xref: /linux/tools/include/uapi/linux/bpf.h (revision 44f57d78)
1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  */
8 #ifndef _UAPI__LINUX_BPF_H__
9 #define _UAPI__LINUX_BPF_H__
10 
11 #include <linux/types.h>
12 #include <linux/bpf_common.h>
13 
14 /* Extended instruction set based on top of classic BPF */
15 
16 /* instruction classes */
17 #define BPF_JMP32	0x06	/* jmp mode in word width */
18 #define BPF_ALU64	0x07	/* alu mode in double word width */
19 
20 /* ld/ldx fields */
21 #define BPF_DW		0x18	/* double word (64-bit) */
22 #define BPF_XADD	0xc0	/* exclusive add */
23 
24 /* alu/jmp fields */
25 #define BPF_MOV		0xb0	/* mov reg to reg */
26 #define BPF_ARSH	0xc0	/* sign extending arithmetic shift right */
27 
28 /* change endianness of a register */
29 #define BPF_END		0xd0	/* flags for endianness conversion: */
30 #define BPF_TO_LE	0x00	/* convert to little-endian */
31 #define BPF_TO_BE	0x08	/* convert to big-endian */
32 #define BPF_FROM_LE	BPF_TO_LE
33 #define BPF_FROM_BE	BPF_TO_BE
34 
35 /* jmp encodings */
36 #define BPF_JNE		0x50	/* jump != */
37 #define BPF_JLT		0xa0	/* LT is unsigned, '<' */
38 #define BPF_JLE		0xb0	/* LE is unsigned, '<=' */
39 #define BPF_JSGT	0x60	/* SGT is signed '>', GT in x86 */
40 #define BPF_JSGE	0x70	/* SGE is signed '>=', GE in x86 */
41 #define BPF_JSLT	0xc0	/* SLT is signed, '<' */
42 #define BPF_JSLE	0xd0	/* SLE is signed, '<=' */
43 #define BPF_CALL	0x80	/* function call */
44 #define BPF_EXIT	0x90	/* function return */
45 
46 /* Register numbers */
47 enum {
48 	BPF_REG_0 = 0,
49 	BPF_REG_1,
50 	BPF_REG_2,
51 	BPF_REG_3,
52 	BPF_REG_4,
53 	BPF_REG_5,
54 	BPF_REG_6,
55 	BPF_REG_7,
56 	BPF_REG_8,
57 	BPF_REG_9,
58 	BPF_REG_10,
59 	__MAX_BPF_REG,
60 };
61 
62 /* BPF has 10 general purpose 64-bit registers and stack frame. */
63 #define MAX_BPF_REG	__MAX_BPF_REG
64 
65 struct bpf_insn {
66 	__u8	code;		/* opcode */
67 	__u8	dst_reg:4;	/* dest register */
68 	__u8	src_reg:4;	/* source register */
69 	__s16	off;		/* signed offset */
70 	__s32	imm;		/* signed immediate constant */
71 };
72 
73 /* Key of an a BPF_MAP_TYPE_LPM_TRIE entry */
74 struct bpf_lpm_trie_key {
75 	__u32	prefixlen;	/* up to 32 for AF_INET, 128 for AF_INET6 */
76 	__u8	data[0];	/* Arbitrary size */
77 };
78 
79 struct bpf_cgroup_storage_key {
80 	__u64	cgroup_inode_id;	/* cgroup inode id */
81 	__u32	attach_type;		/* program attach type */
82 };
83 
84 /* BPF syscall commands, see bpf(2) man-page for details. */
85 enum bpf_cmd {
86 	BPF_MAP_CREATE,
87 	BPF_MAP_LOOKUP_ELEM,
88 	BPF_MAP_UPDATE_ELEM,
89 	BPF_MAP_DELETE_ELEM,
90 	BPF_MAP_GET_NEXT_KEY,
91 	BPF_PROG_LOAD,
92 	BPF_OBJ_PIN,
93 	BPF_OBJ_GET,
94 	BPF_PROG_ATTACH,
95 	BPF_PROG_DETACH,
96 	BPF_PROG_TEST_RUN,
97 	BPF_PROG_GET_NEXT_ID,
98 	BPF_MAP_GET_NEXT_ID,
99 	BPF_PROG_GET_FD_BY_ID,
100 	BPF_MAP_GET_FD_BY_ID,
101 	BPF_OBJ_GET_INFO_BY_FD,
102 	BPF_PROG_QUERY,
103 	BPF_RAW_TRACEPOINT_OPEN,
104 	BPF_BTF_LOAD,
105 	BPF_BTF_GET_FD_BY_ID,
106 	BPF_TASK_FD_QUERY,
107 	BPF_MAP_LOOKUP_AND_DELETE_ELEM,
108 	BPF_MAP_FREEZE,
109 };
110 
111 enum bpf_map_type {
112 	BPF_MAP_TYPE_UNSPEC,
113 	BPF_MAP_TYPE_HASH,
114 	BPF_MAP_TYPE_ARRAY,
115 	BPF_MAP_TYPE_PROG_ARRAY,
116 	BPF_MAP_TYPE_PERF_EVENT_ARRAY,
117 	BPF_MAP_TYPE_PERCPU_HASH,
118 	BPF_MAP_TYPE_PERCPU_ARRAY,
119 	BPF_MAP_TYPE_STACK_TRACE,
120 	BPF_MAP_TYPE_CGROUP_ARRAY,
121 	BPF_MAP_TYPE_LRU_HASH,
122 	BPF_MAP_TYPE_LRU_PERCPU_HASH,
123 	BPF_MAP_TYPE_LPM_TRIE,
124 	BPF_MAP_TYPE_ARRAY_OF_MAPS,
125 	BPF_MAP_TYPE_HASH_OF_MAPS,
126 	BPF_MAP_TYPE_DEVMAP,
127 	BPF_MAP_TYPE_SOCKMAP,
128 	BPF_MAP_TYPE_CPUMAP,
129 	BPF_MAP_TYPE_XSKMAP,
130 	BPF_MAP_TYPE_SOCKHASH,
131 	BPF_MAP_TYPE_CGROUP_STORAGE,
132 	BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
133 	BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
134 	BPF_MAP_TYPE_QUEUE,
135 	BPF_MAP_TYPE_STACK,
136 	BPF_MAP_TYPE_SK_STORAGE,
137 };
138 
139 /* Note that tracing related programs such as
140  * BPF_PROG_TYPE_{KPROBE,TRACEPOINT,PERF_EVENT,RAW_TRACEPOINT}
141  * are not subject to a stable API since kernel internal data
142  * structures can change from release to release and may
143  * therefore break existing tracing BPF programs. Tracing BPF
144  * programs correspond to /a/ specific kernel which is to be
145  * analyzed, and not /a/ specific kernel /and/ all future ones.
146  */
147 enum bpf_prog_type {
148 	BPF_PROG_TYPE_UNSPEC,
149 	BPF_PROG_TYPE_SOCKET_FILTER,
150 	BPF_PROG_TYPE_KPROBE,
151 	BPF_PROG_TYPE_SCHED_CLS,
152 	BPF_PROG_TYPE_SCHED_ACT,
153 	BPF_PROG_TYPE_TRACEPOINT,
154 	BPF_PROG_TYPE_XDP,
155 	BPF_PROG_TYPE_PERF_EVENT,
156 	BPF_PROG_TYPE_CGROUP_SKB,
157 	BPF_PROG_TYPE_CGROUP_SOCK,
158 	BPF_PROG_TYPE_LWT_IN,
159 	BPF_PROG_TYPE_LWT_OUT,
160 	BPF_PROG_TYPE_LWT_XMIT,
161 	BPF_PROG_TYPE_SOCK_OPS,
162 	BPF_PROG_TYPE_SK_SKB,
163 	BPF_PROG_TYPE_CGROUP_DEVICE,
164 	BPF_PROG_TYPE_SK_MSG,
165 	BPF_PROG_TYPE_RAW_TRACEPOINT,
166 	BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
167 	BPF_PROG_TYPE_LWT_SEG6LOCAL,
168 	BPF_PROG_TYPE_LIRC_MODE2,
169 	BPF_PROG_TYPE_SK_REUSEPORT,
170 	BPF_PROG_TYPE_FLOW_DISSECTOR,
171 	BPF_PROG_TYPE_CGROUP_SYSCTL,
172 	BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE,
173 };
174 
175 enum bpf_attach_type {
176 	BPF_CGROUP_INET_INGRESS,
177 	BPF_CGROUP_INET_EGRESS,
178 	BPF_CGROUP_INET_SOCK_CREATE,
179 	BPF_CGROUP_SOCK_OPS,
180 	BPF_SK_SKB_STREAM_PARSER,
181 	BPF_SK_SKB_STREAM_VERDICT,
182 	BPF_CGROUP_DEVICE,
183 	BPF_SK_MSG_VERDICT,
184 	BPF_CGROUP_INET4_BIND,
185 	BPF_CGROUP_INET6_BIND,
186 	BPF_CGROUP_INET4_CONNECT,
187 	BPF_CGROUP_INET6_CONNECT,
188 	BPF_CGROUP_INET4_POST_BIND,
189 	BPF_CGROUP_INET6_POST_BIND,
190 	BPF_CGROUP_UDP4_SENDMSG,
191 	BPF_CGROUP_UDP6_SENDMSG,
192 	BPF_LIRC_MODE2,
193 	BPF_FLOW_DISSECTOR,
194 	BPF_CGROUP_SYSCTL,
195 	BPF_CGROUP_UDP4_RECVMSG,
196 	BPF_CGROUP_UDP6_RECVMSG,
197 	__MAX_BPF_ATTACH_TYPE
198 };
199 
200 #define MAX_BPF_ATTACH_TYPE __MAX_BPF_ATTACH_TYPE
201 
202 /* cgroup-bpf attach flags used in BPF_PROG_ATTACH command
203  *
204  * NONE(default): No further bpf programs allowed in the subtree.
205  *
206  * BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
207  * the program in this cgroup yields to sub-cgroup program.
208  *
209  * BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
210  * that cgroup program gets run in addition to the program in this cgroup.
211  *
212  * Only one program is allowed to be attached to a cgroup with
213  * NONE or BPF_F_ALLOW_OVERRIDE flag.
214  * Attaching another program on top of NONE or BPF_F_ALLOW_OVERRIDE will
215  * release old program and attach the new one. Attach flags has to match.
216  *
217  * Multiple programs are allowed to be attached to a cgroup with
218  * BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
219  * (those that were attached first, run first)
220  * The programs of sub-cgroup are executed first, then programs of
221  * this cgroup and then programs of parent cgroup.
222  * When children program makes decision (like picking TCP CA or sock bind)
223  * parent program has a chance to override it.
224  *
225  * A cgroup with MULTI or OVERRIDE flag allows any attach flags in sub-cgroups.
226  * A cgroup with NONE doesn't allow any programs in sub-cgroups.
227  * Ex1:
228  * cgrp1 (MULTI progs A, B) ->
229  *    cgrp2 (OVERRIDE prog C) ->
230  *      cgrp3 (MULTI prog D) ->
231  *        cgrp4 (OVERRIDE prog E) ->
232  *          cgrp5 (NONE prog F)
233  * the event in cgrp5 triggers execution of F,D,A,B in that order.
234  * if prog F is detached, the execution is E,D,A,B
235  * if prog F and D are detached, the execution is E,A,B
236  * if prog F, E and D are detached, the execution is C,A,B
237  *
238  * All eligible programs are executed regardless of return code from
239  * earlier programs.
240  */
241 #define BPF_F_ALLOW_OVERRIDE	(1U << 0)
242 #define BPF_F_ALLOW_MULTI	(1U << 1)
243 
244 /* If BPF_F_STRICT_ALIGNMENT is used in BPF_PROG_LOAD command, the
245  * verifier will perform strict alignment checking as if the kernel
246  * has been built with CONFIG_EFFICIENT_UNALIGNED_ACCESS not set,
247  * and NET_IP_ALIGN defined to 2.
248  */
249 #define BPF_F_STRICT_ALIGNMENT	(1U << 0)
250 
251 /* If BPF_F_ANY_ALIGNMENT is used in BPF_PROF_LOAD command, the
252  * verifier will allow any alignment whatsoever.  On platforms
253  * with strict alignment requirements for loads ands stores (such
254  * as sparc and mips) the verifier validates that all loads and
255  * stores provably follow this requirement.  This flag turns that
256  * checking and enforcement off.
257  *
258  * It is mostly used for testing when we want to validate the
259  * context and memory access aspects of the verifier, but because
260  * of an unaligned access the alignment check would trigger before
261  * the one we are interested in.
262  */
263 #define BPF_F_ANY_ALIGNMENT	(1U << 1)
264 
265 /* When BPF ldimm64's insn[0].src_reg != 0 then this can have
266  * two extensions:
267  *
268  * insn[0].src_reg:  BPF_PSEUDO_MAP_FD   BPF_PSEUDO_MAP_VALUE
269  * insn[0].imm:      map fd              map fd
270  * insn[1].imm:      0                   offset into value
271  * insn[0].off:      0                   0
272  * insn[1].off:      0                   0
273  * ldimm64 rewrite:  address of map      address of map[0]+offset
274  * verifier type:    CONST_PTR_TO_MAP    PTR_TO_MAP_VALUE
275  */
276 #define BPF_PSEUDO_MAP_FD	1
277 #define BPF_PSEUDO_MAP_VALUE	2
278 
279 /* when bpf_call->src_reg == BPF_PSEUDO_CALL, bpf_call->imm == pc-relative
280  * offset to another bpf function
281  */
282 #define BPF_PSEUDO_CALL		1
283 
284 /* flags for BPF_MAP_UPDATE_ELEM command */
285 #define BPF_ANY		0 /* create new element or update existing */
286 #define BPF_NOEXIST	1 /* create new element if it didn't exist */
287 #define BPF_EXIST	2 /* update existing element */
288 #define BPF_F_LOCK	4 /* spin_lock-ed map_lookup/map_update */
289 
290 /* flags for BPF_MAP_CREATE command */
291 #define BPF_F_NO_PREALLOC	(1U << 0)
292 /* Instead of having one common LRU list in the
293  * BPF_MAP_TYPE_LRU_[PERCPU_]HASH map, use a percpu LRU list
294  * which can scale and perform better.
295  * Note, the LRU nodes (including free nodes) cannot be moved
296  * across different LRU lists.
297  */
298 #define BPF_F_NO_COMMON_LRU	(1U << 1)
299 /* Specify numa node during map creation */
300 #define BPF_F_NUMA_NODE		(1U << 2)
301 
302 #define BPF_OBJ_NAME_LEN 16U
303 
304 /* Flags for accessing BPF object from syscall side. */
305 #define BPF_F_RDONLY		(1U << 3)
306 #define BPF_F_WRONLY		(1U << 4)
307 
308 /* Flag for stack_map, store build_id+offset instead of pointer */
309 #define BPF_F_STACK_BUILD_ID	(1U << 5)
310 
311 /* Zero-initialize hash function seed. This should only be used for testing. */
312 #define BPF_F_ZERO_SEED		(1U << 6)
313 
314 /* Flags for accessing BPF object from program side. */
315 #define BPF_F_RDONLY_PROG	(1U << 7)
316 #define BPF_F_WRONLY_PROG	(1U << 8)
317 
318 /* flags for BPF_PROG_QUERY */
319 #define BPF_F_QUERY_EFFECTIVE	(1U << 0)
320 
321 enum bpf_stack_build_id_status {
322 	/* user space need an empty entry to identify end of a trace */
323 	BPF_STACK_BUILD_ID_EMPTY = 0,
324 	/* with valid build_id and offset */
325 	BPF_STACK_BUILD_ID_VALID = 1,
326 	/* couldn't get build_id, fallback to ip */
327 	BPF_STACK_BUILD_ID_IP = 2,
328 };
329 
330 #define BPF_BUILD_ID_SIZE 20
331 struct bpf_stack_build_id {
332 	__s32		status;
333 	unsigned char	build_id[BPF_BUILD_ID_SIZE];
334 	union {
335 		__u64	offset;
336 		__u64	ip;
337 	};
338 };
339 
340 union bpf_attr {
341 	struct { /* anonymous struct used by BPF_MAP_CREATE command */
342 		__u32	map_type;	/* one of enum bpf_map_type */
343 		__u32	key_size;	/* size of key in bytes */
344 		__u32	value_size;	/* size of value in bytes */
345 		__u32	max_entries;	/* max number of entries in a map */
346 		__u32	map_flags;	/* BPF_MAP_CREATE related
347 					 * flags defined above.
