xref: /linux/sound/pci/cmipci.c (revision 9a6b55ac)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5  */
6 
7 /* Does not work. Warning may block system in capture mode */
8 /* #define USE_VAR48KRATE */
9 
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/gameport.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <sound/core.h>
20 #include <sound/info.h>
21 #include <sound/control.h>
22 #include <sound/pcm.h>
23 #include <sound/rawmidi.h>
24 #include <sound/mpu401.h>
25 #include <sound/opl3.h>
26 #include <sound/sb.h>
27 #include <sound/asoundef.h>
28 #include <sound/initval.h>
29 
30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32 MODULE_LICENSE("GPL");
33 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
34 		"{C-Media,CMI8738B},"
35 		"{C-Media,CMI8338A},"
36 		"{C-Media,CMI8338B}}");
37 
38 #if IS_REACHABLE(CONFIG_GAMEPORT)
39 #define SUPPORT_JOYSTICK 1
40 #endif
41 
42 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
43 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
44 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
45 static long mpu_port[SNDRV_CARDS];
46 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
47 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
48 #ifdef SUPPORT_JOYSTICK
49 static int joystick_port[SNDRV_CARDS];
50 #endif
51 
52 module_param_array(index, int, NULL, 0444);
53 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
54 module_param_array(id, charp, NULL, 0444);
55 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
56 module_param_array(enable, bool, NULL, 0444);
57 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
58 module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
59 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
60 module_param_hw_array(fm_port, long, ioport, NULL, 0444);
61 MODULE_PARM_DESC(fm_port, "FM port.");
62 module_param_array(soft_ac3, bool, NULL, 0444);
63 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
64 #ifdef SUPPORT_JOYSTICK
65 module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
66 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
67 #endif
68 
69 /*
70  * CM8x38 registers definition
71  */
72 
73 #define CM_REG_FUNCTRL0		0x00
74 #define CM_RST_CH1		0x00080000
75 #define CM_RST_CH0		0x00040000
76 #define CM_CHEN1		0x00020000	/* ch1: enable */
77 #define CM_CHEN0		0x00010000	/* ch0: enable */
78 #define CM_PAUSE1		0x00000008	/* ch1: pause */
79 #define CM_PAUSE0		0x00000004	/* ch0: pause */
80 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
81 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
82 
83 #define CM_REG_FUNCTRL1		0x04
84 #define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
85 #define CM_DSFC_SHIFT		13
86 #define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
87 #define CM_ASFC_SHIFT		10
88 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
89 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
90 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
91 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
92 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
93 #define CM_BREQ			0x00000010	/* bus master enabled */
94 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
95 #define CM_UART_EN		0x00000004	/* legacy UART */
96 #define CM_JYSTK_EN		0x00000002	/* legacy joystick */
97 #define CM_ZVPORT		0x00000001	/* ZVPORT */
98 
99 #define CM_REG_CHFORMAT		0x08
100 
101 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
102 #define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
103 #define CM_CHB3D		0x20000000	/* 4 channels */
104 
105 #define CM_CHIP_MASK1		0x1f000000
106 #define CM_CHIP_037		0x01000000
107 #define CM_SETLAT48		0x00800000	/* set latency timer 48h */
108 #define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
109 #define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
110 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
111 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
112 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
113 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
114 
115 #define CM_ADCBITLEN_MASK	0x0000C000
116 #define CM_ADCBITLEN_16		0x00000000
117 #define CM_ADCBITLEN_15		0x00004000
118 #define CM_ADCBITLEN_14		0x00008000
119 #define CM_ADCBITLEN_13		0x0000C000
120 
121 #define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
122 #define CM_ADCDACLEN_060	0x00000000
123 #define CM_ADCDACLEN_066	0x00001000
124 #define CM_ADCDACLEN_130	0x00002000
125 #define CM_ADCDACLEN_280	0x00003000
126 
127 #define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
128 #define CM_ADCDLEN_ORIGINAL	0x00000000
129 #define CM_ADCDLEN_EXTRA	0x00001000
130 #define CM_ADCDLEN_24K		0x00002000
131 #define CM_ADCDLEN_WEIGHT	0x00003000
132 
133 #define CM_CH1_SRATE_176K	0x00000800
134 #define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
135 #define CM_CH1_SRATE_88K	0x00000400
136 #define CM_CH0_SRATE_176K	0x00000200
137 #define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
138 #define CM_CH0_SRATE_88K	0x00000100
139 #define CM_CH0_SRATE_128K	0x00000300
140 #define CM_CH0_SRATE_MASK	0x00000300
141 
142 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
143 #define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
144 #define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
145 #define CM_SPDLOCKED		0x00000010
146 
147 #define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
148 #define CM_CH1FMT_SHIFT		2
149 #define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
150 #define CM_CH0FMT_SHIFT		0
151 
152 #define CM_REG_INT_HLDCLR	0x0C
153 #define CM_CHIP_MASK2		0xff000000
154 #define CM_CHIP_8768		0x20000000
155 #define CM_CHIP_055		0x08000000
156 #define CM_CHIP_039		0x04000000
157 #define CM_CHIP_039_6CH		0x01000000
158 #define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
159 #define CM_TDMA_INT_EN		0x00040000
160 #define CM_CH1_INT_EN		0x00020000
161 #define CM_CH0_INT_EN		0x00010000
162 
163 #define CM_REG_INT_STATUS	0x10
164 #define CM_INTR			0x80000000
165 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
166 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
167 #define CM_UARTINT		0x00010000
168 #define CM_LTDMAINT		0x00008000
169 #define CM_HTDMAINT		0x00004000
170 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
171 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
172 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
173 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
174 #define CM_CH1BUSY		0x00000008
175 #define CM_CH0BUSY		0x00000004
176 #define CM_CHINT1		0x00000002
177 #define CM_CHINT0		0x00000001
178 
179 #define CM_REG_LEGACY_CTRL	0x14
180 #define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
181 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
182 #define CM_VMPU_330		0x00000000
183 #define CM_VMPU_320		0x20000000
184 #define CM_VMPU_310		0x40000000
185 #define CM_VMPU_300		0x60000000
186 #define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
187 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
188 #define CM_VSBSEL_220		0x00000000
189 #define CM_VSBSEL_240		0x04000000
190 #define CM_VSBSEL_260		0x08000000
191 #define CM_VSBSEL_280		0x0C000000
192 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
193 #define CM_FMSEL_388		0x00000000
194 #define CM_FMSEL_3C8		0x01000000
195 #define CM_FMSEL_3E0		0x02000000
196 #define CM_FMSEL_3E8		0x03000000
197 #define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
198 #define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
199 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
200 #define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
201 #define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
202 #define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
203 #define CM_C_EECS		0x00040000
204 #define CM_C_EEDI46		0x00020000
205 #define CM_C_EECK46		0x00010000
206 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
207 #define CM_CENTR2LIN		0x00004000	/* line-in as center out */
208 #define CM_BASE2LIN		0x00002000	/* line-in as bass out */
209 #define CM_EXBASEN		0x00001000	/* external bass input enable */
210 
211 #define CM_REG_MISC_CTRL	0x18
212 #define CM_PWD			0x80000000	/* power down */
213 #define CM_RESET		0x40000000
214 #define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
215 #define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
216 #define CM_TXVX			0x08000000	/* model 037? */
217 #define CM_N4SPK3D		0x04000000	/* copy front to rear */
218 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
219 #define CM_SPDIF48K		0x01000000	/* write */
220 #define CM_SPATUS48K		0x01000000	/* read */
221 #define CM_ENDBDAC		0x00800000	/* enable double dac */
222 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
223 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
224 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
225 #define CM_FM_EN		0x00080000	/* enable legacy FM */
226 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
227 #define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
228 #define CM_VIDWPDSB		0x00010000	/* model 037? */
229 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
230 #define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
231 #define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
232 #define CM_VIDWPPRT		0x00002000	/* model 037? */
233 #define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
234 #define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
235 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
236 #define CM_ENCENTER		0x00000080
237 #define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
238 #define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
239 #define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
240 #define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
241 #define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
242 #define CM_UPDDMA_2048		0x00000000
243 #define CM_UPDDMA_1024		0x00000004
244 #define CM_UPDDMA_512		0x00000008
245 #define CM_UPDDMA_256		0x0000000C
246 #define CM_TWAIT_MASK		0x00000003	/* model 037 */
247 #define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
248 #define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
249 
250 #define CM_REG_TDMA_POSITION	0x1C
251 #define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
252 #define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
253 
254 	/* byte */
255 #define CM_REG_MIXER0		0x20
256 #define CM_REG_SBVR		0x20		/* write: sb16 version */
257 #define CM_REG_DEV		0x20		/* read: hardware device version */
258 
259 #define CM_REG_MIXER21		0x21
260 #define CM_UNKNOWN_21_MASK	0x78		/* ? */
261 #define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
262 #define CM_PROINV		0x02		/* SBPro left/right channel switching */
263 #define CM_X_SB16		0x01		/* SB16 compatible */
264 
265 #define CM_REG_SB16_DATA	0x22
266 #define CM_REG_SB16_ADDR	0x23
267 
268 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
269 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
270 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
271 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
272 
273 #define CM_REG_MIXER1		0x24
274 #define CM_FMMUTE		0x80	/* mute FM */
275 #define CM_FMMUTE_SHIFT		7
276 #define CM_WSMUTE		0x40	/* mute PCM */
277 #define CM_WSMUTE_SHIFT		6
278 #define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
279 #define CM_REAR2LIN_SHIFT	5
280 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
281 #define CM_REAR2FRONT_SHIFT	4
282 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
283 #define CM_WAVEINL_SHIFT	3
284 #define CM_WAVEINR		0x04	/* digical wave rec. right */
285 #define CM_WAVEINR_SHIFT	2
286 #define CM_X3DEN		0x02	/* 3D surround enable */
287 #define CM_X3DEN_SHIFT		1
288 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
289 #define CM_CDPLAY_SHIFT		0
290 
291 #define CM_REG_MIXER2		0x25
292 #define CM_RAUXREN		0x80	/* AUX right capture */
293 #define CM_RAUXREN_SHIFT	7
294 #define CM_RAUXLEN		0x40	/* AUX left capture */
295 #define CM_RAUXLEN_SHIFT	6
296 #define CM_VAUXRM		0x20	/* AUX right mute */
297 #define CM_VAUXRM_SHIFT		5
298 #define CM_VAUXLM		0x10	/* AUX left mute */
299 #define CM_VAUXLM_SHIFT		4
300 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
301 #define CM_VADMIC_SHIFT		1
302 #define CM_MICGAINZ		0x01	/* mic boost */
303 #define CM_MICGAINZ_SHIFT	0
304 
305 #define CM_REG_MIXER3		0x24
306 #define CM_REG_AUX_VOL		0x26
307 #define CM_VAUXL_MASK		0xf0
308 #define CM_VAUXR_MASK		0x0f
309 
310 #define CM_REG_MISC		0x27
311 #define CM_UNKNOWN_27_MASK	0xd8	/* ? */
312 #define CM_XGPO1		0x20
313 // #define CM_XGPBIO		0x04
314 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
315 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
316 #define CM_SPDVALID		0x02	/* spdif input valid check */
317 #define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
318 
319 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
320 /*
321  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
322  * or identical with AC97 codec?
323  */
324 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
325 
326 /*
327  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
328  */
329 #define CM_REG_MPU_PCI		0x40
330 
331 /*
332  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
333  */
334 #define CM_REG_FM_PCI		0x50
335 
336 /*
337  * access from SB-mixer port
338  */
339 #define CM_REG_EXTENT_IND	0xf0
340 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
341 #define CM_VPHONE_SHIFT		5
342 #define CM_VPHOM		0x10	/* Phone mute control */
343 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
344 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
345 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
346 #define CM_VADMIC3		0x01	/* Mic record boost */
347 
348 /*
349  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
350  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
351  * unit (readonly?).
