xref: /linux/security/landlock/fs.c (revision f0cf7ffc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Landlock LSM - Filesystem management and hooks
4  *
5  * Copyright © 2016-2020 Mickaël Salaün <mic@digikod.net>
6  * Copyright © 2018-2020 ANSSI
7  * Copyright © 2021-2022 Microsoft Corporation
8  */
9 
10 #include <kunit/test.h>
11 #include <linux/atomic.h>
12 #include <linux/bitops.h>
13 #include <linux/bits.h>
14 #include <linux/compiler_types.h>
15 #include <linux/dcache.h>
16 #include <linux/err.h>
17 #include <linux/fs.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/limits.h>
21 #include <linux/list.h>
22 #include <linux/lsm_hooks.h>
23 #include <linux/mount.h>
24 #include <linux/namei.h>
25 #include <linux/path.h>
26 #include <linux/rcupdate.h>
27 #include <linux/spinlock.h>
28 #include <linux/stat.h>
29 #include <linux/types.h>
30 #include <linux/wait_bit.h>
31 #include <linux/workqueue.h>
32 #include <uapi/linux/landlock.h>
33 
34 #include "common.h"
35 #include "cred.h"
36 #include "fs.h"
37 #include "limits.h"
38 #include "object.h"
39 #include "ruleset.h"
40 #include "setup.h"
41 
42 /* Underlying object management */
43 
44 static void release_inode(struct landlock_object *const object)
45 	__releases(object->lock)
46 {
47 	struct inode *const inode = object->underobj;
48 	struct super_block *sb;
49 
50 	if (!inode) {
51 		spin_unlock(&object->lock);
52 		return;
53 	}
54 
55 	/*
56 	 * Protects against concurrent use by hook_sb_delete() of the reference
57 	 * to the underlying inode.
58 	 */
59 	object->underobj = NULL;
60 	/*
61 	 * Makes sure that if the filesystem is concurrently unmounted,
62 	 * hook_sb_delete() will wait for us to finish iput().
63 	 */
64 	sb = inode->i_sb;
65 	atomic_long_inc(&landlock_superblock(sb)->inode_refs);
66 	spin_unlock(&object->lock);
67 	/*
68 	 * Because object->underobj was not NULL, hook_sb_delete() and
69 	 * get_inode_object() guarantee that it is safe to reset
70 	 * landlock_inode(inode)->object while it is not NULL.  It is therefore
71 	 * not necessary to lock inode->i_lock.
72 	 */
73 	rcu_assign_pointer(landlock_inode(inode)->object, NULL);
74 	/*
75 	 * Now, new rules can safely be tied to @inode with get_inode_object().
76 	 */
77 
78 	iput(inode);
79 	if (atomic_long_dec_and_test(&landlock_superblock(sb)->inode_refs))
80 		wake_up_var(&landlock_superblock(sb)->inode_refs);
81 }
82 
83 static const struct landlock_object_underops landlock_fs_underops = {
84 	.release = release_inode
85 };
86 
87 /* Ruleset management */
88 
89 static struct landlock_object *get_inode_object(struct inode *const inode)
90 {
91 	struct landlock_object *object, *new_object;
92 	struct landlock_inode_security *inode_sec = landlock_inode(inode);
93 
94 	rcu_read_lock();
95 retry:
96 	object = rcu_dereference(inode_sec->object);
97 	if (object) {
98 		if (likely(refcount_inc_not_zero(&object->usage))) {
99 			rcu_read_unlock();
100 			return object;
101 		}
102 		/*
103 		 * We are racing with release_inode(), the object is going
104 		 * away.  Wait for release_inode(), then retry.
105 		 */
106 		spin_lock(&object->lock);
107 		spin_unlock(&object->lock);
108 		goto retry;
109 	}
110 	rcu_read_unlock();
111 
112 	/*
113 	 * If there is no object tied to @inode, then create a new one (without
114 	 * holding any locks).
115 	 */
116 	new_object = landlock_create_object(&landlock_fs_underops, inode);
117 	if (IS_ERR(new_object))
118 		return new_object;
119 
120 	/*
121 	 * Protects against concurrent calls to get_inode_object() or
122 	 * hook_sb_delete().
123 	 */
124 	spin_lock(&inode->i_lock);
125 	if (unlikely(rcu_access_pointer(inode_sec->object))) {
126 		/* Someone else just created the object, bail out and retry. */
127 		spin_unlock(&inode->i_lock);
128 		kfree(new_object);
129 
130 		rcu_read_lock();
131 		goto retry;
132 	}
133 
134 	/*
135 	 * @inode will be released by hook_sb_delete() on its superblock
136 	 * shutdown, or by release_inode() when no more ruleset references the
137 	 * related object.
138 	 */
139 	ihold(inode);
140 	rcu_assign_pointer(inode_sec->object, new_object);
141 	spin_unlock(&inode->i_lock);
142 	return new_object;
143 }
144 
145 /* All access rights that can be tied to files. */
146 /* clang-format off */
147 #define ACCESS_FILE ( \
148 	LANDLOCK_ACCESS_FS_EXECUTE | \
149 	LANDLOCK_ACCESS_FS_WRITE_FILE | \
150 	LANDLOCK_ACCESS_FS_READ_FILE | \
151 	LANDLOCK_ACCESS_FS_TRUNCATE)
152 /* clang-format on */
153 
154 /*
155  * @path: Should have been checked by get_path_from_fd().
156  */
157 int landlock_append_fs_rule(struct landlock_ruleset *const ruleset,
158 			    const struct path *const path,
159 			    access_mask_t access_rights)
160 {
161 	int err;
162 	struct landlock_id id = {
163 		.type = LANDLOCK_KEY_INODE,
164 	};
165 
166 	/* Files only get access rights that make sense. */
167 	if (!d_is_dir(path->dentry) &&
168 	    (access_rights | ACCESS_FILE) != ACCESS_FILE)
169 		return -EINVAL;
170 	if (WARN_ON_ONCE(ruleset->num_layers != 1))
171 		return -EINVAL;
172 
173 	/* Transforms relative access rights to absolute ones. */
174 	access_rights |= LANDLOCK_MASK_ACCESS_FS &
175 			 ~landlock_get_fs_access_mask(ruleset, 0);
176 	id.key.object = get_inode_object(d_backing_inode(path->dentry));
177 	if (IS_ERR(id.key.object))
178 		return PTR_ERR(id.key.object);
179 	mutex_lock(&ruleset->lock);
180 	err = landlock_insert_rule(ruleset, id, access_rights);
181 	mutex_unlock(&ruleset->lock);
182 	/*
183 	 * No need to check for an error because landlock_insert_rule()
184 	 * increments the refcount for the new object if needed.
185 	 */
186 	landlock_put_object(id.key.object);
187 	return err;
188 }
189 
190 /* Access-control management */
191 
192 /*
193  * The lifetime of the returned rule is tied to @domain.
194  *
195  * Returns NULL if no rule is found or if @dentry is negative.
196  */
197 static const struct landlock_rule *
198 find_rule(const struct landlock_ruleset *const domain,
199 	  const struct dentry *const dentry)
200 {
201 	const struct landlock_rule *rule;
202 	const struct inode *inode;
203 	struct landlock_id id = {
204 		.type = LANDLOCK_KEY_INODE,
205 	};
206 
207 	/* Ignores nonexistent leafs. */
208 	if (d_is_negative(dentry))
209 		return NULL;
210 
211 	inode = d_backing_inode(dentry);
212 	rcu_read_lock();
213 	id.key.object = rcu_dereference(landlock_inode(inode)->object);
214 	rule = landlock_find_rule(domain, id);
215 	rcu_read_unlock();
216 	return rule;
217 }
218 
219 /*
220  * Allows access to pseudo filesystems that will never be mountable (e.g.
