xref: /linux/sound/soc/codecs/sta32x.c (revision 44f57d78)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Codec driver for ST STA32x 2.1-channel high-efficiency digital audio system
4  *
5  * Copyright: 2011 Raumfeld GmbH
6  * Author: Johannes Stezenbach <js@sig21.net>
7  *
8  * based on code from:
9  *	Wolfson Microelectronics PLC.
10  *	  Mark Brown <broonie@opensource.wolfsonmicro.com>
11  *	Freescale Semiconductor, Inc.
12  *	  Timur Tabi <timur@freescale.com>
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ":%s:%d: " fmt, __func__, __LINE__
16 
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/pm.h>
23 #include <linux/i2c.h>
24 #include <linux/of_device.h>
25 #include <linux/of_gpio.h>
26 #include <linux/regmap.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/slab.h>
30 #include <linux/workqueue.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
37 #include <sound/tlv.h>
38 
39 #include <sound/sta32x.h>
40 #include "sta32x.h"
41 
42 #define STA32X_RATES (SNDRV_PCM_RATE_32000 | \
43 		      SNDRV_PCM_RATE_44100 | \
44 		      SNDRV_PCM_RATE_48000 | \
45 		      SNDRV_PCM_RATE_88200 | \
46 		      SNDRV_PCM_RATE_96000 | \
47 		      SNDRV_PCM_RATE_176400 | \
48 		      SNDRV_PCM_RATE_192000)
49 
50 #define STA32X_FORMATS \
51 	(SNDRV_PCM_FMTBIT_S16_LE  | SNDRV_PCM_FMTBIT_S16_BE  | \
52 	 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE | \
53 	 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE | \
54 	 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE | \
55 	 SNDRV_PCM_FMTBIT_S24_LE  | SNDRV_PCM_FMTBIT_S24_BE  | \
56 	 SNDRV_PCM_FMTBIT_S32_LE  | SNDRV_PCM_FMTBIT_S32_BE)
57 
58 /* Power-up register defaults */
59 static const struct reg_default sta32x_regs[] = {
60 	{  0x0, 0x63 },
61 	{  0x1, 0x80 },
62 	{  0x2, 0xc2 },
63 	{  0x3, 0x40 },
64 	{  0x4, 0xc2 },
65 	{  0x5, 0x5c },
66 	{  0x6, 0x10 },
67 	{  0x7, 0xff },
68 	{  0x8, 0x60 },
69 	{  0x9, 0x60 },
70 	{  0xa, 0x60 },
71 	{  0xb, 0x80 },
72 	{  0xc, 0x00 },
73 	{  0xd, 0x00 },
74 	{  0xe, 0x00 },
75 	{  0xf, 0x40 },
76 	{ 0x10, 0x80 },
77 	{ 0x11, 0x77 },
78 	{ 0x12, 0x6a },
79 	{ 0x13, 0x69 },
80 	{ 0x14, 0x6a },
81 	{ 0x15, 0x69 },
82 	{ 0x16, 0x00 },
83 	{ 0x17, 0x00 },
84 	{ 0x18, 0x00 },
85 	{ 0x19, 0x00 },
86 	{ 0x1a, 0x00 },
87 	{ 0x1b, 0x00 },
88 	{ 0x1c, 0x00 },
89 	{ 0x1d, 0x00 },
90 	{ 0x1e, 0x00 },
91 	{ 0x1f, 0x00 },
92 	{ 0x20, 0x00 },
93 	{ 0x21, 0x00 },
94 	{ 0x22, 0x00 },
95 	{ 0x23, 0x00 },
96 	{ 0x24, 0x00 },
97 	{ 0x25, 0x00 },
98 	{ 0x26, 0x00 },
99 	{ 0x27, 0x2d },
100 	{ 0x28, 0xc0 },
101 	{ 0x2b, 0x00 },
102 	{ 0x2c, 0x0c },
103 };
104 
105 static const struct regmap_range sta32x_write_regs_range[] = {
106 	regmap_reg_range(STA32X_CONFA,  STA32X_FDRC2),
107 };
108 
109 static const struct regmap_range sta32x_read_regs_range[] = {
110 	regmap_reg_range(STA32X_CONFA,  STA32X_FDRC2),
111 };
112 
113 static const struct regmap_range sta32x_volatile_regs_range[] = {
114 	regmap_reg_range(STA32X_CFADDR2, STA32X_CFUD),
115 };
116 
117 static const struct regmap_access_table sta32x_write_regs = {
118 	.yes_ranges =	sta32x_write_regs_range,
119 	.n_yes_ranges =	ARRAY_SIZE(sta32x_write_regs_range),
120 };
121 
122 static const struct regmap_access_table sta32x_read_regs = {
123 	.yes_ranges =	sta32x_read_regs_range,
124 	.n_yes_ranges =	ARRAY_SIZE(sta32x_read_regs_range),
125 };
126 
127 static const struct regmap_access_table sta32x_volatile_regs = {
128 	.yes_ranges =	sta32x_volatile_regs_range,
129 	.n_yes_ranges =	ARRAY_SIZE(sta32x_volatile_regs_range),
130 };
131 
132 /* regulator power supply names */
133 static const char *sta32x_supply_names[] = {
134 	"Vdda",	/* analog supply, 3.3VV */
135 	"Vdd3",	/* digital supply, 3.3V */
136 	"Vcc"	/* power amp spply, 10V - 36V */
137 };
138 
139 /* codec private data */
140 struct sta32x_priv {
141 	struct regmap *regmap;
142 	struct clk *xti_clk;
143 	struct regulator_bulk_data supplies[ARRAY_SIZE(sta32x_supply_names)];
144 	struct snd_soc_component *component;
145 	struct sta32x_platform_data *pdata;
146 
147 	unsigned int mclk;
148 	unsigned int format;
149 
150 	u32 coef_shadow[STA32X_COEF_COUNT];
151 	struct delayed_work watchdog_work;
152 	int shutdown;
153 	struct gpio_desc *gpiod_nreset;
154 	struct mutex coeff_lock;
155 };
156 
157 static const DECLARE_TLV_DB_SCALE(mvol_tlv, -12700, 50, 1);
158 static const DECLARE_TLV_DB_SCALE(chvol_tlv, -7950, 50, 1);
159 static const DECLARE_TLV_DB_SCALE(tone_tlv, -120, 200, 0);
160 
161 static const char *sta32x_drc_ac[] = {
162 	"Anti-Clipping", "Dynamic Range Compression" };
163 static const char *sta32x_auto_eq_mode[] = {
164 	"User", "Preset", "Loudness" };
165 static const char *sta32x_auto_gc_mode[] = {
166 	"User", "AC no clipping", "AC limited clipping (10%)",
167 	"DRC nighttime listening mode" };