352  */
353 #define CM_REG_PLL		0xf8
354 
355 /*
356  * extended registers
357  */
358 #define CM_REG_CH0_FRAME1	0x80	/* write: base address */
359 #define CM_REG_CH0_FRAME2	0x84	/* read: current address */
360 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
361 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
362 
363 #define CM_REG_EXT_MISC		0x90
364 #define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
365 #define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
366 #define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
367 #define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
368 #define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
369 #define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
370 #define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
371 #define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
372 
373 /*
374  * size of i/o region
375  */
376 #define CM_EXTENT_CODEC	  0x100
377 #define CM_EXTENT_MIDI	  0x2
378 #define CM_EXTENT_SYNTH	  0x4
379 
380 
381 /*
382  * channels for playback / capture
383  */
384 #define CM_CH_PLAY	0
385 #define CM_CH_CAPT	1
386 
387 /*
388  * flags to check device open/close
389  */
390 #define CM_OPEN_NONE	0
391 #define CM_OPEN_CH_MASK	0x01
392 #define CM_OPEN_DAC	0x10
393 #define CM_OPEN_ADC	0x20
394 #define CM_OPEN_SPDIF	0x40
395 #define CM_OPEN_MCHAN	0x80
396 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
397 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
398 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
399 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
400 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
401 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
402 
403 
404 #if CM_CH_PLAY == 1
405 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
406 #define CM_PLAYBACK_SPDF	CM_SPDF_1
407 #define CM_CAPTURE_SPDF		CM_SPDF_0
408 #else
409 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
410 #define CM_PLAYBACK_SPDF	CM_SPDF_0
411 #define CM_CAPTURE_SPDF		CM_SPDF_1
412 #endif
413 
414 
415 /*
416  * driver data
417  */
418 
419 struct cmipci_pcm {
420 	struct snd_pcm_substream *substream;
421 	u8 running;		/* dac/adc running? */
422 	u8 fmt;			/* format bits */
423 	u8 is_dac;
424 	u8 needs_silencing;
425 	unsigned int dma_size;	/* in frames */
426 	unsigned int shift;
427 	unsigned int ch;	/* channel (0/1) */
428 	unsigned int offset;	/* physical address of the buffer */
429 };
430 
431 /* mixer elements toggled/resumed during ac3 playback */
432 struct cmipci_mixer_auto_switches {
433 	const char *name;	/* switch to toggle */
434 	int toggle_on;		/* value to change when ac3 mode */
435 };
436 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
437 	{"PCM Playback Switch", 0},
438 	{"IEC958 Output Switch", 1},
439 	{"IEC958 Mix Analog", 0},
440 	// {"IEC958 Out To DAC", 1}, // no longer used
441 	{"IEC958 Loop", 0},
442 };
443 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
444 
445 struct cmipci {
446 	struct snd_card *card;
447 
448 	struct pci_dev *pci;
449 	unsigned int device;	/* device ID */
450 	int irq;
451 
452 	unsigned long iobase;
453 	unsigned int ctrl;	/* FUNCTRL0 current value */
454 
455 	struct snd_pcm *pcm;		/* DAC/ADC PCM */
456 	struct snd_pcm *pcm2;	/* 2nd DAC */
457 	struct snd_pcm *pcm_spdif;	/* SPDIF */
458 
459 	int chip_version;
460 	int max_channels;
461 	unsigned int can_ac3_sw: 1;
462 	unsigned int can_ac3_hw: 1;
463 	unsigned int can_multi_ch: 1;
464 	unsigned int can_96k: 1;	/* samplerate above 48k */
465 	unsigned int do_soft_ac3: 1;
466 
467 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
468 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
469 	int spdif_counter;	/* for software AC3 */
470 
471 	unsigned int dig_status;
472 	unsigned int dig_pcm_status;
473 
474 	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
475 
476 	int opened[2];	/* open mode */
477 	struct mutex open_mutex;
478 
479 	unsigned int mixer_insensitive: 1;
480 	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
481 	int mixer_res_status[CM_SAVED_MIXERS];
482 
483 	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
484 
485 	/* external MIDI */
486 	struct snd_rawmidi *rmidi;
487 
488 #ifdef SUPPORT_JOYSTICK
489 	struct gameport *gameport;
490 #endif
491 
492 	spinlock_t reg_lock;
493 
494 #ifdef CONFIG_PM_SLEEP
495 	unsigned int saved_regs[0x20];
496 	unsigned char saved_mixers[0x20];
497 #endif
498 };
499 
500 
501 /* read/write operations for dword register */
502 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
503 {
504 	outl(data, cm->iobase + cmd);
505 }
506 
507 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
508 {
509 	return inl(cm->iobase + cmd);
510 }
511 
512 /* read/write operations for word register */
513 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
514 {
515 	outw(data, cm->iobase + cmd);
516 }
517 
518 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
519 {
520 	return inw(cm->iobase + cmd);
521 }
522 
523 /* read/write operations for byte register */
524 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
525 {
526 	outb(data, cm->iobase + cmd);
527 }
528 
529 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
530 {
531 	return inb(cm->iobase + cmd);
532 }
533 
534 /* bit operations for dword register */
535 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
536 {
537 	unsigned int val, oval;
538 	val = oval = inl(cm->iobase + cmd);
539 	val |= flag;
540 	if (val == oval)
541 		return 0;
542 	outl(val, cm->iobase + cmd);
543 	return 1;
544 }
545 
546 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
547 {
548 	unsigned int val, oval;
549 	val = oval = inl(cm->iobase + cmd);
550 	val &= ~flag;
551 	if (val == oval)
552 		return 0;
553 	outl(val, cm->iobase + cmd);
554 	return 1;
555 }
556 
557 /* bit operations for byte register */
558 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
559 {
560 	unsigned char val, oval;
561 	val = oval = inb(cm->iobase + cmd);
562 	val |= flag;
563 	if (val == oval)
564 		return 0;
565 	outb(val, cm->iobase + cmd);
566 	return 1;
567 }
568 
569 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
570 {
571 	unsigned char val, oval;
572 	val = oval = inb(cm->iobase + cmd);
573 	val &= ~flag;
574 	if (val == oval)
575 		return 0;
576 	outb(val, cm->iobase + cmd);
577 	return 1;
578 }
579 
580 
581 /*
582  * PCM interface
583  */
584 
585 /*
586  * calculate frequency
587  */
588 
589 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
590 
591 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
592 {
593 	unsigned int i;
594 
595 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
596 		if (rates[i] == rate)
597 			return i;
598 	}
599 	snd_BUG();
600 	return 0;
601 }
602 
603 #ifdef USE_VAR48KRATE
604 /*
605  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
606  * does it this way .. maybe not.  Never get any information from C-Media about
607  * that <werner@suse.de>.
608  */
609 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
610 {
611 	unsigned int delta, tolerance;
612 	int xm, xn, xr;
613 
614 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
615 		rate <<= 1;
616 	*n = -1;
617 	if (*r > 0xff)
618 		goto out;
619 	tolerance = rate*CM_TOLERANCE_RATE;
620 
621 	for (xn = (1+2); xn < (0x1f+2); xn++) {
622 		for (xm = (1+2); xm < (0xff+2); xm++) {
623 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
624 
625 			if (xr < rate)
626 				delta = rate - xr;
627 			else
628 				delta = xr - rate;
629 
630 			/*
631 			 * If we found one, remember this,
632 			 * and try to find a closer one
633 			 */
634 			if (delta < tolerance) {
635 				tolerance = delta;
636 				*m = xm - 2;
637 				*n = xn - 2;
638 			}
639 		}
640 	}
641 out:
642 	return (*n > -1);
643 }
644 
645 /*
646  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
647  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
648  * at the register CM_REG_FUNCTRL1 (0x04).
649  * Problem: other ways are also possible (any information about that?)
650  */
651 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
652 {
653 	unsigned int reg = CM_REG_PLL + slot;
654 	/*
655 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
656 	 * for DSFC/ASFC (000 up to 111).
657 	 */
658 
659 	/* FIXME: Init (Do we've to set an other register first before programming?) */
660 
661 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
662 	snd_cmipci_write_b(cm, reg, rate>>8);
663 	snd_cmipci_write_b(cm, reg, rate&0xff);
664 
665 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
666 }
667 #endif /* USE_VAR48KRATE */
668 
669 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
670 				struct snd_pcm_hw_params *hw_params)
671 {
672 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
673 }
674 
675 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
676 					  struct snd_pcm_hw_params *hw_params)
677 {
678 	struct cmipci *cm = snd_pcm_substream_chip(substream);
679 	if (params_channels(hw_params) > 2) {
680 		mutex_lock(&cm->open_mutex);
681 		if (cm->opened[CM_CH_PLAY]) {
682 			mutex_unlock(&cm->open_mutex);
683 			return -EBUSY;
684 		}
685 		/* reserve the channel A */
686 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
687 		mutex_unlock(&cm->open_mutex);
688 	}
689 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
690 }
691 
692 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
693 {
694 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
695 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
696 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
697 	udelay(10);
698 }
699 
700 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
701 {
702 	return snd_pcm_lib_free_pages(substream);
703 }
704 
705 
706 /*
707  */
708 
709 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
710 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
711 	.count = 3,
712 	.list = hw_channels,
713 	.mask = 0,
714 };
715 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
716 	.count = 4,
717 	.list = hw_channels,
718 	.mask = 0,
719 };
720 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
721 	.count = 5,
722 	.list = hw_channels,
723 	.mask = 0,
724 };
725 
726 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
727 {
728 	if (channels > 2) {
729 		if (!cm->can_multi_ch || !rec->ch)
730 			return -EINVAL;
731 		if (rec->fmt != 0x03) /* stereo 16bit only */
732 			return -EINVAL;
733 	}
734 
735 	if (cm->can_multi_ch) {
736 		spin_lock_irq(&cm->reg_lock);
737 		if (channels > 2) {
738 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
739 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
740 		} else {
741 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
742 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
743 		}
744 		if (channels == 8)
745 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
746 		else
747 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
748 		if (channels == 6) {
749 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
750 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
751 		} else {
752 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
753 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
754 		}
755 		if (channels == 4)
756 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
757 		else
758 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
759 		spin_unlock_irq(&cm->reg_lock);
760 	}
761 	return 0;
762 }
763 
764 
765 /*
766  * prepare playback/capture channel
767  * channel to be used must have been set in rec->ch.