221  * sockfs, pipefs), but can still be reachable through
222  * /proc/<pid>/fd/<file-descriptor>
223  */
224 static bool is_nouser_or_private(const struct dentry *dentry)
225 {
226 	return (dentry->d_sb->s_flags & SB_NOUSER) ||
227 	       (d_is_positive(dentry) &&
228 		unlikely(IS_PRIVATE(d_backing_inode(dentry))));
229 }
230 
231 static access_mask_t
232 get_raw_handled_fs_accesses(const struct landlock_ruleset *const domain)
233 {
234 	access_mask_t access_dom = 0;
235 	size_t layer_level;
236 
237 	for (layer_level = 0; layer_level < domain->num_layers; layer_level++)
238 		access_dom |=
239 			landlock_get_raw_fs_access_mask(domain, layer_level);
240 	return access_dom;
241 }
242 
243 static access_mask_t
244 get_handled_fs_accesses(const struct landlock_ruleset *const domain)
245 {
246 	/* Handles all initially denied by default access rights. */
247 	return get_raw_handled_fs_accesses(domain) |
248 	       LANDLOCK_ACCESS_FS_INITIALLY_DENIED;
249 }
250 
251 static const struct landlock_ruleset *
252 get_fs_domain(const struct landlock_ruleset *const domain)
253 {
254 	if (!domain || !get_raw_handled_fs_accesses(domain))
255 		return NULL;
256 
257 	return domain;
258 }
259 
260 static const struct landlock_ruleset *get_current_fs_domain(void)
261 {
262 	return get_fs_domain(landlock_get_current_domain());
263 }
264 
265 /*
266  * Check that a destination file hierarchy has more restrictions than a source
267  * file hierarchy.  This is only used for link and rename actions.
268  *
269  * @layer_masks_child2: Optional child masks.
270  */
271 static bool no_more_access(
272 	const layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
273 	const layer_mask_t (*const layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS],
274 	const bool child1_is_directory,
275 	const layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
276 	const layer_mask_t (*const layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS],
277 	const bool child2_is_directory)
278 {
279 	unsigned long access_bit;
280 
281 	for (access_bit = 0; access_bit < ARRAY_SIZE(*layer_masks_parent2);
282 	     access_bit++) {
283 		/* Ignores accesses that only make sense for directories. */
284 		const bool is_file_access =
285 			!!(BIT_ULL(access_bit) & ACCESS_FILE);
286 
287 		if (child1_is_directory || is_file_access) {
288 			/*
289 			 * Checks if the destination restrictions are a
290 			 * superset of the source ones (i.e. inherited access
291 			 * rights without child exceptions):
292 			 * restrictions(parent2) >= restrictions(child1)
293 			 */
294 			if ((((*layer_masks_parent1)[access_bit] &
295 			      (*layer_masks_child1)[access_bit]) |
296 			     (*layer_masks_parent2)[access_bit]) !=
297 			    (*layer_masks_parent2)[access_bit])
298 				return false;
299 		}
300 
301 		if (!layer_masks_child2)
302 			continue;
303 		if (child2_is_directory || is_file_access) {
304 			/*
305 			 * Checks inverted restrictions for RENAME_EXCHANGE:
306 			 * restrictions(parent1) >= restrictions(child2)
307 			 */
308 			if ((((*layer_masks_parent2)[access_bit] &
309 			      (*layer_masks_child2)[access_bit]) |
310 			     (*layer_masks_parent1)[access_bit]) !=
311 			    (*layer_masks_parent1)[access_bit])
312 				return false;
313 		}
314 	}
315 	return true;
316 }
317 
318 #define NMA_TRUE(...) KUNIT_EXPECT_TRUE(test, no_more_access(__VA_ARGS__))
319 #define NMA_FALSE(...) KUNIT_EXPECT_FALSE(test, no_more_access(__VA_ARGS__))
320 
321 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
322 
323 static void test_no_more_access(struct kunit *const test)
324 {
325 	const layer_mask_t rx0[LANDLOCK_NUM_ACCESS_FS] = {
326 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
327 		[BIT_INDEX(LANDLOCK_ACCESS_FS_READ_FILE)] = BIT_ULL(0),
328 	};
329 	const layer_mask_t mx0[LANDLOCK_NUM_ACCESS_FS] = {
330 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
331 		[BIT_INDEX(LANDLOCK_ACCESS_FS_MAKE_REG)] = BIT_ULL(0),
332 	};
333 	const layer_mask_t x0[LANDLOCK_NUM_ACCESS_FS] = {
334 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
335 	};
336 	const layer_mask_t x1[LANDLOCK_NUM_ACCESS_FS] = {
337 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(1),
338 	};
339 	const layer_mask_t x01[LANDLOCK_NUM_ACCESS_FS] = {
340 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0) |
341 							  BIT_ULL(1),
342 	};
343 	const layer_mask_t allows_all[LANDLOCK_NUM_ACCESS_FS] = {};
344 
345 	/* Checks without restriction. */
346 	NMA_TRUE(&x0, &allows_all, false, &allows_all, NULL, false);
347 	NMA_TRUE(&allows_all, &x0, false, &allows_all, NULL, false);
348 	NMA_FALSE(&x0, &x0, false, &allows_all, NULL, false);
349 
350 	/*
351 	 * Checks that we can only refer a file if no more access could be
352 	 * inherited.
353 	 */
354 	NMA_TRUE(&x0, &x0, false, &rx0, NULL, false);
355 	NMA_TRUE(&rx0, &rx0, false, &rx0, NULL, false);
356 	NMA_FALSE(&rx0, &rx0, false, &x0, NULL, false);
357 	NMA_FALSE(&rx0, &rx0, false, &x1, NULL, false);
358 
359 	/* Checks allowed referring with different nested domains. */
360 	NMA_TRUE(&x0, &x1, false, &x0, NULL, false);
361 	NMA_TRUE(&x1, &x0, false, &x0, NULL, false);
362 	NMA_TRUE(&x0, &x01, false, &x0, NULL, false);
363 	NMA_TRUE(&x0, &x01, false, &rx0, NULL, false);
364 	NMA_TRUE(&x01, &x0, false, &x0, NULL, false);
365 	NMA_TRUE(&x01, &x0, false, &rx0, NULL, false);
366 	NMA_FALSE(&x01, &x01, false, &x0, NULL, false);
367 
368 	/* Checks that file access rights are also enforced for a directory. */
369 	NMA_FALSE(&rx0, &rx0, true, &x0, NULL, false);
370 
371 	/* Checks that directory access rights don't impact file referring... */
372 	NMA_TRUE(&mx0, &mx0, false, &x0, NULL, false);
373 	/* ...but only directory referring. */
374 	NMA_FALSE(&mx0, &mx0, true, &x0, NULL, false);
375 
376 	/* Checks directory exchange. */
377 	NMA_TRUE(&mx0, &mx0, true, &mx0, &mx0, true);
378 	NMA_TRUE(&mx0, &mx0, true, &mx0, &x0, true);
379 	NMA_FALSE(&mx0, &mx0, true, &x0, &mx0, true);
380 	NMA_FALSE(&mx0, &mx0, true, &x0, &x0, true);
381 	NMA_FALSE(&mx0, &mx0, true, &x1, &x1, true);
382 
383 	/* Checks file exchange with directory access rights... */
384 	NMA_TRUE(&mx0, &mx0, false, &mx0, &mx0, false);
385 	NMA_TRUE(&mx0, &mx0, false, &mx0, &x0, false);
386 	NMA_TRUE(&mx0, &mx0, false, &x0, &mx0, false);
387 	NMA_TRUE(&mx0, &mx0, false, &x0, &x0, false);
388 	/* ...and with file access rights. */
389 	NMA_TRUE(&rx0, &rx0, false, &rx0, &rx0, false);
390 	NMA_TRUE(&rx0, &rx0, false, &rx0, &x0, false);
391 	NMA_FALSE(&rx0, &rx0, false, &x0, &rx0, false);
392 	NMA_FALSE(&rx0, &rx0, false, &x0, &x0, false);
393 	NMA_FALSE(&rx0, &rx0, false, &x1, &x1, false);
394 
395 	/*
396 	 * Allowing the following requests should not be a security risk
397 	 * because domain 0 denies execute access, and domain 1 is always
398 	 * nested with domain 0.  However, adding an exception for this case
399 	 * would mean to check all nested domains to make sure none can get
400 	 * more privileges (e.g. processes only sandboxed by domain 0).