168 static const char *sta32x_auto_xo_mode[] = {
169 	"User", "80Hz", "100Hz", "120Hz", "140Hz", "160Hz", "180Hz", "200Hz",
170 	"220Hz", "240Hz", "260Hz", "280Hz", "300Hz", "320Hz", "340Hz", "360Hz" };
171 static const char *sta32x_preset_eq_mode[] = {
172 	"Flat", "Rock", "Soft Rock", "Jazz", "Classical", "Dance", "Pop", "Soft",
173 	"Hard", "Party", "Vocal", "Hip-Hop", "Dialog", "Bass-boost #1",
174 	"Bass-boost #2", "Bass-boost #3", "Loudness 1", "Loudness 2",
175 	"Loudness 3", "Loudness 4", "Loudness 5", "Loudness 6", "Loudness 7",
176 	"Loudness 8", "Loudness 9", "Loudness 10", "Loudness 11", "Loudness 12",
177 	"Loudness 13", "Loudness 14", "Loudness 15", "Loudness 16" };
178 static const char *sta32x_limiter_select[] = {
179 	"Limiter Disabled", "Limiter #1", "Limiter #2" };
180 static const char *sta32x_limiter_attack_rate[] = {
181 	"3.1584", "2.7072", "2.2560", "1.8048", "1.3536", "0.9024",
182 	"0.4512", "0.2256", "0.1504", "0.1123", "0.0902", "0.0752",
183 	"0.0645", "0.0564", "0.0501", "0.0451" };
184 static const char *sta32x_limiter_release_rate[] = {
185 	"0.5116", "0.1370", "0.0744", "0.0499", "0.0360", "0.0299",
186 	"0.0264", "0.0208", "0.0198", "0.0172", "0.0147", "0.0137",
187 	"0.0134", "0.0117", "0.0110", "0.0104" };
188 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_attack_tlv,
189 	0, 7, TLV_DB_SCALE_ITEM(-1200, 200, 0),
190 	8, 16, TLV_DB_SCALE_ITEM(300, 100, 0),
191 );
192 
193 static DECLARE_TLV_DB_RANGE(sta32x_limiter_ac_release_tlv,
194 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
195 	1, 1, TLV_DB_SCALE_ITEM(-2900, 0, 0),
196 	2, 2, TLV_DB_SCALE_ITEM(-2000, 0, 0),
197 	3, 8, TLV_DB_SCALE_ITEM(-1400, 200, 0),
198 	8, 16, TLV_DB_SCALE_ITEM(-700, 100, 0),
199 );
200 
201 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_attack_tlv,
202 	0, 7, TLV_DB_SCALE_ITEM(-3100, 200, 0),
203 	8, 13, TLV_DB_SCALE_ITEM(-1600, 100, 0),
204 	14, 16, TLV_DB_SCALE_ITEM(-1000, 300, 0),
205 );
206 
207 static DECLARE_TLV_DB_RANGE(sta32x_limiter_drc_release_tlv,
208 	0, 0, TLV_DB_SCALE_ITEM(TLV_DB_GAIN_MUTE, 0, 0),
209 	1, 2, TLV_DB_SCALE_ITEM(-3800, 200, 0),
210 	3, 4, TLV_DB_SCALE_ITEM(-3300, 200, 0),
211 	5, 12, TLV_DB_SCALE_ITEM(-3000, 200, 0),
212 	13, 16, TLV_DB_SCALE_ITEM(-1500, 300, 0),
213 );
214 
215 static SOC_ENUM_SINGLE_DECL(sta32x_drc_ac_enum,
216 			    STA32X_CONFD, STA32X_CONFD_DRC_SHIFT,
217 			    sta32x_drc_ac);
218 static SOC_ENUM_SINGLE_DECL(sta32x_auto_eq_enum,
219 			    STA32X_AUTO1, STA32X_AUTO1_AMEQ_SHIFT,
220 			    sta32x_auto_eq_mode);
221 static SOC_ENUM_SINGLE_DECL(sta32x_auto_gc_enum,
222 			    STA32X_AUTO1, STA32X_AUTO1_AMGC_SHIFT,
223 			    sta32x_auto_gc_mode);
224 static SOC_ENUM_SINGLE_DECL(sta32x_auto_xo_enum,
225 			    STA32X_AUTO2, STA32X_AUTO2_XO_SHIFT,
226 			    sta32x_auto_xo_mode);
227 static SOC_ENUM_SINGLE_DECL(sta32x_preset_eq_enum,
228 			    STA32X_AUTO3, STA32X_AUTO3_PEQ_SHIFT,
229 			    sta32x_preset_eq_mode);
230 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch1_enum,
231 			    STA32X_C1CFG, STA32X_CxCFG_LS_SHIFT,
232 			    sta32x_limiter_select);
233 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch2_enum,
234 			    STA32X_C2CFG, STA32X_CxCFG_LS_SHIFT,
235 			    sta32x_limiter_select);
236 static SOC_ENUM_SINGLE_DECL(sta32x_limiter_ch3_enum,
237 			    STA32X_C3CFG, STA32X_CxCFG_LS_SHIFT,
238 			    sta32x_limiter_select);
239 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_attack_rate_enum,
240 			    STA32X_L1AR, STA32X_LxA_SHIFT,
241 			    sta32x_limiter_attack_rate);
242 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_attack_rate_enum,
243 			    STA32X_L2AR, STA32X_LxA_SHIFT,
244 			    sta32x_limiter_attack_rate);
245 static SOC_ENUM_SINGLE_DECL(sta32x_limiter1_release_rate_enum,
246 			    STA32X_L1AR, STA32X_LxR_SHIFT,
247 			    sta32x_limiter_release_rate);
248 static SOC_ENUM_SINGLE_DECL(sta32x_limiter2_release_rate_enum,
249 			    STA32X_L2AR, STA32X_LxR_SHIFT,
250 			    sta32x_limiter_release_rate);
251 
252 /* byte array controls for setting biquad, mixer, scaling coefficients;
253  * for biquads all five coefficients need to be set in one go,
254  * mixer and pre/postscale coefs can be set individually;
255  * each coef is 24bit, the bytes are ordered in the same way
256  * as given in the STA32x data sheet (big endian; b1, b2, a1, a2, b0)
257  */
258 
259 static int sta32x_coefficient_info(struct snd_kcontrol *kcontrol,
260 				   struct snd_ctl_elem_info *uinfo)
261 {
262 	int numcoef = kcontrol->private_value >> 16;
263 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
264 	uinfo->count = 3 * numcoef;
265 	return 0;
266 }
267 
268 static int sta32x_coefficient_get(struct snd_kcontrol *kcontrol,
269 				  struct snd_ctl_elem_value *ucontrol)
270 {
271 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
