1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * If TRACE_SYSTEM is defined, that will be the directory created
4  * in the ftrace directory under /sys/kernel/tracing/events/<system>
5  *
6  * The define_trace.h below will also look for a file name of
7  * TRACE_SYSTEM.h where TRACE_SYSTEM is what is defined here.
8  * In this case, it would look for sample-trace.h
9  *
10  * If the header name will be different than the system name
11  * (as in this case), then you can override the header name that
12  * define_trace.h will look up by defining TRACE_INCLUDE_FILE
13  *
14  * This file is called trace-events-sample.h but we want the system
15  * to be called "sample-trace". Therefore we must define the name of this
16  * file:
17  *
18  * #define TRACE_INCLUDE_FILE trace-events-sample
19  *
20  * As we do an the bottom of this file.
21  *
22  * Notice that TRACE_SYSTEM should be defined outside of #if
23  * protection, just like TRACE_INCLUDE_FILE.
24  */
25 #undef TRACE_SYSTEM
26 #define TRACE_SYSTEM sample-trace
27 
28 /*
29  * TRACE_SYSTEM is expected to be a C valid variable (alpha-numeric
30  * and underscore), although it may start with numbers. If for some
31  * reason it is not, you need to add the following lines:
32  */
33 #undef TRACE_SYSTEM_VAR
34 #define TRACE_SYSTEM_VAR sample_trace
35 /*
36  * But the above is only needed if TRACE_SYSTEM is not alpha-numeric
37  * and underscored. By default, TRACE_SYSTEM_VAR will be equal to
38  * TRACE_SYSTEM. As TRACE_SYSTEM_VAR must be alpha-numeric, if
39  * TRACE_SYSTEM is not, then TRACE_SYSTEM_VAR must be defined with
40  * only alpha-numeric and underscores.
41  *
42  * The TRACE_SYSTEM_VAR is only used internally and not visible to
43  * user space.
44  */
45 
46 /*
47  * Notice that this file is not protected like a normal header.
48  * We also must allow for rereading of this file. The
49  *
50  *  || defined(TRACE_HEADER_MULTI_READ)
51  *
52  * serves this purpose.
53  */
54 #if !defined(_TRACE_EVENT_SAMPLE_H) || defined(TRACE_HEADER_MULTI_READ)
55 #define _TRACE_EVENT_SAMPLE_H
56 
57 /*
58  * All trace headers should include tracepoint.h, until we finally
59  * make it into a standard header.
60  */
61 #include <linux/tracepoint.h>
62 
63 /*
64  * The TRACE_EVENT macro is broken up into 5 parts.
65  *
66  * name: name of the trace point. This is also how to enable the tracepoint.
67  *   A function called trace_foo_bar() will be created.
68  *
69  * proto: the prototype of the function trace_foo_bar()
70  *   Here it is trace_foo_bar(char *foo, int bar).
71  *
72  * args:  must match the arguments in the prototype.
73  *    Here it is simply "foo, bar".
74  *
75  * struct:  This defines the way the data will be stored in the ring buffer.
76  *          The items declared here become part of a special structure
77  *          called "__entry", which can be used in the fast_assign part of the
78  *          TRACE_EVENT macro.
79  *
80  *      Here are the currently defined types you can use:
81  *
82  *   __field : Is broken up into type and name. Where type can be any
83  *         primitive type (integer, long or pointer).
84  *
85  *        __field(int, foo)
86  *
87  *        __entry->foo = 5;
88  *
89  *   __field_struct : This can be any static complex data type (struct, union
90  *         but not an array). Be careful using complex types, as each
91  *         event is limited in size, and copying large amounts of data
92  *         into the ring buffer can slow things down.
93  *
94  *         __field_struct(struct bar, foo)
95  *
96  *         __entry->bar.x = y;
97 
98  *   __array: There are three fields (type, name, size). The type is the
99  *         type of elements in the array, the name is the name of the array.
100  *         size is the number of items in the array (not the total size).
