xref: /linux/sound/soc/stm/stm32_sai_sub.c (revision 52338415)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
4  *
5  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6  * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/regmap.h>
16 
17 #include <sound/asoundef.h>
18 #include <sound/core.h>
19 #include <sound/dmaengine_pcm.h>
20 #include <sound/pcm_params.h>
21 
22 #include "stm32_sai.h"
23 
24 #define SAI_FREE_PROTOCOL	0x0
25 #define SAI_SPDIF_PROTOCOL	0x1
26 
27 #define SAI_SLOT_SIZE_AUTO	0x0
28 #define SAI_SLOT_SIZE_16	0x1
29 #define SAI_SLOT_SIZE_32	0x2
30 
31 #define SAI_DATASIZE_8		0x2
32 #define SAI_DATASIZE_10		0x3
33 #define SAI_DATASIZE_16		0x4
34 #define SAI_DATASIZE_20		0x5
35 #define SAI_DATASIZE_24		0x6
36 #define SAI_DATASIZE_32		0x7
37 
38 #define STM_SAI_DAI_NAME_SIZE	15
39 
40 #define STM_SAI_IS_PLAYBACK(ip)	((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
41 #define STM_SAI_IS_CAPTURE(ip)	((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
42 
43 #define STM_SAI_A_ID		0x0
44 #define STM_SAI_B_ID		0x1
45 
46 #define STM_SAI_IS_SUB_A(x)	((x)->id == STM_SAI_A_ID)
47 #define STM_SAI_IS_SUB_B(x)	((x)->id == STM_SAI_B_ID)
48 #define STM_SAI_BLOCK_NAME(x)	(((x)->id == STM_SAI_A_ID) ? "A" : "B")
49 
50 #define SAI_SYNC_NONE		0x0
51 #define SAI_SYNC_INTERNAL	0x1
52 #define SAI_SYNC_EXTERNAL	0x2
53 
54 #define STM_SAI_PROTOCOL_IS_SPDIF(ip)	((ip)->spdif)
55 #define STM_SAI_HAS_SPDIF(x)	((x)->pdata->conf.has_spdif_pdm)
56 #define STM_SAI_HAS_PDM(x)	((x)->pdata->conf.has_spdif_pdm)
57 #define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
58 
59 #define SAI_IEC60958_BLOCK_FRAMES	192
60 #define SAI_IEC60958_STATUS_BYTES	24
61 
62 #define SAI_MCLK_NAME_LEN		32
63 #define SAI_RATE_11K			11025
64 
65 /**
66  * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
67  * @pdev: device data pointer
68  * @regmap: SAI register map pointer
69  * @regmap_config: SAI sub block register map configuration pointer
70  * @dma_params: dma configuration data for rx or tx channel
71  * @cpu_dai_drv: DAI driver data pointer
72  * @cpu_dai: DAI runtime data pointer
73  * @substream: PCM substream data pointer
74  * @pdata: SAI block parent data pointer
75  * @np_sync_provider: synchronization provider node
76  * @sai_ck: kernel clock feeding the SAI clock generator
77  * @sai_mclk: master clock from SAI mclk provider
78  * @phys_addr: SAI registers physical base address
79  * @mclk_rate: SAI block master clock frequency (Hz). set at init
80  * @id: SAI sub block id corresponding to sub-block A or B
81  * @dir: SAI block direction (playback or capture). set at init
82  * @master: SAI block mode flag. (true=master, false=slave) set at init
83  * @spdif: SAI S/PDIF iec60958 mode flag. set at init
84  * @fmt: SAI block format. relevant only for custom protocols. set at init
85  * @sync: SAI block synchronization mode. (none, internal or external)
86  * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
87  * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
88  * @fs_length: frame synchronization length. depends on protocol settings
89  * @slots: rx or tx slot number
90  * @slot_width: rx or tx slot width in bits
91  * @slot_mask: rx or tx active slots mask. set at init or at runtime
92  * @data_size: PCM data width. corresponds to PCM substream width.
93  * @spdif_frm_cnt: S/PDIF playback frame counter
94  * @iec958: iec958 data
95  * @ctrl_lock: control lock
96  * @irq_lock: prevent race condition with IRQ
97  */
98 struct stm32_sai_sub_data {
99 	struct platform_device *pdev;
100 	struct regmap *regmap;
101 	const struct regmap_config *regmap_config;
102 	struct snd_dmaengine_dai_dma_data dma_params;
103 	struct snd_soc_dai_driver cpu_dai_drv;
104 	struct snd_soc_dai *cpu_dai;
105 	struct snd_pcm_substream *substream;
106 	struct stm32_sai_data *pdata;
107 	struct device_node *np_sync_provider;
108 	struct clk *sai_ck;
109 	struct clk *sai_mclk;
110 	dma_addr_t phys_addr;
111 	unsigned int mclk_rate;
112 	unsigned int id;
113 	int dir;
114 	bool master;
115 	bool spdif;
116 	int fmt;
117 	int sync;
118 	int synco;
119 	int synci;
120 	int fs_length;
121 	int slots;
122 	int slot_width;
123 	int slot_mask;
124 	int data_size;
125 	unsigned int spdif_frm_cnt;
126 	struct snd_aes_iec958 iec958;
127 	struct mutex ctrl_lock; /* protect resources accessed by controls */
128 	spinlock_t irq_lock; /* used to prevent race condition with IRQ */
129 };
130 
131 enum stm32_sai_fifo_th {
132 	STM_SAI_FIFO_TH_EMPTY,
133 	STM_SAI_FIFO_TH_QUARTER,
134 	STM_SAI_FIFO_TH_HALF,
135 	STM_SAI_FIFO_TH_3_QUARTER,
136 	STM_SAI_FIFO_TH_FULL,
137 };
138 
139 static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
140 {
141 	switch (reg) {
142 	case STM_SAI_CR1_REGX:
143 	case STM_SAI_CR2_REGX:
144 	case STM_SAI_FRCR_REGX:
145 	case STM_SAI_SLOTR_REGX:
146 	case STM_SAI_IMR_REGX:
147 	case STM_SAI_SR_REGX:
148 	case STM_SAI_CLRFR_REGX:
149 	case STM_SAI_DR_REGX:
150 	case STM_SAI_PDMCR_REGX:
151 	case STM_SAI_PDMLY_REGX:
152 		return true;
153 	default:
154 		return false;
155 	}
156 }
157 
158 static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
159 {
160 	switch (reg) {
161 	case STM_SAI_DR_REGX:
162 	case STM_SAI_SR_REGX:
163 		return true;
164 	default:
165 		return false;
166 	}
167 }
168 
169 static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
170 {
171 	switch (reg) {
172 	case STM_SAI_CR1_REGX:
173 	case STM_SAI_CR2_REGX:
174 	case STM_SAI_FRCR_REGX:
175 	case STM_SAI_SLOTR_REGX:
176 	case STM_SAI_IMR_REGX:
177 	case STM_SAI_CLRFR_REGX:
178 	case STM_SAI_DR_REGX:
179 	case STM_SAI_PDMCR_REGX:
180 	case STM_SAI_PDMLY_REGX:
181 		return true;
182 	default:
183 		return false;
184 	}
185 }
186 
187 static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
188 	.reg_bits = 32,
189 	.reg_stride = 4,
190 	.val_bits = 32,
191 	.max_register = STM_SAI_DR_REGX,
192 	.readable_reg = stm32_sai_sub_readable_reg,
193 	.volatile_reg = stm32_sai_sub_volatile_reg,
194 	.writeable_reg = stm32_sai_sub_writeable_reg,
195 	.fast_io = true,
196 	.cache_type = REGCACHE_FLAT,
197 };
198 
199 static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
200 	.reg_bits = 32,
201 	.reg_stride = 4,
202 	.val_bits = 32,
203 	.max_register = STM_SAI_PDMLY_REGX,
204 	.readable_reg = stm32_sai_sub_readable_reg,
205 	.volatile_reg = stm32_sai_sub_volatile_reg,
206 	.writeable_reg = stm32_sai_sub_writeable_reg,
207 	.fast_io = true,
208 	.cache_type = REGCACHE_FLAT,
209 };
210 
211 static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
212 			       struct snd_ctl_elem_info *uinfo)
213 {
214 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
215 	uinfo->count = 1;
216 
217 	return 0;
218 }
219 
220 static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
221 			      struct snd_ctl_elem_value *uctl)
222 {
223 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
224 
225 	mutex_lock(&sai->ctrl_lock);
226 	memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
227 	mutex_unlock(&sai->ctrl_lock);
228 
229 	return 0;
230 }
231 
232 static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
233 			      struct snd_ctl_elem_value *uctl)
234 {
235 	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
236 
237 	mutex_lock(&sai->ctrl_lock);
238 	memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
239 	mutex_unlock(&sai->ctrl_lock);
240 
241 	return 0;
242 }
243 
244 static const struct snd_kcontrol_new iec958_ctls = {
245 	.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
246 			SNDRV_CTL_ELEM_ACCESS_VOLATILE),
247 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
248 	.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
249 	.info = snd_pcm_iec958_info,
250 	.get = snd_pcm_iec958_get,
251 	.put = snd_pcm_iec958_put,
252 };
253 
254 struct stm32_sai_mclk_data {
255 	struct clk_hw hw;
256 	unsigned long freq;
257 	struct stm32_sai_sub_data *sai_data;
258 };
259 
260 #define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
261 #define STM32_SAI_MAX_CLKS 1
262 
263 static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
264 				 unsigned long input_rate,
265 				 unsigned long output_rate)
266 {
267 	int version = sai->pdata->conf.version;
268 	int div;
269 
270 	div = DIV_ROUND_CLOSEST(input_rate, output_rate);
271 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
272 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
273 		return -EINVAL;
274 	}
275 	dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
276 
277 	if (input_rate % div)
278 		dev_dbg(&sai->pdev->dev,
279 			"Rate not accurate. requested (%ld), actual (%ld)\n",
280 			output_rate, input_rate / div);
281 
282 	return div;
283 }
284 
285 static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
286 				 unsigned int div)
287 {
288 	int version = sai->pdata->conf.version;
289 	int ret, cr1, mask;
290 
291 	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
292 		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
293 		return -EINVAL;
294 	}
295 
296 	mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
297 	cr1 = SAI_XCR1_MCKDIV_SET(div);
298 	ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, mask, cr1);
299 	if (ret < 0)
300 		dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
301 
302 	return ret;
303 }
304 
305 static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
306 				      unsigned int rate)
307 {
308 	struct platform_device *pdev = sai->pdev;
309 	struct clk *parent_clk = sai->pdata->clk_x8k;
310 	int ret;
311 
312 	if (!(rate % SAI_RATE_11K))
313 		parent_clk = sai->pdata->clk_x11k;
314 
315 	ret = clk_set_parent(sai->sai_ck, parent_clk);
316 	if (ret)
317 		dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
318 			ret, ret == -EBUSY ?