272 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
273 	int numcoef = kcontrol->private_value >> 16;
274 	int index = kcontrol->private_value & 0xffff;
275 	unsigned int cfud, val;
276 	int i, ret = 0;
277 
278 	mutex_lock(&sta32x->coeff_lock);
279 
280 	/* preserve reserved bits in STA32X_CFUD */
281 	regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
282 	cfud &= 0xf0;
283 	/*
284 	 * chip documentation does not say if the bits are self clearing,
285 	 * so do it explicitly
286 	 */
287 	regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
288 
289 	regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
290 	if (numcoef == 1) {
291 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x04);
292 	} else if (numcoef == 5) {
293 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x08);
294 	} else {
295 		ret = -EINVAL;
296 		goto exit_unlock;
297 	}
298 
299 	for (i = 0; i < 3 * numcoef; i++) {
300 		regmap_read(sta32x->regmap, STA32X_B1CF1 + i, &val);
301 		ucontrol->value.bytes.data[i] = val;
302 	}
303 
304 exit_unlock:
305 	mutex_unlock(&sta32x->coeff_lock);
306 
307 	return ret;
308 }
309 
310 static int sta32x_coefficient_put(struct snd_kcontrol *kcontrol,
311 				  struct snd_ctl_elem_value *ucontrol)
312 {
313 	struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
314 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
315 	int numcoef = kcontrol->private_value >> 16;
316 	int index = kcontrol->private_value & 0xffff;
317 	unsigned int cfud;
318 	int i;
319 
320 	/* preserve reserved bits in STA32X_CFUD */
321 	regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
322 	cfud &= 0xf0;
323 	/*
324 	 * chip documentation does not say if the bits are self clearing,
325 	 * so do it explicitly
326 	 */
327 	regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
328 
329 	regmap_write(sta32x->regmap, STA32X_CFADDR2, index);
330 	for (i = 0; i < numcoef && (index + i < STA32X_COEF_COUNT); i++)
331 		sta32x->coef_shadow[index + i] =
332 			  (ucontrol->value.bytes.data[3 * i] << 16)
333 			| (ucontrol->value.bytes.data[3 * i + 1] << 8)
334 			| (ucontrol->value.bytes.data[3 * i + 2]);
335 	for (i = 0; i < 3 * numcoef; i++)
336 		regmap_write(sta32x->regmap, STA32X_B1CF1 + i,
337 			     ucontrol->value.bytes.data[i]);
338 	if (numcoef == 1)
339 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
340 	else if (numcoef == 5)
341 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x02);
342 	else
343 		return -EINVAL;
344 
345 	return 0;
346 }
347 
348 static int sta32x_sync_coef_shadow(struct snd_soc_component *component)
349 {
350 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
351 	unsigned int cfud;
352 	int i;
353 
354 	/* preserve reserved bits in STA32X_CFUD */
355 	regmap_read(sta32x->regmap, STA32X_CFUD, &cfud);
356 	cfud &= 0xf0;
357 
358 	for (i = 0; i < STA32X_COEF_COUNT; i++) {
359 		regmap_write(sta32x->regmap, STA32X_CFADDR2, i);
360 		regmap_write(sta32x->regmap, STA32X_B1CF1,
361 			     (sta32x->coef_shadow[i] >> 16) & 0xff);
362 		regmap_write(sta32x->regmap, STA32X_B1CF2,
363 			     (sta32x->coef_shadow[i] >> 8) & 0xff);
364 		regmap_write(sta32x->regmap, STA32X_B1CF3,
365 			     (sta32x->coef_shadow[i]) & 0xff);
366 		/*
367 		 * chip documentation does not say if the bits are
368 		 * self-clearing, so do it explicitly
369 		 */
370 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud);
371 		regmap_write(sta32x->regmap, STA32X_CFUD, cfud | 0x01);
372 	}
373 	return 0;
374 }
375 
376 static int sta32x_cache_sync(struct snd_soc_component *component)
377 {
378 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
379 	unsigned int mute;
380 	int rc;
381 
382 	/* mute during register sync */
383 	regmap_read(sta32x->regmap, STA32X_MMUTE, &mute);
384 	regmap_write(sta32x->regmap, STA32X_MMUTE, mute | STA32X_MMUTE_MMUTE);
385 	sta32x_sync_coef_shadow(component);
386 	rc = regcache_sync(sta32x->regmap);
387 	regmap_write(sta32x->regmap, STA32X_MMUTE, mute);
388 	return rc;
389 }
390 
391 /* work around ESD issue where sta32x resets and loses all configuration */
392 static void sta32x_watchdog(struct work_struct *work)
393 {
394 	struct sta32x_priv *sta32x = container_of(work, struct sta32x_priv,
395 						  watchdog_work.work);
396 	struct snd_soc_component *component = sta32x->component;
397 	unsigned int confa, confa_cached;
398 
399 	/* check if sta32x has reset itself */
400 	confa_cached = snd_soc_component_read32(component, STA32X_CONFA);
401 	regcache_cache_bypass(sta32x->regmap, true);
402 	confa = snd_soc_component_read32(component, STA32X_CONFA);
403 	regcache_cache_bypass(sta32x->regmap, false);
404 	if (confa != confa_cached) {
405 		regcache_mark_dirty(sta32x->regmap);
406 		sta32x_cache_sync(component);
407 	}
408 
409 	if (!sta32x->shutdown)
410 		queue_delayed_work(system_power_efficient_wq,
