xref: /linux/sound/soc/fsl/fsl_sai.c (revision 6c8c1406)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Freescale ALSA SoC Digital Audio Interface (SAI) driver.
4 //
5 // Copyright 2012-2015 Freescale Semiconductor, Inc.
6 
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/module.h>
11 #include <linux/of_address.h>
12 #include <linux/of_device.h>
13 #include <linux/pinctrl/consumer.h>
14 #include <linux/pm_qos.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/regmap.h>
17 #include <linux/slab.h>
18 #include <linux/time.h>
19 #include <sound/core.h>
20 #include <sound/dmaengine_pcm.h>
21 #include <sound/pcm_params.h>
22 #include <linux/mfd/syscon.h>
23 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
24 
25 #include "fsl_sai.h"
26 #include "fsl_utils.h"
27 #include "imx-pcm.h"
28 
29 #define FSL_SAI_FLAGS (FSL_SAI_CSR_SEIE |\
30 		       FSL_SAI_CSR_FEIE)
31 
32 static const unsigned int fsl_sai_rates[] = {
33 	8000, 11025, 12000, 16000, 22050,
34 	24000, 32000, 44100, 48000, 64000,
35 	88200, 96000, 176400, 192000, 352800,
36 	384000, 705600, 768000, 1411200, 2822400,
37 };
38 
39 static const struct snd_pcm_hw_constraint_list fsl_sai_rate_constraints = {
40 	.count = ARRAY_SIZE(fsl_sai_rates),
41 	.list = fsl_sai_rates,
42 };
43 
44 /**
45  * fsl_sai_dir_is_synced - Check if stream is synced by the opposite stream
46  *
47  * SAI supports synchronous mode using bit/frame clocks of either Transmitter's
48  * or Receiver's for both streams. This function is used to check if clocks of
49  * the stream's are synced by the opposite stream.
50  *
51  * @sai: SAI context
52  * @dir: stream direction
53  */
54 static inline bool fsl_sai_dir_is_synced(struct fsl_sai *sai, int dir)
55 {
56 	int adir = (dir == TX) ? RX : TX;
57 
58 	/* current dir in async mode while opposite dir in sync mode */
59 	return !sai->synchronous[dir] && sai->synchronous[adir];
60 }
61 
62 static struct pinctrl_state *fsl_sai_get_pins_state(struct fsl_sai *sai, u32 bclk)
63 {
64 	struct pinctrl_state *state = NULL;
65 
66 	if (sai->is_pdm_mode) {
67 		/* DSD512@44.1kHz, DSD512@48kHz */
68 		if (bclk >= 22579200)
69 			state = pinctrl_lookup_state(sai->pinctrl, "dsd512");
70 
71 		/* Get default DSD state */
72 		if (IS_ERR_OR_NULL(state))
73 			state = pinctrl_lookup_state(sai->pinctrl, "dsd");
74 	} else {
75 		/* 706k32b2c, 768k32b2c, etc */
76 		if (bclk >= 45158400)
77 			state = pinctrl_lookup_state(sai->pinctrl, "pcm_b2m");
78 	}
79 
80 	/* Get default state */
81 	if (IS_ERR_OR_NULL(state))
82 		state = pinctrl_lookup_state(sai->pinctrl, "default");
83 
84 	return state;
85 }
86 
87 static irqreturn_t fsl_sai_isr(int irq, void *devid)
88 {
89 	struct fsl_sai *sai = (struct fsl_sai *)devid;
90 	unsigned int ofs = sai->soc_data->reg_offset;
91 	struct device *dev = &sai->pdev->dev;
92 	u32 flags, xcsr, mask;
93 	irqreturn_t iret = IRQ_NONE;
94 
95 	/*
96 	 * Both IRQ status bits and IRQ mask bits are in the xCSR but
97 	 * different shifts. And we here create a mask only for those
98 	 * IRQs that we activated.
99 	 */
100 	mask = (FSL_SAI_FLAGS >> FSL_SAI_CSR_xIE_SHIFT) << FSL_SAI_CSR_xF_SHIFT;
101 
102 	/* Tx IRQ */
103 	regmap_read(sai->regmap, FSL_SAI_TCSR(ofs), &xcsr);
104 	flags = xcsr & mask;
105 
106 	if (flags)
107 		iret = IRQ_HANDLED;
108 	else
109 		goto irq_rx;
110 
111 	if (flags & FSL_SAI_CSR_WSF)
112 		dev_dbg(dev, "isr: Start of Tx word detected\n");
113 
114 	if (flags & FSL_SAI_CSR_SEF)
115 		dev_dbg(dev, "isr: Tx Frame sync error detected\n");
116 
117 	if (flags & FSL_SAI_CSR_FEF)
118 		dev_dbg(dev, "isr: Transmit underrun detected\n");
119 
120 	if (flags & FSL_SAI_CSR_FWF)
121 		dev_dbg(dev, "isr: Enabled transmit FIFO is empty\n");
122 
123 	if (flags & FSL_SAI_CSR_FRF)
124 		dev_dbg(dev, "isr: Transmit FIFO watermark has been reached\n");
125 
126 	flags &= FSL_SAI_CSR_xF_W_MASK;
127 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
128 
129 	if (flags)
130 		regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), flags | xcsr);
131 
132 irq_rx:
133 	/* Rx IRQ */
134 	regmap_read(sai->regmap, FSL_SAI_RCSR(ofs), &xcsr);
135 	flags = xcsr & mask;
136 
137 	if (flags)
138 		iret = IRQ_HANDLED;
139 	else
140 		goto out;
141 
142 	if (flags & FSL_SAI_CSR_WSF)
143 		dev_dbg(dev, "isr: Start of Rx word detected\n");
144 
145 	if (flags & FSL_SAI_CSR_SEF)
146 		dev_dbg(dev, "isr: Rx Frame sync error detected\n");
147 
148 	if (flags & FSL_SAI_CSR_FEF)
149 		dev_dbg(dev, "isr: Receive overflow detected\n");
150 
151 	if (flags & FSL_SAI_CSR_FWF)
152 		dev_dbg(dev, "isr: Enabled receive FIFO is full\n");
153 
154 	if (flags & FSL_SAI_CSR_FRF)
155 		dev_dbg(dev, "isr: Receive FIFO watermark has been reached\n");
156 
157 	flags &= FSL_SAI_CSR_xF_W_MASK;
158 	xcsr &= ~FSL_SAI_CSR_xF_MASK;
159 
160 	if (flags)
161 		regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), flags | xcsr);
162 
163 out:
164 	return iret;
165 }
166 
167 static int fsl_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
168 				u32 rx_mask, int slots, int slot_width)
169 {
170 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
171 
172 	sai->slots = slots;
173 	sai->slot_width = slot_width;
174 
175 	return 0;
176 }
177 
178 static int fsl_sai_set_dai_bclk_ratio(struct snd_soc_dai *dai,
179 				      unsigned int ratio)
180 {
181 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
182 
183 	sai->bclk_ratio = ratio;
184 
185 	return 0;
186 }
187 
188 static int fsl_sai_set_dai_sysclk_tr(struct snd_soc_dai *cpu_dai,
189 		int clk_id, unsigned int freq, bool tx)
190 {
191 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
192 	unsigned int ofs = sai->soc_data->reg_offset;
193 	u32 val_cr2 = 0;
194 
195 	switch (clk_id) {
196 	case FSL_SAI_CLK_BUS:
197 		val_cr2 |= FSL_SAI_CR2_MSEL_BUS;
198 		break;
199 	case FSL_SAI_CLK_MAST1:
200 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK1;
201 		break;
202 	case FSL_SAI_CLK_MAST2:
203 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK2;
204 		break;
205 	case FSL_SAI_CLK_MAST3:
206 		val_cr2 |= FSL_SAI_CR2_MSEL_MCLK3;
207 		break;
208 	default:
209 		return -EINVAL;
210 	}
211 
212 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
213 			   FSL_SAI_CR2_MSEL_MASK, val_cr2);
214 
215 	return 0;
216 }
217 
218 static int fsl_sai_set_mclk_rate(struct snd_soc_dai *dai, int clk_id, unsigned int freq)
219 {
220 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
221 	int ret;
222 
223 	fsl_asoc_reparent_pll_clocks(dai->dev, sai->mclk_clk[clk_id],
224 				     sai->pll8k_clk, sai->pll11k_clk, freq);
225 
226 	ret = clk_set_rate(sai->mclk_clk[clk_id], freq);
227 	if (ret < 0)
228 		dev_err(dai->dev, "failed to set clock rate (%u): %d\n", freq, ret);
229 
230 	return ret;
231 }
232 
233 static int fsl_sai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
234 		int clk_id, unsigned int freq, int dir)
235 {
236 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
237 	int ret;
238 
239 	if (dir == SND_SOC_CLOCK_IN)
240 		return 0;
241 
242 	if (freq > 0 && clk_id != FSL_SAI_CLK_BUS) {
243 		if (clk_id < 0 || clk_id >= FSL_SAI_MCLK_MAX) {
244 			dev_err(cpu_dai->dev, "Unknown clock id: %d\n", clk_id);
245 			return -EINVAL;
246 		}
247 
248 		if (IS_ERR_OR_NULL(sai->mclk_clk[clk_id])) {
249 			dev_err(cpu_dai->dev, "Unassigned clock: %d\n", clk_id);
250 			return -EINVAL;
251 		}
252 
253 		if (sai->mclk_streams == 0) {
254 			ret = fsl_sai_set_mclk_rate(cpu_dai, clk_id, freq);
255 			if (ret < 0)
256 				return ret;
257 		}
258 	}
259 
260 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, true);
261 	if (ret) {
262 		dev_err(cpu_dai->dev, "Cannot set tx sysclk: %d\n", ret);
263 		return ret;
264 	}
265 
266 	ret = fsl_sai_set_dai_sysclk_tr(cpu_dai, clk_id, freq, false);
267 	if (ret)
268 		dev_err(cpu_dai->dev, "Cannot set rx sysclk: %d\n", ret);
269 
270 	return ret;
271 }
272 
273 static int fsl_sai_set_dai_fmt_tr(struct snd_soc_dai *cpu_dai,
274 				unsigned int fmt, bool tx)
275 {
276 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
277 	unsigned int ofs = sai->soc_data->reg_offset;
278 	u32 val_cr2 = 0, val_cr4 = 0;
279 
280 	if (!sai->is_lsb_first)
281 		val_cr4 |= FSL_SAI_CR4_MF;
282 
283 	sai->is_pdm_mode = false;
284 	/* DAI mode */
285 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
286 	case SND_SOC_DAIFMT_I2S:
287 		/*
288 		 * Frame low, 1clk before data, one word length for frame sync,
289 		 * frame sync starts one serial clock cycle earlier,
290 		 * that is, together with the last bit of the previous
291 		 * data word.
