xref: /linux/net/vmw_vsock/hyperv_transport.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Hyper-V transport for vsock
4  *
5  * Hyper-V Sockets supplies a byte-stream based communication mechanism
6  * between the host and the VM. This driver implements the necessary
7  * support in the VM by introducing the new vsock transport.
8  *
9  * Copyright (c) 2017, Microsoft Corporation.
10  */
11 #include <linux/module.h>
12 #include <linux/vmalloc.h>
13 #include <linux/hyperv.h>
14 #include <net/sock.h>
15 #include <net/af_vsock.h>
16 #include <asm/hyperv-tlfs.h>
17 
18 /* Older (VMBUS version 'VERSION_WIN10' or before) Windows hosts have some
19  * stricter requirements on the hv_sock ring buffer size of six 4K pages.
20  * hyperv-tlfs defines HV_HYP_PAGE_SIZE as 4K. Newer hosts don't have this
21  * limitation; but, keep the defaults the same for compat.
22  */
23 #define RINGBUFFER_HVS_RCV_SIZE (HV_HYP_PAGE_SIZE * 6)
24 #define RINGBUFFER_HVS_SND_SIZE (HV_HYP_PAGE_SIZE * 6)
25 #define RINGBUFFER_HVS_MAX_SIZE (HV_HYP_PAGE_SIZE * 64)
26 
27 /* The MTU is 16KB per the host side's design */
28 #define HVS_MTU_SIZE		(1024 * 16)
29 
30 /* How long to wait for graceful shutdown of a connection */
31 #define HVS_CLOSE_TIMEOUT (8 * HZ)
32 
33 struct vmpipe_proto_header {
34 	u32 pkt_type;
35 	u32 data_size;
36 };
37 
38 /* For recv, we use the VMBus in-place packet iterator APIs to directly copy
39  * data from the ringbuffer into the userspace buffer.
40  */
41 struct hvs_recv_buf {
42 	/* The header before the payload data */
43 	struct vmpipe_proto_header hdr;
44 
45 	/* The payload */
46 	u8 data[HVS_MTU_SIZE];
47 };
48 
49 /* We can send up to HVS_MTU_SIZE bytes of payload to the host, but let's use
50  * a smaller size, i.e. HVS_SEND_BUF_SIZE, to maximize concurrency between the
51  * guest and the host processing as one VMBUS packet is the smallest processing
52  * unit.
53  *
54  * Note: the buffer can be eliminated in the future when we add new VMBus
55  * ringbuffer APIs that allow us to directly copy data from userspace buffer
56  * to VMBus ringbuffer.
57  */
58 #define HVS_SEND_BUF_SIZE \
59 		(HV_HYP_PAGE_SIZE - sizeof(struct vmpipe_proto_header))
60 
61 struct hvs_send_buf {
62 	/* The header before the payload data */
63 	struct vmpipe_proto_header hdr;
64 
65 	/* The payload */
66 	u8 data[HVS_SEND_BUF_SIZE];
67 };
68 
69 #define HVS_HEADER_LEN	(sizeof(struct vmpacket_descriptor) + \
70 			 sizeof(struct vmpipe_proto_header))
71 
72 /* See 'prev_indices' in hv_ringbuffer_read(), hv_ringbuffer_write(), and
73  * __hv_pkt_iter_next().
74  */
75 #define VMBUS_PKT_TRAILER_SIZE	(sizeof(u64))
76 
77 #define HVS_PKT_LEN(payload_len)	(HVS_HEADER_LEN + \
78 					 ALIGN((payload_len), 8) + \
79 					 VMBUS_PKT_TRAILER_SIZE)
80 
81 union hvs_service_id {
82 	guid_t	srv_id;
83 
84 	struct {
85 		unsigned int svm_port;
86 		unsigned char b[sizeof(guid_t) - sizeof(unsigned int)];
87 	};
88 };
89 
90 /* Per-socket state (accessed via vsk->trans) */
91 struct hvsock {
92 	struct vsock_sock *vsk;
93 
94 	guid_t vm_srv_id;
95 	guid_t host_srv_id;
96 
97 	struct vmbus_channel *chan;
98 	struct vmpacket_descriptor *recv_desc;
99 
100 	/* The length of the payload not delivered to userland yet */
101 	u32 recv_data_len;
102 	/* The offset of the payload */
103 	u32 recv_data_off;
104 
105 	/* Have we sent the zero-length packet (FIN)? */
106 	bool fin_sent;
107 };
108 
109 /* In the VM, we support Hyper-V Sockets with AF_VSOCK, and the endpoint is
110  * <cid, port> (see struct sockaddr_vm). Note: cid is not really used here:
111  * when we write apps to connect to the host, we can only use VMADDR_CID_ANY
112  * or VMADDR_CID_HOST (both are equivalent) as the remote cid, and when we
113  * write apps to bind() & listen() in the VM, we can only use VMADDR_CID_ANY
114  * as the local cid.