411 				   &sta32x->watchdog_work,
412 				   round_jiffies_relative(HZ));
413 }
414 
415 static void sta32x_watchdog_start(struct sta32x_priv *sta32x)
416 {
417 	if (sta32x->pdata->needs_esd_watchdog) {
418 		sta32x->shutdown = 0;
419 		queue_delayed_work(system_power_efficient_wq,
420 				   &sta32x->watchdog_work,
421 				   round_jiffies_relative(HZ));
422 	}
423 }
424 
425 static void sta32x_watchdog_stop(struct sta32x_priv *sta32x)
426 {
427 	if (sta32x->pdata->needs_esd_watchdog) {
428 		sta32x->shutdown = 1;
429 		cancel_delayed_work_sync(&sta32x->watchdog_work);
430 	}
431 }
432 
433 #define SINGLE_COEF(xname, index) \
434 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
435 	.info = sta32x_coefficient_info, \
436 	.get = sta32x_coefficient_get,\
437 	.put = sta32x_coefficient_put, \
438 	.private_value = index | (1 << 16) }
439 
440 #define BIQUAD_COEFS(xname, index) \
441 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
442 	.info = sta32x_coefficient_info, \
443 	.get = sta32x_coefficient_get,\
444 	.put = sta32x_coefficient_put, \
445 	.private_value = index | (5 << 16) }
446 
447 static const struct snd_kcontrol_new sta32x_snd_controls[] = {
448 SOC_SINGLE_TLV("Master Volume", STA32X_MVOL, 0, 0xff, 1, mvol_tlv),
449 SOC_SINGLE("Master Switch", STA32X_MMUTE, 0, 1, 1),
450 SOC_SINGLE("Ch1 Switch", STA32X_MMUTE, 1, 1, 1),
451 SOC_SINGLE("Ch2 Switch", STA32X_MMUTE, 2, 1, 1),
452 SOC_SINGLE("Ch3 Switch", STA32X_MMUTE, 3, 1, 1),
453 SOC_SINGLE_TLV("Ch1 Volume", STA32X_C1VOL, 0, 0xff, 1, chvol_tlv),
454 SOC_SINGLE_TLV("Ch2 Volume", STA32X_C2VOL, 0, 0xff, 1, chvol_tlv),
455 SOC_SINGLE_TLV("Ch3 Volume", STA32X_C3VOL, 0, 0xff, 1, chvol_tlv),
456 SOC_SINGLE("De-emphasis Filter Switch", STA32X_CONFD, STA32X_CONFD_DEMP_SHIFT, 1, 0),
457 SOC_ENUM("Compressor/Limiter Switch", sta32x_drc_ac_enum),
458 SOC_SINGLE("Miami Mode Switch", STA32X_CONFD, STA32X_CONFD_MME_SHIFT, 1, 0),
459 SOC_SINGLE("Zero Cross Switch", STA32X_CONFE, STA32X_CONFE_ZCE_SHIFT, 1, 0),
460 SOC_SINGLE("Soft Ramp Switch", STA32X_CONFE, STA32X_CONFE_SVE_SHIFT, 1, 0),
461 SOC_SINGLE("Auto-Mute Switch", STA32X_CONFF, STA32X_CONFF_IDE_SHIFT, 1, 0),
462 SOC_ENUM("Automode EQ", sta32x_auto_eq_enum),
463 SOC_ENUM("Automode GC", sta32x_auto_gc_enum),
464 SOC_ENUM("Automode XO", sta32x_auto_xo_enum),
465 SOC_ENUM("Preset EQ", sta32x_preset_eq_enum),
466 SOC_SINGLE("Ch1 Tone Control Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
467 SOC_SINGLE("Ch2 Tone Control Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_TCB_SHIFT, 1, 0),
468 SOC_SINGLE("Ch1 EQ Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
469 SOC_SINGLE("Ch2 EQ Bypass Switch", STA32X_C2CFG, STA32X_CxCFG_EQBP_SHIFT, 1, 0),
470 SOC_SINGLE("Ch1 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
471 SOC_SINGLE("Ch2 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
472 SOC_SINGLE("Ch3 Master Volume Bypass Switch", STA32X_C1CFG, STA32X_CxCFG_VBP_SHIFT, 1, 0),
473 SOC_ENUM("Ch1 Limiter Select", sta32x_limiter_ch1_enum),
474 SOC_ENUM("Ch2 Limiter Select", sta32x_limiter_ch2_enum),
475 SOC_ENUM("Ch3 Limiter Select", sta32x_limiter_ch3_enum),
476 SOC_SINGLE_TLV("Bass Tone Control", STA32X_TONE, STA32X_TONE_BTC_SHIFT, 15, 0, tone_tlv),
477 SOC_SINGLE_TLV("Treble Tone Control", STA32X_TONE, STA32X_TONE_TTC_SHIFT, 15, 0, tone_tlv),
478 SOC_ENUM("Limiter1 Attack Rate (dB/ms)", sta32x_limiter1_attack_rate_enum),
479 SOC_ENUM("Limiter2 Attack Rate (dB/ms)", sta32x_limiter2_attack_rate_enum),
480 SOC_ENUM("Limiter1 Release Rate (dB/ms)", sta32x_limiter1_release_rate_enum),
481 SOC_ENUM("Limiter2 Release Rate (dB/ms)", sta32x_limiter2_release_rate_enum),
482 
483 /* depending on mode, the attack/release thresholds have
484  * two different enum definitions; provide both
485  */
486 SOC_SINGLE_TLV("Limiter1 Attack Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
487 	       16, 0, sta32x_limiter_ac_attack_tlv),
488 SOC_SINGLE_TLV("Limiter2 Attack Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
489 	       16, 0, sta32x_limiter_ac_attack_tlv),
490 SOC_SINGLE_TLV("Limiter1 Release Threshold (AC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
491 	       16, 0, sta32x_limiter_ac_release_tlv),
492 SOC_SINGLE_TLV("Limiter2 Release Threshold (AC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
493 	       16, 0, sta32x_limiter_ac_release_tlv),
494 SOC_SINGLE_TLV("Limiter1 Attack Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxA_SHIFT,
495 	       16, 0, sta32x_limiter_drc_attack_tlv),
496 SOC_SINGLE_TLV("Limiter2 Attack Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxA_SHIFT,
497 	       16, 0, sta32x_limiter_drc_attack_tlv),
498 SOC_SINGLE_TLV("Limiter1 Release Threshold (DRC Mode)", STA32X_L1ATRT, STA32X_LxR_SHIFT,
499 	       16, 0, sta32x_limiter_drc_release_tlv),