292 		 */
293 		val_cr2 |= FSL_SAI_CR2_BCP;
294 		val_cr4 |= FSL_SAI_CR4_FSE | FSL_SAI_CR4_FSP;
295 		break;
296 	case SND_SOC_DAIFMT_LEFT_J:
297 		/*
298 		 * Frame high, one word length for frame sync,
299 		 * frame sync asserts with the first bit of the frame.
300 		 */
301 		val_cr2 |= FSL_SAI_CR2_BCP;
302 		break;
303 	case SND_SOC_DAIFMT_DSP_A:
304 		/*
305 		 * Frame high, 1clk before data, one bit for frame sync,
306 		 * frame sync starts one serial clock cycle earlier,
307 		 * that is, together with the last bit of the previous
308 		 * data word.
309 		 */
310 		val_cr2 |= FSL_SAI_CR2_BCP;
311 		val_cr4 |= FSL_SAI_CR4_FSE;
312 		sai->is_dsp_mode = true;
313 		break;
314 	case SND_SOC_DAIFMT_DSP_B:
315 		/*
316 		 * Frame high, one bit for frame sync,
317 		 * frame sync asserts with the first bit of the frame.
318 		 */
319 		val_cr2 |= FSL_SAI_CR2_BCP;
320 		sai->is_dsp_mode = true;
321 		break;
322 	case SND_SOC_DAIFMT_PDM:
323 		val_cr2 |= FSL_SAI_CR2_BCP;
324 		val_cr4 &= ~FSL_SAI_CR4_MF;
325 		sai->is_pdm_mode = true;
326 		break;
327 	case SND_SOC_DAIFMT_RIGHT_J:
328 		/* To be done */
329 	default:
330 		return -EINVAL;
331 	}
332 
333 	/* DAI clock inversion */
334 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
335 	case SND_SOC_DAIFMT_IB_IF:
336 		/* Invert both clocks */
337 		val_cr2 ^= FSL_SAI_CR2_BCP;
338 		val_cr4 ^= FSL_SAI_CR4_FSP;
339 		break;
340 	case SND_SOC_DAIFMT_IB_NF:
341 		/* Invert bit clock */
342 		val_cr2 ^= FSL_SAI_CR2_BCP;
343 		break;
344 	case SND_SOC_DAIFMT_NB_IF:
345 		/* Invert frame clock */
346 		val_cr4 ^= FSL_SAI_CR4_FSP;
347 		break;
348 	case SND_SOC_DAIFMT_NB_NF:
349 		/* Nothing to do for both normal cases */
350 		break;
351 	default:
352 		return -EINVAL;
353 	}
354 
355 	/* DAI clock provider masks */
356 	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
357 	case SND_SOC_DAIFMT_BP_FP:
358 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
359 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
360 		sai->is_consumer_mode = false;
361 		break;
362 	case SND_SOC_DAIFMT_BC_FC:
363 		sai->is_consumer_mode = true;
364 		break;
365 	case SND_SOC_DAIFMT_BP_FC:
366 		val_cr2 |= FSL_SAI_CR2_BCD_MSTR;
367 		sai->is_consumer_mode = false;
368 		break;
369 	case SND_SOC_DAIFMT_BC_FP:
370 		val_cr4 |= FSL_SAI_CR4_FSD_MSTR;
371 		sai->is_consumer_mode = true;
372 		break;
373 	default:
374 		return -EINVAL;
375 	}
376 
377 	regmap_update_bits(sai->regmap, FSL_SAI_xCR2(tx, ofs),
378 			   FSL_SAI_CR2_BCP | FSL_SAI_CR2_BCD_MSTR, val_cr2);
379 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
380 			   FSL_SAI_CR4_MF | FSL_SAI_CR4_FSE |
381 			   FSL_SAI_CR4_FSP | FSL_SAI_CR4_FSD_MSTR, val_cr4);
382 
383 	return 0;
384 }
385 
386 static int fsl_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
387 {
388 	int ret;
389 
390 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, true);
391 	if (ret) {
392 		dev_err(cpu_dai->dev, "Cannot set tx format: %d\n", ret);
393 		return ret;
394 	}
395 
396 	ret = fsl_sai_set_dai_fmt_tr(cpu_dai, fmt, false);
397 	if (ret)
398 		dev_err(cpu_dai->dev, "Cannot set rx format: %d\n", ret);
399 
400 	return ret;
401 }
402 
403 static int fsl_sai_set_bclk(struct snd_soc_dai *dai, bool tx, u32 freq)
404 {
405 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(dai);
406 	unsigned int reg, ofs = sai->soc_data->reg_offset;
407 	unsigned long clk_rate;
408 	u32 savediv = 0, ratio, bestdiff = freq;
409 	int adir = tx ? RX : TX;
410 	int dir = tx ? TX : RX;
411 	u32 id;
412 	bool support_1_1_ratio = sai->verid.version >= 0x0301;
413 
414 	/* Don't apply to consumer mode */
415 	if (sai->is_consumer_mode)
416 		return 0;
417 
418 	/*
419 	 * There is no point in polling MCLK0 if it is identical to MCLK1.
420 	 * And given that MQS use case has to use MCLK1 though two clocks
421 	 * are the same, we simply skip MCLK0 and start to find from MCLK1.
422 	 */
423 	id = sai->soc_data->mclk0_is_mclk1 ? 1 : 0;
424 
425 	for (; id < FSL_SAI_MCLK_MAX; id++) {
426 		int diff;
427 
428 		clk_rate = clk_get_rate(sai->mclk_clk[id]);
429 		if (!clk_rate)
430 			continue;
431 
432 		ratio = DIV_ROUND_CLOSEST(clk_rate, freq);
433 		if (!ratio || ratio > 512)
434 			continue;
435 		if (ratio == 1 && !support_1_1_ratio)
436 			continue;
437 		if ((ratio & 1) && ratio > 1)
438 			continue;
439 
440 		diff = abs((long)clk_rate - ratio * freq);
441 
442 		/*
443 		 * Drop the source that can not be
444 		 * divided into the required rate.
445 		 */
446 		if (diff != 0 && clk_rate / diff < 1000)
447 			continue;
448 
449 		dev_dbg(dai->dev,
450 			"ratio %d for freq %dHz based on clock %ldHz\n",
451 			ratio, freq, clk_rate);
452 
453 
454 		if (diff < bestdiff) {
455 			savediv = ratio;
456 			sai->mclk_id[tx] = id;
457 			bestdiff = diff;
458 		}
459 
460 		if (diff == 0)
461 			break;
462 	}
463 
464 	if (savediv == 0) {
465 		dev_err(dai->dev, "failed to derive required %cx rate: %d\n",
466 				tx ? 'T' : 'R', freq);
467 		return -EINVAL;
468 	}
469 
470 	dev_dbg(dai->dev, "best fit: clock id=%d, div=%d, deviation =%d\n",
471 			sai->mclk_id[tx], savediv, bestdiff);
472 
473 	/*
474 	 * 1) For Asynchronous mode, we must set RCR2 register for capture, and
475 	 *    set TCR2 register for playback.