101  *
102  *         __array( char, foo, 10) is the same as saying: char foo[10];
103  *
104  *         Assigning arrays can be done like any array:
105  *
106  *         __entry->foo[0] = 'a';
107  *
108  *         memcpy(__entry->foo, bar, 10);
109  *
110  *   __dynamic_array: This is similar to array, but can vary its size from
111  *         instance to instance of the tracepoint being called.
112  *         Like __array, this too has three elements (type, name, size);
113  *         type is the type of the element, name is the name of the array.
114  *         The size is different than __array. It is not a static number,
115  *         but the algorithm to figure out the length of the array for the
116  *         specific instance of tracepoint. Again, size is the number of
117  *         items in the array, not the total length in bytes.
118  *
119  *         __dynamic_array( int, foo, bar) is similar to: int foo[bar];
120  *
121  *         Note, unlike arrays, you must use the __get_dynamic_array() macro
122  *         to access the array.
123  *
124  *         memcpy(__get_dynamic_array(foo), bar, 10);
125  *
126  *         Notice, that "__entry" is not needed here.
127  *
128  *   __string: This is a special kind of __dynamic_array. It expects to
129  *         have a null terminated character array passed to it (it allows
130  *         for NULL too, which would be converted into "(null)"). __string
131  *         takes two parameter (name, src), where name is the name of
132  *         the string saved, and src is the string to copy into the
133  *         ring buffer.
134  *
135  *         __string(foo, bar)  is similar to:  strcpy(foo, bar)
136  *
137  *         To assign a string, use the helper macro __assign_str().
138  *
139  *         __assign_str(foo, bar);
140  *
141  *         In most cases, the __assign_str() macro will take the same
142  *         parameters as the __string() macro had to declare the string.
143  *
144  *   __vstring: This is similar to __string() but instead of taking a
145  *         dynamic length, it takes a variable list va_list 'va' variable.
146  *         Some event callers already have a message from parameters saved
147  *         in a va_list. Passing in the format and the va_list variable
148  *         will save just enough on the ring buffer for that string.
149  *         Note, the va variable used is a pointer to a va_list, not
150  *         to the va_list directly.
151  *
152  *           (va_list *va)
153  *
154  *         __vstring(foo, fmt, va)  is similar to:  vsnprintf(foo, fmt, va)
155  *
156  *         To assign the string, use the helper macro __assign_vstr().
157  *
158  *         __assign_vstr(foo, fmt, va);
159  *
160  *         In most cases, the __assign_vstr() macro will take the same
161  *         parameters as the __vstring() macro had to declare the string.
162  *         Use __get_str() to retrieve the __vstring() just like it would for
163  *         __string().
164  *
165  *   __string_len: This is a helper to a __dynamic_array, but it understands
166  *	   that the array has characters in it, and with the combined
167  *         use of __assign_str_len(), it will allocate 'len' + 1 bytes
168  *         in the ring buffer and add a '\0' to the string. This is
169  *         useful if the string being saved has no terminating '\0' byte.
170  *         It requires that the length of the string is known as it acts
171  *         like a memcpy().
172  *
173  *         Declared with:
174  *
175  *         __string_len(foo, bar, len)
176  *
177  *         To assign this string, use the helper macro __assign_str_len().
178  *
179  *         __assign_str_len(foo, bar, len);
180  *
181  *         Then len + 1 is allocated to the ring buffer, and a nul terminating
182  *         byte is added. This is similar to:
183  *
184  *         memcpy(__get_str(foo), bar, len);
185  *         __get_str(foo)[len] = 0;
186  *
187  *        The advantage of using this over __dynamic_array, is that it
188  *        takes care of allocating the extra byte on the ring buffer
189  *        for the '\0' terminating byte, and __get_str(foo) can be used
190  *        in the TP_printk().
191  *
192  *   __bitmask: This is another kind of __dynamic_array, but it expects
193  *         an array of longs, and the number of bits to parse. It takes
194  *         two parameters (name, nr_bits), where name is the name of the
195  *         bitmask to save, and the nr_bits is the number of bits to record.
196  *
197  *         __bitmask(target_cpu, nr_cpumask_bits)
198  *
199  *         To assign a bitmask, use the __assign_bitmask() helper macro.