768  */
769 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
770 				 struct snd_pcm_substream *substream)
771 {
772 	unsigned int reg, freq, freq_ext, val;
773 	unsigned int period_size;
774 	struct snd_pcm_runtime *runtime = substream->runtime;
775 
776 	rec->fmt = 0;
777 	rec->shift = 0;
778 	if (snd_pcm_format_width(runtime->format) >= 16) {
779 		rec->fmt |= 0x02;
780 		if (snd_pcm_format_width(runtime->format) > 16)
781 			rec->shift++; /* 24/32bit */
782 	}
783 	if (runtime->channels > 1)
784 		rec->fmt |= 0x01;
785 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
786 		dev_dbg(cm->card->dev, "cannot set dac channels\n");
787 		return -EINVAL;
788 	}
789 
790 	rec->offset = runtime->dma_addr;
791 	/* buffer and period sizes in frame */
792 	rec->dma_size = runtime->buffer_size << rec->shift;
793 	period_size = runtime->period_size << rec->shift;
794 	if (runtime->channels > 2) {
795 		/* multi-channels */
796 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
797 		period_size = (period_size * runtime->channels) / 2;
798 	}
799 
800 	spin_lock_irq(&cm->reg_lock);
801 
802 	/* set buffer address */
803 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
804 	snd_cmipci_write(cm, reg, rec->offset);
805 	/* program sample counts */
806 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
807 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
808 	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
809 
810 	/* set adc/dac flag */
811 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
812 	if (rec->is_dac)
813 		cm->ctrl &= ~val;
814 	else
815 		cm->ctrl |= val;
816 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
817 	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
818 
819 	/* set sample rate */
820 	freq = 0;
821 	freq_ext = 0;
822 	if (runtime->rate > 48000)
823 		switch (runtime->rate) {
824 		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
825 		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
826 		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
827 		default:     snd_BUG(); break;
828 		}
829 	else
830 		freq = snd_cmipci_rate_freq(runtime->rate);
831 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
832 	if (rec->ch) {
833 		val &= ~CM_DSFC_MASK;
834 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
835 	} else {
836 		val &= ~CM_ASFC_MASK;
837 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
838 	}
839 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
840 	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
841 
842 	/* set format */
843 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
844 	if (rec->ch) {
845 		val &= ~CM_CH1FMT_MASK;
846 		val |= rec->fmt << CM_CH1FMT_SHIFT;
847 	} else {
848 		val &= ~CM_CH0FMT_MASK;
849 		val |= rec->fmt << CM_CH0FMT_SHIFT;
850 	}
851 	if (cm->can_96k) {
852 		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
853 		val |= freq_ext << (rec->ch * 2);
854 	}
855 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
856 	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
857 
858 	if (!rec->is_dac && cm->chip_version) {
859 		if (runtime->rate > 44100)
860 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
861 		else
862 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
863 	}
864 
865 	rec->running = 0;
866 	spin_unlock_irq(&cm->reg_lock);
867 
868 	return 0;
869 }
870 
871 /*
872  * PCM trigger/stop
873  */
874 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
875 				  int cmd)
876 {
877 	unsigned int inthld, chen, reset, pause;
878 	int result = 0;
879 
880 	inthld = CM_CH0_INT_EN << rec->ch;
881 	chen = CM_CHEN0 << rec->ch;
882 	reset = CM_RST_CH0 << rec->ch;
883 	pause = CM_PAUSE0 << rec->ch;
884 
885 	spin_lock(&cm->reg_lock);
886 	switch (cmd) {
887 	case SNDRV_PCM_TRIGGER_START:
888 		rec->running = 1;
889 		/* set interrupt */
890 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
891 		cm->ctrl |= chen;
892 		/* enable channel */
893 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
894 		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
895 		break;
896 	case SNDRV_PCM_TRIGGER_STOP:
897 		rec->running = 0;
898 		/* disable interrupt */
899 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
900 		/* reset */
901 		cm->ctrl &= ~chen;
902 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
903 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
904 		rec->needs_silencing = rec->is_dac;
905 		break;
906 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
907 	case SNDRV_PCM_TRIGGER_SUSPEND:
908 		cm->ctrl |= pause;
909 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
910 		break;
911 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
912 	case SNDRV_PCM_TRIGGER_RESUME:
913 		cm->ctrl &= ~pause;
914 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
915 		break;
916 	default:
917 		result = -EINVAL;
918 		break;
919 	}
920 	spin_unlock(&cm->reg_lock);
921 	return result;
922 }
923 
924 /*
925  * return the current pointer
926  */
927 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
928 						struct snd_pcm_substream *substream)
929 {
930 	size_t ptr;
931 	unsigned int reg, rem, tries;
932 
933 	if (!rec->running)
934 		return 0;
935 #if 1 // this seems better..
936 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
937 	for (tries = 0; tries < 3; tries++) {
938 		rem = snd_cmipci_read_w(cm, reg);
939 		if (rem < rec->dma_size)
940 			goto ok;
941 	}
942 	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
943 	return SNDRV_PCM_POS_XRUN;
944 ok:
945 	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
946 #else
947 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
948 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
949 	ptr = bytes_to_frames(substream->runtime, ptr);
950 #endif
951 	if (substream->runtime->channels > 2)
952 		ptr = (ptr * 2) / substream->runtime->channels;
953 	return ptr;
954 }
955 
956 /*
957  * playback
958  */
959 
960 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
961 				       int cmd)
962 {
963 	struct cmipci *cm = snd_pcm_substream_chip(substream);
964 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
965 }
966 
967 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
968 {
969 	struct cmipci *cm = snd_pcm_substream_chip(substream);
970 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
971 }
972 
973 
974 
975 /*
976  * capture
977  */
978 
979 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
980 				     int cmd)
981 {
982 	struct cmipci *cm = snd_pcm_substream_chip(substream);
983 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
984 }
985 
986 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
987 {
988 	struct cmipci *cm = snd_pcm_substream_chip(substream);
989 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
990 }
991 
992 
993 /*
994  * hw preparation for spdif
995  */
996 
997 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
998 					 struct snd_ctl_elem_info *uinfo)
999 {
1000 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1001 	uinfo->count = 1;
1002 	return 0;
1003 }
1004 
1005 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1006 					struct snd_ctl_elem_value *ucontrol)
1007 {
1008 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1009 	int i;
1010 
1011 	spin_lock_irq(&chip->reg_lock);
1012 	for (i = 0; i < 4; i++)
1013 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1014 	spin_unlock_irq(&chip->reg_lock);
1015 	return 0;
1016 }
1017 
1018 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1019 					 struct snd_ctl_elem_value *ucontrol)
1020 {
1021 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022 	int i, change;
1023 	unsigned int val;
1024 
1025 	val = 0;
1026 	spin_lock_irq(&chip->reg_lock);
1027 	for (i = 0; i < 4; i++)
1028 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1029 	change = val != chip->dig_status;
1030 	chip->dig_status = val;
1031 	spin_unlock_irq(&chip->reg_lock);
1032 	return change;
1033 }
1034 
1035 static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1036 {
1037 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1038 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1039 	.info =		snd_cmipci_spdif_default_info,
1040 	.get =		snd_cmipci_spdif_default_get,
1041 	.put =		snd_cmipci_spdif_default_put
1042 };
1043 
1044 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1045 				      struct snd_ctl_elem_info *uinfo)
1046 {
1047 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1048 	uinfo->count = 1;
1049 	return 0;
1050 }
1051 
1052 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1053 				     struct snd_ctl_elem_value *ucontrol)
1054 {
1055 	ucontrol->value.iec958.status[0] = 0xff;
1056 	ucontrol->value.iec958.status[1] = 0xff;
1057 	ucontrol->value.iec958.status[2] = 0xff;
1058 	ucontrol->value.iec958.status[3] = 0xff;
1059 	return 0;
1060 }
1061 
1062 static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1063 {
1064 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1065 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1066 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1067 	.info =		snd_cmipci_spdif_mask_info,
1068 	.get =		snd_cmipci_spdif_mask_get,
1069 };
1070 
1071 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1072 					struct snd_ctl_elem_info *uinfo)
1073 {
1074 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1075 	uinfo->count = 1;
1076 	return 0;
1077 }
1078 
1079 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1080 				       struct snd_ctl_elem_value *ucontrol)
1081 {
1082 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1083 	int i;
1084 
1085 	spin_lock_irq(&chip->reg_lock);
1086 	for (i = 0; i < 4; i++)
1087 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1088 	spin_unlock_irq(&chip->reg_lock);
1089 	return 0;
1090 }
1091 
1092 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1093 				       struct snd_ctl_elem_value *ucontrol)
1094 {
1095 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096 	int i, change;
1097 	unsigned int val;
1098 
1099 	val = 0;
1100 	spin_lock_irq(&chip->reg_lock);
1101 	for (i = 0; i < 4; i++)
1102 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1103 	change = val != chip->dig_pcm_status;
1104 	chip->dig_pcm_status = val;
1105 	spin_unlock_irq(&chip->reg_lock);
1106 	return change;
1107 }
1108 
1109 static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1110 {
1111 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1112 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1113 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1114 	.info =		snd_cmipci_spdif_stream_info,
1115 	.get =		snd_cmipci_spdif_stream_get,
1116 	.put =		snd_cmipci_spdif_stream_put
1117 };
1118 
1119 /*
1120  */
1121 
1122 /* save mixer setting and mute for AC3 playback */
1123 static int save_mixer_state(struct cmipci *cm)
1124 {
1125 	if (! cm->mixer_insensitive) {
1126 		struct snd_ctl_elem_value *val;
1127 		unsigned int i;
1128 
1129 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1130 		if (!val)
1131 			return -ENOMEM;
1132 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1133 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1134 			if (ctl) {
1135 				int event;
1136 				memset(val, 0, sizeof(*val));
1137 				ctl->get(ctl, val);
1138 				cm->mixer_res_status[i] = val->value.integer.value[0];
1139 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1140 				event = SNDRV_CTL_EVENT_MASK_INFO;
1141 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1142 					ctl->put(ctl, val); /* toggle */
1143 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1144 				}
1145 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1146 				snd_ctl_notify(cm->card, event, &ctl->id);
1147 			}
1148 		}
1149 		kfree(val);
1150 		cm->mixer_insensitive = 1;
1151 	}
1152 	return 0;
1153 }
1154 
1155 
1156 /* restore the previously saved mixer status */
1157 static void restore_mixer_state(struct cmipci *cm)
1158 {
1159 	if (cm->mixer_insensitive) {
1160 		struct snd_ctl_elem_value *val;
1161 		unsigned int i;
1162 
1163 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1164 		if (!val)
1165 			return;
1166 		cm->mixer_insensitive = 0; /* at first clear this;
1167 					      otherwise the changes will be ignored */
1168 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1169 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1170 			if (ctl) {
1171 				int event;
1172 
1173 				memset(val, 0, sizeof(*val));
1174 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1175 				ctl->get(ctl, val);
1176 				event = SNDRV_CTL_EVENT_MASK_INFO;
1177 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1178 					val->value.integer.value[0] = cm->mixer_res_status[i];
1179 					ctl->put(ctl, val);
1180 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1181 				}
1182 				snd_ctl_notify(cm->card, event, &ctl->id);
1183 			}
1184 		}
1185 		kfree(val);
1186 	}
1187 }
1188 
1189 /* spinlock held! */
1190 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1191 {
1192 	if (do_ac3) {
1193 		/* AC3EN for 037 */
1194 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1195 		/* AC3EN for 039 */
1196 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1197 
1198 		if (cm->can_ac3_hw) {
1199 			/* SPD24SEL for 037, 0x02 */
1200 			/* SPD24SEL for 039, 0x20, but cannot be set */
1201 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1202 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1203 		} else { /* can_ac3_sw */
1204 			/* SPD32SEL for 037 & 039, 0x20 */
1205 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1206 			/* set 176K sample rate to fix 033 HW bug */
1207 			if (cm->chip_version == 33) {
1208 				if (rate >= 48000) {
1209 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1210 				} else {
1211 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1212 				}
1213 			}
1214 		}
1215 
1216 	} else {
1217 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1218 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1219 
1220 		if (cm->can_ac3_hw) {
1221 			/* chip model >= 37 */
1222 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1223 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1224 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1225 			} else {
1226 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1227 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1228 			}
1229 		} else {
1230 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1231 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1232 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1233 		}
1234 	}
1235 }
1236 
1237 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1238 {
1239 	int rate, err;
1240 
1241 	rate = subs->runtime->rate;
1242 
1243 	if (up && do_ac3)
1244 		if ((err = save_mixer_state(cm)) < 0)
1245 			return err;
1246 
1247 	spin_lock_irq(&cm->reg_lock);
1248 	cm->spdif_playback_avail = up;
1249 	if (up) {
1250 		/* they are controlled via "IEC958 Output Switch" */
1251 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1252 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1253 		if (cm->spdif_playback_enabled)
1254 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1255 		setup_ac3(cm, subs, do_ac3, rate);
1256 
1257 		if (rate == 48000 || rate == 96000)
1258 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1259 		else
1260 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1261 		if (rate > 48000)
1262 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1263 		else
1264 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1265 	} else {
1266 		/* they are controlled via "IEC958 Output Switch" */
1267 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1268 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1269 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1270 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1271 		setup_ac3(cm, subs, 0, 0);
1272 	}
1273 	spin_unlock_irq(&cm->reg_lock);
1274 	return 0;
1275 }
1276 
1277 
1278 /*
1279  * preparation
1280  */
1281 
1282 /* playback - enable spdif only on the certain condition */
1283 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1284 {
1285 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1286 	int rate = substream->runtime->rate;
1287 	int err, do_spdif, do_ac3 = 0;
1288 
1289 	do_spdif = (rate >= 44100 && rate <= 96000 &&
1290 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1291 		    substream->runtime->channels == 2);
1292 	if (do_spdif && cm->can_ac3_hw)
1293 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1294 	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1295 		return err;
1296 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1297 }
1298 
1299 /* playback  (via device #2) - enable spdif always */
1300 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1301 {
1302 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1303 	int err, do_ac3;
1304 
1305 	if (cm->can_ac3_hw)
1306 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307 	else
1308 		do_ac3 = 1; /* doesn't matter */
1309 	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1310 		return err;
1311 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1312 }
1313 
1314 /*
1315  * Apparently, the samples last played on channel A stay in some buffer, even
1316  * after the channel is reset, and get added to the data for the rear DACs when
1317  * playing a multichannel stream on channel B.  This is likely to generate
1318  * wraparounds and thus distortions.