401 	 * Moreover, this behavior (i.e. composition of N domains) could then
402 	 * be inconsistent compared to domain 1's ruleset alone (e.g. it might
403 	 * be denied to link/rename with domain 1's ruleset, whereas it would
404 	 * be allowed if nested on top of domain 0).  Another drawback would be
405 	 * to create a cover channel that could enable sandboxed processes to
406 	 * infer most of the filesystem restrictions from their domain.  To
407 	 * make it simple, efficient, safe, and more consistent, this case is
408 	 * always denied.
409 	 */
410 	NMA_FALSE(&x1, &x1, false, &x0, NULL, false);
411 	NMA_FALSE(&x1, &x1, false, &rx0, NULL, false);
412 	NMA_FALSE(&x1, &x1, true, &x0, NULL, false);
413 	NMA_FALSE(&x1, &x1, true, &rx0, NULL, false);
414 
415 	/* Checks the same case of exclusive domains with a file... */
416 	NMA_TRUE(&x1, &x1, false, &x01, NULL, false);
417 	NMA_FALSE(&x1, &x1, false, &x01, &x0, false);
418 	NMA_FALSE(&x1, &x1, false, &x01, &x01, false);
419 	NMA_FALSE(&x1, &x1, false, &x0, &x0, false);
420 	/* ...and with a directory. */
421 	NMA_FALSE(&x1, &x1, false, &x0, &x0, true);
422 	NMA_FALSE(&x1, &x1, true, &x0, &x0, false);
423 	NMA_FALSE(&x1, &x1, true, &x0, &x0, true);
424 }
425 
426 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
427 
428 #undef NMA_TRUE
429 #undef NMA_FALSE
430 
431 /*
432  * Removes @layer_masks accesses that are not requested.
433  *
434  * Returns true if the request is allowed, false otherwise.
435  */
436 static bool
437 scope_to_request(const access_mask_t access_request,
438 		 layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS])
439 {
440 	const unsigned long access_req = access_request;
441 	unsigned long access_bit;
442 
443 	if (WARN_ON_ONCE(!layer_masks))
444 		return true;
445 
446 	for_each_clear_bit(access_bit, &access_req, ARRAY_SIZE(*layer_masks))
447 		(*layer_masks)[access_bit] = 0;
448 	return !memchr_inv(layer_masks, 0, sizeof(*layer_masks));
449 }
450 
451 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
452 
453 static void test_scope_to_request_with_exec_none(struct kunit *const test)
454 {
455 	/* Allows everything. */
456 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
457 
458 	/* Checks and scopes with execute. */
459 	KUNIT_EXPECT_TRUE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE,
460 						 &layer_masks));
461 	KUNIT_EXPECT_EQ(test, 0,
462 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
463 	KUNIT_EXPECT_EQ(test, 0,
464 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
465 }
466 
467 static void test_scope_to_request_with_exec_some(struct kunit *const test)
468 {
469 	/* Denies execute and write. */
470 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
471 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
472 		[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1),
473 	};
474 
475 	/* Checks and scopes with execute. */
476 	KUNIT_EXPECT_FALSE(test, scope_to_request(LANDLOCK_ACCESS_FS_EXECUTE,
477 						  &layer_masks));
478 	KUNIT_EXPECT_EQ(test, BIT_ULL(0),
479 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
480 	KUNIT_EXPECT_EQ(test, 0,
481 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
482 }
483 
484 static void test_scope_to_request_without_access(struct kunit *const test)
485 {
486 	/* Denies execute and write. */
487 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
488 		[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)] = BIT_ULL(0),
489 		[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(1),
490 	};
491 
492 	/* Checks and scopes without access request. */
493 	KUNIT_EXPECT_TRUE(test, scope_to_request(0, &layer_masks));
494 	KUNIT_EXPECT_EQ(test, 0,
495 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_EXECUTE)]);
496 	KUNIT_EXPECT_EQ(test, 0,
497 			layer_masks[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)]);
498 }
499 
500 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
501 
502 /*
503  * Returns true if there is at least one access right different than
504  * LANDLOCK_ACCESS_FS_REFER.
505  */
506 static bool
507 is_eacces(const layer_mask_t (*const layer_masks)[LANDLOCK_NUM_ACCESS_FS],
508 	  const access_mask_t access_request)
509 {
510 	unsigned long access_bit;
511 	/* LANDLOCK_ACCESS_FS_REFER alone must return -EXDEV. */
512 	const unsigned long access_check = access_request &
513 					   ~LANDLOCK_ACCESS_FS_REFER;
514 
515 	if (!layer_masks)
516 		return false;
517 
518 	for_each_set_bit(access_bit, &access_check, ARRAY_SIZE(*layer_masks)) {
519 		if ((*layer_masks)[access_bit])
520 			return true;
521 	}
522 	return false;
523 }
524 
525 #define IE_TRUE(...) KUNIT_EXPECT_TRUE(test, is_eacces(__VA_ARGS__))
526 #define IE_FALSE(...) KUNIT_EXPECT_FALSE(test, is_eacces(__VA_ARGS__))
527 
528 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
529 
530 static void test_is_eacces_with_none(struct kunit *const test)
531 {
532 	const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
533 
534 	IE_FALSE(&layer_masks, 0);
535 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
536 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
537 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
538 }
539 
540 static void test_is_eacces_with_refer(struct kunit *const test)
541 {
542 	const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
543 		[BIT_INDEX(LANDLOCK_ACCESS_FS_REFER)] = BIT_ULL(0),
544 	};
545 
546 	IE_FALSE(&layer_masks, 0);
547 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
548 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
549 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
550 }
551 
552 static void test_is_eacces_with_write(struct kunit *const test)
553 {
554 	const layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {
555 		[BIT_INDEX(LANDLOCK_ACCESS_FS_WRITE_FILE)] = BIT_ULL(0),
556 	};
557 
558 	IE_FALSE(&layer_masks, 0);
559 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_REFER);
560 	IE_FALSE(&layer_masks, LANDLOCK_ACCESS_FS_EXECUTE);
561 
562 	IE_TRUE(&layer_masks, LANDLOCK_ACCESS_FS_WRITE_FILE);
563 }
564 
565 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
566 
567 #undef IE_TRUE
568 #undef IE_FALSE
569 
570 /**
571  * is_access_to_paths_allowed - Check accesses for requests with a common path
572  *
573  * @domain: Domain to check against.
574  * @path: File hierarchy to walk through.