200  *
201  *         __assign_bitmask(target_cpus, cpumask_bits(bar), nr_cpumask_bits);
202  *
203  *
204  * fast_assign: This is a C like function that is used to store the items
205  *    into the ring buffer. A special variable called "__entry" will be the
206  *    structure that points into the ring buffer and has the same fields as
207  *    described by the struct part of TRACE_EVENT above.
208  *
209  * printk: This is a way to print out the data in pretty print. This is
210  *    useful if the system crashes and you are logging via a serial line,
211  *    the data can be printed to the console using this "printk" method.
212  *    This is also used to print out the data from the trace files.
213  *    Again, the __entry macro is used to access the data from the ring buffer.
214  *
215  *    Note, __dynamic_array, __string, and __bitmask require special helpers
216  *       to access the data.
217  *
218  *      For __dynamic_array(int, foo, bar) use __get_dynamic_array(foo)
219  *            Use __get_dynamic_array_len(foo) to get the length of the array
220  *            saved. Note, __get_dynamic_array_len() returns the total allocated
221  *            length of the dynamic array; __print_array() expects the second
222  *            parameter to be the number of elements. To get that, the array length
223  *            needs to be divided by the element size.
224  *
225  *      For __string(foo, bar) use __get_str(foo)
226  *
227  *      For __bitmask(target_cpus, nr_cpumask_bits) use __get_bitmask(target_cpus)
228  *
229  *
230  * Note, that for both the assign and the printk, __entry is the handler
231  * to the data structure in the ring buffer, and is defined by the
232  * TP_STRUCT__entry.
233  */
234 
235 /*
236  * It is OK to have helper functions in the file, but they need to be protected
237  * from being defined more than once. Remember, this file gets included more
238  * than once.
239  */
240 #ifndef __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
241 #define __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
242 static inline int __length_of(const int *list)
243 {
244 	int i;
245 
246 	if (!list)
247 		return 0;
248 
249 	for (i = 0; list[i]; i++)
250 		;
251 	return i;
252 }
253 
254 enum {
255 	TRACE_SAMPLE_FOO = 2,
256 	TRACE_SAMPLE_BAR = 4,
257 	TRACE_SAMPLE_ZOO = 8,
258 };
259 #endif
260 
261 /*
262  * If enums are used in the TP_printk(), their names will be shown in
263  * format files and not their values. This can cause problems with user
264  * space programs that parse the format files to know how to translate
265  * the raw binary trace output into human readable text.
266  *
267  * To help out user space programs, any enum that is used in the TP_printk()
268  * should be defined by TRACE_DEFINE_ENUM() macro. All that is needed to
269  * be done is to add this macro with the enum within it in the trace
270  * header file, and it will be converted in the output.
271  */
272 
273 TRACE_DEFINE_ENUM(TRACE_SAMPLE_FOO);
274 TRACE_DEFINE_ENUM(TRACE_SAMPLE_BAR);
275 TRACE_DEFINE_ENUM(TRACE_SAMPLE_ZOO);
276 
277 TRACE_EVENT(foo_bar,
278 
279 	TP_PROTO(const char *foo, int bar, const int *lst,
280 		 const char *string, const struct cpumask *mask,
281 		 const char *fmt, va_list *va),
282 
283 	TP_ARGS(foo, bar, lst, string, mask, fmt, va),
284 
285 	TP_STRUCT__entry(
286 		__array(	char,	foo,    10		)
287 		__field(	int,	bar			)
288 		__dynamic_array(int,	list,   __length_of(lst))
289 		__string(	str,	string			)
290 		__bitmask(	cpus,	num_possible_cpus()	)
291 		__vstring(	vstr,	fmt,	va		)
292 	),
293 
294 	TP_fast_assign(
295 		strlcpy(__entry->foo, foo, 10);
296 		__entry->bar	= bar;
297 		memcpy(__get_dynamic_array(list), lst,
298 		       __length_of(lst) * sizeof(int));
299 		__assign_str(str, string);
300 		__assign_vstr(vstr, fmt, va);
301 		__assign_bitmask(cpus, cpumask_bits(mask), num_possible_cpus());
302 	),
303 
304 	TP_printk("foo %s %d %s %s %s %s (%s) %s", __entry->foo, __entry->bar,
305 
306 /*
307  * Notice here the use of some helper functions. This includes:
308  *
309  *  __print_symbolic( variable, { value, "string" }, ... ),
310  *
311  *    The variable is tested against each value of the { } pair. If
312  *    the variable matches one of the values, then it will print the
313  *    string in that pair. If non are matched, it returns a string
314  *    version of the number (if __entry->bar == 7 then "7" is returned).