500 SOC_SINGLE_TLV("Limiter2 Release Threshold (DRC Mode)", STA32X_L2ATRT, STA32X_LxR_SHIFT,
501 	       16, 0, sta32x_limiter_drc_release_tlv),
502 
503 BIQUAD_COEFS("Ch1 - Biquad 1", 0),
504 BIQUAD_COEFS("Ch1 - Biquad 2", 5),
505 BIQUAD_COEFS("Ch1 - Biquad 3", 10),
506 BIQUAD_COEFS("Ch1 - Biquad 4", 15),
507 BIQUAD_COEFS("Ch2 - Biquad 1", 20),
508 BIQUAD_COEFS("Ch2 - Biquad 2", 25),
509 BIQUAD_COEFS("Ch2 - Biquad 3", 30),
510 BIQUAD_COEFS("Ch2 - Biquad 4", 35),
511 BIQUAD_COEFS("High-pass", 40),
512 BIQUAD_COEFS("Low-pass", 45),
513 SINGLE_COEF("Ch1 - Prescale", 50),
514 SINGLE_COEF("Ch2 - Prescale", 51),
515 SINGLE_COEF("Ch1 - Postscale", 52),
516 SINGLE_COEF("Ch2 - Postscale", 53),
517 SINGLE_COEF("Ch3 - Postscale", 54),
518 SINGLE_COEF("Thermal warning - Postscale", 55),
519 SINGLE_COEF("Ch1 - Mix 1", 56),
520 SINGLE_COEF("Ch1 - Mix 2", 57),
521 SINGLE_COEF("Ch2 - Mix 1", 58),
522 SINGLE_COEF("Ch2 - Mix 2", 59),
523 SINGLE_COEF("Ch3 - Mix 1", 60),
524 SINGLE_COEF("Ch3 - Mix 2", 61),
525 };
526 
527 static const struct snd_soc_dapm_widget sta32x_dapm_widgets[] = {
528 SND_SOC_DAPM_DAC("DAC", "Playback", SND_SOC_NOPM, 0, 0),
529 SND_SOC_DAPM_OUTPUT("LEFT"),
530 SND_SOC_DAPM_OUTPUT("RIGHT"),
531 SND_SOC_DAPM_OUTPUT("SUB"),
532 };
533 
534 static const struct snd_soc_dapm_route sta32x_dapm_routes[] = {
535 	{ "LEFT", NULL, "DAC" },
536 	{ "RIGHT", NULL, "DAC" },
537 	{ "SUB", NULL, "DAC" },
538 };
539 
540 /* MCLK interpolation ratio per fs */
541 static struct {
542 	int fs;
543 	int ir;
544 } interpolation_ratios[] = {
545 	{ 32000, 0 },
546 	{ 44100, 0 },
547 	{ 48000, 0 },
548 	{ 88200, 1 },
549 	{ 96000, 1 },
550 	{ 176400, 2 },
551 	{ 192000, 2 },
552 };
553 
554 /* MCLK to fs clock ratios */
555 static int mcs_ratio_table[3][7] = {
556 	{ 768, 512, 384, 256, 128, 576, 0 },
557 	{ 384, 256, 192, 128,  64,   0 },
558 	{ 384, 256, 192, 128,  64,   0 },
559 };
560 
561 /**
562  * sta32x_set_dai_sysclk - configure MCLK
563  * @codec_dai: the codec DAI
564  * @clk_id: the clock ID (ignored)
565  * @freq: the MCLK input frequency
566  * @dir: the clock direction (ignored)
567  *
568  * The value of MCLK is used to determine which sample rates are supported
569  * by the STA32X, based on the mclk_ratios table.
570  *
571  * This function must be called by the machine driver's 'startup' function,
572  * otherwise the list of supported sample rates will not be available in
573  * time for ALSA.
574  *
575  * For setups with variable MCLKs, pass 0 as 'freq' argument. This will cause
576  * theoretically possible sample rates to be enabled. Call it again with a
577  * proper value set one the external clock is set (most probably you would do
578  * that from a machine's driver 'hw_param' hook.
579  */
580 static int sta32x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
581 		int clk_id, unsigned int freq, int dir)
582 {
583 	struct snd_soc_component *component = codec_dai->component;
584 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
585 
586 	dev_dbg(component->dev, "mclk=%u\n", freq);
587 	sta32x->mclk = freq;
588 
589 	return 0;
590 }
591 
592 /**
593  * sta32x_set_dai_fmt - configure the codec for the selected audio format
594  * @codec_dai: the codec DAI
595  * @fmt: a SND_SOC_DAIFMT_x value indicating the data format
596  *
597  * This function takes a bitmask of SND_SOC_DAIFMT_x bits and programs the
598  * codec accordingly.
599  */
600 static int sta32x_set_dai_fmt(struct snd_soc_dai *codec_dai,
601 			      unsigned int fmt)
602 {
603 	struct snd_soc_component *component = codec_dai->component;
604 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
605 	u8 confb = 0;
606 
607 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
608 	case SND_SOC_DAIFMT_CBS_CFS:
609 		break;
610 	default:
611 		return -EINVAL;
612 	}
613 
614 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
615 	case SND_SOC_DAIFMT_I2S:
616 	case SND_SOC_DAIFMT_RIGHT_J:
617 	case SND_SOC_DAIFMT_LEFT_J:
618 		sta32x->format = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
619 		break;
620 	default:
621 		return -EINVAL;
622 	}
623 
624 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
625 	case SND_SOC_DAIFMT_NB_NF:
626 		confb |= STA32X_CONFB_C2IM;
627 		break;
628 	case SND_SOC_DAIFMT_NB_IF:
629 		confb |= STA32X_CONFB_C1IM;
630 		break;
631 	default:
632 		return -EINVAL;
633 	}
634 
635 	return regmap_update_bits(sta32x->regmap, STA32X_CONFB,
636 				  STA32X_CONFB_C1IM | STA32X_CONFB_C2IM, confb);
637 }
638 
639 /**
640  * sta32x_hw_params - program the STA32X with the given hardware parameters.
641  * @substream: the audio stream
642  * @params: the hardware parameters to set
643  * @dai: the SOC DAI (ignored)
644  *
645  * This function programs the hardware with the values provided.
646  * Specifically, the sample rate and the data format.