348 					 */
349 		__u32	inner_map_fd;	/* fd pointing to the inner map */
350 		__u32	numa_node;	/* numa node (effective only if
351 					 * BPF_F_NUMA_NODE is set).
352 					 */
353 		char	map_name[BPF_OBJ_NAME_LEN];
354 		__u32	map_ifindex;	/* ifindex of netdev to create on */
355 		__u32	btf_fd;		/* fd pointing to a BTF type data */
356 		__u32	btf_key_type_id;	/* BTF type_id of the key */
357 		__u32	btf_value_type_id;	/* BTF type_id of the value */
358 	};
359 
360 	struct { /* anonymous struct used by BPF_MAP_*_ELEM commands */
361 		__u32		map_fd;
362 		__aligned_u64	key;
363 		union {
364 			__aligned_u64 value;
365 			__aligned_u64 next_key;
366 		};
367 		__u64		flags;
368 	};
369 
370 	struct { /* anonymous struct used by BPF_PROG_LOAD command */
371 		__u32		prog_type;	/* one of enum bpf_prog_type */
372 		__u32		insn_cnt;
373 		__aligned_u64	insns;
374 		__aligned_u64	license;
375 		__u32		log_level;	/* verbosity level of verifier */
376 		__u32		log_size;	/* size of user buffer */
377 		__aligned_u64	log_buf;	/* user supplied buffer */
378 		__u32		kern_version;	/* not used */
379 		__u32		prog_flags;
380 		char		prog_name[BPF_OBJ_NAME_LEN];
381 		__u32		prog_ifindex;	/* ifindex of netdev to prep for */
382 		/* For some prog types expected attach type must be known at
383 		 * load time to verify attach type specific parts of prog
384 		 * (context accesses, allowed helpers, etc).
385 		 */
386 		__u32		expected_attach_type;
387 		__u32		prog_btf_fd;	/* fd pointing to BTF type data */
388 		__u32		func_info_rec_size;	/* userspace bpf_func_info size */
389 		__aligned_u64	func_info;	/* func info */
390 		__u32		func_info_cnt;	/* number of bpf_func_info records */
391 		__u32		line_info_rec_size;	/* userspace bpf_line_info size */
392 		__aligned_u64	line_info;	/* line info */
393 		__u32		line_info_cnt;	/* number of bpf_line_info records */
394 	};
395 
396 	struct { /* anonymous struct used by BPF_OBJ_* commands */
397 		__aligned_u64	pathname;
398 		__u32		bpf_fd;
399 		__u32		file_flags;
400 	};
401 
402 	struct { /* anonymous struct used by BPF_PROG_ATTACH/DETACH commands */
403 		__u32		target_fd;	/* container object to attach to */
404 		__u32		attach_bpf_fd;	/* eBPF program to attach */
405 		__u32		attach_type;
406 		__u32		attach_flags;
407 	};
408 
409 	struct { /* anonymous struct used by BPF_PROG_TEST_RUN command */
410 		__u32		prog_fd;
411 		__u32		retval;
412 		__u32		data_size_in;	/* input: len of data_in */
413 		__u32		data_size_out;	/* input/output: len of data_out
414 						 *   returns ENOSPC if data_out
415 						 *   is too small.
416 						 */
417 		__aligned_u64	data_in;
418 		__aligned_u64	data_out;
419 		__u32		repeat;
420 		__u32		duration;
421 		__u32		ctx_size_in;	/* input: len of ctx_in */
422 		__u32		ctx_size_out;	/* input/output: len of ctx_out
423 						 *   returns ENOSPC if ctx_out
424 						 *   is too small.
425 						 */
426 		__aligned_u64	ctx_in;
427 		__aligned_u64	ctx_out;
428 	} test;
429 
430 	struct { /* anonymous struct used by BPF_*_GET_*_ID */
431 		union {
432 			__u32		start_id;
433 			__u32		prog_id;
434 			__u32		map_id;
435 			__u32		btf_id;
436 		};
437 		__u32		next_id;
438 		__u32		open_flags;
439 	};
440 
441 	struct { /* anonymous struct used by BPF_OBJ_GET_INFO_BY_FD */
442 		__u32		bpf_fd;
443 		__u32		info_len;
444 		__aligned_u64	info;
445 	} info;
446 
447 	struct { /* anonymous struct used by BPF_PROG_QUERY command */
448 		__u32		target_fd;	/* container object to query */
449 		__u32		attach_type;
450 		__u32		query_flags;
451 		__u32		attach_flags;
452 		__aligned_u64	prog_ids;
453 		__u32		prog_cnt;
454 	} query;
455 
456 	struct {
457 		__u64 name;
458 		__u32 prog_fd;
459 	} raw_tracepoint;
460 
461 	struct { /* anonymous struct for BPF_BTF_LOAD */
462 		__aligned_u64	btf;
463 		__aligned_u64	btf_log_buf;
464 		__u32		btf_size;
465 		__u32		btf_log_size;
466 		__u32		btf_log_level;
467 	};
468 
469 	struct {
470 		__u32		pid;		/* input: pid */
471 		__u32		fd;		/* input: fd */
472 		__u32		flags;		/* input: flags */
473 		__u32		buf_len;	/* input/output: buf len */
474 		__aligned_u64	buf;		/* input/output:
475 						 *   tp_name for tracepoint
476 						 *   symbol for kprobe
477 						 *   filename for uprobe
478 						 */
479 		__u32		prog_id;	/* output: prod_id */
480 		__u32		fd_type;	/* output: BPF_FD_TYPE_* */
481 		__u64		probe_offset;	/* output: probe_offset */
482 		__u64		probe_addr;	/* output: probe_addr */
483 	} task_fd_query;
484 } __attribute__((aligned(8)));
485 
486 /* The description below is an attempt at providing documentation to eBPF
487  * developers about the multiple available eBPF helper functions. It can be
488  * parsed and used to produce a manual page. The workflow is the following,
489  * and requires the rst2man utility:
490  *
491  *     $ ./scripts/bpf_helpers_doc.py \
492  *             --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
493  *     $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
494  *     $ man /tmp/bpf-helpers.7
495  *
496  * Note that in order to produce this external documentation, some RST
497  * formatting is used in the descriptions to get "bold" and "italics" in
498  * manual pages. Also note that the few trailing white spaces are
499  * intentional, removing them would break paragraphs for rst2man.
500  *
501  * Start of BPF helper function descriptions:
502  *
503  * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
504  * 	Description
505  * 		Perform a lookup in *map* for an entry associated to *key*.
506  * 	Return
507  * 		Map value associated to *key*, or **NULL** if no entry was
508  * 		found.
509  *
510  * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
511  * 	Description
512  * 		Add or update the value of the entry associated to *key* in
513  * 		*map* with *value*. *flags* is one of:
514  *
515  * 		**BPF_NOEXIST**
516  * 			The entry for *key* must not exist in the map.
517  * 		**BPF_EXIST**
518  * 			The entry for *key* must already exist in the map.
519  * 		**BPF_ANY**
520  * 			No condition on the existence of the entry for *key*.
521  *
522  * 		Flag value **BPF_NOEXIST** cannot be used for maps of types
523  * 		**BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY**  (all
524  * 		elements always exist), the helper would return an error.
525  * 	Return
526  * 		0 on success, or a negative error in case of failure.
527  *
528  * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
529  * 	Description
530  * 		Delete entry with *key* from *map*.
531  * 	Return
532  * 		0 on success, or a negative error in case of failure.
533  *
534  * int bpf_probe_read(void *dst, u32 size, const void *src)
535  * 	Description
536  * 		For tracing programs, safely attempt to read *size* bytes from
537  * 		address *src* and store the data in *dst*.
538  * 	Return
539  * 		0 on success, or a negative error in case of failure.
540  *
541  * u64 bpf_ktime_get_ns(void)
542  * 	Description
543  * 		Return the time elapsed since system boot, in nanoseconds.
544  * 	Return
545  * 		Current *ktime*.
546  *
547  * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
548  * 	Description
549  * 		This helper is a "printk()-like" facility for debugging. It
550  * 		prints a message defined by format *fmt* (of size *fmt_size*)
551  * 		to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
552  * 		available. It can take up to three additional **u64**
553  * 		arguments (as an eBPF helpers, the total number of arguments is
554  * 		limited to five).
555  *
556  * 		Each time the helper is called, it appends a line to the trace.
557  * 		The format of the trace is customizable, and the exact output
558  * 		one will get depends on the options set in
559  * 		*\/sys/kernel/debug/tracing/trace_options* (see also the
560  * 		*README* file under the same directory). However, it usually
561  * 		defaults to something like:
562  *
563  * 		::
564  *
565  * 			telnet-470   [001] .N.. 419421.045894: 0x00000001: <formatted msg>
566  *
567  * 		In the above:
568  *
569  * 			* ``telnet`` is the name of the current task.
570  * 			* ``470`` is the PID of the current task.
571  * 			* ``001`` is the CPU number on which the task is
572  * 			  running.
573  * 			* In ``.N..``, each character refers to a set of
574  * 			  options (whether irqs are enabled, scheduling
575  * 			  options, whether hard/softirqs are running, level of
576  * 			  preempt_disabled respectively). **N** means that
577  * 			  **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
578  * 			  are set.
579  * 			* ``419421.045894`` is a timestamp.
580  * 			* ``0x00000001`` is a fake value used by BPF for the
581  * 			  instruction pointer register.
582  * 			* ``<formatted msg>`` is the message formatted with
583  * 			  *fmt*.
584  *
585  * 		The conversion specifiers supported by *fmt* are similar, but
586  * 		more limited than for printk(). They are **%d**, **%i**,
587  * 		**%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
588  * 		**%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
589  * 		of field, padding with zeroes, etc.) is available, and the
590  * 		helper will return **-EINVAL** (but print nothing) if it
591  * 		encounters an unknown specifier.
592  *
593  * 		Also, note that **bpf_trace_printk**\ () is slow, and should
594  * 		only be used for debugging purposes. For this reason, a notice
595  * 		bloc (spanning several lines) is printed to kernel logs and
596  * 		states that the helper should not be used "for production use"
597  * 		the first time this helper is used (or more precisely, when
598  * 		**trace_printk**\ () buffers are allocated). For passing values
599  * 		to user space, perf events should be preferred.
600  * 	Return
601  * 		The number of bytes written to the buffer, or a negative error
602  * 		in case of failure.
603  *
604  * u32 bpf_get_prandom_u32(void)
605  * 	Description
606  * 		Get a pseudo-random number.
607  *
608  * 		From a security point of view, this helper uses its own
609  * 		pseudo-random internal state, and cannot be used to infer the
610  * 		seed of other random functions in the kernel. However, it is
611  * 		essential to note that the generator used by the helper is not
612  * 		cryptographically secure.
613  * 	Return
614  * 		A random 32-bit unsigned value.
615  *
616  * u32 bpf_get_smp_processor_id(void)
617  * 	Description
618  * 		Get the SMP (symmetric multiprocessing) processor id. Note that
619  * 		all programs run with preemption disabled, which means that the
620  * 		SMP processor id is stable during all the execution of the
621  * 		program.
622  * 	Return
623  * 		The SMP id of the processor running the program.
624  *
625  * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
626  * 	Description
627  * 		Store *len* bytes from address *from* into the packet
628  * 		associated to *skb*, at *offset*. *flags* are a combination of
629  * 		**BPF_F_RECOMPUTE_CSUM** (automatically recompute the
630  * 		checksum for the packet after storing the bytes) and
631  * 		**BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
632  * 		**->swhash** and *skb*\ **->l4hash** to 0).
633  *
634  * 		A call to this helper is susceptible to change the underlying
635  * 		packet buffer. Therefore, at load time, all checks on pointers
636  * 		previously done by the verifier are invalidated and must be
637  * 		performed again, if the helper is used in combination with
638  * 		direct packet access.
639  * 	Return
640  * 		0 on success, or a negative error in case of failure.
641  *
642  * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
643  * 	Description
644  * 		Recompute the layer 3 (e.g. IP) checksum for the packet
645  * 		associated to *skb*. Computation is incremental, so the helper
646  * 		must know the former value of the header field that was
647  * 		modified (*from*), the new value of this field (*to*), and the
648  * 		number of bytes (2 or 4) for this field, stored in *size*.
649  * 		Alternatively, it is possible to store the difference between
650  * 		the previous and the new values of the header field in *to*, by
651  * 		setting *from* and *size* to 0. For both methods, *offset*
652  * 		indicates the location of the IP checksum within the packet.
653  *
654  * 		This helper works in combination with **bpf_csum_diff**\ (),
655  * 		which does not update the checksum in-place, but offers more
656  * 		flexibility and can handle sizes larger than 2 or 4 for the
657  * 		checksum to update.
658  *
659  * 		A call to this helper is susceptible to change the underlying
660  * 		packet buffer. Therefore, at load time, all checks on pointers
661  * 		previously done by the verifier are invalidated and must be
662  * 		performed again, if the helper is used in combination with
663  * 		direct packet access.
664  * 	Return
665  * 		0 on success, or a negative error in case of failure.
666  *
667  * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
668  * 	Description
669  * 		Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
670  * 		packet associated to *skb*. Computation is incremental, so the
671  * 		helper must know the former value of the header field that was
672  * 		modified (*from*), the new value of this field (*to*), and the
673  * 		number of bytes (2 or 4) for this field, stored on the lowest
674  * 		four bits of *flags*. Alternatively, it is possible to store
675  * 		the difference between the previous and the new values of the
676  * 		header field in *to*, by setting *from* and the four lowest
677  * 		bits of *flags* to 0. For both methods, *offset* indicates the
678  * 		location of the IP checksum within the packet. In addition to
679  * 		the size of the field, *flags* can be added (bitwise OR) actual
680  * 		flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
681  * 		untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
682  * 		for updates resulting in a null checksum the value is set to
683  * 		**CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
684  * 		the checksum is to be computed against a pseudo-header.
685  *
686  * 		This helper works in combination with **bpf_csum_diff**\ (),
687  * 		which does not update the checksum in-place, but offers more
688  * 		flexibility and can handle sizes larger than 2 or 4 for the
689  * 		checksum to update.
690  *
691  * 		A call to this helper is susceptible to change the underlying
692  * 		packet buffer. Therefore, at load time, all checks on pointers
693  * 		previously done by the verifier are invalidated and must be
694  * 		performed again, if the helper is used in combination with
695  * 		direct packet access.
696  * 	Return
697  * 		0 on success, or a negative error in case of failure.
698  *
699  * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
700  * 	Description
701  * 		This special helper is used to trigger a "tail call", or in
702  * 		other words, to jump into another eBPF program. The same stack
703  * 		frame is used (but values on stack and in registers for the
704  * 		caller are not accessible to the callee). This mechanism allows
705  * 		for program chaining, either for raising the maximum number of
706  * 		available eBPF instructions, or to execute given programs in
707  * 		conditional blocks. For security reasons, there is an upper
708  * 		limit to the number of successive tail calls that can be
709  * 		performed.
710  *
711  * 		Upon call of this helper, the program attempts to jump into a
712  * 		program referenced at index *index* in *prog_array_map*, a
713  * 		special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
714  * 		*ctx*, a pointer to the context.
715  *
716  * 		If the call succeeds, the kernel immediately runs the first
717  * 		instruction of the new program. This is not a function call,
718  * 		and it never returns to the previous program. If the call
719  * 		fails, then the helper has no effect, and the caller continues
720  * 		to run its subsequent instructions. A call can fail if the
721  * 		destination program for the jump does not exist (i.e. *index*
722  * 		is superior to the number of entries in *prog_array_map*), or
723  * 		if the maximum number of tail calls has been reached for this
724  * 		chain of programs. This limit is defined in the kernel by the
725  * 		macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
726  * 		which is currently set to 32.
727  * 	Return
728  * 		0 on success, or a negative error in case of failure.
729  *
730  * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
731  * 	Description
732  * 		Clone and redirect the packet associated to *skb* to another
733  * 		net device of index *ifindex*. Both ingress and egress
734  * 		interfaces can be used for redirection. The **BPF_F_INGRESS**
735  * 		value in *flags* is used to make the distinction (ingress path
736  * 		is selected if the flag is present, egress path otherwise).
737  * 		This is the only flag supported for now.
738  *
739  * 		In comparison with **bpf_redirect**\ () helper,
740  * 		**bpf_clone_redirect**\ () has the associated cost of
741  * 		duplicating the packet buffer, but this can be executed out of
742  * 		the eBPF program. Conversely, **bpf_redirect**\ () is more
743  * 		efficient, but it is handled through an action code where the
744  * 		redirection happens only after the eBPF program has returned.