476 	 * 2) For Tx sync with Rx clock, we must set RCR2 register for playback
477 	 *    and capture.
478 	 * 3) For Rx sync with Tx clock, we must set TCR2 register for playback
479 	 *    and capture.
480 	 * 4) For Tx and Rx are both Synchronous with another SAI, we just
481 	 *    ignore it.
482 	 */
483 	if (fsl_sai_dir_is_synced(sai, adir))
484 		reg = FSL_SAI_xCR2(!tx, ofs);
485 	else if (!sai->synchronous[dir])
486 		reg = FSL_SAI_xCR2(tx, ofs);
487 	else
488 		return 0;
489 
490 	regmap_update_bits(sai->regmap, reg, FSL_SAI_CR2_MSEL_MASK,
491 			   FSL_SAI_CR2_MSEL(sai->mclk_id[tx]));
492 
493 	if (savediv == 1)
494 		regmap_update_bits(sai->regmap, reg,
495 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
496 				   FSL_SAI_CR2_BYP);
497 	else
498 		regmap_update_bits(sai->regmap, reg,
499 				   FSL_SAI_CR2_DIV_MASK | FSL_SAI_CR2_BYP,
500 				   savediv / 2 - 1);
501 
502 	if (sai->soc_data->max_register >= FSL_SAI_MCTL) {
503 		/* SAI is in master mode at this point, so enable MCLK */
504 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
505 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
506 	}
507 
508 	return 0;
509 }
510 
511 static int fsl_sai_hw_params(struct snd_pcm_substream *substream,
512 		struct snd_pcm_hw_params *params,
513 		struct snd_soc_dai *cpu_dai)
514 {
515 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
516 	unsigned int ofs = sai->soc_data->reg_offset;
517 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
518 	unsigned int channels = params_channels(params);
519 	struct snd_dmaengine_dai_dma_data *dma_params;
520 	struct fsl_sai_dl_cfg *dl_cfg = sai->dl_cfg;
521 	u32 word_width = params_width(params);
522 	int trce_mask = 0, dl_cfg_idx = 0;
523 	int dl_cfg_cnt = sai->dl_cfg_cnt;
524 	u32 dl_type = FSL_SAI_DL_I2S;
525 	u32 val_cr4 = 0, val_cr5 = 0;
526 	u32 slots = (channels == 1) ? 2 : channels;
527 	u32 slot_width = word_width;
528 	int adir = tx ? RX : TX;
529 	u32 pins, bclk;
530 	u32 watermark;
531 	int ret, i;
532 
533 	if (sai->slot_width)
534 		slot_width = sai->slot_width;
535 
536 	if (sai->slots)
537 		slots = sai->slots;
538 	else if (sai->bclk_ratio)
539 		slots = sai->bclk_ratio / slot_width;
540 
541 	pins = DIV_ROUND_UP(channels, slots);
542 
543 	/*
544 	 * PDM mode, channels are independent
545 	 * each channels are on one dataline/FIFO.
546 	 */
547 	if (sai->is_pdm_mode) {
548 		pins = channels;
549 		dl_type = FSL_SAI_DL_PDM;
550 	}
551 
552 	for (i = 0; i < dl_cfg_cnt; i++) {
553 		if (dl_cfg[i].type == dl_type && dl_cfg[i].pins[tx] == pins) {
554 			dl_cfg_idx = i;
555 			break;
556 		}
557 	}
558 
559 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) < pins) {
560 		dev_err(cpu_dai->dev, "channel not supported\n");
561 		return -EINVAL;
562 	}
563 
564 	bclk = params_rate(params) * (sai->bclk_ratio ? sai->bclk_ratio : slots * slot_width);
565 
566 	if (!IS_ERR_OR_NULL(sai->pinctrl)) {
567 		sai->pins_state = fsl_sai_get_pins_state(sai, bclk);
568 		if (!IS_ERR_OR_NULL(sai->pins_state)) {
569 			ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
570 			if (ret) {
571 				dev_err(cpu_dai->dev, "failed to set proper pins state: %d\n", ret);
572 				return ret;
573 			}
574 		}
575 	}
576 
577 	if (!sai->is_consumer_mode) {
578 		ret = fsl_sai_set_bclk(cpu_dai, tx, bclk);
579 		if (ret)
580 			return ret;
581 
582 		/* Do not enable the clock if it is already enabled */
583 		if (!(sai->mclk_streams & BIT(substream->stream))) {
584 			ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[tx]]);
585 			if (ret)
586 				return ret;
587 
588 			sai->mclk_streams |= BIT(substream->stream);
589 		}
590 	}
591 
592 	if (!sai->is_dsp_mode && !sai->is_pdm_mode)
593 		val_cr4 |= FSL_SAI_CR4_SYWD(slot_width);
594 
595 	val_cr5 |= FSL_SAI_CR5_WNW(slot_width);
596 	val_cr5 |= FSL_SAI_CR5_W0W(slot_width);
597 
598 	if (sai->is_lsb_first || sai->is_pdm_mode)
599 		val_cr5 |= FSL_SAI_CR5_FBT(0);
600 	else
601 		val_cr5 |= FSL_SAI_CR5_FBT(word_width - 1);
602 
603 	val_cr4 |= FSL_SAI_CR4_FRSZ(slots);
604 
605 	/* Set to output mode to avoid tri-stated data pins */
606 	if (tx)
607 		val_cr4 |= FSL_SAI_CR4_CHMOD;
608 
609 	/*
610 	 * For SAI provider mode, when Tx(Rx) sync with Rx(Tx) clock, Rx(Tx) will
611 	 * generate bclk and frame clock for Tx(Rx), we should set RCR4(TCR4),
612 	 * RCR5(TCR5) for playback(capture), or there will be sync error.
613 	 */
614 
615 	if (!sai->is_consumer_mode && fsl_sai_dir_is_synced(sai, adir)) {
616 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(!tx, ofs),
617 				   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
618 				   FSL_SAI_CR4_CHMOD_MASK,
619 				   val_cr4);
620 		regmap_update_bits(sai->regmap, FSL_SAI_xCR5(!tx, ofs),
621 				   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
622 				   FSL_SAI_CR5_FBT_MASK, val_cr5);
623 	}
624 
625 	/*
626 	 * Combine mode has limation:
627 	 * - Can't used for singel dataline/FIFO case except the FIFO0
628 	 * - Can't used for multi dataline/FIFO case except the enabled FIFOs
629 	 *   are successive and start from FIFO0
630 	 *
631 	 * So for common usage, all multi fifo case disable the combine mode.
632 	 */
633 	if (hweight8(dl_cfg[dl_cfg_idx].mask[tx]) <= 1 || sai->is_multi_fifo_dma)
634 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
635 				   FSL_SAI_CR4_FCOMB_MASK, 0);
636 	else
637 		regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
638 				   FSL_SAI_CR4_FCOMB_MASK, FSL_SAI_CR4_FCOMB_SOFT);
639 
640 	dma_params = tx ? &sai->dma_params_tx : &sai->dma_params_rx;
641 	dma_params->addr = sai->res->start + FSL_SAI_xDR0(tx) +
642 			   dl_cfg[dl_cfg_idx].start_off[tx] * 0x4;
643 
644 	if (sai->is_multi_fifo_dma) {
645 		sai->audio_config[tx].words_per_fifo = min(slots, channels);
646 		if (tx) {
647 			sai->audio_config[tx].n_fifos_dst = pins;
648 			sai->audio_config[tx].stride_fifos_dst = dl_cfg[dl_cfg_idx].next_off[tx];
649 		} else {
650 			sai->audio_config[tx].n_fifos_src = pins;
651 			sai->audio_config[tx].stride_fifos_src = dl_cfg[dl_cfg_idx].next_off[tx];
652 		}
653 		dma_params->maxburst = sai->audio_config[tx].words_per_fifo * pins;
654 		dma_params->peripheral_config = &sai->audio_config[tx];
655 		dma_params->peripheral_size = sizeof(sai->audio_config[tx]);
656 
657 		watermark = tx ? (sai->soc_data->fifo_depth - dma_params->maxburst) :
658 				 (dma_params->maxburst - 1);
659 		regmap_update_bits(sai->regmap, FSL_SAI_xCR1(tx, ofs),
660 				   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
661 				   watermark);
662 	}
663 
664 	/* Find a proper tcre setting */
665 	for (i = 0; i < sai->soc_data->pins; i++) {
666 		trce_mask = (1 << (i + 1)) - 1;
667 		if (hweight8(dl_cfg[dl_cfg_idx].mask[tx] & trce_mask) == pins)
668 			break;
669 	}
670 
671 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
672 			   FSL_SAI_CR3_TRCE_MASK,
673 			   FSL_SAI_CR3_TRCE((dl_cfg[dl_cfg_idx].mask[tx] & trce_mask)));
674 
675 	regmap_update_bits(sai->regmap, FSL_SAI_xCR4(tx, ofs),
676 			   FSL_SAI_CR4_SYWD_MASK | FSL_SAI_CR4_FRSZ_MASK |
677 			   FSL_SAI_CR4_CHMOD_MASK,
678 			   val_cr4);
679 	regmap_update_bits(sai->regmap, FSL_SAI_xCR5(tx, ofs),
680 			   FSL_SAI_CR5_WNW_MASK | FSL_SAI_CR5_W0W_MASK |
681 			   FSL_SAI_CR5_FBT_MASK, val_cr5);
682 	regmap_write(sai->regmap, FSL_SAI_xMR(tx),
683 		     ~0UL - ((1 << min(channels, slots)) - 1));
684 
685 	return 0;
686 }
687 
688 static int fsl_sai_hw_free(struct snd_pcm_substream *substream,
689 		struct snd_soc_dai *cpu_dai)
690 {
691 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
692 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
693 	unsigned int ofs = sai->soc_data->reg_offset;
694 
695 	regmap_update_bits(sai->regmap, FSL_SAI_xCR3(tx, ofs),
696 			   FSL_SAI_CR3_TRCE_MASK, 0);
697 
698 	if (!sai->is_consumer_mode &&
699 			sai->mclk_streams & BIT(substream->stream)) {
700 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[tx]]);
701 		sai->mclk_streams &= ~BIT(substream->stream);
702 	}
703 
704 	return 0;
705 }
706 
707 static void fsl_sai_config_disable(struct fsl_sai *sai, int dir)
708 {
709 	unsigned int ofs = sai->soc_data->reg_offset;
710 	bool tx = dir == TX;
711 	u32 xcsr, count = 100;
712 
713 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
714 			   FSL_SAI_CSR_TERE, 0);
715 
716 	/* TERE will remain set till the end of current frame */
717 	do {
718 		udelay(10);
719 		regmap_read(sai->regmap, FSL_SAI_xCSR(tx, ofs), &xcsr);
720 	} while (--count && xcsr & FSL_SAI_CSR_TERE);
721 
722 	regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
723 			   FSL_SAI_CSR_FR, FSL_SAI_CSR_FR);
724 
725 	/*
726 	 * For sai master mode, after several open/close sai,
727 	 * there will be no frame clock, and can't recover
728 	 * anymore. Add software reset to fix this issue.
