 */
863 }
864 
865 static void unix_unhash(struct sock *sk)
866 {
867 	/* Nothing to do here, unix socket does not need a ->unhash().
868 	 * This is merely for sockmap.
869 	 */
870 }
871 
872 struct proto unix_dgram_proto = {
873 	.name			= "UNIX",
874 	.owner			= THIS_MODULE,
875 	.obj_size		= sizeof(struct unix_sock),
876 	.close			= unix_close,
877 #ifdef CONFIG_BPF_SYSCALL
878 	.psock_update_sk_prot	= unix_dgram_bpf_update_proto,
879 #endif
880 };
881 
882 struct proto unix_stream_proto = {
883 	.name			= "UNIX-STREAM",
884 	.owner			= THIS_MODULE,
885 	.obj_size		= sizeof(struct unix_sock),
886 	.close			= unix_close,
887 	.unhash			= unix_unhash,
888 #ifdef CONFIG_BPF_SYSCALL
889 	.psock_update_sk_prot	= unix_stream_bpf_update_proto,
890 #endif
891 };
892 
893 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type)
894 {
895 	struct unix_sock *u;
896 	struct sock *sk;
897 	int err;
898 
899 	atomic_long_inc(&unix_nr_socks);
900 	if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) {
901 		err = -ENFILE;
902 		goto err;
903 	}
904 
905 	if (type == SOCK_STREAM)
906 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern);
907 	else /*dgram and  seqpacket */
908 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern);
909 
910 	if (!sk) {
911 		err = -ENOMEM;
912 		goto err;
913 	}
914 
915 	sock_init_data(sock, sk);
916 
917 	sk->sk_hash		= unix_unbound_hash(sk);
918 	sk->sk_allocation	= GFP_KERNEL_ACCOUNT;
919 	sk->sk_write_space	= unix_write_space;
920 	sk->sk_max_ack_backlog	= net->unx.sysctl_max_dgram_qlen;
921 	sk->sk_destruct		= unix_sock_destructor;
922 	u	  = unix_sk(sk);
923 	u->path.dentry = NULL;
924 	u->path.mnt = NULL;
925 	spin_lock_init(&u->lock);
926 	atomic_long_set(&u->inflight, 0);
927 	INIT_LIST_HEAD(&u->link);
928 	mutex_init(&u->iolock); /* single task reading lock */
929 	mutex_init(&u->bindlock); /* single task binding lock */
930 	init_waitqueue_head(&u->peer_wait);
931 	init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay);
932 	memset(&u->scm_stat, 0, sizeof(struct scm_stat));
933 	unix_insert_unbound_socket(sk);
934 
935 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
936 
937 	return sk;
938 
939 err:
940 	atomic_long_dec(&unix_nr_socks);
941 	return ERR_PTR(err);
942 }
943 
944 static int unix_create(struct net *net, struct socket *sock, int protocol,
945 		       int kern)
946 {
947 	struct sock *sk;
948 
949 	if (protocol && protocol != PF_UNIX)
950 		return -EPROTONOSUPPORT;
951 
952 	sock->state = SS_UNCONNECTED;
953 
954 	switch (sock->type) {
955 	case SOCK_STREAM:
956 		sock->ops = &unix_stream_ops;
957 		break;
958 		/*
959 		 *	Believe it or not BSD has AF_UNIX, SOCK_RAW though
960 		 *	nothing uses it.
961 		 */
962 	case SOCK_RAW:
963 		sock->type = SOCK_DGRAM;
964 		fallthrough;
965 	case SOCK_DGRAM:
966 		sock->ops = &unix_dgram_ops;
967 		break;
968 	case SOCK_SEQPACKET:
969 		sock->ops = &unix_seqpacket_ops;
970 		break;
971 	default:
972 		return -ESOCKTNOSUPPORT;
973 	}
974 
975 	sk = unix_create1(net, sock, kern, sock->type);
976 	if (IS_ERR(sk))
977 		return PTR_ERR(sk);
978 
979 	return 0;
980 }
981 
982 static int unix_release(struct socket *sock)
983 {
984 	struct sock *sk = sock->sk;
985 
986 	if (!sk)
987 		return 0;
988 
989 	sk->sk_prot->close(sk, 0);
990 	unix_release_sock(sk, 0);
991 	sock->sk = NULL;
992 
993 	return 0;
994 }
995 
996 static struct sock *unix_find_bsd(struct net *net, struct sockaddr_un *sunaddr,
997 				  int addr_len, int type)
998 {
999 	struct inode *inode;
1000 	struct path path;
1001 	struct sock *sk;
1002 	int err;
1003 
1004 	unix_mkname_bsd(sunaddr, addr_len);
1005 	err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path);
1006 	if (err)
1007 		goto fail;
1008 
1009 	err = path_permission(&path, MAY_WRITE);
1010 	if (err)
1011 		goto path_put;
1012 
1013 	err = -ECONNREFUSED;
1014 	inode = d_backing_inode(path.dentry);
1015 	if (!S_ISSOCK(inode->i_mode))
1016 		goto path_put;
1017 
1018 	sk = unix_find_socket_byinode(inode);
1019 	if (!sk)
1020 		goto path_put;
1021 
1022 	err = -EPROTOTYPE;
1023 	if (sk->sk_type == type)
1024 		touch_atime(&path);
1025 	else
1026 		goto sock_put;
1027 
1028 	path_put(&path);
1029 
1030 	return sk;
1031 
1032 sock_put:
1033 	sock_put(sk);
1034 path_put:
1035 	path_put(&path);
1036 fail:
1037 	return ERR_PTR(err);
1038 }
1039 
1040 static struct sock *unix_find_abstract(struct net *net,
1041 				       struct sockaddr_un *sunaddr,
1042 				       int addr_len, int type)
1043 {
1044 	unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type);
1045 	struct dentry *dentry;
1046 	struct sock *sk;
1047 
1048 	sk = unix_find_socket_byname(net, sunaddr, addr_len, hash);
1049 	if (!sk)
1050 		return ERR_PTR(-ECONNREFUSED);
1051 
1052 	dentry = unix_sk(sk)->path.dentry;
1053 	if (dentry)
1054 		touch_atime(&unix_sk(sk)->path);
1055 
1056 	return sk;
1057 }
1058 
1059 static struct sock *unix_find_other(struct net *net,
1060 				    struct sockaddr_un *sunaddr,
1061 				    int addr_len, int type)
1062 {
1063 	struct sock *sk;
1064 
1065 	if (sunaddr->sun_path[0])
1066 		sk = unix_find_bsd(net, sunaddr, addr_len, type);
1067 	else
1068 		sk = unix_find_abstract(net, sunaddr, addr_len, type);
1069 
1070 	return sk;
1071 }
1072 
1073 static int unix_autobind(struct sock *sk)
1074 {
1075 	unsigned int new_hash, old_hash = sk->sk_hash;
1076 	struct unix_sock *u = unix_sk(sk);
1077 	struct unix_address *addr;
1078 	u32 lastnum, ordernum;
1079 	int err;
1080 
1081 	err = mutex_lock_interruptible(&u->bindlock);
1082 	if (err)
1083 		return err;
1084 
1085 	if (u->addr)
1086 		goto out;
1087 
1088 	err = -ENOMEM;
1089 	addr = kzalloc(sizeof(*addr) +
1090 		       offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL);
1091 	if (!addr)
1092 		goto out;
1093 
1094 	addr->len = offsetof(struct sockaddr_un, sun_path) + 6;
1095 	addr->name->sun_family = AF_UNIX;
1096 	refcount_set(&addr->refcnt, 1);
1097 
1098 	ordernum = prandom_u32();
1099 	lastnum = ordernum & 0xFFFFF;
1100 retry:
1101 	ordernum = (ordernum + 1) & 0xFFFFF;
1102 	sprintf(addr->name->sun_path + 1, "%05x", ordernum);
1103 
1104 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1105 	unix_table_double_lock(old_hash, new_hash);
1106 
1107 	if (__unix_find_socket_byname(sock_net(sk), addr->name, addr->len,
1108 				      new_hash)) {
1109 		unix_table_double_unlock(old_hash, new_hash);
1110 
1111 		/* __unix_find_socket_byname() may take long time if many names
1112 		 * are already in use.
1113 		 */
1114 		cond_resched();
1115 
1116 		if (ordernum == lastnum) {
1117 			/* Give up if all names seems to be in use. */
1118 			err = -ENOSPC;
1119 			unix_release_addr(addr);
1120 			goto out;
1121 		}
1122 
1123 		goto retry;
1124 	}
1125 
1126 	__unix_set_addr_hash(sk, addr, new_hash);
1127 	unix_table_double_unlock(old_hash, new_hash);
1128 	err = 0;
1129 
1130 out:	mutex_unlock(&u->bindlock);
1131 	return err;
1132 }
1133 
1134 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr,
1135 			 int addr_len)
1136 {
1137 	umode_t mode = S_IFSOCK |
1138 	       (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask());
1139 	unsigned int new_hash, old_hash = sk->sk_hash;
1140 	struct unix_sock *u = unix_sk(sk);
1141 	struct user_namespace *ns; // barf...
1142 	struct unix_address *addr;
1143 	struct dentry *dentry;
1144 	struct path parent;
1145 	int err;
1146 
1147 	unix_mkname_bsd(sunaddr, addr_len);
1148 	addr_len = strlen(sunaddr->sun_path) +
1149 		offsetof(struct sockaddr_un, sun_path) + 1;
1150 
1151 	addr = unix_create_addr(sunaddr, addr_len);
1152 	if (!addr)
1153 		return -ENOMEM;
1154 
1155 	/*
1156 	 * Get the parent directory, calculate the hash for last
1157 	 * component.
1158 	 */
1159 	dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0);
1160 	if (IS_ERR(dentry)) {
1161 		err = PTR_ERR(dentry);
1162 		goto out;
1163 	}
1164 
1165 	/*
1166 	 * All right, let's create it.