745  *
746  * 		A call to this helper is susceptible to change the underlying
747  * 		packet buffer. Therefore, at load time, all checks on pointers
748  * 		previously done by the verifier are invalidated and must be
749  * 		performed again, if the helper is used in combination with
750  * 		direct packet access.
751  * 	Return
752  * 		0 on success, or a negative error in case of failure.
753  *
754  * u64 bpf_get_current_pid_tgid(void)
755  * 	Return
756  * 		A 64-bit integer containing the current tgid and pid, and
757  * 		created as such:
758  * 		*current_task*\ **->tgid << 32 \|**
759  * 		*current_task*\ **->pid**.
760  *
761  * u64 bpf_get_current_uid_gid(void)
762  * 	Return
763  * 		A 64-bit integer containing the current GID and UID, and
764  * 		created as such: *current_gid* **<< 32 \|** *current_uid*.
765  *
766  * int bpf_get_current_comm(char *buf, u32 size_of_buf)
767  * 	Description
768  * 		Copy the **comm** attribute of the current task into *buf* of
769  * 		*size_of_buf*. The **comm** attribute contains the name of
770  * 		the executable (excluding the path) for the current task. The
771  * 		*size_of_buf* must be strictly positive. On success, the
772  * 		helper makes sure that the *buf* is NUL-terminated. On failure,
773  * 		it is filled with zeroes.
774  * 	Return
775  * 		0 on success, or a negative error in case of failure.
776  *
777  * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
778  * 	Description
779  * 		Retrieve the classid for the current task, i.e. for the net_cls
780  * 		cgroup to which *skb* belongs.
781  *
782  * 		This helper can be used on TC egress path, but not on ingress.
783  *
784  * 		The net_cls cgroup provides an interface to tag network packets
785  * 		based on a user-provided identifier for all traffic coming from
786  * 		the tasks belonging to the related cgroup. See also the related
787  * 		kernel documentation, available from the Linux sources in file
788  * 		*Documentation/cgroup-v1/net_cls.txt*.
789  *
790  * 		The Linux kernel has two versions for cgroups: there are
791  * 		cgroups v1 and cgroups v2. Both are available to users, who can
792  * 		use a mixture of them, but note that the net_cls cgroup is for
793  * 		cgroup v1 only. This makes it incompatible with BPF programs
794  * 		run on cgroups, which is a cgroup-v2-only feature (a socket can
795  * 		only hold data for one version of cgroups at a time).
796  *
797  * 		This helper is only available is the kernel was compiled with
798  * 		the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
799  * 		"**y**" or to "**m**".
800  * 	Return
801  * 		The classid, or 0 for the default unconfigured classid.
802  *
803  * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
804  * 	Description
805  * 		Push a *vlan_tci* (VLAN tag control information) of protocol
806  * 		*vlan_proto* to the packet associated to *skb*, then update
807  * 		the checksum. Note that if *vlan_proto* is different from
808  * 		**ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
809  * 		be **ETH_P_8021Q**.
810  *
811  * 		A call to this helper is susceptible to change the underlying
812  * 		packet buffer. Therefore, at load time, all checks on pointers
813  * 		previously done by the verifier are invalidated and must be
814  * 		performed again, if the helper is used in combination with
815  * 		direct packet access.
816  * 	Return
817  * 		0 on success, or a negative error in case of failure.
818  *
819  * int bpf_skb_vlan_pop(struct sk_buff *skb)
820  * 	Description
821  * 		Pop a VLAN header from the packet associated to *skb*.
822  *
823  * 		A call to this helper is susceptible to change the underlying
824  * 		packet buffer. Therefore, at load time, all checks on pointers
825  * 		previously done by the verifier are invalidated and must be
826  * 		performed again, if the helper is used in combination with
827  * 		direct packet access.
828  * 	Return
829  * 		0 on success, or a negative error in case of failure.
830  *
831  * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
832  * 	Description
833  * 		Get tunnel metadata. This helper takes a pointer *key* to an
834  * 		empty **struct bpf_tunnel_key** of **size**, that will be
835  * 		filled with tunnel metadata for the packet associated to *skb*.
836  * 		The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
837  * 		indicates that the tunnel is based on IPv6 protocol instead of
838  * 		IPv4.
839  *
840  * 		The **struct bpf_tunnel_key** is an object that generalizes the
841  * 		principal parameters used by various tunneling protocols into a
842  * 		single struct. This way, it can be used to easily make a
843  * 		decision based on the contents of the encapsulation header,
844  * 		"summarized" in this struct. In particular, it holds the IP
845  * 		address of the remote end (IPv4 or IPv6, depending on the case)
846  * 		in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
847  * 		this struct exposes the *key*\ **->tunnel_id**, which is
848  * 		generally mapped to a VNI (Virtual Network Identifier), making
849  * 		it programmable together with the **bpf_skb_set_tunnel_key**\
850  * 		() helper.
851  *
852  * 		Let's imagine that the following code is part of a program
853  * 		attached to the TC ingress interface, on one end of a GRE
854  * 		tunnel, and is supposed to filter out all messages coming from
855  * 		remote ends with IPv4 address other than 10.0.0.1:
856  *
857  * 		::
858  *
859  * 			int ret;
860  * 			struct bpf_tunnel_key key = {};
861  *
862  * 			ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
863  * 			if (ret < 0)
864  * 				return TC_ACT_SHOT;	// drop packet
865  *
866  * 			if (key.remote_ipv4 != 0x0a000001)
867  * 				return TC_ACT_SHOT;	// drop packet
868  *
869  * 			return TC_ACT_OK;		// accept packet
870  *
871  * 		This interface can also be used with all encapsulation devices
872  * 		that can operate in "collect metadata" mode: instead of having
873  * 		one network device per specific configuration, the "collect
874  * 		metadata" mode only requires a single device where the
875  * 		configuration can be extracted from this helper.
876  *
877  * 		This can be used together with various tunnels such as VXLan,
878  * 		Geneve, GRE or IP in IP (IPIP).
879  * 	Return
880  * 		0 on success, or a negative error in case of failure.
881  *
882  * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
883  * 	Description
884  * 		Populate tunnel metadata for packet associated to *skb.* The
885  * 		tunnel metadata is set to the contents of *key*, of *size*. The
886  * 		*flags* can be set to a combination of the following values:
887  *
888  * 		**BPF_F_TUNINFO_IPV6**
889  * 			Indicate that the tunnel is based on IPv6 protocol
890  * 			instead of IPv4.
891  * 		**BPF_F_ZERO_CSUM_TX**
892  * 			For IPv4 packets, add a flag to tunnel metadata
893  * 			indicating that checksum computation should be skipped
894  * 			and checksum set to zeroes.
895  * 		**BPF_F_DONT_FRAGMENT**
896  * 			Add a flag to tunnel metadata indicating that the
897  * 			packet should not be fragmented.
898  * 		**BPF_F_SEQ_NUMBER**
899  * 			Add a flag to tunnel metadata indicating that a
900  * 			sequence number should be added to tunnel header before
901  * 			sending the packet. This flag was added for GRE
902  * 			encapsulation, but might be used with other protocols
903  * 			as well in the future.
904  *
905  * 		Here is a typical usage on the transmit path:
906  *
907  * 		::
908  *
909  * 			struct bpf_tunnel_key key;
910  * 			     populate key ...
911  * 			bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
912  * 			bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
913  *
914  * 		See also the description of the **bpf_skb_get_tunnel_key**\ ()
915  * 		helper for additional information.
916  * 	Return
917  * 		0 on success, or a negative error in case of failure.
918  *
919  * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
920  * 	Description
921  * 		Read the value of a perf event counter. This helper relies on a
922  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
923  * 		the perf event counter is selected when *map* is updated with
924  * 		perf event file descriptors. The *map* is an array whose size
925  * 		is the number of available CPUs, and each cell contains a value
926  * 		relative to one CPU. The value to retrieve is indicated by
927  * 		*flags*, that contains the index of the CPU to look up, masked
928  * 		with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
929  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
930  * 		current CPU should be retrieved.
931  *
932  * 		Note that before Linux 4.13, only hardware perf event can be
933  * 		retrieved.
934  *
935  * 		Also, be aware that the newer helper
936  * 		**bpf_perf_event_read_value**\ () is recommended over
937  * 		**bpf_perf_event_read**\ () in general. The latter has some ABI
938  * 		quirks where error and counter value are used as a return code
939  * 		(which is wrong to do since ranges may overlap). This issue is
940  * 		fixed with **bpf_perf_event_read_value**\ (), which at the same
941  * 		time provides more features over the **bpf_perf_event_read**\
942  * 		() interface. Please refer to the description of
943  * 		**bpf_perf_event_read_value**\ () for details.
944  * 	Return
945  * 		The value of the perf event counter read from the map, or a
946  * 		negative error code in case of failure.
947  *
948  * int bpf_redirect(u32 ifindex, u64 flags)
949  * 	Description
950  * 		Redirect the packet to another net device of index *ifindex*.
951  * 		This helper is somewhat similar to **bpf_clone_redirect**\
952  * 		(), except that the packet is not cloned, which provides
953  * 		increased performance.
954  *
955  * 		Except for XDP, both ingress and egress interfaces can be used
956  * 		for redirection. The **BPF_F_INGRESS** value in *flags* is used
957  * 		to make the distinction (ingress path is selected if the flag
958  * 		is present, egress path otherwise). Currently, XDP only
959  * 		supports redirection to the egress interface, and accepts no
960  * 		flag at all.
961  *
962  * 		The same effect can be attained with the more generic
963  * 		**bpf_redirect_map**\ (), which requires specific maps to be
964  * 		used but offers better performance.
965  * 	Return
966  * 		For XDP, the helper returns **XDP_REDIRECT** on success or
967  * 		**XDP_ABORTED** on error. For other program types, the values
968  * 		are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
969  * 		error.
970  *
971  * u32 bpf_get_route_realm(struct sk_buff *skb)
972  * 	Description
973  * 		Retrieve the realm or the route, that is to say the
974  * 		**tclassid** field of the destination for the *skb*. The
975  * 		indentifier retrieved is a user-provided tag, similar to the
976  * 		one used with the net_cls cgroup (see description for
977  * 		**bpf_get_cgroup_classid**\ () helper), but here this tag is
978  * 		held by a route (a destination entry), not by a task.
979  *
980  * 		Retrieving this identifier works with the clsact TC egress hook
981  * 		(see also **tc-bpf(8)**), or alternatively on conventional
982  * 		classful egress qdiscs, but not on TC ingress path. In case of
983  * 		clsact TC egress hook, this has the advantage that, internally,
984  * 		the destination entry has not been dropped yet in the transmit
985  * 		path. Therefore, the destination entry does not need to be
986  * 		artificially held via **netif_keep_dst**\ () for a classful
987  * 		qdisc until the *skb* is freed.
988  *
989  * 		This helper is available only if the kernel was compiled with
990  * 		**CONFIG_IP_ROUTE_CLASSID** configuration option.
991  * 	Return
992  * 		The realm of the route for the packet associated to *skb*, or 0
993  * 		if none was found.
994  *
995  * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
996  * 	Description
997  * 		Write raw *data* blob into a special BPF perf event held by
998  * 		*map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
999  * 		event must have the following attributes: **PERF_SAMPLE_RAW**
1000  * 		as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
1001  * 		**PERF_COUNT_SW_BPF_OUTPUT** as **config**.
1002  *
1003  * 		The *flags* are used to indicate the index in *map* for which
1004  * 		the value must be put, masked with **BPF_F_INDEX_MASK**.
1005  * 		Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
1006  * 		to indicate that the index of the current CPU core should be
1007  * 		used.
1008  *
1009  * 		The value to write, of *size*, is passed through eBPF stack and
1010  * 		pointed by *data*.
1011  *
1012  * 		The context of the program *ctx* needs also be passed to the
1013  * 		helper.
1014  *
1015  * 		On user space, a program willing to read the values needs to
1016  * 		call **perf_event_open**\ () on the perf event (either for
1017  * 		one or for all CPUs) and to store the file descriptor into the
1018  * 		*map*. This must be done before the eBPF program can send data
1019  * 		into it. An example is available in file
1020  * 		*samples/bpf/trace_output_user.c* in the Linux kernel source
1021  * 		tree (the eBPF program counterpart is in
1022  * 		*samples/bpf/trace_output_kern.c*).
1023  *
1024  * 		**bpf_perf_event_output**\ () achieves better performance
1025  * 		than **bpf_trace_printk**\ () for sharing data with user
1026  * 		space, and is much better suitable for streaming data from eBPF
1027  * 		programs.
1028  *
1029  * 		Note that this helper is not restricted to tracing use cases
1030  * 		and can be used with programs attached to TC or XDP as well,
1031  * 		where it allows for passing data to user space listeners. Data
1032  * 		can be:
1033  *
1034  * 		* Only custom structs,
1035  * 		* Only the packet payload, or
1036  * 		* A combination of both.
1037  * 	Return
1038  * 		0 on success, or a negative error in case of failure.
1039  *
1040  * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
1041  * 	Description
1042  * 		This helper was provided as an easy way to load data from a
1043  * 		packet. It can be used to load *len* bytes from *offset* from
1044  * 		the packet associated to *skb*, into the buffer pointed by
1045  * 		*to*.
1046  *
1047  * 		Since Linux 4.7, usage of this helper has mostly been replaced
1048  * 		by "direct packet access", enabling packet data to be
1049  * 		manipulated with *skb*\ **->data** and *skb*\ **->data_end**
1050  * 		pointing respectively to the first byte of packet data and to
1051  * 		the byte after the last byte of packet data. However, it
1052  * 		remains useful if one wishes to read large quantities of data
1053  * 		at once from a packet into the eBPF stack.
1054  * 	Return
1055  * 		0 on success, or a negative error in case of failure.
1056  *
1057  * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
1058  * 	Description
1059  * 		Walk a user or a kernel stack and return its id. To achieve
1060  * 		this, the helper needs *ctx*, which is a pointer to the context
1061  * 		on which the tracing program is executed, and a pointer to a
1062  * 		*map* of type **BPF_MAP_TYPE_STACK_TRACE**.
1063  *
1064  * 		The last argument, *flags*, holds the number of stack frames to
1065  * 		skip (from 0 to 255), masked with
1066  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1067  * 		a combination of the following flags:
1068  *
1069  * 		**BPF_F_USER_STACK**
1070  * 			Collect a user space stack instead of a kernel stack.
1071  * 		**BPF_F_FAST_STACK_CMP**
1072  * 			Compare stacks by hash only.
1073  * 		**BPF_F_REUSE_STACKID**
1074  * 			If two different stacks hash into the same *stackid*,
1075  * 			discard the old one.
1076  *
1077  * 		The stack id retrieved is a 32 bit long integer handle which
1078  * 		can be further combined with other data (including other stack
1079  * 		ids) and used as a key into maps. This can be useful for
1080  * 		generating a variety of graphs (such as flame graphs or off-cpu
1081  * 		graphs).
1082  *
1083  * 		For walking a stack, this helper is an improvement over
1084  * 		**bpf_probe_read**\ (), which can be used with unrolled loops
1085  * 		but is not efficient and consumes a lot of eBPF instructions.
1086  * 		Instead, **bpf_get_stackid**\ () can collect up to
1087  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
1088  * 		this limit can be controlled with the **sysctl** program, and
1089  * 		that it should be manually increased in order to profile long
1090  * 		user stacks (such as stacks for Java programs). To do so, use:
1091  *
1092  * 		::
1093  *
1094  * 			# sysctl kernel.perf_event_max_stack=<new value>
1095  * 	Return
1096  * 		The positive or null stack id on success, or a negative error
1097  * 		in case of failure.
1098  *
1099  * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
1100  * 	Description
1101  * 		Compute a checksum difference, from the raw buffer pointed by
1102  * 		*from*, of length *from_size* (that must be a multiple of 4),
1103  * 		towards the raw buffer pointed by *to*, of size *to_size*
1104  * 		(same remark). An optional *seed* can be added to the value
1105  * 		(this can be cascaded, the seed may come from a previous call
1106  * 		to the helper).
1107  *
1108  * 		This is flexible enough to be used in several ways:
1109  *
1110  * 		* With *from_size* == 0, *to_size* > 0 and *seed* set to
1111  * 		  checksum, it can be used when pushing new data.
1112  * 		* With *from_size* > 0, *to_size* == 0 and *seed* set to
1113  * 		  checksum, it can be used when removing data from a packet.
1114  * 		* With *from_size* > 0, *to_size* > 0 and *seed* set to 0, it
1115  * 		  can be used to compute a diff. Note that *from_size* and
1116  * 		  *to_size* do not need to be equal.
1117  *
1118  * 		This helper can be used in combination with
1119  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\ (), to
1120  * 		which one can feed in the difference computed with
1121  * 		**bpf_csum_diff**\ ().