729 	 * This is a hardware bug, and will be fix in the
730 	 * next sai version.
731 	 */
732 	if (!sai->is_consumer_mode) {
733 		/* Software Reset */
734 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), FSL_SAI_CSR_SR);
735 		/* Clear SR bit to finish the reset */
736 		regmap_write(sai->regmap, FSL_SAI_xCSR(tx, ofs), 0);
737 	}
738 }
739 
740 static int fsl_sai_trigger(struct snd_pcm_substream *substream, int cmd,
741 		struct snd_soc_dai *cpu_dai)
742 {
743 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
744 	unsigned int ofs = sai->soc_data->reg_offset;
745 
746 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
747 	int adir = tx ? RX : TX;
748 	int dir = tx ? TX : RX;
749 	u32 xcsr;
750 
751 	/*
752 	 * Asynchronous mode: Clear SYNC for both Tx and Rx.
753 	 * Rx sync with Tx clocks: Clear SYNC for Tx, set it for Rx.
754 	 * Tx sync with Rx clocks: Clear SYNC for Rx, set it for Tx.
755 	 */
756 	regmap_update_bits(sai->regmap, FSL_SAI_TCR2(ofs), FSL_SAI_CR2_SYNC,
757 			   sai->synchronous[TX] ? FSL_SAI_CR2_SYNC : 0);
758 	regmap_update_bits(sai->regmap, FSL_SAI_RCR2(ofs), FSL_SAI_CR2_SYNC,
759 			   sai->synchronous[RX] ? FSL_SAI_CR2_SYNC : 0);
760 
761 	/*
762 	 * It is recommended that the transmitter is the last enabled
763 	 * and the first disabled.
764 	 */
765 	switch (cmd) {
766 	case SNDRV_PCM_TRIGGER_START:
767 	case SNDRV_PCM_TRIGGER_RESUME:
768 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
769 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
770 				   FSL_SAI_CSR_FRDE, FSL_SAI_CSR_FRDE);
771 
772 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
773 				   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
774 		/*
775 		 * Enable the opposite direction for synchronous mode
776 		 * 1. Tx sync with Rx: only set RE for Rx; set TE & RE for Tx
777 		 * 2. Rx sync with Tx: only set TE for Tx; set RE & TE for Rx
778 		 *
779 		 * RM recommends to enable RE after TE for case 1 and to enable
780 		 * TE after RE for case 2, but we here may not always guarantee
781 		 * that happens: "arecord 1.wav; aplay 2.wav" in case 1 enables
782 		 * TE after RE, which is against what RM recommends but should
783 		 * be safe to do, judging by years of testing results.
784 		 */
785 		if (fsl_sai_dir_is_synced(sai, adir))
786 			regmap_update_bits(sai->regmap, FSL_SAI_xCSR((!tx), ofs),
787 					   FSL_SAI_CSR_TERE, FSL_SAI_CSR_TERE);
788 
789 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
790 				   FSL_SAI_CSR_xIE_MASK, FSL_SAI_FLAGS);
791 		break;
792 	case SNDRV_PCM_TRIGGER_STOP:
793 	case SNDRV_PCM_TRIGGER_SUSPEND:
794 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
795 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
796 				   FSL_SAI_CSR_FRDE, 0);
797 		regmap_update_bits(sai->regmap, FSL_SAI_xCSR(tx, ofs),
798 				   FSL_SAI_CSR_xIE_MASK, 0);
799 
800 		/* Check if the opposite FRDE is also disabled */
801 		regmap_read(sai->regmap, FSL_SAI_xCSR(!tx, ofs), &xcsr);
802 
803 		/*
804 		 * If opposite stream provides clocks for synchronous mode and
805 		 * it is inactive, disable it before disabling the current one
806 		 */
807 		if (fsl_sai_dir_is_synced(sai, adir) && !(xcsr & FSL_SAI_CSR_FRDE))
808 			fsl_sai_config_disable(sai, adir);
809 
810 		/*
811 		 * Disable current stream if either of:
812 		 * 1. current stream doesn't provide clocks for synchronous mode
813 		 * 2. current stream provides clocks for synchronous mode but no
814 		 *    more stream is active.