1319  * To avoid this, we play at least one zero sample after the actual stream has
1320  * stopped.
1321  */
1322 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1323 {
1324 	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1325 	unsigned int reg, val;
1326 
1327 	if (rec->needs_silencing && runtime && runtime->dma_area) {
1328 		/* set up a small silence buffer */
1329 		memset(runtime->dma_area, 0, PAGE_SIZE);
1330 		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1331 		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1332 		snd_cmipci_write(cm, reg, val);
1333 
1334 		/* configure for 16 bits, 2 channels, 8 kHz */
1335 		if (runtime->channels > 2)
1336 			set_dac_channels(cm, rec, 2);
1337 		spin_lock_irq(&cm->reg_lock);
1338 		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1339 		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1340 		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1341 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1342 		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1343 		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1344 		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1345 		if (cm->can_96k)
1346 			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1347 		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1348 
1349 		/* start stream (we don't need interrupts) */
1350 		cm->ctrl |= CM_CHEN0 << rec->ch;
1351 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1352 		spin_unlock_irq(&cm->reg_lock);
1353 
1354 		msleep(1);
1355 
1356 		/* stop and reset stream */
1357 		spin_lock_irq(&cm->reg_lock);
1358 		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1359 		val = CM_RST_CH0 << rec->ch;
1360 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1361 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1362 		spin_unlock_irq(&cm->reg_lock);
1363 
1364 		rec->needs_silencing = 0;
1365 	}
1366 }
1367 
1368 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1369 {
1370 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1371 	setup_spdif_playback(cm, substream, 0, 0);
1372 	restore_mixer_state(cm);
1373 	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1374 	return snd_cmipci_hw_free(substream);
1375 }
1376 
1377 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1378 {
1379 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1380 	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1381 	return snd_cmipci_hw_free(substream);
1382 }
1383 
1384 /* capture */
1385 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1386 {
1387 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1388 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1389 }
1390 
1391 /* capture with spdif (via device #2) */
1392 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1393 {
1394 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1395 
1396 	spin_lock_irq(&cm->reg_lock);
1397 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1398 	if (cm->can_96k) {
1399 		if (substream->runtime->rate > 48000)
1400 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1401 		else
1402 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1403 	}
1404 	if (snd_pcm_format_width(substream->runtime->format) > 16)
1405 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1406 	else
1407 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1408 
1409 	spin_unlock_irq(&cm->reg_lock);
1410 
1411 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1412 }
1413 
1414 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1415 {
1416 	struct cmipci *cm = snd_pcm_substream_chip(subs);
1417 
1418 	spin_lock_irq(&cm->reg_lock);
1419 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1420 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421 	spin_unlock_irq(&cm->reg_lock);
1422 
1423 	return snd_cmipci_hw_free(subs);
1424 }
1425 
1426 
1427 /*
1428  * interrupt handler
1429  */
1430 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1431 {
1432 	struct cmipci *cm = dev_id;
1433 	unsigned int status, mask = 0;
1434 
1435 	/* fastpath out, to ease interrupt sharing */
1436 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1437 	if (!(status & CM_INTR))
1438 		return IRQ_NONE;
1439 
1440 	/* acknowledge interrupt */
1441 	spin_lock(&cm->reg_lock);
1442 	if (status & CM_CHINT0)
1443 		mask |= CM_CH0_INT_EN;
1444 	if (status & CM_CHINT1)
1445 		mask |= CM_CH1_INT_EN;
1446 	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1447 	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1448 	spin_unlock(&cm->reg_lock);
1449 
1450 	if (cm->rmidi && (status & CM_UARTINT))
1451 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1452 
1453 	if (cm->pcm) {
1454 		if ((status & CM_CHINT0) && cm->channel[0].running)
1455 			snd_pcm_period_elapsed(cm->channel[0].substream);
1456 		if ((status & CM_CHINT1) && cm->channel[1].running)
1457 			snd_pcm_period_elapsed(cm->channel[1].substream);
1458 	}
1459 	return IRQ_HANDLED;
1460 }
1461 
1462 /*
1463  * h/w infos
1464  */
1465 
1466 /* playback on channel A */
1467 static const struct snd_pcm_hardware snd_cmipci_playback =
1468 {
1469 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1470 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1471 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1472 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1473 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1474 	.rate_min =		5512,
1475 	.rate_max =		48000,
1476 	.channels_min =		1,
1477 	.channels_max =		2,
1478 	.buffer_bytes_max =	(128*1024),
1479 	.period_bytes_min =	64,
1480 	.period_bytes_max =	(128*1024),
1481 	.periods_min =		2,
1482 	.periods_max =		1024,
1483 	.fifo_size =		0,
1484 };
1485 
1486 /* capture on channel B */
1487 static const struct snd_pcm_hardware snd_cmipci_capture =
1488 {
1489 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1490 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1491 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1492 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1493 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1494 	.rate_min =		5512,
1495 	.rate_max =		48000,
1496 	.channels_min =		1,
1497 	.channels_max =		2,
1498 	.buffer_bytes_max =	(128*1024),
1499 	.period_bytes_min =	64,
1500 	.period_bytes_max =	(128*1024),
1501 	.periods_min =		2,
1502 	.periods_max =		1024,
1503 	.fifo_size =		0,
1504 };
1505 
1506 /* playback on channel B - stereo 16bit only? */
1507 static const struct snd_pcm_hardware snd_cmipci_playback2 =
1508 {
1509 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1510 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1511 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1512 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1513 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1514 	.rate_min =		5512,
1515 	.rate_max =		48000,
1516 	.channels_min =		2,
1517 	.channels_max =		2,
1518 	.buffer_bytes_max =	(128*1024),
1519 	.period_bytes_min =	64,
1520 	.period_bytes_max =	(128*1024),
1521 	.periods_min =		2,
1522 	.periods_max =		1024,
1523 	.fifo_size =		0,
1524 };
1525 
1526 /* spdif playback on channel A */
1527 static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1528 {
1529 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1530 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1531 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1532 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1533 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1534 	.rate_min =		44100,
1535 	.rate_max =		48000,
1536 	.channels_min =		2,
1537 	.channels_max =		2,
1538 	.buffer_bytes_max =	(128*1024),
1539 	.period_bytes_min =	64,
1540 	.period_bytes_max =	(128*1024),
1541 	.periods_min =		2,
1542 	.periods_max =		1024,
1543 	.fifo_size =		0,
1544 };
1545 
1546 /* spdif playback on channel A (32bit, IEC958 subframes) */
1547 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1548 {
1549 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1550 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1551 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1552 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1553 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1554 	.rate_min =		44100,
1555 	.rate_max =		48000,
1556 	.channels_min =		2,
1557 	.channels_max =		2,
1558 	.buffer_bytes_max =	(128*1024),
1559 	.period_bytes_min =	64,
1560 	.period_bytes_max =	(128*1024),
1561 	.periods_min =		2,
1562 	.periods_max =		1024,
1563 	.fifo_size =		0,
1564 };
1565 
1566 /* spdif capture on channel B */
1567 static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1568 {
1569 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1570 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1571 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1572 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1573 				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1574 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1575 	.rate_min =		44100,
1576 	.rate_max =		48000,
1577 	.channels_min =		2,
1578 	.channels_max =		2,
1579 	.buffer_bytes_max =	(128*1024),
1580 	.period_bytes_min =	64,
1581 	.period_bytes_max =	(128*1024),
1582 	.periods_min =		2,
1583 	.periods_max =		1024,
1584 	.fifo_size =		0,
1585 };
1586 
1587 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1588 			32000, 44100, 48000, 88200, 96000, 128000 };
1589 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1590 		.count = ARRAY_SIZE(rate_constraints),
1591 		.list = rate_constraints,
1592 		.mask = 0,
1593 };
1594 
1595 /*
1596  * check device open/close
1597  */
1598 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1599 {
1600 	int ch = mode & CM_OPEN_CH_MASK;
1601 
1602 	/* FIXME: a file should wait until the device becomes free
1603 	 * when it's opened on blocking mode.  however, since the current
1604 	 * pcm framework doesn't pass file pointer before actually opened,
1605 	 * we can't know whether blocking mode or not in open callback..