1122  * 	Return
1123  * 		The checksum result, or a negative error code in case of
1124  * 		failure.
1125  *
1126  * int bpf_skb_get_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1127  * 	Description
1128  * 		Retrieve tunnel options metadata for the packet associated to
1129  * 		*skb*, and store the raw tunnel option data to the buffer *opt*
1130  * 		of *size*.
1131  *
1132  * 		This helper can be used with encapsulation devices that can
1133  * 		operate in "collect metadata" mode (please refer to the related
1134  * 		note in the description of **bpf_skb_get_tunnel_key**\ () for
1135  * 		more details). A particular example where this can be used is
1136  * 		in combination with the Geneve encapsulation protocol, where it
1137  * 		allows for pushing (with **bpf_skb_get_tunnel_opt**\ () helper)
1138  * 		and retrieving arbitrary TLVs (Type-Length-Value headers) from
1139  * 		the eBPF program. This allows for full customization of these
1140  * 		headers.
1141  * 	Return
1142  * 		The size of the option data retrieved.
1143  *
1144  * int bpf_skb_set_tunnel_opt(struct sk_buff *skb, u8 *opt, u32 size)
1145  * 	Description
1146  * 		Set tunnel options metadata for the packet associated to *skb*
1147  * 		to the option data contained in the raw buffer *opt* of *size*.
1148  *
1149  * 		See also the description of the **bpf_skb_get_tunnel_opt**\ ()
1150  * 		helper for additional information.
1151  * 	Return
1152  * 		0 on success, or a negative error in case of failure.
1153  *
1154  * int bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)
1155  * 	Description
1156  * 		Change the protocol of the *skb* to *proto*. Currently
1157  * 		supported are transition from IPv4 to IPv6, and from IPv6 to
1158  * 		IPv4. The helper takes care of the groundwork for the
1159  * 		transition, including resizing the socket buffer. The eBPF
1160  * 		program is expected to fill the new headers, if any, via
1161  * 		**skb_store_bytes**\ () and to recompute the checksums with
1162  * 		**bpf_l3_csum_replace**\ () and **bpf_l4_csum_replace**\
1163  * 		(). The main case for this helper is to perform NAT64
1164  * 		operations out of an eBPF program.
1165  *
1166  * 		Internally, the GSO type is marked as dodgy so that headers are
1167  * 		checked and segments are recalculated by the GSO/GRO engine.
1168  * 		The size for GSO target is adapted as well.
1169  *
1170  * 		All values for *flags* are reserved for future usage, and must
1171  * 		be left at zero.
1172  *
1173  * 		A call to this helper is susceptible to change the underlying
1174  * 		packet buffer. Therefore, at load time, all checks on pointers
1175  * 		previously done by the verifier are invalidated and must be
1176  * 		performed again, if the helper is used in combination with
1177  * 		direct packet access.
1178  * 	Return
1179  * 		0 on success, or a negative error in case of failure.
1180  *
1181  * int bpf_skb_change_type(struct sk_buff *skb, u32 type)
1182  * 	Description
1183  * 		Change the packet type for the packet associated to *skb*. This
1184  * 		comes down to setting *skb*\ **->pkt_type** to *type*, except
1185  * 		the eBPF program does not have a write access to *skb*\
1186  * 		**->pkt_type** beside this helper. Using a helper here allows
1187  * 		for graceful handling of errors.
1188  *
1189  * 		The major use case is to change incoming *skb*s to
1190  * 		**PACKET_HOST** in a programmatic way instead of having to
1191  * 		recirculate via **redirect**\ (..., **BPF_F_INGRESS**), for
1192  * 		example.
1193  *
1194  * 		Note that *type* only allows certain values. At this time, they
1195  * 		are:
1196  *
1197  * 		**PACKET_HOST**
1198  * 			Packet is for us.
1199  * 		**PACKET_BROADCAST**
1200  * 			Send packet to all.
1201  * 		**PACKET_MULTICAST**
1202  * 			Send packet to group.
1203  * 		**PACKET_OTHERHOST**
1204  * 			Send packet to someone else.
1205  * 	Return
1206  * 		0 on success, or a negative error in case of failure.
1207  *
1208  * int bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)
1209  * 	Description
1210  * 		Check whether *skb* is a descendant of the cgroup2 held by
1211  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1212  * 	Return
1213  * 		The return value depends on the result of the test, and can be:
1214  *
1215  * 		* 0, if the *skb* failed the cgroup2 descendant test.
1216  * 		* 1, if the *skb* succeeded the cgroup2 descendant test.
1217  * 		* A negative error code, if an error occurred.
1218  *
1219  * u32 bpf_get_hash_recalc(struct sk_buff *skb)
1220  * 	Description
1221  * 		Retrieve the hash of the packet, *skb*\ **->hash**. If it is
1222  * 		not set, in particular if the hash was cleared due to mangling,
1223  * 		recompute this hash. Later accesses to the hash can be done
1224  * 		directly with *skb*\ **->hash**.
1225  *
1226  * 		Calling **bpf_set_hash_invalid**\ (), changing a packet
1227  * 		prototype with **bpf_skb_change_proto**\ (), or calling
1228  * 		**bpf_skb_store_bytes**\ () with the
1229  * 		**BPF_F_INVALIDATE_HASH** are actions susceptible to clear
1230  * 		the hash and to trigger a new computation for the next call to
1231  * 		**bpf_get_hash_recalc**\ ().
1232  * 	Return
1233  * 		The 32-bit hash.
1234  *
1235  * u64 bpf_get_current_task(void)
1236  * 	Return
1237  * 		A pointer to the current task struct.
1238  *
1239  * int bpf_probe_write_user(void *dst, const void *src, u32 len)
1240  * 	Description
1241  * 		Attempt in a safe way to write *len* bytes from the buffer
1242  * 		*src* to *dst* in memory. It only works for threads that are in
1243  * 		user context, and *dst* must be a valid user space address.
1244  *
1245  * 		This helper should not be used to implement any kind of
1246  * 		security mechanism because of TOC-TOU attacks, but rather to
1247  * 		debug, divert, and manipulate execution of semi-cooperative
1248  * 		processes.
1249  *
1250  * 		Keep in mind that this feature is meant for experiments, and it
1251  * 		has a risk of crashing the system and running programs.
1252  * 		Therefore, when an eBPF program using this helper is attached,
1253  * 		a warning including PID and process name is printed to kernel
1254  * 		logs.
1255  * 	Return
1256  * 		0 on success, or a negative error in case of failure.
1257  *
1258  * int bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)
1259  * 	Description
1260  * 		Check whether the probe is being run is the context of a given
1261  * 		subset of the cgroup2 hierarchy. The cgroup2 to test is held by
1262  * 		*map* of type **BPF_MAP_TYPE_CGROUP_ARRAY**, at *index*.
1263  * 	Return
1264  * 		The return value depends on the result of the test, and can be:
1265  *
1266  * 		* 0, if the *skb* task belongs to the cgroup2.
1267  * 		* 1, if the *skb* task does not belong to the cgroup2.
1268  * 		* A negative error code, if an error occurred.
1269  *
1270  * int bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)
1271  * 	Description
1272  * 		Resize (trim or grow) the packet associated to *skb* to the
1273  * 		new *len*. The *flags* are reserved for future usage, and must
1274  * 		be left at zero.
1275  *
1276  * 		The basic idea is that the helper performs the needed work to
1277  * 		change the size of the packet, then the eBPF program rewrites
1278  * 		the rest via helpers like **bpf_skb_store_bytes**\ (),
1279  * 		**bpf_l3_csum_replace**\ (), **bpf_l3_csum_replace**\ ()
1280  * 		and others. This helper is a slow path utility intended for
1281  * 		replies with control messages. And because it is targeted for
1282  * 		slow path, the helper itself can afford to be slow: it
1283  * 		implicitly linearizes, unclones and drops offloads from the
1284  * 		*skb*.
1285  *
1286  * 		A call to this helper is susceptible to change the underlying
1287  * 		packet buffer. Therefore, at load time, all checks on pointers
1288  * 		previously done by the verifier are invalidated and must be
1289  * 		performed again, if the helper is used in combination with
1290  * 		direct packet access.
1291  * 	Return
1292  * 		0 on success, or a negative error in case of failure.
1293  *
1294  * int bpf_skb_pull_data(struct sk_buff *skb, u32 len)
1295  * 	Description
1296  * 		Pull in non-linear data in case the *skb* is non-linear and not
1297  * 		all of *len* are part of the linear section. Make *len* bytes
1298  * 		from *skb* readable and writable. If a zero value is passed for
1299  * 		*len*, then the whole length of the *skb* is pulled.
1300  *
1301  * 		This helper is only needed for reading and writing with direct
1302  * 		packet access.
1303  *
1304  * 		For direct packet access, testing that offsets to access
1305  * 		are within packet boundaries (test on *skb*\ **->data_end**) is
1306  * 		susceptible to fail if offsets are invalid, or if the requested
1307  * 		data is in non-linear parts of the *skb*. On failure the
1308  * 		program can just bail out, or in the case of a non-linear
1309  * 		buffer, use a helper to make the data available. The
1310  * 		**bpf_skb_load_bytes**\ () helper is a first solution to access
1311  * 		the data. Another one consists in using **bpf_skb_pull_data**
1312  * 		to pull in once the non-linear parts, then retesting and
1313  * 		eventually access the data.
1314  *
1315  * 		At the same time, this also makes sure the *skb* is uncloned,
1316  * 		which is a necessary condition for direct write. As this needs
1317  * 		to be an invariant for the write part only, the verifier
1318  * 		detects writes and adds a prologue that is calling
1319  * 		**bpf_skb_pull_data()** to effectively unclone the *skb* from
1320  * 		the very beginning in case it is indeed cloned.
1321  *
1322  * 		A call to this helper is susceptible to change the underlying
1323  * 		packet buffer. Therefore, at load time, all checks on pointers
1324  * 		previously done by the verifier are invalidated and must be
1325  * 		performed again, if the helper is used in combination with
1326  * 		direct packet access.
1327  * 	Return
1328  * 		0 on success, or a negative error in case of failure.
1329  *
1330  * s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)
1331  * 	Description
1332  * 		Add the checksum *csum* into *skb*\ **->csum** in case the
1333  * 		driver has supplied a checksum for the entire packet into that
1334  * 		field. Return an error otherwise. This helper is intended to be
1335  * 		used in combination with **bpf_csum_diff**\ (), in particular
1336  * 		when the checksum needs to be updated after data has been
1337  * 		written into the packet through direct packet access.
1338  * 	Return
1339  * 		The checksum on success, or a negative error code in case of
1340  * 		failure.
1341  *
1342  * void bpf_set_hash_invalid(struct sk_buff *skb)
1343  * 	Description
1344  * 		Invalidate the current *skb*\ **->hash**. It can be used after
1345  * 		mangling on headers through direct packet access, in order to
1346  * 		indicate that the hash is outdated and to trigger a
1347  * 		recalculation the next time the kernel tries to access this
1348  * 		hash or when the **bpf_get_hash_recalc**\ () helper is called.
1349  *
1350  * int bpf_get_numa_node_id(void)
1351  * 	Description
1352  * 		Return the id of the current NUMA node. The primary use case
1353  * 		for this helper is the selection of sockets for the local NUMA
1354  * 		node, when the program is attached to sockets using the
1355  * 		**SO_ATTACH_REUSEPORT_EBPF** option (see also **socket(7)**),
1356  * 		but the helper is also available to other eBPF program types,
1357  * 		similarly to **bpf_get_smp_processor_id**\ ().
1358  * 	Return
1359  * 		The id of current NUMA node.
1360  *
1361  * int bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)
1362  * 	Description
1363  * 		Grows headroom of packet associated to *skb* and adjusts the
1364  * 		offset of the MAC header accordingly, adding *len* bytes of
1365  * 		space. It automatically extends and reallocates memory as
1366  * 		required.
1367  *
1368  * 		This helper can be used on a layer 3 *skb* to push a MAC header
1369  * 		for redirection into a layer 2 device.
1370  *
1371  * 		All values for *flags* are reserved for future usage, and must
1372  * 		be left at zero.
1373  *
1374  * 		A call to this helper is susceptible to change the underlying
1375  * 		packet buffer. Therefore, at load time, all checks on pointers
1376  * 		previously done by the verifier are invalidated and must be
1377  * 		performed again, if the helper is used in combination with
1378  * 		direct packet access.
1379  * 	Return
1380  * 		0 on success, or a negative error in case of failure.
1381  *
1382  * int bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)
1383  * 	Description
1384  * 		Adjust (move) *xdp_md*\ **->data** by *delta* bytes. Note that
1385  * 		it is possible to use a negative value for *delta*. This helper
1386  * 		can be used to prepare the packet for pushing or popping
1387  * 		headers.
1388  *
1389  * 		A call to this helper is susceptible to change the underlying
1390  * 		packet buffer. Therefore, at load time, all checks on pointers
1391  * 		previously done by the verifier are invalidated and must be
1392  * 		performed again, if the helper is used in combination with
1393  * 		direct packet access.
1394  * 	Return
1395  * 		0 on success, or a negative error in case of failure.
1396  *
1397  * int bpf_probe_read_str(void *dst, int size, const void *unsafe_ptr)
1398  * 	Description
1399  * 		Copy a NUL terminated string from an unsafe address
1400  * 		*unsafe_ptr* to *dst*. The *size* should include the
1401  * 		terminating NUL byte. In case the string length is smaller than
1402  * 		*size*, the target is not padded with further NUL bytes. If the
1403  * 		string length is larger than *size*, just *size*-1 bytes are
1404  * 		copied and the last byte is set to NUL.
1405  *
1406  * 		On success, the length of the copied string is returned. This
1407  * 		makes this helper useful in tracing programs for reading
1408  * 		strings, and more importantly to get its length at runtime. See
1409  * 		the following snippet:
1410  *
1411  * 		::
1412  *
1413  * 			SEC("kprobe/sys_open")
1414  * 			void bpf_sys_open(struct pt_regs *ctx)
1415  * 			{
1416  * 			        char buf[PATHLEN]; // PATHLEN is defined to 256
1417  * 			        int res = bpf_probe_read_str(buf, sizeof(buf),
1418  * 				                             ctx->di);
1419  *
1420  * 				// Consume buf, for example push it to
1421  * 				// userspace via bpf_perf_event_output(); we
1422  * 				// can use res (the string length) as event
1423  * 				// size, after checking its boundaries.
1424  * 			}
1425  *
1426  * 		In comparison, using **bpf_probe_read()** helper here instead
1427  * 		to read the string would require to estimate the length at
1428  * 		compile time, and would often result in copying more memory
1429  * 		than necessary.
1430  *
1431  * 		Another useful use case is when parsing individual process
1432  * 		arguments or individual environment variables navigating
1433  * 		*current*\ **->mm->arg_start** and *current*\
1434  * 		**->mm->env_start**: using this helper and the return value,
1435  * 		one can quickly iterate at the right offset of the memory area.
1436  * 	Return
1437  * 		On success, the strictly positive length of the string,
1438  * 		including the trailing NUL character. On error, a negative
1439  * 		value.
1440  *
1441  * u64 bpf_get_socket_cookie(struct sk_buff *skb)
1442  * 	Description
1443  * 		If the **struct sk_buff** pointed by *skb* has a known socket,
1444  * 		retrieve the cookie (generated by the kernel) of this socket.
1445  * 		If no cookie has been set yet, generate a new cookie. Once
1446  * 		generated, the socket cookie remains stable for the life of the
1447  * 		socket. This helper can be useful for monitoring per socket
1448  * 		networking traffic statistics as it provides a unique socket
1449  * 		identifier per namespace.
1450  * 	Return
1451  * 		A 8-byte long non-decreasing number on success, or 0 if the
1452  * 		socket field is missing inside *skb*.
1453  *
1454  * u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)
1455  * 	Description
1456  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1457  * 		*skb*, but gets socket from **struct bpf_sock_addr** context.
1458  * 	Return
1459  * 		A 8-byte long non-decreasing number.
1460  *
1461  * u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)
1462  * 	Description
1463  * 		Equivalent to bpf_get_socket_cookie() helper that accepts
1464  * 		*skb*, but gets socket from **struct bpf_sock_ops** context.
1465  * 	Return
1466  * 		A 8-byte long non-decreasing number.
1467  *
1468  * u32 bpf_get_socket_uid(struct sk_buff *skb)
1469  * 	Return
1470  * 		The owner UID of the socket associated to *skb*. If the socket
1471  * 		is **NULL**, or if it is not a full socket (i.e. if it is a
1472  * 		time-wait or a request socket instead), **overflowuid** value
1473  * 		is returned (note that **overflowuid** might also be the actual
1474  * 		UID value for the socket).