815 		 */
816 		if (!fsl_sai_dir_is_synced(sai, dir) || !(xcsr & FSL_SAI_CSR_FRDE))
817 			fsl_sai_config_disable(sai, dir);
818 
819 		break;
820 	default:
821 		return -EINVAL;
822 	}
823 
824 	return 0;
825 }
826 
827 static int fsl_sai_startup(struct snd_pcm_substream *substream,
828 		struct snd_soc_dai *cpu_dai)
829 {
830 	struct fsl_sai *sai = snd_soc_dai_get_drvdata(cpu_dai);
831 	bool tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
832 	int ret;
833 
834 	/*
835 	 * EDMA controller needs period size to be a multiple of
836 	 * tx/rx maxburst
837 	 */
838 	if (sai->soc_data->use_edma)
839 		snd_pcm_hw_constraint_step(substream->runtime, 0,
840 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
841 					   tx ? sai->dma_params_tx.maxburst :
842 					   sai->dma_params_rx.maxburst);
843 
844 	ret = snd_pcm_hw_constraint_list(substream->runtime, 0,
845 			SNDRV_PCM_HW_PARAM_RATE, &fsl_sai_rate_constraints);
846 
847 	return ret;
848 }
849 
850 static const struct snd_soc_dai_ops fsl_sai_pcm_dai_ops = {
851 	.set_bclk_ratio	= fsl_sai_set_dai_bclk_ratio,
852 	.set_sysclk	= fsl_sai_set_dai_sysclk,
853 	.set_fmt	= fsl_sai_set_dai_fmt,
854 	.set_tdm_slot	= fsl_sai_set_dai_tdm_slot,
855 	.hw_params	= fsl_sai_hw_params,
856 	.hw_free	= fsl_sai_hw_free,
857 	.trigger	= fsl_sai_trigger,
858 	.startup	= fsl_sai_startup,
859 };
860 
861 static int fsl_sai_dai_probe(struct snd_soc_dai *cpu_dai)
862 {
863 	struct fsl_sai *sai = dev_get_drvdata(cpu_dai->dev);
864 	unsigned int ofs = sai->soc_data->reg_offset;
865 
866 	/* Software Reset for both Tx and Rx */
867 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
868 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
869 	/* Clear SR bit to finish the reset */
870 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
871 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
872 
873 	regmap_update_bits(sai->regmap, FSL_SAI_TCR1(ofs),
874 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
875 			   sai->soc_data->fifo_depth - FSL_SAI_MAXBURST_TX);
876 	regmap_update_bits(sai->regmap, FSL_SAI_RCR1(ofs),
877 			   FSL_SAI_CR1_RFW_MASK(sai->soc_data->fifo_depth),
878 			   FSL_SAI_MAXBURST_RX - 1);
879 
880 	snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params_tx,
881 				&sai->dma_params_rx);
882 
883 	return 0;
884 }
885 
886 static int fsl_sai_dai_resume(struct snd_soc_component *component)
887 {
888 	struct fsl_sai *sai = snd_soc_component_get_drvdata(component);
889 	struct device *dev = &sai->pdev->dev;
890 	int ret;
891 
892 	if (!IS_ERR_OR_NULL(sai->pinctrl) && !IS_ERR_OR_NULL(sai->pins_state)) {
893 		ret = pinctrl_select_state(sai->pinctrl, sai->pins_state);
894 		if (ret) {
895 			dev_err(dev, "failed to set proper pins state: %d\n", ret);
896 			return ret;
897 		}
898 	}
899 
900 	return 0;
901 }
902 
903 static struct snd_soc_dai_driver fsl_sai_dai_template = {
904 	.probe = fsl_sai_dai_probe,
905 	.playback = {
906 		.stream_name = "CPU-Playback",
907 		.channels_min = 1,
908 		.channels_max = 32,
909 		.rate_min = 8000,
910 		.rate_max = 2822400,
911 		.rates = SNDRV_PCM_RATE_KNOT,
912 		.formats = FSL_SAI_FORMATS,
913 	},
914 	.capture = {
915 		.stream_name = "CPU-Capture",
916 		.channels_min = 1,
917 		.channels_max = 32,
918 		.rate_min = 8000,
919 		.rate_max = 2822400,
920 		.rates = SNDRV_PCM_RATE_KNOT,
921 		.formats = FSL_SAI_FORMATS,
922 	},
923 	.ops = &fsl_sai_pcm_dai_ops,
924 };
925 
926 static const struct snd_soc_component_driver fsl_component = {
927 	.name			= "fsl-sai",
928 	.resume			= fsl_sai_dai_resume,
929 	.legacy_dai_naming	= 1,
930 };
931 
932 static struct reg_default fsl_sai_reg_defaults_ofs0[] = {
933 	{FSL_SAI_TCR1(0), 0},
934 	{FSL_SAI_TCR2(0), 0},
935 	{FSL_SAI_TCR3(0), 0},
936 	{FSL_SAI_TCR4(0), 0},
937 	{FSL_SAI_TCR5(0), 0},
938 	{FSL_SAI_TDR0, 0},
939 	{FSL_SAI_TDR1, 0},
940 	{FSL_SAI_TDR2, 0},
941 	{FSL_SAI_TDR3, 0},
942 	{FSL_SAI_TDR4, 0},
943 	{FSL_SAI_TDR5, 0},
944 	{FSL_SAI_TDR6, 0},
945 	{FSL_SAI_TDR7, 0},
946 	{FSL_SAI_TMR, 0},
947 	{FSL_SAI_RCR1(0), 0},
948 	{FSL_SAI_RCR2(0), 0},
949 	{FSL_SAI_RCR3(0), 0},
950 	{FSL_SAI_RCR4(0), 0},
951 	{FSL_SAI_RCR5(0), 0},
952 	{FSL_SAI_RMR, 0},
953 };
954 
955 static struct reg_default fsl_sai_reg_defaults_ofs8[] = {
956 	{FSL_SAI_TCR1(8), 0},
957 	{FSL_SAI_TCR2(8), 0},
958 	{FSL_SAI_TCR3(8), 0},
959 	{FSL_SAI_TCR4(8), 0},
960 	{FSL_SAI_TCR5(8), 0},
961 	{FSL_SAI_TDR0, 0},
962 	{FSL_SAI_TDR1, 0},
963 	{FSL_SAI_TDR2, 0},
964 	{FSL_SAI_TDR3, 0},
965 	{FSL_SAI_TDR4, 0},
966 	{FSL_SAI_TDR5, 0},
967 	{FSL_SAI_TDR6, 0},
968 	{FSL_SAI_TDR7, 0},
969 	{FSL_SAI_TMR, 0},
970 	{FSL_SAI_RCR1(8), 0},
971 	{FSL_SAI_RCR2(8), 0},
972 	{FSL_SAI_RCR3(8), 0},
973 	{FSL_SAI_RCR4(8), 0},
974 	{FSL_SAI_RCR5(8), 0},
975 	{FSL_SAI_RMR, 0},
976 	{FSL_SAI_MCTL, 0},
977 	{FSL_SAI_MDIV, 0},
978 };
979 
980 static bool fsl_sai_readable_reg(struct device *dev, unsigned int reg)
981 {
982 	struct fsl_sai *sai = dev_get_drvdata(dev);
983 	unsigned int ofs = sai->soc_data->reg_offset;
984 
985 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
986 		return true;
987 
988 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
989 		return true;
990 
991 	switch (reg) {
992 	case FSL_SAI_TFR0:
993 	case FSL_SAI_TFR1:
994 	case FSL_SAI_TFR2:
995 	case FSL_SAI_TFR3:
996 	case FSL_SAI_TFR4:
997 	case FSL_SAI_TFR5:
998 	case FSL_SAI_TFR6:
999 	case FSL_SAI_TFR7:
1000 	case FSL_SAI_TMR:
1001 	case FSL_SAI_RDR0:
1002 	case FSL_SAI_RDR1:
1003 	case FSL_SAI_RDR2:
1004 	case FSL_SAI_RDR3:
1005 	case FSL_SAI_RDR4:
1006 	case FSL_SAI_RDR5:
1007 	case FSL_SAI_RDR6:
1008 	case FSL_SAI_RDR7:
1009 	case FSL_SAI_RFR0:
1010 	case FSL_SAI_RFR1:
1011 	case FSL_SAI_RFR2:
1012 	case FSL_SAI_RFR3:
1013 	case FSL_SAI_RFR4:
1014 	case FSL_SAI_RFR5:
1015 	case FSL_SAI_RFR6:
1016 	case FSL_SAI_RFR7:
1017 	case FSL_SAI_RMR:
1018 	case FSL_SAI_MCTL:
1019 	case FSL_SAI_MDIV:
1020 	case FSL_SAI_VERID:
1021 	case FSL_SAI_PARAM:
1022 	case FSL_SAI_TTCTN:
1023 	case FSL_SAI_RTCTN:
1024 	case FSL_SAI_TTCTL:
1025 	case FSL_SAI_TBCTN:
1026 	case FSL_SAI_TTCAP:
1027 	case FSL_SAI_RTCTL:
1028 	case FSL_SAI_RBCTN:
1029 	case FSL_SAI_RTCAP:
1030 		return true;
1031 	default:
1032 		return false;
1033 	}
1034 }
1035 
1036 static bool fsl_sai_volatile_reg(struct device *dev, unsigned int reg)
1037 {
1038 	struct fsl_sai *sai = dev_get_drvdata(dev);
1039 	unsigned int ofs = sai->soc_data->reg_offset;
1040 
1041 	if (reg == FSL_SAI_TCSR(ofs) || reg == FSL_SAI_RCSR(ofs))
1042 		return true;
1043 