315  */
316 		  __print_symbolic(__entry->bar,
317 				   { 0, "zero" },
318 				   { TRACE_SAMPLE_FOO, "TWO" },
319 				   { TRACE_SAMPLE_BAR, "FOUR" },
320 				   { TRACE_SAMPLE_ZOO, "EIGHT" },
321 				   { 10, "TEN" }
322 			  ),
323 
324 /*
325  *  __print_flags( variable, "delim", { value, "flag" }, ... ),
326  *
327  *    This is similar to __print_symbolic, except that it tests the bits
328  *    of the value. If ((FLAG & variable) == FLAG) then the string is
329  *    printed. If more than one flag matches, then each one that does is
330  *    also printed with delim in between them.
331  *    If not all bits are accounted for, then the not found bits will be
332  *    added in hex format: 0x506 will show BIT2|BIT4|0x500
333  */
334 		  __print_flags(__entry->bar, "|",
335 				{ 1, "BIT1" },
336 				{ 2, "BIT2" },
337 				{ 4, "BIT3" },
338 				{ 8, "BIT4" }
339 			  ),
340 /*
341  *  __print_array( array, len, element_size )
342  *
343  *    This prints out the array that is defined by __array in a nice format.
344  */
345 		  __print_array(__get_dynamic_array(list),
346 				__get_dynamic_array_len(list) / sizeof(int),
347 				sizeof(int)),
348 		  __get_str(str), __get_bitmask(cpus), __get_str(vstr))
349 );
350 
351 /*
352  * There may be a case where a tracepoint should only be called if
353  * some condition is set. Otherwise the tracepoint should not be called.
354  * But to do something like:
355  *
356  *  if (cond)
357  *     trace_foo();
358  *
359  * Would cause a little overhead when tracing is not enabled, and that
360  * overhead, even if small, is not something we want. As tracepoints
361  * use static branch (aka jump_labels), where no branch is taken to
362  * skip the tracepoint when not enabled, and a jmp is placed to jump
363  * to the tracepoint code when it is enabled, having a if statement
364  * nullifies that optimization. It would be nice to place that
365  * condition within the static branch. This is where TRACE_EVENT_CONDITION
366  * comes in.
367  *
368  * TRACE_EVENT_CONDITION() is just like TRACE_EVENT, except it adds another
369  * parameter just after args. Where TRACE_EVENT has:
370  *
371  * TRACE_EVENT(name, proto, args, struct, assign, printk)
372  *
373  * the CONDITION version has:
374  *
375  * TRACE_EVENT_CONDITION(name, proto, args, cond, struct, assign, printk)
376  *
377  * Everything is the same as TRACE_EVENT except for the new cond. Think
378  * of the cond variable as:
379  *
380  *   if (cond)
381  *      trace_foo_bar_with_cond();
382  *
383  * Except that the logic for the if branch is placed after the static branch.
384  * That is, the if statement that processes the condition will not be
385  * executed unless that traecpoint is enabled. Otherwise it still remains
386  * a nop.