115  *
116  * On the host, Hyper-V Sockets are supported by Winsock AF_HYPERV:
117  * https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/user-
118  * guide/make-integration-service, and the endpoint is <VmID, ServiceId> with
119  * the below sockaddr:
120  *
121  * struct SOCKADDR_HV
122  * {
123  *    ADDRESS_FAMILY Family;
124  *    USHORT Reserved;
125  *    GUID VmId;
126  *    GUID ServiceId;
127  * };
128  * Note: VmID is not used by Linux VM and actually it isn't transmitted via
129  * VMBus, because here it's obvious the host and the VM can easily identify
130  * each other. Though the VmID is useful on the host, especially in the case
131  * of Windows container, Linux VM doesn't need it at all.
132  *
133  * To make use of the AF_VSOCK infrastructure in Linux VM, we have to limit
134  * the available GUID space of SOCKADDR_HV so that we can create a mapping
135  * between AF_VSOCK port and SOCKADDR_HV Service GUID. The rule of writing
136  * Hyper-V Sockets apps on the host and in Linux VM is:
137  *
138  ****************************************************************************
139  * The only valid Service GUIDs, from the perspectives of both the host and *
140  * Linux VM, that can be connected by the other end, must conform to this   *
141  * format: <port>-facb-11e6-bd58-64006a7986d3, and the "port" must be in    *
142  * this range [0, 0x7FFFFFFF].                                              *
143  ****************************************************************************
144  *
145  * When we write apps on the host to connect(), the GUID ServiceID is used.
146  * When we write apps in Linux VM to connect(), we only need to specify the
147  * port and the driver will form the GUID and use that to request the host.
148  *
149  * From the perspective of Linux VM:
150  * 1. the local ephemeral port (i.e. the local auto-bound port when we call
151  * connect() without explicit bind()) is generated by __vsock_bind_stream(),
152  * and the range is [1024, 0xFFFFFFFF).
153  * 2. the remote ephemeral port (i.e. the auto-generated remote port for
154  * a connect request initiated by the host's connect()) is generated by
155  * hvs_remote_addr_init() and the range is [0x80000000, 0xFFFFFFFF).
156  */
157 
158 #define MAX_LISTEN_PORT			((u32)0x7FFFFFFF)
159 #define MAX_VM_LISTEN_PORT		MAX_LISTEN_PORT
160 #define MAX_HOST_LISTEN_PORT		MAX_LISTEN_PORT
161 #define MIN_HOST_EPHEMERAL_PORT		(MAX_HOST_LISTEN_PORT + 1)
162 
163 /* 00000000-facb-11e6-bd58-64006a7986d3 */
164 static const guid_t srv_id_template =
165 	GUID_INIT(0x00000000, 0xfacb, 0x11e6, 0xbd, 0x58,
166 		  0x64, 0x00, 0x6a, 0x79, 0x86, 0xd3);
167 
168 static bool hvs_check_transport(struct vsock_sock *vsk);
169 
170 static bool is_valid_srv_id(const guid_t *id)
171 {
172 	return !memcmp(&id->b[4], &srv_id_template.b[4], sizeof(guid_t) - 4);
173 }
174 
175 static unsigned int get_port_by_srv_id(const guid_t *svr_id)
176 {
177 	return *((unsigned int *)svr_id);
178 }
179 
180 static void hvs_addr_init(struct sockaddr_vm *addr, const guid_t *svr_id)
181 {
182 	unsigned int port = get_port_by_srv_id(svr_id);
183 
184 	vsock_addr_init(addr, VMADDR_CID_ANY, port);
185 }
186 
187 static void hvs_remote_addr_init(struct sockaddr_vm *remote,
188 				 struct sockaddr_vm *local)
189 {
190 	static u32 host_ephemeral_port = MIN_HOST_EPHEMERAL_PORT;
191 	struct sock *sk;
192 
193 	/* Remote peer is always the host */
194 	vsock_addr_init(remote, VMADDR_CID_HOST, VMADDR_PORT_ANY);
195 
196 	while (1) {
197 		/* Wrap around ? */
198 		if (host_ephemeral_port < MIN_HOST_EPHEMERAL_PORT ||
199 		    host_ephemeral_port == VMADDR_PORT_ANY)
200 			host_ephemeral_port = MIN_HOST_EPHEMERAL_PORT;
201 
202 		remote->svm_port = host_ephemeral_port++;
203 
204 		sk = vsock_find_connected_socket(remote, local);
205 		if (!sk) {
206 			/* Found an available ephemeral port */
207 			return;
208 		}
209 
210 		/* Release refcnt got in vsock_find_connected_socket */
211 		sock_put(sk);
212 	}
213 }
214 
215 static void hvs_set_channel_pending_send_size(struct vmbus_channel *chan)
216 {
217 	set_channel_pending_send_size(chan,
218 				      HVS_PKT_LEN(HVS_SEND_BUF_SIZE));
219 
220 	virt_mb();
221 }
222 
223 static bool hvs_channel_readable(struct vmbus_channel *chan)
224 {
225 	u32 readable = hv_get_bytes_to_read(&chan->inbound);
226 
227 	/* 0-size payload means FIN */
228 	return readable >= HVS_PKT_LEN(0);
229 }
230 
231 static int hvs_channel_readable_payload(struct vmbus_channel *chan)
232 {
233 	u32 readable = hv_get_bytes_to_read(&chan->inbound);
234 
235 	if (readable > HVS_PKT_LEN(0)) {
236 		/* At least we have 1 byte to read. We don't need to return
237 		 * the exact readable bytes: see vsock_stream_recvmsg() ->
238 		 * vsock_stream_has_data().