319 			"Active stream rates conflict\n" : "\n");
320 
321 	return ret;
322 }
323 
324 static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
325 				      unsigned long *prate)
326 {
327 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
328 	struct stm32_sai_sub_data *sai = mclk->sai_data;
329 	int div;
330 
331 	div = stm32_sai_get_clk_div(sai, *prate, rate);
332 	if (div < 0)
333 		return div;
334 
335 	mclk->freq = *prate / div;
336 
337 	return mclk->freq;
338 }
339 
340 static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
341 						unsigned long parent_rate)
342 {
343 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
344 
345 	return mclk->freq;
346 }
347 
348 static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
349 				   unsigned long parent_rate)
350 {
351 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
352 	struct stm32_sai_sub_data *sai = mclk->sai_data;
353 	int div, ret;
354 
355 	div = stm32_sai_get_clk_div(sai, parent_rate, rate);
356 	if (div < 0)
357 		return div;
358 
359 	ret = stm32_sai_set_clk_div(sai, div);
360 	if (ret)
361 		return ret;
362 
363 	mclk->freq = rate;
364 
365 	return 0;
366 }
367 
368 static int stm32_sai_mclk_enable(struct clk_hw *hw)
369 {
370 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
371 	struct stm32_sai_sub_data *sai = mclk->sai_data;
372 
373 	dev_dbg(&sai->pdev->dev, "Enable master clock\n");
374 
375 	return regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
376 				  SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
377 }
378 
379 static void stm32_sai_mclk_disable(struct clk_hw *hw)
380 {
381 	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
382 	struct stm32_sai_sub_data *sai = mclk->sai_data;
383 
384 	dev_dbg(&sai->pdev->dev, "Disable master clock\n");
385 
386 	regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
387 }
388 
389 static const struct clk_ops mclk_ops = {
390 	.enable = stm32_sai_mclk_enable,
391 	.disable = stm32_sai_mclk_disable,
392 	.recalc_rate = stm32_sai_mclk_recalc_rate,
393 	.round_rate = stm32_sai_mclk_round_rate,
394 	.set_rate = stm32_sai_mclk_set_rate,
395 };
396 
397 static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
398 {
399 	struct clk_hw *hw;
400 	struct stm32_sai_mclk_data *mclk;
401 	struct device *dev = &sai->pdev->dev;
402 	const char *pname = __clk_get_name(sai->sai_ck);
403 	char *mclk_name, *p, *s = (char *)pname;
404 	int ret, i = 0;
405 
406 	mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
407 	if (!mclk)
408 		return -ENOMEM;
409 
410 	mclk_name = devm_kcalloc(dev, sizeof(char),
411 				 SAI_MCLK_NAME_LEN, GFP_KERNEL);
412 	if (!mclk_name)
413 		return -ENOMEM;
414 
415 	/*
416 	 * Forge mclk clock name from parent clock name and suffix.
417 	 * String after "_" char is stripped in parent name.
418 	 */
419 	p = mclk_name;
420 	while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
421 		*p++ = *s++;
422 		i++;
423 	}
424 	STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
425 
426 	mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
427 	mclk->sai_data = sai;
428 	hw = &mclk->hw;
429 
430 	dev_dbg(dev, "Register master clock %s\n", mclk_name);
431 	ret = devm_clk_hw_register(&sai->pdev->dev, hw);
432 	if (ret) {
433 		dev_err(dev, "mclk register returned %d\n", ret);
434 		return ret;
435 	}
436 	sai->sai_mclk = hw->clk;
437 
438 	/* register mclk provider */
439 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
440 }
441 
442 static irqreturn_t stm32_sai_isr(int irq, void *devid)
443 {
444 	struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
445 	struct platform_device *pdev = sai->pdev;
446 	unsigned int sr, imr, flags;
447 	snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
448 
449 	regmap_read(sai->regmap, STM_SAI_IMR_REGX, &imr);
450 	regmap_read(sai->regmap, STM_SAI_SR_REGX, &sr);
451 
452 	flags = sr & imr;
453 	if (!flags)
454 		return IRQ_NONE;
455 
456 	regmap_write_bits(sai->regmap, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
457 			  SAI_XCLRFR_MASK);
458 
459 	if (!sai->substream) {
460 		dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
461 		return IRQ_NONE;
462 	}
463 
464 	if (flags & SAI_XIMR_OVRUDRIE) {
465 		dev_err(&pdev->dev, "IRQ %s\n",
466 			STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
467 		status = SNDRV_PCM_STATE_XRUN;
468 	}
469 
470 	if (flags & SAI_XIMR_MUTEDETIE)
471 		dev_dbg(&pdev->dev, "IRQ mute detected\n");
472 
473 	if (flags & SAI_XIMR_WCKCFGIE) {
474 		dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
475 		status = SNDRV_PCM_STATE_DISCONNECTED;
476 	}
477 
478 	if (flags & SAI_XIMR_CNRDYIE)
479 		dev_err(&pdev->dev, "IRQ Codec not ready\n");
480 
481 	if (flags & SAI_XIMR_AFSDETIE) {
482 		dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
483 		status = SNDRV_PCM_STATE_XRUN;
484 	}
485 
486 	if (flags & SAI_XIMR_LFSDETIE) {
487 		dev_err(&pdev->dev, "IRQ Late frame synchro\n");
488 		status = SNDRV_PCM_STATE_XRUN;
489 	}
490 
491 	spin_lock(&sai->irq_lock);
492 	if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
493 		snd_pcm_stop_xrun(sai->substream);
494 	spin_unlock(&sai->irq_lock);
495 
496 	return IRQ_HANDLED;
497 }
498 
499 static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
500 				int clk_id, unsigned int freq, int dir)
501 {
502 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
503 	int ret;
504 
505 	if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
506 		ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
507 					 SAI_XCR1_NODIV,
508 					 freq ? 0 : SAI_XCR1_NODIV);
509 		if (ret < 0)
510 			return ret;
511 
512 		/* Assume shutdown if requested frequency is 0Hz */
513 		if (!freq) {
514 			/* Release mclk rate only if rate was actually set */
515 			if (sai->mclk_rate) {
516 				clk_rate_exclusive_put(sai->sai_mclk);
517 				sai->mclk_rate = 0;
518 			}
519 			return 0;
520 		}
521 
522 		/* If master clock is used, set parent clock now */
523 		ret = stm32_sai_set_parent_clock(sai, freq);
524 		if (ret)
525 			return ret;
526 
527 		ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
528 		if (ret) {
529 			dev_err(cpu_dai->dev,
530 				ret == -EBUSY ?