647  */
648 static int sta32x_hw_params(struct snd_pcm_substream *substream,
649 			    struct snd_pcm_hw_params *params,
650 			    struct snd_soc_dai *dai)
651 {
652 	struct snd_soc_component *component = dai->component;
653 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
654 	int i, mcs = -EINVAL, ir = -EINVAL;
655 	unsigned int confa, confb;
656 	unsigned int rate, ratio;
657 	int ret;
658 
659 	if (!sta32x->mclk) {
660 		dev_err(component->dev,
661 			"sta32x->mclk is unset. Unable to determine ratio\n");
662 		return -EIO;
663 	}
664 
665 	rate = params_rate(params);
666 	ratio = sta32x->mclk / rate;
667 	dev_dbg(component->dev, "rate: %u, ratio: %u\n", rate, ratio);
668 
669 	for (i = 0; i < ARRAY_SIZE(interpolation_ratios); i++) {
670 		if (interpolation_ratios[i].fs == rate) {
671 			ir = interpolation_ratios[i].ir;
672 			break;
673 		}
674 	}
675 
676 	if (ir < 0) {
677 		dev_err(component->dev, "Unsupported samplerate: %u\n", rate);
678 		return -EINVAL;
679 	}
680 
681 	for (i = 0; i < 6; i++) {
682 		if (mcs_ratio_table[ir][i] == ratio) {
683 			mcs = i;
684 			break;
685 		}
686 	}
687 
688 	if (mcs < 0) {
689 		dev_err(component->dev, "Unresolvable ratio: %u\n", ratio);
690 		return -EINVAL;
691 	}
692 
693 	confa = (ir << STA32X_CONFA_IR_SHIFT) |
694 		(mcs << STA32X_CONFA_MCS_SHIFT);
695 	confb = 0;
696 
697 	switch (params_width(params)) {
698 	case 24:
699 		dev_dbg(component->dev, "24bit\n");
700 		/* fall through */
701 	case 32:
702 		dev_dbg(component->dev, "24bit or 32bit\n");
703 		switch (sta32x->format) {
704 		case SND_SOC_DAIFMT_I2S:
705 			confb |= 0x0;
706 			break;
707 		case SND_SOC_DAIFMT_LEFT_J:
708 			confb |= 0x1;
709 			break;
710 		case SND_SOC_DAIFMT_RIGHT_J:
711 			confb |= 0x2;
712 			break;
713 		}
714 
715 		break;
716 	case 20:
717 		dev_dbg(component->dev, "20bit\n");
718 		switch (sta32x->format) {
719 		case SND_SOC_DAIFMT_I2S:
720 			confb |= 0x4;
721 			break;
722 		case SND_SOC_DAIFMT_LEFT_J:
723 			confb |= 0x5;
724 			break;
725 		case SND_SOC_DAIFMT_RIGHT_J:
726 			confb |= 0x6;
727 			break;
728 		}
729 
730 		break;
731 	case 18:
732 		dev_dbg(component->dev, "18bit\n");
733 		switch (sta32x->format) {
734 		case SND_SOC_DAIFMT_I2S:
735 			confb |= 0x8;
736 			break;
737 		case SND_SOC_DAIFMT_LEFT_J:
738 			confb |= 0x9;
739 			break;
740 		case SND_SOC_DAIFMT_RIGHT_J:
741 			confb |= 0xa;
742 			break;
743 		}
744 
745 		break;
746 	case 16:
747 		dev_dbg(component->dev, "16bit\n");
748 		switch (sta32x->format) {
749 		case SND_SOC_DAIFMT_I2S:
750 			confb |= 0x0;
751 			break;
752 		case SND_SOC_DAIFMT_LEFT_J:
753 			confb |= 0xd;
754 			break;
755 		case SND_SOC_DAIFMT_RIGHT_J:
756 			confb |= 0xe;
757 			break;
758 		}
759 
760 		break;
761 	default:
762 		return -EINVAL;
763 	}
764 
765 	ret = regmap_update_bits(sta32x->regmap, STA32X_CONFA,
766 				 STA32X_CONFA_MCS_MASK | STA32X_CONFA_IR_MASK,
767 				 confa);
768 	if (ret < 0)
769 		return ret;
770 
771 	ret = regmap_update_bits(sta32x->regmap, STA32X_CONFB,
772 				 STA32X_CONFB_SAI_MASK | STA32X_CONFB_SAIFB,
773 				 confb);
774 	if (ret < 0)
775 		return ret;
776 
777 	return 0;
778 }
779 
780 static int sta32x_startup_sequence(struct sta32x_priv *sta32x)
781 {
782 	if (sta32x->gpiod_nreset) {
783 		gpiod_set_value(sta32x->gpiod_nreset, 0);
784 		mdelay(1);
785 		gpiod_set_value(sta32x->gpiod_nreset, 1);
786 		mdelay(1);
787 	}
788 
789 	return 0;
790 }
791 
792 /**
793  * sta32x_set_bias_level - DAPM callback
794  * @component: the component device
795  * @level: DAPM power level
796  *
797  * This is called by ALSA to put the component into low power mode
798  * or to wake it up.  If the component is powered off completely
799  * all registers must be restored after power on.
800  */
801 static int sta32x_set_bias_level(struct snd_soc_component *component,
802 				 enum snd_soc_bias_level level)
803 {
804 	int ret;
805 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
806 
807 	dev_dbg(component->dev, "level = %d\n", level);
808 	switch (level) {
809 	case SND_SOC_BIAS_ON:
810 		break;
811 
812 	case SND_SOC_BIAS_PREPARE:
813 		/* Full power on */
814 		regmap_update_bits(sta32x->regmap, STA32X_CONFF,
815 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
816 				    STA32X_CONFF_PWDN | STA32X_CONFF_EAPD);
817 		break;
818 
819 	case SND_SOC_BIAS_STANDBY:
820 		if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
821 			ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
822 						    sta32x->supplies);
823 			if (ret != 0) {
824 				dev_err(component->dev,
825 					"Failed to enable supplies: %d\n", ret);
826 				return ret;
827 			}
828 
829 			sta32x_startup_sequence(sta32x);
830 			sta32x_cache_sync(component);
831 			sta32x_watchdog_start(sta32x);
832 		}
833 
834 		/* Power down */
835 		regmap_update_bits(sta32x->regmap, STA32X_CONFF,
836 				   STA32X_CONFF_PWDN | STA32X_CONFF_EAPD,
837 				   0);
838 
839 		break;
840 
841 	case SND_SOC_BIAS_OFF:
842 		/* The chip runs through the power down sequence for us. */
843 		regmap_update_bits(sta32x->regmap, STA32X_CONFF,
844 				   STA32X_CONFF_PWDN | STA32X_CONFF_EAPD, 0);
845 		msleep(300);
846 		sta32x_watchdog_stop(sta32x);
847 
848 		gpiod_set_value(sta32x->gpiod_nreset, 0);
849 
850 		regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies),
851 				       sta32x->supplies);
852 		break;
853 	}
854 	return 0;
855 }
856 
857 static const struct snd_soc_dai_ops sta32x_dai_ops = {
858 	.hw_params	= sta32x_hw_params,
859 	.set_sysclk	= sta32x_set_dai_sysclk,
860 	.set_fmt	= sta32x_set_dai_fmt,
861 };
862 
863 static struct snd_soc_dai_driver sta32x_dai = {
864 	.name = "sta32x-hifi",
865 	.playback = {
866 		.stream_name = "Playback",
867 		.channels_min = 2,
868 		.channels_max = 2,
869 		.rates = STA32X_RATES,
870 		.formats = STA32X_FORMATS,
871 	},
872 	.ops = &sta32x_dai_ops,
873 };
874 
875 static int sta32x_probe(struct snd_soc_component *component)
876 {
877 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
878 	struct sta32x_platform_data *pdata = sta32x->pdata;
879 	int i, ret = 0, thermal = 0;
880 
881 	sta32x->component = component;
882 
883 	if (sta32x->xti_clk) {
884 		ret = clk_prepare_enable(sta32x->xti_clk);
885 		if (ret != 0) {
886 			dev_err(component->dev,
887 				"Failed to enable clock: %d\n", ret);
888 			return ret;
889 		}
890 	}
891 
892 	ret = regulator_bulk_enable(ARRAY_SIZE(sta32x->supplies),
893 				    sta32x->supplies);
894 	if (ret != 0) {
895 		dev_err(component->dev, "Failed to enable supplies: %d\n", ret);
896 		return ret;
897 	}
898 
899 	ret = sta32x_startup_sequence(sta32x);
900 	if (ret < 0) {
901 		dev_err(component->dev, "Failed to startup device\n");
902 		return ret;
903 	}
904 
905 	/* CONFA */
906 	if (!pdata->thermal_warning_recovery)
907 		thermal |= STA32X_CONFA_TWAB;
908 	if (!pdata->thermal_warning_adjustment)
909 		thermal |= STA32X_CONFA_TWRB;
910 	if (!pdata->fault_detect_recovery)
911 		thermal |= STA32X_CONFA_FDRB;
912 	regmap_update_bits(sta32x->regmap, STA32X_CONFA,
913 			   STA32X_CONFA_TWAB | STA32X_CONFA_TWRB |
914 			   STA32X_CONFA_FDRB,
915 			   thermal);
916 
917 	/* CONFC */
918 	regmap_update_bits(sta32x->regmap, STA32X_CONFC,
919 			   STA32X_CONFC_CSZ_MASK,
920 			   pdata->drop_compensation_ns
921 				<< STA32X_CONFC_CSZ_SHIFT);
922 
923 	/* CONFE */
924 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
925 			   STA32X_CONFE_MPCV,
926 			   pdata->max_power_use_mpcc ?