239 		 */
240 		return 1;
241 	}
242 
243 	if (readable == HVS_PKT_LEN(0)) {
244 		/* 0-size payload means FIN */
245 		return 0;
246 	}
247 
248 	/* No payload or FIN */
249 	return -1;
250 }
251 
252 static size_t hvs_channel_writable_bytes(struct vmbus_channel *chan)
253 {
254 	u32 writeable = hv_get_bytes_to_write(&chan->outbound);
255 	size_t ret;
256 
257 	/* The ringbuffer mustn't be 100% full, and we should reserve a
258 	 * zero-length-payload packet for the FIN: see hv_ringbuffer_write()
259 	 * and hvs_shutdown().
260 	 */
261 	if (writeable <= HVS_PKT_LEN(1) + HVS_PKT_LEN(0))
262 		return 0;
263 
264 	ret = writeable - HVS_PKT_LEN(1) - HVS_PKT_LEN(0);
265 
266 	return round_down(ret, 8);
267 }
268 
269 static int hvs_send_data(struct vmbus_channel *chan,
270 			 struct hvs_send_buf *send_buf, size_t to_write)
271 {
272 	send_buf->hdr.pkt_type = 1;
273 	send_buf->hdr.data_size = to_write;
274 	return vmbus_sendpacket(chan, &send_buf->hdr,
275 				sizeof(send_buf->hdr) + to_write,
276 				0, VM_PKT_DATA_INBAND, 0);
277 }
278 
279 static void hvs_channel_cb(void *ctx)
280 {
281 	struct sock *sk = (struct sock *)ctx;
282 	struct vsock_sock *vsk = vsock_sk(sk);
283 	struct hvsock *hvs = vsk->trans;
284 	struct vmbus_channel *chan = hvs->chan;
285 
286 	if (hvs_channel_readable(chan))
287 		sk->sk_data_ready(sk);
288 
289 	if (hv_get_bytes_to_write(&chan->outbound) > 0)
290 		sk->sk_write_space(sk);
291 }
292 
293 static void hvs_do_close_lock_held(struct vsock_sock *vsk,
294 				   bool cancel_timeout)
295 {
296 	struct sock *sk = sk_vsock(vsk);
297 
298 	sock_set_flag(sk, SOCK_DONE);
299 	vsk->peer_shutdown = SHUTDOWN_MASK;
300 	if (vsock_stream_has_data(vsk) <= 0)
301 		sk->sk_state = TCP_CLOSING;
302 	sk->sk_state_change(sk);
303 	if (vsk->close_work_scheduled &&
304 	    (!cancel_timeout || cancel_delayed_work(&vsk->close_work))) {
305 		vsk->close_work_scheduled = false;
306 		vsock_remove_sock(vsk);
307 
308 		/* Release the reference taken while scheduling the timeout */
309 		sock_put(sk);
310 	}
311 }
312 
313 static void hvs_close_connection(struct vmbus_channel *chan)
314 {
315 	struct sock *sk = get_per_channel_state(chan);
316 
317 	lock_sock(sk);
318 	hvs_do_close_lock_held(vsock_sk(sk), true);
319 	release_sock(sk);
320 
321 	/* Release the refcnt for the channel that's opened in
322 	 * hvs_open_connection().