531 				"Active streams have incompatible rates" :
532 				"Could not set mclk rate\n");
533 			return ret;
534 		}
535 
536 		dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
537 		sai->mclk_rate = freq;
538 	}
539 
540 	return 0;
541 }
542 
543 static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
544 				      u32 rx_mask, int slots, int slot_width)
545 {
546 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
547 	int slotr, slotr_mask, slot_size;
548 
549 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
550 		dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
551 		return 0;
552 	}
553 
554 	dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
555 		tx_mask, rx_mask, slots, slot_width);
556 
557 	switch (slot_width) {
558 	case 16:
559 		slot_size = SAI_SLOT_SIZE_16;
560 		break;
561 	case 32:
562 		slot_size = SAI_SLOT_SIZE_32;
563 		break;
564 	default:
565 		slot_size = SAI_SLOT_SIZE_AUTO;
566 		break;
567 	}
568 
569 	slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
570 		SAI_XSLOTR_NBSLOT_SET(slots - 1);
571 	slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
572 
573 	/* tx/rx mask set in machine init, if slot number defined in DT */
574 	if (STM_SAI_IS_PLAYBACK(sai)) {
575 		sai->slot_mask = tx_mask;
576 		slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
577 	}
578 
579 	if (STM_SAI_IS_CAPTURE(sai)) {
580 		sai->slot_mask = rx_mask;
581 		slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
582 	}
583 
584 	slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
585 
586 	regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
587 
588 	sai->slot_width = slot_width;
589 	sai->slots = slots;
590 
591 	return 0;
592 }
593 
594 static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
595 {
596 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
597 	int cr1, frcr = 0;
598 	int cr1_mask, frcr_mask = 0;
599 	int ret;
600 
601 	dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
602 
603 	/* Do not generate master by default */
604 	cr1 = SAI_XCR1_NODIV;
605 	cr1_mask = SAI_XCR1_NODIV;
606 
607 	cr1_mask |= SAI_XCR1_PRTCFG_MASK;
608 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
609 		cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
610 		goto conf_update;
611 	}
612 
613 	cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
614 
615 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
616 	/* SCK active high for all protocols */
617 	case SND_SOC_DAIFMT_I2S:
618 		cr1 |= SAI_XCR1_CKSTR;
619 		frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
620 		break;
621 	/* Left justified */
622 	case SND_SOC_DAIFMT_MSB:
623 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
624 		break;
625 	/* Right justified */
626 	case SND_SOC_DAIFMT_LSB:
627 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
628 		break;
629 	case SND_SOC_DAIFMT_DSP_A:
630 		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
631 		break;
632 	case SND_SOC_DAIFMT_DSP_B:
633 		frcr |= SAI_XFRCR_FSPOL;
634 		break;
635 	default:
636 		dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
637 			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
638 		return -EINVAL;
639 	}
640 
641 	cr1_mask |= SAI_XCR1_CKSTR;
642 	frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
643 		     SAI_XFRCR_FSDEF;
644 
645 	/* DAI clock strobing. Invert setting previously set */
646 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
647 	case SND_SOC_DAIFMT_NB_NF:
648 		break;
649 	case SND_SOC_DAIFMT_IB_NF:
650 		cr1 ^= SAI_XCR1_CKSTR;
651 		break;
652 	case SND_SOC_DAIFMT_NB_IF:
653 		frcr ^= SAI_XFRCR_FSPOL;
654 		break;
655 	case SND_SOC_DAIFMT_IB_IF:
656 		/* Invert fs & sck */
657 		cr1 ^= SAI_XCR1_CKSTR;
658 		frcr ^= SAI_XFRCR_FSPOL;
659 		break;
660 	default:
661 		dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
662 			fmt & SND_SOC_DAIFMT_INV_MASK);
663 		return -EINVAL;
664 	}
665 	cr1_mask |= SAI_XCR1_CKSTR;
666 	frcr_mask |= SAI_XFRCR_FSPOL;
667 
668 	regmap_update_bits(sai->regmap, STM_SAI_FRCR_REGX, frcr_mask, frcr);
669 
670 	/* DAI clock master masks */
671 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
672 	case SND_SOC_DAIFMT_CBM_CFM:
673 		/* codec is master */
674 		cr1 |= SAI_XCR1_SLAVE;
675 		sai->master = false;
676 		break;
677 	case SND_SOC_DAIFMT_CBS_CFS:
678 		sai->master = true;
679 		break;
680 	default:
681 		dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
682 			fmt & SND_SOC_DAIFMT_MASTER_MASK);
683 		return -EINVAL;
684 	}
685 
686 	/* Set slave mode if sub-block is synchronized with another SAI */
687 	if (sai->sync) {
688 		dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
689 		cr1 |= SAI_XCR1_SLAVE;
690 		sai->master = false;
691 	}
692 
693 	cr1_mask |= SAI_XCR1_SLAVE;
694 
695 conf_update:
696 	ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
697 	if (ret < 0) {
698 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
699 		return ret;
700 	}
701 
702 	sai->fmt = fmt;
703 
704 	return 0;
705 }
706 
707 static int stm32_sai_startup(struct snd_pcm_substream *substream,
708 			     struct snd_soc_dai *cpu_dai)
709 {
710 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
711 	int imr, cr2, ret;
712 	unsigned long flags;
713 
714 	spin_lock_irqsave(&sai->irq_lock, flags);
715 	sai->substream = substream;
716 	spin_unlock_irqrestore(&sai->irq_lock, flags);
717 
718 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
719 		snd_pcm_hw_constraint_mask64(substream->runtime,
720 					     SNDRV_PCM_HW_PARAM_FORMAT,
721 					     SNDRV_PCM_FMTBIT_S32_LE);
722 		snd_pcm_hw_constraint_single(substream->runtime,
723 					     SNDRV_PCM_HW_PARAM_CHANNELS, 2);
724 	}
725 
726 	ret = clk_prepare_enable(sai->sai_ck);
727 	if (ret < 0) {
728 		dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
729 		return ret;
730 	}
731 
732 	/* Enable ITs */
733 	regmap_write_bits(sai->regmap, STM_SAI_CLRFR_REGX,
734 			  SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
735 
736 	imr = SAI_XIMR_OVRUDRIE;
737 	if (STM_SAI_IS_CAPTURE(sai)) {
738 		regmap_read(sai->regmap, STM_SAI_CR2_REGX, &cr2);
739 		if (cr2 & SAI_XCR2_MUTECNT_MASK)
740 			imr |= SAI_XIMR_MUTEDETIE;
741 	}
742 
743 	if (sai->master)
744 		imr |= SAI_XIMR_WCKCFGIE;
745 	else
746 		imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
747 
748 	regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX,
749 			   SAI_XIMR_MASK, imr);
750 
751 	return 0;
752 }
753 
754 static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
755 				struct snd_pcm_substream *substream,
756 				struct snd_pcm_hw_params *params)
757 {
758 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
759 	int cr1, cr1_mask, ret;
760 
761 	/*
762 	 * DMA bursts increment is set to 4 words.
