xref: /linux/net/unix/af_unix.c (revision 908fc4c2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * NET4:	Implementation of BSD Unix domain sockets.
4  *
5  * Authors:	Alan Cox, <alan@lxorguk.ukuu.org.uk>
6  *
7  * Fixes:
8  *		Linus Torvalds	:	Assorted bug cures.
9  *		Niibe Yutaka	:	async I/O support.
10  *		Carsten Paeth	:	PF_UNIX check, address fixes.
11  *		Alan Cox	:	Limit size of allocated blocks.
12  *		Alan Cox	:	Fixed the stupid socketpair bug.
13  *		Alan Cox	:	BSD compatibility fine tuning.
14  *		Alan Cox	:	Fixed a bug in connect when interrupted.
15  *		Alan Cox	:	Sorted out a proper draft version of
16  *					file descriptor passing hacked up from
17  *					Mike Shaver's work.
18  *		Marty Leisner	:	Fixes to fd passing
19  *		Nick Nevin	:	recvmsg bugfix.
20  *		Alan Cox	:	Started proper garbage collector
21  *		Heiko EiBfeldt	:	Missing verify_area check
22  *		Alan Cox	:	Started POSIXisms
23  *		Andreas Schwab	:	Replace inode by dentry for proper
24  *					reference counting
25  *		Kirk Petersen	:	Made this a module
26  *	    Christoph Rohland	:	Elegant non-blocking accept/connect algorithm.
27  *					Lots of bug fixes.
28  *	     Alexey Kuznetosv	:	Repaired (I hope) bugs introduces
29  *					by above two patches.
30  *	     Andrea Arcangeli	:	If possible we block in connect(2)
31  *					if the max backlog of the listen socket
32  *					is been reached. This won't break
33  *					old apps and it will avoid huge amount
34  *					of socks hashed (this for unix_gc()
35  *					performances reasons).
36  *					Security fix that limits the max
37  *					number of socks to 2*max_files and
38  *					the number of skb queueable in the
39  *					dgram receiver.
40  *		Artur Skawina   :	Hash function optimizations
41  *	     Alexey Kuznetsov   :	Full scale SMP. Lot of bugs are introduced 8)
42  *	      Malcolm Beattie   :	Set peercred for socketpair
43  *	     Michal Ostrowski   :       Module initialization cleanup.
44  *	     Arnaldo C. Melo	:	Remove MOD_{INC,DEC}_USE_COUNT,
45  *	     				the core infrastructure is doing that
46  *	     				for all net proto families now (2.5.69+)
47  *
48  * Known differences from reference BSD that was tested:
49  *
50  *	[TO FIX]
51  *	ECONNREFUSED is not returned from one end of a connected() socket to the
52  *		other the moment one end closes.
53  *	fstat() doesn't return st_dev=0, and give the blksize as high water mark
54  *		and a fake inode identifier (nor the BSD first socket fstat twice bug).
55  *	[NOT TO FIX]
56  *	accept() returns a path name even if the connecting socket has closed
57  *		in the meantime (BSD loses the path and gives up).
58  *	accept() returns 0 length path for an unbound connector. BSD returns 16
59  *		and a null first byte in the path (but not for gethost/peername - BSD bug ??)
60  *	socketpair(...SOCK_RAW..) doesn't panic the kernel.
61  *	BSD af_unix apparently has connect forgetting to block properly.
62  *		(need to check this with the POSIX spec in detail)
63  *
64  * Differences from 2.0.0-11-... (ANK)
65  *	Bug fixes and improvements.
66  *		- client shutdown killed server socket.
67  *		- removed all useless cli/sti pairs.
68  *
69  *	Semantic changes/extensions.
70  *		- generic control message passing.
71  *		- SCM_CREDENTIALS control message.
72  *		- "Abstract" (not FS based) socket bindings.
73  *		  Abstract names are sequences of bytes (not zero terminated)
74  *		  started by 0, so that this name space does not intersect
75  *		  with BSD names.
76  */
77 
78 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
79 
80 #include <linux/module.h>
81 #include <linux/kernel.h>
82 #include <linux/signal.h>
83 #include <linux/sched/signal.h>
84 #include <linux/errno.h>
85 #include <linux/string.h>
86 #include <linux/stat.h>
87 #include <linux/dcache.h>
88 #include <linux/namei.h>
89 #include <linux/socket.h>
90 #include <linux/un.h>
91 #include <linux/fcntl.h>
92 #include <linux/filter.h>
93 #include <linux/termios.h>
94 #include <linux/sockios.h>
95 #include <linux/net.h>
96 #include <linux/in.h>
97 #include <linux/fs.h>
98 #include <linux/slab.h>
99 #include <linux/uaccess.h>
100 #include <linux/skbuff.h>
101 #include <linux/netdevice.h>
102 #include <net/net_namespace.h>
103 #include <net/sock.h>
104 #include <net/tcp_states.h>
105 #include <net/af_unix.h>
106 #include <linux/proc_fs.h>
107 #include <linux/seq_file.h>
108 #include <net/scm.h>
109 #include <linux/init.h>
110 #include <linux/poll.h>
111 #include <linux/rtnetlink.h>
112 #include <linux/mount.h>
113 #include <net/checksum.h>
114 #include <linux/security.h>
115 #include <linux/freezer.h>
116 #include <linux/file.h>
117 #include <linux/btf_ids.h>
118 
119 #include "scm.h"
120 
121 spinlock_t unix_table_locks[2 * UNIX_HASH_SIZE];
122 EXPORT_SYMBOL_GPL(unix_table_locks);
123 struct hlist_head unix_socket_table[2 * UNIX_HASH_SIZE];
124 EXPORT_SYMBOL_GPL(unix_socket_table);
125 static atomic_long_t unix_nr_socks;
126 
127 /* SMP locking strategy:
128  *    hash table is protected with spinlock unix_table_locks
129  *    each socket state is protected by separate spin lock.
130  */
131 
132 static unsigned int unix_unbound_hash(struct sock *sk)
133 {
134 	unsigned long hash = (unsigned long)sk;
135 
136 	hash ^= hash >> 16;
137 	hash ^= hash >> 8;
138 	hash ^= sk->sk_type;
139 
140 	return UNIX_HASH_SIZE + (hash & (UNIX_HASH_SIZE - 1));
141 }
142 
143 static unsigned int unix_bsd_hash(struct inode *i)
144 {
145 	return i->i_ino & (UNIX_HASH_SIZE - 1);
146 }
147 
148 static unsigned int unix_abstract_hash(struct sockaddr_un *sunaddr,
149 				       int addr_len, int type)
150 {
151 	__wsum csum = csum_partial(sunaddr, addr_len, 0);
152 	unsigned int hash;
153 
154 	hash = (__force unsigned int)csum_fold(csum);
155 	hash ^= hash >> 8;
156 	hash ^= type;
157 
158 	return hash & (UNIX_HASH_SIZE - 1);
159 }
160 
161 static void unix_table_double_lock(unsigned int hash1, unsigned int hash2)
162 {
163 	/* hash1 and hash2 is never the same because
164 	 * one is between 0 and UNIX_HASH_SIZE - 1, and
165 	 * another is between UNIX_HASH_SIZE and UNIX_HASH_SIZE * 2.
166 	 */
167 	if (hash1 > hash2)
168 		swap(hash1, hash2);
169 
170 	spin_lock(&unix_table_locks[hash1]);
171 	spin_lock_nested(&unix_table_locks[hash2], SINGLE_DEPTH_NESTING);
172 }
173 
174 static void unix_table_double_unlock(unsigned int hash1, unsigned int hash2)
175 {
176 	spin_unlock(&unix_table_locks[hash1]);
177 	spin_unlock(&unix_table_locks[hash2]);
178 }
179 
180 #ifdef CONFIG_SECURITY_NETWORK
181 static void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
182 {
183 	UNIXCB(skb).secid = scm->secid;
184 }
185 
186 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
187 {
188 	scm->secid = UNIXCB(skb).secid;
189 }
190 
191 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
192 {
193 	return (scm->secid == UNIXCB(skb).secid);
194 }
195 #else
196 static inline void unix_get_secdata(struct scm_cookie *scm, struct sk_buff *skb)
197 { }
198 
199 static inline void unix_set_secdata(struct scm_cookie *scm, struct sk_buff *skb)
200 { }
201 
202 static inline bool unix_secdata_eq(struct scm_cookie *scm, struct sk_buff *skb)
203 {
204 	return true;
205 }
206 #endif /* CONFIG_SECURITY_NETWORK */
207 
208 #define unix_peer(sk) (unix_sk(sk)->peer)
209 
210 static inline int unix_our_peer(struct sock *sk, struct sock *osk)
211 {
212 	return unix_peer(osk) == sk;
213 }
214 
215 static inline int unix_may_send(struct sock *sk, struct sock *osk)
216 {
217 	return unix_peer(osk) == NULL || unix_our_peer(sk, osk);
218 }
219 
220 static inline int unix_recvq_full(const struct sock *sk)
221 {
222 	return skb_queue_len(&sk->sk_receive_queue) > sk->sk_max_ack_backlog;
223 }
224 
225 static inline int unix_recvq_full_lockless(const struct sock *sk)
226 {
227 	return skb_queue_len_lockless(&sk->sk_receive_queue) >
228 		READ_ONCE(sk->sk_max_ack_backlog);
229 }
230 
231 struct sock *unix_peer_get(struct sock *s)
232 {
233 	struct sock *peer;
234 
235 	unix_state_lock(s);
236 	peer = unix_peer(s);
237 	if (peer)
238 		sock_hold(peer);
239 	unix_state_unlock(s);
240 	return peer;
241 }
242 EXPORT_SYMBOL_GPL(unix_peer_get);
243 
244 static struct unix_address *unix_create_addr(struct sockaddr_un *sunaddr,
245 					     int addr_len)
246 {
247 	struct unix_address *addr;
248 
249 	addr = kmalloc(sizeof(*addr) + addr_len, GFP_KERNEL);
250 	if (!addr)
251 		return NULL;
252 
253 	refcount_set(&addr->refcnt, 1);
254 	addr->len = addr_len;
255 	memcpy(addr->name, sunaddr, addr_len);
256 
257 	return addr;
258 }
259 
260 static inline void unix_release_addr(struct unix_address *addr)
261 {
262 	if (refcount_dec_and_test(&addr->refcnt))
263 		kfree(addr);
264 }
265 
266 /*
267  *	Check unix socket name:
268  *		- should be not zero length.
269  *	        - if started by not zero, should be NULL terminated (FS object)
270  *		- if started by zero, it is abstract name.
271  */
272 
273 static int unix_validate_addr(struct sockaddr_un *sunaddr, int addr_len)
274 {
275 	if (addr_len <= offsetof(struct sockaddr_un, sun_path) ||
276 	    addr_len > sizeof(*sunaddr))
277 		return -EINVAL;
278 
279 	if (sunaddr->sun_family != AF_UNIX)
280 		return -EINVAL;
281 
282 	return 0;
283 }
284 
285 static void unix_mkname_bsd(struct sockaddr_un *sunaddr, int addr_len)
286 {
287 	/* This may look like an off by one error but it is a bit more
288 	 * subtle.  108 is the longest valid AF_UNIX path for a binding.
289 	 * sun_path[108] doesn't as such exist.  However in kernel space
290 	 * we are guaranteed that it is a valid memory location in our
291 	 * kernel address buffer because syscall functions always pass
292 	 * a pointer of struct sockaddr_storage which has a bigger buffer
293 	 * than 108.
294 	 */
295 	((char *)sunaddr)[addr_len] = 0;
296 }
297 
298 static void __unix_remove_socket(struct sock *sk)
299 {
300 	sk_del_node_init(sk);
301 }
302 
303 static void __unix_insert_socket(struct sock *sk)
304 {
305 	WARN_ON(!sk_unhashed(sk));
306 	sk_add_node(sk, &unix_socket_table[sk->sk_hash]);
307 }
308 
309 static void __unix_set_addr_hash(struct sock *sk, struct unix_address *addr,
310 				 unsigned int hash)
311 {
312 	__unix_remove_socket(sk);
313 	smp_store_release(&unix_sk(sk)->addr, addr);
314 
315 	sk->sk_hash = hash;
316 	__unix_insert_socket(sk);
317 }
318 
319 static void unix_remove_socket(struct sock *sk)
320 {
321 	spin_lock(&unix_table_locks[sk->sk_hash]);
322 	__unix_remove_socket(sk);
323 	spin_unlock(&unix_table_locks[sk->sk_hash]);
324 }
325 
326 static void unix_insert_unbound_socket(struct sock *sk)
327 {
328 	spin_lock(&unix_table_locks[sk->sk_hash]);
329 	__unix_insert_socket(sk);
330 	spin_unlock(&unix_table_locks[sk->sk_hash]);
331 }
332 
333 static struct sock *__unix_find_socket_byname(struct net *net,
334 					      struct sockaddr_un *sunname,
335 					      int len, unsigned int hash)
336 {
337 	struct sock *s;
338 
339 	sk_for_each(s, &unix_socket_table[hash]) {
340 		struct unix_sock *u = unix_sk(s);
341 
342 		if (!net_eq(sock_net(s), net))
343 			continue;
344 
345 		if (u->addr->len == len &&
346 		    !memcmp(u->addr->name, sunname, len))
347 			return s;
348 	}
349 	return NULL;
350 }
351 
352 static inline struct sock *unix_find_socket_byname(struct net *net,
353 						   struct sockaddr_un *sunname,
354 						   int len, unsigned int hash)
355 {
356 	struct sock *s;
357 
358 	spin_lock(&unix_table_locks[hash]);
359 	s = __unix_find_socket_byname(net, sunname, len, hash);
360 	if (s)
361 		sock_hold(s);
362 	spin_unlock(&unix_table_locks[hash]);
363 	return s;
364 }
365 
366 static struct sock *unix_find_socket_byinode(struct inode *i)
367 {
368 	unsigned int hash = unix_bsd_hash(i);
369 	struct sock *s;
370 
371 	spin_lock(&unix_table_locks[hash]);
372 	sk_for_each(s, &unix_socket_table[hash]) {
373 		struct dentry *dentry = unix_sk(s)->path.dentry;
374 
375 		if (dentry && d_backing_inode(dentry) == i) {
376 			sock_hold(s);
377 			spin_unlock(&unix_table_locks[hash]);
378 			return s;
379 		}
380 	}
381 	spin_unlock(&unix_table_locks[hash]);
382 	return NULL;
383 }
384 
385 /* Support code for asymmetrically connected dgram sockets
386  *
387  * If a datagram socket is connected to a socket not itself connected
388  * to the first socket (eg, /dev/log), clients may only enqueue more
389  * messages if the present receive queue of the server socket is not
390  * "too large". This means there's a second writeability condition
391  * poll and sendmsg need to test. The dgram recv code will do a wake
392  * up on the peer_wait wait queue of a socket upon reception of a
393  * datagram which needs to be propagated to sleeping would-be writers
394  * since these might not have sent anything so far. This can't be
395  * accomplished via poll_wait because the lifetime of the server
396  * socket might be less than that of its clients if these break their
397  * association with it or if the server socket is closed while clients
398  * are still connected to it and there's no way to inform "a polling
399  * implementation" that it should let go of a certain wait queue
400  *
401  * In order to propagate a wake up, a wait_queue_entry_t of the client
402  * socket is enqueued on the peer_wait queue of the server socket
403  * whose wake function does a wake_up on the ordinary client socket
404  * wait queue. This connection is established whenever a write (or
405  * poll for write) hit the flow control condition and broken when the
406  * association to the server socket is dissolved or after a wake up
407  * was relayed.