323 	 */
324 	sock_put(sk);
325 }
326 
327 static void hvs_open_connection(struct vmbus_channel *chan)
328 {
329 	guid_t *if_instance, *if_type;
330 	unsigned char conn_from_host;
331 
332 	struct sockaddr_vm addr;
333 	struct sock *sk, *new = NULL;
334 	struct vsock_sock *vnew = NULL;
335 	struct hvsock *hvs = NULL;
336 	struct hvsock *hvs_new = NULL;
337 	int rcvbuf;
338 	int ret;
339 	int sndbuf;
340 
341 	if_type = &chan->offermsg.offer.if_type;
342 	if_instance = &chan->offermsg.offer.if_instance;
343 	conn_from_host = chan->offermsg.offer.u.pipe.user_def[0];
344 
345 	/* The host or the VM should only listen on a port in
346 	 * [0, MAX_LISTEN_PORT]
347 	 */
348 	if (!is_valid_srv_id(if_type) ||
349 	    get_port_by_srv_id(if_type) > MAX_LISTEN_PORT)
350 		return;
351 
352 	hvs_addr_init(&addr, conn_from_host ? if_type : if_instance);
353 	sk = vsock_find_bound_socket(&addr);
354 	if (!sk)
355 		return;
356 
357 	lock_sock(sk);
358 	if ((conn_from_host && sk->sk_state != TCP_LISTEN) ||
359 	    (!conn_from_host && sk->sk_state != TCP_SYN_SENT))
360 		goto out;
361 
362 	if (conn_from_host) {
363 		if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog)
364 			goto out;
365 
366 		new = vsock_create_connected(sk);
367 		if (!new)
368 			goto out;
369 
370 		new->sk_state = TCP_SYN_SENT;
371 		vnew = vsock_sk(new);
372 
373 		hvs_addr_init(&vnew->local_addr, if_type);
374 		hvs_remote_addr_init(&vnew->remote_addr, &vnew->local_addr);
375 
376 		ret = vsock_assign_transport(vnew, vsock_sk(sk));
377 		/* Transport assigned (looking at remote_addr) must be the
378 		 * same where we received the request.
379 		 */
380 		if (ret || !hvs_check_transport(vnew)) {
381 			sock_put(new);
382 			goto out;
383 		}
384 		hvs_new = vnew->trans;
385 		hvs_new->chan = chan;
386 	} else {
387 		hvs = vsock_sk(sk)->trans;
388 		hvs->chan = chan;
389 	}
390 
391 	set_channel_read_mode(chan, HV_CALL_DIRECT);
392 
393 	/* Use the socket buffer sizes as hints for the VMBUS ring size. For
394 	 * server side sockets, 'sk' is the parent socket and thus, this will
395 	 * allow the child sockets to inherit the size from the parent. Keep
396 	 * the mins to the default value and align to page size as per VMBUS
397 	 * requirements.
398 	 * For the max, the socket core library will limit the socket buffer
399 	 * size that can be set by the user, but, since currently, the hv_sock
400 	 * VMBUS ring buffer is physically contiguous allocation, restrict it
401 	 * further.
402 	 * Older versions of hv_sock host side code cannot handle bigger VMBUS
403 	 * ring buffer size. Use the version number to limit the change to newer
404 	 * versions.
405 	 */
406 	if (vmbus_proto_version < VERSION_WIN10_V5) {
407 		sndbuf = RINGBUFFER_HVS_SND_SIZE;
408 		rcvbuf = RINGBUFFER_HVS_RCV_SIZE;
409 	} else {
410 		sndbuf = max_t(int, sk->sk_sndbuf, RINGBUFFER_HVS_SND_SIZE);
411 		sndbuf = min_t(int, sndbuf, RINGBUFFER_HVS_MAX_SIZE);
412 		sndbuf = ALIGN(sndbuf, HV_HYP_PAGE_SIZE);
413 		rcvbuf = max_t(int, sk->sk_rcvbuf, RINGBUFFER_HVS_RCV_SIZE);
414 		rcvbuf = min_t(int, rcvbuf, RINGBUFFER_HVS_MAX_SIZE);
415 		rcvbuf = ALIGN(rcvbuf, HV_HYP_PAGE_SIZE);
416 	}
417 
418 	ret = vmbus_open(chan, sndbuf, rcvbuf, NULL, 0, hvs_channel_cb,
419 			 conn_from_host ? new : sk);
420 	if (ret != 0) {
421 		if (conn_from_host) {
422 			hvs_new->chan = NULL;
423 			sock_put(new);
424 		} else {
425 			hvs->chan = NULL;
426 		}
427 		goto out;
428 	}
429 
430 	set_per_channel_state(chan, conn_from_host ? new : sk);
431 
432 	/* This reference will be dropped by hvs_close_connection(). */
433 	sock_hold(conn_from_host ? new : sk);
434 	vmbus_set_chn_rescind_callback(chan, hvs_close_connection);
435 
436 	/* Set the pending send size to max packet size to always get
437 	 * notifications from the host when there is enough writable space.
438 	 * The host is optimized to send notifications only when the pending
439 	 * size boundary is crossed, and not always.