927 				STA32X_CONFE_MPCV : 0);
928 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
929 			   STA32X_CONFE_MPC,
930 			   pdata->max_power_correction ?
931 				STA32X_CONFE_MPC : 0);
932 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
933 			   STA32X_CONFE_AME,
934 			   pdata->am_reduction_mode ?
935 				STA32X_CONFE_AME : 0);
936 	regmap_update_bits(sta32x->regmap, STA32X_CONFE,
937 			   STA32X_CONFE_PWMS,
938 			   pdata->odd_pwm_speed_mode ?
939 				STA32X_CONFE_PWMS : 0);
940 
941 	/*  CONFF */
942 	regmap_update_bits(sta32x->regmap, STA32X_CONFF,
943 			   STA32X_CONFF_IDE,
944 			   pdata->invalid_input_detect_mute ?
945 				STA32X_CONFF_IDE : 0);
946 
947 	/* select output configuration  */
948 	regmap_update_bits(sta32x->regmap, STA32X_CONFF,
949 			   STA32X_CONFF_OCFG_MASK,
950 			   pdata->output_conf
951 				<< STA32X_CONFF_OCFG_SHIFT);
952 
953 	/* channel to output mapping */
954 	regmap_update_bits(sta32x->regmap, STA32X_C1CFG,
955 			   STA32X_CxCFG_OM_MASK,
956 			   pdata->ch1_output_mapping
957 				<< STA32X_CxCFG_OM_SHIFT);
958 	regmap_update_bits(sta32x->regmap, STA32X_C2CFG,
959 			   STA32X_CxCFG_OM_MASK,
960 			   pdata->ch2_output_mapping
961 				<< STA32X_CxCFG_OM_SHIFT);
962 	regmap_update_bits(sta32x->regmap, STA32X_C3CFG,
963 			   STA32X_CxCFG_OM_MASK,
964 			   pdata->ch3_output_mapping
965 				<< STA32X_CxCFG_OM_SHIFT);
966 
967 	/* initialize coefficient shadow RAM with reset values */
968 	for (i = 4; i <= 49; i += 5)
969 		sta32x->coef_shadow[i] = 0x400000;
970 	for (i = 50; i <= 54; i++)
971 		sta32x->coef_shadow[i] = 0x7fffff;
972 	sta32x->coef_shadow[55] = 0x5a9df7;
973 	sta32x->coef_shadow[56] = 0x7fffff;
974 	sta32x->coef_shadow[59] = 0x7fffff;
975 	sta32x->coef_shadow[60] = 0x400000;
976 	sta32x->coef_shadow[61] = 0x400000;
977 
978 	if (sta32x->pdata->needs_esd_watchdog)
979 		INIT_DELAYED_WORK(&sta32x->watchdog_work, sta32x_watchdog);
980 
981 	snd_soc_component_force_bias_level(component, SND_SOC_BIAS_STANDBY);
982 	/* Bias level configuration will have done an extra enable */
983 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
984 
985 	return 0;
986 }
987 
988 static void sta32x_remove(struct snd_soc_component *component)
989 {
990 	struct sta32x_priv *sta32x = snd_soc_component_get_drvdata(component);
991 
992 	sta32x_watchdog_stop(sta32x);
993 	regulator_bulk_disable(ARRAY_SIZE(sta32x->supplies), sta32x->supplies);
994 
995 	if (sta32x->xti_clk)
996 		clk_disable_unprepare(sta32x->xti_clk);
997 }
998 
999 static const struct snd_soc_component_driver sta32x_component = {
1000 	.probe			= sta32x_probe,
1001 	.remove			= sta32x_remove,
1002 	.set_bias_level		= sta32x_set_bias_level,
1003 	.controls		= sta32x_snd_controls,
1004 	.num_controls		= ARRAY_SIZE(sta32x_snd_controls),
1005 	.dapm_widgets		= sta32x_dapm_widgets,
1006 	.num_dapm_widgets	= ARRAY_SIZE(sta32x_dapm_widgets),
1007 	.dapm_routes		= sta32x_dapm_routes,
1008 	.num_dapm_routes	= ARRAY_SIZE(sta32x_dapm_routes),
1009 	.suspend_bias_off	= 1,
1010 	.idle_bias_on		= 1,
1011 	.use_pmdown_time	= 1,
1012 	.endianness		= 1,
1013 	.non_legacy_dai_naming	= 1,
1014 };
1015 
1016 static const struct regmap_config sta32x_regmap = {
1017 	.reg_bits =		8,
1018 	.val_bits =		8,
1019 	.max_register =		STA32X_FDRC2,
1020 	.reg_defaults =		sta32x_regs,
1021 	.num_reg_defaults =	ARRAY_SIZE(sta32x_regs),
1022 	.cache_type =		REGCACHE_RBTREE,
1023 	.wr_table =		&sta32x_write_regs,
1024 	.rd_table =		&sta32x_read_regs,
1025 	.volatile_table =	&sta32x_volatile_regs,
1026 };
1027 
1028 #ifdef CONFIG_OF
1029 static const struct of_device_id st32x_dt_ids[] = {
1030 	{ .compatible = "st,sta32x", },
1031 	{ }
1032 };
1033 MODULE_DEVICE_TABLE(of, st32x_dt_ids);
1034 
1035 static int sta32x_probe_dt(struct device *dev, struct sta32x_priv *sta32x)
1036 {
1037 	struct device_node *np = dev->of_node;
1038 	struct sta32x_platform_data *pdata;
1039 	u16 tmp;
1040 
1041 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1042 	if (!pdata)
1043 		return -ENOMEM;
1044 
1045 	of_property_read_u8(np, "st,output-conf",
1046 			    &pdata->output_conf);