1606 	 */
1607 	mutex_lock(&cm->open_mutex);
1608 	if (cm->opened[ch]) {
1609 		mutex_unlock(&cm->open_mutex);
1610 		return -EBUSY;
1611 	}
1612 	cm->opened[ch] = mode;
1613 	cm->channel[ch].substream = subs;
1614 	if (! (mode & CM_OPEN_DAC)) {
1615 		/* disable dual DAC mode */
1616 		cm->channel[ch].is_dac = 0;
1617 		spin_lock_irq(&cm->reg_lock);
1618 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1619 		spin_unlock_irq(&cm->reg_lock);
1620 	}
1621 	mutex_unlock(&cm->open_mutex);
1622 	return 0;
1623 }
1624 
1625 static void close_device_check(struct cmipci *cm, int mode)
1626 {
1627 	int ch = mode & CM_OPEN_CH_MASK;
1628 
1629 	mutex_lock(&cm->open_mutex);
1630 	if (cm->opened[ch] == mode) {
1631 		if (cm->channel[ch].substream) {
1632 			snd_cmipci_ch_reset(cm, ch);
1633 			cm->channel[ch].running = 0;
1634 			cm->channel[ch].substream = NULL;
1635 		}
1636 		cm->opened[ch] = 0;
1637 		if (! cm->channel[ch].is_dac) {
1638 			/* enable dual DAC mode again */
1639 			cm->channel[ch].is_dac = 1;
1640 			spin_lock_irq(&cm->reg_lock);
1641 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1642 			spin_unlock_irq(&cm->reg_lock);
1643 		}
1644 	}
1645 	mutex_unlock(&cm->open_mutex);
1646 }
1647 
1648 /*
1649  */
1650 
1651 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1652 {
1653 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1654 	struct snd_pcm_runtime *runtime = substream->runtime;
1655 	int err;
1656 
1657 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1658 		return err;
1659 	runtime->hw = snd_cmipci_playback;
1660 	if (cm->chip_version == 68) {
1661 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1662 				     SNDRV_PCM_RATE_96000;
1663 		runtime->hw.rate_max = 96000;
1664 	} else if (cm->chip_version == 55) {
1665 		err = snd_pcm_hw_constraint_list(runtime, 0,
1666 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1667 		if (err < 0)
1668 			return err;
1669 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1670 		runtime->hw.rate_max = 128000;
1671 	}
1672 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1673 	cm->dig_pcm_status = cm->dig_status;
1674 	return 0;
1675 }
1676 
1677 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1678 {
1679 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1680 	struct snd_pcm_runtime *runtime = substream->runtime;
1681 	int err;
1682 
1683 	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1684 		return err;
1685 	runtime->hw = snd_cmipci_capture;
1686 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1687 		runtime->hw.rate_min = 41000;
1688 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1689 	} else if (cm->chip_version == 55) {
1690 		err = snd_pcm_hw_constraint_list(runtime, 0,
1691 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1692 		if (err < 0)
1693 			return err;
1694 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1695 		runtime->hw.rate_max = 128000;
1696 	}
1697 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1698 	return 0;
1699 }
1700 
1701 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1702 {
1703 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1704 	struct snd_pcm_runtime *runtime = substream->runtime;
1705 	int err;
1706 
1707 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1708 		return err;
1709 	runtime->hw = snd_cmipci_playback2;
1710 	mutex_lock(&cm->open_mutex);
1711 	if (! cm->opened[CM_CH_PLAY]) {
1712 		if (cm->can_multi_ch) {
1713 			runtime->hw.channels_max = cm->max_channels;
1714 			if (cm->max_channels == 4)
1715 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1716 			else if (cm->max_channels == 6)
1717 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1718 			else if (cm->max_channels == 8)
1719 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1720 		}
1721 	}
1722 	mutex_unlock(&cm->open_mutex);
1723 	if (cm->chip_version == 68) {
1724 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1725 				     SNDRV_PCM_RATE_96000;
1726 		runtime->hw.rate_max = 96000;
1727 	} else if (cm->chip_version == 55) {
1728 		err = snd_pcm_hw_constraint_list(runtime, 0,
1729 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1730 		if (err < 0)
1731 			return err;
1732 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1733 		runtime->hw.rate_max = 128000;
1734 	}
1735 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1736 	return 0;
1737 }
1738 
1739 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1740 {
1741 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1742 	struct snd_pcm_runtime *runtime = substream->runtime;
1743 	int err;
1744 
1745 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1746 		return err;
1747 	if (cm->can_ac3_hw) {
1748 		runtime->hw = snd_cmipci_playback_spdif;
1749 		if (cm->chip_version >= 37) {
1750 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1751 			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1752 		}
1753 		if (cm->can_96k) {
1754 			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1755 					     SNDRV_PCM_RATE_96000;
1756 			runtime->hw.rate_max = 96000;
1757 		}
1758 	} else {
1759 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1760 	}
1761 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1762 	cm->dig_pcm_status = cm->dig_status;
1763 	return 0;
1764 }
1765 
1766 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1767 {
1768 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1769 	struct snd_pcm_runtime *runtime = substream->runtime;
1770 	int err;
1771 
1772 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1773 		return err;
1774 	runtime->hw = snd_cmipci_capture_spdif;
1775 	if (cm->can_96k && !(cm->chip_version == 68)) {
1776 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1777 				     SNDRV_PCM_RATE_96000;
1778 		runtime->hw.rate_max = 96000;
1779 	}
1780 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1781 	return 0;
1782 }
1783 
1784 
1785 /*
1786  */
1787 
1788 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1789 {
1790 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1791 	close_device_check(cm, CM_OPEN_PLAYBACK);
1792 	return 0;
1793 }
1794 
1795 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1796 {
1797 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1798 	close_device_check(cm, CM_OPEN_CAPTURE);
1799 	return 0;
1800 }
1801 
1802 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1803 {
1804 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1805 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1806 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1807 	return 0;
1808 }
1809 
1810 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1811 {
1812 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1813 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1814 	return 0;
1815 }
1816 
1817 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1818 {
1819 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1820 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1821 	return 0;
1822 }
1823 
1824 
1825 /*
1826  */
1827 
1828 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1829 	.open =		snd_cmipci_playback_open,
1830 	.close =	snd_cmipci_playback_close,
1831 	.ioctl =	snd_pcm_lib_ioctl,
1832 	.hw_params =	snd_cmipci_hw_params,
1833 	.hw_free =	snd_cmipci_playback_hw_free,
1834 	.prepare =	snd_cmipci_playback_prepare,
1835 	.trigger =	snd_cmipci_playback_trigger,
1836 	.pointer =	snd_cmipci_playback_pointer,
1837 };
1838 
1839 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1840 	.open =		snd_cmipci_capture_open,
1841 	.close =	snd_cmipci_capture_close,
1842 	.ioctl =	snd_pcm_lib_ioctl,
1843 	.hw_params =	snd_cmipci_hw_params,
1844 	.hw_free =	snd_cmipci_hw_free,
1845 	.prepare =	snd_cmipci_capture_prepare,
1846 	.trigger =	snd_cmipci_capture_trigger,
1847 	.pointer =	snd_cmipci_capture_pointer,
1848 };
1849 
1850 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1851 	.open =		snd_cmipci_playback2_open,
1852 	.close =	snd_cmipci_playback2_close,
1853 	.ioctl =	snd_pcm_lib_ioctl,
1854 	.hw_params =	snd_cmipci_playback2_hw_params,
1855 	.hw_free =	snd_cmipci_playback2_hw_free,
1856 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1857 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1858 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1859 };
1860 
1861 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1862 	.open =		snd_cmipci_playback_spdif_open,
1863 	.close =	snd_cmipci_playback_spdif_close,
1864 	.ioctl =	snd_pcm_lib_ioctl,
1865 	.hw_params =	snd_cmipci_hw_params,
1866 	.hw_free =	snd_cmipci_playback_hw_free,
1867 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1868 	.trigger =	snd_cmipci_playback_trigger,
1869 	.pointer =	snd_cmipci_playback_pointer,
1870 };
1871 
1872 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1873 	.open =		snd_cmipci_capture_spdif_open,
1874 	.close =	snd_cmipci_capture_spdif_close,
1875 	.ioctl =	snd_pcm_lib_ioctl,
1876 	.hw_params =	snd_cmipci_hw_params,
1877 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1878 	.prepare =	snd_cmipci_capture_spdif_prepare,
1879 	.trigger =	snd_cmipci_capture_trigger,
1880 	.pointer =	snd_cmipci_capture_pointer,
1881 };
1882 
1883 
1884 /*
1885  */
1886 
1887 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1888 {
1889 	struct snd_pcm *pcm;
1890 	int err;
1891 
1892 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1893 	if (err < 0)
1894 		return err;
1895 
1896 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1897 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1898 
1899 	pcm->private_data = cm;
1900 	pcm->info_flags = 0;
1901 	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1902 	cm->pcm = pcm;
1903 
1904 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1905 					      &cm->pci->dev, 64*1024, 128*1024);
1906 
1907 	return 0;
1908 }
1909 
1910 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1911 {
1912 	struct snd_pcm *pcm;
1913 	int err;
1914 
1915 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1916 	if (err < 0)
1917 		return err;
1918 
1919 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1920 
1921 	pcm->private_data = cm;
1922 	pcm->info_flags = 0;
1923 	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1924 	cm->pcm2 = pcm;
1925 
1926 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1927 					      &cm->pci->dev, 64*1024, 128*1024);
1928 
1929 	return 0;
1930 }
1931 
1932 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1933 {
1934 	struct snd_pcm *pcm;
1935 	int err;
1936 
1937 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1938 	if (err < 0)
1939 		return err;
1940 
1941 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1942 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1943 
1944 	pcm->private_data = cm;
1945 	pcm->info_flags = 0;
1946 	strcpy(pcm->name, "C-Media PCI IEC958");
1947 	cm->pcm_spdif = pcm;
1948 
1949 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1950 					      &cm->pci->dev, 64*1024, 128*1024);
1951 
1952 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1953 				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1954 				     NULL);
1955 	if (err < 0)
1956 		return err;
1957 
1958 	return 0;
1959 }
1960 
1961 /*
1962  * mixer interface:
1963  * - CM8338/8738 has a compatible mixer interface with SB16, but
1964  *   lack of some elements like tone control, i/o gain and AGC.