575  * @access_request_parent1: Accesses to check, once @layer_masks_parent1 is
576  *     equal to @layer_masks_parent2 (if any).  This is tied to the unique
577  *     requested path for most actions, or the source in case of a refer action
578  *     (i.e. rename or link), or the source and destination in case of
579  *     RENAME_EXCHANGE.
580  * @layer_masks_parent1: Pointer to a matrix of layer masks per access
581  *     masks, identifying the layers that forbid a specific access.  Bits from
582  *     this matrix can be unset according to the @path walk.  An empty matrix
583  *     means that @domain allows all possible Landlock accesses (i.e. not only
584  *     those identified by @access_request_parent1).  This matrix can
585  *     initially refer to domain layer masks and, when the accesses for the
586  *     destination and source are the same, to requested layer masks.
587  * @dentry_child1: Dentry to the initial child of the parent1 path.  This
588  *     pointer must be NULL for non-refer actions (i.e. not link nor rename).
589  * @access_request_parent2: Similar to @access_request_parent1 but for a
590  *     request involving a source and a destination.  This refers to the
591  *     destination, except in case of RENAME_EXCHANGE where it also refers to
592  *     the source.  Must be set to 0 when using a simple path request.
593  * @layer_masks_parent2: Similar to @layer_masks_parent1 but for a refer
594  *     action.  This must be NULL otherwise.
595  * @dentry_child2: Dentry to the initial child of the parent2 path.  This
596  *     pointer is only set for RENAME_EXCHANGE actions and must be NULL
597  *     otherwise.
598  *
599  * This helper first checks that the destination has a superset of restrictions
600  * compared to the source (if any) for a common path.  Because of
601  * RENAME_EXCHANGE actions, source and destinations may be swapped.  It then
602  * checks that the collected accesses and the remaining ones are enough to
603  * allow the request.
604  *
605  * Returns:
606  * - true if the access request is granted;
607  * - false otherwise.
608  */
609 static bool is_access_to_paths_allowed(
610 	const struct landlock_ruleset *const domain,
611 	const struct path *const path,
612 	const access_mask_t access_request_parent1,
613 	layer_mask_t (*const layer_masks_parent1)[LANDLOCK_NUM_ACCESS_FS],
614 	const struct dentry *const dentry_child1,
615 	const access_mask_t access_request_parent2,
616 	layer_mask_t (*const layer_masks_parent2)[LANDLOCK_NUM_ACCESS_FS],
617 	const struct dentry *const dentry_child2)
618 {
619 	bool allowed_parent1 = false, allowed_parent2 = false, is_dom_check,
620 	     child1_is_directory = true, child2_is_directory = true;
621 	struct path walker_path;
622 	access_mask_t access_masked_parent1, access_masked_parent2;
623 	layer_mask_t _layer_masks_child1[LANDLOCK_NUM_ACCESS_FS],
624 		_layer_masks_child2[LANDLOCK_NUM_ACCESS_FS];
625 	layer_mask_t(*layer_masks_child1)[LANDLOCK_NUM_ACCESS_FS] = NULL,
626 	(*layer_masks_child2)[LANDLOCK_NUM_ACCESS_FS] = NULL;
627 
628 	if (!access_request_parent1 && !access_request_parent2)
629 		return true;
630 	if (WARN_ON_ONCE(!domain || !path))
631 		return true;
632 	if (is_nouser_or_private(path->dentry))
633 		return true;
634 	if (WARN_ON_ONCE(domain->num_layers < 1 || !layer_masks_parent1))
635 		return false;
636 
637 	if (unlikely(layer_masks_parent2)) {
638 		if (WARN_ON_ONCE(!dentry_child1))
639 			return false;
640 		/*
641 		 * For a double request, first check for potential privilege
642 		 * escalation by looking at domain handled accesses (which are
643 		 * a superset of the meaningful requested accesses).
644 		 */
645 		access_masked_parent1 = access_masked_parent2 =
646 			get_handled_fs_accesses(domain);
647 		is_dom_check = true;
648 	} else {
649 		if (WARN_ON_ONCE(dentry_child1 || dentry_child2))
650 			return false;
651 		/* For a simple request, only check for requested accesses. */
652 		access_masked_parent1 = access_request_parent1;
653 		access_masked_parent2 = access_request_parent2;
654 		is_dom_check = false;
655 	}
656 
657 	if (unlikely(dentry_child1)) {
658 		landlock_unmask_layers(
659 			find_rule(domain, dentry_child1),
660 			landlock_init_layer_masks(
661 				domain, LANDLOCK_MASK_ACCESS_FS,
662 				&_layer_masks_child1, LANDLOCK_KEY_INODE),
663 			&_layer_masks_child1, ARRAY_SIZE(_layer_masks_child1));
664 		layer_masks_child1 = &_layer_masks_child1;
665 		child1_is_directory = d_is_dir(dentry_child1);
666 	}
667 	if (unlikely(dentry_child2)) {
668 		landlock_unmask_layers(
669 			find_rule(domain, dentry_child2),
670 			landlock_init_layer_masks(
671 				domain, LANDLOCK_MASK_ACCESS_FS,
672 				&_layer_masks_child2, LANDLOCK_KEY_INODE),
673 			&_layer_masks_child2, ARRAY_SIZE(_layer_masks_child2));
674 		layer_masks_child2 = &_layer_masks_child2;
675 		child2_is_directory = d_is_dir(dentry_child2);
676 	}
677 
678 	walker_path = *path;
679 	path_get(&walker_path);
680 	/*
681 	 * We need to walk through all the hierarchy to not miss any relevant
682 	 * restriction.
683 	 */
684 	while (true) {
685 		struct dentry *parent_dentry;
686 		const struct landlock_rule *rule;
687 
688 		/*
689 		 * If at least all accesses allowed on the destination are
690 		 * already allowed on the source, respectively if there is at
691 		 * least as much as restrictions on the destination than on the
692 		 * source, then we can safely refer files from the source to
693 		 * the destination without risking a privilege escalation.
694 		 * This also applies in the case of RENAME_EXCHANGE, which
695 		 * implies checks on both direction.  This is crucial for
696 		 * standalone multilayered security policies.  Furthermore,
697 		 * this helps avoid policy writers to shoot themselves in the
698 		 * foot.
699 		 */
700 		if (unlikely(is_dom_check &&
701 			     no_more_access(
702 				     layer_masks_parent1, layer_masks_child1,
703 				     child1_is_directory, layer_masks_parent2,
704 				     layer_masks_child2,
705 				     child2_is_directory))) {
706 			allowed_parent1 = scope_to_request(
707 				access_request_parent1, layer_masks_parent1);
708 			allowed_parent2 = scope_to_request(
709 				access_request_parent2, layer_masks_parent2);
710 
711 			/* Stops when all accesses are granted. */
712 			if (allowed_parent1 && allowed_parent2)
713 				break;
714 
715 			/*
716 			 * Now, downgrades the remaining checks from domain
717 			 * handled accesses to requested accesses.
718 			 */
719 			is_dom_check = false;
720 			access_masked_parent1 = access_request_parent1;
721 			access_masked_parent2 = access_request_parent2;
722 		}
723 
724 		rule = find_rule(domain, walker_path.dentry);
725 		allowed_parent1 = landlock_unmask_layers(
726 			rule, access_masked_parent1, layer_masks_parent1,
727 			ARRAY_SIZE(*layer_masks_parent1));
728 		allowed_parent2 = landlock_unmask_layers(
729 			rule, access_masked_parent2, layer_masks_parent2,
730 			ARRAY_SIZE(*layer_masks_parent2));
731 
732 		/* Stops when a rule from each layer grants access. */
733 		if (allowed_parent1 && allowed_parent2)
734 			break;
735 jump_up:
736 		if (walker_path.dentry == walker_path.mnt->mnt_root) {
737 			if (follow_up(&walker_path)) {
738 				/* Ignores hidden mount points. */
739 				goto jump_up;
740 			} else {
741 				/*
742 				 * Stops at the real root.  Denies access
743 				 * because not all layers have granted access.