1167 	 */
1168 	ns = mnt_user_ns(parent.mnt);
1169 	err = security_path_mknod(&parent, dentry, mode, 0);
1170 	if (!err)
1171 		err = vfs_mknod(ns, d_inode(parent.dentry), dentry, mode, 0);
1172 	if (err)
1173 		goto out_path;
1174 	err = mutex_lock_interruptible(&u->bindlock);
1175 	if (err)
1176 		goto out_unlink;
1177 	if (u->addr)
1178 		goto out_unlock;
1179 
1180 	new_hash = unix_bsd_hash(d_backing_inode(dentry));
1181 	unix_table_double_lock(old_hash, new_hash);
1182 	u->path.mnt = mntget(parent.mnt);
1183 	u->path.dentry = dget(dentry);
1184 	__unix_set_addr_hash(sk, addr, new_hash);
1185 	unix_table_double_unlock(old_hash, new_hash);
1186 	mutex_unlock(&u->bindlock);
1187 	done_path_create(&parent, dentry);
1188 	return 0;
1189 
1190 out_unlock:
1191 	mutex_unlock(&u->bindlock);
1192 	err = -EINVAL;
1193 out_unlink:
1194 	/* failed after successful mknod?  unlink what we'd created... */
1195 	vfs_unlink(ns, d_inode(parent.dentry), dentry, NULL);
1196 out_path:
1197 	done_path_create(&parent, dentry);
1198 out:
1199 	unix_release_addr(addr);
1200 	return err == -EEXIST ? -EADDRINUSE : err;
1201 }
1202 
1203 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr,
1204 			      int addr_len)
1205 {
1206 	unsigned int new_hash, old_hash = sk->sk_hash;
1207 	struct unix_sock *u = unix_sk(sk);
1208 	struct unix_address *addr;
1209 	int err;
1210 
1211 	addr = unix_create_addr(sunaddr, addr_len);
1212 	if (!addr)
1213 		return -ENOMEM;
1214 
1215 	err = mutex_lock_interruptible(&u->bindlock);
1216 	if (err)
1217 		goto out;
1218 
1219 	if (u->addr) {
1220 		err = -EINVAL;
1221 		goto out_mutex;
1222 	}
1223 
1224 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1225 	unix_table_double_lock(old_hash, new_hash);
1226 
1227 	if (__unix_find_socket_byname(sock_net(sk), addr->name, addr->len,
1228 				      new_hash))
1229 		goto out_spin;
1230 
1231 	__unix_set_addr_hash(sk, addr, new_hash);
1232 	unix_table_double_unlock(old_hash, new_hash);
1233 	mutex_unlock(&u->bindlock);
1234 	return 0;
1235 
1236 out_spin:
1237 	unix_table_double_unlock(old_hash, new_hash);
1238 	err = -EADDRINUSE;
1239 out_mutex:
1240 	mutex_unlock(&u->bindlock);
1241 out:
1242 	unix_release_addr(addr);
1243 	return err;
1244 }
1245 
1246 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
1247 {
1248 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1249 	struct sock *sk = sock->sk;
1250 	int err;
1251 
1252 	if (addr_len == offsetof(struct sockaddr_un, sun_path) &&
1253 	    sunaddr->sun_family == AF_UNIX)
1254 		return unix_autobind(sk);
1255 
1256 	err = unix_validate_addr(sunaddr, addr_len);
1257 	if (err)
1258 		return err;
1259 
1260 	if (sunaddr->sun_path[0])
1261 		err = unix_bind_bsd(sk, sunaddr, addr_len);
1262 	else
1263 		err = unix_bind_abstract(sk, sunaddr, addr_len);
1264 
1265 	return err;
1266 }
1267 
1268 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2)
1269 {
1270 	if (unlikely(sk1 == sk2) || !sk2) {
1271 		unix_state_lock(sk1);
1272 		return;
1273 	}
1274 	if (sk1 < sk2) {
1275 		unix_state_lock(sk1);
1276 		unix_state_lock_nested(sk2);
1277 	} else {
1278 		unix_state_lock(sk2);
1279 		unix_state_lock_nested(sk1);
1280 	}
1281 }
1282 
1283 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2)
1284 {
1285 	if (unlikely(sk1 == sk2) || !sk2) {
1286 		unix_state_unlock(sk1);
1287 		return;
1288 	}
1289 	unix_state_unlock(sk1);
1290 	unix_state_unlock(sk2);
1291 }
1292 
1293 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr,
1294 			      int alen, int flags)
1295 {
1296 	struct sock *sk = sock->sk;
1297 	struct net *net = sock_net(sk);
1298 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr;
1299 	struct sock *other;
1300 	int err;
1301 
1302 	err = -EINVAL;
1303 	if (alen < offsetofend(struct sockaddr, sa_family))
1304 		goto out;
1305 
1306 	if (addr->sa_family != AF_UNSPEC) {
1307 		err = unix_validate_addr(sunaddr, alen);
1308 		if (err)
1309 			goto out;
1310 
1311 		if (test_bit(SOCK_PASSCRED, &sock->flags) &&
1312 		    !unix_sk(sk)->addr) {
1313 			err = unix_autobind(sk);
1314 			if (err)
1315 				goto out;
1316 		}
1317 
1318 restart:
1319 		other = unix_find_other(net, sunaddr, alen, sock->type);
1320 		if (IS_ERR(other)) {
1321 			err = PTR_ERR(other);
1322 			goto out;
1323 		}
1324 
1325 		unix_state_double_lock(sk, other);
1326 
1327 		/* Apparently VFS overslept socket death. Retry. */
1328 		if (sock_flag(other, SOCK_DEAD)) {
1329 			unix_state_double_unlock(sk, other);
1330 			sock_put(other);
1331 			goto restart;
1332 		}
1333 
1334 		err = -EPERM;
1335 		if (!unix_may_send(sk, other))
1336 			goto out_unlock;
1337 
1338 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1339 		if (err)
1340 			goto out_unlock;
1341 
1342 		sk->sk_state = other->sk_state = TCP_ESTABLISHED;
1343 	} else {
1344 		/*
1345 		 *	1003.1g breaking connected state with AF_UNSPEC
1346 		 */
1347 		other = NULL;
1348 		unix_state_double_lock(sk, other);
1349 	}
1350 
1351 	/*
1352 	 * If it was connected, reconnect.
1353 	 */
1354 	if (unix_peer(sk)) {
1355 		struct sock *old_peer = unix_peer(sk);
1356 
1357 		unix_peer(sk) = other;
1358 		if (!other)
1359 			sk->sk_state = TCP_CLOSE;
1360 		unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer);
1361 
1362 		unix_state_double_unlock(sk, other);
1363 
1364 		if (other != old_peer)
1365 			unix_dgram_disconnected(sk, old_peer);
1366 		sock_put(old_peer);
1367 	} else {
1368 		unix_peer(sk) = other;
1369 		unix_state_double_unlock(sk, other);
1370 	}
1371 
1372 	return 0;
1373 
1374 out_unlock:
1375 	unix_state_double_unlock(sk, other);
1376 	sock_put(other);
1377 out:
1378 	return err;
1379 }
1380 
1381 static long unix_wait_for_peer(struct sock *other, long timeo)
1382 	__releases(&unix_sk(other)->lock)
1383 {
1384 	struct unix_sock *u = unix_sk(other);
1385 	int sched;
1386 	DEFINE_WAIT(wait);
1387 
1388 	prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE);
1389 
1390 	sched = !sock_flag(other, SOCK_DEAD) &&
1391 		!(other->sk_shutdown & RCV_SHUTDOWN) &&
1392 		unix_recvq_full(other);
1393 
1394 	unix_state_unlock(other);
1395 
1396 	if (sched)
1397 		timeo = schedule_timeout(timeo);
1398 
1399 	finish_wait(&u->peer_wait, &wait);
1400 	return timeo;
1401 }
1402 
1403 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr,
1404 			       int addr_len, int flags)
1405 {
1406 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1407 	struct sock *sk = sock->sk;
1408 	struct net *net = sock_net(sk);
1409 	struct unix_sock *u = unix_sk(sk), *newu, *otheru;
1410 	struct sock *newsk = NULL;
1411 	struct sock *other = NULL;
1412 	struct sk_buff *skb = NULL;
1413 	int st;
1414 	int err;
1415 	long timeo;
1416 
1417 	err = unix_validate_addr(sunaddr, addr_len);
1418 	if (err)
1419 		goto out;
1420 
1421 	if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) {
1422 		err = unix_autobind(sk);
1423 		if (err)
1424 			goto out;
1425 	}
1426 
1427 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1428 
1429 	/* First of all allocate resources.
1430 	   If we will make it after state is locked,
1431 	   we will have to recheck all again in any case.
1432 	 */
1433 
1434 	/* create new sock for complete connection */
1435 	newsk = unix_create1(sock_net(sk), NULL, 0, sock->type);
1436 	if (IS_ERR(newsk)) {
1437 		err = PTR_ERR(newsk);
1438 		newsk = NULL;
1439 		goto out;
1440 	}
1441 
1442 	err = -ENOMEM;
1443 
1444 	/* Allocate skb for sending to listening sock */
1445 	skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL);
1446 	if (skb == NULL)
1447 		goto out;
1448 
1449 restart:
1450 	/*  Find listening sock. */
1451 	other = unix_find_other(net, sunaddr, addr_len, sk->sk_type);
1452 	if (IS_ERR(other)) {
1453 		err = PTR_ERR(other);
1454 		other = NULL;
1455 		goto out;
1456 	}
1457 
1458 	/* Latch state of peer */
1459 	unix_state_lock(other);
1460 
1461 	/* Apparently VFS overslept socket death. Retry. */
1462 	if (sock_flag(other, SOCK_DEAD)) {
1463 		unix_state_unlock(other);
1464 		sock_put(other);
1465 		goto restart;
1466 	}
1467 
1468 	err = -ECONNREFUSED;
1469 	if (other->sk_state != TCP_LISTEN)
1470 		goto out_unlock;
1471 	if (other->sk_shutdown & RCV_SHUTDOWN)
1472 		goto out_unlock;
1473 
1474 	if (unix_recvq_full(other)) {
1475 		err = -EAGAIN;
1476 		if (!timeo)
1477 			goto out_unlock;
1478 
1479 		timeo = unix_wait_for_peer(other, timeo);
1480 
1481 		err = sock_intr_errno(timeo);
1482 		if (signal_pending(current))
1483 			goto out;
1484 		sock_put(other);
1485 		goto restart;
1486 	}
1487 
1488 	/* Latch our state.
1489 
1490 	   It is tricky place. We need to grab our state lock and cannot
1491 	   drop lock on peer. It is dangerous because deadlock is
1492 	   possible. Connect to self case and simultaneous
1493 	   attempt to connect are eliminated by checking socket
1494 	   state. other is TCP_LISTEN, if sk is TCP_LISTEN we
1495 	   check this before attempt to grab lock.
1496 
1497 	   Well, and we have to recheck the state after socket locked.
1498 	 */
1499 	st = sk->sk_state;
1500 
1501 	switch (st) {
1502 	case TCP_CLOSE:
1503 		/* This is ok... continue with connect */
1504 		break;
1505 	case TCP_ESTABLISHED:
1506 		/* Socket is already connected */
1507 		err = -EISCONN;
1508 		goto out_unlock;
1509 	default:
1510 		err = -EINVAL;
1511 		goto out_unlock;
1512 	}
1513 
1514 	unix_state_lock_nested(sk);
1515 
1516 	if (sk->sk_state != st) {
1517 		unix_state_unlock(sk);
1518 		unix_state_unlock(other);
1519 		sock_put(other);
1520 		goto restart;
1521 	}
1522 
1523 	err = security_unix_stream_connect(sk, other, newsk);
1524 	if (err) {
1525 		unix_state_unlock(sk);
1526 		goto out_unlock;
1527 	}
1528 
1529 	/* The way is open! Fastly set all the necessary fields... */
1530 
1531 	sock_hold(sk);
1532 	unix_peer(newsk)	= sk;
1533 	newsk->sk_state		= TCP_ESTABLISHED;
1534 	newsk->sk_type		= sk->sk_type;
1535 	init_peercred(newsk);
1536 	newu = unix_sk(newsk);
1537 	RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq);
1538 	otheru = unix_sk(other);
1539 
1540 	/* copy address information from listening to new sock
1541 	 *
1542 	 * The contents of *(otheru->addr) and otheru->path
1543 	 * are seen fully set up here, since we have found
1544 	 * otheru in hash under unix_table_locks.  Insertion
1545 	 * into the hash chain we'd found it in had been done
1546 	 * in an earlier critical area protected by unix_table_locks,
1547 	 * the same one where we'd set *(otheru->addr) contents,
1548 	 * as well as otheru->path and otheru->addr itself.
1549 	 *
1550 	 * Using smp_store_release() here to set newu->addr
1551 	 * is enough to make those stores, as well as stores
1552 	 * to newu->path visible to anyone who gets newu->addr
1553 	 * by smp_load_acquire().  IOW, the same warranties
1554 	 * as for unix_sock instances bound in unix_bind() or
1555 	 * in unix_autobind().