1044 	/* Set VERID and PARAM be volatile for reading value in probe */
1045 	if (ofs == 8 && (reg == FSL_SAI_VERID || reg == FSL_SAI_PARAM))
1046 		return true;
1047 
1048 	switch (reg) {
1049 	case FSL_SAI_TFR0:
1050 	case FSL_SAI_TFR1:
1051 	case FSL_SAI_TFR2:
1052 	case FSL_SAI_TFR3:
1053 	case FSL_SAI_TFR4:
1054 	case FSL_SAI_TFR5:
1055 	case FSL_SAI_TFR6:
1056 	case FSL_SAI_TFR7:
1057 	case FSL_SAI_RFR0:
1058 	case FSL_SAI_RFR1:
1059 	case FSL_SAI_RFR2:
1060 	case FSL_SAI_RFR3:
1061 	case FSL_SAI_RFR4:
1062 	case FSL_SAI_RFR5:
1063 	case FSL_SAI_RFR6:
1064 	case FSL_SAI_RFR7:
1065 	case FSL_SAI_RDR0:
1066 	case FSL_SAI_RDR1:
1067 	case FSL_SAI_RDR2:
1068 	case FSL_SAI_RDR3:
1069 	case FSL_SAI_RDR4:
1070 	case FSL_SAI_RDR5:
1071 	case FSL_SAI_RDR6:
1072 	case FSL_SAI_RDR7:
1073 		return true;
1074 	default:
1075 		return false;
1076 	}
1077 }
1078 
1079 static bool fsl_sai_writeable_reg(struct device *dev, unsigned int reg)
1080 {
1081 	struct fsl_sai *sai = dev_get_drvdata(dev);
1082 	unsigned int ofs = sai->soc_data->reg_offset;
1083 
1084 	if (reg >= FSL_SAI_TCSR(ofs) && reg <= FSL_SAI_TCR5(ofs))
1085 		return true;
1086 
1087 	if (reg >= FSL_SAI_RCSR(ofs) && reg <= FSL_SAI_RCR5(ofs))
1088 		return true;
1089 
1090 	switch (reg) {
1091 	case FSL_SAI_TDR0:
1092 	case FSL_SAI_TDR1:
1093 	case FSL_SAI_TDR2:
1094 	case FSL_SAI_TDR3:
1095 	case FSL_SAI_TDR4:
1096 	case FSL_SAI_TDR5:
1097 	case FSL_SAI_TDR6:
1098 	case FSL_SAI_TDR7:
1099 	case FSL_SAI_TMR:
1100 	case FSL_SAI_RMR:
1101 	case FSL_SAI_MCTL:
1102 	case FSL_SAI_MDIV:
1103 	case FSL_SAI_TTCTL:
1104 	case FSL_SAI_RTCTL:
1105 		return true;
1106 	default:
1107 		return false;
1108 	}
1109 }
1110 
1111 static struct regmap_config fsl_sai_regmap_config = {
1112 	.reg_bits = 32,
1113 	.reg_stride = 4,
1114 	.val_bits = 32,
1115 	.fast_io = true,
1116 
1117 	.max_register = FSL_SAI_RMR,
1118 	.reg_defaults = fsl_sai_reg_defaults_ofs0,
1119 	.num_reg_defaults = ARRAY_SIZE(fsl_sai_reg_defaults_ofs0),
1120 	.readable_reg = fsl_sai_readable_reg,
1121 	.volatile_reg = fsl_sai_volatile_reg,
1122 	.writeable_reg = fsl_sai_writeable_reg,
1123 	.cache_type = REGCACHE_FLAT,
1124 };
1125 
1126 static int fsl_sai_check_version(struct device *dev)
1127 {
1128 	struct fsl_sai *sai = dev_get_drvdata(dev);
1129 	unsigned char ofs = sai->soc_data->reg_offset;
1130 	unsigned int val;
1131 	int ret;
1132 
1133 	if (FSL_SAI_TCSR(ofs) == FSL_SAI_VERID)
1134 		return 0;
1135 
1136 	ret = regmap_read(sai->regmap, FSL_SAI_VERID, &val);
1137 	if (ret < 0)
1138 		return ret;
1139 
1140 	dev_dbg(dev, "VERID: 0x%016X\n", val);
1141 
1142 	sai->verid.version = val &
1143 		(FSL_SAI_VERID_MAJOR_MASK | FSL_SAI_VERID_MINOR_MASK);
1144 	sai->verid.feature = val & FSL_SAI_VERID_FEATURE_MASK;
1145 
1146 	ret = regmap_read(sai->regmap, FSL_SAI_PARAM, &val);
1147 	if (ret < 0)
1148 		return ret;
1149 
1150 	dev_dbg(dev, "PARAM: 0x%016X\n", val);
1151 
1152 	/* Max slots per frame, power of 2 */
1153 	sai->param.slot_num = 1 <<
1154 		((val & FSL_SAI_PARAM_SPF_MASK) >> FSL_SAI_PARAM_SPF_SHIFT);
1155 
1156 	/* Words per fifo, power of 2 */
1157 	sai->param.fifo_depth = 1 <<
1158 		((val & FSL_SAI_PARAM_WPF_MASK) >> FSL_SAI_PARAM_WPF_SHIFT);
1159 
1160 	/* Number of datalines implemented */
1161 	sai->param.dataline = val & FSL_SAI_PARAM_DLN_MASK;
1162 
1163 	return 0;
1164 }
1165 
1166 /*
1167  * Calculate the offset between first two datalines, don't
1168  * different offset in one case.
1169  */
1170 static unsigned int fsl_sai_calc_dl_off(unsigned long dl_mask)
1171 {
1172 	int fbidx, nbidx, offset;
1173 
1174 	fbidx = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1175 	nbidx = find_next_bit(&dl_mask, FSL_SAI_DL_NUM, fbidx + 1);
1176 	offset = nbidx - fbidx - 1;
1177 
1178 	return (offset < 0 || offset >= (FSL_SAI_DL_NUM - 1) ? 0 : offset);
1179 }
1180 
1181 /*
1182  * read the fsl,dataline property from dts file.
1183  * It has 3 value for each configuration, first one means the type:
1184  * I2S(1) or PDM(2), second one is dataline mask for 'rx', third one is
1185  * dataline mask for 'tx'. for example
1186  *
1187  * fsl,dataline = <1 0xff 0xff 2 0xff 0x11>,
1188  *
1189  * It means I2S type rx mask is 0xff, tx mask is 0xff, PDM type
1190  * rx mask is 0xff, tx mask is 0x11 (dataline 1 and 4 enabled).
1191  *
1192  */
1193 static int fsl_sai_read_dlcfg(struct fsl_sai *sai)
1194 {
1195 	struct platform_device *pdev = sai->pdev;
1196 	struct device_node *np = pdev->dev.of_node;
1197 	struct device *dev = &pdev->dev;
1198 	int ret, elems, i, index, num_cfg;
1199 	char *propname = "fsl,dataline";
1200 	struct fsl_sai_dl_cfg *cfg;
1201 	unsigned long dl_mask;
1202 	unsigned int soc_dl;
1203 	u32 rx, tx, type;
1204 
1205 	elems = of_property_count_u32_elems(np, propname);
1206 
1207 	if (elems <= 0) {
1208 		elems = 0;
1209 	} else if (elems % 3) {
1210 		dev_err(dev, "Number of elements must be divisible to 3.\n");
1211 		return -EINVAL;
1212 	}
1213 
1214 	num_cfg = elems / 3;
1215 	/*  Add one more for default value */
1216 	cfg = devm_kzalloc(&pdev->dev, (num_cfg + 1) * sizeof(*cfg), GFP_KERNEL);
1217 	if (!cfg)
1218 		return -ENOMEM;
1219 
1220 	/* Consider default value "0 0xFF 0xFF" if property is missing */
1221 	soc_dl = BIT(sai->soc_data->pins) - 1;
1222 	cfg[0].type = FSL_SAI_DL_DEFAULT;
1223 	cfg[0].pins[0] = sai->soc_data->pins;
1224 	cfg[0].mask[0] = soc_dl;
1225 	cfg[0].start_off[0] = 0;
1226 	cfg[0].next_off[0] = 0;
1227 
1228 	cfg[0].pins[1] = sai->soc_data->pins;
1229 	cfg[0].mask[1] = soc_dl;
1230 	cfg[0].start_off[1] = 0;
1231 	cfg[0].next_off[1] = 0;
1232 	for (i = 1, index = 0; i < num_cfg + 1; i++) {
1233 		/*
1234 		 * type of dataline
1235 		 * 0 means default mode
1236 		 * 1 means I2S mode
1237 		 * 2 means PDM mode
1238 		 */
1239 		ret = of_property_read_u32_index(np, propname, index++, &type);
1240 		if (ret)
1241 			return -EINVAL;
1242 
1243 		ret = of_property_read_u32_index(np, propname, index++, &rx);
1244 		if (ret)
1245 			return -EINVAL;
1246 
1247 		ret = of_property_read_u32_index(np, propname, index++, &tx);
1248 		if (ret)
1249 			return -EINVAL;
1250 
1251 		if ((rx & ~soc_dl) || (tx & ~soc_dl)) {
1252 			dev_err(dev, "dataline cfg[%d] setting error, mask is 0x%x\n", i, soc_dl);
1253 			return -EINVAL;
1254 		}
1255 
1256 		rx = rx & soc_dl;
1257 		tx = tx & soc_dl;
1258 
1259 		cfg[i].type = type;
1260 		cfg[i].pins[0] = hweight8(rx);
1261 		cfg[i].mask[0] = rx;
1262 		dl_mask = rx;