1475  *
1476  * u32 bpf_set_hash(struct sk_buff *skb, u32 hash)
1477  * 	Description
1478  * 		Set the full hash for *skb* (set the field *skb*\ **->hash**)
1479  * 		to value *hash*.
1480  * 	Return
1481  * 		0
1482  *
1483  * int bpf_setsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1484  * 	Description
1485  * 		Emulate a call to **setsockopt()** on the socket associated to
1486  * 		*bpf_socket*, which must be a full socket. The *level* at
1487  * 		which the option resides and the name *optname* of the option
1488  * 		must be specified, see **setsockopt(2)** for more information.
1489  * 		The option value of length *optlen* is pointed by *optval*.
1490  *
1491  * 		This helper actually implements a subset of **setsockopt()**.
1492  * 		It supports the following *level*\ s:
1493  *
1494  * 		* **SOL_SOCKET**, which supports the following *optname*\ s:
1495  * 		  **SO_RCVBUF**, **SO_SNDBUF**, **SO_MAX_PACING_RATE**,
1496  * 		  **SO_PRIORITY**, **SO_RCVLOWAT**, **SO_MARK**.
1497  * 		* **IPPROTO_TCP**, which supports the following *optname*\ s:
1498  * 		  **TCP_CONGESTION**, **TCP_BPF_IW**,
1499  * 		  **TCP_BPF_SNDCWND_CLAMP**.
1500  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1501  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1502  * 	Return
1503  * 		0 on success, or a negative error in case of failure.
1504  *
1505  * int bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)
1506  * 	Description
1507  * 		Grow or shrink the room for data in the packet associated to
1508  * 		*skb* by *len_diff*, and according to the selected *mode*.
1509  *
1510  *		There are two supported modes at this time:
1511  *
1512  *		* **BPF_ADJ_ROOM_MAC**: Adjust room at the mac layer
1513  *		  (room space is added or removed below the layer 2 header).
1514  *
1515  * 		* **BPF_ADJ_ROOM_NET**: Adjust room at the network layer
1516  * 		  (room space is added or removed below the layer 3 header).
1517  *
1518  *		The following flags are supported at this time:
1519  *
1520  *		* **BPF_F_ADJ_ROOM_FIXED_GSO**: Do not adjust gso_size.
1521  *		  Adjusting mss in this way is not allowed for datagrams.
1522  *
1523  *		* **BPF_F_ADJ_ROOM_ENCAP_L3_IPV4**,
1524  *		  **BPF_F_ADJ_ROOM_ENCAP_L3_IPV6**:
1525  *		  Any new space is reserved to hold a tunnel header.
1526  *		  Configure skb offsets and other fields accordingly.
1527  *
1528  *		* **BPF_F_ADJ_ROOM_ENCAP_L4_GRE**,
1529  *		  **BPF_F_ADJ_ROOM_ENCAP_L4_UDP**:
1530  *		  Use with ENCAP_L3 flags to further specify the tunnel type.
1531  *
1532  *		* **BPF_F_ADJ_ROOM_ENCAP_L2**\ (*len*):
1533  *		  Use with ENCAP_L3/L4 flags to further specify the tunnel
1534  *		  type; *len* is the length of the inner MAC header.
1535  *
1536  * 		A call to this helper is susceptible to change the underlying
1537  * 		packet buffer. Therefore, at load time, all checks on pointers
1538  * 		previously done by the verifier are invalidated and must be
1539  * 		performed again, if the helper is used in combination with
1540  * 		direct packet access.
1541  * 	Return
1542  * 		0 on success, or a negative error in case of failure.
1543  *
1544  * int bpf_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1545  * 	Description
1546  * 		Redirect the packet to the endpoint referenced by *map* at
1547  * 		index *key*. Depending on its type, this *map* can contain
1548  * 		references to net devices (for forwarding packets through other
1549  * 		ports), or to CPUs (for redirecting XDP frames to another CPU;
1550  * 		but this is only implemented for native XDP (with driver
1551  * 		support) as of this writing).
1552  *
1553  * 		All values for *flags* are reserved for future usage, and must
1554  * 		be left at zero.
1555  *
1556  * 		When used to redirect packets to net devices, this helper
1557  * 		provides a high performance increase over **bpf_redirect**\ ().
1558  * 		This is due to various implementation details of the underlying
1559  * 		mechanisms, one of which is the fact that **bpf_redirect_map**\
1560  * 		() tries to send packet as a "bulk" to the device.
1561  * 	Return
1562  * 		**XDP_REDIRECT** on success, or **XDP_ABORTED** on error.
1563  *
1564  * int bpf_sk_redirect_map(struct bpf_map *map, u32 key, u64 flags)
1565  * 	Description
1566  * 		Redirect the packet to the socket referenced by *map* (of type
1567  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1568  * 		egress interfaces can be used for redirection. The
1569  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1570  * 		distinction (ingress path is selected if the flag is present,
1571  * 		egress path otherwise). This is the only flag supported for now.
1572  * 	Return
1573  * 		**SK_PASS** on success, or **SK_DROP** on error.
1574  *
1575  * int bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void *key, u64 flags)
1576  * 	Description
1577  * 		Add an entry to, or update a *map* referencing sockets. The
1578  * 		*skops* is used as a new value for the entry associated to
1579  * 		*key*. *flags* is one of:
1580  *
1581  * 		**BPF_NOEXIST**
1582  * 			The entry for *key* must not exist in the map.
1583  * 		**BPF_EXIST**
1584  * 			The entry for *key* must already exist in the map.
1585  * 		**BPF_ANY**
1586  * 			No condition on the existence of the entry for *key*.
1587  *
1588  * 		If the *map* has eBPF programs (parser and verdict), those will
1589  * 		be inherited by the socket being added. If the socket is
1590  * 		already attached to eBPF programs, this results in an error.
1591  * 	Return
1592  * 		0 on success, or a negative error in case of failure.
1593  *
1594  * int bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)
1595  * 	Description
1596  * 		Adjust the address pointed by *xdp_md*\ **->data_meta** by
1597  * 		*delta* (which can be positive or negative). Note that this
1598  * 		operation modifies the address stored in *xdp_md*\ **->data**,
1599  * 		so the latter must be loaded only after the helper has been
1600  * 		called.
1601  *
1602  * 		The use of *xdp_md*\ **->data_meta** is optional and programs
1603  * 		are not required to use it. The rationale is that when the
1604  * 		packet is processed with XDP (e.g. as DoS filter), it is
1605  * 		possible to push further meta data along with it before passing
1606  * 		to the stack, and to give the guarantee that an ingress eBPF
1607  * 		program attached as a TC classifier on the same device can pick
1608  * 		this up for further post-processing. Since TC works with socket
1609  * 		buffers, it remains possible to set from XDP the **mark** or
1610  * 		**priority** pointers, or other pointers for the socket buffer.
1611  * 		Having this scratch space generic and programmable allows for
1612  * 		more flexibility as the user is free to store whatever meta
1613  * 		data they need.
1614  *
1615  * 		A call to this helper is susceptible to change the underlying
1616  * 		packet buffer. Therefore, at load time, all checks on pointers
1617  * 		previously done by the verifier are invalidated and must be
1618  * 		performed again, if the helper is used in combination with
1619  * 		direct packet access.
1620  * 	Return
1621  * 		0 on success, or a negative error in case of failure.
1622  *
1623  * int bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct bpf_perf_event_value *buf, u32 buf_size)
1624  * 	Description
1625  * 		Read the value of a perf event counter, and store it into *buf*
1626  * 		of size *buf_size*. This helper relies on a *map* of type
1627  * 		**BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of the perf event
1628  * 		counter is selected when *map* is updated with perf event file
1629  * 		descriptors. The *map* is an array whose size is the number of
1630  * 		available CPUs, and each cell contains a value relative to one
1631  * 		CPU. The value to retrieve is indicated by *flags*, that
1632  * 		contains the index of the CPU to look up, masked with
1633  * 		**BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
1634  * 		**BPF_F_CURRENT_CPU** to indicate that the value for the
1635  * 		current CPU should be retrieved.
1636  *
1637  * 		This helper behaves in a way close to
1638  * 		**bpf_perf_event_read**\ () helper, save that instead of
1639  * 		just returning the value observed, it fills the *buf*
1640  * 		structure. This allows for additional data to be retrieved: in
1641  * 		particular, the enabled and running times (in *buf*\
1642  * 		**->enabled** and *buf*\ **->running**, respectively) are
1643  * 		copied. In general, **bpf_perf_event_read_value**\ () is
1644  * 		recommended over **bpf_perf_event_read**\ (), which has some
1645  * 		ABI issues and provides fewer functionalities.
1646  *
1647  * 		These values are interesting, because hardware PMU (Performance
1648  * 		Monitoring Unit) counters are limited resources. When there are
1649  * 		more PMU based perf events opened than available counters,
1650  * 		kernel will multiplex these events so each event gets certain
1651  * 		percentage (but not all) of the PMU time. In case that
1652  * 		multiplexing happens, the number of samples or counter value
1653  * 		will not reflect the case compared to when no multiplexing
1654  * 		occurs. This makes comparison between different runs difficult.
1655  * 		Typically, the counter value should be normalized before
1656  * 		comparing to other experiments. The usual normalization is done
1657  * 		as follows.
1658  *
1659  * 		::
1660  *
1661  * 			normalized_counter = counter * t_enabled / t_running
1662  *
1663  * 		Where t_enabled is the time enabled for event and t_running is
1664  * 		the time running for event since last normalization. The
1665  * 		enabled and running times are accumulated since the perf event
1666  * 		open. To achieve scaling factor between two invocations of an
1667  * 		eBPF program, users can can use CPU id as the key (which is
1668  * 		typical for perf array usage model) to remember the previous
1669  * 		value and do the calculation inside the eBPF program.
1670  * 	Return
1671  * 		0 on success, or a negative error in case of failure.
1672  *
1673  * int bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct bpf_perf_event_value *buf, u32 buf_size)
1674  * 	Description
1675  * 		For en eBPF program attached to a perf event, retrieve the
1676  * 		value of the event counter associated to *ctx* and store it in
1677  * 		the structure pointed by *buf* and of size *buf_size*. Enabled
1678  * 		and running times are also stored in the structure (see
1679  * 		description of helper **bpf_perf_event_read_value**\ () for
1680  * 		more details).
1681  * 	Return
1682  * 		0 on success, or a negative error in case of failure.
1683  *
1684  * int bpf_getsockopt(struct bpf_sock_ops *bpf_socket, int level, int optname, char *optval, int optlen)
1685  * 	Description
1686  * 		Emulate a call to **getsockopt()** on the socket associated to
1687  * 		*bpf_socket*, which must be a full socket. The *level* at
1688  * 		which the option resides and the name *optname* of the option
1689  * 		must be specified, see **getsockopt(2)** for more information.
1690  * 		The retrieved value is stored in the structure pointed by
1691  * 		*opval* and of length *optlen*.
1692  *
1693  * 		This helper actually implements a subset of **getsockopt()**.
1694  * 		It supports the following *level*\ s:
1695  *
1696  * 		* **IPPROTO_TCP**, which supports *optname*
1697  * 		  **TCP_CONGESTION**.
1698  * 		* **IPPROTO_IP**, which supports *optname* **IP_TOS**.
1699  * 		* **IPPROTO_IPV6**, which supports *optname* **IPV6_TCLASS**.
1700  * 	Return
1701  * 		0 on success, or a negative error in case of failure.
1702  *
1703  * int bpf_override_return(struct pt_reg *regs, u64 rc)
1704  * 	Description
1705  * 		Used for error injection, this helper uses kprobes to override
1706  * 		the return value of the probed function, and to set it to *rc*.
1707  * 		The first argument is the context *regs* on which the kprobe
1708  * 		works.
1709  *
1710  * 		This helper works by setting setting the PC (program counter)
1711  * 		to an override function which is run in place of the original
1712  * 		probed function. This means the probed function is not run at
1713  * 		all. The replacement function just returns with the required
1714  * 		value.
1715  *
1716  * 		This helper has security implications, and thus is subject to
1717  * 		restrictions. It is only available if the kernel was compiled
1718  * 		with the **CONFIG_BPF_KPROBE_OVERRIDE** configuration
1719  * 		option, and in this case it only works on functions tagged with
1720  * 		**ALLOW_ERROR_INJECTION** in the kernel code.
1721  *
1722  * 		Also, the helper is only available for the architectures having
1723  * 		the CONFIG_FUNCTION_ERROR_INJECTION option. As of this writing,
1724  * 		x86 architecture is the only one to support this feature.
1725  * 	Return
1726  * 		0
1727  *
1728  * int bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)
1729  * 	Description
1730  * 		Attempt to set the value of the **bpf_sock_ops_cb_flags** field
1731  * 		for the full TCP socket associated to *bpf_sock_ops* to
1732  * 		*argval*.
1733  *
1734  * 		The primary use of this field is to determine if there should
1735  * 		be calls to eBPF programs of type
1736  * 		**BPF_PROG_TYPE_SOCK_OPS** at various points in the TCP
1737  * 		code. A program of the same type can change its value, per
1738  * 		connection and as necessary, when the connection is
1739  * 		established. This field is directly accessible for reading, but
1740  * 		this helper must be used for updates in order to return an
1741  * 		error if an eBPF program tries to set a callback that is not
1742  * 		supported in the current kernel.
1743  *
1744  * 		*argval* is a flag array which can combine these flags:
1745  *
1746  * 		* **BPF_SOCK_OPS_RTO_CB_FLAG** (retransmission time out)
1747  * 		* **BPF_SOCK_OPS_RETRANS_CB_FLAG** (retransmission)
1748  * 		* **BPF_SOCK_OPS_STATE_CB_FLAG** (TCP state change)
1749  *
1750  * 		Therefore, this function can be used to clear a callback flag by
1751  * 		setting the appropriate bit to zero. e.g. to disable the RTO
1752  * 		callback:
1753  *
1754  * 		**bpf_sock_ops_cb_flags_set(bpf_sock,**
1755  * 			**bpf_sock->bpf_sock_ops_cb_flags & ~BPF_SOCK_OPS_RTO_CB_FLAG)**
1756  *
1757  * 		Here are some examples of where one could call such eBPF
1758  * 		program:
1759  *
1760  * 		* When RTO fires.
1761  * 		* When a packet is retransmitted.
1762  * 		* When the connection terminates.
1763  * 		* When a packet is sent.
1764  * 		* When a packet is received.
1765  * 	Return
1766  * 		Code **-EINVAL** if the socket is not a full TCP socket;
1767  * 		otherwise, a positive number containing the bits that could not
1768  * 		be set is returned (which comes down to 0 if all bits were set
1769  * 		as required).
1770  *
1771  * int bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32 key, u64 flags)
1772  * 	Description
1773  * 		This helper is used in programs implementing policies at the
1774  * 		socket level. If the message *msg* is allowed to pass (i.e. if
1775  * 		the verdict eBPF program returns **SK_PASS**), redirect it to
1776  * 		the socket referenced by *map* (of type
1777  * 		**BPF_MAP_TYPE_SOCKMAP**) at index *key*. Both ingress and
1778  * 		egress interfaces can be used for redirection. The
1779  * 		**BPF_F_INGRESS** value in *flags* is used to make the
1780  * 		distinction (ingress path is selected if the flag is present,
1781  * 		egress path otherwise). This is the only flag supported for now.
1782  * 	Return
1783  * 		**SK_PASS** on success, or **SK_DROP** on error.
1784  *
1785  * int bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)
1786  * 	Description
1787  * 		For socket policies, apply the verdict of the eBPF program to
1788  * 		the next *bytes* (number of bytes) of message *msg*.
1789  *
1790  * 		For example, this helper can be used in the following cases:
1791  *
1792  * 		* A single **sendmsg**\ () or **sendfile**\ () system call
1793  * 		  contains multiple logical messages that the eBPF program is
1794  * 		  supposed to read and for which it should apply a verdict.
1795  * 		* An eBPF program only cares to read the first *bytes* of a
1796  * 		  *msg*. If the message has a large payload, then setting up
1797  * 		  and calling the eBPF program repeatedly for all bytes, even
1798  * 		  though the verdict is already known, would create unnecessary
1799  * 		  overhead.