1556 	 */
1557 	if (otheru->path.dentry) {
1558 		path_get(&otheru->path);
1559 		newu->path = otheru->path;
1560 	}
1561 	refcount_inc(&otheru->addr->refcnt);
1562 	smp_store_release(&newu->addr, otheru->addr);
1563 
1564 	/* Set credentials */
1565 	copy_peercred(sk, other);
1566 
1567 	sock->state	= SS_CONNECTED;
1568 	sk->sk_state	= TCP_ESTABLISHED;
1569 	sock_hold(newsk);
1570 
1571 	smp_mb__after_atomic();	/* sock_hold() does an atomic_inc() */
1572 	unix_peer(sk)	= newsk;
1573 
1574 	unix_state_unlock(sk);
1575 
1576 	/* take ten and send info to listening sock */
1577 	spin_lock(&other->sk_receive_queue.lock);
1578 	__skb_queue_tail(&other->sk_receive_queue, skb);
1579 	spin_unlock(&other->sk_receive_queue.lock);
1580 	unix_state_unlock(other);
1581 	other->sk_data_ready(other);
1582 	sock_put(other);
1583 	return 0;
1584 
1585 out_unlock:
1586 	if (other)
1587 		unix_state_unlock(other);
1588 
1589 out:
1590 	kfree_skb(skb);
1591 	if (newsk)
1592 		unix_release_sock(newsk, 0);
1593 	if (other)
1594 		sock_put(other);
1595 	return err;
1596 }
1597 
1598 static int unix_socketpair(struct socket *socka, struct socket *sockb)
1599 {
1600 	struct sock *ska = socka->sk, *skb = sockb->sk;
1601 
1602 	/* Join our sockets back to back */
1603 	sock_hold(ska);
1604 	sock_hold(skb);
1605 	unix_peer(ska) = skb;
1606 	unix_peer(skb) = ska;
1607 	init_peercred(ska);
1608 	init_peercred(skb);
1609 
1610 	ska->sk_state = TCP_ESTABLISHED;
1611 	skb->sk_state = TCP_ESTABLISHED;
1612 	socka->state  = SS_CONNECTED;
1613 	sockb->state  = SS_CONNECTED;
1614 	return 0;
1615 }
1616 
1617 static void unix_sock_inherit_flags(const struct socket *old,
1618 				    struct socket *new)
1619 {
1620 	if (test_bit(SOCK_PASSCRED, &old->flags))
1621 		set_bit(SOCK_PASSCRED, &new->flags);
1622 	if (test_bit(SOCK_PASSSEC, &old->flags))
1623 		set_bit(SOCK_PASSSEC, &new->flags);
1624 }
1625 
1626 static int unix_accept(struct socket *sock, struct socket *newsock, int flags,
1627 		       bool kern)
1628 {
1629 	struct sock *sk = sock->sk;
1630 	struct sock *tsk;
1631 	struct sk_buff *skb;
1632 	int err;
1633 
1634 	err = -EOPNOTSUPP;
1635 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
1636 		goto out;
1637 
1638 	err = -EINVAL;
1639 	if (sk->sk_state != TCP_LISTEN)
1640 		goto out;
1641 
1642 	/* If socket state is TCP_LISTEN it cannot change (for now...),
1643 	 * so that no locks are necessary.
1644 	 */
1645 
1646 	skb = skb_recv_datagram(sk, 0, flags&O_NONBLOCK, &err);
1647 	if (!skb) {
1648 		/* This means receive shutdown. */
1649 		if (err == 0)
1650 			err = -EINVAL;
1651 		goto out;
1652 	}
1653 
1654 	tsk = skb->sk;
1655 	skb_free_datagram(sk, skb);
1656 	wake_up_interruptible(&unix_sk(sk)->peer_wait);
1657 
1658 	/* attach accepted sock to socket */
1659 	unix_state_lock(tsk);
1660 	newsock->state = SS_CONNECTED;
1661 	unix_sock_inherit_flags(sock, newsock);
1662 	sock_graft(tsk, newsock);
1663 	unix_state_unlock(tsk);
1664 	return 0;
1665 
1666 out:
1667 	return err;
1668 }
1669 
1670 
1671 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1672 {
1673 	struct sock *sk = sock->sk;
1674 	struct unix_address *addr;
1675 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr);
1676 	int err = 0;
1677 
1678 	if (peer) {
1679 		sk = unix_peer_get(sk);
1680 
1681 		err = -ENOTCONN;
1682 		if (!sk)
1683 			goto out;
1684 		err = 0;
1685 	} else {
1686 		sock_hold(sk);
1687 	}
1688 
1689 	addr = smp_load_acquire(&unix_sk(sk)->addr);
1690 	if (!addr) {
1691 		sunaddr->sun_family = AF_UNIX;
1692 		sunaddr->sun_path[0] = 0;
1693 		err = offsetof(struct sockaddr_un, sun_path);
1694 	} else {
1695 		err = addr->len;
1696 		memcpy(sunaddr, addr->name, addr->len);
1697 	}
1698 	sock_put(sk);
1699 out:
1700 	return err;
1701 }
1702 
1703 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb)
1704 {
1705 	scm->fp = scm_fp_dup(UNIXCB(skb).fp);
1706 
1707 	/*
1708 	 * Garbage collection of unix sockets starts by selecting a set of
1709 	 * candidate sockets which have reference only from being in flight
1710 	 * (total_refs == inflight_refs).  This condition is checked once during
1711 	 * the candidate collection phase, and candidates are marked as such, so
1712 	 * that non-candidates can later be ignored.  While inflight_refs is
1713 	 * protected by unix_gc_lock, total_refs (file count) is not, hence this
1714 	 * is an instantaneous decision.
1715 	 *
1716 	 * Once a candidate, however, the socket must not be reinstalled into a
1717 	 * file descriptor while the garbage collection is in progress.
1718 	 *
1719 	 * If the above conditions are met, then the directed graph of
1720 	 * candidates (*) does not change while unix_gc_lock is held.
1721 	 *
1722 	 * Any operations that changes the file count through file descriptors
1723 	 * (dup, close, sendmsg) does not change the graph since candidates are
1724 	 * not installed in fds.
1725 	 *
1726 	 * Dequeing a candidate via recvmsg would install it into an fd, but
1727 	 * that takes unix_gc_lock to decrement the inflight count, so it's
1728 	 * serialized with garbage collection.
1729 	 *
1730 	 * MSG_PEEK is special in that it does not change the inflight count,
1731 	 * yet does install the socket into an fd.  The following lock/unlock
1732 	 * pair is to ensure serialization with garbage collection.  It must be
1733 	 * done between incrementing the file count and installing the file into
1734 	 * an fd.
1735 	 *
1736 	 * If garbage collection starts after the barrier provided by the
1737 	 * lock/unlock, then it will see the elevated refcount and not mark this
1738 	 * as a candidate.  If a garbage collection is already in progress
1739 	 * before the file count was incremented, then the lock/unlock pair will
1740 	 * ensure that garbage collection is finished before progressing to
1741 	 * installing the fd.
1742 	 *
1743 	 * (*) A -> B where B is on the queue of A or B is on the queue of C
1744 	 * which is on the queue of listening socket A.
1745 	 */
1746 	spin_lock(&unix_gc_lock);
1747 	spin_unlock(&unix_gc_lock);
1748 }
1749 
1750 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds)
1751 {
1752 	int err = 0;
1753 
1754 	UNIXCB(skb).pid  = get_pid(scm->pid);
1755 	UNIXCB(skb).uid = scm->creds.uid;
1756 	UNIXCB(skb).gid = scm->creds.gid;
1757 	UNIXCB(skb).fp = NULL;
1758 	unix_get_secdata(scm, skb);
1759 	if (scm->fp && send_fds)
1760 		err = unix_attach_fds(scm, skb);
1761 
1762 	skb->destructor = unix_destruct_scm;
1763 	return err;
1764 }
1765 
1766 static bool unix_passcred_enabled(const struct socket *sock,
1767 				  const struct sock *other)
1768 {
1769 	return test_bit(SOCK_PASSCRED, &sock->flags) ||
1770 	       !other->sk_socket ||
1771 	       test_bit(SOCK_PASSCRED, &other->sk_socket->flags);
1772 }
1773 
1774 /*
1775  * Some apps rely on write() giving SCM_CREDENTIALS
1776  * We include credentials if source or destination socket
1777  * asserted SOCK_PASSCRED.
1778  */
1779 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock,
1780 			    const struct sock *other)
1781 {
1782 	if (UNIXCB(skb).pid)
1783 		return;
1784 	if (unix_passcred_enabled(sock, other)) {
1785 		UNIXCB(skb).pid  = get_pid(task_tgid(current));
1786 		current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid);
1787 	}
1788 }
1789 
1790 static int maybe_init_creds(struct scm_cookie *scm,
1791 			    struct socket *socket,
1792 			    const struct sock *other)
1793 {
1794 	int err;
1795 	struct msghdr msg = { .msg_controllen = 0 };
1796 
1797 	err = scm_send(socket, &msg, scm, false);
1798 	if (err)
1799 		return err;
1800 
1801 	if (unix_passcred_enabled(socket, other)) {
1802 		scm->pid = get_pid(task_tgid(current));
1803 		current_uid_gid(&scm->creds.uid, &scm->creds.gid);
1804 	}
1805 	return err;
1806 }
1807 
1808 static bool unix_skb_scm_eq(struct sk_buff *skb,
1809 			    struct scm_cookie *scm)
1810 {
1811 	const struct unix_skb_parms *u = &UNIXCB(skb);
1812 
1813 	return u->pid == scm->pid &&
1814 	       uid_eq(u->uid, scm->creds.uid) &&
1815 	       gid_eq(u->gid, scm->creds.gid) &&
1816 	       unix_secdata_eq(scm, skb);
1817 }
1818 
1819 static void scm_stat_add(struct sock *sk, struct sk_buff *skb)
1820 {
1821 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1822 	struct unix_sock *u = unix_sk(sk);
1823 
1824 	if (unlikely(fp && fp->count))
1825 		atomic_add(fp->count, &u->scm_stat.nr_fds);
1826 }
1827 
1828 static void scm_stat_del(struct sock *sk, struct sk_buff *skb)
1829 {
1830 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1831 	struct unix_sock *u = unix_sk(sk);
1832 
1833 	if (unlikely(fp && fp->count))
1834 		atomic_sub(fp->count, &u->scm_stat.nr_fds);
1835 }
1836 
1837 /*
1838  *	Send AF_UNIX data.