408  */
409 
410 static int unix_dgram_peer_wake_relay(wait_queue_entry_t *q, unsigned mode, int flags,
411 				      void *key)
412 {
413 	struct unix_sock *u;
414 	wait_queue_head_t *u_sleep;
415 
416 	u = container_of(q, struct unix_sock, peer_wake);
417 
418 	__remove_wait_queue(&unix_sk(u->peer_wake.private)->peer_wait,
419 			    q);
420 	u->peer_wake.private = NULL;
421 
422 	/* relaying can only happen while the wq still exists */
423 	u_sleep = sk_sleep(&u->sk);
424 	if (u_sleep)
425 		wake_up_interruptible_poll(u_sleep, key_to_poll(key));
426 
427 	return 0;
428 }
429 
430 static int unix_dgram_peer_wake_connect(struct sock *sk, struct sock *other)
431 {
432 	struct unix_sock *u, *u_other;
433 	int rc;
434 
435 	u = unix_sk(sk);
436 	u_other = unix_sk(other);
437 	rc = 0;
438 	spin_lock(&u_other->peer_wait.lock);
439 
440 	if (!u->peer_wake.private) {
441 		u->peer_wake.private = other;
442 		__add_wait_queue(&u_other->peer_wait, &u->peer_wake);
443 
444 		rc = 1;
445 	}
446 
447 	spin_unlock(&u_other->peer_wait.lock);
448 	return rc;
449 }
450 
451 static void unix_dgram_peer_wake_disconnect(struct sock *sk,
452 					    struct sock *other)
453 {
454 	struct unix_sock *u, *u_other;
455 
456 	u = unix_sk(sk);
457 	u_other = unix_sk(other);
458 	spin_lock(&u_other->peer_wait.lock);
459 
460 	if (u->peer_wake.private == other) {
461 		__remove_wait_queue(&u_other->peer_wait, &u->peer_wake);
462 		u->peer_wake.private = NULL;
463 	}
464 
465 	spin_unlock(&u_other->peer_wait.lock);
466 }
467 
468 static void unix_dgram_peer_wake_disconnect_wakeup(struct sock *sk,
469 						   struct sock *other)
470 {
471 	unix_dgram_peer_wake_disconnect(sk, other);
472 	wake_up_interruptible_poll(sk_sleep(sk),
473 				   EPOLLOUT |
474 				   EPOLLWRNORM |
475 				   EPOLLWRBAND);
476 }
477 
478 /* preconditions:
479  *	- unix_peer(sk) == other
480  *	- association is stable
481  */
482 static int unix_dgram_peer_wake_me(struct sock *sk, struct sock *other)
483 {
484 	int connected;
485 
486 	connected = unix_dgram_peer_wake_connect(sk, other);
487 
488 	/* If other is SOCK_DEAD, we want to make sure we signal
489 	 * POLLOUT, such that a subsequent write() can get a
490 	 * -ECONNREFUSED. Otherwise, if we haven't queued any skbs
491 	 * to other and its full, we will hang waiting for POLLOUT.
492 	 */
493 	if (unix_recvq_full_lockless(other) && !sock_flag(other, SOCK_DEAD))
494 		return 1;
495 
496 	if (connected)
497 		unix_dgram_peer_wake_disconnect(sk, other);
498 
499 	return 0;
500 }
501 
502 static int unix_writable(const struct sock *sk)
503 {
504 	return sk->sk_state != TCP_LISTEN &&
505 	       (refcount_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf;
506 }
507 
508 static void unix_write_space(struct sock *sk)
509 {
510 	struct socket_wq *wq;
511 
512 	rcu_read_lock();
513 	if (unix_writable(sk)) {
514 		wq = rcu_dereference(sk->sk_wq);
515 		if (skwq_has_sleeper(wq))
516 			wake_up_interruptible_sync_poll(&wq->wait,
517 				EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND);
518 		sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
519 	}
520 	rcu_read_unlock();
521 }
522 
523 /* When dgram socket disconnects (or changes its peer), we clear its receive
524  * queue of packets arrived from previous peer. First, it allows to do
525  * flow control based only on wmem_alloc; second, sk connected to peer
526  * may receive messages only from that peer. */
527 static void unix_dgram_disconnected(struct sock *sk, struct sock *other)
528 {
529 	if (!skb_queue_empty(&sk->sk_receive_queue)) {
530 		skb_queue_purge(&sk->sk_receive_queue);
531 		wake_up_interruptible_all(&unix_sk(sk)->peer_wait);
532 
533 		/* If one link of bidirectional dgram pipe is disconnected,
534 		 * we signal error. Messages are lost. Do not make this,
535 		 * when peer was not connected to us.
536 		 */
537 		if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) {
538 			other->sk_err = ECONNRESET;
539 			sk_error_report(other);
540 		}
541 	}
542 	other->sk_state = TCP_CLOSE;
543 }
544 
545 static void unix_sock_destructor(struct sock *sk)
546 {
547 	struct unix_sock *u = unix_sk(sk);
548 
549 	skb_queue_purge(&sk->sk_receive_queue);
550 
551 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
552 	if (u->oob_skb) {
553 		kfree_skb(u->oob_skb);
554 		u->oob_skb = NULL;
555 	}
556 #endif
557 	WARN_ON(refcount_read(&sk->sk_wmem_alloc));
558 	WARN_ON(!sk_unhashed(sk));
559 	WARN_ON(sk->sk_socket);
560 	if (!sock_flag(sk, SOCK_DEAD)) {
561 		pr_info("Attempt to release alive unix socket: %p\n", sk);
562 		return;
563 	}
564 
565 	if (u->addr)
566 		unix_release_addr(u->addr);
567 
568 	atomic_long_dec(&unix_nr_socks);
569 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
570 #ifdef UNIX_REFCNT_DEBUG
571 	pr_debug("UNIX %p is destroyed, %ld are still alive.\n", sk,
572 		atomic_long_read(&unix_nr_socks));
573 #endif
574 }
575 
576 static void unix_release_sock(struct sock *sk, int embrion)
577 {
578 	struct unix_sock *u = unix_sk(sk);
579 	struct path path;
580 	struct sock *skpair;
581 	struct sk_buff *skb;
582 	int state;
583 
584 	unix_remove_socket(sk);
585 
586 	/* Clear state */
587 	unix_state_lock(sk);
588 	sock_orphan(sk);
589 	sk->sk_shutdown = SHUTDOWN_MASK;
590 	path	     = u->path;
591 	u->path.dentry = NULL;
592 	u->path.mnt = NULL;
593 	state = sk->sk_state;
594 	sk->sk_state = TCP_CLOSE;
595 
596 	skpair = unix_peer(sk);
597 	unix_peer(sk) = NULL;
598 
599 	unix_state_unlock(sk);
600 
601 	wake_up_interruptible_all(&u->peer_wait);
602 
603 	if (skpair != NULL) {
604 		if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) {
605 			unix_state_lock(skpair);
606 			/* No more writes */
607 			skpair->sk_shutdown = SHUTDOWN_MASK;
608 			if (!skb_queue_empty(&sk->sk_receive_queue) || embrion)
609 				skpair->sk_err = ECONNRESET;
610 			unix_state_unlock(skpair);
611 			skpair->sk_state_change(skpair);
612 			sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP);
613 		}
614 
615 		unix_dgram_peer_wake_disconnect(sk, skpair);
616 		sock_put(skpair); /* It may now die */
617 	}
618 
619 	/* Try to flush out this socket. Throw out buffers at least */
620 
621 	while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) {
622 		if (state == TCP_LISTEN)
623 			unix_release_sock(skb->sk, 1);
624 		/* passed fds are erased in the kfree_skb hook	      */
625 		UNIXCB(skb).consumed = skb->len;
626 		kfree_skb(skb);
627 	}
628 
629 	if (path.dentry)
630 		path_put(&path);
631 
632 	sock_put(sk);
633 
634 	/* ---- Socket is dead now and most probably destroyed ---- */
635 
636 	/*
637 	 * Fixme: BSD difference: In BSD all sockets connected to us get
638 	 *	  ECONNRESET and we die on the spot. In Linux we behave
639 	 *	  like files and pipes do and wait for the last
640 	 *	  dereference.
641 	 *
642 	 * Can't we simply set sock->err?
643 	 *
644 	 *	  What the above comment does talk about? --ANK(980817)
645 	 */
646 
647 	if (unix_tot_inflight)
648 		unix_gc();		/* Garbage collect fds */
649 }
650 
651 static void init_peercred(struct sock *sk)
652 {
653 	const struct cred *old_cred;
654 	struct pid *old_pid;
655 
656 	spin_lock(&sk->sk_peer_lock);
657 	old_pid = sk->sk_peer_pid;
658 	old_cred = sk->sk_peer_cred;
659 	sk->sk_peer_pid  = get_pid(task_tgid(current));
660 	sk->sk_peer_cred = get_current_cred();
661 	spin_unlock(&sk->sk_peer_lock);
662 
663 	put_pid(old_pid);
664 	put_cred(old_cred);
665 }
666 
667 static void copy_peercred(struct sock *sk, struct sock *peersk)
668 {
669 	const struct cred *old_cred;
670 	struct pid *old_pid;
671 
672 	if (sk < peersk) {
673 		spin_lock(&sk->sk_peer_lock);
674 		spin_lock_nested(&peersk->sk_peer_lock, SINGLE_DEPTH_NESTING);
675 	} else {
676 		spin_lock(&peersk->sk_peer_lock);
677 		spin_lock_nested(&sk->sk_peer_lock, SINGLE_DEPTH_NESTING);
678 	}
679 	old_pid = sk->sk_peer_pid;
680 	old_cred = sk->sk_peer_cred;
681 	sk->sk_peer_pid  = get_pid(peersk->sk_peer_pid);
682 	sk->sk_peer_cred = get_cred(peersk->sk_peer_cred);
683 
684 	spin_unlock(&sk->sk_peer_lock);
685 	spin_unlock(&peersk->sk_peer_lock);
686 
687 	put_pid(old_pid);
688 	put_cred(old_cred);
689 }
690 
691 static int unix_listen(struct socket *sock, int backlog)
692 {
693 	int err;
694 	struct sock *sk = sock->sk;
695 	struct unix_sock *u = unix_sk(sk);
696 
697 	err = -EOPNOTSUPP;
698 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
699 		goto out;	/* Only stream/seqpacket sockets accept */
700 	err = -EINVAL;
701 	if (!u->addr)
702 		goto out;	/* No listens on an unbound socket */
703 	unix_state_lock(sk);
704 	if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN)
705 		goto out_unlock;
706 	if (backlog > sk->sk_max_ack_backlog)
707 		wake_up_interruptible_all(&u->peer_wait);
708 	sk->sk_max_ack_backlog	= backlog;
709 	sk->sk_state		= TCP_LISTEN;
710 	/* set credentials so connect can copy them */
711 	init_peercred(sk);
712 	err = 0;
713 
714 out_unlock:
715 	unix_state_unlock(sk);
716 out:
717 	return err;
718 }
719 
720 static int unix_release(struct socket *);
721 static int unix_bind(struct socket *, struct sockaddr *, int);
722 static int unix_stream_connect(struct socket *, struct sockaddr *,
723 			       int addr_len, int flags);
724 static int unix_socketpair(struct socket *, struct socket *);
725 static int unix_accept(struct socket *, struct socket *, int, bool);
726 static int unix_getname(struct socket *, struct sockaddr *, int);
727 static __poll_t unix_poll(struct file *, struct socket *, poll_table *);
728 static __poll_t unix_dgram_poll(struct file *, struct socket *,
729 				    poll_table *);
730 static int unix_ioctl(struct socket *, unsigned int, unsigned long);
731 #ifdef CONFIG_COMPAT
732 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
733 #endif
734 static int unix_shutdown(struct socket *, int);
735 static int unix_stream_sendmsg(struct socket *, struct msghdr *, size_t);
736 static int unix_stream_recvmsg(struct socket *, struct msghdr *, size_t, int);
737 static ssize_t unix_stream_sendpage(struct socket *, struct page *, int offset,
738 				    size_t size, int flags);
739 static ssize_t unix_stream_splice_read(struct socket *,  loff_t *ppos,
740 				       struct pipe_inode_info *, size_t size,
741 				       unsigned int flags);
742 static int unix_dgram_sendmsg(struct socket *, struct msghdr *, size_t);
743 static int unix_dgram_recvmsg(struct socket *, struct msghdr *, size_t, int);
744 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc,
745 			  sk_read_actor_t recv_actor);
746 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc,
747 				 sk_read_actor_t recv_actor);
748 static int unix_dgram_connect(struct socket *, struct sockaddr *,
749 			      int, int);
750 static int unix_seqpacket_sendmsg(struct socket *, struct msghdr *, size_t);
751 static int unix_seqpacket_recvmsg(struct socket *, struct msghdr *, size_t,
752 				  int);
753 
754 static int unix_set_peek_off(struct sock *sk, int val)
755 {
756 	struct unix_sock *u = unix_sk(sk);
757 
758 	if (mutex_lock_interruptible(&u->iolock))
759 		return -EINTR;
760 
761 	sk->sk_peek_off = val;
762 	mutex_unlock(&u->iolock);
763 
764 	return 0;
765 }
766 
767 #ifdef CONFIG_PROC_FS
768 static void unix_show_fdinfo(struct seq_file *m, struct socket *sock)
769 {
770 	struct sock *sk = sock->sk;
771 	struct unix_sock *u;
772 
773 	if (sk) {
774 		u = unix_sk(sock->sk);
775 		seq_printf(m, "scm_fds: %u\n",
776 			   atomic_read(&u->scm_stat.nr_fds));
777 	}
778 }
779 #else
780 #define unix_show_fdinfo NULL
781 #endif
782 
783 static const struct proto_ops unix_stream_ops = {
784 	.family =	PF_UNIX,
785 	.owner =	THIS_MODULE,
786 	.release =	unix_release,
787 	.bind =		unix_bind,
788 	.connect =	unix_stream_connect,
789 	.socketpair =	unix_socketpair,
790 	.accept =	unix_accept,
791 	.getname =	unix_getname,
792 	.poll =		unix_poll,
793 	.ioctl =	unix_ioctl,
794 #ifdef CONFIG_COMPAT
795 	.compat_ioctl =	unix_compat_ioctl,
796 #endif
797 	.listen =	unix_listen,
798 	.shutdown =	unix_shutdown,
799 	.sendmsg =	unix_stream_sendmsg,
800 	.recvmsg =	unix_stream_recvmsg,
801 	.read_sock =	unix_stream_read_sock,
802 	.mmap =		sock_no_mmap,
803 	.sendpage =	unix_stream_sendpage,
804 	.splice_read =	unix_stream_splice_read,
805 	.set_peek_off =	unix_set_peek_off,
806 	.show_fdinfo =	unix_show_fdinfo,
807 };
808 
809 static const struct proto_ops unix_dgram_ops = {
810 	.family =	PF_UNIX,
811 	.owner =	THIS_MODULE,
812 	.release =	unix_release,
813 	.bind =		unix_bind,
814 	.connect =	unix_dgram_connect,
815 	.socketpair =	unix_socketpair,
816 	.accept =	sock_no_accept,
817 	.getname =	unix_getname,
818 	.poll =		unix_dgram_poll,
819 	.ioctl =	unix_ioctl,
820 #ifdef CONFIG_COMPAT
821 	.compat_ioctl =	unix_compat_ioctl,
822 #endif
823 	.listen =	sock_no_listen,
824 	.shutdown =	unix_shutdown,
825 	.sendmsg =	unix_dgram_sendmsg,
826 	.read_sock =	unix_read_sock,
827 	.recvmsg =	unix_dgram_recvmsg,
828 	.mmap =		sock_no_mmap,
829 	.sendpage =	sock_no_sendpage,
830 	.set_peek_off =	unix_set_peek_off,
831 	.show_fdinfo =	unix_show_fdinfo,
832 };
833 
834 static const struct proto_ops unix_seqpacket_ops = {
835 	.family =	PF_UNIX,
836 	.owner =	THIS_MODULE,
837 	.release =	unix_release,
838 	.bind =		unix_bind,
839 	.connect =	unix_stream_connect,
840 	.socketpair =	unix_socketpair,
841 	.accept =	unix_accept,
842 	.getname =	unix_getname,
843 	.poll =		unix_dgram_poll,
844 	.ioctl =	unix_ioctl,
845 #ifdef CONFIG_COMPAT
846 	.compat_ioctl =	unix_compat_ioctl,
847 #endif
848 	.listen =	unix_listen,
849 	.shutdown =	unix_shutdown,
850 	.sendmsg =	unix_seqpacket_sendmsg,
851 	.recvmsg =	unix_seqpacket_recvmsg,
852 	.mmap =		sock_no_mmap,
853 	.sendpage =	sock_no_sendpage,
854 	.set_peek_off =	unix_set_peek_off,
855 	.show_fdinfo =	unix_show_fdinfo,
856 };
857 
858 static void unix_close(struct sock *sk, long timeout)
859 {
860 	/* Nothing to do here, unix socket does not need a ->close().
861 	 * This is merely for sockmap.
862 	 */
863 }
864 
865 static void unix_unhash(struct sock *sk)
866 {
867 	/* Nothing to do here, unix socket does not need a ->unhash().
868 	 * This is merely for sockmap.