1965  * - Access to native registers:
1966  *   - A 3D switch
1967  *   - Output mute switches
1968  */
1969 
1970 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1971 {
1972 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1973 	outb(data, s->iobase + CM_REG_SB16_DATA);
1974 }
1975 
1976 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1977 {
1978 	unsigned char v;
1979 
1980 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1981 	v = inb(s->iobase + CM_REG_SB16_DATA);
1982 	return v;
1983 }
1984 
1985 /*
1986  * general mixer element
1987  */
1988 struct cmipci_sb_reg {
1989 	unsigned int left_reg, right_reg;
1990 	unsigned int left_shift, right_shift;
1991 	unsigned int mask;
1992 	unsigned int invert: 1;
1993 	unsigned int stereo: 1;
1994 };
1995 
1996 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1997  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1998 
1999 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2000 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2001   .info = snd_cmipci_info_volume, \
2002   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2003   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2004 }
2005 
2006 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2007 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2008 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2009 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2010 
2011 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2012 {
2013 	r->left_reg = val & 0xff;
2014 	r->right_reg = (val >> 8) & 0xff;
2015 	r->left_shift = (val >> 16) & 0x07;
2016 	r->right_shift = (val >> 19) & 0x07;
2017 	r->invert = (val >> 22) & 1;
2018 	r->stereo = (val >> 23) & 1;
2019 	r->mask = (val >> 24) & 0xff;
2020 }
2021 
2022 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2023 				  struct snd_ctl_elem_info *uinfo)
2024 {
2025 	struct cmipci_sb_reg reg;
2026 
2027 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2028 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2029 	uinfo->count = reg.stereo + 1;
2030 	uinfo->value.integer.min = 0;
2031 	uinfo->value.integer.max = reg.mask;
2032 	return 0;
2033 }
2034 
2035 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2036 				 struct snd_ctl_elem_value *ucontrol)
2037 {
2038 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2039 	struct cmipci_sb_reg reg;
2040 	int val;
2041 
2042 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2043 	spin_lock_irq(&cm->reg_lock);
2044 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2045 	if (reg.invert)
2046 		val = reg.mask - val;
2047 	ucontrol->value.integer.value[0] = val;
2048 	if (reg.stereo) {
2049 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2050 		if (reg.invert)
2051 			val = reg.mask - val;
2052 		ucontrol->value.integer.value[1] = val;
2053 	}
2054 	spin_unlock_irq(&cm->reg_lock);
2055 	return 0;
2056 }
2057 
2058 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2059 				 struct snd_ctl_elem_value *ucontrol)
2060 {
2061 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2062 	struct cmipci_sb_reg reg;
2063 	int change;
2064 	int left, right, oleft, oright;
2065 
2066 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2067 	left = ucontrol->value.integer.value[0] & reg.mask;
2068 	if (reg.invert)
2069 		left = reg.mask - left;
2070 	left <<= reg.left_shift;
2071 	if (reg.stereo) {
2072 		right = ucontrol->value.integer.value[1] & reg.mask;
2073 		if (reg.invert)
2074 			right = reg.mask - right;
2075 		right <<= reg.right_shift;
2076 	} else
2077 		right = 0;
2078 	spin_lock_irq(&cm->reg_lock);
2079 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2080 	left |= oleft & ~(reg.mask << reg.left_shift);
2081 	change = left != oleft;
2082 	if (reg.stereo) {
2083 		if (reg.left_reg != reg.right_reg) {
2084 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2085 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2086 		} else
2087 			oright = left;
2088 		right |= oright & ~(reg.mask << reg.right_shift);
2089 		change |= right != oright;
2090 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2091 	} else
2092 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2093 	spin_unlock_irq(&cm->reg_lock);
2094 	return change;
2095 }
2096 
2097 /*
2098  * input route (left,right) -> (left,right)
2099  */
2100 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2101 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2102   .info = snd_cmipci_info_input_sw, \
2103   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2104   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2105 }
2106 
2107 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2108 				    struct snd_ctl_elem_info *uinfo)
2109 {
2110 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2111 	uinfo->count = 4;
2112 	uinfo->value.integer.min = 0;
2113 	uinfo->value.integer.max = 1;
2114 	return 0;
2115 }
2116 
2117 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2118 				   struct snd_ctl_elem_value *ucontrol)
2119 {
2120 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2121 	struct cmipci_sb_reg reg;
2122 	int val1, val2;
2123 
2124 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2125 	spin_lock_irq(&cm->reg_lock);
2126 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2127 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2128 	spin_unlock_irq(&cm->reg_lock);
2129 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2130 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2131 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2132 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2133 	return 0;
2134 }
2135 
2136 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2137 				   struct snd_ctl_elem_value *ucontrol)
2138 {
2139 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2140 	struct cmipci_sb_reg reg;
2141 	int change;
2142 	int val1, val2, oval1, oval2;
2143 
2144 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2145 	spin_lock_irq(&cm->reg_lock);
2146 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2147 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2148 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2149 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2150 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2151 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2152 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2153 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2154 	change = val1 != oval1 || val2 != oval2;
2155 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2156 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2157 	spin_unlock_irq(&cm->reg_lock);
2158 	return change;
2159 }
2160 
2161 /*
2162  * native mixer switches/volumes
2163  */
2164 
2165 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2166 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167   .info = snd_cmipci_info_native_mixer, \
2168   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2170 }
2171 
2172 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2173 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174   .info = snd_cmipci_info_native_mixer, \
2175   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2177 }
2178 
2179 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2180 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2181   .info = snd_cmipci_info_native_mixer, \
2182   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2183   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2184 }
2185 
2186 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2187 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2188   .info = snd_cmipci_info_native_mixer, \
2189   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2190   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2191 }
2192 
2193 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2194 					struct snd_ctl_elem_info *uinfo)
2195 {
2196 	struct cmipci_sb_reg reg;
2197 
2198 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2199 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2200 	uinfo->count = reg.stereo + 1;
2201 	uinfo->value.integer.min = 0;
2202 	uinfo->value.integer.max = reg.mask;
2203 	return 0;
2204 
2205 }
2206 
2207 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2208 				       struct snd_ctl_elem_value *ucontrol)
2209 {
2210 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2211 	struct cmipci_sb_reg reg;
2212 	unsigned char oreg, val;
2213 
2214 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2215 	spin_lock_irq(&cm->reg_lock);
2216 	oreg = inb(cm->iobase + reg.left_reg);
2217 	val = (oreg >> reg.left_shift) & reg.mask;
2218 	if (reg.invert)
2219 		val = reg.mask - val;
2220 	ucontrol->value.integer.value[0] = val;
2221 	if (reg.stereo) {
2222 		val = (oreg >> reg.right_shift) & reg.mask;
2223 		if (reg.invert)
2224 			val = reg.mask - val;
2225 		ucontrol->value.integer.value[1] = val;
2226 	}
2227 	spin_unlock_irq(&cm->reg_lock);
2228 	return 0;
2229 }
2230 
2231 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2232 				       struct snd_ctl_elem_value *ucontrol)
2233 {
2234 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2235 	struct cmipci_sb_reg reg;
2236 	unsigned char oreg, nreg, val;
2237 
2238 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2239 	spin_lock_irq(&cm->reg_lock);
2240 	oreg = inb(cm->iobase + reg.left_reg);
2241 	val = ucontrol->value.integer.value[0] & reg.mask;
2242 	if (reg.invert)
2243 		val = reg.mask - val;
2244 	nreg = oreg & ~(reg.mask << reg.left_shift);
2245 	nreg |= (val << reg.left_shift);
2246 	if (reg.stereo) {
2247 		val = ucontrol->value.integer.value[1] & reg.mask;
2248 		if (reg.invert)
2249 			val = reg.mask - val;
2250 		nreg &= ~(reg.mask << reg.right_shift);
2251 		nreg |= (val << reg.right_shift);
2252 	}
2253 	outb(nreg, cm->iobase + reg.left_reg);
2254 	spin_unlock_irq(&cm->reg_lock);
2255 	return (nreg != oreg);
2256 }
2257 
2258 /*
2259  * special case - check mixer sensitivity
2260  */
2261 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2262 						 struct snd_ctl_elem_value *ucontrol)
2263 {
2264 	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2265 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2266 }
2267 
2268 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2269 						 struct snd_ctl_elem_value *ucontrol)
2270 {
2271 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2272 	if (cm->mixer_insensitive) {
2273 		/* ignored */
2274 		return 0;
2275 	}
2276 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2277 }
2278 
2279 
2280 static struct snd_kcontrol_new snd_cmipci_mixers[] = {
2281 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2282 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2283 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2284 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2285 	{ /* switch with sensitivity */
2286 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2287 		.name = "PCM Playback Switch",
2288 		.info = snd_cmipci_info_native_mixer,
2289 		.get = snd_cmipci_get_native_mixer_sensitive,
2290 		.put = snd_cmipci_put_native_mixer_sensitive,
2291 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2292 	},
2293 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2294 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2295 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2296 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2297 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2298 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2299 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2300 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2301 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2302 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2303 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2304 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2305 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2306 	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2307 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2308 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2309 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2310 	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2311 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2312 	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2313 	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2314 	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2315 	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2316 };
2317 
2318 /*
2319  * other switches
2320  */
2321 
2322 struct cmipci_switch_args {
2323 	int reg;		/* register index */
2324 	unsigned int mask;	/* mask bits */
2325 	unsigned int mask_on;	/* mask bits to turn on */
2326 	unsigned int is_byte: 1;		/* byte access? */
2327 	unsigned int ac3_sensitive: 1;	/* access forbidden during
2328 					 * non-audio operation?
2329 					 */
2330 };
2331 
2332 #define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2333 
2334 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2335 				   struct snd_ctl_elem_value *ucontrol,
2336 				   struct cmipci_switch_args *args)
2337 {
2338 	unsigned int val;
2339 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2340 
2341 	spin_lock_irq(&cm->reg_lock);
2342 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2343 		ucontrol->value.integer.value[0] = 0;
2344 		spin_unlock_irq(&cm->reg_lock);
2345 		return 0;
2346 	}
2347 	if (args->is_byte)
2348 		val = inb(cm->iobase + args->reg);
2349 	else
2350 		val = snd_cmipci_read(cm, args->reg);
2351 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2352 	spin_unlock_irq(&cm->reg_lock);
2353 	return 0;
2354 }
2355 
2356 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2357 				  struct snd_ctl_elem_value *ucontrol)
2358 {
2359 	struct cmipci_switch_args *args;
2360 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2361 	if (snd_BUG_ON(!args))
2362 		return -EINVAL;
2363 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2364 }
2365 
2366 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2367 				   struct snd_ctl_elem_value *ucontrol,
2368 				   struct cmipci_switch_args *args)
2369 {
2370 	unsigned int val;
2371 	int change;
2372 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2373 
2374 	spin_lock_irq(&cm->reg_lock);
2375 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2376 		/* ignored */
2377 		spin_unlock_irq(&cm->reg_lock);
2378 		return 0;
2379 	}
2380 	if (args->is_byte)
2381 		val = inb(cm->iobase + args->reg);
2382 	else
2383 		val = snd_cmipci_read(cm, args->reg);
2384 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2385 			args->mask_on : (args->mask & ~args->mask_on));
2386 	if (change) {
2387 		val &= ~args->mask;
2388 		if (ucontrol->value.integer.value[0])
2389 			val |= args->mask_on;
2390 		else
2391 			val |= (args->mask & ~args->mask_on);
2392 		if (args->is_byte)
2393 			outb((unsigned char)val, cm->iobase + args->reg);
2394 		else
2395 			snd_cmipci_write(cm, args->reg, val);
2396 	}
2397 	spin_unlock_irq(&cm->reg_lock);
2398 	return change;
2399 }
2400 
2401 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2402 				  struct snd_ctl_elem_value *ucontrol)
2403 {
2404 	struct cmipci_switch_args *args;
2405 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2406 	if (snd_BUG_ON(!args))
2407 		return -EINVAL;
2408 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2409 }
2410 
2411 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2412 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2413   .reg = xreg, \
2414   .mask = xmask, \
2415   .mask_on = xmask_on, \
2416   .is_byte = xis_byte, \
2417   .ac3_sensitive = xac3, \
2418 }
2419 
2420 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2421 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2422 
2423 #if 0 /* these will be controlled in pcm device */
2424 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2425 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2426 #endif
2427 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2428 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2429 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2430 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2431 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2432 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2433 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2434 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2435 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2436 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2437 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2438 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2439 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2440 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2441 #if CM_CH_PLAY == 1
2442 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2443 #else
2444 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2445 #endif
2446 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2447 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2448 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2449 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2450 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2451 
2452 #define DEFINE_SWITCH(sname, stype, sarg) \
2453 { .name = sname, \
2454   .iface = stype, \
2455   .info = snd_cmipci_uswitch_info, \
2456   .get = snd_cmipci_uswitch_get, \
2457   .put = snd_cmipci_uswitch_put, \
2458   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2459 }
2460 
2461 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2462 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2463 
2464 
2465 /*
2466  * callbacks for spdif output switch
2467  * needs toggle two registers..