1839  */
1840 
1841 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1842 			      size_t len)
1843 {
1844 	struct sock *sk = sock->sk;
1845 	struct net *net = sock_net(sk);
1846 	struct unix_sock *u = unix_sk(sk);
1847 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name);
1848 	struct sock *other = NULL;
1849 	int err;
1850 	struct sk_buff *skb;
1851 	long timeo;
1852 	struct scm_cookie scm;
1853 	int data_len = 0;
1854 	int sk_locked;
1855 
1856 	wait_for_unix_gc();
1857 	err = scm_send(sock, msg, &scm, false);
1858 	if (err < 0)
1859 		return err;
1860 
1861 	err = -EOPNOTSUPP;
1862 	if (msg->msg_flags&MSG_OOB)
1863 		goto out;
1864 
1865 	if (msg->msg_namelen) {
1866 		err = unix_validate_addr(sunaddr, msg->msg_namelen);
1867 		if (err)
1868 			goto out;
1869 	} else {
1870 		sunaddr = NULL;
1871 		err = -ENOTCONN;
1872 		other = unix_peer_get(sk);
1873 		if (!other)
1874 			goto out;
1875 	}
1876 
1877 	if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) {
1878 		err = unix_autobind(sk);
1879 		if (err)
1880 			goto out;
1881 	}
1882 
1883 	err = -EMSGSIZE;
1884 	if (len > sk->sk_sndbuf - 32)
1885 		goto out;
1886 
1887 	if (len > SKB_MAX_ALLOC) {
1888 		data_len = min_t(size_t,
1889 				 len - SKB_MAX_ALLOC,
1890 				 MAX_SKB_FRAGS * PAGE_SIZE);
1891 		data_len = PAGE_ALIGN(data_len);
1892 
1893 		BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE);
1894 	}
1895 
1896 	skb = sock_alloc_send_pskb(sk, len - data_len, data_len,
1897 				   msg->msg_flags & MSG_DONTWAIT, &err,
1898 				   PAGE_ALLOC_COSTLY_ORDER);
1899 	if (skb == NULL)
1900 		goto out;
1901 
1902 	err = unix_scm_to_skb(&scm, skb, true);
1903 	if (err < 0)
1904 		goto out_free;
1905 
1906 	skb_put(skb, len - data_len);
1907 	skb->data_len = data_len;
1908 	skb->len = len;
1909 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
1910 	if (err)
1911 		goto out_free;
1912 
1913 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1914 
1915 restart:
1916 	if (!other) {
1917 		err = -ECONNRESET;
1918 		if (sunaddr == NULL)
1919 			goto out_free;
1920 
1921 		other = unix_find_other(net, sunaddr, msg->msg_namelen,
1922 					sk->sk_type);
1923 		if (IS_ERR(other)) {
1924 			err = PTR_ERR(other);
1925 			other = NULL;
1926 			goto out_free;
1927 		}
1928 	}
1929 
1930 	if (sk_filter(other, skb) < 0) {
1931 		/* Toss the packet but do not return any error to the sender */
1932 		err = len;
1933 		goto out_free;
1934 	}
1935 
1936 	sk_locked = 0;
1937 	unix_state_lock(other);
1938 restart_locked:
1939 	err = -EPERM;
1940 	if (!unix_may_send(sk, other))
1941 		goto out_unlock;
1942 
1943 	if (unlikely(sock_flag(other, SOCK_DEAD))) {
1944 		/*
1945 		 *	Check with 1003.1g - what should
1946 		 *	datagram error
1947 		 */
1948 		unix_state_unlock(other);
1949 		sock_put(other);
1950 
1951 		if (!sk_locked)
1952 			unix_state_lock(sk);
1953 
1954 		err = 0;
1955 		if (unix_peer(sk) == other) {
1956 			unix_peer(sk) = NULL;
1957 			unix_dgram_peer_wake_disconnect_wakeup(sk, other);
1958 
1959 			unix_state_unlock(sk);
1960 
1961 			sk->sk_state = TCP_CLOSE;
1962 			unix_dgram_disconnected(sk, other);
1963 			sock_put(other);
1964 			err = -ECONNREFUSED;
1965 		} else {
1966 			unix_state_unlock(sk);
1967 		}
1968 
1969 		other = NULL;
1970 		if (err)
1971 			goto out_free;
1972 		goto restart;
1973 	}
1974 
1975 	err = -EPIPE;
1976 	if (other->sk_shutdown & RCV_SHUTDOWN)
1977 		goto out_unlock;
1978 
1979 	if (sk->sk_type != SOCK_SEQPACKET) {
1980 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1981 		if (err)
1982 			goto out_unlock;
1983 	}
1984 
1985 	/* other == sk && unix_peer(other) != sk if
1986 	 * - unix_peer(sk) == NULL, destination address bound to sk
1987 	 * - unix_peer(sk) == sk by time of get but disconnected before lock
1988 	 */
1989 	if (other != sk &&
1990 	    unlikely(unix_peer(other) != sk &&
1991 	    unix_recvq_full_lockless(other))) {
1992 		if (timeo) {
1993 			timeo = unix_wait_for_peer(other, timeo);
1994 
1995 			err = sock_intr_errno(timeo);
1996 			if (signal_pending(current))
1997 				goto out_free;
1998 
1999 			goto restart;
2000 		}
2001 
2002 		if (!sk_locked) {
2003 			unix_state_unlock(other);
2004 			unix_state_double_lock(sk, other);
2005 		}
2006 
2007 		if (unix_peer(sk) != other ||
2008 		    unix_dgram_peer_wake_me(sk, other)) {
2009 			err = -EAGAIN;
2010 			sk_locked = 1;
2011 			goto out_unlock;
2012 		}
2013 
2014 		if (!sk_locked) {
2015 			sk_locked = 1;
2016 			goto restart_locked;
2017 		}
2018 	}
2019 
2020 	if (unlikely(sk_locked))
2021 		unix_state_unlock(sk);
2022 
2023 	if (sock_flag(other, SOCK_RCVTSTAMP))
2024 		__net_timestamp(skb);
2025 	maybe_add_creds(skb, sock, other);
2026 	scm_stat_add(other, skb);
2027 	skb_queue_tail(&other->sk_receive_queue, skb);
2028 	unix_state_unlock(other);
2029 	other->sk_data_ready(other);
2030 	sock_put(other);
2031 	scm_destroy(&scm);
2032 	return len;
2033 
2034 out_unlock:
2035 	if (sk_locked)
2036 		unix_state_unlock(sk);
2037 	unix_state_unlock(other);
2038 out_free:
2039 	kfree_skb(skb);
2040 out:
2041 	if (other)
2042 		sock_put(other);
2043 	scm_destroy(&scm);
2044 	return err;
2045 }
2046 
2047 /* We use paged skbs for stream sockets, and limit occupancy to 32768
2048  * bytes, and a minimum of a full page.
2049  */
2050 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768))
2051 
2052 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2053 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other)
2054 {
2055 	struct unix_sock *ousk = unix_sk(other);
2056 	struct sk_buff *skb;
2057 	int err = 0;
2058 
2059 	skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err);
2060 
2061 	if (!skb)
2062 		return err;
2063 
2064 	skb_put(skb, 1);
2065 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1);
2066 
2067 	if (err) {
2068 		kfree_skb(skb);
2069 		return err;
2070 	}
2071 
2072 	unix_state_lock(other);
2073 
2074 	if (sock_flag(other, SOCK_DEAD) ||
2075 	    (other->sk_shutdown & RCV_SHUTDOWN)) {
2076 		unix_state_unlock(other);
2077 		kfree_skb(skb);
2078 		return -EPIPE;
2079 	}
2080 
2081 	maybe_add_creds(skb, sock, other);
2082 	skb_get(skb);
2083 
2084 	if (ousk->oob_skb)
2085 		consume_skb(ousk->oob_skb);
2086 
2087 	WRITE_ONCE(ousk->oob_skb, skb);
2088 
2089 	scm_stat_add(other, skb);
2090 	skb_queue_tail(&other->sk_receive_queue, skb);
2091 	sk_send_sigurg(other);
2092 	unix_state_unlock(other);
2093 	other->sk_data_ready(other);
2094 
2095 	return err;
2096 }
2097 #endif
2098 
2099 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg,
2100 			       size_t len)
2101 {
2102 	struct sock *sk = sock->sk;
2103 	struct sock *other = NULL;
2104 	int err, size;
2105 	struct sk_buff *skb;
2106 	int sent = 0;
2107 	struct scm_cookie scm;
2108 	bool fds_sent = false;
2109 	int data_len;
2110 
2111 	wait_for_unix_gc();
2112 	err = scm_send(sock, msg, &scm, false);
2113 	if (err < 0)
2114 		return err;
2115 
2116 	err = -EOPNOTSUPP;
2117 	if (msg->msg_flags & MSG_OOB) {
2118 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2119 		if (len)
2120 			len--;
2121 		else
2122 #endif
2123 			goto out_err;
2124 	}
2125 
2126 	if (msg->msg_namelen) {
2127 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2128 		goto out_err;
2129 	} else {
2130 		err = -ENOTCONN;
2131 		other = unix_peer(sk);
2132 		if (!other)
2133 			goto out_err;
2134 	}
2135 
2136 	if (sk->sk_shutdown & SEND_SHUTDOWN)
2137 		goto pipe_err;
2138 
2139 	while (sent < len) {
2140 		size = len - sent;
2141 
2142 		/* Keep two messages in the pipe so it schedules better */
2143 		size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64);
2144 
2145 		/* allow fallback to order-0 allocations */
2146 		size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ);
2147 
2148 		data_len = max_t(int, 0, size - SKB_MAX_HEAD(0));
2149 
2150 		data_len = min_t(size_t, size, PAGE_ALIGN(data_len));
2151 
2152 		skb = sock_alloc_send_pskb(sk, size - data_len, data_len,
2153 					   msg->msg_flags & MSG_DONTWAIT, &err,
2154 					   get_order(UNIX_SKB_FRAGS_SZ));
2155 		if (!skb)
2156 			goto out_err;
2157 
2158 		/* Only send the fds in the first buffer */
2159 		err = unix_scm_to_skb(&scm, skb, !fds_sent);
2160 		if (err < 0) {
2161 			kfree_skb(skb);
2162 			goto out_err;
2163 		}
2164 		fds_sent = true;
2165 
2166 		skb_put(skb, size - data_len);
2167 		skb->data_len = data_len;
2168 		skb->len = size;
2169 		err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
2170 		if (err) {
2171 			kfree_skb(skb);
2172 			goto out_err;
2173 		}
2174 
2175 		unix_state_lock(other);
2176 
2177 		if (sock_flag(other, SOCK_DEAD) ||
2178 		    (other->sk_shutdown & RCV_SHUTDOWN))
2179 			goto pipe_err_free;
2180 
2181 		maybe_add_creds(skb, sock, other);
2182 		scm_stat_add(other, skb);
2183 		skb_queue_tail(&other->sk_receive_queue, skb);
2184 		unix_state_unlock(other);
2185 		other->sk_data_ready(other);
2186 		sent += size;
2187 	}