763 	 * SAI fifo threshold is set to half fifo, to keep enough space
764 	 * for DMA incoming bursts.
765 	 */
766 	regmap_write_bits(sai->regmap, STM_SAI_CR2_REGX,
767 			  SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
768 			  SAI_XCR2_FFLUSH |
769 			  SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
770 
771 	/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
772 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
773 		sai->spdif_frm_cnt = 0;
774 		return 0;
775 	}
776 
777 	/* Mode, data format and channel config */
778 	cr1_mask = SAI_XCR1_DS_MASK;
779 	switch (params_format(params)) {
780 	case SNDRV_PCM_FORMAT_S8:
781 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
782 		break;
783 	case SNDRV_PCM_FORMAT_S16_LE:
784 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
785 		break;
786 	case SNDRV_PCM_FORMAT_S32_LE:
787 		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
788 		break;
789 	default:
790 		dev_err(cpu_dai->dev, "Data format not supported");
791 		return -EINVAL;
792 	}
793 
794 	cr1_mask |= SAI_XCR1_MONO;
795 	if ((sai->slots == 2) && (params_channels(params) == 1))
796 		cr1 |= SAI_XCR1_MONO;
797 
798 	ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
799 	if (ret < 0) {
800 		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
801 		return ret;
802 	}
803 
804 	return 0;
805 }
806 
807 static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
808 {
809 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
810 	int slotr, slot_sz;
811 
812 	regmap_read(sai->regmap, STM_SAI_SLOTR_REGX, &slotr);
813 
814 	/*
815 	 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
816 	 * By default slot width = data size, if not forced from DT
817 	 */
818 	slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
819 	if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
820 		sai->slot_width = sai->data_size;
821 
822 	if (sai->slot_width < sai->data_size) {
823 		dev_err(cpu_dai->dev,
824 			"Data size %d larger than slot width\n",
825 			sai->data_size);
826 		return -EINVAL;
827 	}
828 
829 	/* Slot number is set to 2, if not specified in DT */
830 	if (!sai->slots)
831 		sai->slots = 2;
832 
833 	/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
834 	regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX,
835 			   SAI_XSLOTR_NBSLOT_MASK,
836 			   SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
837 
838 	/* Set default slots mask if not already set from DT */
839 	if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
840 		sai->slot_mask = (1 << sai->slots) - 1;
841 		regmap_update_bits(sai->regmap,
842 				   STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
843 				   SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
844 	}
845 
846 	dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
847 		sai->slots, sai->slot_width);
848 
849 	return 0;
850 }
851 
852 static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
853 {
854 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
855 	int fs_active, offset, format;
856 	int frcr, frcr_mask;
857 
858 	format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
859 	sai->fs_length = sai->slot_width * sai->slots;
860 
861 	fs_active = sai->fs_length / 2;
862 	if ((format == SND_SOC_DAIFMT_DSP_A) ||
863 	    (format == SND_SOC_DAIFMT_DSP_B))
864 		fs_active = 1;
865 
866 	frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
867 	frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
868 	frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
869 
870 	dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
871 		sai->fs_length, fs_active);
872 
873 	regmap_update_bits(sai->regmap, STM_SAI_FRCR_REGX, frcr_mask, frcr);
874 
875 	if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
876 		offset = sai->slot_width - sai->data_size;
877 
878 		regmap_update_bits(sai->regmap, STM_SAI_SLOTR_REGX,
879 				   SAI_XSLOTR_FBOFF_MASK,
880 				   SAI_XSLOTR_FBOFF_SET(offset));
881 	}
882 }
883 
884 static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
885 {
886 	unsigned char *cs = sai->iec958.status;
887 
888 	cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
889 	cs[1] = IEC958_AES1_CON_GENERAL;
890 	cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
891 	cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
892 }
893 
894 static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
895 					struct snd_pcm_runtime *runtime)
896 {
897 	if (!runtime)
898 		return;
899 
900 	/* Force the sample rate according to runtime rate */
901 	mutex_lock(&sai->ctrl_lock);
902 	switch (runtime->rate) {
903 	case 22050:
904 		sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
905 		break;
906 	case 44100:
907 		sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
908 		break;
909 	case 88200:
910 		sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
911 		break;
912 	case 176400:
913 		sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
914 		break;
915 	case 24000:
916 		sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
917 		break;
918 	case 48000:
919 		sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
920 		break;
921 	case 96000:
922 		sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
923 		break;
924 	case 192000:
925 		sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
926 		break;
927 	case 32000:
928 		sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
929 		break;
930 	default:
931 		sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
932 		break;
933 	}
934 	mutex_unlock(&sai->ctrl_lock);
935 }
936 
937 static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
938 				     struct snd_pcm_hw_params *params)
939 {
940 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
941 	int div = 0, cr1 = 0;
942 	int sai_clk_rate, mclk_ratio, den;
943 	unsigned int rate = params_rate(params);
944 	int ret;
945 
946 	if (!sai->sai_mclk) {
947 		ret = stm32_sai_set_parent_clock(sai, rate);
948 		if (ret)
949 			return ret;
950 	}
951 	sai_clk_rate = clk_get_rate(sai->sai_ck);
952 
953 	if (STM_SAI_IS_F4(sai->pdata)) {
954 		/* mclk on (NODIV=0)
955 		 *   mclk_rate = 256 * fs
956 		 *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
957 		 *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
958 		 * mclk off (NODIV=1)
959 		 *   MCKDIV ignored. sck = sai_ck
960 		 */
961 		if (!sai->mclk_rate)
962 			return 0;
963 
964 		if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
965 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
966 						    2 * sai->mclk_rate);
967 			if (div < 0)
968 				return div;
969 		}
970 	} else {
971 		/*
972 		 * TDM mode :
973 		 *   mclk on
974 		 *      MCKDIV = sai_ck / (ws x 256)	(NOMCK=0. OSR=0)
975 		 *      MCKDIV = sai_ck / (ws x 512)	(NOMCK=0. OSR=1)
976 		 *   mclk off
977 		 *      MCKDIV = sai_ck / (frl x ws)	(NOMCK=1)
978 		 * Note: NOMCK/NODIV correspond to same bit.