869 	 */
870 }
871 
872 struct proto unix_dgram_proto = {
873 	.name			= "UNIX",
874 	.owner			= THIS_MODULE,
875 	.obj_size		= sizeof(struct unix_sock),
876 	.close			= unix_close,
877 #ifdef CONFIG_BPF_SYSCALL
878 	.psock_update_sk_prot	= unix_dgram_bpf_update_proto,
879 #endif
880 };
881 
882 struct proto unix_stream_proto = {
883 	.name			= "UNIX-STREAM",
884 	.owner			= THIS_MODULE,
885 	.obj_size		= sizeof(struct unix_sock),
886 	.close			= unix_close,
887 	.unhash			= unix_unhash,
888 #ifdef CONFIG_BPF_SYSCALL
889 	.psock_update_sk_prot	= unix_stream_bpf_update_proto,
890 #endif
891 };
892 
893 static struct sock *unix_create1(struct net *net, struct socket *sock, int kern, int type)
894 {
895 	struct unix_sock *u;
896 	struct sock *sk;
897 	int err;
898 
899 	atomic_long_inc(&unix_nr_socks);
900 	if (atomic_long_read(&unix_nr_socks) > 2 * get_max_files()) {
901 		err = -ENFILE;
902 		goto err;
903 	}
904 
905 	if (type == SOCK_STREAM)
906 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_stream_proto, kern);
907 	else /*dgram and  seqpacket */
908 		sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_dgram_proto, kern);
909 
910 	if (!sk) {
911 		err = -ENOMEM;
912 		goto err;
913 	}
914 
915 	sock_init_data(sock, sk);
916 
917 	sk->sk_hash		= unix_unbound_hash(sk);
918 	sk->sk_allocation	= GFP_KERNEL_ACCOUNT;
919 	sk->sk_write_space	= unix_write_space;
920 	sk->sk_max_ack_backlog	= net->unx.sysctl_max_dgram_qlen;
921 	sk->sk_destruct		= unix_sock_destructor;
922 	u	  = unix_sk(sk);
923 	u->path.dentry = NULL;
924 	u->path.mnt = NULL;
925 	spin_lock_init(&u->lock);
926 	atomic_long_set(&u->inflight, 0);
927 	INIT_LIST_HEAD(&u->link);
928 	mutex_init(&u->iolock); /* single task reading lock */
929 	mutex_init(&u->bindlock); /* single task binding lock */
930 	init_waitqueue_head(&u->peer_wait);
931 	init_waitqueue_func_entry(&u->peer_wake, unix_dgram_peer_wake_relay);
932 	memset(&u->scm_stat, 0, sizeof(struct scm_stat));
933 	unix_insert_unbound_socket(sk);
934 
935 	sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
936 
937 	return sk;
938 
939 err:
940 	atomic_long_dec(&unix_nr_socks);
941 	return ERR_PTR(err);
942 }
943 
944 static int unix_create(struct net *net, struct socket *sock, int protocol,
945 		       int kern)
946 {
947 	struct sock *sk;
948 
949 	if (protocol && protocol != PF_UNIX)
950 		return -EPROTONOSUPPORT;
951 
952 	sock->state = SS_UNCONNECTED;
953 
954 	switch (sock->type) {
955 	case SOCK_STREAM:
956 		sock->ops = &unix_stream_ops;
957 		break;
958 		/*
959 		 *	Believe it or not BSD has AF_UNIX, SOCK_RAW though
960 		 *	nothing uses it.
961 		 */
962 	case SOCK_RAW:
963 		sock->type = SOCK_DGRAM;
964 		fallthrough;
965 	case SOCK_DGRAM:
966 		sock->ops = &unix_dgram_ops;
967 		break;
968 	case SOCK_SEQPACKET:
969 		sock->ops = &unix_seqpacket_ops;
970 		break;
971 	default:
972 		return -ESOCKTNOSUPPORT;
973 	}
974 
975 	sk = unix_create1(net, sock, kern, sock->type);
976 	if (IS_ERR(sk))
977 		return PTR_ERR(sk);
978 
979 	return 0;
980 }
981 
982 static int unix_release(struct socket *sock)
983 {
984 	struct sock *sk = sock->sk;
985 
986 	if (!sk)
987 		return 0;
988 
989 	sk->sk_prot->close(sk, 0);
990 	unix_release_sock(sk, 0);
991 	sock->sk = NULL;
992 
993 	return 0;
994 }
995 
996 static struct sock *unix_find_bsd(struct net *net, struct sockaddr_un *sunaddr,
997 				  int addr_len, int type)
998 {
999 	struct inode *inode;
1000 	struct path path;
1001 	struct sock *sk;
1002 	int err;
1003 
1004 	unix_mkname_bsd(sunaddr, addr_len);
1005 	err = kern_path(sunaddr->sun_path, LOOKUP_FOLLOW, &path);
1006 	if (err)
1007 		goto fail;
1008 
1009 	err = path_permission(&path, MAY_WRITE);
1010 	if (err)
1011 		goto path_put;
1012 
1013 	err = -ECONNREFUSED;
1014 	inode = d_backing_inode(path.dentry);
1015 	if (!S_ISSOCK(inode->i_mode))
1016 		goto path_put;
1017 
1018 	sk = unix_find_socket_byinode(inode);
1019 	if (!sk)
1020 		goto path_put;
1021 
1022 	err = -EPROTOTYPE;
1023 	if (sk->sk_type == type)
1024 		touch_atime(&path);
1025 	else
1026 		goto sock_put;
1027 
1028 	path_put(&path);
1029 
1030 	return sk;
1031 
1032 sock_put:
1033 	sock_put(sk);
1034 path_put:
1035 	path_put(&path);
1036 fail:
1037 	return ERR_PTR(err);
1038 }
1039 
1040 static struct sock *unix_find_abstract(struct net *net,
1041 				       struct sockaddr_un *sunaddr,
1042 				       int addr_len, int type)
1043 {
1044 	unsigned int hash = unix_abstract_hash(sunaddr, addr_len, type);
1045 	struct dentry *dentry;
1046 	struct sock *sk;
1047 
1048 	sk = unix_find_socket_byname(net, sunaddr, addr_len, hash);
1049 	if (!sk)
1050 		return ERR_PTR(-ECONNREFUSED);
1051 
1052 	dentry = unix_sk(sk)->path.dentry;
1053 	if (dentry)
1054 		touch_atime(&unix_sk(sk)->path);
1055 
1056 	return sk;
1057 }
1058 
1059 static struct sock *unix_find_other(struct net *net,
1060 				    struct sockaddr_un *sunaddr,
1061 				    int addr_len, int type)
1062 {
1063 	struct sock *sk;
1064 
1065 	if (sunaddr->sun_path[0])
1066 		sk = unix_find_bsd(net, sunaddr, addr_len, type);
1067 	else
1068 		sk = unix_find_abstract(net, sunaddr, addr_len, type);
1069 
1070 	return sk;
1071 }
1072 
1073 static int unix_autobind(struct sock *sk)
1074 {
1075 	unsigned int new_hash, old_hash = sk->sk_hash;
1076 	struct unix_sock *u = unix_sk(sk);
1077 	struct unix_address *addr;
1078 	u32 lastnum, ordernum;
1079 	int err;
1080 
1081 	err = mutex_lock_interruptible(&u->bindlock);
1082 	if (err)
1083 		return err;
1084 
1085 	if (u->addr)
1086 		goto out;
1087 
1088 	err = -ENOMEM;
1089 	addr = kzalloc(sizeof(*addr) +
1090 		       offsetof(struct sockaddr_un, sun_path) + 16, GFP_KERNEL);
1091 	if (!addr)
1092 		goto out;
1093 
1094 	addr->len = offsetof(struct sockaddr_un, sun_path) + 6;
1095 	addr->name->sun_family = AF_UNIX;
1096 	refcount_set(&addr->refcnt, 1);
1097 
1098 	ordernum = prandom_u32();
1099 	lastnum = ordernum & 0xFFFFF;
1100 retry:
1101 	ordernum = (ordernum + 1) & 0xFFFFF;
1102 	sprintf(addr->name->sun_path + 1, "%05x", ordernum);
1103 
1104 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1105 	unix_table_double_lock(old_hash, new_hash);
1106 
1107 	if (__unix_find_socket_byname(sock_net(sk), addr->name, addr->len,
1108 				      new_hash)) {
1109 		unix_table_double_unlock(old_hash, new_hash);
1110 
1111 		/* __unix_find_socket_byname() may take long time if many names
1112 		 * are already in use.
1113 		 */
1114 		cond_resched();
1115 
1116 		if (ordernum == lastnum) {
1117 			/* Give up if all names seems to be in use. */
1118 			err = -ENOSPC;
1119 			unix_release_addr(addr);
1120 			goto out;
1121 		}
1122 
1123 		goto retry;
1124 	}
1125 
1126 	__unix_set_addr_hash(sk, addr, new_hash);
1127 	unix_table_double_unlock(old_hash, new_hash);
1128 	err = 0;
1129 
1130 out:	mutex_unlock(&u->bindlock);
1131 	return err;
1132 }
1133 
1134 static int unix_bind_bsd(struct sock *sk, struct sockaddr_un *sunaddr,
1135 			 int addr_len)
1136 {
1137 	umode_t mode = S_IFSOCK |
1138 	       (SOCK_INODE(sk->sk_socket)->i_mode & ~current_umask());
1139 	unsigned int new_hash, old_hash = sk->sk_hash;
1140 	struct unix_sock *u = unix_sk(sk);
1141 	struct user_namespace *ns; // barf...
1142 	struct unix_address *addr;
1143 	struct dentry *dentry;
1144 	struct path parent;
1145 	int err;
1146 
1147 	unix_mkname_bsd(sunaddr, addr_len);
1148 	addr_len = strlen(sunaddr->sun_path) +
1149 		offsetof(struct sockaddr_un, sun_path) + 1;
1150 
1151 	addr = unix_create_addr(sunaddr, addr_len);
1152 	if (!addr)
1153 		return -ENOMEM;
1154 
1155 	/*
1156 	 * Get the parent directory, calculate the hash for last
1157 	 * component.
1158 	 */
1159 	dentry = kern_path_create(AT_FDCWD, addr->name->sun_path, &parent, 0);
1160 	if (IS_ERR(dentry)) {
1161 		err = PTR_ERR(dentry);
1162 		goto out;
1163 	}
1164 
1165 	/*
1166 	 * All right, let's create it.
1167 	 */
1168 	ns = mnt_user_ns(parent.mnt);
1169 	err = security_path_mknod(&parent, dentry, mode, 0);
1170 	if (!err)
1171 		err = vfs_mknod(ns, d_inode(parent.dentry), dentry, mode, 0);
1172 	if (err)
1173 		goto out_path;
1174 	err = mutex_lock_interruptible(&u->bindlock);
1175 	if (err)
1176 		goto out_unlink;
1177 	if (u->addr)
1178 		goto out_unlock;
1179 
1180 	new_hash = unix_bsd_hash(d_backing_inode(dentry));
1181 	unix_table_double_lock(old_hash, new_hash);
1182 	u->path.mnt = mntget(parent.mnt);
1183 	u->path.dentry = dget(dentry);
1184 	__unix_set_addr_hash(sk, addr, new_hash);
1185 	unix_table_double_unlock(old_hash, new_hash);
1186 	mutex_unlock(&u->bindlock);
1187 	done_path_create(&parent, dentry);
1188 	return 0;
1189 
1190 out_unlock:
1191 	mutex_unlock(&u->bindlock);
1192 	err = -EINVAL;
1193 out_unlink:
1194 	/* failed after successful mknod?  unlink what we'd created... */
1195 	vfs_unlink(ns, d_inode(parent.dentry), dentry, NULL);
1196 out_path:
1197 	done_path_create(&parent, dentry);
1198 out:
1199 	unix_release_addr(addr);
1200 	return err == -EEXIST ? -EADDRINUSE : err;
1201 }
1202 
1203 static int unix_bind_abstract(struct sock *sk, struct sockaddr_un *sunaddr,
1204 			      int addr_len)
1205 {
1206 	unsigned int new_hash, old_hash = sk->sk_hash;
1207 	struct unix_sock *u = unix_sk(sk);
1208 	struct unix_address *addr;
1209 	int err;
1210 
1211 	addr = unix_create_addr(sunaddr, addr_len);
1212 	if (!addr)
1213 		return -ENOMEM;
1214 
1215 	err = mutex_lock_interruptible(&u->bindlock);
1216 	if (err)
1217 		goto out;
1218 
1219 	if (u->addr) {
1220 		err = -EINVAL;
1221 		goto out_mutex;
1222 	}
1223 
1224 	new_hash = unix_abstract_hash(addr->name, addr->len, sk->sk_type);
1225 	unix_table_double_lock(old_hash, new_hash);
1226 
1227 	if (__unix_find_socket_byname(sock_net(sk), addr->name, addr->len,
1228 				      new_hash))
1229 		goto out_spin;
1230 
1231 	__unix_set_addr_hash(sk, addr, new_hash);
1232 	unix_table_double_unlock(old_hash, new_hash);
1233 	mutex_unlock(&u->bindlock);
1234 	return 0;
1235 
1236 out_spin:
1237 	unix_table_double_unlock(old_hash, new_hash);
1238 	err = -EADDRINUSE;
1239 out_mutex:
1240 	mutex_unlock(&u->bindlock);
1241 out:
1242 	unix_release_addr(addr);
1243 	return err;
1244 }
1245 
1246 static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
1247 {
1248 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1249 	struct sock *sk = sock->sk;
1250 	int err;
1251 
1252 	if (addr_len == offsetof(struct sockaddr_un, sun_path) &&
1253 	    sunaddr->sun_family == AF_UNIX)
1254 		return unix_autobind(sk);
1255 
1256 	err = unix_validate_addr(sunaddr, addr_len);
1257 	if (err)
1258 		return err;
1259 
1260 	if (sunaddr->sun_path[0])
1261 		err = unix_bind_bsd(sk, sunaddr, addr_len);
1262 	else
1263 		err = unix_bind_abstract(sk, sunaddr, addr_len);
1264 
1265 	return err;
1266 }
1267 
1268 static void unix_state_double_lock(struct sock *sk1, struct sock *sk2)
1269 {
1270 	if (unlikely(sk1 == sk2) || !sk2) {
1271 		unix_state_lock(sk1);
1272 		return;
1273 	}
1274 	if (sk1 < sk2) {
1275 		unix_state_lock(sk1);
1276 		unix_state_lock_nested(sk2);
1277 	} else {
1278 		unix_state_lock(sk2);
1279 		unix_state_lock_nested(sk1);
1280 	}
1281 }
1282 
1283 static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2)
1284 {
1285 	if (unlikely(sk1 == sk2) || !sk2) {
1286 		unix_state_unlock(sk1);
1287 		return;
1288 	}
1289 	unix_state_unlock(sk1);
1290 	unix_state_unlock(sk2);
1291 }
1292 
1293 static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr,
1294 			      int alen, int flags)
1295 {
1296 	struct sock *sk = sock->sk;
1297 	struct net *net = sock_net(sk);
1298 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr;
1299 	struct sock *other;
1300 	int err;
1301 
1302 	err = -EINVAL;
1303 	if (alen < offsetofend(struct sockaddr, sa_family))
1304 		goto out;
1305 
1306 	if (addr->sa_family != AF_UNSPEC) {
1307 		err = unix_validate_addr(sunaddr, alen);
1308 		if (err)
1309 			goto out;
1310 
1311 		if (test_bit(SOCK_PASSCRED, &sock->flags) &&
1312 		    !unix_sk(sk)->addr) {
1313 			err = unix_autobind(sk);
1314 			if (err)
1315 				goto out;
1316 		}
1317 
1318 restart:
1319 		other = unix_find_other(net, sunaddr, alen, sock->type);
1320 		if (IS_ERR(other)) {
1321 			err = PTR_ERR(other);
1322 			goto out;
1323 		}
1324 
1325 		unix_state_double_lock(sk, other);
1326 
1327 		/* Apparently VFS overslept socket death. Retry. */
1328 		if (sock_flag(other, SOCK_DEAD)) {
1329 			unix_state_double_unlock(sk, other);
1330 			sock_put(other);
1331 			goto restart;
1332 		}
1333 
1334 		err = -EPERM;
1335 		if (!unix_may_send(sk, other))
1336 			goto out_unlock;
1337 
1338 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1339 		if (err)
1340 			goto out_unlock;
1341 
1342 		sk->sk_state = other->sk_state = TCP_ESTABLISHED;
1343 	} else {
1344 		/*
1345 		 *	1003.1g breaking connected state with AF_UNSPEC
1346 		 */
1347 		other = NULL;
1348 		unix_state_double_lock(sk, other);
1349 	}
1350 
1351 	/*
1352 	 * If it was connected, reconnect.