2188 
2189 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2190 	if (msg->msg_flags & MSG_OOB) {
2191 		err = queue_oob(sock, msg, other);
2192 		if (err)
2193 			goto out_err;
2194 		sent++;
2195 	}
2196 #endif
2197 
2198 	scm_destroy(&scm);
2199 
2200 	return sent;
2201 
2202 pipe_err_free:
2203 	unix_state_unlock(other);
2204 	kfree_skb(skb);
2205 pipe_err:
2206 	if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL))
2207 		send_sig(SIGPIPE, current, 0);
2208 	err = -EPIPE;
2209 out_err:
2210 	scm_destroy(&scm);
2211 	return sent ? : err;
2212 }
2213 
2214 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page,
2215 				    int offset, size_t size, int flags)
2216 {
2217 	int err;
2218 	bool send_sigpipe = false;
2219 	bool init_scm = true;
2220 	struct scm_cookie scm;
2221 	struct sock *other, *sk = socket->sk;
2222 	struct sk_buff *skb, *newskb = NULL, *tail = NULL;
2223 
2224 	if (flags & MSG_OOB)
2225 		return -EOPNOTSUPP;
2226 
2227 	other = unix_peer(sk);
2228 	if (!other || sk->sk_state != TCP_ESTABLISHED)
2229 		return -ENOTCONN;
2230 
2231 	if (false) {
2232 alloc_skb:
2233 		unix_state_unlock(other);
2234 		mutex_unlock(&unix_sk(other)->iolock);
2235 		newskb = sock_alloc_send_pskb(sk, 0, 0, flags & MSG_DONTWAIT,
2236 					      &err, 0);
2237 		if (!newskb)
2238 			goto err;
2239 	}
2240 
2241 	/* we must acquire iolock as we modify already present
2242 	 * skbs in the sk_receive_queue and mess with skb->len
2243 	 */
2244 	err = mutex_lock_interruptible(&unix_sk(other)->iolock);
2245 	if (err) {
2246 		err = flags & MSG_DONTWAIT ? -EAGAIN : -ERESTARTSYS;
2247 		goto err;
2248 	}
2249 
2250 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
2251 		err = -EPIPE;
2252 		send_sigpipe = true;
2253 		goto err_unlock;
2254 	}
2255 
2256 	unix_state_lock(other);
2257 
2258 	if (sock_flag(other, SOCK_DEAD) ||
2259 	    other->sk_shutdown & RCV_SHUTDOWN) {
2260 		err = -EPIPE;
2261 		send_sigpipe = true;
2262 		goto err_state_unlock;
2263 	}
2264 
2265 	if (init_scm) {
2266 		err = maybe_init_creds(&scm, socket, other);
2267 		if (err)
2268 			goto err_state_unlock;
2269 		init_scm = false;
2270 	}
2271 
2272 	skb = skb_peek_tail(&other->sk_receive_queue);
2273 	if (tail && tail == skb) {
2274 		skb = newskb;
2275 	} else if (!skb || !unix_skb_scm_eq(skb, &scm)) {
2276 		if (newskb) {
2277 			skb = newskb;
2278 		} else {
2279 			tail = skb;
2280 			goto alloc_skb;
2281 		}
2282 	} else if (newskb) {
2283 		/* this is fast path, we don't necessarily need to
2284 		 * call to kfree_skb even though with newskb == NULL
2285 		 * this - does no harm
2286 		 */
2287 		consume_skb(newskb);
2288 		newskb = NULL;
2289 	}
2290 
2291 	if (skb_append_pagefrags(skb, page, offset, size)) {
2292 		tail = skb;
2293 		goto alloc_skb;
2294 	}
2295 
2296 	skb->len += size;
2297 	skb->data_len += size;
2298 	skb->truesize += size;
2299 	refcount_add(size, &sk->sk_wmem_alloc);
2300 
2301 	if (newskb) {
2302 		err = unix_scm_to_skb(&scm, skb, false);
2303 		if (err)
2304 			goto err_state_unlock;
2305 		spin_lock(&other->sk_receive_queue.lock);
2306 		__skb_queue_tail(&other->sk_receive_queue, newskb);
2307 		spin_unlock(&other->sk_receive_queue.lock);
2308 	}
2309 
2310 	unix_state_unlock(other);
2311 	mutex_unlock(&unix_sk(other)->iolock);
2312 
2313 	other->sk_data_ready(other);
2314 	scm_destroy(&scm);
2315 	return size;
2316 
2317 err_state_unlock:
2318 	unix_state_unlock(other);
2319 err_unlock:
2320 	mutex_unlock(&unix_sk(other)->iolock);
2321 err:
2322 	kfree_skb(newskb);
2323 	if (send_sigpipe && !(flags & MSG_NOSIGNAL))
2324 		send_sig(SIGPIPE, current, 0);
2325 	if (!init_scm)
2326 		scm_destroy(&scm);
2327 	return err;
2328 }
2329 
2330 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg,
2331 				  size_t len)
2332 {
2333 	int err;
2334 	struct sock *sk = sock->sk;
2335 
2336 	err = sock_error(sk);
2337 	if (err)
2338 		return err;
2339 
2340 	if (sk->sk_state != TCP_ESTABLISHED)
2341 		return -ENOTCONN;
2342 
2343 	if (msg->msg_namelen)
2344 		msg->msg_namelen = 0;
2345 
2346 	return unix_dgram_sendmsg(sock, msg, len);
2347 }
2348 
2349 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg,
2350 				  size_t size, int flags)
2351 {
2352 	struct sock *sk = sock->sk;
2353 
2354 	if (sk->sk_state != TCP_ESTABLISHED)
2355 		return -ENOTCONN;
2356 
2357 	return unix_dgram_recvmsg(sock, msg, size, flags);
2358 }
2359 
2360 static void unix_copy_addr(struct msghdr *msg, struct sock *sk)
2361 {
2362 	struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr);
2363 
2364 	if (addr) {
2365 		msg->msg_namelen = addr->len;
2366 		memcpy(msg->msg_name, addr->name, addr->len);
2367 	}
2368 }
2369 
2370 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size,
2371 			 int flags)
2372 {
2373 	struct scm_cookie scm;
2374 	struct socket *sock = sk->sk_socket;
2375 	struct unix_sock *u = unix_sk(sk);
2376 	struct sk_buff *skb, *last;
2377 	long timeo;
2378 	int skip;
2379 	int err;
2380 
2381 	err = -EOPNOTSUPP;
2382 	if (flags&MSG_OOB)
2383 		goto out;
2384 
2385 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2386 
2387 	do {
2388 		mutex_lock(&u->iolock);
2389 
2390 		skip = sk_peek_offset(sk, flags);
2391 		skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags,
2392 					      &skip, &err, &last);
2393 		if (skb) {
2394 			if (!(flags & MSG_PEEK))
2395 				scm_stat_del(sk, skb);
2396 			break;
2397 		}
2398 
2399 		mutex_unlock(&u->iolock);
2400 
2401 		if (err != -EAGAIN)
2402 			break;
2403 	} while (timeo &&
2404 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
2405 					      &err, &timeo, last));
2406 
2407 	if (!skb) { /* implies iolock unlocked */
2408 		unix_state_lock(sk);
2409 		/* Signal EOF on disconnected non-blocking SEQPACKET socket. */
2410 		if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN &&
2411 		    (sk->sk_shutdown & RCV_SHUTDOWN))
2412 			err = 0;
2413 		unix_state_unlock(sk);
2414 		goto out;
2415 	}
2416 
2417 	if (wq_has_sleeper(&u->peer_wait))
2418 		wake_up_interruptible_sync_poll(&u->peer_wait,
2419 						EPOLLOUT | EPOLLWRNORM |
2420 						EPOLLWRBAND);
2421 
2422 	if (msg->msg_name)
2423 		unix_copy_addr(msg, skb->sk);
2424 
2425 	if (size > skb->len - skip)
2426 		size = skb->len - skip;
2427 	else if (size < skb->len - skip)
2428 		msg->msg_flags |= MSG_TRUNC;
2429 
2430 	err = skb_copy_datagram_msg(skb, skip, msg, size);
2431 	if (err)
2432 		goto out_free;
2433 
2434 	if (sock_flag(sk, SOCK_RCVTSTAMP))
2435 		__sock_recv_timestamp(msg, sk, skb);
2436 
2437 	memset(&scm, 0, sizeof(scm));
2438 
2439 	scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2440 	unix_set_secdata(&scm, skb);
2441 
2442 	if (!(flags & MSG_PEEK)) {
2443 		if (UNIXCB(skb).fp)
2444 			unix_detach_fds(&scm, skb);
2445 
2446 		sk_peek_offset_bwd(sk, skb->len);
2447 	} else {
2448 		/* It is questionable: on PEEK we could:
2449 		   - do not return fds - good, but too simple 8)
2450 		   - return fds, and do not return them on read (old strategy,
2451 		     apparently wrong)
2452 		   - clone fds (I chose it for now, it is the most universal
2453 		     solution)
2454 
2455 		   POSIX 1003.1g does not actually define this clearly
2456 		   at all. POSIX 1003.1g doesn't define a lot of things
2457 		   clearly however!
2458 
2459 		*/
2460 
2461 		sk_peek_offset_fwd(sk, size);
2462 
2463 		if (UNIXCB(skb).fp)
2464 			unix_peek_fds(&scm, skb);
2465 	}
2466 	err = (flags & MSG_TRUNC) ? skb->len - skip : size;
2467 
2468 	scm_recv(sock, msg, &scm, flags);
2469 
2470 out_free:
2471 	skb_free_datagram(sk, skb);
2472 	mutex_unlock(&u->iolock);
2473 out:
2474 	return err;
2475 }
2476 
2477 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2478 			      int flags)
2479 {
2480 	struct sock *sk = sock->sk;
2481 
2482 #ifdef CONFIG_BPF_SYSCALL
2483 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2484 
2485 	if (prot != &unix_dgram_proto)
2486 		return prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2487 					    flags & ~MSG_DONTWAIT, NULL);
2488 #endif
2489 	return __unix_dgram_recvmsg(sk, msg, size, flags);
2490 }
2491 
2492 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc,
2493 			  sk_read_actor_t recv_actor)
2494 {
2495 	int copied = 0;
2496 
2497 	while (1) {
2498 		struct unix_sock *u = unix_sk(sk);
2499 		struct sk_buff *skb;
2500 		int used, err;
2501 
2502 		mutex_lock(&u->iolock);
2503 		skb = skb_recv_datagram(sk, 0, 1, &err);
2504 		mutex_unlock(&u->iolock);
2505 		if (!skb)
2506 			return err;
2507 
2508 		used = recv_actor(desc, skb, 0, skb->len);
2509 		if (used <= 0) {
2510 			if (!copied)
2511 				copied = used;
2512 			kfree_skb(skb);
2513 			break;
2514 		} else if (used <= skb->len) {
2515 			copied += used;
2516 		}
2517 
2518 		kfree_skb(skb);
2519 		if (!desc->count)
2520 			break;
2521 	}
2522 
2523 	return copied;
2524 }
2525 
2526 /*
2527  *	Sleep until more data has arrived. But check for races..