387  */
388 TRACE_EVENT_CONDITION(foo_bar_with_cond,
389 
390 	TP_PROTO(const char *foo, int bar),
391 
392 	TP_ARGS(foo, bar),
393 
394 	TP_CONDITION(!(bar % 10)),
395 
396 	TP_STRUCT__entry(
397 		__string(	foo,    foo		)
398 		__field(	int,	bar			)
399 	),
400 
401 	TP_fast_assign(
402 		__assign_str(foo, foo);
403 		__entry->bar	= bar;
404 	),
405 
406 	TP_printk("foo %s %d", __get_str(foo), __entry->bar)
407 );
408 
409 int foo_bar_reg(void);
410 void foo_bar_unreg(void);
411 
412 /*
413  * Now in the case that some function needs to be called when the
414  * tracepoint is enabled and/or when it is disabled, the
415  * TRACE_EVENT_FN() serves this purpose. This is just like TRACE_EVENT()
416  * but adds two more parameters at the end:
417  *
418  * TRACE_EVENT_FN( name, proto, args, struct, assign, printk, reg, unreg)
419  *
420  * reg and unreg are functions with the prototype of:
421  *
422  *    void reg(void)
423  *
424  * The reg function gets called before the tracepoint is enabled, and
425  * the unreg function gets called after the tracepoint is disabled.
426  *
427  * Note, reg and unreg are allowed to be NULL. If you only need to
428  * call a function before enabling, or after disabling, just set one
429  * function and pass in NULL for the other parameter.
430  */
431 TRACE_EVENT_FN(foo_bar_with_fn,
432 
433 	TP_PROTO(const char *foo, int bar),
434 
435 	TP_ARGS(foo, bar),
436 
437 	TP_STRUCT__entry(
438 		__string(	foo,    foo		)
439 		__field(	int,	bar		)
440 	),
441 
442 	TP_fast_assign(
443 		__assign_str(foo, foo);
444 		__entry->bar	= bar;
445 	),
446 
447 	TP_printk("foo %s %d", __get_str(foo), __entry->bar),
448 
449 	foo_bar_reg, foo_bar_unreg
450 );
451 
452 /*
453  * Each TRACE_EVENT macro creates several helper functions to produce
454  * the code to add the tracepoint, create the files in the trace
455  * directory, hook it to perf, assign the values and to print out
456  * the raw data from the ring buffer. To prevent too much bloat,
457  * if there are more than one tracepoint that uses the same format
458  * for the proto, args, struct, assign and printk, and only the name
459  * is different, it is highly recommended to use the DECLARE_EVENT_CLASS
460  *
461  * DECLARE_EVENT_CLASS() macro creates most of the functions for the
462  * tracepoint. Then DEFINE_EVENT() is use to hook a tracepoint to those
463  * functions. This DEFINE_EVENT() is an instance of the class and can
464  * be enabled and disabled separately from other events (either TRACE_EVENT
465  * or other DEFINE_EVENT()s).
466  *
467  * Note, TRACE_EVENT() itself is simply defined as:
468  *
469  * #define TRACE_EVENT(name, proto, args, tstruct, assign, printk)  \
470  *  DECLARE_EVENT_CLASS(name, proto, args, tstruct, assign, printk); \
471  *  DEFINE_EVENT(name, name, proto, args)
472  *
473  * The DEFINE_EVENT() also can be declared with conditions and reg functions:
474  *
475  * DEFINE_EVENT_CONDITION(template, name, proto, args, cond);
476  * DEFINE_EVENT_FN(template, name, proto, args, reg, unreg);
477  */
478 DECLARE_EVENT_CLASS(foo_template,
479 
480 	TP_PROTO(const char *foo, int bar),
481 
482 	TP_ARGS(foo, bar),
483 
484 	TP_STRUCT__entry(
485 		__string(	foo,    foo		)
486 		__field(	int,	bar		)
487 	),
488 
489 	TP_fast_assign(
490 		__assign_str(foo, foo);
491 		__entry->bar	= bar;
492 	),
493 
494 	TP_printk("foo %s %d", __get_str(foo), __entry->bar)
495 );
496 
497 /*
498  * Here's a better way for the previous samples (except, the first
499  * example had more fields and could not be used here).