979 		 */
980 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
981 			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
982 						    rate * 128);
983 			if (div < 0)
984 				return div;
985 		} else {
986 			if (sai->mclk_rate) {
987 				mclk_ratio = sai->mclk_rate / rate;
988 				if (mclk_ratio == 512) {
989 					cr1 = SAI_XCR1_OSR;
990 				} else if (mclk_ratio != 256) {
991 					dev_err(cpu_dai->dev,
992 						"Wrong mclk ratio %d\n",
993 						mclk_ratio);
994 					return -EINVAL;
995 				}
996 
997 				regmap_update_bits(sai->regmap,
998 						   STM_SAI_CR1_REGX,
999 						   SAI_XCR1_OSR, cr1);
1000 
1001 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1002 							    sai->mclk_rate);
1003 				if (div < 0)
1004 					return div;
1005 			} else {
1006 				/* mclk-fs not set, master clock not active */
1007 				den = sai->fs_length * params_rate(params);
1008 				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1009 							    den);
1010 				if (div < 0)
1011 					return div;
1012 			}
1013 		}
1014 	}
1015 
1016 	return stm32_sai_set_clk_div(sai, div);
1017 }
1018 
1019 static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1020 			       struct snd_pcm_hw_params *params,
1021 			       struct snd_soc_dai *cpu_dai)
1022 {
1023 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1024 	int ret;
1025 
1026 	sai->data_size = params_width(params);
1027 
1028 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1029 		/* Rate not already set in runtime structure */
1030 		substream->runtime->rate = params_rate(params);
1031 		stm32_sai_set_iec958_status(sai, substream->runtime);
1032 	} else {
1033 		ret = stm32_sai_set_slots(cpu_dai);
1034 		if (ret < 0)
1035 			return ret;
1036 		stm32_sai_set_frame(cpu_dai);
1037 	}
1038 
1039 	ret = stm32_sai_set_config(cpu_dai, substream, params);
1040 	if (ret)
1041 		return ret;
1042 
1043 	if (sai->master)
1044 		ret = stm32_sai_configure_clock(cpu_dai, params);
1045 
1046 	return ret;
1047 }
1048 
1049 static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1050 			     struct snd_soc_dai *cpu_dai)
1051 {
1052 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1053 	int ret;
1054 
1055 	switch (cmd) {
1056 	case SNDRV_PCM_TRIGGER_START:
1057 	case SNDRV_PCM_TRIGGER_RESUME:
1058 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1059 		dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1060 
1061 		regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
1062 				   SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1063 
1064 		/* Enable SAI */
1065 		ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
1066 					 SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1067 		if (ret < 0)
1068 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1069 		break;
1070 	case SNDRV_PCM_TRIGGER_SUSPEND:
1071 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1072 	case SNDRV_PCM_TRIGGER_STOP:
1073 		dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1074 
1075 		regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX,
1076 				   SAI_XIMR_MASK, 0);
1077 
1078 		regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
1079 				   SAI_XCR1_SAIEN,
1080 				   (unsigned int)~SAI_XCR1_SAIEN);
1081 
1082 		ret = regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX,
1083 					 SAI_XCR1_DMAEN,
1084 					 (unsigned int)~SAI_XCR1_DMAEN);
1085 		if (ret < 0)
1086 			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1087 
1088 		if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1089 			sai->spdif_frm_cnt = 0;
1090 		break;
1091 	default:
1092 		return -EINVAL;
1093 	}
1094 
1095 	return ret;
1096 }
1097 
1098 static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1099 			       struct snd_soc_dai *cpu_dai)
1100 {
1101 	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1102 	unsigned long flags;
1103 
1104 	regmap_update_bits(sai->regmap, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1105 
1106 	clk_disable_unprepare(sai->sai_ck);
1107 
1108 	spin_lock_irqsave(&sai->irq_lock, flags);
1109 	sai->substream = NULL;
1110 	spin_unlock_irqrestore(&sai->irq_lock, flags);
1111 }
1112 
1113 static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1114 			     struct snd_soc_dai *cpu_dai)
1115 {
1116 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1117 	struct snd_kcontrol_new knew = iec958_ctls;
1118 
1119 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1120 		dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1121 		knew.device = rtd->pcm->device;
1122 		return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1123 	}
1124 
1125 	return 0;
1126 }
1127 
1128 static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1129 {
1130 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1131 	int cr1 = 0, cr1_mask, ret;
1132 
1133 	sai->cpu_dai = cpu_dai;
1134 
1135 	sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1136 	/*
1137 	 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1138 	 * as it allows bytes, half-word and words transfers. (See DMA fifos
1139 	 * constraints).