1353 	 */
1354 	if (unix_peer(sk)) {
1355 		struct sock *old_peer = unix_peer(sk);
1356 
1357 		unix_peer(sk) = other;
1358 		if (!other)
1359 			sk->sk_state = TCP_CLOSE;
1360 		unix_dgram_peer_wake_disconnect_wakeup(sk, old_peer);
1361 
1362 		unix_state_double_unlock(sk, other);
1363 
1364 		if (other != old_peer)
1365 			unix_dgram_disconnected(sk, old_peer);
1366 		sock_put(old_peer);
1367 	} else {
1368 		unix_peer(sk) = other;
1369 		unix_state_double_unlock(sk, other);
1370 	}
1371 
1372 	return 0;
1373 
1374 out_unlock:
1375 	unix_state_double_unlock(sk, other);
1376 	sock_put(other);
1377 out:
1378 	return err;
1379 }
1380 
1381 static long unix_wait_for_peer(struct sock *other, long timeo)
1382 	__releases(&unix_sk(other)->lock)
1383 {
1384 	struct unix_sock *u = unix_sk(other);
1385 	int sched;
1386 	DEFINE_WAIT(wait);
1387 
1388 	prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE);
1389 
1390 	sched = !sock_flag(other, SOCK_DEAD) &&
1391 		!(other->sk_shutdown & RCV_SHUTDOWN) &&
1392 		unix_recvq_full(other);
1393 
1394 	unix_state_unlock(other);
1395 
1396 	if (sched)
1397 		timeo = schedule_timeout(timeo);
1398 
1399 	finish_wait(&u->peer_wait, &wait);
1400 	return timeo;
1401 }
1402 
1403 static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr,
1404 			       int addr_len, int flags)
1405 {
1406 	struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr;
1407 	struct sock *sk = sock->sk;
1408 	struct net *net = sock_net(sk);
1409 	struct unix_sock *u = unix_sk(sk), *newu, *otheru;
1410 	struct sock *newsk = NULL;
1411 	struct sock *other = NULL;
1412 	struct sk_buff *skb = NULL;
1413 	int st;
1414 	int err;
1415 	long timeo;
1416 
1417 	err = unix_validate_addr(sunaddr, addr_len);
1418 	if (err)
1419 		goto out;
1420 
1421 	if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) {
1422 		err = unix_autobind(sk);
1423 		if (err)
1424 			goto out;
1425 	}
1426 
1427 	timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1428 
1429 	/* First of all allocate resources.
1430 	   If we will make it after state is locked,
1431 	   we will have to recheck all again in any case.
1432 	 */
1433 
1434 	/* create new sock for complete connection */
1435 	newsk = unix_create1(sock_net(sk), NULL, 0, sock->type);
1436 	if (IS_ERR(newsk)) {
1437 		err = PTR_ERR(newsk);
1438 		newsk = NULL;
1439 		goto out;
1440 	}
1441 
1442 	err = -ENOMEM;
1443 
1444 	/* Allocate skb for sending to listening sock */
1445 	skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL);
1446 	if (skb == NULL)
1447 		goto out;
1448 
1449 restart:
1450 	/*  Find listening sock. */
1451 	other = unix_find_other(net, sunaddr, addr_len, sk->sk_type);
1452 	if (IS_ERR(other)) {
1453 		err = PTR_ERR(other);
1454 		other = NULL;
1455 		goto out;
1456 	}
1457 
1458 	/* Latch state of peer */
1459 	unix_state_lock(other);
1460 
1461 	/* Apparently VFS overslept socket death. Retry. */
1462 	if (sock_flag(other, SOCK_DEAD)) {
1463 		unix_state_unlock(other);
1464 		sock_put(other);
1465 		goto restart;
1466 	}
1467 
1468 	err = -ECONNREFUSED;
1469 	if (other->sk_state != TCP_LISTEN)
1470 		goto out_unlock;
1471 	if (other->sk_shutdown & RCV_SHUTDOWN)
1472 		goto out_unlock;
1473 
1474 	if (unix_recvq_full(other)) {
1475 		err = -EAGAIN;
1476 		if (!timeo)
1477 			goto out_unlock;
1478 
1479 		timeo = unix_wait_for_peer(other, timeo);
1480 
1481 		err = sock_intr_errno(timeo);
1482 		if (signal_pending(current))
1483 			goto out;
1484 		sock_put(other);
1485 		goto restart;
1486 	}
1487 
1488 	/* Latch our state.
1489 
1490 	   It is tricky place. We need to grab our state lock and cannot
1491 	   drop lock on peer. It is dangerous because deadlock is
1492 	   possible. Connect to self case and simultaneous
1493 	   attempt to connect are eliminated by checking socket
1494 	   state. other is TCP_LISTEN, if sk is TCP_LISTEN we
1495 	   check this before attempt to grab lock.
1496 
1497 	   Well, and we have to recheck the state after socket locked.
1498 	 */
1499 	st = sk->sk_state;
1500 
1501 	switch (st) {
1502 	case TCP_CLOSE:
1503 		/* This is ok... continue with connect */
1504 		break;
1505 	case TCP_ESTABLISHED:
1506 		/* Socket is already connected */
1507 		err = -EISCONN;
1508 		goto out_unlock;
1509 	default:
1510 		err = -EINVAL;
1511 		goto out_unlock;
1512 	}
1513 
1514 	unix_state_lock_nested(sk);
1515 
1516 	if (sk->sk_state != st) {
1517 		unix_state_unlock(sk);
1518 		unix_state_unlock(other);
1519 		sock_put(other);
1520 		goto restart;
1521 	}
1522 
1523 	err = security_unix_stream_connect(sk, other, newsk);
1524 	if (err) {
1525 		unix_state_unlock(sk);
1526 		goto out_unlock;
1527 	}
1528 
1529 	/* The way is open! Fastly set all the necessary fields... */
1530 
1531 	sock_hold(sk);
1532 	unix_peer(newsk)	= sk;
1533 	newsk->sk_state		= TCP_ESTABLISHED;
1534 	newsk->sk_type		= sk->sk_type;
1535 	init_peercred(newsk);
1536 	newu = unix_sk(newsk);
1537 	RCU_INIT_POINTER(newsk->sk_wq, &newu->peer_wq);
1538 	otheru = unix_sk(other);
1539 
1540 	/* copy address information from listening to new sock
1541 	 *
1542 	 * The contents of *(otheru->addr) and otheru->path
1543 	 * are seen fully set up here, since we have found
1544 	 * otheru in hash under unix_table_locks.  Insertion
1545 	 * into the hash chain we'd found it in had been done
1546 	 * in an earlier critical area protected by unix_table_locks,
1547 	 * the same one where we'd set *(otheru->addr) contents,
1548 	 * as well as otheru->path and otheru->addr itself.
1549 	 *
1550 	 * Using smp_store_release() here to set newu->addr
1551 	 * is enough to make those stores, as well as stores
1552 	 * to newu->path visible to anyone who gets newu->addr
1553 	 * by smp_load_acquire().  IOW, the same warranties
1554 	 * as for unix_sock instances bound in unix_bind() or
1555 	 * in unix_autobind().
1556 	 */
1557 	if (otheru->path.dentry) {
1558 		path_get(&otheru->path);
1559 		newu->path = otheru->path;
1560 	}
1561 	refcount_inc(&otheru->addr->refcnt);
1562 	smp_store_release(&newu->addr, otheru->addr);
1563 
1564 	/* Set credentials */
1565 	copy_peercred(sk, other);
1566 
1567 	sock->state	= SS_CONNECTED;
1568 	sk->sk_state	= TCP_ESTABLISHED;
1569 	sock_hold(newsk);
1570 
1571 	smp_mb__after_atomic();	/* sock_hold() does an atomic_inc() */
1572 	unix_peer(sk)	= newsk;
1573 
1574 	unix_state_unlock(sk);
1575 
1576 	/* take ten and send info to listening sock */
1577 	spin_lock(&other->sk_receive_queue.lock);
1578 	__skb_queue_tail(&other->sk_receive_queue, skb);
1579 	spin_unlock(&other->sk_receive_queue.lock);
1580 	unix_state_unlock(other);
1581 	other->sk_data_ready(other);
1582 	sock_put(other);
1583 	return 0;
1584 
1585 out_unlock:
1586 	if (other)
1587 		unix_state_unlock(other);
1588 
1589 out:
1590 	kfree_skb(skb);
1591 	if (newsk)
1592 		unix_release_sock(newsk, 0);
1593 	if (other)
1594 		sock_put(other);
1595 	return err;
1596 }
1597 
1598 static int unix_socketpair(struct socket *socka, struct socket *sockb)
1599 {
1600 	struct sock *ska = socka->sk, *skb = sockb->sk;
1601 
1602 	/* Join our sockets back to back */
1603 	sock_hold(ska);
1604 	sock_hold(skb);
1605 	unix_peer(ska) = skb;
1606 	unix_peer(skb) = ska;
1607 	init_peercred(ska);
1608 	init_peercred(skb);
1609 
1610 	ska->sk_state = TCP_ESTABLISHED;
1611 	skb->sk_state = TCP_ESTABLISHED;
1612 	socka->state  = SS_CONNECTED;
1613 	sockb->state  = SS_CONNECTED;
1614 	return 0;
1615 }
1616 
1617 static void unix_sock_inherit_flags(const struct socket *old,
1618 				    struct socket *new)
1619 {
1620 	if (test_bit(SOCK_PASSCRED, &old->flags))
1621 		set_bit(SOCK_PASSCRED, &new->flags);
1622 	if (test_bit(SOCK_PASSSEC, &old->flags))
1623 		set_bit(SOCK_PASSSEC, &new->flags);
1624 }
1625 
1626 static int unix_accept(struct socket *sock, struct socket *newsock, int flags,
1627 		       bool kern)
1628 {
1629 	struct sock *sk = sock->sk;
1630 	struct sock *tsk;
1631 	struct sk_buff *skb;
1632 	int err;
1633 
1634 	err = -EOPNOTSUPP;
1635 	if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
1636 		goto out;
1637 
1638 	err = -EINVAL;
1639 	if (sk->sk_state != TCP_LISTEN)
1640 		goto out;
1641 
1642 	/* If socket state is TCP_LISTEN it cannot change (for now...),
1643 	 * so that no locks are necessary.
1644 	 */
1645 
1646 	skb = skb_recv_datagram(sk, (flags & O_NONBLOCK) ? MSG_DONTWAIT : 0,
1647 				&err);
1648 	if (!skb) {
1649 		/* This means receive shutdown. */
1650 		if (err == 0)
1651 			err = -EINVAL;
1652 		goto out;
1653 	}
1654 
1655 	tsk = skb->sk;
1656 	skb_free_datagram(sk, skb);
1657 	wake_up_interruptible(&unix_sk(sk)->peer_wait);
1658 
1659 	/* attach accepted sock to socket */
1660 	unix_state_lock(tsk);
1661 	newsock->state = SS_CONNECTED;
1662 	unix_sock_inherit_flags(sock, newsock);
1663 	sock_graft(tsk, newsock);
1664 	unix_state_unlock(tsk);
1665 	return 0;
1666 
1667 out:
1668 	return err;
1669 }
1670 
1671 
1672 static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1673 {
1674 	struct sock *sk = sock->sk;
1675 	struct unix_address *addr;
1676 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr);
1677 	int err = 0;
1678 
1679 	if (peer) {
1680 		sk = unix_peer_get(sk);
1681 
1682 		err = -ENOTCONN;
1683 		if (!sk)
1684 			goto out;
1685 		err = 0;
1686 	} else {
1687 		sock_hold(sk);
1688 	}
1689 
1690 	addr = smp_load_acquire(&unix_sk(sk)->addr);
1691 	if (!addr) {
1692 		sunaddr->sun_family = AF_UNIX;
1693 		sunaddr->sun_path[0] = 0;
1694 		err = offsetof(struct sockaddr_un, sun_path);
1695 	} else {
1696 		err = addr->len;
1697 		memcpy(sunaddr, addr->name, addr->len);
1698 	}
1699 	sock_put(sk);
1700 out:
1701 	return err;
1702 }
1703 
1704 static void unix_peek_fds(struct scm_cookie *scm, struct sk_buff *skb)
1705 {
1706 	scm->fp = scm_fp_dup(UNIXCB(skb).fp);
1707 
1708 	/*
1709 	 * Garbage collection of unix sockets starts by selecting a set of
1710 	 * candidate sockets which have reference only from being in flight
1711 	 * (total_refs == inflight_refs).  This condition is checked once during
1712 	 * the candidate collection phase, and candidates are marked as such, so
1713 	 * that non-candidates can later be ignored.  While inflight_refs is
1714 	 * protected by unix_gc_lock, total_refs (file count) is not, hence this
1715 	 * is an instantaneous decision.
1716 	 *
1717 	 * Once a candidate, however, the socket must not be reinstalled into a
1718 	 * file descriptor while the garbage collection is in progress.
1719 	 *
1720 	 * If the above conditions are met, then the directed graph of
1721 	 * candidates (*) does not change while unix_gc_lock is held.
1722 	 *
1723 	 * Any operations that changes the file count through file descriptors
1724 	 * (dup, close, sendmsg) does not change the graph since candidates are
1725 	 * not installed in fds.
1726 	 *
1727 	 * Dequeing a candidate via recvmsg would install it into an fd, but
1728 	 * that takes unix_gc_lock to decrement the inflight count, so it's
1729 	 * serialized with garbage collection.
1730 	 *
1731 	 * MSG_PEEK is special in that it does not change the inflight count,
1732 	 * yet does install the socket into an fd.  The following lock/unlock
1733 	 * pair is to ensure serialization with garbage collection.  It must be
1734 	 * done between incrementing the file count and installing the file into
1735 	 * an fd.
1736 	 *
1737 	 * If garbage collection starts after the barrier provided by the
1738 	 * lock/unlock, then it will see the elevated refcount and not mark this
1739 	 * as a candidate.  If a garbage collection is already in progress
1740 	 * before the file count was incremented, then the lock/unlock pair will
1741 	 * ensure that garbage collection is finished before progressing to
1742 	 * installing the fd.
1743 	 *
1744 	 * (*) A -> B where B is on the queue of A or B is on the queue of C
1745 	 * which is on the queue of listening socket A.
1746 	 */
1747 	spin_lock(&unix_gc_lock);
1748 	spin_unlock(&unix_gc_lock);
1749 }
1750 
1751 static int unix_scm_to_skb(struct scm_cookie *scm, struct sk_buff *skb, bool send_fds)
1752 {
1753 	int err = 0;
1754 
1755 	UNIXCB(skb).pid  = get_pid(scm->pid);
1756 	UNIXCB(skb).uid = scm->creds.uid;
1757 	UNIXCB(skb).gid = scm->creds.gid;
1758 	UNIXCB(skb).fp = NULL;
1759 	unix_get_secdata(scm, skb);
1760 	if (scm->fp && send_fds)
1761 		err = unix_attach_fds(scm, skb);
1762 
1763 	skb->destructor = unix_destruct_scm;
1764 	return err;
1765 }
1766 
1767 static bool unix_passcred_enabled(const struct socket *sock,
1768 				  const struct sock *other)
1769 {
1770 	return test_bit(SOCK_PASSCRED, &sock->flags) ||
1771 	       !other->sk_socket ||
1772 	       test_bit(SOCK_PASSCRED, &other->sk_socket->flags);
1773 }
1774 
1775 /*
1776  * Some apps rely on write() giving SCM_CREDENTIALS
1777  * We include credentials if source or destination socket
1778  * asserted SOCK_PASSCRED.