2468  */
2469 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2470 					struct snd_ctl_elem_value *ucontrol)
2471 {
2472 	int changed;
2473 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2474 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2475 	return changed;
2476 }
2477 
2478 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2479 					struct snd_ctl_elem_value *ucontrol)
2480 {
2481 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2482 	int changed;
2483 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2484 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2485 	if (changed) {
2486 		if (ucontrol->value.integer.value[0]) {
2487 			if (chip->spdif_playback_avail)
2488 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2489 		} else {
2490 			if (chip->spdif_playback_avail)
2491 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2492 		}
2493 	}
2494 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2495 	return changed;
2496 }
2497 
2498 
2499 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2500 					struct snd_ctl_elem_info *uinfo)
2501 {
2502 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2503 	static const char *const texts[3] = {
2504 		"Line-In", "Rear Output", "Bass Output"
2505 	};
2506 
2507 	return snd_ctl_enum_info(uinfo, 1,
2508 				 cm->chip_version >= 39 ? 3 : 2, texts);
2509 }
2510 
2511 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2512 {
2513 	unsigned int val;
2514 	if (cm->chip_version >= 39) {
2515 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2516 		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2517 			return 2;
2518 	}
2519 	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2520 	if (val & CM_REAR2LIN)
2521 		return 1;
2522 	return 0;
2523 }
2524 
2525 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2526 				       struct snd_ctl_elem_value *ucontrol)
2527 {
2528 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2529 
2530 	spin_lock_irq(&cm->reg_lock);
2531 	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2532 	spin_unlock_irq(&cm->reg_lock);
2533 	return 0;
2534 }
2535 
2536 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2537 				       struct snd_ctl_elem_value *ucontrol)
2538 {
2539 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2540 	int change;
2541 
2542 	spin_lock_irq(&cm->reg_lock);
2543 	if (ucontrol->value.enumerated.item[0] == 2)
2544 		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2545 	else
2546 		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2547 	if (ucontrol->value.enumerated.item[0] == 1)
2548 		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2549 	else
2550 		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2551 	spin_unlock_irq(&cm->reg_lock);
2552 	return change;
2553 }
2554 
2555 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2556 				       struct snd_ctl_elem_info *uinfo)
2557 {
2558 	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2559 
2560 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2561 }
2562 
2563 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2564 				      struct snd_ctl_elem_value *ucontrol)
2565 {
2566 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2567 	/* same bit as spdi_phase */
2568 	spin_lock_irq(&cm->reg_lock);
2569 	ucontrol->value.enumerated.item[0] =
2570 		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2571 	spin_unlock_irq(&cm->reg_lock);
2572 	return 0;
2573 }
2574 
2575 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2576 				      struct snd_ctl_elem_value *ucontrol)
2577 {
2578 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2579 	int change;
2580 
2581 	spin_lock_irq(&cm->reg_lock);
2582 	if (ucontrol->value.enumerated.item[0])
2583 		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2584 	else
2585 		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2586 	spin_unlock_irq(&cm->reg_lock);
2587 	return change;
2588 }
2589 
2590 /* both for CM8338/8738 */
2591 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2592 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2593 	{
2594 		.name = "Line-In Mode",
2595 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2596 		.info = snd_cmipci_line_in_mode_info,
2597 		.get = snd_cmipci_line_in_mode_get,
2598 		.put = snd_cmipci_line_in_mode_put,
2599 	},
2600 };
2601 
2602 /* for non-multichannel chips */
2603 static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2604 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2605 
2606 /* only for CM8738 */
2607 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2608 #if 0 /* controlled in pcm device */
2609 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2610 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2611 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2612 #endif
2613 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2614 	{ .name = "IEC958 Output Switch",
2615 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2616 	  .info = snd_cmipci_uswitch_info,
2617 	  .get = snd_cmipci_spdout_enable_get,
2618 	  .put = snd_cmipci_spdout_enable_put,
2619 	},
2620 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2621 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2622 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2623 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2624 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2625 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2626 };
2627 
2628 /* only for model 033/037 */
2629 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2630 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2631 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2632 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2633 };
2634 
2635 /* only for model 039 or later */
2636 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2637 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2638 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2639 	{
2640 		.name = "Mic-In Mode",
2641 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2642 		.info = snd_cmipci_mic_in_mode_info,
2643 		.get = snd_cmipci_mic_in_mode_get,
2644 		.put = snd_cmipci_mic_in_mode_put,
2645 	}
2646 };
2647 
2648 /* card control switches */
2649 static struct snd_kcontrol_new snd_cmipci_modem_switch =
2650 DEFINE_CARD_SWITCH("Modem", modem);
2651 
2652 
2653 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2654 {
2655 	struct snd_card *card;
2656 	struct snd_kcontrol_new *sw;
2657 	struct snd_kcontrol *kctl;
2658 	unsigned int idx;
2659 	int err;
2660 
2661 	if (snd_BUG_ON(!cm || !cm->card))
2662 		return -EINVAL;
2663 
2664 	card = cm->card;
2665 
2666 	strcpy(card->mixername, "CMedia PCI");
2667 
2668 	spin_lock_irq(&cm->reg_lock);
2669 	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2670 	spin_unlock_irq(&cm->reg_lock);
2671 
2672 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2673 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2674 			if (!strcmp(snd_cmipci_mixers[idx].name,
2675 				"PCM Playback Volume"))
2676 				continue;
2677 		}
2678 		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2679 			return err;
2680 	}
2681 
2682 	/* mixer switches */
2683 	sw = snd_cmipci_mixer_switches;
2684 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2685 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2686 		if (err < 0)
2687 			return err;
2688 	}
2689 	if (! cm->can_multi_ch) {
2690 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2691 		if (err < 0)
2692 			return err;
2693 	}
2694 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2695 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2696 		sw = snd_cmipci_8738_mixer_switches;
2697 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2698 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2699 			if (err < 0)
2700 				return err;
2701 		}
2702 		if (cm->can_ac3_hw) {
2703 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2704 				return err;
2705 			kctl->id.device = pcm_spdif_device;
2706 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2707 				return err;
2708 			kctl->id.device = pcm_spdif_device;
2709 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2710 				return err;
2711 			kctl->id.device = pcm_spdif_device;
2712 		}
2713 		if (cm->chip_version <= 37) {
2714 			sw = snd_cmipci_old_mixer_switches;
2715 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2716 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2717 				if (err < 0)
2718 					return err;
2719 			}
2720 		}
2721 	}
2722 	if (cm->chip_version >= 39) {
2723 		sw = snd_cmipci_extra_mixer_switches;
2724 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2725 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2726 			if (err < 0)
2727 				return err;
2728 		}
2729 	}
2730 
2731 	/* card switches */
2732 	/*
2733 	 * newer chips don't have the register bits to force modem link
2734 	 * detection; the bit that was FLINKON now mutes CH1
2735 	 */
2736 	if (cm->chip_version < 39) {
2737 		err = snd_ctl_add(cm->card,
2738 				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2739 		if (err < 0)
2740 			return err;
2741 	}
2742 
2743 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2744 		struct snd_ctl_elem_id elem_id;
2745 		struct snd_kcontrol *ctl;
2746 		memset(&elem_id, 0, sizeof(elem_id));
2747 		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2748 		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2749 		ctl = snd_ctl_find_id(cm->card, &elem_id);
2750 		if (ctl)
2751 			cm->mixer_res_ctl[idx] = ctl;
2752 	}
2753 
2754 	return 0;
2755 }
2756 
2757 
2758 /*
2759  * proc interface
2760  */
2761 
2762 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2763 				 struct snd_info_buffer *buffer)
2764 {
2765 	struct cmipci *cm = entry->private_data;
2766 	int i, v;
2767 
2768 	snd_iprintf(buffer, "%s\n", cm->card->longname);
2769 	for (i = 0; i < 0x94; i++) {
2770 		if (i == 0x28)
2771 			i = 0x90;
2772 		v = inb(cm->iobase + i);
2773 		if (i % 4 == 0)
2774 			snd_iprintf(buffer, "\n%02x:", i);
2775 		snd_iprintf(buffer, " %02x", v);
2776 	}
2777 	snd_iprintf(buffer, "\n");
2778 }
2779 
2780 static void snd_cmipci_proc_init(struct cmipci *cm)
2781 {
2782 	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2783 }
2784 
2785 static const struct pci_device_id snd_cmipci_ids[] = {
2786 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2787 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2788 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2789 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2790 	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2791 	{0,},
2792 };
2793 
2794 
2795 /*
2796  * check chip version and capabilities
2797  * driver name is modified according to the chip model
2798  */
2799 static void query_chip(struct cmipci *cm)
2800 {
2801 	unsigned int detect;
2802 
2803 	/* check reg 0Ch, bit 24-31 */
2804 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2805 	if (! detect) {
2806 		/* check reg 08h, bit 24-28 */
2807 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2808 		switch (detect) {
2809 		case 0:
2810 			cm->chip_version = 33;
2811 			if (cm->do_soft_ac3)
2812 				cm->can_ac3_sw = 1;
2813 			else
2814 				cm->can_ac3_hw = 1;
2815 			break;
2816 		case CM_CHIP_037:
2817 			cm->chip_version = 37;
2818 			cm->can_ac3_hw = 1;
2819 			break;
2820 		default:
2821 			cm->chip_version = 39;
2822 			cm->can_ac3_hw = 1;
2823 			break;
2824 		}
2825 		cm->max_channels = 2;
2826 	} else {
2827 		if (detect & CM_CHIP_039) {
2828 			cm->chip_version = 39;
2829 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2830 				cm->max_channels = 6;
2831 			else
2832 				cm->max_channels = 4;
2833 		} else if (detect & CM_CHIP_8768) {
2834 			cm->chip_version = 68;
2835 			cm->max_channels = 8;
2836 			cm->can_96k = 1;
2837 		} else {
2838 			cm->chip_version = 55;
2839 			cm->max_channels = 6;
2840 			cm->can_96k = 1;
2841 		}
2842 		cm->can_ac3_hw = 1;
2843 		cm->can_multi_ch = 1;
2844 	}
2845 }
2846 
2847 #ifdef SUPPORT_JOYSTICK
2848 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2849 {
2850 	static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2851 	struct gameport *gp;
2852 	struct resource *r = NULL;
2853 	int i, io_port = 0;
2854 
2855 	if (joystick_port[dev] == 0)
2856 		return -ENODEV;
2857 
2858 	if (joystick_port[dev] == 1) { /* auto-detect */
2859 		for (i = 0; ports[i]; i++) {
2860 			io_port = ports[i];
2861 			r = request_region(io_port, 1, "CMIPCI gameport");
2862 			if (r)
2863 				break;
2864 		}
2865 	} else {
2866 		io_port = joystick_port[dev];
2867 		r = request_region(io_port, 1, "CMIPCI gameport");
2868 	}
2869 
2870 	if (!r) {
2871 		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2872 		return -EBUSY;
2873 	}
2874 
2875 	cm->gameport = gp = gameport_allocate_port();
2876 	if (!gp) {
2877 		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2878 		release_and_free_resource(r);
2879 		return -ENOMEM;
2880 	}
2881 	gameport_set_name(gp, "C-Media Gameport");
2882 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2883 	gameport_set_dev_parent(gp, &cm->pci->dev);
2884 	gp->io = io_port;
2885 	gameport_set_port_data(gp, r);
2886 
2887 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2888 
2889 	gameport_register_port(cm->gameport);
2890 
2891 	return 0;
2892 }
2893 
2894 static void snd_cmipci_free_gameport(struct cmipci *cm)
2895 {
2896 	if (cm->gameport) {
2897 		struct resource *r = gameport_get_port_data(cm->gameport);
2898 
2899 		gameport_unregister_port(cm->gameport);
2900 		cm->gameport = NULL;
2901 
2902 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2903 		release_and_free_resource(r);
2904 	}
2905 }
2906 #else
2907 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2908 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2909 #endif
2910 
2911 static int snd_cmipci_free(struct cmipci *cm)
2912 {
2913 	if (cm->irq >= 0) {
2914 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2915 		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2916 		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2917 		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2918 		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2919 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2920 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2921 