1263 		cfg[i].start_off[0] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1264 		cfg[i].next_off[0] = fsl_sai_calc_dl_off(rx);
1265 
1266 		cfg[i].pins[1] = hweight8(tx);
1267 		cfg[i].mask[1] = tx;
1268 		dl_mask = tx;
1269 		cfg[i].start_off[1] = find_first_bit(&dl_mask, FSL_SAI_DL_NUM);
1270 		cfg[i].next_off[1] = fsl_sai_calc_dl_off(tx);
1271 	}
1272 
1273 	sai->dl_cfg = cfg;
1274 	sai->dl_cfg_cnt = num_cfg + 1;
1275 	return 0;
1276 }
1277 
1278 static int fsl_sai_runtime_suspend(struct device *dev);
1279 static int fsl_sai_runtime_resume(struct device *dev);
1280 
1281 static int fsl_sai_probe(struct platform_device *pdev)
1282 {
1283 	struct device_node *np = pdev->dev.of_node;
1284 	struct device *dev = &pdev->dev;
1285 	struct fsl_sai *sai;
1286 	struct regmap *gpr;
1287 	void __iomem *base;
1288 	char tmp[8];
1289 	int irq, ret, i;
1290 	int index;
1291 	u32 dmas[4];
1292 
1293 	sai = devm_kzalloc(dev, sizeof(*sai), GFP_KERNEL);
1294 	if (!sai)
1295 		return -ENOMEM;
1296 
1297 	sai->pdev = pdev;
1298 	sai->soc_data = of_device_get_match_data(dev);
1299 
1300 	sai->is_lsb_first = of_property_read_bool(np, "lsb-first");
1301 
1302 	base = devm_platform_get_and_ioremap_resource(pdev, 0, &sai->res);
1303 	if (IS_ERR(base))
1304 		return PTR_ERR(base);
1305 
1306 	if (sai->soc_data->reg_offset == 8) {
1307 		fsl_sai_regmap_config.reg_defaults = fsl_sai_reg_defaults_ofs8;
1308 		fsl_sai_regmap_config.max_register = FSL_SAI_MDIV;
1309 		fsl_sai_regmap_config.num_reg_defaults =
1310 			ARRAY_SIZE(fsl_sai_reg_defaults_ofs8);
1311 	}
1312 
1313 	sai->regmap = devm_regmap_init_mmio(dev, base, &fsl_sai_regmap_config);
1314 	if (IS_ERR(sai->regmap)) {
1315 		dev_err(dev, "regmap init failed\n");
1316 		return PTR_ERR(sai->regmap);
1317 	}
1318 
1319 	sai->bus_clk = devm_clk_get(dev, "bus");
1320 	/* Compatible with old DTB cases */
1321 	if (IS_ERR(sai->bus_clk) && PTR_ERR(sai->bus_clk) != -EPROBE_DEFER)
1322 		sai->bus_clk = devm_clk_get(dev, "sai");
1323 	if (IS_ERR(sai->bus_clk)) {
1324 		dev_err(dev, "failed to get bus clock: %ld\n",
1325 				PTR_ERR(sai->bus_clk));
1326 		/* -EPROBE_DEFER */
1327 		return PTR_ERR(sai->bus_clk);
1328 	}
1329 
1330 	for (i = 1; i < FSL_SAI_MCLK_MAX; i++) {
1331 		sprintf(tmp, "mclk%d", i);
1332 		sai->mclk_clk[i] = devm_clk_get(dev, tmp);
1333 		if (IS_ERR(sai->mclk_clk[i])) {
1334 			dev_err(dev, "failed to get mclk%d clock: %ld\n",
1335 					i, PTR_ERR(sai->mclk_clk[i]));
1336 			sai->mclk_clk[i] = NULL;
1337 		}
1338 	}
1339 
1340 	if (sai->soc_data->mclk0_is_mclk1)
1341 		sai->mclk_clk[0] = sai->mclk_clk[1];
1342 	else
1343 		sai->mclk_clk[0] = sai->bus_clk;
1344 
1345 	fsl_asoc_get_pll_clocks(&pdev->dev, &sai->pll8k_clk,
1346 				&sai->pll11k_clk);
1347 
1348 	/* Use Multi FIFO mode depending on the support from SDMA script */
1349 	ret = of_property_read_u32_array(np, "dmas", dmas, 4);
1350 	if (!sai->soc_data->use_edma && !ret && dmas[2] == IMX_DMATYPE_MULTI_SAI)
1351 		sai->is_multi_fifo_dma = true;
1352 
1353 	/* read dataline mask for rx and tx*/
1354 	ret = fsl_sai_read_dlcfg(sai);
1355 	if (ret < 0) {
1356 		dev_err(dev, "failed to read dlcfg %d\n", ret);
1357 		return ret;
1358 	}
1359 
1360 	irq = platform_get_irq(pdev, 0);
1361 	if (irq < 0)
1362 		return irq;
1363 
1364 	ret = devm_request_irq(dev, irq, fsl_sai_isr, IRQF_SHARED,
1365 			       np->name, sai);
1366 	if (ret) {
1367 		dev_err(dev, "failed to claim irq %u\n", irq);
1368 		return ret;
1369 	}
1370 
1371 	memcpy(&sai->cpu_dai_drv, &fsl_sai_dai_template,
1372 	       sizeof(fsl_sai_dai_template));
1373 
1374 	/* Sync Tx with Rx as default by following old DT binding */
1375 	sai->synchronous[RX] = true;
1376 	sai->synchronous[TX] = false;
1377 	sai->cpu_dai_drv.symmetric_rate = 1;
1378 	sai->cpu_dai_drv.symmetric_channels = 1;
1379 	sai->cpu_dai_drv.symmetric_sample_bits = 1;
1380 
1381 	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL) &&
1382 	    of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1383 		/* error out if both synchronous and asynchronous are present */
1384 		dev_err(dev, "invalid binding for synchronous mode\n");
1385 		return -EINVAL;
1386 	}
1387 
1388 	if (of_find_property(np, "fsl,sai-synchronous-rx", NULL)) {
1389 		/* Sync Rx with Tx */
1390 		sai->synchronous[RX] = false;
1391 		sai->synchronous[TX] = true;
1392 	} else if (of_find_property(np, "fsl,sai-asynchronous", NULL)) {
1393 		/* Discard all settings for asynchronous mode */
1394 		sai->synchronous[RX] = false;
1395 		sai->synchronous[TX] = false;
1396 		sai->cpu_dai_drv.symmetric_rate = 0;
1397 		sai->cpu_dai_drv.symmetric_channels = 0;
1398 		sai->cpu_dai_drv.symmetric_sample_bits = 0;
1399 	}
1400 
1401 	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1402 	    of_device_is_compatible(np, "fsl,imx6ul-sai")) {
1403 		gpr = syscon_regmap_lookup_by_compatible("fsl,imx6ul-iomuxc-gpr");
1404 		if (IS_ERR(gpr)) {
1405 			dev_err(dev, "cannot find iomuxc registers\n");
1406 			return PTR_ERR(gpr);
1407 		}
1408 
1409 		index = of_alias_get_id(np, "sai");
1410 		if (index < 0)
1411 			return index;
1412 
1413 		regmap_update_bits(gpr, IOMUXC_GPR1, MCLK_DIR(index),
1414 				   MCLK_DIR(index));
1415 	}
1416 
1417 	sai->dma_params_rx.addr = sai->res->start + FSL_SAI_RDR0;
1418 	sai->dma_params_tx.addr = sai->res->start + FSL_SAI_TDR0;
1419 	sai->dma_params_rx.maxburst = FSL_SAI_MAXBURST_RX;
1420 	sai->dma_params_tx.maxburst = FSL_SAI_MAXBURST_TX;
1421 
1422 	sai->pinctrl = devm_pinctrl_get(&pdev->dev);
1423 
1424 	platform_set_drvdata(pdev, sai);
1425 	pm_runtime_enable(dev);
1426 	if (!pm_runtime_enabled(dev)) {
1427 		ret = fsl_sai_runtime_resume(dev);
1428 		if (ret)
1429 			goto err_pm_disable;
1430 	}
1431 
1432 	ret = pm_runtime_resume_and_get(dev);
1433 	if (ret < 0)
1434 		goto err_pm_get_sync;
1435 
1436 	/* Get sai version */
1437 	ret = fsl_sai_check_version(dev);
1438 	if (ret < 0)
1439 		dev_warn(dev, "Error reading SAI version: %d\n", ret);
1440 
1441 	/* Select MCLK direction */
1442 	if (of_find_property(np, "fsl,sai-mclk-direction-output", NULL) &&
1443 	    sai->soc_data->max_register >= FSL_SAI_MCTL) {
1444 		regmap_update_bits(sai->regmap, FSL_SAI_MCTL,
1445 				   FSL_SAI_MCTL_MCLK_EN, FSL_SAI_MCTL_MCLK_EN);
1446 	}
1447 
1448 	ret = pm_runtime_put_sync(dev);
1449 	if (ret < 0)
1450 		goto err_pm_get_sync;
1451 
1452 	/*
1453 	 * Register platform component before registering cpu dai for there
1454 	 * is not defer probe for platform component in snd_soc_add_pcm_runtime().