1779  */
1780 static void maybe_add_creds(struct sk_buff *skb, const struct socket *sock,
1781 			    const struct sock *other)
1782 {
1783 	if (UNIXCB(skb).pid)
1784 		return;
1785 	if (unix_passcred_enabled(sock, other)) {
1786 		UNIXCB(skb).pid  = get_pid(task_tgid(current));
1787 		current_uid_gid(&UNIXCB(skb).uid, &UNIXCB(skb).gid);
1788 	}
1789 }
1790 
1791 static int maybe_init_creds(struct scm_cookie *scm,
1792 			    struct socket *socket,
1793 			    const struct sock *other)
1794 {
1795 	int err;
1796 	struct msghdr msg = { .msg_controllen = 0 };
1797 
1798 	err = scm_send(socket, &msg, scm, false);
1799 	if (err)
1800 		return err;
1801 
1802 	if (unix_passcred_enabled(socket, other)) {
1803 		scm->pid = get_pid(task_tgid(current));
1804 		current_uid_gid(&scm->creds.uid, &scm->creds.gid);
1805 	}
1806 	return err;
1807 }
1808 
1809 static bool unix_skb_scm_eq(struct sk_buff *skb,
1810 			    struct scm_cookie *scm)
1811 {
1812 	return UNIXCB(skb).pid == scm->pid &&
1813 	       uid_eq(UNIXCB(skb).uid, scm->creds.uid) &&
1814 	       gid_eq(UNIXCB(skb).gid, scm->creds.gid) &&
1815 	       unix_secdata_eq(scm, skb);
1816 }
1817 
1818 static void scm_stat_add(struct sock *sk, struct sk_buff *skb)
1819 {
1820 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1821 	struct unix_sock *u = unix_sk(sk);
1822 
1823 	if (unlikely(fp && fp->count))
1824 		atomic_add(fp->count, &u->scm_stat.nr_fds);
1825 }
1826 
1827 static void scm_stat_del(struct sock *sk, struct sk_buff *skb)
1828 {
1829 	struct scm_fp_list *fp = UNIXCB(skb).fp;
1830 	struct unix_sock *u = unix_sk(sk);
1831 
1832 	if (unlikely(fp && fp->count))
1833 		atomic_sub(fp->count, &u->scm_stat.nr_fds);
1834 }
1835 
1836 /*
1837  *	Send AF_UNIX data.
1838  */
1839 
1840 static int unix_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1841 			      size_t len)
1842 {
1843 	struct sock *sk = sock->sk;
1844 	struct net *net = sock_net(sk);
1845 	struct unix_sock *u = unix_sk(sk);
1846 	DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, msg->msg_name);
1847 	struct sock *other = NULL;
1848 	int err;
1849 	struct sk_buff *skb;
1850 	long timeo;
1851 	struct scm_cookie scm;
1852 	int data_len = 0;
1853 	int sk_locked;
1854 
1855 	wait_for_unix_gc();
1856 	err = scm_send(sock, msg, &scm, false);
1857 	if (err < 0)
1858 		return err;
1859 
1860 	err = -EOPNOTSUPP;
1861 	if (msg->msg_flags&MSG_OOB)
1862 		goto out;
1863 
1864 	if (msg->msg_namelen) {
1865 		err = unix_validate_addr(sunaddr, msg->msg_namelen);
1866 		if (err)
1867 			goto out;
1868 	} else {
1869 		sunaddr = NULL;
1870 		err = -ENOTCONN;
1871 		other = unix_peer_get(sk);
1872 		if (!other)
1873 			goto out;
1874 	}
1875 
1876 	if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr) {
1877 		err = unix_autobind(sk);
1878 		if (err)
1879 			goto out;
1880 	}
1881 
1882 	err = -EMSGSIZE;
1883 	if (len > sk->sk_sndbuf - 32)
1884 		goto out;
1885 
1886 	if (len > SKB_MAX_ALLOC) {
1887 		data_len = min_t(size_t,
1888 				 len - SKB_MAX_ALLOC,
1889 				 MAX_SKB_FRAGS * PAGE_SIZE);
1890 		data_len = PAGE_ALIGN(data_len);
1891 
1892 		BUILD_BUG_ON(SKB_MAX_ALLOC < PAGE_SIZE);
1893 	}
1894 
1895 	skb = sock_alloc_send_pskb(sk, len - data_len, data_len,
1896 				   msg->msg_flags & MSG_DONTWAIT, &err,
1897 				   PAGE_ALLOC_COSTLY_ORDER);
1898 	if (skb == NULL)
1899 		goto out;
1900 
1901 	err = unix_scm_to_skb(&scm, skb, true);
1902 	if (err < 0)
1903 		goto out_free;
1904 
1905 	skb_put(skb, len - data_len);
1906 	skb->data_len = data_len;
1907 	skb->len = len;
1908 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, len);
1909 	if (err)
1910 		goto out_free;
1911 
1912 	timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1913 
1914 restart:
1915 	if (!other) {
1916 		err = -ECONNRESET;
1917 		if (sunaddr == NULL)
1918 			goto out_free;
1919 
1920 		other = unix_find_other(net, sunaddr, msg->msg_namelen,
1921 					sk->sk_type);
1922 		if (IS_ERR(other)) {
1923 			err = PTR_ERR(other);
1924 			other = NULL;
1925 			goto out_free;
1926 		}
1927 	}
1928 
1929 	if (sk_filter(other, skb) < 0) {
1930 		/* Toss the packet but do not return any error to the sender */
1931 		err = len;
1932 		goto out_free;
1933 	}
1934 
1935 	sk_locked = 0;
1936 	unix_state_lock(other);
1937 restart_locked:
1938 	err = -EPERM;
1939 	if (!unix_may_send(sk, other))
1940 		goto out_unlock;
1941 
1942 	if (unlikely(sock_flag(other, SOCK_DEAD))) {
1943 		/*
1944 		 *	Check with 1003.1g - what should
1945 		 *	datagram error
1946 		 */
1947 		unix_state_unlock(other);
1948 		sock_put(other);
1949 
1950 		if (!sk_locked)
1951 			unix_state_lock(sk);
1952 
1953 		err = 0;
1954 		if (unix_peer(sk) == other) {
1955 			unix_peer(sk) = NULL;
1956 			unix_dgram_peer_wake_disconnect_wakeup(sk, other);
1957 
1958 			unix_state_unlock(sk);
1959 
1960 			sk->sk_state = TCP_CLOSE;
1961 			unix_dgram_disconnected(sk, other);
1962 			sock_put(other);
1963 			err = -ECONNREFUSED;
1964 		} else {
1965 			unix_state_unlock(sk);
1966 		}
1967 
1968 		other = NULL;
1969 		if (err)
1970 			goto out_free;
1971 		goto restart;
1972 	}
1973 
1974 	err = -EPIPE;
1975 	if (other->sk_shutdown & RCV_SHUTDOWN)
1976 		goto out_unlock;
1977 
1978 	if (sk->sk_type != SOCK_SEQPACKET) {
1979 		err = security_unix_may_send(sk->sk_socket, other->sk_socket);
1980 		if (err)
1981 			goto out_unlock;
1982 	}
1983 
1984 	/* other == sk && unix_peer(other) != sk if
1985 	 * - unix_peer(sk) == NULL, destination address bound to sk
1986 	 * - unix_peer(sk) == sk by time of get but disconnected before lock
1987 	 */
1988 	if (other != sk &&
1989 	    unlikely(unix_peer(other) != sk &&
1990 	    unix_recvq_full_lockless(other))) {
1991 		if (timeo) {
1992 			timeo = unix_wait_for_peer(other, timeo);
1993 
1994 			err = sock_intr_errno(timeo);
1995 			if (signal_pending(current))
1996 				goto out_free;
1997 
1998 			goto restart;
1999 		}
2000 
2001 		if (!sk_locked) {
2002 			unix_state_unlock(other);
2003 			unix_state_double_lock(sk, other);
2004 		}
2005 
2006 		if (unix_peer(sk) != other ||
2007 		    unix_dgram_peer_wake_me(sk, other)) {
2008 			err = -EAGAIN;
2009 			sk_locked = 1;
2010 			goto out_unlock;
2011 		}
2012 
2013 		if (!sk_locked) {
2014 			sk_locked = 1;
2015 			goto restart_locked;
2016 		}
2017 	}
2018 
2019 	if (unlikely(sk_locked))
2020 		unix_state_unlock(sk);
2021 
2022 	if (sock_flag(other, SOCK_RCVTSTAMP))
2023 		__net_timestamp(skb);
2024 	maybe_add_creds(skb, sock, other);
2025 	scm_stat_add(other, skb);
2026 	skb_queue_tail(&other->sk_receive_queue, skb);
2027 	unix_state_unlock(other);
2028 	other->sk_data_ready(other);
2029 	sock_put(other);
2030 	scm_destroy(&scm);
2031 	return len;
2032 
2033 out_unlock:
2034 	if (sk_locked)
2035 		unix_state_unlock(sk);
2036 	unix_state_unlock(other);
2037 out_free:
2038 	kfree_skb(skb);
2039 out:
2040 	if (other)
2041 		sock_put(other);
2042 	scm_destroy(&scm);
2043 	return err;
2044 }
2045 
2046 /* We use paged skbs for stream sockets, and limit occupancy to 32768
2047  * bytes, and a minimum of a full page.
2048  */
2049 #define UNIX_SKB_FRAGS_SZ (PAGE_SIZE << get_order(32768))
2050 
2051 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2052 static int queue_oob(struct socket *sock, struct msghdr *msg, struct sock *other)
2053 {
2054 	struct unix_sock *ousk = unix_sk(other);
2055 	struct sk_buff *skb;
2056 	int err = 0;
2057 
2058 	skb = sock_alloc_send_skb(sock->sk, 1, msg->msg_flags & MSG_DONTWAIT, &err);
2059 
2060 	if (!skb)
2061 		return err;
2062 
2063 	skb_put(skb, 1);
2064 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, 1);
2065 
2066 	if (err) {
2067 		kfree_skb(skb);
2068 		return err;
2069 	}
2070 
2071 	unix_state_lock(other);
2072 
2073 	if (sock_flag(other, SOCK_DEAD) ||
2074 	    (other->sk_shutdown & RCV_SHUTDOWN)) {
2075 		unix_state_unlock(other);
2076 		kfree_skb(skb);
2077 		return -EPIPE;
2078 	}
2079 
2080 	maybe_add_creds(skb, sock, other);
2081 	skb_get(skb);
2082 
2083 	if (ousk->oob_skb)
2084 		consume_skb(ousk->oob_skb);
2085 
2086 	WRITE_ONCE(ousk->oob_skb, skb);
2087 
2088 	scm_stat_add(other, skb);
2089 	skb_queue_tail(&other->sk_receive_queue, skb);
2090 	sk_send_sigurg(other);
2091 	unix_state_unlock(other);
2092 	other->sk_data_ready(other);
2093 
2094 	return err;
2095 }
2096 #endif
2097 
2098 static int unix_stream_sendmsg(struct socket *sock, struct msghdr *msg,
2099 			       size_t len)
2100 {
2101 	struct sock *sk = sock->sk;
2102 	struct sock *other = NULL;
2103 	int err, size;
2104 	struct sk_buff *skb;
2105 	int sent = 0;
2106 	struct scm_cookie scm;
2107 	bool fds_sent = false;
2108 	int data_len;
2109 
2110 	wait_for_unix_gc();
2111 	err = scm_send(sock, msg, &scm, false);
2112 	if (err < 0)
2113 		return err;
2114 
2115 	err = -EOPNOTSUPP;
2116 	if (msg->msg_flags & MSG_OOB) {
2117 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2118 		if (len)
2119 			len--;
2120 		else
2121 #endif
2122 			goto out_err;
2123 	}
2124 
2125 	if (msg->msg_namelen) {
2126 		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
2127 		goto out_err;
2128 	} else {
2129 		err = -ENOTCONN;
2130 		other = unix_peer(sk);
2131 		if (!other)
2132 			goto out_err;
2133 	}
2134 
2135 	if (sk->sk_shutdown & SEND_SHUTDOWN)
2136 		goto pipe_err;
2137 
2138 	while (sent < len) {
2139 		size = len - sent;
2140 
2141 		/* Keep two messages in the pipe so it schedules better */
2142 		size = min_t(int, size, (sk->sk_sndbuf >> 1) - 64);
2143 
2144 		/* allow fallback to order-0 allocations */
2145 		size = min_t(int, size, SKB_MAX_HEAD(0) + UNIX_SKB_FRAGS_SZ);
2146 
2147 		data_len = max_t(int, 0, size - SKB_MAX_HEAD(0));
2148 
2149 		data_len = min_t(size_t, size, PAGE_ALIGN(data_len));
2150 
2151 		skb = sock_alloc_send_pskb(sk, size - data_len, data_len,
2152 					   msg->msg_flags & MSG_DONTWAIT, &err,
2153 					   get_order(UNIX_SKB_FRAGS_SZ));
2154 		if (!skb)
2155 			goto out_err;
2156 
2157 		/* Only send the fds in the first buffer */
2158 		err = unix_scm_to_skb(&scm, skb, !fds_sent);
2159 		if (err < 0) {
2160 			kfree_skb(skb);
2161 			goto out_err;
2162 		}
2163 		fds_sent = true;
2164 
2165 		skb_put(skb, size - data_len);
2166 		skb->data_len = data_len;
2167 		skb->len = size;
2168 		err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
2169 		if (err) {
2170 			kfree_skb(skb);
2171 			goto out_err;
2172 		}
2173 
2174 		unix_state_lock(other);
2175 
2176 		if (sock_flag(other, SOCK_DEAD) ||
2177 		    (other->sk_shutdown & RCV_SHUTDOWN))
2178 			goto pipe_err_free;
2179 
2180 		maybe_add_creds(skb, sock, other);
2181 		scm_stat_add(other, skb);
2182 		skb_queue_tail(&other->sk_receive_queue, skb);
2183 		unix_state_unlock(other);
2184 		other->sk_data_ready(other);
2185 		sent += size;
2186 	}
2187 
2188 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2189 	if (msg->msg_flags & MSG_OOB) {
2190 		err = queue_oob(sock, msg, other);
2191 		if (err)
2192 			goto out_err;
2193 		sent++;
2194 	}
2195 #endif
2196 
2197 	scm_destroy(&scm);
2198 
2199 	return sent;
2200 
2201 pipe_err_free:
2202 	unix_state_unlock(other);
2203 	kfree_skb(skb);
2204 pipe_err:
2205 	if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL))
2206 		send_sig(SIGPIPE, current, 0);
2207 	err = -EPIPE;
2208 out_err:
2209 	scm_destroy(&scm);
2210 	return sent ? : err;
2211 }
2212 
2213 static ssize_t unix_stream_sendpage(struct socket *socket, struct page *page,
2214 				    int offset, size_t size, int flags)
2215 {
2216 	int err;
2217 	bool send_sigpipe = false;
2218 	bool init_scm = true;
2219 	struct scm_cookie scm;
2220 	struct sock *other, *sk = socket->sk;
2221 	struct sk_buff *skb, *newskb = NULL, *tail = NULL;
2222 
2223 	if (flags & MSG_OOB)
2224 		return -EOPNOTSUPP;
2225 
2226 	other = unix_peer(sk);
2227 	if (!other || sk->sk_state != TCP_ESTABLISHED)
2228 		return -ENOTCONN;
2229 
2230 	if (false) {
2231 alloc_skb:
2232 		unix_state_unlock(other);
2233 		mutex_unlock(&unix_sk(other)->iolock);
2234 		newskb = sock_alloc_send_pskb(sk, 0, 0, flags & MSG_DONTWAIT,
2235 					      &err, 0);
2236 		if (!newskb)
2237 			goto err;
2238 	}
2239 
2240 	/* we must acquire iolock as we modify already present
2241 	 * skbs in the sk_receive_queue and mess with skb->len
2242 	 */
2243 	err = mutex_lock_interruptible(&unix_sk(other)->iolock);
2244 	if (err) {
2245 		err = flags & MSG_DONTWAIT ? -EAGAIN : -ERESTARTSYS;
2246 		goto err;
2247 	}
2248 
2249 	if (sk->sk_shutdown & SEND_SHUTDOWN) {
2250 		err = -EPIPE;
2251 		send_sigpipe = true;
2252 		goto err_unlock;
2253 	}
2254 
2255 	unix_state_lock(other);
2256 
2257 	if (sock_flag(other, SOCK_DEAD) ||
2258 	    other->sk_shutdown & RCV_SHUTDOWN) {