1140 	 */
1141 	sai->dma_params.maxburst = 4;
1142 	if (sai->pdata->conf.fifo_size < 8)
1143 		sai->dma_params.maxburst = 1;
1144 	/* Buswidth will be set by framework at runtime */
1145 	sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1146 
1147 	if (STM_SAI_IS_PLAYBACK(sai))
1148 		snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1149 	else
1150 		snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1151 
1152 	/* Next settings are not relevant for spdif mode */
1153 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1154 		return 0;
1155 
1156 	cr1_mask = SAI_XCR1_RX_TX;
1157 	if (STM_SAI_IS_CAPTURE(sai))
1158 		cr1 |= SAI_XCR1_RX_TX;
1159 
1160 	/* Configure synchronization */
1161 	if (sai->sync == SAI_SYNC_EXTERNAL) {
1162 		/* Configure synchro client and provider */
1163 		ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1164 					   sai->synco, sai->synci);
1165 		if (ret)
1166 			return ret;
1167 	}
1168 
1169 	cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1170 	cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1171 
1172 	return regmap_update_bits(sai->regmap, STM_SAI_CR1_REGX, cr1_mask, cr1);
1173 }
1174 
1175 static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1176 	.set_sysclk	= stm32_sai_set_sysclk,
1177 	.set_fmt	= stm32_sai_set_dai_fmt,
1178 	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1179 	.startup	= stm32_sai_startup,
1180 	.hw_params	= stm32_sai_hw_params,
1181 	.trigger	= stm32_sai_trigger,
1182 	.shutdown	= stm32_sai_shutdown,
1183 };
1184 
1185 static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1186 				       int channel, unsigned long hwoff,
1187 				       void *buf, unsigned long bytes)
1188 {
1189 	struct snd_pcm_runtime *runtime = substream->runtime;
1190 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
1191 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
1192 	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1193 	int *ptr = (int *)(runtime->dma_area + hwoff +
1194 			   channel * (runtime->dma_bytes / runtime->channels));
1195 	ssize_t cnt = bytes_to_samples(runtime, bytes);
1196 	unsigned int frm_cnt = sai->spdif_frm_cnt;
1197 	unsigned int byte;
1198 	unsigned int mask;
1199 
1200 	do {
1201 		*ptr = ((*ptr >> 8) & 0x00ffffff);
1202 
1203 		/* Set channel status bit */
1204 		byte = frm_cnt >> 3;
1205 		mask = 1 << (frm_cnt - (byte << 3));
1206 		if (sai->iec958.status[byte] & mask)
1207 			*ptr |= 0x04000000;
1208 		ptr++;
1209 
1210 		if (!(cnt % 2))
1211 			frm_cnt++;
1212 
1213 		if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1214 			frm_cnt = 0;
1215 	} while (--cnt);
1216 	sai->spdif_frm_cnt = frm_cnt;
1217 
1218 	return 0;
1219 }
1220 
1221 static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1222 	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1223 	.buffer_bytes_max = 8 * PAGE_SIZE,
1224 	.period_bytes_min = 1024, /* 5ms at 48kHz */
1225 	.period_bytes_max = PAGE_SIZE,
1226 	.periods_min = 2,
1227 	.periods_max = 8,
1228 };
1229 
1230 static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1231 		.probe = stm32_sai_dai_probe,
1232 		.pcm_new = stm32_sai_pcm_new,
1233 		.id = 1, /* avoid call to fmt_single_name() */
1234 		.playback = {
1235 			.channels_min = 1,
1236 			.channels_max = 2,
1237 			.rate_min = 8000,
1238 			.rate_max = 192000,
1239 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1240 			/* DMA does not support 24 bits transfers */
1241 			.formats =
1242 				SNDRV_PCM_FMTBIT_S8 |
1243 				SNDRV_PCM_FMTBIT_S16_LE |
1244 				SNDRV_PCM_FMTBIT_S32_LE,
1245 		},
1246 		.ops = &stm32_sai_pcm_dai_ops,
1247 };
1248 
1249 static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1250 		.probe = stm32_sai_dai_probe,
1251 		.id = 1, /* avoid call to fmt_single_name() */
1252 		.capture = {
1253 			.channels_min = 1,
1254 			.channels_max = 2,
1255 			.rate_min = 8000,
1256 			.rate_max = 192000,
1257 			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1258 			/* DMA does not support 24 bits transfers */
1259 			.formats =
1260 				SNDRV_PCM_FMTBIT_S8 |
1261 				SNDRV_PCM_FMTBIT_S16_LE |
1262 				SNDRV_PCM_FMTBIT_S32_LE,
1263 		},
1264 		.ops = &stm32_sai_pcm_dai_ops,
1265 };
1266 
1267 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1268 	.pcm_hardware = &stm32_sai_pcm_hw,
1269 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1270 };
1271 
1272 static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1273 	.pcm_hardware = &stm32_sai_pcm_hw,
1274 	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1275 	.process = stm32_sai_pcm_process_spdif,
1276 };
1277 
1278 static const struct snd_soc_component_driver stm32_component = {
1279 	.name = "stm32-sai",
1280 };
1281 
1282 static const struct of_device_id stm32_sai_sub_ids[] = {
1283 	{ .compatible = "st,stm32-sai-sub-a",
1284 	  .data = (void *)STM_SAI_A_ID},
1285 	{ .compatible = "st,stm32-sai-sub-b",
1286 	  .data = (void *)STM_SAI_B_ID},
1287 	{}
1288 };
1289 MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1290 
1291 static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1292 				  struct stm32_sai_sub_data *sai)
1293 {
1294 	struct device_node *np = pdev->dev.of_node;
1295 	struct resource *res;
1296 	void __iomem *base;
1297 	struct of_phandle_args args;
1298 	int ret;
1299 
1300 	if (!np)
1301 		return -ENODEV;
1302 
1303 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1304 	base = devm_ioremap_resource(&pdev->dev, res);
1305 	if (IS_ERR(base))
1306 		return PTR_ERR(base);
1307 
1308 	sai->phys_addr = res->start;
1309 
1310 	sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1311 	/* Note: PDM registers not available for sub-block B */
1312 	if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1313 		sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1314 
1315 	sai->regmap = devm_regmap_init_mmio_clk(&pdev->dev, "sai_ck",
1316 						base, sai->regmap_config);
1317 	if (IS_ERR(sai->regmap)) {
1318 		dev_err(&pdev->dev, "Failed to initialize MMIO\n");
1319 		return PTR_ERR(sai->regmap);
1320 	}
1321 
1322 	/* Get direction property */
1323 	if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1324 		sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1325 	} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1326 		sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1327 	} else {