440 	 */
441 	hvs_set_channel_pending_send_size(chan);
442 
443 	if (conn_from_host) {
444 		new->sk_state = TCP_ESTABLISHED;
445 		sk_acceptq_added(sk);
446 
447 		hvs_new->vm_srv_id = *if_type;
448 		hvs_new->host_srv_id = *if_instance;
449 
450 		vsock_insert_connected(vnew);
451 
452 		vsock_enqueue_accept(sk, new);
453 	} else {
454 		sk->sk_state = TCP_ESTABLISHED;
455 		sk->sk_socket->state = SS_CONNECTED;
456 
457 		vsock_insert_connected(vsock_sk(sk));
458 	}
459 
460 	sk->sk_state_change(sk);
461 
462 out:
463 	/* Release refcnt obtained when we called vsock_find_bound_socket() */
464 	sock_put(sk);
465 
466 	release_sock(sk);
467 }
468 
469 static u32 hvs_get_local_cid(void)
470 {
471 	return VMADDR_CID_ANY;
472 }
473 
474 static int hvs_sock_init(struct vsock_sock *vsk, struct vsock_sock *psk)
475 {
476 	struct hvsock *hvs;
477 	struct sock *sk = sk_vsock(vsk);
478 
479 	hvs = kzalloc(sizeof(*hvs), GFP_KERNEL);
480 	if (!hvs)
481 		return -ENOMEM;
482 
483 	vsk->trans = hvs;
484 	hvs->vsk = vsk;
485 	sk->sk_sndbuf = RINGBUFFER_HVS_SND_SIZE;
486 	sk->sk_rcvbuf = RINGBUFFER_HVS_RCV_SIZE;
487 	return 0;
488 }
489 
490 static int hvs_connect(struct vsock_sock *vsk)
491 {
492 	union hvs_service_id vm, host;
493 	struct hvsock *h = vsk->trans;
494 
495 	vm.srv_id = srv_id_template;
496 	vm.svm_port = vsk->local_addr.svm_port;
497 	h->vm_srv_id = vm.srv_id;
498 
499 	host.srv_id = srv_id_template;
500 	host.svm_port = vsk->remote_addr.svm_port;
501 	h->host_srv_id = host.srv_id;
502 
503 	return vmbus_send_tl_connect_request(&h->vm_srv_id, &h->host_srv_id);
504 }
505 
506 static void hvs_shutdown_lock_held(struct hvsock *hvs, int mode)
507 {
508 	struct vmpipe_proto_header hdr;
509 
510 	if (hvs->fin_sent || !hvs->chan)
511 		return;
512 
513 	/* It can't fail: see hvs_channel_writable_bytes(). */
514 	(void)hvs_send_data(hvs->chan, (struct hvs_send_buf *)&hdr, 0);
515 	hvs->fin_sent = true;
516 }
517 
518 static int hvs_shutdown(struct vsock_sock *vsk, int mode)
519 {
520 	struct sock *sk = sk_vsock(vsk);
521 
522 	if (!(mode & SEND_SHUTDOWN))
523 		return 0;
524 
525 	lock_sock(sk);
526 	hvs_shutdown_lock_held(vsk->trans, mode);
527 	release_sock(sk);
528 	return 0;
529 }
530 
531 static void hvs_close_timeout(struct work_struct *work)
532 {
533 	struct vsock_sock *vsk =
534 		container_of(work, struct vsock_sock, close_work.work);
535 	struct sock *sk = sk_vsock(vsk);
536 
537 	sock_hold(sk);
538 	lock_sock(sk);
539 	if (!sock_flag(sk, SOCK_DONE))
540 		hvs_do_close_lock_held(vsk, false);
541 
542 	vsk->close_work_scheduled = false;
543 	release_sock(sk);
544 	sock_put(sk);
545 }
546 
547 /* Returns true, if it is safe to remove socket; false otherwise */
548 static bool hvs_close_lock_held(struct vsock_sock *vsk)
549 {
550 	struct sock *sk = sk_vsock(vsk);
551 
552 	if (!(sk->sk_state == TCP_ESTABLISHED ||
553 	      sk->sk_state == TCP_CLOSING))
554 		return true;
555 
556 	if ((sk->sk_shutdown & SHUTDOWN_MASK) != SHUTDOWN_MASK)
557 		hvs_shutdown_lock_held(vsk->trans, SHUTDOWN_MASK);
558 
559 	if (sock_flag(sk, SOCK_DONE))
560 		return true;
561 
562 	/* This reference will be dropped by the delayed close routine */
563 	sock_hold(sk);
564 	INIT_DELAYED_WORK(&vsk->close_work, hvs_close_timeout);
565 	vsk->close_work_scheduled = true;
566 	schedule_delayed_work(&vsk->close_work, HVS_CLOSE_TIMEOUT);
567 	return false;
568 }
569 
570 static void hvs_release(struct vsock_sock *vsk)
571 {
572 	struct sock *sk = sk_vsock(vsk);
573 	bool remove_sock;
574 