1047 	of_property_read_u8(np, "st,ch1-output-mapping",
1048 			    &pdata->ch1_output_mapping);
1049 	of_property_read_u8(np, "st,ch2-output-mapping",
1050 			    &pdata->ch2_output_mapping);
1051 	of_property_read_u8(np, "st,ch3-output-mapping",
1052 			    &pdata->ch3_output_mapping);
1053 
1054 	if (of_get_property(np, "st,fault-detect-recovery", NULL))
1055 		pdata->fault_detect_recovery = 1;
1056 	if (of_get_property(np, "st,thermal-warning-recovery", NULL))
1057 		pdata->thermal_warning_recovery = 1;
1058 	if (of_get_property(np, "st,thermal-warning-adjustment", NULL))
1059 		pdata->thermal_warning_adjustment = 1;
1060 	if (of_get_property(np, "st,needs_esd_watchdog", NULL))
1061 		pdata->needs_esd_watchdog = 1;
1062 
1063 	tmp = 140;
1064 	of_property_read_u16(np, "st,drop-compensation-ns", &tmp);
1065 	pdata->drop_compensation_ns = clamp_t(u16, tmp, 0, 300) / 20;
1066 
1067 	/* CONFE */
1068 	if (of_get_property(np, "st,max-power-use-mpcc", NULL))
1069 		pdata->max_power_use_mpcc = 1;
1070 
1071 	if (of_get_property(np, "st,max-power-correction", NULL))
1072 		pdata->max_power_correction = 1;
1073 
1074 	if (of_get_property(np, "st,am-reduction-mode", NULL))
1075 		pdata->am_reduction_mode = 1;
1076 
1077 	if (of_get_property(np, "st,odd-pwm-speed-mode", NULL))
1078 		pdata->odd_pwm_speed_mode = 1;
1079 
1080 	/* CONFF */
1081 	if (of_get_property(np, "st,invalid-input-detect-mute", NULL))
1082 		pdata->invalid_input_detect_mute = 1;
1083 
1084 	sta32x->pdata = pdata;
1085 
1086 	return 0;
1087 }
1088 #endif
1089 
1090 static int sta32x_i2c_probe(struct i2c_client *i2c,
1091 			    const struct i2c_device_id *id)
1092 {
1093 	struct device *dev = &i2c->dev;
1094 	struct sta32x_priv *sta32x;
1095 	int ret, i;
1096 
1097 	sta32x = devm_kzalloc(&i2c->dev, sizeof(struct sta32x_priv),
1098 			      GFP_KERNEL);
1099 	if (!sta32x)
1100 		return -ENOMEM;
1101 
1102 	mutex_init(&sta32x->coeff_lock);
1103 	sta32x->pdata = dev_get_platdata(dev);
1104 
1105 #ifdef CONFIG_OF
1106 	if (dev->of_node) {
1107 		ret = sta32x_probe_dt(dev, sta32x);
1108 		if (ret < 0)
1109 			return ret;
1110 	}
1111 #endif
1112 
1113 	/* Clock */
1114 	sta32x->xti_clk = devm_clk_get(dev, "xti");
1115 	if (IS_ERR(sta32x->xti_clk)) {
1116 		ret = PTR_ERR(sta32x->xti_clk);
1117 
1118 		if (ret == -EPROBE_DEFER)
1119 			return ret;
1120 
1121 		sta32x->xti_clk = NULL;
1122 	}
1123 
1124 	/* GPIOs */
1125 	sta32x->gpiod_nreset = devm_gpiod_get_optional(dev, "reset",
1126 						       GPIOD_OUT_LOW);
1127 	if (IS_ERR(sta32x->gpiod_nreset))
1128 		return PTR_ERR(sta32x->gpiod_nreset);
1129 
1130 	/* regulators */
1131 	for (i = 0; i < ARRAY_SIZE(sta32x->supplies); i++)
1132 		sta32x->supplies[i].supply = sta32x_supply_names[i];
1133 
1134 	ret = devm_regulator_bulk_get(&i2c->dev, ARRAY_SIZE(sta32x->supplies),
1135 				      sta32x->supplies);
1136 	if (ret != 0) {
1137 		dev_err(&i2c->dev, "Failed to request supplies: %d\n", ret);
1138 		return ret;
1139 	}
1140 
1141 	sta32x->regmap = devm_regmap_init_i2c(i2c, &sta32x_regmap);
1142 	if (IS_ERR(sta32x->regmap)) {
1143 		ret = PTR_ERR(sta32x->regmap);
1144 		dev_err(dev, "Failed to init regmap: %d\n", ret);
1145 		return ret;
1146 	}
1147 
1148 	i2c_set_clientdata(i2c, sta32x);
1149 
1150 	ret = devm_snd_soc_register_component(dev, &sta32x_component,
1151 					      &sta32x_dai, 1);
1152 	if (ret < 0)
1153 		dev_err(dev, "Failed to register component (%d)\n", ret);
1154 
1155 	return ret;
1156 }
1157 
1158 static const struct i2c_device_id sta32x_i2c_id[] = {
1159 	{ "sta326", 0 },
1160 	{ "sta328", 0 },
1161 	{ "sta329", 0 },
1162 	{ }
1163 };
1164 MODULE_DEVICE_TABLE(i2c, sta32x_i2c_id);
1165 
1166 static struct i2c_driver sta32x_i2c_driver = {
1167 	.driver = {
1168 		.name = "sta32x",
1169 		.of_match_table = of_match_ptr(st32x_dt_ids),
1170 	},
1171 	.probe =    sta32x_i2c_probe,
1172 	.id_table = sta32x_i2c_id,
1173 };
1174 
1175 module_i2c_driver(sta32x_i2c_driver);
1176 
1177 MODULE_DESCRIPTION("ASoC STA32X driver");
1178 MODULE_AUTHOR("Johannes Stezenbach <js@sig21.net>");
1179 MODULE_LICENSE("GPL");
1180