1328 		dev_err(&pdev->dev, "Unsupported direction\n");
1329 		return -EINVAL;
1330 	}
1331 
1332 	/* Get spdif iec60958 property */
1333 	sai->spdif = false;
1334 	if (of_get_property(np, "st,iec60958", NULL)) {
1335 		if (!STM_SAI_HAS_SPDIF(sai) ||
1336 		    sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1337 			dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1338 			return -EINVAL;
1339 		}
1340 		stm32_sai_init_iec958_status(sai);
1341 		sai->spdif = true;
1342 		sai->master = true;
1343 	}
1344 
1345 	/* Get synchronization property */
1346 	args.np = NULL;
1347 	ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1348 	if (ret < 0  && ret != -ENOENT) {
1349 		dev_err(&pdev->dev, "Failed to get st,sync property\n");
1350 		return ret;
1351 	}
1352 
1353 	sai->sync = SAI_SYNC_NONE;
1354 	if (args.np) {
1355 		if (args.np == np) {
1356 			dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1357 			of_node_put(args.np);
1358 			return -EINVAL;
1359 		}
1360 
1361 		sai->np_sync_provider  = of_get_parent(args.np);
1362 		if (!sai->np_sync_provider) {
1363 			dev_err(&pdev->dev, "%pOFn parent node not found\n",
1364 				np);
1365 			of_node_put(args.np);
1366 			return -ENODEV;
1367 		}
1368 
1369 		sai->sync = SAI_SYNC_INTERNAL;
1370 		if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1371 			if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1372 				dev_err(&pdev->dev,
1373 					"External synchro not supported\n");
1374 				of_node_put(args.np);
1375 				return -EINVAL;
1376 			}
1377 			sai->sync = SAI_SYNC_EXTERNAL;
1378 
1379 			sai->synci = args.args[0];
1380 			if (sai->synci < 1 ||
1381 			    (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1382 				dev_err(&pdev->dev, "Wrong SAI index\n");
1383 				of_node_put(args.np);
1384 				return -EINVAL;
1385 			}
1386 
1387 			if (of_property_match_string(args.np, "compatible",
1388 						     "st,stm32-sai-sub-a") >= 0)
1389 				sai->synco = STM_SAI_SYNC_OUT_A;
1390 
1391 			if (of_property_match_string(args.np, "compatible",
1392 						     "st,stm32-sai-sub-b") >= 0)
1393 				sai->synco = STM_SAI_SYNC_OUT_B;
1394 
1395 			if (!sai->synco) {
1396 				dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1397 				of_node_put(args.np);
1398 				return -EINVAL;
1399 			}
1400 		}
1401 
1402 		dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1403 			pdev->name, args.np->full_name);
1404 	}
1405 
1406 	of_node_put(args.np);
1407 	sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1408 	if (IS_ERR(sai->sai_ck)) {
1409 		dev_err(&pdev->dev, "Missing kernel clock sai_ck\n");
1410 		return PTR_ERR(sai->sai_ck);
1411 	}
1412 
1413 	if (STM_SAI_IS_F4(sai->pdata))
1414 		return 0;
1415 
1416 	/* Register mclk provider if requested */
1417 	if (of_find_property(np, "#clock-cells", NULL)) {
1418 		ret = stm32_sai_add_mclk_provider(sai);
1419 		if (ret < 0)
1420 			return ret;
1421 	} else {
1422 		sai->sai_mclk = devm_clk_get(&pdev->dev, "MCLK");
1423 		if (IS_ERR(sai->sai_mclk)) {
1424 			if (PTR_ERR(sai->sai_mclk) != -ENOENT)
1425 				return PTR_ERR(sai->sai_mclk);
1426 			sai->sai_mclk = NULL;
1427 		}
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 static int stm32_sai_sub_probe(struct platform_device *pdev)
1434 {
1435 	struct stm32_sai_sub_data *sai;
1436 	const struct of_device_id *of_id;
1437 	const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1438 	int ret;
1439 
1440 	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1441 	if (!sai)
1442 		return -ENOMEM;
1443 
1444 	of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev);
1445 	if (!of_id)
1446 		return -EINVAL;
1447 	sai->id = (uintptr_t)of_id->data;
1448 
1449 	sai->pdev = pdev;
1450 	mutex_init(&sai->ctrl_lock);
1451 	spin_lock_init(&sai->irq_lock);
1452 	platform_set_drvdata(pdev, sai);
1453 
1454 	sai->pdata = dev_get_drvdata(pdev->dev.parent);
1455 	if (!sai->pdata) {
1456 		dev_err(&pdev->dev, "Parent device data not available\n");
1457 		return -EINVAL;
1458 	}
1459 
1460 	ret = stm32_sai_sub_parse_of(pdev, sai);
1461 	if (ret)
1462 		return ret;
1463 
1464 	if (STM_SAI_IS_PLAYBACK(sai))
1465 		sai->cpu_dai_drv = stm32_sai_playback_dai;
1466 	else
1467 		sai->cpu_dai_drv = stm32_sai_capture_dai;
1468 	sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1469 
1470 	ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1471 			       IRQF_SHARED, dev_name(&pdev->dev), sai);
1472 	if (ret) {
1473 		dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1474 		return ret;
1475 	}
1476 
1477 	ret = devm_snd_soc_register_component(&pdev->dev, &stm32_component,
1478 					      &sai->cpu_dai_drv, 1);
1479 	if (ret)
1480 		return ret;
1481 
1482 	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1483 		conf = &stm32_sai_pcm_config_spdif;
1484 
1485 	ret = devm_snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1486 	if (ret) {
1487 		dev_err(&pdev->dev, "Could not register pcm dma\n");
1488 		return ret;
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 #ifdef CONFIG_PM_SLEEP
1495 static int stm32_sai_sub_suspend(struct device *dev)
1496 {
1497 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1498 
1499 	regcache_cache_only(sai->regmap, true);
1500 	regcache_mark_dirty(sai->regmap);
1501 	return 0;
1502 }
1503 
1504 static int stm32_sai_sub_resume(struct device *dev)
1505 {
1506 	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1507 
1508 	regcache_cache_only(sai->regmap, false);
1509 	return regcache_sync(sai->regmap);
1510 }
1511 #endif /* CONFIG_PM_SLEEP */
1512 
1513 static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1514 	SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1515 };
1516 
1517 static struct platform_driver stm32_sai_sub_driver = {
1518 	.driver = {
1519 		.name = "st,stm32-sai-sub",
1520 		.of_match_table = stm32_sai_sub_ids,
1521 		.pm = &stm32_sai_sub_pm_ops,
1522 	},
1523 	.probe = stm32_sai_sub_probe,
1524 };
1525 
1526 module_platform_driver(stm32_sai_sub_driver);
1527 
1528 MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1529 MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1530 MODULE_ALIAS("platform:st,stm32-sai-sub");
1531 MODULE_LICENSE("GPL v2");
1532