2259 		err = -EPIPE;
2260 		send_sigpipe = true;
2261 		goto err_state_unlock;
2262 	}
2263 
2264 	if (init_scm) {
2265 		err = maybe_init_creds(&scm, socket, other);
2266 		if (err)
2267 			goto err_state_unlock;
2268 		init_scm = false;
2269 	}
2270 
2271 	skb = skb_peek_tail(&other->sk_receive_queue);
2272 	if (tail && tail == skb) {
2273 		skb = newskb;
2274 	} else if (!skb || !unix_skb_scm_eq(skb, &scm)) {
2275 		if (newskb) {
2276 			skb = newskb;
2277 		} else {
2278 			tail = skb;
2279 			goto alloc_skb;
2280 		}
2281 	} else if (newskb) {
2282 		/* this is fast path, we don't necessarily need to
2283 		 * call to kfree_skb even though with newskb == NULL
2284 		 * this - does no harm
2285 		 */
2286 		consume_skb(newskb);
2287 		newskb = NULL;
2288 	}
2289 
2290 	if (skb_append_pagefrags(skb, page, offset, size)) {
2291 		tail = skb;
2292 		goto alloc_skb;
2293 	}
2294 
2295 	skb->len += size;
2296 	skb->data_len += size;
2297 	skb->truesize += size;
2298 	refcount_add(size, &sk->sk_wmem_alloc);
2299 
2300 	if (newskb) {
2301 		err = unix_scm_to_skb(&scm, skb, false);
2302 		if (err)
2303 			goto err_state_unlock;
2304 		spin_lock(&other->sk_receive_queue.lock);
2305 		__skb_queue_tail(&other->sk_receive_queue, newskb);
2306 		spin_unlock(&other->sk_receive_queue.lock);
2307 	}
2308 
2309 	unix_state_unlock(other);
2310 	mutex_unlock(&unix_sk(other)->iolock);
2311 
2312 	other->sk_data_ready(other);
2313 	scm_destroy(&scm);
2314 	return size;
2315 
2316 err_state_unlock:
2317 	unix_state_unlock(other);
2318 err_unlock:
2319 	mutex_unlock(&unix_sk(other)->iolock);
2320 err:
2321 	kfree_skb(newskb);
2322 	if (send_sigpipe && !(flags & MSG_NOSIGNAL))
2323 		send_sig(SIGPIPE, current, 0);
2324 	if (!init_scm)
2325 		scm_destroy(&scm);
2326 	return err;
2327 }
2328 
2329 static int unix_seqpacket_sendmsg(struct socket *sock, struct msghdr *msg,
2330 				  size_t len)
2331 {
2332 	int err;
2333 	struct sock *sk = sock->sk;
2334 
2335 	err = sock_error(sk);
2336 	if (err)
2337 		return err;
2338 
2339 	if (sk->sk_state != TCP_ESTABLISHED)
2340 		return -ENOTCONN;
2341 
2342 	if (msg->msg_namelen)
2343 		msg->msg_namelen = 0;
2344 
2345 	return unix_dgram_sendmsg(sock, msg, len);
2346 }
2347 
2348 static int unix_seqpacket_recvmsg(struct socket *sock, struct msghdr *msg,
2349 				  size_t size, int flags)
2350 {
2351 	struct sock *sk = sock->sk;
2352 
2353 	if (sk->sk_state != TCP_ESTABLISHED)
2354 		return -ENOTCONN;
2355 
2356 	return unix_dgram_recvmsg(sock, msg, size, flags);
2357 }
2358 
2359 static void unix_copy_addr(struct msghdr *msg, struct sock *sk)
2360 {
2361 	struct unix_address *addr = smp_load_acquire(&unix_sk(sk)->addr);
2362 
2363 	if (addr) {
2364 		msg->msg_namelen = addr->len;
2365 		memcpy(msg->msg_name, addr->name, addr->len);
2366 	}
2367 }
2368 
2369 int __unix_dgram_recvmsg(struct sock *sk, struct msghdr *msg, size_t size,
2370 			 int flags)
2371 {
2372 	struct scm_cookie scm;
2373 	struct socket *sock = sk->sk_socket;
2374 	struct unix_sock *u = unix_sk(sk);
2375 	struct sk_buff *skb, *last;
2376 	long timeo;
2377 	int skip;
2378 	int err;
2379 
2380 	err = -EOPNOTSUPP;
2381 	if (flags&MSG_OOB)
2382 		goto out;
2383 
2384 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2385 
2386 	do {
2387 		mutex_lock(&u->iolock);
2388 
2389 		skip = sk_peek_offset(sk, flags);
2390 		skb = __skb_try_recv_datagram(sk, &sk->sk_receive_queue, flags,
2391 					      &skip, &err, &last);
2392 		if (skb) {
2393 			if (!(flags & MSG_PEEK))
2394 				scm_stat_del(sk, skb);
2395 			break;
2396 		}
2397 
2398 		mutex_unlock(&u->iolock);
2399 
2400 		if (err != -EAGAIN)
2401 			break;
2402 	} while (timeo &&
2403 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
2404 					      &err, &timeo, last));
2405 
2406 	if (!skb) { /* implies iolock unlocked */
2407 		unix_state_lock(sk);
2408 		/* Signal EOF on disconnected non-blocking SEQPACKET socket. */
2409 		if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN &&
2410 		    (sk->sk_shutdown & RCV_SHUTDOWN))
2411 			err = 0;
2412 		unix_state_unlock(sk);
2413 		goto out;
2414 	}
2415 
2416 	if (wq_has_sleeper(&u->peer_wait))
2417 		wake_up_interruptible_sync_poll(&u->peer_wait,
2418 						EPOLLOUT | EPOLLWRNORM |
2419 						EPOLLWRBAND);
2420 
2421 	if (msg->msg_name)
2422 		unix_copy_addr(msg, skb->sk);
2423 
2424 	if (size > skb->len - skip)
2425 		size = skb->len - skip;
2426 	else if (size < skb->len - skip)
2427 		msg->msg_flags |= MSG_TRUNC;
2428 
2429 	err = skb_copy_datagram_msg(skb, skip, msg, size);
2430 	if (err)
2431 		goto out_free;
2432 
2433 	if (sock_flag(sk, SOCK_RCVTSTAMP))
2434 		__sock_recv_timestamp(msg, sk, skb);
2435 
2436 	memset(&scm, 0, sizeof(scm));
2437 
2438 	scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2439 	unix_set_secdata(&scm, skb);
2440 
2441 	if (!(flags & MSG_PEEK)) {
2442 		if (UNIXCB(skb).fp)
2443 			unix_detach_fds(&scm, skb);
2444 
2445 		sk_peek_offset_bwd(sk, skb->len);
2446 	} else {
2447 		/* It is questionable: on PEEK we could:
2448 		   - do not return fds - good, but too simple 8)
2449 		   - return fds, and do not return them on read (old strategy,
2450 		     apparently wrong)
2451 		   - clone fds (I chose it for now, it is the most universal
2452 		     solution)
2453 
2454 		   POSIX 1003.1g does not actually define this clearly
2455 		   at all. POSIX 1003.1g doesn't define a lot of things
2456 		   clearly however!
2457 
2458 		*/
2459 
2460 		sk_peek_offset_fwd(sk, size);
2461 
2462 		if (UNIXCB(skb).fp)
2463 			unix_peek_fds(&scm, skb);
2464 	}
2465 	err = (flags & MSG_TRUNC) ? skb->len - skip : size;
2466 
2467 	scm_recv(sock, msg, &scm, flags);
2468 
2469 out_free:
2470 	skb_free_datagram(sk, skb);
2471 	mutex_unlock(&u->iolock);
2472 out:
2473 	return err;
2474 }
2475 
2476 static int unix_dgram_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
2477 			      int flags)
2478 {
2479 	struct sock *sk = sock->sk;
2480 
2481 #ifdef CONFIG_BPF_SYSCALL
2482 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2483 
2484 	if (prot != &unix_dgram_proto)
2485 		return prot->recvmsg(sk, msg, size, flags, NULL);
2486 #endif
2487 	return __unix_dgram_recvmsg(sk, msg, size, flags);
2488 }
2489 
2490 static int unix_read_sock(struct sock *sk, read_descriptor_t *desc,
2491 			  sk_read_actor_t recv_actor)
2492 {
2493 	int copied = 0;
2494 
2495 	while (1) {
2496 		struct unix_sock *u = unix_sk(sk);
2497 		struct sk_buff *skb;
2498 		int used, err;
2499 
2500 		mutex_lock(&u->iolock);
2501 		skb = skb_recv_datagram(sk, MSG_DONTWAIT, &err);
2502 		mutex_unlock(&u->iolock);
2503 		if (!skb)
2504 			return err;
2505 
2506 		used = recv_actor(desc, skb, 0, skb->len);
2507 		if (used <= 0) {
2508 			if (!copied)
2509 				copied = used;
2510 			kfree_skb(skb);
2511 			break;
2512 		} else if (used <= skb->len) {
2513 			copied += used;
2514 		}
2515 
2516 		kfree_skb(skb);
2517 		if (!desc->count)
2518 			break;
2519 	}
2520 
2521 	return copied;
2522 }
2523 
2524 /*
2525  *	Sleep until more data has arrived. But check for races..
2526  */
2527 static long unix_stream_data_wait(struct sock *sk, long timeo,
2528 				  struct sk_buff *last, unsigned int last_len,
2529 				  bool freezable)
2530 {
2531 	struct sk_buff *tail;
2532 	DEFINE_WAIT(wait);
2533 
2534 	unix_state_lock(sk);
2535 
2536 	for (;;) {
2537 		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
2538 
2539 		tail = skb_peek_tail(&sk->sk_receive_queue);
2540 		if (tail != last ||
2541 		    (tail && tail->len != last_len) ||
2542 		    sk->sk_err ||
2543 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2544 		    signal_pending(current) ||
2545 		    !timeo)
2546 			break;
2547 
2548 		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2549 		unix_state_unlock(sk);
2550 		if (freezable)
2551 			timeo = freezable_schedule_timeout(timeo);
2552 		else
2553 			timeo = schedule_timeout(timeo);
2554 		unix_state_lock(sk);
2555 
2556 		if (sock_flag(sk, SOCK_DEAD))
2557 			break;
2558 
2559 		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
2560 	}
2561 
2562 	finish_wait(sk_sleep(sk), &wait);
2563 	unix_state_unlock(sk);
2564 	return timeo;
2565 }
2566 
2567 static unsigned int unix_skb_len(const struct sk_buff *skb)
2568 {
2569 	return skb->len - UNIXCB(skb).consumed;
2570 }
2571 
2572 struct unix_stream_read_state {
2573 	int (*recv_actor)(struct sk_buff *, int, int,
2574 			  struct unix_stream_read_state *);
2575 	struct socket *socket;
2576 	struct msghdr *msg;
2577 	struct pipe_inode_info *pipe;
2578 	size_t size;
2579 	int flags;
2580 	unsigned int splice_flags;
2581 };
2582 
2583 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2584 static int unix_stream_recv_urg(struct unix_stream_read_state *state)
2585 {
2586 	struct socket *sock = state->socket;
2587 	struct sock *sk = sock->sk;
2588 	struct unix_sock *u = unix_sk(sk);
2589 	int chunk = 1;
2590 	struct sk_buff *oob_skb;
2591 
2592 	mutex_lock(&u->iolock);
2593 	unix_state_lock(sk);
2594 
2595 	if (sock_flag(sk, SOCK_URGINLINE) || !u->oob_skb) {
2596 		unix_state_unlock(sk);
2597 		mutex_unlock(&u->iolock);
2598 		return -EINVAL;
2599 	}
2600 
2601 	oob_skb = u->oob_skb;
2602 
2603 	if (!(state->flags & MSG_PEEK))
2604 		WRITE_ONCE(u->oob_skb, NULL);
2605 
2606 	unix_state_unlock(sk);
2607 
2608 	chunk = state->recv_actor(oob_skb, 0, chunk, state);
2609 
2610 	if (!(state->flags & MSG_PEEK)) {
2611 		UNIXCB(oob_skb).consumed += 1;
2612 		kfree_skb(oob_skb);
2613 	}
2614 
2615 	mutex_unlock(&u->iolock);
2616 
2617 	if (chunk < 0)
2618 		return -EFAULT;
2619 
2620 	state->msg->msg_flags |= MSG_OOB;
2621 	return 1;
2622 }
2623 
2624 static struct sk_buff *manage_oob(struct sk_buff *skb, struct sock *sk,
2625 				  int flags, int copied)
2626 {
2627 	struct unix_sock *u = unix_sk(sk);
2628 
2629 	if (!unix_skb_len(skb) && !(flags & MSG_PEEK)) {
2630 		skb_unlink(skb, &sk->sk_receive_queue);
2631 		consume_skb(skb);
2632 		skb = NULL;
2633 	} else {
2634 		if (skb == u->oob_skb) {
2635 			if (copied) {
2636 				skb = NULL;
2637 			} else if (sock_flag(sk, SOCK_URGINLINE)) {
2638 				if (!(flags & MSG_PEEK)) {
2639 					WRITE_ONCE(u->oob_skb, NULL);
2640 					consume_skb(skb);
2641 				}
2642 			} else if (!(flags & MSG_PEEK)) {
2643 				skb_unlink(skb, &sk->sk_receive_queue);
2644 				consume_skb(skb);
2645 				skb = skb_peek(&sk->sk_receive_queue);
2646 			}
2647 		}
2648 	}
2649 	return skb;
2650 }
2651 #endif
2652 
2653 static int unix_stream_read_sock(struct sock *sk, read_descriptor_t *desc,
2654 				 sk_read_actor_t recv_actor)
2655 {
2656 	if (unlikely(sk->sk_state != TCP_ESTABLISHED))
2657 		return -ENOTCONN;
2658 
2659 	return unix_read_sock(sk, desc, recv_actor);
2660 }
2661 
2662 static int unix_stream_read_generic(struct unix_stream_read_state *state,
2663 				    bool freezable)
2664 {
2665 	struct scm_cookie scm;
2666 	struct socket *sock = state->socket;
2667 	struct sock *sk = sock->sk;
2668 	struct unix_sock *u = unix_sk(sk);
2669 	int copied = 0;
2670 	int flags = state->flags;
2671 	int noblock = flags & MSG_DONTWAIT;
2672 	bool check_creds = false;
2673 	int target;
2674 	int err = 0;
2675 	long timeo;
2676 	int skip;
2677 	size_t size = state->size;
2678 	unsigned int last_len;
2679 
2680 	if (unlikely(sk->sk_state != TCP_ESTABLISHED)) {
2681 		err = -EINVAL;
2682 		goto out;
2683 	}
2684 
2685 	if (unlikely(flags & MSG_OOB)) {
2686 		err = -EOPNOTSUPP;
2687 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2688 		err = unix_stream_recv_urg(state);
2689 #endif
2690 		goto out;
2691 	}
2692 
2693 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, size);
2694 	timeo = sock_rcvtimeo(sk, noblock);
2695 
2696 	memset(&scm, 0, sizeof(scm));
2697 
2698 	/* Lock the socket to prevent queue disordering
2699 	 * while sleeps in memcpy_tomsg
2700 	 */
2701 	mutex_lock(&u->iolock);
2702 
2703 	skip = max(sk_peek_offset(sk, flags), 0);
2704 
2705 	do {
2706 		int chunk;
2707 		bool drop_skb;
2708 		struct sk_buff *skb, *last;
2709 
2710 redo:
2711 		unix_state_lock(sk);
2712 		if (sock_flag(sk, SOCK_DEAD)) {
2713 			err = -ECONNRESET;
2714 			goto unlock;
2715 		}
2716 		last = skb = skb_peek(&sk->sk_receive_queue);
2717 		last_len = last ? last->len : 0;
2718 
2719 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
2720 		if (skb) {
2721 			skb = manage_oob(skb, sk, flags, copied);
2722 			if (!skb) {
2723 				unix_state_unlock(sk);
2724 				if (copied)
2725 					break;
2726 				goto redo;
2727 			}
2728 		}
2729 #endif
2730 again:
2731 		if (skb == NULL) {
2732 			if (copied >= target)
2733 				goto unlock;
2734 
2735 			/*
2736 			 *	POSIX 1003.1g mandates this order.