1800  *
1801  * 		When called from within an eBPF program, the helper sets a
1802  * 		counter internal to the BPF infrastructure, that is used to
1803  * 		apply the last verdict to the next *bytes*. If *bytes* is
1804  * 		smaller than the current data being processed from a
1805  * 		**sendmsg**\ () or **sendfile**\ () system call, the first
1806  * 		*bytes* will be sent and the eBPF program will be re-run with
1807  * 		the pointer for start of data pointing to byte number *bytes*
1808  * 		**+ 1**. If *bytes* is larger than the current data being
1809  * 		processed, then the eBPF verdict will be applied to multiple
1810  * 		**sendmsg**\ () or **sendfile**\ () calls until *bytes* are
1811  * 		consumed.
1812  *
1813  * 		Note that if a socket closes with the internal counter holding
1814  * 		a non-zero value, this is not a problem because data is not
1815  * 		being buffered for *bytes* and is sent as it is received.
1816  * 	Return
1817  * 		0
1818  *
1819  * int bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)
1820  * 	Description
1821  * 		For socket policies, prevent the execution of the verdict eBPF
1822  * 		program for message *msg* until *bytes* (byte number) have been
1823  * 		accumulated.
1824  *
1825  * 		This can be used when one needs a specific number of bytes
1826  * 		before a verdict can be assigned, even if the data spans
1827  * 		multiple **sendmsg**\ () or **sendfile**\ () calls. The extreme
1828  * 		case would be a user calling **sendmsg**\ () repeatedly with
1829  * 		1-byte long message segments. Obviously, this is bad for
1830  * 		performance, but it is still valid. If the eBPF program needs
1831  * 		*bytes* bytes to validate a header, this helper can be used to
1832  * 		prevent the eBPF program to be called again until *bytes* have
1833  * 		been accumulated.
1834  * 	Return
1835  * 		0
1836  *
1837  * int bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)
1838  * 	Description
1839  * 		For socket policies, pull in non-linear data from user space
1840  * 		for *msg* and set pointers *msg*\ **->data** and *msg*\
1841  * 		**->data_end** to *start* and *end* bytes offsets into *msg*,
1842  * 		respectively.
1843  *
1844  * 		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
1845  * 		*msg* it can only parse data that the (**data**, **data_end**)
1846  * 		pointers have already consumed. For **sendmsg**\ () hooks this
1847  * 		is likely the first scatterlist element. But for calls relying
1848  * 		on the **sendpage** handler (e.g. **sendfile**\ ()) this will
1849  * 		be the range (**0**, **0**) because the data is shared with
1850  * 		user space and by default the objective is to avoid allowing
1851  * 		user space to modify data while (or after) eBPF verdict is
1852  * 		being decided. This helper can be used to pull in data and to
1853  * 		set the start and end pointer to given values. Data will be
1854  * 		copied if necessary (i.e. if data was not linear and if start
1855  * 		and end pointers do not point to the same chunk).
1856  *
1857  * 		A call to this helper is susceptible to change the underlying
1858  * 		packet buffer. Therefore, at load time, all checks on pointers
1859  * 		previously done by the verifier are invalidated and must be
1860  * 		performed again, if the helper is used in combination with
1861  * 		direct packet access.
1862  *
1863  * 		All values for *flags* are reserved for future usage, and must
1864  * 		be left at zero.
1865  * 	Return
1866  * 		0 on success, or a negative error in case of failure.
1867  *
1868  * int bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)
1869  * 	Description
1870  * 		Bind the socket associated to *ctx* to the address pointed by
1871  * 		*addr*, of length *addr_len*. This allows for making outgoing
1872  * 		connection from the desired IP address, which can be useful for
1873  * 		example when all processes inside a cgroup should use one
1874  * 		single IP address on a host that has multiple IP configured.
1875  *
1876  * 		This helper works for IPv4 and IPv6, TCP and UDP sockets. The
1877  * 		domain (*addr*\ **->sa_family**) must be **AF_INET** (or
1878  * 		**AF_INET6**). Looking for a free port to bind to can be
1879  * 		expensive, therefore binding to port is not permitted by the
1880  * 		helper: *addr*\ **->sin_port** (or **sin6_port**, respectively)
1881  * 		must be set to zero.
1882  * 	Return
1883  * 		0 on success, or a negative error in case of failure.
1884  *
1885  * int bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)
1886  * 	Description
1887  * 		Adjust (move) *xdp_md*\ **->data_end** by *delta* bytes. It is
1888  * 		only possible to shrink the packet as of this writing,
1889  * 		therefore *delta* must be a negative integer.
1890  *
1891  * 		A call to this helper is susceptible to change the underlying
1892  * 		packet buffer. Therefore, at load time, all checks on pointers
1893  * 		previously done by the verifier are invalidated and must be
1894  * 		performed again, if the helper is used in combination with
1895  * 		direct packet access.
1896  * 	Return
1897  * 		0 on success, or a negative error in case of failure.
1898  *
1899  * int bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state *xfrm_state, u32 size, u64 flags)
1900  * 	Description
1901  * 		Retrieve the XFRM state (IP transform framework, see also
1902  * 		**ip-xfrm(8)**) at *index* in XFRM "security path" for *skb*.
1903  *
1904  * 		The retrieved value is stored in the **struct bpf_xfrm_state**
1905  * 		pointed by *xfrm_state* and of length *size*.
1906  *
1907  * 		All values for *flags* are reserved for future usage, and must
1908  * 		be left at zero.
1909  *
1910  * 		This helper is available only if the kernel was compiled with
1911  * 		**CONFIG_XFRM** configuration option.
1912  * 	Return
1913  * 		0 on success, or a negative error in case of failure.
1914  *
1915  * int bpf_get_stack(struct pt_regs *regs, void *buf, u32 size, u64 flags)
1916  * 	Description
1917  * 		Return a user or a kernel stack in bpf program provided buffer.
1918  * 		To achieve this, the helper needs *ctx*, which is a pointer
1919  * 		to the context on which the tracing program is executed.
1920  * 		To store the stacktrace, the bpf program provides *buf* with
1921  * 		a nonnegative *size*.
1922  *
1923  * 		The last argument, *flags*, holds the number of stack frames to
1924  * 		skip (from 0 to 255), masked with
1925  * 		**BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
1926  * 		the following flags:
1927  *
1928  * 		**BPF_F_USER_STACK**
1929  * 			Collect a user space stack instead of a kernel stack.
1930  * 		**BPF_F_USER_BUILD_ID**
1931  * 			Collect buildid+offset instead of ips for user stack,
1932  * 			only valid if **BPF_F_USER_STACK** is also specified.
1933  *
1934  * 		**bpf_get_stack**\ () can collect up to
1935  * 		**PERF_MAX_STACK_DEPTH** both kernel and user frames, subject
1936  * 		to sufficient large buffer size. Note that
1937  * 		this limit can be controlled with the **sysctl** program, and
1938  * 		that it should be manually increased in order to profile long
1939  * 		user stacks (such as stacks for Java programs). To do so, use:
1940  *
1941  * 		::
1942  *
1943  * 			# sysctl kernel.perf_event_max_stack=<new value>
1944  * 	Return
1945  * 		A non-negative value equal to or less than *size* on success,
1946  * 		or a negative error in case of failure.
1947  *
1948  * int bpf_skb_load_bytes_relative(const struct sk_buff *skb, u32 offset, void *to, u32 len, u32 start_header)
1949  * 	Description
1950  * 		This helper is similar to **bpf_skb_load_bytes**\ () in that
1951  * 		it provides an easy way to load *len* bytes from *offset*
1952  * 		from the packet associated to *skb*, into the buffer pointed
1953  * 		by *to*. The difference to **bpf_skb_load_bytes**\ () is that
1954  * 		a fifth argument *start_header* exists in order to select a
1955  * 		base offset to start from. *start_header* can be one of:
1956  *
1957  * 		**BPF_HDR_START_MAC**
1958  * 			Base offset to load data from is *skb*'s mac header.
1959  * 		**BPF_HDR_START_NET**
1960  * 			Base offset to load data from is *skb*'s network header.
1961  *
1962  * 		In general, "direct packet access" is the preferred method to
1963  * 		access packet data, however, this helper is in particular useful
1964  * 		in socket filters where *skb*\ **->data** does not always point
1965  * 		to the start of the mac header and where "direct packet access"
1966  * 		is not available.
1967  * 	Return
1968  * 		0 on success, or a negative error in case of failure.
1969  *
1970  * int bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)
1971  *	Description
1972  *		Do FIB lookup in kernel tables using parameters in *params*.
1973  *		If lookup is successful and result shows packet is to be
1974  *		forwarded, the neighbor tables are searched for the nexthop.
1975  *		If successful (ie., FIB lookup shows forwarding and nexthop
1976  *		is resolved), the nexthop address is returned in ipv4_dst
1977  *		or ipv6_dst based on family, smac is set to mac address of
1978  *		egress device, dmac is set to nexthop mac address, rt_metric
1979  *		is set to metric from route (IPv4/IPv6 only), and ifindex
1980  *		is set to the device index of the nexthop from the FIB lookup.
1981  *
1982  *		*plen* argument is the size of the passed in struct.
1983  *		*flags* argument can be a combination of one or more of the
1984  *		following values:
1985  *
1986  *		**BPF_FIB_LOOKUP_DIRECT**
1987  *			Do a direct table lookup vs full lookup using FIB
1988  *			rules.
1989  *		**BPF_FIB_LOOKUP_OUTPUT**
1990  *			Perform lookup from an egress perspective (default is
1991  *			ingress).
1992  *
1993  *		*ctx* is either **struct xdp_md** for XDP programs or
1994  *		**struct sk_buff** tc cls_act programs.
1995  *	Return
1996  *		* < 0 if any input argument is invalid
1997  *		*   0 on success (packet is forwarded, nexthop neighbor exists)
1998  *		* > 0 one of **BPF_FIB_LKUP_RET_** codes explaining why the
1999  *		  packet is not forwarded or needs assist from full stack
2000  *
2001  * int bpf_sock_hash_update(struct bpf_sock_ops_kern *skops, struct bpf_map *map, void *key, u64 flags)
2002  *	Description
2003  *		Add an entry to, or update a sockhash *map* referencing sockets.
2004  *		The *skops* is used as a new value for the entry associated to
2005  *		*key*. *flags* is one of:
2006  *
2007  *		**BPF_NOEXIST**
2008  *			The entry for *key* must not exist in the map.
2009  *		**BPF_EXIST**
2010  *			The entry for *key* must already exist in the map.
2011  *		**BPF_ANY**
2012  *			No condition on the existence of the entry for *key*.
2013  *
2014  *		If the *map* has eBPF programs (parser and verdict), those will
2015  *		be inherited by the socket being added. If the socket is
2016  *		already attached to eBPF programs, this results in an error.
2017  *	Return
2018  *		0 on success, or a negative error in case of failure.
2019  *
2020  * int bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void *key, u64 flags)
2021  *	Description
2022  *		This helper is used in programs implementing policies at the
2023  *		socket level. If the message *msg* is allowed to pass (i.e. if
2024  *		the verdict eBPF program returns **SK_PASS**), redirect it to
2025  *		the socket referenced by *map* (of type
2026  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2027  *		egress interfaces can be used for redirection. The
2028  *		**BPF_F_INGRESS** value in *flags* is used to make the
2029  *		distinction (ingress path is selected if the flag is present,
2030  *		egress path otherwise). This is the only flag supported for now.
2031  *	Return
2032  *		**SK_PASS** on success, or **SK_DROP** on error.
2033  *
2034  * int bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key, u64 flags)
2035  *	Description
2036  *		This helper is used in programs implementing policies at the
2037  *		skb socket level. If the sk_buff *skb* is allowed to pass (i.e.
2038  *		if the verdeict eBPF program returns **SK_PASS**), redirect it
2039  *		to the socket referenced by *map* (of type
2040  *		**BPF_MAP_TYPE_SOCKHASH**) using hash *key*. Both ingress and
2041  *		egress interfaces can be used for redirection. The
2042  *		**BPF_F_INGRESS** value in *flags* is used to make the
2043  *		distinction (ingress path is selected if the flag is present,
2044  *		egress otherwise). This is the only flag supported for now.
2045  *	Return
2046  *		**SK_PASS** on success, or **SK_DROP** on error.
2047  *
2048  * int bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
2049  *	Description
2050  *		Encapsulate the packet associated to *skb* within a Layer 3
2051  *		protocol header. This header is provided in the buffer at
2052  *		address *hdr*, with *len* its size in bytes. *type* indicates
2053  *		the protocol of the header and can be one of:
2054  *
2055  *		**BPF_LWT_ENCAP_SEG6**
2056  *			IPv6 encapsulation with Segment Routing Header
2057  *			(**struct ipv6_sr_hdr**). *hdr* only contains the SRH,
2058  *			the IPv6 header is computed by the kernel.
2059  *		**BPF_LWT_ENCAP_SEG6_INLINE**
2060  *			Only works if *skb* contains an IPv6 packet. Insert a
2061  *			Segment Routing Header (**struct ipv6_sr_hdr**) inside
2062  *			the IPv6 header.
2063  *		**BPF_LWT_ENCAP_IP**
2064  *			IP encapsulation (GRE/GUE/IPIP/etc). The outer header
2065  *			must be IPv4 or IPv6, followed by zero or more
2066  *			additional headers, up to **LWT_BPF_MAX_HEADROOM**
2067  *			total bytes in all prepended headers. Please note that
2068  *			if **skb_is_gso**\ (*skb*) is true, no more than two
2069  *			headers can be prepended, and the inner header, if
2070  *			present, should be either GRE or UDP/GUE.
2071  *
2072  *		**BPF_LWT_ENCAP_SEG6**\ \* types can be called by BPF programs
2073  *		of type **BPF_PROG_TYPE_LWT_IN**; **BPF_LWT_ENCAP_IP** type can
2074  *		be called by bpf programs of types **BPF_PROG_TYPE_LWT_IN** and
2075  *		**BPF_PROG_TYPE_LWT_XMIT**.
2076  *
2077  * 		A call to this helper is susceptible to change the underlying
2078  * 		packet buffer. Therefore, at load time, all checks on pointers
2079  * 		previously done by the verifier are invalidated and must be
2080  * 		performed again, if the helper is used in combination with
2081  * 		direct packet access.
2082  *	Return
2083  * 		0 on success, or a negative error in case of failure.
2084  *
2085  * int bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len)
2086  *	Description
2087  *		Store *len* bytes from address *from* into the packet
2088  *		associated to *skb*, at *offset*. Only the flags, tag and TLVs
2089  *		inside the outermost IPv6 Segment Routing Header can be
2090  *		modified through this helper.
2091  *
2092  * 		A call to this helper is susceptible to change the underlying
2093  * 		packet buffer. Therefore, at load time, all checks on pointers
2094  * 		previously done by the verifier are invalidated and must be
2095  * 		performed again, if the helper is used in combination with
2096  * 		direct packet access.
2097  *	Return
2098  * 		0 on success, or a negative error in case of failure.
2099  *
2100  * int bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)
2101  *	Description
2102  *		Adjust the size allocated to TLVs in the outermost IPv6
2103  *		Segment Routing Header contained in the packet associated to
2104  *		*skb*, at position *offset* by *delta* bytes. Only offsets
2105  *		after the segments are accepted. *delta* can be as well
2106  *		positive (growing) as negative (shrinking).
2107  *
2108  * 		A call to this helper is susceptible to change the underlying
2109  * 		packet buffer. Therefore, at load time, all checks on pointers
2110  * 		previously done by the verifier are invalidated and must be
2111  * 		performed again, if the helper is used in combination with
2112  * 		direct packet access.
2113  *	Return
2114  * 		0 on success, or a negative error in case of failure.
2115  *
2116  * int bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32 param_len)
2117  *	Description
2118  *		Apply an IPv6 Segment Routing action of type *action* to the
2119  *		packet associated to *skb*. Each action takes a parameter
2120  *		contained at address *param*, and of length *param_len* bytes.
2121  *		*action* can be one of:
2122  *
2123  *		**SEG6_LOCAL_ACTION_END_X**
2124  *			End.X action: Endpoint with Layer-3 cross-connect.
2125  *			Type of *param*: **struct in6_addr**.
2126  *		**SEG6_LOCAL_ACTION_END_T**
2127  *			End.T action: Endpoint with specific IPv6 table lookup.
2128  *			Type of *param*: **int**.
2129  *		**SEG6_LOCAL_ACTION_END_B6**
2130  *			End.B6 action: Endpoint bound to an SRv6 policy.
2131  *			Type of *param*: **struct ipv6_sr_hdr**.
2132  *		**SEG6_LOCAL_ACTION_END_B6_ENCAP**
2133  *			End.B6.Encap action: Endpoint bound to an SRv6
2134  *			encapsulation policy.
2135  *			Type of *param*: **struct ipv6_sr_hdr**.