2528  */
2529 static long unix_stream_data_wait(struct sock *sk, long timeo,
2530 				  struct sk_buff *last, unsigned int last_len,
2531 				  bool freezable)
2532 {
2533 	struct sk_buff *tail;
2534 	DEFINE_WAIT(wait);
2535 
2536 	unix_state_lock(sk);
2537 
2538 	for (;;) {
2539 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2540 
2541 		tail = skb_peek_tail(&sk->sk_receive_queue);
2542 		if (tail != last ||
2543 		    (tail && tail->len != last_len) ||
2544 		    sk->sk_err ||
2545 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2546 		    signal_pending(current) ||
2547 		    !timeo)
2548 			break;
2549 
2550 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2551 		unix_state_unlock(sk);
2552 		if (freezable)
2553 			timeo = freezable_schedule_timeout(timeo);
2554 		else
2555 			timeo = schedule_timeout(timeo);
2556 		unix_state_lock(sk);
2557 
2558 		if (sock_flag(sk, SOCK_DEAD))
2559 			break;
2560 
2561 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2562 	}
2563 
2564 	finish_wait(sk_sleep(sk), &wait);
2565 	unix_state_unlock(sk);
2566 	return timeo;
2567 }
2568 
2569 static unsigned int unix_skb_len(const struct sk_buff *skb)
2570 {
2571 	return skb->len - UNIXCB(skb).consumed;
2572 }
2573 
2574 struct unix_stream_read_state {
2575 	int (*recv_actor)(struct sk_buff *, int, int,
2576 			  struct unix_stream_read_state *);
2577 	struct socket *socket;
2578 	struct msghdr *msg;
2579 	struct pipe_inode_info *pipe;
2580 	size_t size;
2581 	int flags;
2582 	unsigned int splice_flags;
2583 };
2584 
2585 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2586 static int unix_stream_recv_urg(struct unix_stream_read_state *state)
2587 {
2588 	struct socket *sock = state->socket;
2589 	struct sock *sk = sock->sk;
2590 	struct unix_sock *u = unix_sk(sk);
2591 	int chunk = 1;
2592 	struct sk_buff *oob_skb;
2593 
2594 	mutex_lock(&u->iolock);
2595 	unix_state_lock(sk);
2596 
2597 	if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) {
2598 		unix_state_unlock(sk);
2599 		mutex_unlock(&u->iolock);
2600 		return -EINVAL;
2601 	}
2602 
2603 	oob_skb = u->oob_skb;
2604 
2605 	if (!(state->flags & MSG_PEEK))
2606 		WRITE_ONCE(u->oob_skb, NULL);
2607 
2608 	unix_state_unlock(sk);
2609 
2610 	chunk = state->recv_actor(oob_skb, 0, chunk, state);
2611 
2612 	if (!(state->flags & MSG_PEEK)) {
2613 		UNIXCB(oob_skb).consumed += 1;
2614 		kfree_skb(oob_skb);
2615 	}
2616 
2617 	mutex_unlock(&u->iolock);
2618 
2619 	if (chunk < 0)
2620 		return -EFAULT;
2621 
2622 	state->msg->msg_flags |= MSG_OOB;
2623 	return 1;
2624 }
2625 
2626 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk,
2627 				  int flags, int copied)
2628 {
2629 	struct unix_sock *u = unix_sk(sk);
2630 
2631 	if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) {
2632 		skb_unlink(skb, &sk->sk_receive_queue);
2633 		consume_skb(skb);
2634 		skb = NULL;
2635 	} else {
2636 		if (skb == u->oob_skb) {
2637 			if (copied) {
2638 				skb = NULL;
2639 			} else if (sock_flag(sk, SOCK_URGINLINE)) {
2640 				if (!(flags & MSG_PEEK)) {
2641 					WRITE_ONCE(u->oob_skb, NULL);
2642 					consume_skb(skb);
2643 				}
2644 			} else if (!(flags & MSG_PEEK)) {
2645 				skb_unlink(skb, &sk->sk_receive_queue);
2646 				consume_skb(skb);
2647 				skb = skb_peek(&sk->sk_receive_queue);
2648 			}
2649 		}
2650 	}
2651 	return skb;
2652 }
2653 #endif
2654 
2655 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc,
2656 				 sk_read_actor_t recv_actor)
2657 {
2658 	if (unlikely(sk->sk_state != TCP_ESTABLISHED))
2659 		return -ENOTCONN;
2660 
2661 	return unix_read_sock(sk, desc, recv_actor);
2662 }
2663 
2664 static int unix_stream_read_generic(struct unix_stream_read_state *state,
2665 				    bool freezable)
2666 {
2667 	struct scm_cookie scm;
2668 	struct socket *sock = state->socket;
2669 	struct sock *sk = sock->sk;
2670 	struct unix_sock *u = unix_sk(sk);
2671 	int copied = 0;
2672 	int flags = state->flags;
2673 	int noblock = flags & MSG_DONTWAIT;
2674 	bool check_creds = false;
2675 	int target;
2676 	int err = 0;
2677 	long timeo;
2678 	int skip;
2679 	size_t size = state->size;
2680 	unsigned int last_len;
2681 
2682 	if (unlikely(sk->sk_state != TCP_ESTABLISHED)) {
2683 		err = -EINVAL;
2684 		goto out;
2685 	}
2686 
2687 	if (unlikely(flags & MSG_OOB)) {
2688 		err = -EOPNOTSUPP;
2689 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2690 		err = unix_stream_recv_urg(state);
2691 #endif
2692 		goto out;
2693 	}
2694 
2695 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
2696 	timeo = sock_rcvtimeo(sk, noblock);
2697 
2698 	memset(&scm, 0, sizeof(scm));
2699 
2700 	/* Lock the socket to prevent queue disordering
2701 	 * while sleeps in memcpy_tomsg
2702 	 */
2703 	mutex_lock(&u->iolock);
2704 
2705 	skip = max(sk_peek_offset(sk, flags), 0);
2706 
2707 	do {
2708 		int chunk;
2709 		bool drop_skb;
2710 		struct sk_buff *skb, *last;
2711 
2712 redo:
2713 		unix_state_lock(sk);
2714 		if (sock_flag(sk, SOCK_DEAD)) {
2715 			err = -ECONNRESET;
2716 			goto unlock;
2717 		}
2718 		last = skb = skb_peek(&sk->sk_receive_queue);
2719 		last_len = last ? last->len : 0;
2720 
2721 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2722 		if (skb) {
2723 			skb = manage_oob(skb, sk, flags, copied);
2724 			if (!skb) {
2725 				unix_state_unlock(sk);
2726 				if (copied)
2727 					break;
2728 				goto redo;
2729 			}
2730 		}
2731 #endif
2732 again:
2733 		if (skb == NULL) {
2734 			if (copied >= target)
2735 				goto unlock;
2736 
2737 			/*
2738 			 *	POSIX 1003.1g mandates this order.
2739 			 */
2740 
2741 			err = sock_error(sk);
2742 			if (err)
2743 				goto unlock;
2744 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2745 				goto unlock;
2746 
2747 			unix_state_unlock(sk);
2748 			if (!timeo) {
2749 				err = -EAGAIN;
2750 				break;
2751 			}
2752 
2753 			mutex_unlock(&u->iolock);
2754 
2755 			timeo = unix_stream_data_wait(sk, timeo, last,
2756 						      last_len, freezable);
2757 
2758 			if (signal_pending(current)) {
2759 				err = sock_intr_errno(timeo);
2760 				scm_destroy(&scm);
2761 				goto out;
2762 			}
2763 
2764 			mutex_lock(&u->iolock);
2765 			goto redo;
2766 unlock:
2767 			unix_state_unlock(sk);
2768 			break;
2769 		}
2770 
2771 		while (skip >= unix_skb_len(skb)) {
2772 			skip -= unix_skb_len(skb);
2773 			last = skb;
2774 			last_len = skb->len;
2775 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2776 			if (!skb)
2777 				goto again;
2778 		}
2779 
2780 		unix_state_unlock(sk);
2781 
2782 		if (check_creds) {
2783 			/* Never glue messages from different writers */
2784 			if (!unix_skb_scm_eq(skb, &scm))
2785 				break;
2786 		} else if (test_bit(SOCK_PASSCRED, &sock->flags)) {
2787 			/* Copy credentials */
2788 			scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2789 			unix_set_secdata(&scm, skb);
2790 			check_creds = true;
2791 		}
2792 
2793 		/* Copy address just once */
2794 		if (state->msg && state->msg->msg_name) {
2795 			DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr,
2796 					 state->msg->msg_name);
2797 			unix_copy_addr(state->msg, skb->sk);
2798 			sunaddr = NULL;
2799 		}
2800 
2801 		chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size);
2802 		skb_get(skb);
2803 		chunk = state->recv_actor(skb, skip, chunk, state);
2804 		drop_skb = !unix_skb_len(skb);
2805 		/* skb is only safe to use if !drop_skb */
2806 		consume_skb(skb);
2807 		if (chunk < 0) {
2808 			if (copied == 0)
2809 				copied = -EFAULT;
2810 			break;
2811 		}
2812 		copied += chunk;
2813 		size -= chunk;
2814 
2815 		if (drop_skb) {
2816 			/* the skb was touched by a concurrent reader;
2817 			 * we should not expect anything from this skb
2818 			 * anymore and assume it invalid - we can be
2819 			 * sure it was dropped from the socket queue
2820 			 *
2821 			 * let's report a short read
2822 			 */
2823 			err = 0;
2824 			break;
2825 		}
2826 
2827 		/* Mark read part of skb as used */
2828 		if (!(flags & MSG_PEEK)) {
2829 			UNIXCB(skb).consumed += chunk;
2830 
2831 			sk_peek_offset_bwd(sk, chunk);
2832 
2833 			if (UNIXCB(skb).fp) {
2834 				scm_stat_del(sk, skb);
2835 				unix_detach_fds(&scm, skb);
2836 			}
2837 
2838 			if (unix_skb_len(skb))
2839 				break;
2840 
2841 			skb_unlink(skb, &sk->sk_receive_queue);
2842 			consume_skb(skb);
2843 
2844 			if (scm.fp)
2845 				break;
2846 		} else {
2847 			/* It is questionable, see note in unix_dgram_recvmsg.
2848 			 */
2849 			if (UNIXCB(skb).fp)
2850 				unix_peek_fds(&scm, skb);
2851 
2852 			sk_peek_offset_fwd(sk, chunk);
2853 
2854 			if (UNIXCB(skb).fp)
2855 				break;
2856 
2857 			skip = 0;
2858 			last = skb;
2859 			last_len = skb->len;
2860 			unix_state_lock(sk);
2861 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2862 			if (skb)
2863 				goto again;
2864 			unix_state_unlock(sk);
2865 			break;
2866 		}
2867 	} while (size);
2868 
2869 	mutex_unlock(&u->iolock);
2870 	if (state->msg)
2871 		scm_recv(sock, state->msg, &scm, flags);
2872 	else
2873 		scm_destroy(&scm);
2874 out:
2875 	return copied ? : err;
2876 }
2877 
2878 static int unix_stream_read_actor(struct sk_buff *skb,
2879 				  int skip, int chunk,
2880 				  struct unix_stream_read_state *state)
2881 {
2882 	int ret;
2883 
2884 	ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip,
2885 				    state->msg, chunk);
2886 	return ret ?: chunk;
2887 }
2888 
2889 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2890 			  size_t size, int flags)
2891 {
2892 	struct unix_stream_read_state state = {
2893 		.recv_actor = unix_stream_read_actor,
2894 		.socket = sk->sk_socket,
2895 		.msg = msg,
2896 		.size = size,
2897 		.flags = flags
2898 	};
2899 
2900 	return unix_stream_read_generic(&state, true);
2901 }
2902 
2903 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg,
2904 			       size_t size, int flags)
2905 {
2906 	struct unix_stream_read_state state = {
2907 		.recv_actor = unix_stream_read_actor,
2908 		.socket = sock,
2909 		.msg = msg,
2910 		.size = size,
2911 		.flags = flags
2912 	};
2913 
2914 #ifdef CONFIG_BPF_SYSCALL
2915 	struct sock *sk = sock->sk;
2916 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2917 
2918 	if (prot != &unix_stream_proto)
2919 		return prot->recvmsg(sk, msg, size, flags & MSG_DONTWAIT,
2920 					    flags & ~MSG_DONTWAIT, NULL);
2921 #endif
2922 	return unix_stream_read_generic(&state, true);
2923 }
2924 
2925 static int unix_stream_splice_actor(struct sk_buff *skb,
2926 				    int skip, int chunk,
2927 				    struct unix_stream_read_state *state)
2928 {
2929 	return skb_splice_bits(skb, state->socket->sk,