2737 			 */
2738 
2739 			err = sock_error(sk);
2740 			if (err)
2741 				goto unlock;
2742 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2743 				goto unlock;
2744 
2745 			unix_state_unlock(sk);
2746 			if (!timeo) {
2747 				err = -EAGAIN;
2748 				break;
2749 			}
2750 
2751 			mutex_unlock(&u->iolock);
2752 
2753 			timeo = unix_stream_data_wait(sk, timeo, last,
2754 						      last_len, freezable);
2755 
2756 			if (signal_pending(current)) {
2757 				err = sock_intr_errno(timeo);
2758 				scm_destroy(&scm);
2759 				goto out;
2760 			}
2761 
2762 			mutex_lock(&u->iolock);
2763 			goto redo;
2764 unlock:
2765 			unix_state_unlock(sk);
2766 			break;
2767 		}
2768 
2769 		while (skip >= unix_skb_len(skb)) {
2770 			skip -= unix_skb_len(skb);
2771 			last = skb;
2772 			last_len = skb->len;
2773 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2774 			if (!skb)
2775 				goto again;
2776 		}
2777 
2778 		unix_state_unlock(sk);
2779 
2780 		if (check_creds) {
2781 			/* Never glue messages from different writers */
2782 			if (!unix_skb_scm_eq(skb, &scm))
2783 				break;
2784 		} else if (test_bit(SOCK_PASSCRED, &sock->flags)) {
2785 			/* Copy credentials */
2786 			scm_set_cred(&scm, UNIXCB(skb).pid, UNIXCB(skb).uid, UNIXCB(skb).gid);
2787 			unix_set_secdata(&scm, skb);
2788 			check_creds = true;
2789 		}
2790 
2791 		/* Copy address just once */
2792 		if (state->msg && state->msg->msg_name) {
2793 			DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr,
2794 					 state->msg->msg_name);
2795 			unix_copy_addr(state->msg, skb->sk);
2796 			sunaddr = NULL;
2797 		}
2798 
2799 		chunk = min_t(unsigned int, unix_skb_len(skb) - skip, size);
2800 		skb_get(skb);
2801 		chunk = state->recv_actor(skb, skip, chunk, state);
2802 		drop_skb = !unix_skb_len(skb);
2803 		/* skb is only safe to use if !drop_skb */
2804 		consume_skb(skb);
2805 		if (chunk < 0) {
2806 			if (copied == 0)
2807 				copied = -EFAULT;
2808 			break;
2809 		}
2810 		copied += chunk;
2811 		size -= chunk;
2812 
2813 		if (drop_skb) {
2814 			/* the skb was touched by a concurrent reader;
2815 			 * we should not expect anything from this skb
2816 			 * anymore and assume it invalid - we can be
2817 			 * sure it was dropped from the socket queue
2818 			 *
2819 			 * let's report a short read
2820 			 */
2821 			err = 0;
2822 			break;
2823 		}
2824 
2825 		/* Mark read part of skb as used */
2826 		if (!(flags & MSG_PEEK)) {
2827 			UNIXCB(skb).consumed += chunk;
2828 
2829 			sk_peek_offset_bwd(sk, chunk);
2830 
2831 			if (UNIXCB(skb).fp) {
2832 				scm_stat_del(sk, skb);
2833 				unix_detach_fds(&scm, skb);
2834 			}
2835 
2836 			if (unix_skb_len(skb))
2837 				break;
2838 
2839 			skb_unlink(skb, &sk->sk_receive_queue);
2840 			consume_skb(skb);
2841 
2842 			if (scm.fp)
2843 				break;
2844 		} else {
2845 			/* It is questionable, see note in unix_dgram_recvmsg.
2846 			 */
2847 			if (UNIXCB(skb).fp)
2848 				unix_peek_fds(&scm, skb);
2849 
2850 			sk_peek_offset_fwd(sk, chunk);
2851 
2852 			if (UNIXCB(skb).fp)
2853 				break;
2854 
2855 			skip = 0;
2856 			last = skb;
2857 			last_len = skb->len;
2858 			unix_state_lock(sk);
2859 			skb = skb_peek_next(skb, &sk->sk_receive_queue);
2860 			if (skb)
2861 				goto again;
2862 			unix_state_unlock(sk);
2863 			break;
2864 		}
2865 	} while (size);
2866 
2867 	mutex_unlock(&u->iolock);
2868 	if (state->msg)
2869 		scm_recv(sock, state->msg, &scm, flags);
2870 	else
2871 		scm_destroy(&scm);
2872 out:
2873 	return copied ? : err;
2874 }
2875 
2876 static int unix_stream_read_actor(struct sk_buff *skb,
2877 				  int skip, int chunk,
2878 				  struct unix_stream_read_state *state)
2879 {
2880 	int ret;
2881 
2882 	ret = skb_copy_datagram_msg(skb, UNIXCB(skb).consumed + skip,
2883 				    state->msg, chunk);
2884 	return ret ?: chunk;
2885 }
2886 
2887 int __unix_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2888 			  size_t size, int flags)
2889 {
2890 	struct unix_stream_read_state state = {
2891 		.recv_actor = unix_stream_read_actor,
2892 		.socket = sk->sk_socket,
2893 		.msg = msg,
2894 		.size = size,
2895 		.flags = flags
2896 	};
2897 
2898 	return unix_stream_read_generic(&state, true);
2899 }
2900 
2901 static int unix_stream_recvmsg(struct socket *sock, struct msghdr *msg,
2902 			       size_t size, int flags)
2903 {
2904 	struct unix_stream_read_state state = {
2905 		.recv_actor = unix_stream_read_actor,
2906 		.socket = sock,
2907 		.msg = msg,
2908 		.size = size,
2909 		.flags = flags
2910 	};
2911 
2912 #ifdef CONFIG_BPF_SYSCALL
2913 	struct sock *sk = sock->sk;
2914 	const struct proto *prot = READ_ONCE(sk->sk_prot);
2915 
2916 	if (prot != &unix_stream_proto)
2917 		return prot->recvmsg(sk, msg, size, flags, NULL);
2918 #endif
2919 	return unix_stream_read_generic(&state, true);
2920 }
2921 
2922 static int unix_stream_splice_actor(struct sk_buff *skb,
2923 				    int skip, int chunk,
2924 				    struct unix_stream_read_state *state)
2925 {
2926 	return skb_splice_bits(skb, state->socket->sk,
2927 			       UNIXCB(skb).consumed + skip,
2928 			       state->pipe, chunk, state->splice_flags);
2929 }
2930 
2931 static ssize_t unix_stream_splice_read(struct socket *sock,  loff_t *ppos,
2932 				       struct pipe_inode_info *pipe,
2933 				       size_t size, unsigned int flags)
2934 {
2935 	struct unix_stream_read_state state = {
2936 		.recv_actor = unix_stream_splice_actor,
2937 		.socket = sock,
2938 		.pipe = pipe,
2939 		.size = size,
2940 		.splice_flags = flags,
2941 	};
2942 
2943 	if (unlikely(*ppos))
2944 		return -ESPIPE;
2945 
2946 	if (sock->file->f_flags & O_NONBLOCK ||
2947 	    flags & SPLICE_F_NONBLOCK)
2948 		state.flags = MSG_DONTWAIT;
2949 
2950 	return unix_stream_read_generic(&state, false);
2951 }
2952 
2953 static int unix_shutdown(struct socket *sock, int mode)
2954 {
2955 	struct sock *sk = sock->sk;
2956 	struct sock *other;
2957 
2958 	if (mode < SHUT_RD || mode > SHUT_RDWR)
2959 		return -EINVAL;
2960 	/* This maps:
2961 	 * SHUT_RD   (0) -> RCV_SHUTDOWN  (1)
2962 	 * SHUT_WR   (1) -> SEND_SHUTDOWN (2)
2963 	 * SHUT_RDWR (2) -> SHUTDOWN_MASK (3)
2964 	 */
2965 	++mode;
2966 
2967 	unix_state_lock(sk);
2968 	sk->sk_shutdown |= mode;
2969 	other = unix_peer(sk);
2970 	if (other)
2971 		sock_hold(other);
2972 	unix_state_unlock(sk);
2973 	sk->sk_state_change(sk);
2974 
2975 	if (other &&
2976 		(sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) {
2977 
2978 		int peer_mode = 0;
2979 		const struct proto *prot = READ_ONCE(other->sk_prot);
2980 
2981 		if (prot->unhash)
2982 			prot->unhash(other);
2983 		if (mode&RCV_SHUTDOWN)
2984 			peer_mode |= SEND_SHUTDOWN;
2985 		if (mode&SEND_SHUTDOWN)
2986 			peer_mode |= RCV_SHUTDOWN;
2987 		unix_state_lock(other);
2988 		other->sk_shutdown |= peer_mode;
2989 		unix_state_unlock(other);
2990 		other->sk_state_change(other);
2991 		if (peer_mode == SHUTDOWN_MASK)
2992 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP);
2993 		else if (peer_mode & RCV_SHUTDOWN)
2994 			sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN);
2995 	}
2996 	if (other)
2997 		sock_put(other);
2998 
2999 	return 0;
3000 }
3001 
3002 long unix_inq_len(struct sock *sk)
3003 {
3004 	struct sk_buff *skb;
3005 	long amount = 0;
3006 
3007 	if (sk->sk_state == TCP_LISTEN)
3008 		return -EINVAL;
3009 
3010 	spin_lock(&sk->sk_receive_queue.lock);
3011 	if (sk->sk_type == SOCK_STREAM ||
3012 	    sk->sk_type == SOCK_SEQPACKET) {
3013 		skb_queue_walk(&sk->sk_receive_queue, skb)
3014 			amount += unix_skb_len(skb);
3015 	} else {
3016 		skb = skb_peek(&sk->sk_receive_queue);
3017 		if (skb)
3018 			amount = skb->len;
3019 	}
3020 	spin_unlock(&sk->sk_receive_queue.lock);
3021 
3022 	return amount;
3023 }
3024 EXPORT_SYMBOL_GPL(unix_inq_len);
3025 
3026 long unix_outq_len(struct sock *sk)
3027 {
3028 	return sk_wmem_alloc_get(sk);
3029 }
3030 EXPORT_SYMBOL_GPL(unix_outq_len);
3031 
3032 static int unix_open_file(struct sock *sk)
3033 {
3034 	struct path path;
3035 	struct file *f;
3036 	int fd;
3037 
3038 	if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
3039 		return -EPERM;
3040 
3041 	if (!smp_load_acquire(&unix_sk(sk)->addr))
3042 		return -ENOENT;
3043 
3044 	path = unix_sk(sk)->path;
3045 	if (!path.dentry)
3046 		return -ENOENT;
3047 
3048 	path_get(&path);
3049 
3050 	fd = get_unused_fd_flags(O_CLOEXEC);
3051 	if (fd < 0)
3052 		goto out;
3053 
3054 	f = dentry_open(&path, O_PATH, current_cred());
3055 	if (IS_ERR(f)) {
3056 		put_unused_fd(fd);
3057 		fd = PTR_ERR(f);
3058 		goto out;
3059 	}
3060 
3061 	fd_install(fd, f);
3062 out:
3063 	path_put(&path);
3064 
3065 	return fd;
3066 }
3067 
3068 static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3069 {
3070 	struct sock *sk = sock->sk;
3071 	long amount = 0;
3072 	int err;
3073 
3074 	switch (cmd) {
3075 	case SIOCOUTQ:
3076 		amount = unix_outq_len(sk);
3077 		err = put_user(amount, (int __user *)arg);
3078 		break;
3079 	case SIOCINQ:
3080 		amount = unix_inq_len(sk);
3081 		if (amount < 0)
3082 			err = amount;
3083 		else
3084 			err = put_user(amount, (int __user *)arg);
3085 		break;
3086 	case SIOCUNIXFILE:
3087 		err = unix_open_file(sk);
3088 		break;
3089 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3090 	case SIOCATMARK:
3091 		{
3092 			struct sk_buff *skb;
3093 			int answ = 0;
3094 
3095 			skb = skb_peek(&sk->sk_receive_queue);
3096 			if (skb && skb == READ_ONCE(unix_sk(sk)->oob_skb))
3097 				answ = 1;
3098 			err = put_user(answ, (int __user *)arg);
3099 		}
3100 		break;
3101 #endif
3102 	default:
3103 		err = -ENOIOCTLCMD;
3104 		break;
3105 	}
3106 	return err;
3107 }
3108 
3109 #ifdef CONFIG_COMPAT
3110 static int unix_compat_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3111 {
3112 	return unix_ioctl(sock, cmd, (unsigned long)compat_ptr(arg));
3113 }
3114 #endif
3115 
3116 static __poll_t unix_poll(struct file *file, struct socket *sock, poll_table *wait)
3117 {
3118 	struct sock *sk = sock->sk;
3119 	__poll_t mask;
3120 
3121 	sock_poll_wait(file, sock, wait);
3122 	mask = 0;
3123 
3124 	/* exceptional events? */
3125 	if (sk->sk_err)
3126 		mask |= EPOLLERR;
3127 	if (sk->sk_shutdown == SHUTDOWN_MASK)
3128 		mask |= EPOLLHUP;
3129 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3130 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3131 
3132 	/* readable? */
3133 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3134 		mask |= EPOLLIN | EPOLLRDNORM;
3135 	if (sk_is_readable(sk))
3136 		mask |= EPOLLIN | EPOLLRDNORM;
3137 #if IS_ENABLED(CONFIG_AF_UNIX_OOB)
3138 	if (READ_ONCE(unix_sk(sk)->oob_skb))
3139 		mask |= EPOLLPRI;
3140 #endif
3141 
3142 	/* Connection-based need to check for termination and startup */
3143 	if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) &&
3144 	    sk->sk_state == TCP_CLOSE)
3145 		mask |= EPOLLHUP;
3146 
3147 	/*
3148 	 * we set writable also when the other side has shut down the
3149 	 * connection. This prevents stuck sockets.
3150 	 */
3151 	if (unix_writable(sk))
3152 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3153 
3154 	return mask;
3155 }
3156 
3157 static __poll_t unix_dgram_poll(struct file *file, struct socket *sock,
3158 				    poll_table *wait)
3159 {
3160 	struct sock *sk = sock->sk, *other;
3161 	unsigned int writable;
3162 	__poll_t mask;
3163 
3164 	sock_poll_wait(file, sock, wait);
3165 	mask = 0;
3166 
3167 	/* exceptional events? */
3168 	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
3169 		mask |= EPOLLERR |
3170 			(sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
3171 
3172 	if (sk->sk_shutdown & RCV_SHUTDOWN)
3173 		mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
3174 	if (sk->sk_shutdown == SHUTDOWN_MASK)
3175 		mask |= EPOLLHUP;
3176 
3177 	/* readable? */
3178 	if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
3179 		mask |= EPOLLIN | EPOLLRDNORM;
3180 	if (sk_is_readable(sk))
3181 		mask |= EPOLLIN | EPOLLRDNORM;
3182 
3183 	/* Connection-based need to check for termination and startup */
3184 	if (sk->sk_type == SOCK_SEQPACKET) {
3185 		if (sk->sk_state == TCP_CLOSE)
3186 			mask |= EPOLLHUP;
3187 		/* connection hasn't started yet? */
3188 		if (sk->sk_state == TCP_SYN_SENT)
3189 			return mask;
3190 	}
3191 
3192 	/* No write status requested, avoid expensive OUT tests. */
3193 	if (!(poll_requested_events(wait) & (EPOLLWRBAND|EPOLLWRNORM|EPOLLOUT)))
3194 		return mask;
3195 
3196 	writable = unix_writable(sk);
3197 	if (writable) {
3198 		unix_state_lock(sk);
3199 
3200 		other = unix_peer(sk);
3201 		if (other && unix_peer(other) != sk &&
3202 		    unix_recvq_full_lockless(other) &&
3203 		    unix_dgram_peer_wake_me(sk, other))
3204 			writable = 0;
3205 
3206 		unix_state_unlock(sk);
3207 	}
3208 
3209 	if (writable)
3210 		mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
3211 	else
3212 		sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
3213 
3214 	return mask;
3215 }
3216 
3217 #ifdef CONFIG_PROC_FS
3218 
3219 #define BUCKET_SPACE (BITS_PER_LONG - (UNIX_HASH_BITS + 1) - 1)
3220 
3221 #define get_bucket(x) ((x) >> BUCKET_SPACE)
3222 #define get_offset(x) ((x) & ((1UL << BUCKET_SPACE) - 1))
3223 #define set_bucket_offset(b, o) ((b) << BUCKET_SPACE | (o))
3224 
3225 static struct sock *unix_from_bucket(struct seq_file *seq, loff_t *pos)
3226 {
3227 	unsigned long offset = get_offset(*pos);
3228 	unsigned long bucket = get_bucket(*pos);
3229 	struct sock *sk;
3230 	unsigned long count = 0;
3231 
3232 	for (sk = sk_head(&unix_socket_table[bucket]); sk; sk = sk_next(sk)) {
3233 		if (sock_net(sk) != seq_file_net(seq))
3234 			continue;
3235 		if (++count == offset)
3236 			break;
3237 	}
3238 
3239 	return sk;
3240 }
3241 
3242 static struct sock *unix_get_first(struct seq_file *seq, loff_t *pos)
3243 {
3244 	unsigned long bucket = get_bucket(*pos);
3245 	struct sock *sk;
3246 
3247 	while (bucket < ARRAY_SIZE(unix_socket_table)) {
3248 		spin_lock(&unix_table_locks[bucket]);
3249 
3250 		sk = unix_from_bucket(seq, pos);
3251 		if (sk)
3252 			return sk;
3253 
3254 		spin_unlock(&unix_table_locks[bucket]);
3255 
3256 		*pos = set_bucket_offset(++bucket, 1);
3257 	}
3258 
3259 	return NULL;
3260 }
3261 
3262 static struct sock *unix_get_next(struct seq_file *seq, struct sock *sk,
3263 				  loff_t *pos)
3264 {
3265 	unsigned long bucket = get_bucket(*pos);
3266 
3267 	for (sk = sk_next(sk); sk; sk = sk_next(sk))
3268 		if (sock_net(sk) == seq_file_net(seq))
3269 			return sk;
3270 
3271 	spin_unlock(&unix_table_locks[bucket]);
3272 
3273 	*pos = set_bucket_offset(++bucket, 1);
3274 
3275 	return unix_get_first(seq, pos);
3276 }
3277 
3278 static void *unix_seq_start(struct seq_file *seq, loff_t *pos)
3279 {
3280 	if (!*pos)
3281 		return SEQ_START_TOKEN;
3282 
3283 	return unix_get_first(seq, pos);
3284 }
3285 
3286 static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3287 {
3288 	++*pos;
3289 
3290 	if (v == SEQ_START_TOKEN)
3291 		return unix_get_first(seq, pos);
3292 
3293 	return unix_get_next(seq, v, pos);
3294 }
3295 
3296 static void unix_seq_stop(struct seq_file *seq, void *v)
3297 {
3298 	struct sock *sk = v;
3299 
3300 	if (sk)
3301 		spin_unlock(&unix_table_locks[sk->sk_hash]);
3302 }
3303 
3304 static int unix_seq_show(struct seq_file *seq, void *v)
3305 {
3306 
3307 	if (v == SEQ_START_TOKEN)
3308 		seq_puts(seq, "Num       RefCount Protocol Flags    Type St "
3309 			 "Inode Path\n");
3310 	else {
3311 		struct sock *s = v;
3312 		struct unix_sock *u = unix_sk(s);
3313 		unix_state_lock(s);
3314 
3315 		seq_printf(seq, "%pK: %08X %08X %08X %04X %02X %5lu",
3316 			s,
3317 			refcount_read(&s->sk_refcnt),
3318 			0,
3319 			s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0,
3320 			s->sk_type,
3321 			s->sk_socket ?