1455 	 */
1456 	if (sai->soc_data->use_imx_pcm) {
1457 		ret = imx_pcm_dma_init(pdev);
1458 		if (ret) {
1459 			if (!IS_ENABLED(CONFIG_SND_SOC_IMX_PCM_DMA))
1460 				dev_err(dev, "Error: You must enable the imx-pcm-dma support!\n");
1461 			goto err_pm_get_sync;
1462 		}
1463 	} else {
1464 		ret = devm_snd_dmaengine_pcm_register(dev, NULL, 0);
1465 		if (ret)
1466 			goto err_pm_get_sync;
1467 	}
1468 
1469 	ret = devm_snd_soc_register_component(dev, &fsl_component,
1470 					      &sai->cpu_dai_drv, 1);
1471 	if (ret)
1472 		goto err_pm_get_sync;
1473 
1474 	return ret;
1475 
1476 err_pm_get_sync:
1477 	if (!pm_runtime_status_suspended(dev))
1478 		fsl_sai_runtime_suspend(dev);
1479 err_pm_disable:
1480 	pm_runtime_disable(dev);
1481 
1482 	return ret;
1483 }
1484 
1485 static int fsl_sai_remove(struct platform_device *pdev)
1486 {
1487 	pm_runtime_disable(&pdev->dev);
1488 	if (!pm_runtime_status_suspended(&pdev->dev))
1489 		fsl_sai_runtime_suspend(&pdev->dev);
1490 
1491 	return 0;
1492 }
1493 
1494 static const struct fsl_sai_soc_data fsl_sai_vf610_data = {
1495 	.use_imx_pcm = false,
1496 	.use_edma = false,
1497 	.fifo_depth = 32,
1498 	.pins = 1,
1499 	.reg_offset = 0,
1500 	.mclk0_is_mclk1 = false,
1501 	.flags = 0,
1502 	.max_register = FSL_SAI_RMR,
1503 };
1504 
1505 static const struct fsl_sai_soc_data fsl_sai_imx6sx_data = {
1506 	.use_imx_pcm = true,
1507 	.use_edma = false,
1508 	.fifo_depth = 32,
1509 	.pins = 1,
1510 	.reg_offset = 0,
1511 	.mclk0_is_mclk1 = true,
1512 	.flags = 0,
1513 	.max_register = FSL_SAI_RMR,
1514 };
1515 
1516 static const struct fsl_sai_soc_data fsl_sai_imx7ulp_data = {
1517 	.use_imx_pcm = true,
1518 	.use_edma = false,
1519 	.fifo_depth = 16,
1520 	.pins = 2,
1521 	.reg_offset = 8,
1522 	.mclk0_is_mclk1 = false,
1523 	.flags = PMQOS_CPU_LATENCY,
1524 	.max_register = FSL_SAI_RMR,
1525 };
1526 
1527 static const struct fsl_sai_soc_data fsl_sai_imx8mq_data = {
1528 	.use_imx_pcm = true,
1529 	.use_edma = false,
1530 	.fifo_depth = 128,
1531 	.pins = 8,
1532 	.reg_offset = 8,
1533 	.mclk0_is_mclk1 = false,
1534 	.flags = 0,
1535 	.max_register = FSL_SAI_RMR,
1536 };
1537 
1538 static const struct fsl_sai_soc_data fsl_sai_imx8qm_data = {
1539 	.use_imx_pcm = true,
1540 	.use_edma = true,
1541 	.fifo_depth = 64,
1542 	.pins = 1,
1543 	.reg_offset = 0,
1544 	.mclk0_is_mclk1 = false,
1545 	.flags = 0,
1546 	.max_register = FSL_SAI_RMR,
1547 };
1548 
1549 static const struct fsl_sai_soc_data fsl_sai_imx8mm_data = {
1550 	.use_imx_pcm = true,
1551 	.use_edma = false,
1552 	.fifo_depth = 128,
1553 	.reg_offset = 8,
1554 	.mclk0_is_mclk1 = false,
1555 	.pins = 8,
1556 	.flags = 0,
1557 	.max_register = FSL_SAI_MCTL,
1558 };
1559 
1560 static const struct fsl_sai_soc_data fsl_sai_imx8mp_data = {
1561 	.use_imx_pcm = true,
1562 	.use_edma = false,
1563 	.fifo_depth = 128,
1564 	.reg_offset = 8,
1565 	.mclk0_is_mclk1 = false,
1566 	.pins = 8,
1567 	.flags = 0,
1568 	.max_register = FSL_SAI_MDIV,
1569 };
1570 
1571 static const struct fsl_sai_soc_data fsl_sai_imx8ulp_data = {
1572 	.use_imx_pcm = true,
1573 	.use_edma = true,
1574 	.fifo_depth = 16,
1575 	.reg_offset = 8,
1576 	.mclk0_is_mclk1 = false,
1577 	.pins = 4,
1578 	.flags = PMQOS_CPU_LATENCY,
1579 	.max_register = FSL_SAI_RTCAP,
1580 };
1581 
1582 static const struct of_device_id fsl_sai_ids[] = {
1583 	{ .compatible = "fsl,vf610-sai", .data = &fsl_sai_vf610_data },
1584 	{ .compatible = "fsl,imx6sx-sai", .data = &fsl_sai_imx6sx_data },
1585 	{ .compatible = "fsl,imx6ul-sai", .data = &fsl_sai_imx6sx_data },
1586 	{ .compatible = "fsl,imx7ulp-sai", .data = &fsl_sai_imx7ulp_data },
1587 	{ .compatible = "fsl,imx8mq-sai", .data = &fsl_sai_imx8mq_data },
1588 	{ .compatible = "fsl,imx8qm-sai", .data = &fsl_sai_imx8qm_data },
1589 	{ .compatible = "fsl,imx8mm-sai", .data = &fsl_sai_imx8mm_data },
1590 	{ .compatible = "fsl,imx8mp-sai", .data = &fsl_sai_imx8mp_data },
1591 	{ .compatible = "fsl,imx8ulp-sai", .data = &fsl_sai_imx8ulp_data },
1592 	{ .compatible = "fsl,imx8mn-sai", .data = &fsl_sai_imx8mp_data },
1593 	{ /* sentinel */ }
1594 };
1595 MODULE_DEVICE_TABLE(of, fsl_sai_ids);
1596 
1597 static int fsl_sai_runtime_suspend(struct device *dev)
1598 {
1599 	struct fsl_sai *sai = dev_get_drvdata(dev);
1600 
1601 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1602 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1603 
1604 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1605 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1606 
1607 	clk_disable_unprepare(sai->bus_clk);
1608 
1609 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1610 		cpu_latency_qos_remove_request(&sai->pm_qos_req);
1611 
1612 	regcache_cache_only(sai->regmap, true);
1613 
1614 	return 0;
1615 }
1616 
1617 static int fsl_sai_runtime_resume(struct device *dev)
1618 {
1619 	struct fsl_sai *sai = dev_get_drvdata(dev);
1620 	unsigned int ofs = sai->soc_data->reg_offset;
1621 	int ret;
1622 
1623 	ret = clk_prepare_enable(sai->bus_clk);
1624 	if (ret) {
1625 		dev_err(dev, "failed to enable bus clock: %d\n", ret);
1626 		return ret;
1627 	}
1628 
1629 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK)) {
1630 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[1]]);
1631 		if (ret)
1632 			goto disable_bus_clk;
1633 	}
1634 
1635 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE)) {
1636 		ret = clk_prepare_enable(sai->mclk_clk[sai->mclk_id[0]]);
1637 		if (ret)
1638 			goto disable_tx_clk;
1639 	}
1640 
1641 	if (sai->soc_data->flags & PMQOS_CPU_LATENCY)
1642 		cpu_latency_qos_add_request(&sai->pm_qos_req, 0);
1643 
1644 	regcache_cache_only(sai->regmap, false);
1645 	regcache_mark_dirty(sai->regmap);
1646 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), FSL_SAI_CSR_SR);
1647 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), FSL_SAI_CSR_SR);
1648 	usleep_range(1000, 2000);
1649 	regmap_write(sai->regmap, FSL_SAI_TCSR(ofs), 0);
1650 	regmap_write(sai->regmap, FSL_SAI_RCSR(ofs), 0);
1651 
1652 	ret = regcache_sync(sai->regmap);
1653 	if (ret)
1654 		goto disable_rx_clk;
1655 
1656 	return 0;
1657 
1658 disable_rx_clk:
1659 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_CAPTURE))
1660 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[0]]);
1661 disable_tx_clk:
1662 	if (sai->mclk_streams & BIT(SNDRV_PCM_STREAM_PLAYBACK))
1663 		clk_disable_unprepare(sai->mclk_clk[sai->mclk_id[1]]);
1664 disable_bus_clk:
1665 	clk_disable_unprepare(sai->bus_clk);
1666 
1667 	return ret;
1668 }
1669 
1670 static const struct dev_pm_ops fsl_sai_pm_ops = {
1671 	SET_RUNTIME_PM_OPS(fsl_sai_runtime_suspend,
1672 			   fsl_sai_runtime_resume, NULL)
1673 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1674 				pm_runtime_force_resume)
1675 };
1676 
1677 static struct platform_driver fsl_sai_driver = {
1678 	.probe = fsl_sai_probe,
1679 	.remove = fsl_sai_remove,
1680 	.driver = {
1681 		.name = "fsl-sai",
1682 		.pm = &fsl_sai_pm_ops,
1683 		.of_match_table = fsl_sai_ids,
1684 	},
1685 };
1686 module_platform_driver(fsl_sai_driver);
1687 
1688 MODULE_DESCRIPTION("Freescale Soc SAI Interface");
1689 MODULE_AUTHOR("Xiubo Li, <Li.Xiubo@freescale.com>");
1690 MODULE_ALIAS("platform:fsl-sai");
1691 MODULE_LICENSE("GPL");
1692