744 				 */
745 				break;
746 			}
747 		}
748 		if (unlikely(IS_ROOT(walker_path.dentry))) {
749 			/*
750 			 * Stops at disconnected root directories.  Only allows
751 			 * access to internal filesystems (e.g. nsfs, which is
752 			 * reachable through /proc/<pid>/ns/<namespace>).
753 			 */
754 			allowed_parent1 = allowed_parent2 =
755 				!!(walker_path.mnt->mnt_flags & MNT_INTERNAL);
756 			break;
757 		}
758 		parent_dentry = dget_parent(walker_path.dentry);
759 		dput(walker_path.dentry);
760 		walker_path.dentry = parent_dentry;
761 	}
762 	path_put(&walker_path);
763 
764 	return allowed_parent1 && allowed_parent2;
765 }
766 
767 static int check_access_path(const struct landlock_ruleset *const domain,
768 			     const struct path *const path,
769 			     access_mask_t access_request)
770 {
771 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
772 
773 	access_request = landlock_init_layer_masks(
774 		domain, access_request, &layer_masks, LANDLOCK_KEY_INODE);
775 	if (is_access_to_paths_allowed(domain, path, access_request,
776 				       &layer_masks, NULL, 0, NULL, NULL))
777 		return 0;
778 	return -EACCES;
779 }
780 
781 static int current_check_access_path(const struct path *const path,
782 				     const access_mask_t access_request)
783 {
784 	const struct landlock_ruleset *const dom = get_current_fs_domain();
785 
786 	if (!dom)
787 		return 0;
788 	return check_access_path(dom, path, access_request);
789 }
790 
791 static access_mask_t get_mode_access(const umode_t mode)
792 {
793 	switch (mode & S_IFMT) {
794 	case S_IFLNK:
795 		return LANDLOCK_ACCESS_FS_MAKE_SYM;
796 	case 0:
797 		/* A zero mode translates to S_IFREG. */
798 	case S_IFREG:
799 		return LANDLOCK_ACCESS_FS_MAKE_REG;
800 	case S_IFDIR:
801 		return LANDLOCK_ACCESS_FS_MAKE_DIR;
802 	case S_IFCHR:
803 		return LANDLOCK_ACCESS_FS_MAKE_CHAR;
804 	case S_IFBLK:
805 		return LANDLOCK_ACCESS_FS_MAKE_BLOCK;
806 	case S_IFIFO:
807 		return LANDLOCK_ACCESS_FS_MAKE_FIFO;
808 	case S_IFSOCK:
809 		return LANDLOCK_ACCESS_FS_MAKE_SOCK;
810 	default:
811 		WARN_ON_ONCE(1);
812 		return 0;
813 	}
814 }
815 
816 static access_mask_t maybe_remove(const struct dentry *const dentry)
817 {
818 	if (d_is_negative(dentry))
819 		return 0;
820 	return d_is_dir(dentry) ? LANDLOCK_ACCESS_FS_REMOVE_DIR :
821 				  LANDLOCK_ACCESS_FS_REMOVE_FILE;
822 }
823 
824 /**
825  * collect_domain_accesses - Walk through a file path and collect accesses
826  *
827  * @domain: Domain to check against.
828  * @mnt_root: Last directory to check.
829  * @dir: Directory to start the walk from.
830  * @layer_masks_dom: Where to store the collected accesses.
831  *
832  * This helper is useful to begin a path walk from the @dir directory to a
833  * @mnt_root directory used as a mount point.  This mount point is the common
834  * ancestor between the source and the destination of a renamed and linked
835  * file.  While walking from @dir to @mnt_root, we record all the domain's
836  * allowed accesses in @layer_masks_dom.
837  *
838  * This is similar to is_access_to_paths_allowed() but much simpler because it
839  * only handles walking on the same mount point and only checks one set of
840  * accesses.
841  *
842  * Returns:
843  * - true if all the domain access rights are allowed for @dir;
844  * - false if the walk reached @mnt_root.
845  */
846 static bool collect_domain_accesses(
847 	const struct landlock_ruleset *const domain,
848 	const struct dentry *const mnt_root, struct dentry *dir,
849 	layer_mask_t (*const layer_masks_dom)[LANDLOCK_NUM_ACCESS_FS])
850 {
851 	unsigned long access_dom;
852 	bool ret = false;
853 
854 	if (WARN_ON_ONCE(!domain || !mnt_root || !dir || !layer_masks_dom))
855 		return true;
856 	if (is_nouser_or_private(dir))
857 		return true;
858 
859 	access_dom = landlock_init_layer_masks(domain, LANDLOCK_MASK_ACCESS_FS,
860 					       layer_masks_dom,
861 					       LANDLOCK_KEY_INODE);
862 
863 	dget(dir);
864 	while (true) {
865 		struct dentry *parent_dentry;
866 
867 		/* Gets all layers allowing all domain accesses. */
868 		if (landlock_unmask_layers(find_rule(domain, dir), access_dom,
869 					   layer_masks_dom,
870 					   ARRAY_SIZE(*layer_masks_dom))) {
871 			/*
872 			 * Stops when all handled accesses are allowed by at
873 			 * least one rule in each layer.
874 			 */
875 			ret = true;
876 			break;
877 		}
878 
879 		/* We should not reach a root other than @mnt_root. */
880 		if (dir == mnt_root || WARN_ON_ONCE(IS_ROOT(dir)))
881 			break;
882 
883 		parent_dentry = dget_parent(dir);
884 		dput(dir);
885 		dir = parent_dentry;
886 	}
887 	dput(dir);
888 	return ret;
889 }
890 
891 /**
892  * current_check_refer_path - Check if a rename or link action is allowed
893  *
894  * @old_dentry: File or directory requested to be moved or linked.
895  * @new_dir: Destination parent directory.
896  * @new_dentry: Destination file or directory.
897  * @removable: Sets to true if it is a rename operation.
898  * @exchange: Sets to true if it is a rename operation with RENAME_EXCHANGE.
899  *
900  * Because of its unprivileged constraints, Landlock relies on file hierarchies
901  * (and not only inodes) to tie access rights to files.  Being able to link or
902  * rename a file hierarchy brings some challenges.  Indeed, moving or linking a
903  * file (i.e. creating a new reference to an inode) can have an impact on the
904  * actions allowed for a set of files if it would change its parent directory
905  * (i.e. reparenting).
906  *
907  * To avoid trivial access right bypasses, Landlock first checks if the file or
908  * directory requested to be moved would gain new access rights inherited from
909  * its new hierarchy.  Before returning any error, Landlock then checks that
910  * the parent source hierarchy and the destination hierarchy would allow the
911  * link or rename action.  If it is not the case, an error with EACCES is
912  * returned to inform user space that there is no way to remove or create the
913  * requested source file type.  If it should be allowed but the new inherited
914  * access rights would be greater than the source access rights, then the
915  * kernel returns an error with EXDEV.  Prioritizing EACCES over EXDEV enables
916  * user space to abort the whole operation if there is no way to do it, or to
917  * manually copy the source to the destination if this remains allowed, e.g.
918  * because file creation is allowed on the destination directory but not direct
919  * linking.