2136  *
2137  * 		A call to this helper is susceptible to change the underlying
2138  * 		packet buffer. Therefore, at load time, all checks on pointers
2139  * 		previously done by the verifier are invalidated and must be
2140  * 		performed again, if the helper is used in combination with
2141  * 		direct packet access.
2142  *	Return
2143  * 		0 on success, or a negative error in case of failure.
2144  *
2145  * int bpf_rc_repeat(void *ctx)
2146  *	Description
2147  *		This helper is used in programs implementing IR decoding, to
2148  *		report a successfully decoded repeat key message. This delays
2149  *		the generation of a key up event for previously generated
2150  *		key down event.
2151  *
2152  *		Some IR protocols like NEC have a special IR message for
2153  *		repeating last button, for when a button is held down.
2154  *
2155  *		The *ctx* should point to the lirc sample as passed into
2156  *		the program.
2157  *
2158  *		This helper is only available is the kernel was compiled with
2159  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2160  *		"**y**".
2161  *	Return
2162  *		0
2163  *
2164  * int bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)
2165  *	Description
2166  *		This helper is used in programs implementing IR decoding, to
2167  *		report a successfully decoded key press with *scancode*,
2168  *		*toggle* value in the given *protocol*. The scancode will be
2169  *		translated to a keycode using the rc keymap, and reported as
2170  *		an input key down event. After a period a key up event is
2171  *		generated. This period can be extended by calling either
2172  *		**bpf_rc_keydown**\ () again with the same values, or calling
2173  *		**bpf_rc_repeat**\ ().
2174  *
2175  *		Some protocols include a toggle bit, in case the button	was
2176  *		released and pressed again between consecutive scancodes.
2177  *
2178  *		The *ctx* should point to the lirc sample as passed into
2179  *		the program.
2180  *
2181  *		The *protocol* is the decoded protocol number (see
2182  *		**enum rc_proto** for some predefined values).
2183  *
2184  *		This helper is only available is the kernel was compiled with
2185  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2186  *		"**y**".
2187  *	Return
2188  *		0
2189  *
2190  * u64 bpf_skb_cgroup_id(struct sk_buff *skb)
2191  * 	Description
2192  * 		Return the cgroup v2 id of the socket associated with the *skb*.
2193  * 		This is roughly similar to the **bpf_get_cgroup_classid**\ ()
2194  * 		helper for cgroup v1 by providing a tag resp. identifier that
2195  * 		can be matched on or used for map lookups e.g. to implement
2196  * 		policy. The cgroup v2 id of a given path in the hierarchy is
2197  * 		exposed in user space through the f_handle API in order to get
2198  * 		to the same 64-bit id.
2199  *
2200  * 		This helper can be used on TC egress path, but not on ingress,
2201  * 		and is available only if the kernel was compiled with the
2202  * 		**CONFIG_SOCK_CGROUP_DATA** configuration option.
2203  * 	Return
2204  * 		The id is returned or 0 in case the id could not be retrieved.
2205  *
2206  * u64 bpf_get_current_cgroup_id(void)
2207  * 	Return
2208  * 		A 64-bit integer containing the current cgroup id based
2209  * 		on the cgroup within which the current task is running.
2210  *
2211  * void *bpf_get_local_storage(void *map, u64 flags)
2212  *	Description
2213  *		Get the pointer to the local storage area.
2214  *		The type and the size of the local storage is defined
2215  *		by the *map* argument.
2216  *		The *flags* meaning is specific for each map type,
2217  *		and has to be 0 for cgroup local storage.
2218  *
2219  *		Depending on the BPF program type, a local storage area
2220  *		can be shared between multiple instances of the BPF program,
2221  *		running simultaneously.
2222  *
2223  *		A user should care about the synchronization by himself.
2224  *		For example, by using the **BPF_STX_XADD** instruction to alter
2225  *		the shared data.
2226  *	Return
2227  *		A pointer to the local storage area.
2228  *
2229  * int bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map *map, void *key, u64 flags)
2230  *	Description
2231  *		Select a **SO_REUSEPORT** socket from a
2232  *		**BPF_MAP_TYPE_REUSEPORT_ARRAY** *map*.
2233  *		It checks the selected socket is matching the incoming
2234  *		request in the socket buffer.
2235  *	Return
2236  *		0 on success, or a negative error in case of failure.
2237  *
2238  * u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)
2239  *	Description
2240  *		Return id of cgroup v2 that is ancestor of cgroup associated
2241  *		with the *skb* at the *ancestor_level*.  The root cgroup is at
2242  *		*ancestor_level* zero and each step down the hierarchy
2243  *		increments the level. If *ancestor_level* == level of cgroup
2244  *		associated with *skb*, then return value will be same as that
2245  *		of **bpf_skb_cgroup_id**\ ().
2246  *
2247  *		The helper is useful to implement policies based on cgroups
2248  *		that are upper in hierarchy than immediate cgroup associated
2249  *		with *skb*.
2250  *
2251  *		The format of returned id and helper limitations are same as in
2252  *		**bpf_skb_cgroup_id**\ ().
2253  *	Return
2254  *		The id is returned or 0 in case the id could not be retrieved.
2255  *
2256  * struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2257  *	Description
2258  *		Look for TCP socket matching *tuple*, optionally in a child
2259  *		network namespace *netns*. The return value must be checked,
2260  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2261  *
2262  *		The *ctx* should point to the context of the program, such as
2263  *		the skb or socket (depending on the hook in use). This is used
2264  *		to determine the base network namespace for the lookup.
2265  *
2266  *		*tuple_size* must be one of:
2267  *
2268  *		**sizeof**\ (*tuple*\ **->ipv4**)
2269  *			Look for an IPv4 socket.
2270  *		**sizeof**\ (*tuple*\ **->ipv6**)
2271  *			Look for an IPv6 socket.
2272  *
2273  *		If the *netns* is a negative signed 32-bit integer, then the
2274  *		socket lookup table in the netns associated with the *ctx* will
2275  *		will be used. For the TC hooks, this is the netns of the device
2276  *		in the skb. For socket hooks, this is the netns of the socket.
2277  *		If *netns* is any other signed 32-bit value greater than or
2278  *		equal to zero then it specifies the ID of the netns relative to
2279  *		the netns associated with the *ctx*. *netns* values beyond the
2280  *		range of 32-bit integers are reserved for future use.
2281  *
2282  *		All values for *flags* are reserved for future usage, and must
2283  *		be left at zero.
2284  *
2285  *		This helper is available only if the kernel was compiled with
2286  *		**CONFIG_NET** configuration option.
2287  *	Return
2288  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2289  *		For sockets with reuseport option, the **struct bpf_sock**
2290  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2291  *		tuple.
2292  *
2293  * struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2294  *	Description
2295  *		Look for UDP socket matching *tuple*, optionally in a child
2296  *		network namespace *netns*. The return value must be checked,
2297  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2298  *
2299  *		The *ctx* should point to the context of the program, such as
2300  *		the skb or socket (depending on the hook in use). This is used
2301  *		to determine the base network namespace for the lookup.
2302  *
2303  *		*tuple_size* must be one of:
2304  *
2305  *		**sizeof**\ (*tuple*\ **->ipv4**)
2306  *			Look for an IPv4 socket.
2307  *		**sizeof**\ (*tuple*\ **->ipv6**)
2308  *			Look for an IPv6 socket.
2309  *
2310  *		If the *netns* is a negative signed 32-bit integer, then the
2311  *		socket lookup table in the netns associated with the *ctx* will
2312  *		will be used. For the TC hooks, this is the netns of the device
2313  *		in the skb. For socket hooks, this is the netns of the socket.
2314  *		If *netns* is any other signed 32-bit value greater than or
2315  *		equal to zero then it specifies the ID of the netns relative to
2316  *		the netns associated with the *ctx*. *netns* values beyond the
2317  *		range of 32-bit integers are reserved for future use.
2318  *
2319  *		All values for *flags* are reserved for future usage, and must
2320  *		be left at zero.
2321  *
2322  *		This helper is available only if the kernel was compiled with
2323  *		**CONFIG_NET** configuration option.
2324  *	Return
2325  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2326  *		For sockets with reuseport option, the **struct bpf_sock**
2327  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2328  *		tuple.
2329  *
2330  * int bpf_sk_release(struct bpf_sock *sock)
2331  *	Description
2332  *		Release the reference held by *sock*. *sock* must be a
2333  *		non-**NULL** pointer that was returned from
2334  *		**bpf_sk_lookup_xxx**\ ().
2335  *	Return
2336  *		0 on success, or a negative error in case of failure.
2337  *
2338  * int bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)
2339  * 	Description
2340  * 		Push an element *value* in *map*. *flags* is one of:
2341  *
2342  * 		**BPF_EXIST**
2343  * 			If the queue/stack is full, the oldest element is
2344  * 			removed to make room for this.
2345  * 	Return
2346  * 		0 on success, or a negative error in case of failure.
2347  *
2348  * int bpf_map_pop_elem(struct bpf_map *map, void *value)
2349  * 	Description
2350  * 		Pop an element from *map*.
2351  * 	Return
2352  * 		0 on success, or a negative error in case of failure.
2353  *
2354  * int bpf_map_peek_elem(struct bpf_map *map, void *value)
2355  * 	Description
2356  * 		Get an element from *map* without removing it.
2357  * 	Return
2358  * 		0 on success, or a negative error in case of failure.
2359  *
2360  * int bpf_msg_push_data(struct sk_buff *skb, u32 start, u32 len, u64 flags)
2361  *	Description
2362  *		For socket policies, insert *len* bytes into *msg* at offset
2363  *		*start*.
2364  *
2365  *		If a program of type **BPF_PROG_TYPE_SK_MSG** is run on a
2366  *		*msg* it may want to insert metadata or options into the *msg*.
2367  *		This can later be read and used by any of the lower layer BPF
2368  *		hooks.
2369  *
2370  *		This helper may fail if under memory pressure (a malloc
2371  *		fails) in these cases BPF programs will get an appropriate
2372  *		error and BPF programs will need to handle them.
2373  *	Return
2374  *		0 on success, or a negative error in case of failure.
2375  *
2376  * int bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 pop, u64 flags)
2377  *	Description
2378  *		Will remove *pop* bytes from a *msg* starting at byte *start*.
2379  *		This may result in **ENOMEM** errors under certain situations if
2380  *		an allocation and copy are required due to a full ring buffer.
2381  *		However, the helper will try to avoid doing the allocation
2382  *		if possible. Other errors can occur if input parameters are
2383  *		invalid either due to *start* byte not being valid part of *msg*
2384  *		payload and/or *pop* value being to large.
2385  *	Return
2386  *		0 on success, or a negative error in case of failure.
2387  *
2388  * int bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)
2389  *	Description
2390  *		This helper is used in programs implementing IR decoding, to
2391  *		report a successfully decoded pointer movement.
2392  *
2393  *		The *ctx* should point to the lirc sample as passed into
2394  *		the program.
2395  *
2396  *		This helper is only available is the kernel was compiled with
2397  *		the **CONFIG_BPF_LIRC_MODE2** configuration option set to
2398  *		"**y**".
2399  *	Return
2400  *		0
2401  *
2402  * int bpf_spin_lock(struct bpf_spin_lock *lock)
2403  *	Description
2404  *		Acquire a spinlock represented by the pointer *lock*, which is
2405  *		stored as part of a value of a map. Taking the lock allows to
2406  *		safely update the rest of the fields in that value. The
2407  *		spinlock can (and must) later be released with a call to
2408  *		**bpf_spin_unlock**\ (\ *lock*\ ).
2409  *
2410  *		Spinlocks in BPF programs come with a number of restrictions
2411  *		and constraints:
2412  *
2413  *		* **bpf_spin_lock** objects are only allowed inside maps of
2414  *		  types **BPF_MAP_TYPE_HASH** and **BPF_MAP_TYPE_ARRAY** (this
2415  *		  list could be extended in the future).
2416  *		* BTF description of the map is mandatory.
2417  *		* The BPF program can take ONE lock at a time, since taking two
2418  *		  or more could cause dead locks.
2419  *		* Only one **struct bpf_spin_lock** is allowed per map element.
2420  *		* When the lock is taken, calls (either BPF to BPF or helpers)
2421  *		  are not allowed.
2422  *		* The **BPF_LD_ABS** and **BPF_LD_IND** instructions are not
2423  *		  allowed inside a spinlock-ed region.
2424  *		* The BPF program MUST call **bpf_spin_unlock**\ () to release
2425  *		  the lock, on all execution paths, before it returns.
2426  *		* The BPF program can access **struct bpf_spin_lock** only via
2427  *		  the **bpf_spin_lock**\ () and **bpf_spin_unlock**\ ()
2428  *		  helpers. Loading or storing data into the **struct
2429  *		  bpf_spin_lock** *lock*\ **;** field of a map is not allowed.
2430  *		* To use the **bpf_spin_lock**\ () helper, the BTF description
2431  *		  of the map value must be a struct and have **struct
2432  *		  bpf_spin_lock** *anyname*\ **;** field at the top level.
2433  *		  Nested lock inside another struct is not allowed.
2434  *		* The **struct bpf_spin_lock** *lock* field in a map value must
2435  *		  be aligned on a multiple of 4 bytes in that value.
2436  *		* Syscall with command **BPF_MAP_LOOKUP_ELEM** does not copy
2437  *		  the **bpf_spin_lock** field to user space.
2438  *		* Syscall with command **BPF_MAP_UPDATE_ELEM**, or update from
2439  *		  a BPF program, do not update the **bpf_spin_lock** field.
2440  *		* **bpf_spin_lock** cannot be on the stack or inside a
2441  *		  networking packet (it can only be inside of a map values).
2442  *		* **bpf_spin_lock** is available to root only.
2443  *		* Tracing programs and socket filter programs cannot use
2444  *		  **bpf_spin_lock**\ () due to insufficient preemption checks
2445  *		  (but this may change in the future).
2446  *		* **bpf_spin_lock** is not allowed in inner maps of map-in-map.
2447  *	Return
2448  *		0
2449  *
2450  * int bpf_spin_unlock(struct bpf_spin_lock *lock)
2451  *	Description
2452  *		Release the *lock* previously locked by a call to
2453  *		**bpf_spin_lock**\ (\ *lock*\ ).
2454  *	Return
2455  *		0
2456  *
2457  * struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)
2458  *	Description
2459  *		This helper gets a **struct bpf_sock** pointer such
2460  *		that all the fields in this **bpf_sock** can be accessed.
2461  *	Return
2462  *		A **struct bpf_sock** pointer on success, or **NULL** in
2463  *		case of failure.
2464  *
2465  * struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)
2466  *	Description
2467  *		This helper gets a **struct bpf_tcp_sock** pointer from a
2468  *		**struct bpf_sock** pointer.
2469  *	Return
2470  *		A **struct bpf_tcp_sock** pointer on success, or **NULL** in
2471  *		case of failure.
2472  *
2473  * int bpf_skb_ecn_set_ce(struct sk_buf *skb)
2474  *	Description
2475  *		Set ECN (Explicit Congestion Notification) field of IP header
2476  *		to **CE** (Congestion Encountered) if current value is **ECT**
2477  *		(ECN Capable Transport). Otherwise, do nothing. Works with IPv6
2478  *		and IPv4.
2479  *	Return
2480  *		1 if the **CE** flag is set (either by the current helper call
2481  *		or because it was already present), 0 if it is not set.
2482  *
2483  * struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)
2484  *	Description
2485  *		Return a **struct bpf_sock** pointer in **TCP_LISTEN** state.
2486  *		**bpf_sk_release**\ () is unnecessary and not allowed.
2487  *	Return
2488  *		A **struct bpf_sock** pointer on success, or **NULL** in
2489  *		case of failure.
2490  *
2491  * struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tuple_size, u64 netns, u64 flags)
2492  *	Description
2493  *		Look for TCP socket matching *tuple*, optionally in a child
2494  *		network namespace *netns*. The return value must be checked,
2495  *		and if non-**NULL**, released via **bpf_sk_release**\ ().
2496  *
2497  *		This function is identical to **bpf_sk_lookup_tcp**\ (), except
2498  *		that it also returns timewait or request sockets. Use
2499  *		**bpf_sk_fullsock**\ () or **bpf_tcp_sock**\ () to access the
2500  *		full structure.
2501  *
2502  *		This helper is available only if the kernel was compiled with
2503  *		**CONFIG_NET** configuration option.
2504  *	Return
2505  *		Pointer to **struct bpf_sock**, or **NULL** in case of failure.
2506  *		For sockets with reuseport option, the **struct bpf_sock**
2507  *		result is from *reuse*\ **->socks**\ [] using the hash of the
2508  *		tuple.