3322 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) :
3323 			(s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING),
3324 			sock_i_ino(s));
3325 
3326 		if (u->addr) {	// under unix_table_locks here
3327 			int i, len;
3328 			seq_putc(seq, ' ');
3329 
3330 			i = 0;
3331 			len = u->addr->len -
3332 				offsetof(struct sockaddr_un, sun_path);
3333 			if (u->addr->name->sun_path[0]) {
3334 				len--;
3335 			} else {
3336 				seq_putc(seq, '@');
3337 				i++;
3338 			}
3339 			for ( ; i < len; i++)
3340 				seq_putc(seq, u->addr->name->sun_path[i] ?:
3341 					 '@');
3342 		}
3343 		unix_state_unlock(s);
3344 		seq_putc(seq, '\n');
3345 	}
3346 
3347 	return 0;
3348 }
3349 
3350 static const struct seq_operations unix_seq_ops = {
3351 	.start  = unix_seq_start,
3352 	.next   = unix_seq_next,
3353 	.stop   = unix_seq_stop,
3354 	.show   = unix_seq_show,
3355 };
3356 
3357 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL)
3358 struct bpf_unix_iter_state {
3359 	struct seq_net_private p;
3360 	unsigned int cur_sk;
3361 	unsigned int end_sk;
3362 	unsigned int max_sk;
3363 	struct sock **batch;
3364 	bool st_bucket_done;
3365 };
3366 
3367 struct bpf_iter__unix {
3368 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3369 	__bpf_md_ptr(struct unix_sock *, unix_sk);
3370 	uid_t uid __aligned(8);
3371 };
3372 
3373 static int unix_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3374 			      struct unix_sock *unix_sk, uid_t uid)
3375 {
3376 	struct bpf_iter__unix ctx;
3377 
3378 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3379 	ctx.meta = meta;
3380 	ctx.unix_sk = unix_sk;
3381 	ctx.uid = uid;
3382 	return bpf_iter_run_prog(prog, &ctx);
3383 }
3384 
3385 static int bpf_iter_unix_hold_batch(struct seq_file *seq, struct sock *start_sk)
3386 
3387 {
3388 	struct bpf_unix_iter_state *iter = seq->private;
3389 	unsigned int expected = 1;
3390 	struct sock *sk;
3391 
3392 	sock_hold(start_sk);
3393 	iter->batch[iter->end_sk++] = start_sk;
3394 
3395 	for (sk = sk_next(start_sk); sk; sk = sk_next(sk)) {
3396 		if (sock_net(sk) != seq_file_net(seq))
3397 			continue;
3398 
3399 		if (iter->end_sk < iter->max_sk) {
3400 			sock_hold(sk);
3401 			iter->batch[iter->end_sk++] = sk;
3402 		}
3403 
3404 		expected++;
3405 	}
3406 
3407 	spin_unlock(&unix_table_locks[start_sk->sk_hash]);
3408 
3409 	return expected;
3410 }
3411 
3412 static void bpf_iter_unix_put_batch(struct bpf_unix_iter_state *iter)
3413 {
3414 	while (iter->cur_sk < iter->end_sk)
3415 		sock_put(iter->batch[iter->cur_sk++]);
3416 }
3417 
3418 static int bpf_iter_unix_realloc_batch(struct bpf_unix_iter_state *iter,
3419 				       unsigned int new_batch_sz)
3420 {
3421 	struct sock **new_batch;
3422 
3423 	new_batch = kvmalloc(sizeof(*new_batch) * new_batch_sz,
3424 			     GFP_USER | __GFP_NOWARN);
3425 	if (!new_batch)
3426 		return -ENOMEM;
3427 
3428 	bpf_iter_unix_put_batch(iter);
3429 	kvfree(iter->batch);
3430 	iter->batch = new_batch;
3431 	iter->max_sk = new_batch_sz;
3432 
3433 	return 0;
3434 }
3435 
3436 static struct sock *bpf_iter_unix_batch(struct seq_file *seq,
3437 					loff_t *pos)
3438 {
3439 	struct bpf_unix_iter_state *iter = seq->private;
3440 	unsigned int expected;
3441 	bool resized = false;
3442 	struct sock *sk;
3443 
3444 	if (iter->st_bucket_done)
3445 		*pos = set_bucket_offset(get_bucket(*pos) + 1, 1);
3446 
3447 again:
3448 	/* Get a new batch */
3449 	iter->cur_sk = 0;
3450 	iter->end_sk = 0;
3451 
3452 	sk = unix_get_first(seq, pos);
3453 	if (!sk)
3454 		return NULL; /* Done */
3455 
3456 	expected = bpf_iter_unix_hold_batch(seq, sk);
3457 
3458 	if (iter->end_sk == expected) {
3459 		iter->st_bucket_done = true;
3460 		return sk;
3461 	}
3462 
3463 	if (!resized && !bpf_iter_unix_realloc_batch(iter, expected * 3 / 2)) {
3464 		resized = true;
3465 		goto again;
3466 	}
3467 
3468 	return sk;
3469 }
3470 
3471 static void *bpf_iter_unix_seq_start(struct seq_file *seq, loff_t *pos)
3472 {
3473 	if (!*pos)
3474 		return SEQ_START_TOKEN;
3475 
3476 	/* bpf iter does not support lseek, so it always
3477 	 * continue from where it was stop()-ped.
3478 	 */
3479 	return bpf_iter_unix_batch(seq, pos);
3480 }
3481 
3482 static void *bpf_iter_unix_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3483 {
3484 	struct bpf_unix_iter_state *iter = seq->private;
3485 	struct sock *sk;
3486 
3487 	/* Whenever seq_next() is called, the iter->cur_sk is
3488 	 * done with seq_show(), so advance to the next sk in
3489 	 * the batch.
3490 	 */
3491 	if (iter->cur_sk < iter->end_sk)
3492 		sock_put(iter->batch[iter->cur_sk++]);
3493 
3494 	++*pos;
3495 
3496 	if (iter->cur_sk < iter->end_sk)
3497 		sk = iter->batch[iter->cur_sk];
3498 	else
3499 		sk = bpf_iter_unix_batch(seq, pos);
3500 
3501 	return sk;
3502 }
3503 
3504 static int bpf_iter_unix_seq_show(struct seq_file *seq, void *v)
3505 {
3506 	struct bpf_iter_meta meta;
3507 	struct bpf_prog *prog;
3508 	struct sock *sk = v;
3509 	uid_t uid;
3510 	bool slow;
3511 	int ret;
3512 
3513 	if (v == SEQ_START_TOKEN)
3514 		return 0;
3515 
3516 	slow = lock_sock_fast(sk);
3517 
3518 	if (unlikely(sk_unhashed(sk))) {
3519 		ret = SEQ_SKIP;
3520 		goto unlock;
3521 	}
3522 
3523 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3524 	meta.seq = seq;
3525 	prog = bpf_iter_get_info(&meta, false);
3526 	ret = unix_prog_seq_show(prog, &meta, v, uid);
3527 unlock:
3528 	unlock_sock_fast(sk, slow);
3529 	return ret;
3530 }
3531 
3532 static void bpf_iter_unix_seq_stop(struct seq_file *seq, void *v)
3533 {
3534 	struct bpf_unix_iter_state *iter = seq->private;
3535 	struct bpf_iter_meta meta;
3536 	struct bpf_prog *prog;
3537 
3538 	if (!v) {
3539 		meta.seq = seq;
3540 		prog = bpf_iter_get_info(&meta, true);
3541 		if (prog)
3542 			(void)unix_prog_seq_show(prog, &meta, v, 0);
3543 	}
3544 
3545 	if (iter->cur_sk < iter->end_sk)
3546 		bpf_iter_unix_put_batch(iter);
3547 }
3548 
3549 static const struct seq_operations bpf_iter_unix_seq_ops = {
3550 	.start	= bpf_iter_unix_seq_start,
3551 	.next	= bpf_iter_unix_seq_next,
3552 	.stop	= bpf_iter_unix_seq_stop,
3553 	.show	= bpf_iter_unix_seq_show,
3554 };
3555 #endif
3556 #endif
3557 
3558 static const struct net_proto_family unix_family_ops = {
3559 	.family = PF_UNIX,
3560 	.create = unix_create,
3561 	.owner	= THIS_MODULE,
3562 };
3563 
3564 
3565 static int __net_init unix_net_init(struct net *net)
3566 {
3567 	int error = -ENOMEM;
3568 
3569 	net->unx.sysctl_max_dgram_qlen = 10;
3570 	if (unix_sysctl_register(net))
3571 		goto out;
3572 
3573 #ifdef CONFIG_PROC_FS
3574 	if (!proc_create_net("unix", 0, net->proc_net, &unix_seq_ops,
3575 			sizeof(struct seq_net_private))) {
3576 		unix_sysctl_unregister(net);
3577 		goto out;
3578 	}
3579 #endif
3580 	error = 0;
3581 out:
3582 	return error;
3583 }
3584 
3585 static void __net_exit unix_net_exit(struct net *net)
3586 {
3587 	unix_sysctl_unregister(net);
3588 	remove_proc_entry("unix", net->proc_net);
3589 }
3590 
3591 static struct pernet_operations unix_net_ops = {
3592 	.init = unix_net_init,
3593 	.exit = unix_net_exit,
3594 };
3595 
3596 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3597 DEFINE_BPF_ITER_FUNC(unix, struct bpf_iter_meta *meta,
3598 		     struct unix_sock *unix_sk, uid_t uid)
3599 
3600 #define INIT_BATCH_SZ 16
3601 
3602 static int bpf_iter_init_unix(void *priv_data, struct bpf_iter_aux_info *aux)
3603 {
3604 	struct bpf_unix_iter_state *iter = priv_data;
3605 	int err;
3606 
3607 	err = bpf_iter_init_seq_net(priv_data, aux);
3608 	if (err)
3609 		return err;
3610 
3611 	err = bpf_iter_unix_realloc_batch(iter, INIT_BATCH_SZ);
3612 	if (err) {
3613 		bpf_iter_fini_seq_net(priv_data);
3614 		return err;
3615 	}
3616 
3617 	return 0;
3618 }
3619 
3620 static void bpf_iter_fini_unix(void *priv_data)
3621 {
3622 	struct bpf_unix_iter_state *iter = priv_data;
3623 
3624 	bpf_iter_fini_seq_net(priv_data);
3625 	kvfree(iter->batch);
3626 }
3627 
3628 static const struct bpf_iter_seq_info unix_seq_info = {
3629 	.seq_ops		= &bpf_iter_unix_seq_ops,
3630 	.init_seq_private	= bpf_iter_init_unix,
3631 	.fini_seq_private	= bpf_iter_fini_unix,
3632 	.seq_priv_size		= sizeof(struct bpf_unix_iter_state),
3633 };
3634 
3635 static const struct bpf_func_proto *
3636 bpf_iter_unix_get_func_proto(enum bpf_func_id func_id,
3637 			     const struct bpf_prog *prog)
3638 {
3639 	switch (func_id) {
3640 	case BPF_FUNC_setsockopt:
3641 		return &bpf_sk_setsockopt_proto;
3642 	case BPF_FUNC_getsockopt:
3643 		return &bpf_sk_getsockopt_proto;
3644 	default:
3645 		return NULL;
3646 	}
3647 }
3648 
3649 static struct bpf_iter_reg unix_reg_info = {
3650 	.target			= "unix",
3651 	.ctx_arg_info_size	= 1,
3652 	.ctx_arg_info		= {
3653 		{ offsetof(struct bpf_iter__unix, unix_sk),
3654 		  PTR_TO_BTF_ID_OR_NULL },
3655 	},
3656 	.get_func_proto         = bpf_iter_unix_get_func_proto,
3657 	.seq_info		= &unix_seq_info,
3658 };
3659 
3660 static void __init bpf_iter_register(void)
3661 {
3662 	unix_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UNIX];
3663 	if (bpf_iter_reg_target(&unix_reg_info))
3664 		pr_warn("Warning: could not register bpf iterator unix\n");
3665 }
3666 #endif
3667 
3668 static int __init af_unix_init(void)
3669 {
3670 	int i, rc = -1;
3671 
3672 	BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof_field(struct sk_buff, cb));
3673 
3674 	for (i = 0; i < 2 * UNIX_HASH_SIZE; i++)
3675 		spin_lock_init(&unix_table_locks[i]);
3676 
3677 	rc = proto_register(&unix_dgram_proto, 1);
3678 	if (rc != 0) {
3679 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3680 		goto out;
3681 	}
3682 
3683 	rc = proto_register(&unix_stream_proto, 1);
3684 	if (rc != 0) {
3685 		pr_crit("%s: Cannot create unix_sock SLAB cache!\n", __func__);
3686 		goto out;
3687 	}
3688 
3689 	sock_register(&unix_family_ops);
3690 	register_pernet_subsys(&unix_net_ops);
3691 	unix_bpf_build_proto();
3692 
3693 #if IS_BUILTIN(CONFIG_UNIX) && defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3694 	bpf_iter_register();
3695 #endif
3696 
3697 out:
3698 	return rc;
3699 }
3700 
3701 static void __exit af_unix_exit(void)
3702 {
3703 	sock_unregister(PF_UNIX);
3704 	proto_unregister(&unix_dgram_proto);
3705 	proto_unregister(&unix_stream_proto);
3706 	unregister_pernet_subsys(&unix_net_ops);
3707 }
3708 
3709 /* Earlier than device_initcall() so that other drivers invoking
3710    request_module() don't end up in a loop when modprobe tries
3711    to use a UNIX socket. But later than subsys_initcall() because
3712    we depend on stuff initialised there */
3713 fs_initcall(af_unix_init);
3714 module_exit(af_unix_exit);
3715 
3716 MODULE_LICENSE("GPL");
3717 MODULE_ALIAS_NETPROTO(PF_UNIX);
3718