920  *
921  * To achieve this goal, the kernel needs to compare two file hierarchies: the
922  * one identifying the source file or directory (including itself), and the
923  * destination one.  This can be seen as a multilayer partial ordering problem.
924  * The kernel walks through these paths and collects in a matrix the access
925  * rights that are denied per layer.  These matrices are then compared to see
926  * if the destination one has more (or the same) restrictions as the source
927  * one.  If this is the case, the requested action will not return EXDEV, which
928  * doesn't mean the action is allowed.  The parent hierarchy of the source
929  * (i.e. parent directory), and the destination hierarchy must also be checked
930  * to verify that they explicitly allow such action (i.e.  referencing,
931  * creation and potentially removal rights).  The kernel implementation is then
932  * required to rely on potentially four matrices of access rights: one for the
933  * source file or directory (i.e. the child), a potentially other one for the
934  * other source/destination (in case of RENAME_EXCHANGE), one for the source
935  * parent hierarchy and a last one for the destination hierarchy.  These
936  * ephemeral matrices take some space on the stack, which limits the number of
937  * layers to a deemed reasonable number: 16.
938  *
939  * Returns:
940  * - 0 if access is allowed;
941  * - -EXDEV if @old_dentry would inherit new access rights from @new_dir;
942  * - -EACCES if file removal or creation is denied.
943  */
944 static int current_check_refer_path(struct dentry *const old_dentry,
945 				    const struct path *const new_dir,
946 				    struct dentry *const new_dentry,
947 				    const bool removable, const bool exchange)
948 {
949 	const struct landlock_ruleset *const dom = get_current_fs_domain();
950 	bool allow_parent1, allow_parent2;
951 	access_mask_t access_request_parent1, access_request_parent2;
952 	struct path mnt_dir;
953 	layer_mask_t layer_masks_parent1[LANDLOCK_NUM_ACCESS_FS] = {},
954 		     layer_masks_parent2[LANDLOCK_NUM_ACCESS_FS] = {};
955 
956 	if (!dom)
957 		return 0;
958 	if (WARN_ON_ONCE(dom->num_layers < 1))
959 		return -EACCES;
960 	if (unlikely(d_is_negative(old_dentry)))
961 		return -ENOENT;
962 	if (exchange) {
963 		if (unlikely(d_is_negative(new_dentry)))
964 			return -ENOENT;
965 		access_request_parent1 =
966 			get_mode_access(d_backing_inode(new_dentry)->i_mode);
967 	} else {
968 		access_request_parent1 = 0;
969 	}
970 	access_request_parent2 =
971 		get_mode_access(d_backing_inode(old_dentry)->i_mode);
972 	if (removable) {
973 		access_request_parent1 |= maybe_remove(old_dentry);
974 		access_request_parent2 |= maybe_remove(new_dentry);
975 	}
976 
977 	/* The mount points are the same for old and new paths, cf. EXDEV. */
978 	if (old_dentry->d_parent == new_dir->dentry) {
979 		/*
980 		 * The LANDLOCK_ACCESS_FS_REFER access right is not required
981 		 * for same-directory referer (i.e. no reparenting).
982 		 */
983 		access_request_parent1 = landlock_init_layer_masks(
984 			dom, access_request_parent1 | access_request_parent2,
985 			&layer_masks_parent1, LANDLOCK_KEY_INODE);
986 		if (is_access_to_paths_allowed(
987 			    dom, new_dir, access_request_parent1,
988 			    &layer_masks_parent1, NULL, 0, NULL, NULL))
989 			return 0;
990 		return -EACCES;
991 	}
992 
993 	access_request_parent1 |= LANDLOCK_ACCESS_FS_REFER;
994 	access_request_parent2 |= LANDLOCK_ACCESS_FS_REFER;
995 
996 	/* Saves the common mount point. */
997 	mnt_dir.mnt = new_dir->mnt;
998 	mnt_dir.dentry = new_dir->mnt->mnt_root;
999 
1000 	/* new_dir->dentry is equal to new_dentry->d_parent */
1001 	allow_parent1 = collect_domain_accesses(dom, mnt_dir.dentry,
1002 						old_dentry->d_parent,
1003 						&layer_masks_parent1);
1004 	allow_parent2 = collect_domain_accesses(
1005 		dom, mnt_dir.dentry, new_dir->dentry, &layer_masks_parent2);
1006 
1007 	if (allow_parent1 && allow_parent2)
1008 		return 0;
1009 
1010 	/*
1011 	 * To be able to compare source and destination domain access rights,
1012 	 * take into account the @old_dentry access rights aggregated with its
1013 	 * parent access rights.  This will be useful to compare with the
1014 	 * destination parent access rights.
1015 	 */
1016 	if (is_access_to_paths_allowed(
1017 		    dom, &mnt_dir, access_request_parent1, &layer_masks_parent1,
1018 		    old_dentry, access_request_parent2, &layer_masks_parent2,
1019 		    exchange ? new_dentry : NULL))
1020 		return 0;
1021 
1022 	/*
1023 	 * This prioritizes EACCES over EXDEV for all actions, including
1024 	 * renames with RENAME_EXCHANGE.
1025 	 */
1026 	if (likely(is_eacces(&layer_masks_parent1, access_request_parent1) ||
1027 		   is_eacces(&layer_masks_parent2, access_request_parent2)))
1028 		return -EACCES;
1029 
1030 	/*
1031 	 * Gracefully forbids reparenting if the destination directory
1032 	 * hierarchy is not a superset of restrictions of the source directory
1033 	 * hierarchy, or if LANDLOCK_ACCESS_FS_REFER is not allowed by the
1034 	 * source or the destination.
1035 	 */
1036 	return -EXDEV;
1037 }
1038 
1039 /* Inode hooks */
1040 
1041 static void hook_inode_free_security(struct inode *const inode)
1042 {
1043 	/*
1044 	 * All inodes must already have been untied from their object by
1045 	 * release_inode() or hook_sb_delete().
1046 	 */
1047 	WARN_ON_ONCE(landlock_inode(inode)->object);
1048 }
1049 
1050 /* Super-block hooks */
1051 
1052 /*
1053  * Release the inodes used in a security policy.
1054  *
1055  * Cf. fsnotify_unmount_inodes() and invalidate_inodes()
1056  */
1057 static void hook_sb_delete(struct super_block *const sb)
1058 {
1059 	struct inode *inode, *prev_inode = NULL;
1060 
1061 	if (!landlock_initialized)
1062 		return;
1063 
1064 	spin_lock(&sb->s_inode_list_lock);
1065 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1066 		struct landlock_object *object;
1067 
1068 		/* Only handles referenced inodes. */
1069 		if (!atomic_read(&inode->i_count))
1070 			continue;
1071 
1072 		/*
1073 		 * Protects against concurrent modification of inode (e.g.
1074 		 * from get_inode_object()).
1075 		 */
1076 		spin_lock(&inode->i_lock);
1077 		/*
1078 		 * Checks I_FREEING and I_WILL_FREE  to protect against a race
1079 		 * condition when release_inode() just called iput(), which
1080 		 * could lead to a NULL dereference of inode->security or a
1081 		 * second call to iput() for the same Landlock object.  Also
1082 		 * checks I_NEW because such inode cannot be tied to an object.
1083 		 */
1084 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
1085 			spin_unlock(&inode->i_lock);
1086 			continue;
1087 		}
1088 
1089 		rcu_read_lock();
1090 		object = rcu_dereference(landlock_inode(inode)->object);
1091 		if (!object) {
1092 			rcu_read_unlock();
1093 			spin_unlock(&inode->i_lock);
1094 			continue;
1095 		}
1096 		/* Keeps a reference to this inode until the next loop walk. */
1097 		__iget(inode);
1098 		spin_unlock(&inode->i_lock);
1099 
1100 		/*
1101 		 * If there is no concurrent release_inode() ongoing, then we
1102 		 * are in charge of calling iput() on this inode, otherwise we
1103 		 * will just wait for it to finish.