575 	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
576 	remove_sock = hvs_close_lock_held(vsk);
577 	release_sock(sk);
578 	if (remove_sock)
579 		vsock_remove_sock(vsk);
580 }
581 
582 static void hvs_destruct(struct vsock_sock *vsk)
583 {
584 	struct hvsock *hvs = vsk->trans;
585 	struct vmbus_channel *chan = hvs->chan;
586 
587 	if (chan)
588 		vmbus_hvsock_device_unregister(chan);
589 
590 	kfree(hvs);
591 }
592 
593 static int hvs_dgram_bind(struct vsock_sock *vsk, struct sockaddr_vm *addr)
594 {
595 	return -EOPNOTSUPP;
596 }
597 
598 static int hvs_dgram_dequeue(struct vsock_sock *vsk, struct msghdr *msg,
599 			     size_t len, int flags)
600 {
601 	return -EOPNOTSUPP;
602 }
603 
604 static int hvs_dgram_enqueue(struct vsock_sock *vsk,
605 			     struct sockaddr_vm *remote, struct msghdr *msg,
606 			     size_t dgram_len)
607 {
608 	return -EOPNOTSUPP;
609 }
610 
611 static bool hvs_dgram_allow(u32 cid, u32 port)
612 {
613 	return false;
614 }
615 
616 static int hvs_update_recv_data(struct hvsock *hvs)
617 {
618 	struct hvs_recv_buf *recv_buf;
619 	u32 payload_len;
620 
621 	recv_buf = (struct hvs_recv_buf *)(hvs->recv_desc + 1);
622 	payload_len = recv_buf->hdr.data_size;
623 
624 	if (payload_len > HVS_MTU_SIZE)
625 		return -EIO;
626 
627 	if (payload_len == 0)
628 		hvs->vsk->peer_shutdown |= SEND_SHUTDOWN;
629 
630 	hvs->recv_data_len = payload_len;
631 	hvs->recv_data_off = 0;
632 
633 	return 0;
634 }
635 
636 static ssize_t hvs_stream_dequeue(struct vsock_sock *vsk, struct msghdr *msg,
637 				  size_t len, int flags)
638 {
639 	struct hvsock *hvs = vsk->trans;
640 	bool need_refill = !hvs->recv_desc;
641 	struct hvs_recv_buf *recv_buf;
642 	u32 to_read;
643 	int ret;
644 
645 	if (flags & MSG_PEEK)
646 		return -EOPNOTSUPP;
647 
648 	if (need_refill) {
649 		hvs->recv_desc = hv_pkt_iter_first(hvs->chan);
650 		ret = hvs_update_recv_data(hvs);
651 		if (ret)
652 			return ret;
653 	}
654 
655 	recv_buf = (struct hvs_recv_buf *)(hvs->recv_desc + 1);
656 	to_read = min_t(u32, len, hvs->recv_data_len);
657 	ret = memcpy_to_msg(msg, recv_buf->data + hvs->recv_data_off, to_read);
658 	if (ret != 0)
659 		return ret;
660 
661 	hvs->recv_data_len -= to_read;
662 	if (hvs->recv_data_len == 0) {
663 		hvs->recv_desc = hv_pkt_iter_next(hvs->chan, hvs->recv_desc);
664 		if (hvs->recv_desc) {
665 			ret = hvs_update_recv_data(hvs);
666 			if (ret)
667 				return ret;
668 		}
669 	} else {
670 		hvs->recv_data_off += to_read;
671 	}
672 
673 	return to_read;
674 }
675 
676 static ssize_t hvs_stream_enqueue(struct vsock_sock *vsk, struct msghdr *msg,
677 				  size_t len)
678 {
679 	struct hvsock *hvs = vsk->trans;
680 	struct vmbus_channel *chan = hvs->chan;
681 	struct hvs_send_buf *send_buf;
682 	ssize_t to_write, max_writable;
683 	ssize_t ret = 0;
684 	ssize_t bytes_written = 0;
685 
686 	BUILD_BUG_ON(sizeof(*send_buf) != HV_HYP_PAGE_SIZE);
687 
688 	send_buf = kmalloc(sizeof(*send_buf), GFP_KERNEL);
689 	if (!send_buf)
690 		return -ENOMEM;
691 
692 	/* Reader(s) could be draining data from the channel as we write.
693 	 * Maximize bandwidth, by iterating until the channel is found to be
694 	 * full.
695 	 */
696 	while (len) {
697 		max_writable = hvs_channel_writable_bytes(chan);
698 		if (!max_writable)
699 			break;
700 		to_write = min_t(ssize_t, len, max_writable);
701 		to_write = min_t(ssize_t, to_write, HVS_SEND_BUF_SIZE);
702 		/* memcpy_from_msg is safe for loop as it advances the offsets
703 		 * within the message iterator.