2922 		/* reset mixer */
2923 		snd_cmipci_mixer_write(cm, 0, 0);
2924 
2925 		free_irq(cm->irq, cm);
2926 	}
2927 
2928 	snd_cmipci_free_gameport(cm);
2929 	pci_release_regions(cm->pci);
2930 	pci_disable_device(cm->pci);
2931 	kfree(cm);
2932 	return 0;
2933 }
2934 
2935 static int snd_cmipci_dev_free(struct snd_device *device)
2936 {
2937 	struct cmipci *cm = device->device_data;
2938 	return snd_cmipci_free(cm);
2939 }
2940 
2941 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2942 {
2943 	long iosynth;
2944 	unsigned int val;
2945 	struct snd_opl3 *opl3;
2946 	int err;
2947 
2948 	if (!fm_port)
2949 		goto disable_fm;
2950 
2951 	if (cm->chip_version >= 39) {
2952 		/* first try FM regs in PCI port range */
2953 		iosynth = cm->iobase + CM_REG_FM_PCI;
2954 		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2955 				      OPL3_HW_OPL3, 1, &opl3);
2956 	} else {
2957 		err = -EIO;
2958 	}
2959 	if (err < 0) {
2960 		/* then try legacy ports */
2961 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2962 		iosynth = fm_port;
2963 		switch (iosynth) {
2964 		case 0x3E8: val |= CM_FMSEL_3E8; break;
2965 		case 0x3E0: val |= CM_FMSEL_3E0; break;
2966 		case 0x3C8: val |= CM_FMSEL_3C8; break;
2967 		case 0x388: val |= CM_FMSEL_388; break;
2968 		default:
2969 			goto disable_fm;
2970 		}
2971 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2972 		/* enable FM */
2973 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2974 
2975 		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2976 				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2977 			dev_err(cm->card->dev,
2978 				"no OPL device at %#lx, skipping...\n",
2979 				iosynth);
2980 			goto disable_fm;
2981 		}
2982 	}
2983 	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2984 		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2985 		return err;
2986 	}
2987 	return 0;
2988 
2989  disable_fm:
2990 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2991 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2992 	return 0;
2993 }
2994 
2995 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2996 			     int dev, struct cmipci **rcmipci)
2997 {
2998 	struct cmipci *cm;
2999 	int err;
3000 	static struct snd_device_ops ops = {
3001 		.dev_free =	snd_cmipci_dev_free,
3002 	};
3003 	unsigned int val;
3004 	long iomidi = 0;
3005 	int integrated_midi = 0;
3006 	char modelstr[16];
3007 	int pcm_index, pcm_spdif_index;
3008 	static const struct pci_device_id intel_82437vx[] = {
3009 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3010 		{ },
3011 	};
3012 
3013 	*rcmipci = NULL;
3014 
3015 	if ((err = pci_enable_device(pci)) < 0)
3016 		return err;
3017 
3018 	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3019 	if (cm == NULL) {
3020 		pci_disable_device(pci);
3021 		return -ENOMEM;
3022 	}
3023 
3024 	spin_lock_init(&cm->reg_lock);
3025 	mutex_init(&cm->open_mutex);
3026 	cm->device = pci->device;
3027 	cm->card = card;
3028 	cm->pci = pci;
3029 	cm->irq = -1;
3030 	cm->channel[0].ch = 0;
3031 	cm->channel[1].ch = 1;
3032 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3033 
3034 	if ((err = pci_request_regions(pci, card->driver)) < 0) {
3035 		kfree(cm);
3036 		pci_disable_device(pci);
3037 		return err;
3038 	}
3039 	cm->iobase = pci_resource_start(pci, 0);
3040 
3041 	if (request_irq(pci->irq, snd_cmipci_interrupt,
3042 			IRQF_SHARED, KBUILD_MODNAME, cm)) {
3043 		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3044 		snd_cmipci_free(cm);
3045 		return -EBUSY;
3046 	}
3047 	cm->irq = pci->irq;
3048 
3049 	pci_set_master(cm->pci);
3050 
3051 	/*
3052 	 * check chip version, max channels and capabilities
3053 	 */
3054 
3055 	cm->chip_version = 0;
3056 	cm->max_channels = 2;
3057 	cm->do_soft_ac3 = soft_ac3[dev];
3058 
3059 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3060 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3061 		query_chip(cm);
3062 	/* added -MCx suffix for chip supporting multi-channels */
3063 	if (cm->can_multi_ch)
3064 		sprintf(cm->card->driver + strlen(cm->card->driver),
3065 			"-MC%d", cm->max_channels);
3066 	else if (cm->can_ac3_sw)
3067 		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3068 
3069 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3070 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3071 
3072 #if CM_CH_PLAY == 1
3073 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3074 #else
3075 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3076 #endif
3077 
3078 	/* initialize codec registers */
3079 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3080 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3081 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3082 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3083 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3084 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3085 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3086 
3087 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3088 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3089 #if CM_CH_PLAY == 1
3090 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3091 #else
3092 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3093 #endif
3094 	if (cm->chip_version) {
3095 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3096 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3097 	}
3098 	/* Set Bus Master Request */
3099 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3100 
3101 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3102 	switch (pci->device) {
3103 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3104 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3105 		if (!pci_dev_present(intel_82437vx))
3106 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3107 		break;
3108 	default:
3109 		break;
3110 	}
3111 
3112 	if (cm->chip_version < 68) {
3113 		val = pci->device < 0x110 ? 8338 : 8738;
3114 	} else {
3115 		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3116 		case 0:
3117 			val = 8769;
3118 			break;
3119 		case 2:
3120 			val = 8762;
3121 			break;
3122 		default:
3123 			switch ((pci->subsystem_vendor << 16) |
3124 				pci->subsystem_device) {
3125 			case 0x13f69761:
3126 			case 0x584d3741:
3127 			case 0x584d3751:
3128 			case 0x584d3761:
3129 			case 0x584d3771:
3130 			case 0x72848384:
3131 				val = 8770;
3132 				break;
3133 			default:
3134 				val = 8768;
3135 				break;
3136 			}
3137 		}
3138 	}
3139 	sprintf(card->shortname, "C-Media CMI%d", val);
3140 	if (cm->chip_version < 68)
3141 		sprintf(modelstr, " (model %d)", cm->chip_version);
3142 	else
3143 		modelstr[0] = '\0';
3144 	sprintf(card->longname, "%s%s at %#lx, irq %i",
3145 		card->shortname, modelstr, cm->iobase, cm->irq);
3146 
3147 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3148 		snd_cmipci_free(cm);
3149 		return err;
3150 	}
3151 
3152 	if (cm->chip_version >= 39) {
3153 		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3154 		if (val != 0x00 && val != 0xff) {
3155 			iomidi = cm->iobase + CM_REG_MPU_PCI;
3156 			integrated_midi = 1;
3157 		}
3158 	}
3159 	if (!integrated_midi) {
3160 		val = 0;
3161 		iomidi = mpu_port[dev];
3162 		switch (iomidi) {
3163 		case 0x320: val = CM_VMPU_320; break;
3164 		case 0x310: val = CM_VMPU_310; break;
3165 		case 0x300: val = CM_VMPU_300; break;
3166 		case 0x330: val = CM_VMPU_330; break;
3167 		default:
3168 			    iomidi = 0; break;
3169 		}
3170 		if (iomidi > 0) {
3171 			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3172 			/* enable UART */
3173 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3174 			if (inb(iomidi + 1) == 0xff) {
3175 				dev_err(cm->card->dev,
3176 					"cannot enable MPU-401 port at %#lx\n",
3177 					iomidi);
3178 				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3179 						     CM_UART_EN);
3180 				iomidi = 0;
3181 			}
3182 		}
3183 	}
3184 
3185 	if (cm->chip_version < 68) {
3186 		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3187 		if (err < 0)
3188 			return err;
3189 	}
3190 
3191 	/* reset mixer */
3192 	snd_cmipci_mixer_write(cm, 0, 0);
3193 
3194 	snd_cmipci_proc_init(cm);
3195 
3196 	/* create pcm devices */
3197 	pcm_index = pcm_spdif_index = 0;
3198 	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3199 		return err;
3200 	pcm_index++;
3201 	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3202 		return err;
3203 	pcm_index++;
3204 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3205 		pcm_spdif_index = pcm_index;
3206 		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3207 			return err;
3208 	}
3209 
3210 	/* create mixer interface & switches */
3211 	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3212 		return err;
3213 
3214 	if (iomidi > 0) {
3215 		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3216 					       iomidi,
3217 					       (integrated_midi ?
3218 						MPU401_INFO_INTEGRATED : 0) |
3219 					       MPU401_INFO_IRQ_HOOK,
3220 					       -1, &cm->rmidi)) < 0) {
3221 			dev_err(cm->card->dev,
3222 				"no UART401 device at 0x%lx\n", iomidi);
3223 		}
3224 	}
3225 
3226 #ifdef USE_VAR48KRATE
3227 	for (val = 0; val < ARRAY_SIZE(rates); val++)
3228 		snd_cmipci_set_pll(cm, rates[val], val);
3229 
3230 	/*
3231 	 * (Re-)Enable external switch spdo_48k
3232 	 */
3233 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3234 #endif /* USE_VAR48KRATE */
3235 
3236 	if (snd_cmipci_create_gameport(cm, dev) < 0)
3237 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3238 
3239 	*rcmipci = cm;
3240 	return 0;
3241 }
3242 
3243 /*
3244  */
3245 
3246 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3247 
3248 static int snd_cmipci_probe(struct pci_dev *pci,
3249 			    const struct pci_device_id *pci_id)
3250 {
3251 	static int dev;
3252 	struct snd_card *card;
3253 	struct cmipci *cm;
3254 	int err;
3255 
3256 	if (dev >= SNDRV_CARDS)
3257 		return -ENODEV;
3258 	if (! enable[dev]) {
3259 		dev++;
3260 		return -ENOENT;
3261 	}
3262 
3263 	err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3264 			   0, &card);
3265 	if (err < 0)
3266 		return err;
3267 
3268 	switch (pci->device) {
3269 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3270 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3271 		strcpy(card->driver, "CMI8738");
3272 		break;
3273 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3274 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3275 		strcpy(card->driver, "CMI8338");
3276 		break;
3277 	default:
3278 		strcpy(card->driver, "CMIPCI");
3279 		break;
3280 	}
3281 
3282 	err = snd_cmipci_create(card, pci, dev, &cm);
3283 	if (err < 0)
3284 		goto free_card;
3285 
3286 	card->private_data = cm;
3287 
3288 	err = snd_card_register(card);
3289 	if (err < 0)
3290 		goto free_card;
3291 
3292 	pci_set_drvdata(pci, card);
3293 	dev++;
3294 	return 0;
3295 
3296 free_card:
3297 	snd_card_free(card);
3298 	return err;
3299 }
3300 
3301 static void snd_cmipci_remove(struct pci_dev *pci)
3302 {
3303 	snd_card_free(pci_get_drvdata(pci));
3304 }
3305 
3306 
3307 #ifdef CONFIG_PM_SLEEP
3308 /*
3309  * power management
3310  */
3311 static unsigned char saved_regs[] = {
3312 	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3313 	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3314 	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3315 	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3316 	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3317 };
3318 
3319 static unsigned char saved_mixers[] = {
3320 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3321 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3322 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3323 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3324 	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3325 	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3326 	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3327 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3328 };
3329 
3330 static int snd_cmipci_suspend(struct device *dev)
3331 {
3332 	struct snd_card *card = dev_get_drvdata(dev);
3333 	struct cmipci *cm = card->private_data;
3334 	int i;
3335 
3336 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3337 
3338 	/* save registers */
3339 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3340 		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3341 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3342 		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3343 
3344 	/* disable ints */
3345 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3346 	return 0;
3347 }
3348 
3349 static int snd_cmipci_resume(struct device *dev)
3350 {
3351 	struct snd_card *card = dev_get_drvdata(dev);
3352 	struct cmipci *cm = card->private_data;
3353 	int i;
3354 
3355 	/* reset / initialize to a sane state */
3356 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3357 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3358 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3359 	snd_cmipci_mixer_write(cm, 0, 0);
3360 
3361 	/* restore registers */
3362 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3363 		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3364 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3365 		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3366 
3367 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3368 	return 0;
3369 }
3370 
3371 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3372 #define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3373 #else
3374 #define SND_CMIPCI_PM_OPS	NULL
3375 #endif /* CONFIG_PM_SLEEP */
3376 
3377 static struct pci_driver cmipci_driver = {
3378 	.name = KBUILD_MODNAME,
3379 	.id_table = snd_cmipci_ids,
3380 	.probe = snd_cmipci_probe,
3381 	.remove = snd_cmipci_remove,
3382 	.driver = {
3383 		.pm = SND_CMIPCI_PM_OPS,
3384 	},
3385 };
3386 
3387 module_pci_driver(cmipci_driver);
3388