500  */
501 DEFINE_EVENT(foo_template, foo_with_template_simple,
502 	TP_PROTO(const char *foo, int bar),
503 	TP_ARGS(foo, bar));
504 
505 DEFINE_EVENT_CONDITION(foo_template, foo_with_template_cond,
506 	TP_PROTO(const char *foo, int bar),
507 	TP_ARGS(foo, bar),
508 	TP_CONDITION(!(bar % 8)));
509 
510 
511 DEFINE_EVENT_FN(foo_template, foo_with_template_fn,
512 	TP_PROTO(const char *foo, int bar),
513 	TP_ARGS(foo, bar),
514 	foo_bar_reg, foo_bar_unreg);
515 
516 /*
517  * Anytime two events share basically the same values and have
518  * the same output, use the DECLARE_EVENT_CLASS() and DEFINE_EVENT()
519  * when ever possible.
520  */
521 
522 /*
523  * If the event is similar to the DECLARE_EVENT_CLASS, but you need
524  * to have a different output, then use DEFINE_EVENT_PRINT() which
525  * lets you override the TP_printk() of the class.
526  */
527 
528 DEFINE_EVENT_PRINT(foo_template, foo_with_template_print,
529 	TP_PROTO(const char *foo, int bar),
530 	TP_ARGS(foo, bar),
531 	TP_printk("bar %s %d", __get_str(foo), __entry->bar));
532 
533 /*
534  * There are yet another __rel_loc dynamic data attribute. If you
535  * use __rel_dynamic_array() and __rel_string() etc. macros, you
536  * can use this attribute. There is no difference from the viewpoint
537  * of functionality with/without 'rel' but the encoding is a bit
538  * different. This is expected to be used with user-space event,
539  * there is no reason that the kernel event use this, but only for
540  * testing.
541  */
542 
543 TRACE_EVENT(foo_rel_loc,
544 
545 	TP_PROTO(const char *foo, int bar, unsigned long *mask),
546 
547 	TP_ARGS(foo, bar, mask),
548 
549 	TP_STRUCT__entry(
550 		__rel_string(	foo,	foo	)
551 		__field(	int,	bar	)
552 		__rel_bitmask(	bitmask,
553 			BITS_PER_BYTE * sizeof(unsigned long)	)
554 	),
555 
556 	TP_fast_assign(
557 		__assign_rel_str(foo, foo);
558 		__entry->bar = bar;
559 		__assign_rel_bitmask(bitmask, mask,
560 			BITS_PER_BYTE * sizeof(unsigned long));
561 	),
562 
563 	TP_printk("foo_rel_loc %s, %d, %s", __get_rel_str(foo), __entry->bar,
564 		  __get_rel_bitmask(bitmask))
565 );
566 #endif
567 
568 /***** NOTICE! The #if protection ends here. *****/
569 
570 
571 /*
572  * There are several ways I could have done this. If I left out the
573  * TRACE_INCLUDE_PATH, then it would default to the kernel source
574  * include/trace/events directory.
575  *
576  * I could specify a path from the define_trace.h file back to this
577  * file.
578  *
579  * #define TRACE_INCLUDE_PATH ../../samples/trace_events
580  *
581  * But the safest and easiest way to simply make it use the directory
582  * that the file is in is to add in the Makefile:
583  *
584  * CFLAGS_trace-events-sample.o := -I$(src)
585  *
586  * This will make sure the current path is part of the include
587  * structure for our file so that define_trace.h can find it.
588  *
589  * I could have made only the top level directory the include:
590  *
591  * CFLAGS_trace-events-sample.o := -I$(PWD)
592  *
593  * And then let the path to this directory be the TRACE_INCLUDE_PATH:
594  *
595  * #define TRACE_INCLUDE_PATH samples/trace_events
596  *
597  * But then if something defines "samples" or "trace_events" as a macro
598  * then we could risk that being converted too, and give us an unexpected
599  * result.
600  */
601 #undef TRACE_INCLUDE_PATH
602 #undef TRACE_INCLUDE_FILE
603 #define TRACE_INCLUDE_PATH .
604 /*
605  * TRACE_INCLUDE_FILE is not needed if the filename and TRACE_SYSTEM are equal
606  */
607 #define TRACE_INCLUDE_FILE trace-events-sample
608 #include <trace/define_trace.h>
609