704 		 */
705 		ret = memcpy_from_msg(send_buf->data, msg, to_write);
706 		if (ret < 0)
707 			goto out;
708 
709 		ret = hvs_send_data(hvs->chan, send_buf, to_write);
710 		if (ret < 0)
711 			goto out;
712 
713 		bytes_written += to_write;
714 		len -= to_write;
715 	}
716 out:
717 	/* If any data has been sent, return that */
718 	if (bytes_written)
719 		ret = bytes_written;
720 	kfree(send_buf);
721 	return ret;
722 }
723 
724 static s64 hvs_stream_has_data(struct vsock_sock *vsk)
725 {
726 	struct hvsock *hvs = vsk->trans;
727 	s64 ret;
728 
729 	if (hvs->recv_data_len > 0)
730 		return 1;
731 
732 	switch (hvs_channel_readable_payload(hvs->chan)) {
733 	case 1:
734 		ret = 1;
735 		break;
736 	case 0:
737 		vsk->peer_shutdown |= SEND_SHUTDOWN;
738 		ret = 0;
739 		break;
740 	default: /* -1 */
741 		ret = 0;
742 		break;
743 	}
744 
745 	return ret;
746 }
747 
748 static s64 hvs_stream_has_space(struct vsock_sock *vsk)
749 {
750 	struct hvsock *hvs = vsk->trans;
751 
752 	return hvs_channel_writable_bytes(hvs->chan);
753 }
754 
755 static u64 hvs_stream_rcvhiwat(struct vsock_sock *vsk)
756 {
757 	return HVS_MTU_SIZE + 1;
758 }
759 
760 static bool hvs_stream_is_active(struct vsock_sock *vsk)
761 {
762 	struct hvsock *hvs = vsk->trans;
763 
764 	return hvs->chan != NULL;
765 }
766 
767 static bool hvs_stream_allow(u32 cid, u32 port)
768 {
769 	/* The host's port range [MIN_HOST_EPHEMERAL_PORT, 0xFFFFFFFF) is
770 	 * reserved as ephemeral ports, which are used as the host's ports
771 	 * when the host initiates connections.
772 	 *
773 	 * Perform this check in the guest so an immediate error is produced
774 	 * instead of a timeout.
775 	 */
776 	if (port > MAX_HOST_LISTEN_PORT)
777 		return false;
778 
779 	if (cid == VMADDR_CID_HOST)
780 		return true;
781 
782 	return false;
783 }
784 
785 static
786 int hvs_notify_poll_in(struct vsock_sock *vsk, size_t target, bool *readable)
787 {
788 	struct hvsock *hvs = vsk->trans;
789 
790 	*readable = hvs_channel_readable(hvs->chan);
791 	return 0;
792 }
793 
794 static
795 int hvs_notify_poll_out(struct vsock_sock *vsk, size_t target, bool *writable)
796 {
797 	*writable = hvs_stream_has_space(vsk) > 0;
798 
799 	return 0;
800 }
801 
802 static
803 int hvs_notify_recv_init(struct vsock_sock *vsk, size_t target,
804 			 struct vsock_transport_recv_notify_data *d)
805 {
806 	return 0;
807 }
808 
809 static
810 int hvs_notify_recv_pre_block(struct vsock_sock *vsk, size_t target,
811 			      struct vsock_transport_recv_notify_data *d)
812 {
813 	return 0;
814 }
815 
816 static
817 int hvs_notify_recv_pre_dequeue(struct vsock_sock *vsk, size_t target,
818 				struct vsock_transport_recv_notify_data *d)
819 {
820 	return 0;
821 }
822 
823 static
824 int hvs_notify_recv_post_dequeue(struct vsock_sock *vsk, size_t target,
825 				 ssize_t copied, bool data_read,
826 				 struct vsock_transport_recv_notify_data *d)
827 {
828 	return 0;
829 }
830 
831 static
832 int hvs_notify_send_init(struct vsock_sock *vsk,
833 			 struct vsock_transport_send_notify_data *d)
834 {
835 	return 0;
836 }
837 
838 static
839 int hvs_notify_send_pre_block(struct vsock_sock *vsk,
840 			      struct vsock_transport_send_notify_data *d)
841 {
842 	return 0;
843 }
844 
845 static
846 int hvs_notify_send_pre_enqueue(struct vsock_sock *vsk,
847 				struct vsock_transport_send_notify_data *d)
848 {
849 	return 0;
850 }
851 
852 static
853 int hvs_notify_send_post_enqueue(struct vsock_sock *vsk, ssize_t written,
854 				 struct vsock_transport_send_notify_data *d)
855 {
856 	return 0;
857 }
858 
859 static struct vsock_transport hvs_transport = {
860 	.module                   = THIS_MODULE,
861 
862 	.get_local_cid            = hvs_get_local_cid,
863 
864 	.init                     = hvs_sock_init,
865 	.destruct                 = hvs_destruct,