1104 		 */
1105 		spin_lock(&object->lock);
1106 		if (object->underobj == inode) {
1107 			object->underobj = NULL;
1108 			spin_unlock(&object->lock);
1109 			rcu_read_unlock();
1110 
1111 			/*
1112 			 * Because object->underobj was not NULL,
1113 			 * release_inode() and get_inode_object() guarantee
1114 			 * that it is safe to reset
1115 			 * landlock_inode(inode)->object while it is not NULL.
1116 			 * It is therefore not necessary to lock inode->i_lock.
1117 			 */
1118 			rcu_assign_pointer(landlock_inode(inode)->object, NULL);
1119 			/*
1120 			 * At this point, we own the ihold() reference that was
1121 			 * originally set up by get_inode_object() and the
1122 			 * __iget() reference that we just set in this loop
1123 			 * walk.  Therefore the following call to iput() will
1124 			 * not sleep nor drop the inode because there is now at
1125 			 * least two references to it.
1126 			 */
1127 			iput(inode);
1128 		} else {
1129 			spin_unlock(&object->lock);
1130 			rcu_read_unlock();
1131 		}
1132 
1133 		if (prev_inode) {
1134 			/*
1135 			 * At this point, we still own the __iget() reference
1136 			 * that we just set in this loop walk.  Therefore we
1137 			 * can drop the list lock and know that the inode won't
1138 			 * disappear from under us until the next loop walk.
1139 			 */
1140 			spin_unlock(&sb->s_inode_list_lock);
1141 			/*
1142 			 * We can now actually put the inode reference from the
1143 			 * previous loop walk, which is not needed anymore.
1144 			 */
1145 			iput(prev_inode);
1146 			cond_resched();
1147 			spin_lock(&sb->s_inode_list_lock);
1148 		}
1149 		prev_inode = inode;
1150 	}
1151 	spin_unlock(&sb->s_inode_list_lock);
1152 
1153 	/* Puts the inode reference from the last loop walk, if any. */
1154 	if (prev_inode)
1155 		iput(prev_inode);
1156 	/* Waits for pending iput() in release_inode(). */
1157 	wait_var_event(&landlock_superblock(sb)->inode_refs,
1158 		       !atomic_long_read(&landlock_superblock(sb)->inode_refs));
1159 }
1160 
1161 /*
1162  * Because a Landlock security policy is defined according to the filesystem
1163  * topology (i.e. the mount namespace), changing it may grant access to files
1164  * not previously allowed.
1165  *
1166  * To make it simple, deny any filesystem topology modification by landlocked
1167  * processes.  Non-landlocked processes may still change the namespace of a
1168  * landlocked process, but this kind of threat must be handled by a system-wide
1169  * access-control security policy.
1170  *
1171  * This could be lifted in the future if Landlock can safely handle mount
1172  * namespace updates requested by a landlocked process.  Indeed, we could
1173  * update the current domain (which is currently read-only) by taking into
1174  * account the accesses of the source and the destination of a new mount point.
1175  * However, it would also require to make all the child domains dynamically
1176  * inherit these new constraints.  Anyway, for backward compatibility reasons,
1177  * a dedicated user space option would be required (e.g. as a ruleset flag).
1178  */
1179 static int hook_sb_mount(const char *const dev_name,
1180 			 const struct path *const path, const char *const type,
1181 			 const unsigned long flags, void *const data)
1182 {
1183 	if (!get_current_fs_domain())
1184 		return 0;
1185 	return -EPERM;
1186 }
1187 
1188 static int hook_move_mount(const struct path *const from_path,
1189 			   const struct path *const to_path)
1190 {
1191 	if (!get_current_fs_domain())
1192 		return 0;
1193 	return -EPERM;
1194 }
1195 
1196 /*
1197  * Removing a mount point may reveal a previously hidden file hierarchy, which
1198  * may then grant access to files, which may have previously been forbidden.
1199  */
1200 static int hook_sb_umount(struct vfsmount *const mnt, const int flags)
1201 {
1202 	if (!get_current_fs_domain())
1203 		return 0;
1204 	return -EPERM;
1205 }
1206 
1207 static int hook_sb_remount(struct super_block *const sb, void *const mnt_opts)
1208 {
1209 	if (!get_current_fs_domain())
1210 		return 0;
1211 	return -EPERM;
1212 }
1213 
1214 /*
1215  * pivot_root(2), like mount(2), changes the current mount namespace.  It must
1216  * then be forbidden for a landlocked process.
1217  *
1218  * However, chroot(2) may be allowed because it only changes the relative root
1219  * directory of the current process.  Moreover, it can be used to restrict the
1220  * view of the filesystem.
1221  */
1222 static int hook_sb_pivotroot(const struct path *const old_path,
1223 			     const struct path *const new_path)
1224 {
1225 	if (!get_current_fs_domain())
1226 		return 0;
1227 	return -EPERM;
1228 }
1229 
1230 /* Path hooks */
1231 
1232 static int hook_path_link(struct dentry *const old_dentry,
1233 			  const struct path *const new_dir,
1234 			  struct dentry *const new_dentry)
1235 {
1236 	return current_check_refer_path(old_dentry, new_dir, new_dentry, false,
1237 					false);
1238 }
1239 
1240 static int hook_path_rename(const struct path *const old_dir,
1241 			    struct dentry *const old_dentry,
1242 			    const struct path *const new_dir,
1243 			    struct dentry *const new_dentry,
1244 			    const unsigned int flags)
1245 {
1246 	/* old_dir refers to old_dentry->d_parent and new_dir->mnt */
1247 	return current_check_refer_path(old_dentry, new_dir, new_dentry, true,
1248 					!!(flags & RENAME_EXCHANGE));
1249 }
1250 
1251 static int hook_path_mkdir(const struct path *const dir,
1252 			   struct dentry *const dentry, const umode_t mode)
1253 {
1254 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_DIR);
1255 }
1256 
1257 static int hook_path_mknod(const struct path *const dir,
1258 			   struct dentry *const dentry, const umode_t mode,
1259 			   const unsigned int dev)
1260 {
1261 	const struct landlock_ruleset *const dom = get_current_fs_domain();
1262 
1263 	if (!dom)
1264 		return 0;
1265 	return check_access_path(dom, dir, get_mode_access(mode));
1266 }
1267 
1268 static int hook_path_symlink(const struct path *const dir,
1269 			     struct dentry *const dentry,
1270 			     const char *const old_name)
1271 {
1272 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_MAKE_SYM);
1273 }
1274 
1275 static int hook_path_unlink(const struct path *const dir,
1276 			    struct dentry *const dentry)
1277 {
1278 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_FILE);
1279 }
1280 
1281 static int hook_path_rmdir(const struct path *const dir,
1282 			   struct dentry *const dentry)
1283 {
1284 	return current_check_access_path(dir, LANDLOCK_ACCESS_FS_REMOVE_DIR);
1285 }
1286 
1287 static int hook_path_truncate(const struct path *const path)
1288 {
1289 	return current_check_access_path(path, LANDLOCK_ACCESS_FS_TRUNCATE);
1290 }
1291 
1292 /* File hooks */
1293 
1294 /**
1295  * get_required_file_open_access - Get access needed to open a file
1296  *
1297  * @file: File being opened.