2930 			       UNIXCB(skb).consumed + skip,
2931 			       state->pipe, chunk, state->splice_flags);
2932 }
2933 
2934 static ssize_t unix_stream_splice_read(struct socket *sock,  loff_t *ppos,
2935 				       struct pipe_inode_info *pipe,
2936 				       size_t size, unsigned int flags)
2937 {
2938 	struct unix_stream_read_state state = {
2939 		.recv_actor = unix_stream_splice_actor,
2940 		.socket = sock,
2941 		.pipe = pipe,
2942 		.size = size,
2943 		.splice_flags = flags,
2944 	};
2945 
2946 	if (unlikely(*ppos))
2947 		return -ESPIPE;
2948 
2949 	if (sock->file->f_flags & O_NONBLOCK ||
2950 	    flags & SPLICE_F_NONBLOCK)
2951 		state.flags = MSG_DONTWAIT;
2952 
2953 	return unix_stream_read_generic(&state, false);
2954 }
2955 
2956 static int unix_shutdown(struct socket *sock, int mode)
2957 {
2958 	struct sock *sk = sock->sk;
2959 	struct sock *other;
2960 
2961 	if (mode < SHUT_RD || mode > SHUT_RDWR)
2962 		return -EINVAL;
2963 	/* This maps:
2964 	 * SHUT_RD   (0) -> RCV_SHUTDOWN  (1)
2965 	 * SHUT_WR   (1) -> SEND_SHUTDOWN (2)
2966 	 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3)
2967 	 */
2968 	++mode;
2969 
2970 	unix_state_lock(sk);
2971 	sk->sk_shutdown |= mode;
2972 	other = unix_peer(sk);
2973 	if (other)
2974 		sock_hold(other);
2975 	unix_state_unlock(sk);
2976 	sk->sk_state_change(sk);
2977 
2978 	if (other &&
2979 		(sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) {
2980 
2981 		int peer_mode = 0;
2982 		const struct proto *prot = READ_ONCE(other->sk_prot);
2983 
2984 		if (prot->unhash)
2985 			prot->unhash(other);
2986 		if (mode&RCV_SHUTDOWN)
2987 			peer_mode |= SEND_SHUTDOWN;
2988 		if (mode&SEND_SHUTDOWN)
2989 			peer_mode |= RCV_SHUTDOWN;
2990 		unix_state_lock(other);
2991 		other->sk_shutdown |= peer_mode;
2992 		unix_state_unlock(other);
2993 		other->sk_state_change(other);
2994 		if (peer_mode == SHUTDOWN_MASK)
2995 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP);
2996 		else if (peer_mode & RCV_SHUTDOWN)
2997 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN);
2998 	}
2999 	if (other)
3000 		sock_put(other);
3001 
3002 	return 0;
3003 }
3004 
3005 long unix_inq_len(struct sock *sk)
3006 {
3007 	struct sk_buff *skb;
3008 	long amount = 0;
3009 
3010 	if (sk->sk_state == TCP_LISTEN)
3011 		return -EINVAL;
3012 
3013 	spin_lock(&sk->sk_receive_queue.lock);
3014 	if (sk->sk_type == SOCK_STREAM ||
3015 	    sk->sk_type == SOCK_SEQPACKET) {
3016 		skb_queue_walk(&sk->sk_receive_queue, skb)
3017 			amount += unix_skb_len(skb);
3018 	} else {
3019 		skb = skb_peek(&sk->sk_receive_queue);
3020 		if (skb)
3021 			amount = skb->len;
3022 	}
3023 	spin_unlock(&sk->sk_receive_queue.lock);
3024 
3025 	return amount;
3026 }
3027 EXPORT_SYMBOL_GPL(unix_inq_len);
3028 
3029 long unix_outq_len(struct sock *sk)
3030 {
3031 	return sk_wmem_alloc_get(sk);
3032 }
3033 EXPORT_SYMBOL_GPL(unix_outq_len);
3034 
3035 static int unix_open_file(struct sock *sk)
3036 {
3037 	struct path path;
3038 	struct file *f;
3039 	int fd;
3040 
3041 	if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
3042 		return -EPERM;
3043 
3044 	if (!smp_load_acquire(&unix_sk(sk)->addr))
3045 		return -ENOENT;
3046 
3047 	path = unix_sk(sk)->path;
3048 	if (!path.dentry)
3049 		return -ENOENT;
3050 
3051 	path_get(&path);
3052 
3053 	fd = get_unused_fd_flags(O_CLOEXEC);
3054 	if (fd < 0)
3055 		goto out;
3056 
3057 	f = dentry_open(&path, O_PATH, current_cred());
3058 	if (IS_ERR(f)) {
3059 		put_unused_fd(fd);
3060 		fd = PTR_ERR(f);
3061 		goto out;
3062 	}
3063 
3064 	fd_install(fd, f);
3065 out:
3066 	path_put(&path);
3067 
3068 	return fd;
3069 }
3070 
3071 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3072 {
3073 	struct sock *sk = sock->sk;
3074 	long amount = 0;
3075 	int err;
3076 
3077 	switch (cmd) {
3078 	case SIOCOUTQ:
3079 		amount = unix_outq_len(sk);
3080 		err = put_user(amount, (int __user *)arg);
3081 		break;
3082 	case SIOCINQ:
3083 		amount = unix_inq_len(sk);
3084 		if (amount < 0)
3085 			err = amount;
3086 		else
3087 			err = put_user(amount, (int __user *)arg);
3088 		break;
3089 	case SIOCUNIXFILE:
3090 		err = unix_open_file(sk);
3091 		break;
3092 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3093 	case SIOCATMARK:
3094 		{
3095 			struct sk_buff *skb;
3096 			int answ = 0;
3097 
3098 			skb = skb_peek(&sk->sk_receive_queue);
3099 			if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb))
3100 				answ = 1;
3101 			err = put_user(answ, (int __user *)arg);
3102 		}
3103 		break;
3104 #endif
3105 	default:
3106 		err = -ENOIOCTLCMD;
3107 		break;
3108 	}
3109 	return err;
3110 }
3111 
3112 #ifdef CONFIG_COMPAT
3113 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3114 {
3115 	return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
3116 }
3117 #endif
3118 
3119 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait)
3120 {
3121 	struct sock *sk = sock->sk;
3122 	__poll_t mask;
3123 
3124 	sock_poll_wait(file, sock, wait);
3125 	mask = 0;
3126 
3127 	/* exceptional events? */
3128 	if (sk->sk_err)
3129 		mask |= EPOLLERR;
3130 	if (sk->sk_shutdown == SHUTDOWN_MASK)
3131 		mask |= EPOLLHUP;
3132 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3133 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3134 
3135 	/* readable? */
3136 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3137 		mask |= EPOLLIN | EPOLLRDNORM;
3138 	if (sk_is_readable(sk))
3139 		mask |= EPOLLIN | EPOLLRDNORM;
3140 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3141 	if (READ_ONCE(unix_sk(sk)->oob_skb))
3142 		mask |= EPOLLPRI;
3143 #endif
3144 
3145 	/* Connection-based need to check for termination and startup */
3146 	if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) &&
3147 	    sk->sk_state == TCP_CLOSE)
3148 		mask |= EPOLLHUP;
3149 
3150 	/*
3151 	 * we set writable also when the other side has shut down the
3152 	 * connection. This prevents stuck sockets.
3153 	 */
3154 	if (unix_writable(sk))
3155 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3156 
3157 	return mask;
3158 }
3159 
3160 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock,
3161 				    poll_table *wait)
3162 {
3163 	struct sock *sk = sock->sk, *other;
3164 	unsigned int writable;
3165 	__poll_t mask;
3166 
3167 	sock_poll_wait(file, sock, wait);
3168 	mask = 0;
3169 
3170 	/* exceptional events? */
3171 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
3172 		mask |= EPOLLERR |
3173 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
3174 
3175 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3176 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3177 	if (sk->sk_shutdown == SHUTDOWN_MASK)
3178 		mask |= EPOLLHUP;
3179 
3180 	/* readable? */
3181 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3182 		mask |= EPOLLIN | EPOLLRDNORM;
3183 	if (sk_is_readable(sk))
3184 		mask |= EPOLLIN | EPOLLRDNORM;
3185 
3186 	/* Connection-based need to check for termination and startup */
3187 	if (sk->sk_type == SOCK_SEQPACKET) {
3188 		if (sk->sk_state == TCP_CLOSE)
3189 			mask |= EPOLLHUP;
3190 		/* connection hasn't started yet? */
3191 		if (sk->sk_state == TCP_SYN_SENT)
3192 			return mask;
3193 	}
3194 
3195 	/* No write status requested, avoid expensive OUT tests. */
3196 	if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT)))
3197 		return mask;
3198 
3199 	writable = unix_writable(sk);
3200 	if (writable) {
3201 		unix_state_lock(sk);
3202 
3203 		other = unix_peer(sk);
3204 		if (other && unix_peer(other) != sk &&
3205 		    unix_recvq_full_lockless(other) &&
3206 		    unix_dgram_peer_wake_me(sk, other))
3207 			writable = 0;
3208 
3209 		unix_state_unlock(sk);
3210 	}
3211 
3212 	if (writable)
3213 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3214 	else
3215 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
3216 
3217 	return mask;
3218 }
3219 
3220 #ifdef CONFIG_PROC_FS
3221 
3222 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1)
3223 
3224 #define get_bucket(x) ((x) >> BUCKET_SPACE)
3225 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1))
3226 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
3227 
3228 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos)
3229 {
3230 	unsigned long offset = get_offset(*pos);
3231 	unsigned long bucket = get_bucket(*pos);
3232 	struct sock *sk;
3233 	unsigned long count = 0;
3234 
3235 	for (sk = sk_head(&unix_socket_table[bucket]); sk; sk = sk_next(sk)) {
3236 		if (sock_net(sk) != seq_file_net(seq))
3237 			continue;
3238 		if (++count == offset)
3239 			break;
3240 	}
3241 
3242 	return sk;
3243 }
3244 
3245 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos)
3246 {
3247 	unsigned long bucket = get_bucket(*pos);
3248 	struct sock *sk;
3249 
3250 	while (bucket < ARRAY_SIZE(unix_socket_table)) {
3251 		spin_lock(&unix_table_locks[bucket]);
3252 
3253 		sk = unix_from_bucket(seq, pos);
3254 		if (sk)
3255 			return sk;
3256 
3257 		spin_unlock(&unix_table_locks[bucket]);
3258 
3259 		*pos = set_bucket_offset(++bucket, 1);
3260 	}
3261 
3262 	return NULL;
3263 }
3264 
3265 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk,
3266 				  loff_t *pos)
3267 {
3268 	unsigned long bucket = get_bucket(*pos);
3269 
3270 	for (sk = sk_next(sk); sk; sk = sk_next(sk))
3271 		if (sock_net(sk) == seq_file_net(seq))
3272 			return sk;
3273 
3274 	spin_unlock(&unix_table_locks[bucket]);
3275 
3276 	*pos = set_bucket_offset(++bucket, 1);
3277 
3278 	return unix_get_first(seq, pos);
3279 }
3280 
3281 static void *unix_seq_start(struct seq_file *seq, loff_t *pos)
3282 {
3283 	if (!*pos)
3284 		return SEQ_START_TOKEN;
3285 
3286 	return unix_get_first(seq, pos);
3287 }
3288 
3289 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3290 {
3291 	++*pos;
3292 
3293 	if (v == SEQ_START_TOKEN)
3294 		return unix_get_first(seq, pos);
3295 
3296 	return unix_get_next(seq, v, pos);
3297 }
3298 
3299 static void unix_seq_stop(struct seq_file *seq, void *v)
3300 {
3301 	struct sock *sk = v;
3302 
3303 	if (sk)
3304 		spin_unlock(&unix_table_locks[sk->sk_hash]);
3305 }
3306 
3307 static int unix_seq_show(struct seq_file *seq, void *v)
3308 {
3309 
3310 	if (v == SEQ_START_TOKEN)
3311 		seq_puts(seq, "Num       RefCount Protocol Flags    Type St "
3312 			 "Inode Path\n");
3313 	else {
3314 		struct sock *s = v;
3315 		struct unix_sock *u = unix_sk(s);
3316 		unix_state_lock(s);
3317 
3318 		seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu",
3319 			s,
3320 			refcount_read(&s->sk_refcnt),
3321 			0,
3322 			s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0,
3323 			s->sk_type,
3324 			s->sk_socket ?