866 	.release                  = hvs_release,
867 	.connect                  = hvs_connect,
868 	.shutdown                 = hvs_shutdown,
869 
870 	.dgram_bind               = hvs_dgram_bind,
871 	.dgram_dequeue            = hvs_dgram_dequeue,
872 	.dgram_enqueue            = hvs_dgram_enqueue,
873 	.dgram_allow              = hvs_dgram_allow,
874 
875 	.stream_dequeue           = hvs_stream_dequeue,
876 	.stream_enqueue           = hvs_stream_enqueue,
877 	.stream_has_data          = hvs_stream_has_data,
878 	.stream_has_space         = hvs_stream_has_space,
879 	.stream_rcvhiwat          = hvs_stream_rcvhiwat,
880 	.stream_is_active         = hvs_stream_is_active,
881 	.stream_allow             = hvs_stream_allow,
882 
883 	.notify_poll_in           = hvs_notify_poll_in,
884 	.notify_poll_out          = hvs_notify_poll_out,
885 	.notify_recv_init         = hvs_notify_recv_init,
886 	.notify_recv_pre_block    = hvs_notify_recv_pre_block,
887 	.notify_recv_pre_dequeue  = hvs_notify_recv_pre_dequeue,
888 	.notify_recv_post_dequeue = hvs_notify_recv_post_dequeue,
889 	.notify_send_init         = hvs_notify_send_init,
890 	.notify_send_pre_block    = hvs_notify_send_pre_block,
891 	.notify_send_pre_enqueue  = hvs_notify_send_pre_enqueue,
892 	.notify_send_post_enqueue = hvs_notify_send_post_enqueue,
893 
894 };
895 
896 static bool hvs_check_transport(struct vsock_sock *vsk)
897 {
898 	return vsk->transport == &hvs_transport;
899 }
900 
901 static int hvs_probe(struct hv_device *hdev,
902 		     const struct hv_vmbus_device_id *dev_id)
903 {
904 	struct vmbus_channel *chan = hdev->channel;
905 
906 	hvs_open_connection(chan);
907 
908 	/* Always return success to suppress the unnecessary error message
909 	 * in vmbus_probe(): on error the host will rescind the device in
910 	 * 30 seconds and we can do cleanup at that time in
911 	 * vmbus_onoffer_rescind().
912 	 */
913 	return 0;
914 }
915 
916 static int hvs_remove(struct hv_device *hdev)
917 {
918 	struct vmbus_channel *chan = hdev->channel;
919 
920 	vmbus_close(chan);
921 
922 	return 0;
923 }
924 
925 /* hv_sock connections can not persist across hibernation, and all the hv_sock
926  * channels are forced to be rescinded before hibernation: see
927  * vmbus_bus_suspend(). Here the dummy hvs_suspend() and hvs_resume()
928  * are only needed because hibernation requires that every vmbus device's
929  * driver should have a .suspend and .resume callback: see vmbus_suspend().
930  */
931 static int hvs_suspend(struct hv_device *hv_dev)
932 {
933 	/* Dummy */
934 	return 0;
935 }
936 
937 static int hvs_resume(struct hv_device *dev)
938 {
939 	/* Dummy */
940 	return 0;
941 }
942 
943 /* This isn't really used. See vmbus_match() and vmbus_probe() */
944 static const struct hv_vmbus_device_id id_table[] = {
945 	{},
946 };
947 
948 static struct hv_driver hvs_drv = {
949 	.name		= "hv_sock",
950 	.hvsock		= true,
951 	.id_table	= id_table,
952 	.probe		= hvs_probe,
953 	.remove		= hvs_remove,
954 	.suspend	= hvs_suspend,
955 	.resume		= hvs_resume,
956 };
957 
958 static int __init hvs_init(void)
959 {
960 	int ret;
961 
962 	if (vmbus_proto_version < VERSION_WIN10)
963 		return -ENODEV;
964 
965 	ret = vmbus_driver_register(&hvs_drv);
966 	if (ret != 0)
967 		return ret;
968 
969 	ret = vsock_core_register(&hvs_transport, VSOCK_TRANSPORT_F_G2H);
970 	if (ret) {
971 		vmbus_driver_unregister(&hvs_drv);
972 		return ret;
973 	}
974 
975 	return 0;
976 }
977 
978 static void __exit hvs_exit(void)
979 {
980 	vsock_core_unregister(&hvs_transport);
981 	vmbus_driver_unregister(&hvs_drv);
982 }
983 
984 module_init(hvs_init);
985 module_exit(hvs_exit);
986 
987 MODULE_DESCRIPTION("Hyper-V Sockets");
988 MODULE_VERSION("1.0.0");
989 MODULE_LICENSE("GPL");
990 MODULE_ALIAS_NETPROTO(PF_VSOCK);
991