1298  *
1299  * Returns the access rights that are required for opening the given file,
1300  * depending on the file type and open mode.
1301  */
1302 static access_mask_t
1303 get_required_file_open_access(const struct file *const file)
1304 {
1305 	access_mask_t access = 0;
1306 
1307 	if (file->f_mode & FMODE_READ) {
1308 		/* A directory can only be opened in read mode. */
1309 		if (S_ISDIR(file_inode(file)->i_mode))
1310 			return LANDLOCK_ACCESS_FS_READ_DIR;
1311 		access = LANDLOCK_ACCESS_FS_READ_FILE;
1312 	}
1313 	if (file->f_mode & FMODE_WRITE)
1314 		access |= LANDLOCK_ACCESS_FS_WRITE_FILE;
1315 	/* __FMODE_EXEC is indeed part of f_flags, not f_mode. */
1316 	if (file->f_flags & __FMODE_EXEC)
1317 		access |= LANDLOCK_ACCESS_FS_EXECUTE;
1318 	return access;
1319 }
1320 
1321 static int hook_file_alloc_security(struct file *const file)
1322 {
1323 	/*
1324 	 * Grants all access rights, even if most of them are not checked later
1325 	 * on. It is more consistent.
1326 	 *
1327 	 * Notably, file descriptors for regular files can also be acquired
1328 	 * without going through the file_open hook, for example when using
1329 	 * memfd_create(2).
1330 	 */
1331 	landlock_file(file)->allowed_access = LANDLOCK_MASK_ACCESS_FS;
1332 	return 0;
1333 }
1334 
1335 static int hook_file_open(struct file *const file)
1336 {
1337 	layer_mask_t layer_masks[LANDLOCK_NUM_ACCESS_FS] = {};
1338 	access_mask_t open_access_request, full_access_request, allowed_access;
1339 	const access_mask_t optional_access = LANDLOCK_ACCESS_FS_TRUNCATE;
1340 	const struct landlock_ruleset *const dom =
1341 		get_fs_domain(landlock_cred(file->f_cred)->domain);
1342 
1343 	if (!dom)
1344 		return 0;
1345 
1346 	/*
1347 	 * Because a file may be opened with O_PATH, get_required_file_open_access()
1348 	 * may return 0.  This case will be handled with a future Landlock
1349 	 * evolution.
1350 	 */
1351 	open_access_request = get_required_file_open_access(file);
1352 
1353 	/*
1354 	 * We look up more access than what we immediately need for open(), so
1355 	 * that we can later authorize operations on opened files.
1356 	 */
1357 	full_access_request = open_access_request | optional_access;
1358 
1359 	if (is_access_to_paths_allowed(
1360 		    dom, &file->f_path,
1361 		    landlock_init_layer_masks(dom, full_access_request,
1362 					      &layer_masks, LANDLOCK_KEY_INODE),
1363 		    &layer_masks, NULL, 0, NULL, NULL)) {
1364 		allowed_access = full_access_request;
1365 	} else {
1366 		unsigned long access_bit;
1367 		const unsigned long access_req = full_access_request;
1368 
1369 		/*
1370 		 * Calculate the actual allowed access rights from layer_masks.
1371 		 * Add each access right to allowed_access which has not been
1372 		 * vetoed by any layer.
1373 		 */
1374 		allowed_access = 0;
1375 		for_each_set_bit(access_bit, &access_req,
1376 				 ARRAY_SIZE(layer_masks)) {
1377 			if (!layer_masks[access_bit])
1378 				allowed_access |= BIT_ULL(access_bit);
1379 		}
1380 	}
1381 
1382 	/*
1383 	 * For operations on already opened files (i.e. ftruncate()), it is the
1384 	 * access rights at the time of open() which decide whether the
1385 	 * operation is permitted. Therefore, we record the relevant subset of
1386 	 * file access rights in the opened struct file.
1387 	 */
1388 	landlock_file(file)->allowed_access = allowed_access;
1389 
1390 	if ((open_access_request & allowed_access) == open_access_request)
1391 		return 0;
1392 
1393 	return -EACCES;
1394 }
1395 
1396 static int hook_file_truncate(struct file *const file)
1397 {
1398 	/*
1399 	 * Allows truncation if the truncate right was available at the time of
1400 	 * opening the file, to get a consistent access check as for read, write
1401 	 * and execute operations.
1402 	 *
1403 	 * Note: For checks done based on the file's Landlock allowed access, we
1404 	 * enforce them independently of whether the current thread is in a
1405 	 * Landlock domain, so that open files passed between independent
1406 	 * processes retain their behaviour.
1407 	 */
1408 	if (landlock_file(file)->allowed_access & LANDLOCK_ACCESS_FS_TRUNCATE)
1409 		return 0;
1410 	return -EACCES;
1411 }
1412 
1413 static struct security_hook_list landlock_hooks[] __ro_after_init = {
1414 	LSM_HOOK_INIT(inode_free_security, hook_inode_free_security),
1415 
1416 	LSM_HOOK_INIT(sb_delete, hook_sb_delete),
1417 	LSM_HOOK_INIT(sb_mount, hook_sb_mount),
1418 	LSM_HOOK_INIT(move_mount, hook_move_mount),
1419 	LSM_HOOK_INIT(sb_umount, hook_sb_umount),
1420 	LSM_HOOK_INIT(sb_remount, hook_sb_remount),
1421 	LSM_HOOK_INIT(sb_pivotroot, hook_sb_pivotroot),
1422 
1423 	LSM_HOOK_INIT(path_link, hook_path_link),
1424 	LSM_HOOK_INIT(path_rename, hook_path_rename),
1425 	LSM_HOOK_INIT(path_mkdir, hook_path_mkdir),
1426 	LSM_HOOK_INIT(path_mknod, hook_path_mknod),
1427 	LSM_HOOK_INIT(path_symlink, hook_path_symlink),
1428 	LSM_HOOK_INIT(path_unlink, hook_path_unlink),
1429 	LSM_HOOK_INIT(path_rmdir, hook_path_rmdir),
1430 	LSM_HOOK_INIT(path_truncate, hook_path_truncate),
1431 
1432 	LSM_HOOK_INIT(file_alloc_security, hook_file_alloc_security),
1433 	LSM_HOOK_INIT(file_open, hook_file_open),
1434 	LSM_HOOK_INIT(file_truncate, hook_file_truncate),
1435 };
1436 
1437 __init void landlock_add_fs_hooks(void)
1438 {
1439 	security_add_hooks(landlock_hooks, ARRAY_SIZE(landlock_hooks),
1440 			   &landlock_lsmid);
1441 }
1442 
1443 #ifdef CONFIG_SECURITY_LANDLOCK_KUNIT_TEST
1444 
1445 /* clang-format off */
1446 static struct kunit_case test_cases[] = {
1447 	KUNIT_CASE(test_no_more_access),
1448 	KUNIT_CASE(test_scope_to_request_with_exec_none),
1449 	KUNIT_CASE(test_scope_to_request_with_exec_some),
1450 	KUNIT_CASE(test_scope_to_request_without_access),
1451 	KUNIT_CASE(test_is_eacces_with_none),
1452 	KUNIT_CASE(test_is_eacces_with_refer),
1453 	KUNIT_CASE(test_is_eacces_with_write),
1454 	{}
1455 };
1456 /* clang-format on */
1457 
1458 static struct kunit_suite test_suite = {
1459 	.name = "landlock_fs",
1460 	.test_cases = test_cases,
1461 };
1462 
1463 kunit_test_suite(test_suite);
1464 
1465 #endif /* CONFIG_SECURITY_LANDLOCK_KUNIT_TEST */
1466