3325 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) :
3326 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING),
3327 			sock_i_ino(s));
3328 
3329 		if (u->addr) {	// under unix_table_locks here
3330 			int i, len;
3331 			seq_putc(seq, ' ');
3332 
3333 			i = 0;
3334 			len = u->addr->len -
3335 				offsetof(struct sockaddr_un, sun_path);
3336 			if (u->addr->name->sun_path[0]) {
3337 				len--;
3338 			} else {
3339 				seq_putc(seq, '@');
3340 				i++;
3341 			}
3342 			for ( ; i < len; i++)
3343 				seq_putc(seq, u->addr->name->sun_path[i] ?:
3344 					 '@');
3345 		}
3346 		unix_state_unlock(s);
3347 		seq_putc(seq, '\n');
3348 	}
3349 
3350 	return 0;
3351 }
3352 
3353 static const struct seq_operations unix_seq_ops = {
3354 	.start  = unix_seq_start,
3355 	.next   = unix_seq_next,
3356 	.stop   = unix_seq_stop,
3357 	.show   = unix_seq_show,
3358 };
3359 
3360 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL)
3361 struct bpf_unix_iter_state {
3362 	struct seq_net_private p;
3363 	unsigned int cur_sk;
3364 	unsigned int end_sk;
3365 	unsigned int max_sk;
3366 	struct sock **batch;
3367 	bool st_bucket_done;
3368 };
3369 
3370 struct bpf_iter__unix {
3371 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3372 	__bpf_md_ptr(struct unix_sock *, unix_sk);
3373 	uid_t uid __aligned(8);
3374 };
3375 
3376 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3377 			      struct unix_sock *unix_sk, uid_t uid)
3378 {
3379 	struct bpf_iter__unix ctx;
3380 
3381 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3382 	ctx.meta = meta;
3383 	ctx.unix_sk = unix_sk;
3384 	ctx.uid = uid;
3385 	return bpf_iter_run_prog(prog, &ctx);
3386 }
3387 
3388 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk)
3389 
3390 {
3391 	struct bpf_unix_iter_state *iter = seq->private;
3392 	unsigned int expected = 1;
3393 	struct sock *sk;
3394 
3395 	sock_hold(start_sk);
3396 	iter->batch[iter->end_sk++] = start_sk;
3397 
3398 	for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) {
3399 		if (sock_net(sk) != seq_file_net(seq))
3400 			continue;
3401 
3402 		if (iter->end_sk < iter->max_sk) {
3403 			sock_hold(sk);
3404 			iter->batch[iter->end_sk++] = sk;
3405 		}
3406 
3407 		expected++;
3408 	}
3409 
3410 	spin_unlock(&unix_table_locks[start_sk->sk_hash]);
3411 
3412 	return expected;
3413 }
3414 
3415 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter)
3416 {
3417 	while (iter->cur_sk < iter->end_sk)
3418 		sock_put(iter->batch[iter->cur_sk++]);
3419 }
3420 
3421 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter,
3422 				       unsigned int new_batch_sz)
3423 {
3424 	struct sock **new_batch;
3425 
3426 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3427 			     GFP_USER | __GFP_NOWARN);
3428 	if (!new_batch)
3429 		return -ENOMEM;
3430 
3431 	bpf_iter_unix_put_batch(iter);
3432 	kvfree(iter->batch);
3433 	iter->batch = new_batch;
3434 	iter->max_sk = new_batch_sz;
3435 
3436 	return 0;
3437 }
3438 
3439 static struct sock *bpf_iter_unix_batch(struct seq_file *seq,
3440 					loff_t *pos)
3441 {
3442 	struct bpf_unix_iter_state *iter = seq->private;
3443 	unsigned int expected;
3444 	bool resized = false;
3445 	struct sock *sk;
3446 
3447 	if (iter->st_bucket_done)
3448 		*pos = set_bucket_offset(get_bucket(*pos) + 1, 1);
3449 
3450 again:
3451 	/* Get a new batch */
3452 	iter->cur_sk = 0;
3453 	iter->end_sk = 0;
3454 
3455 	sk = unix_get_first(seq, pos);
3456 	if (!sk)
3457 		return NULL; /* Done */
3458 
3459 	expected = bpf_iter_unix_hold_batch(seq, sk);
3460 
3461 	if (iter->end_sk == expected) {
3462 		iter->st_bucket_done = true;
3463 		return sk;
3464 	}
3465 
3466 	if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) {
3467 		resized = true;
3468 		goto again;
3469 	}
3470 
3471 	return sk;
3472 }
3473 
3474 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos)
3475 {
3476 	if (!*pos)
3477 		return SEQ_START_TOKEN;
3478 
3479 	/* bpf iter does not support lseek, so it always
3480 	 * continue from where it was stop()-ped.
3481 	 */
3482 	return bpf_iter_unix_batch(seq, pos);
3483 }
3484 
3485 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3486 {
3487 	struct bpf_unix_iter_state *iter = seq->private;
3488 	struct sock *sk;
3489 
3490 	/* Whenever seq_next() is called, the iter->cur_sk is
3491 	 * done with seq_show(), so advance to the next sk in
3492 	 * the batch.
3493 	 */
3494 	if (iter->cur_sk < iter->end_sk)
3495 		sock_put(iter->batch[iter->cur_sk++]);
3496 
3497 	++*pos;
3498 
3499 	if (iter->cur_sk < iter->end_sk)
3500 		sk = iter->batch[iter->cur_sk];
3501 	else
3502 		sk = bpf_iter_unix_batch(seq, pos);
3503 
3504 	return sk;
3505 }
3506 
3507 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v)
3508 {
3509 	struct bpf_iter_meta meta;
3510 	struct bpf_prog *prog;
3511 	struct sock *sk = v;
3512 	uid_t uid;
3513 	bool slow;
3514 	int ret;
3515 
3516 	if (v == SEQ_START_TOKEN)
3517 		return 0;
3518 
3519 	slow = lock_sock_fast(sk);
3520 
3521 	if (unlikely(sk_unhashed(sk))) {
3522 		ret = SEQ_SKIP;
3523 		goto unlock;
3524 	}
3525 
3526 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3527 	meta.seq = seq;
3528 	prog = bpf_iter_get_info(&meta, false);
3529 	ret = unix_prog_seq_show(prog, &meta, v, uid);
3530 unlock:
3531 	unlock_sock_fast(sk, slow);
3532 	return ret;
3533 }
3534 
3535 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v)
3536 {
3537 	struct bpf_unix_iter_state *iter = seq->private;
3538 	struct bpf_iter_meta meta;
3539 	struct bpf_prog *prog;
3540 
3541 	if (!v) {
3542 		meta.seq = seq;
3543 		prog = bpf_iter_get_info(&meta, true);
3544 		if (prog)
3545 			(void)unix_prog_seq_show(prog, &meta, v, 0);
3546 	}
3547 
3548 	if (iter->cur_sk < iter->end_sk)
3549 		bpf_iter_unix_put_batch(iter);
3550 }
3551 
3552 static const struct seq_operations bpf_iter_unix_seq_ops = {
3553 	.start	= bpf_iter_unix_seq_start,
3554 	.next	= bpf_iter_unix_seq_next,
3555 	.stop	= bpf_iter_unix_seq_stop,
3556 	.show	= bpf_iter_unix_seq_show,
3557 };
3558 #endif
3559 #endif
3560 
3561 static const struct net_proto_family unix_family_ops = {
3562 	.family = PF_UNIX,
3563 	.create = unix_create,
3564 	.owner	= THIS_MODULE,
3565 };
3566 
3567 
3568 static int __net_init unix_net_init(struct net *net)
3569 {
3570 	int error = -ENOMEM;
3571 
3572 	net->unx.sysctl_max_dgram_qlen = 10;
3573 	if (unix_sysctl_register(net))
3574 		goto out;
3575 
3576 #ifdef CONFIG_PROC_FS
3577 	if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops,
3578 			sizeof(struct seq_net_private))) {
3579 		unix_sysctl_unregister(net);
3580 		goto out;
3581 	}
3582 #endif
3583 	error = 0;
3584 out:
3585 	return error;
3586 }
3587 
3588 static void __net_exit unix_net_exit(struct net *net)
3589 {
3590 	unix_sysctl_unregister(net);
3591 	remove_proc_entry("unix", net->proc_net);
3592 }
3593 
3594 static struct pernet_operations unix_net_ops = {
3595 	.init = unix_net_init,
3596 	.exit = unix_net_exit,
3597 };
3598 
3599 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3600 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta,
3601 		     struct unix_sock *unix_sk, uid_t uid)
3602 
3603 #define INIT_BATCH_SZ 16
3604 
3605 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux)
3606 {
3607 	struct bpf_unix_iter_state *iter = priv_data;
3608 	int err;
3609 
3610 	err = bpf_iter_init_seq_net(priv_data, aux);
3611 	if (err)
3612 		return err;
3613 
3614 	err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ);
3615 	if (err) {
3616 		bpf_iter_fini_seq_net(priv_data);
3617 		return err;
3618 	}
3619 
3620 	return 0;
3621 }
3622 
3623 static void bpf_iter_fini_unix(void *priv_data)
3624 {
3625 	struct bpf_unix_iter_state *iter = priv_data;
3626 
3627 	bpf_iter_fini_seq_net(priv_data);
3628 	kvfree(iter->batch);
3629 }
3630 
3631 static const struct bpf_iter_seq_info unix_seq_info = {
3632 	.seq_ops		= &bpf_iter_unix_seq_ops,
3633 	.init_seq_private	= bpf_iter_init_unix,
3634 	.fini_seq_private	= bpf_iter_fini_unix,
3635 	.seq_priv_size		= sizeof(struct bpf_unix_iter_state),
3636 };
3637 
3638 static const struct bpf_func_proto *
3639 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id,
3640 			     const struct bpf_prog *prog)
3641 {
3642 	switch (func_id) {
3643 	case BPF_FUNC_setsockopt:
3644 		return &bpf_sk_setsockopt_proto;
3645 	case BPF_FUNC_getsockopt:
3646 		return &bpf_sk_getsockopt_proto;
3647 	default:
3648 		return NULL;
3649 	}
3650 }
3651 
3652 static struct bpf_iter_reg unix_reg_info = {
3653 	.target			= "unix",
3654 	.ctx_arg_info_size	= 1,
3655 	.ctx_arg_info		= {
3656 		{ offsetof(struct bpf_iter__unix, unix_sk),
3657 		  PTR_TO_BTF_ID_OR_NULL },
3658 	},
3659 	.get_func_proto         = bpf_iter_unix_get_func_proto,
3660 	.seq_info		= &unix_seq_info,
3661 };
3662 
3663 static void __init bpf_iter_register(void)
3664 {
3665 	unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX];
3666 	if (bpf_iter_reg_target(&unix_reg_info))
3667 		pr_warn("Warning: could not register bpf iterator unix\n");
3668 }
3669 #endif
3670 
3671 static int __init af_unix_init(void)
3672 {
3673 	int i, rc = -1;
3674 
3675 	BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb));
3676 
3677 	for (i = 0; i < 2 * UNIX_HASH_SIZE; i++)
3678 		spin_lock_init(&unix_table_locks[i]);
3679 
3680 	rc = proto_register(&unix_dgram_proto, 1);
3681 	if (rc != 0) {
3682 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3683 		goto out;
3684 	}
3685 
3686 	rc = proto_register(&unix_stream_proto, 1);
3687 	if (rc != 0) {
3688 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3689 		goto out;
3690 	}
3691 
3692 	sock_register(&unix_family_ops);
3693 	register_pernet_subsys(&unix_net_ops);
3694 	unix_bpf_build_proto();
3695 
3696 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3697 	bpf_iter_register();
3698 #endif
3699 
3700 out:
3701 	return rc;
3702 }
3703 
3704 static void __exit af_unix_exit(void)
3705 {
3706 	sock_unregister(PF_UNIX);
3707 	proto_unregister(&unix_dgram_proto);
3708 	proto_unregister(&unix_stream_proto);
3709 	unregister_pernet_subsys(&unix_net_ops);
3710 }
3711 
3712 /* Earlier than device_initcall() so that other drivers invoking
3713    request_module() don't end up in a loop when modprobe tries
3714    to use a UNIX socket. But later than subsys_initcall() because
3715    we depend on stuff initialised there */
3716 fs_initcall(af_unix_init);
3717 module_exit(af_unix_exit);
3718 
3719 MODULE_LICENSE("GPL");
3720 MODULE_ALIAS_NETPROTO(PF_UNIX);
3721