2509  *
2510  * int bpf_tcp_check_syncookie(struct bpf_sock *sk, void *iph, u32 iph_len, struct tcphdr *th, u32 th_len)
2511  * 	Description
2512  * 		Check whether *iph* and *th* contain a valid SYN cookie ACK for
2513  * 		the listening socket in *sk*.
2514  *
2515  * 		*iph* points to the start of the IPv4 or IPv6 header, while
2516  * 		*iph_len* contains **sizeof**\ (**struct iphdr**) or
2517  * 		**sizeof**\ (**struct ip6hdr**).
2518  *
2519  * 		*th* points to the start of the TCP header, while *th_len*
2520  * 		contains **sizeof**\ (**struct tcphdr**).
2521  *
2522  * 	Return
2523  * 		0 if *iph* and *th* are a valid SYN cookie ACK, or a negative
2524  * 		error otherwise.
2525  *
2526  * int bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)
2527  *	Description
2528  *		Get name of sysctl in /proc/sys/ and copy it into provided by
2529  *		program buffer *buf* of size *buf_len*.
2530  *
2531  *		The buffer is always NUL terminated, unless it's zero-sized.
2532  *
2533  *		If *flags* is zero, full name (e.g. "net/ipv4/tcp_mem") is
2534  *		copied. Use **BPF_F_SYSCTL_BASE_NAME** flag to copy base name
2535  *		only (e.g. "tcp_mem").
2536  *	Return
2537  *		Number of character copied (not including the trailing NUL).
2538  *
2539  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2540  *		truncated name in this case).
2541  *
2542  * int bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2543  *	Description
2544  *		Get current value of sysctl as it is presented in /proc/sys
2545  *		(incl. newline, etc), and copy it as a string into provided
2546  *		by program buffer *buf* of size *buf_len*.
2547  *
2548  *		The whole value is copied, no matter what file position user
2549  *		space issued e.g. sys_read at.
2550  *
2551  *		The buffer is always NUL terminated, unless it's zero-sized.
2552  *	Return
2553  *		Number of character copied (not including the trailing NUL).
2554  *
2555  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2556  *		truncated name in this case).
2557  *
2558  *		**-EINVAL** if current value was unavailable, e.g. because
2559  *		sysctl is uninitialized and read returns -EIO for it.
2560  *
2561  * int bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)
2562  *	Description
2563  *		Get new value being written by user space to sysctl (before
2564  *		the actual write happens) and copy it as a string into
2565  *		provided by program buffer *buf* of size *buf_len*.
2566  *
2567  *		User space may write new value at file position > 0.
2568  *
2569  *		The buffer is always NUL terminated, unless it's zero-sized.
2570  *	Return
2571  *		Number of character copied (not including the trailing NUL).
2572  *
2573  *		**-E2BIG** if the buffer wasn't big enough (*buf* will contain
2574  *		truncated name in this case).
2575  *
2576  *		**-EINVAL** if sysctl is being read.
2577  *
2578  * int bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t buf_len)
2579  *	Description
2580  *		Override new value being written by user space to sysctl with
2581  *		value provided by program in buffer *buf* of size *buf_len*.
2582  *
2583  *		*buf* should contain a string in same form as provided by user
2584  *		space on sysctl write.
2585  *
2586  *		User space may write new value at file position > 0. To override
2587  *		the whole sysctl value file position should be set to zero.
2588  *	Return
2589  *		0 on success.
2590  *
2591  *		**-E2BIG** if the *buf_len* is too big.
2592  *
2593  *		**-EINVAL** if sysctl is being read.
2594  *
2595  * int bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)
2596  *	Description
2597  *		Convert the initial part of the string from buffer *buf* of
2598  *		size *buf_len* to a long integer according to the given base
2599  *		and save the result in *res*.
2600  *
2601  *		The string may begin with an arbitrary amount of white space
2602  *		(as determined by **isspace**\ (3)) followed by a single
2603  *		optional '**-**' sign.
2604  *
2605  *		Five least significant bits of *flags* encode base, other bits
2606  *		are currently unused.
2607  *
2608  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2609  *		similar to user space **strtol**\ (3).
2610  *	Return
2611  *		Number of characters consumed on success. Must be positive but
2612  *		no more than *buf_len*.
2613  *
2614  *		**-EINVAL** if no valid digits were found or unsupported base
2615  *		was provided.
2616  *
2617  *		**-ERANGE** if resulting value was out of range.
2618  *
2619  * int bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)
2620  *	Description
2621  *		Convert the initial part of the string from buffer *buf* of
2622  *		size *buf_len* to an unsigned long integer according to the
2623  *		given base and save the result in *res*.
2624  *
2625  *		The string may begin with an arbitrary amount of white space
2626  *		(as determined by **isspace**\ (3)).
2627  *
2628  *		Five least significant bits of *flags* encode base, other bits
2629  *		are currently unused.
2630  *
2631  *		Base must be either 8, 10, 16 or 0 to detect it automatically
2632  *		similar to user space **strtoul**\ (3).
2633  *	Return
2634  *		Number of characters consumed on success. Must be positive but
2635  *		no more than *buf_len*.
2636  *
2637  *		**-EINVAL** if no valid digits were found or unsupported base
2638  *		was provided.
2639  *
2640  *		**-ERANGE** if resulting value was out of range.
2641  *
2642  * void *bpf_sk_storage_get(struct bpf_map *map, struct bpf_sock *sk, void *value, u64 flags)
2643  *	Description
2644  *		Get a bpf-local-storage from a *sk*.
2645  *
2646  *		Logically, it could be thought of getting the value from
2647  *		a *map* with *sk* as the **key**.  From this
2648  *		perspective,  the usage is not much different from
2649  *		**bpf_map_lookup_elem**\ (*map*, **&**\ *sk*) except this
2650  *		helper enforces the key must be a full socket and the map must
2651  *		be a **BPF_MAP_TYPE_SK_STORAGE** also.
2652  *
2653  *		Underneath, the value is stored locally at *sk* instead of
2654  *		the *map*.  The *map* is used as the bpf-local-storage
2655  *		"type". The bpf-local-storage "type" (i.e. the *map*) is
2656  *		searched against all bpf-local-storages residing at *sk*.
2657  *
2658  *		An optional *flags* (**BPF_SK_STORAGE_GET_F_CREATE**) can be
2659  *		used such that a new bpf-local-storage will be
2660  *		created if one does not exist.  *value* can be used
2661  *		together with **BPF_SK_STORAGE_GET_F_CREATE** to specify
2662  *		the initial value of a bpf-local-storage.  If *value* is
2663  *		**NULL**, the new bpf-local-storage will be zero initialized.
2664  *	Return
2665  *		A bpf-local-storage pointer is returned on success.
2666  *
2667  *		**NULL** if not found or there was an error in adding
2668  *		a new bpf-local-storage.
2669  *
2670  * int bpf_sk_storage_delete(struct bpf_map *map, struct bpf_sock *sk)
2671  *	Description
2672  *		Delete a bpf-local-storage from a *sk*.
2673  *	Return
2674  *		0 on success.
2675  *
2676  *		**-ENOENT** if the bpf-local-storage cannot be found.
2677  */
2678 #define __BPF_FUNC_MAPPER(FN)		\
2679 	FN(unspec),			\
2680 	FN(map_lookup_elem),		\
2681 	FN(map_update_elem),		\
2682 	FN(map_delete_elem),		\
2683 	FN(probe_read),			\
2684 	FN(ktime_get_ns),		\
2685 	FN(trace_printk),		\
2686 	FN(get_prandom_u32),		\
2687 	FN(get_smp_processor_id),	\
2688 	FN(skb_store_bytes),		\
2689 	FN(l3_csum_replace),		\
2690 	FN(l4_csum_replace),		\
2691 	FN(tail_call),			\
2692 	FN(clone_redirect),		\
2693 	FN(get_current_pid_tgid),	\
2694 	FN(get_current_uid_gid),	\
2695 	FN(get_current_comm),		\
2696 	FN(get_cgroup_classid),		\
2697 	FN(skb_vlan_push),		\
2698 	FN(skb_vlan_pop),		\
2699 	FN(skb_get_tunnel_key),		\
2700 	FN(skb_set_tunnel_key),		\
2701 	FN(perf_event_read),		\
2702 	FN(redirect),			\
2703 	FN(get_route_realm),		\
2704 	FN(perf_event_output),		\
2705 	FN(skb_load_bytes),		\
2706 	FN(get_stackid),		\
2707 	FN(csum_diff),			\
2708 	FN(skb_get_tunnel_opt),		\
2709 	FN(skb_set_tunnel_opt),		\
2710 	FN(skb_change_proto),		\
2711 	FN(skb_change_type),		\
2712 	FN(skb_under_cgroup),		\
2713 	FN(get_hash_recalc),		\
2714 	FN(get_current_task),		\
2715 	FN(probe_write_user),		\
2716 	FN(current_task_under_cgroup),	\
2717 	FN(skb_change_tail),		\
2718 	FN(skb_pull_data),		\
2719 	FN(csum_update),		\
2720 	FN(set_hash_invalid),		\
2721 	FN(get_numa_node_id),		\
2722 	FN(skb_change_head),		\
2723 	FN(xdp_adjust_head),		\
2724 	FN(probe_read_str),		\
2725 	FN(get_socket_cookie),		\
2726 	FN(get_socket_uid),		\
2727 	FN(set_hash),			\
2728 	FN(setsockopt),			\
2729 	FN(skb_adjust_room),		\
2730 	FN(redirect_map),		\
2731 	FN(sk_redirect_map),		\
2732 	FN(sock_map_update),		\
2733 	FN(xdp_adjust_meta),		\
2734 	FN(perf_event_read_value),	\
2735 	FN(perf_prog_read_value),	\
2736 	FN(getsockopt),			\
2737 	FN(override_return),		\
2738 	FN(sock_ops_cb_flags_set),	\
2739 	FN(msg_redirect_map),		\
2740 	FN(msg_apply_bytes),		\
2741 	FN(msg_cork_bytes),		\
2742 	FN(msg_pull_data),		\
2743 	FN(bind),			\
2744 	FN(xdp_adjust_tail),		\
2745 	FN(skb_get_xfrm_state),		\
2746 	FN(get_stack),			\
2747 	FN(skb_load_bytes_relative),	\
2748 	FN(fib_lookup),			\
2749 	FN(sock_hash_update),		\
2750 	FN(msg_redirect_hash),		\
2751 	FN(sk_redirect_hash),		\
2752 	FN(lwt_push_encap),		\
2753 	FN(lwt_seg6_store_bytes),	\
2754 	FN(lwt_seg6_adjust_srh),	\
2755 	FN(lwt_seg6_action),		\
2756 	FN(rc_repeat),			\
2757 	FN(rc_keydown),			\
2758 	FN(skb_cgroup_id),		\
2759 	FN(get_current_cgroup_id),	\
2760 	FN(get_local_storage),		\
2761 	FN(sk_select_reuseport),	\
2762 	FN(skb_ancestor_cgroup_id),	\
2763 	FN(sk_lookup_tcp),		\
2764 	FN(sk_lookup_udp),		\
2765 	FN(sk_release),			\
2766 	FN(map_push_elem),		\
2767 	FN(map_pop_elem),		\
2768 	FN(map_peek_elem),		\
2769 	FN(msg_push_data),		\
2770 	FN(msg_pop_data),		\
2771 	FN(rc_pointer_rel),		\
2772 	FN(spin_lock),			\
2773 	FN(spin_unlock),		\
2774 	FN(sk_fullsock),		\
2775 	FN(tcp_sock),			\
2776 	FN(skb_ecn_set_ce),		\
2777 	FN(get_listener_sock),		\
2778 	FN(skc_lookup_tcp),		\
2779 	FN(tcp_check_syncookie),	\
2780 	FN(sysctl_get_name),		\
2781 	FN(sysctl_get_current_value),	\
2782 	FN(sysctl_get_new_value),	\
2783 	FN(sysctl_set_new_value),	\
2784 	FN(strtol),			\
2785 	FN(strtoul),			\
2786 	FN(sk_storage_get),		\
2787 	FN(sk_storage_delete),
2788 
2789 /* integer value in 'imm' field of BPF_CALL instruction selects which helper
2790  * function eBPF program intends to call
2791  */
2792 #define __BPF_ENUM_FN(x) BPF_FUNC_ ## x
2793 enum bpf_func_id {
2794 	__BPF_FUNC_MAPPER(__BPF_ENUM_FN)
2795 	__BPF_FUNC_MAX_ID,
2796 };
2797 #undef __BPF_ENUM_FN
2798 
2799 /* All flags used by eBPF helper functions, placed here. */
2800 
2801 /* BPF_FUNC_skb_store_bytes flags. */
2802 #define BPF_F_RECOMPUTE_CSUM		(1ULL << 0)
2803 #define BPF_F_INVALIDATE_HASH		(1ULL << 1)
2804 
2805 /* BPF_FUNC_l3_csum_replace and BPF_FUNC_l4_csum_replace flags.
2806  * First 4 bits are for passing the header field size.
2807  */
2808 #define BPF_F_HDR_FIELD_MASK		0xfULL
2809 
2810 /* BPF_FUNC_l4_csum_replace flags. */
2811 #define BPF_F_PSEUDO_HDR		(1ULL << 4)
2812 #define BPF_F_MARK_MANGLED_0		(1ULL << 5)
2813 #define BPF_F_MARK_ENFORCE		(1ULL << 6)
2814 
2815 /* BPF_FUNC_clone_redirect and BPF_FUNC_redirect flags. */
2816 #define BPF_F_INGRESS			(1ULL << 0)
2817 
2818 /* BPF_FUNC_skb_set_tunnel_key and BPF_FUNC_skb_get_tunnel_key flags. */
2819 #define BPF_F_TUNINFO_IPV6		(1ULL << 0)
2820 
2821 /* flags for both BPF_FUNC_get_stackid and BPF_FUNC_get_stack. */
2822 #define BPF_F_SKIP_FIELD_MASK		0xffULL
2823 #define BPF_F_USER_STACK		(1ULL << 8)
2824 /* flags used by BPF_FUNC_get_stackid only. */
2825 #define BPF_F_FAST_STACK_CMP		(1ULL << 9)
2826 #define BPF_F_REUSE_STACKID		(1ULL << 10)
2827 /* flags used by BPF_FUNC_get_stack only. */
2828 #define BPF_F_USER_BUILD_ID		(1ULL << 11)
2829 
2830 /* BPF_FUNC_skb_set_tunnel_key flags. */
2831 #define BPF_F_ZERO_CSUM_TX		(1ULL << 1)
2832 #define BPF_F_DONT_FRAGMENT		(1ULL << 2)
2833 #define BPF_F_SEQ_NUMBER		(1ULL << 3)
2834 
2835 /* BPF_FUNC_perf_event_output, BPF_FUNC_perf_event_read and
2836  * BPF_FUNC_perf_event_read_value flags.
2837  */
2838 #define BPF_F_INDEX_MASK		0xffffffffULL
2839 #define BPF_F_CURRENT_CPU		BPF_F_INDEX_MASK
2840 /* BPF_FUNC_perf_event_output for sk_buff input context. */
2841 #define BPF_F_CTXLEN_MASK		(0xfffffULL << 32)
2842 
2843 /* Current network namespace */
2844 #define BPF_F_CURRENT_NETNS		(-1L)
2845 
2846 /* BPF_FUNC_skb_adjust_room flags. */
2847 #define BPF_F_ADJ_ROOM_FIXED_GSO	(1ULL << 0)
2848 
2849 #define BPF_ADJ_ROOM_ENCAP_L2_MASK	0xff
2850 #define BPF_ADJ_ROOM_ENCAP_L2_SHIFT	56
2851 
2852 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV4	(1ULL << 1)
2853 #define BPF_F_ADJ_ROOM_ENCAP_L3_IPV6	(1ULL << 2)
2854 #define BPF_F_ADJ_ROOM_ENCAP_L4_GRE	(1ULL << 3)
2855 #define BPF_F_ADJ_ROOM_ENCAP_L4_UDP	(1ULL << 4)
2856 #define BPF_F_ADJ_ROOM_ENCAP_L2(len)	(((__u64)len & \
2857 					  BPF_ADJ_ROOM_ENCAP_L2_MASK) \
2858 					 << BPF_ADJ_ROOM_ENCAP_L2_SHIFT)
2859 
2860 /* BPF_FUNC_sysctl_get_name flags. */
2861 #define BPF_F_SYSCTL_BASE_NAME		(1ULL << 0)
2862 
2863 /* BPF_FUNC_sk_storage_get flags */
2864 #define BPF_SK_STORAGE_GET_F_CREATE	(1ULL << 0)
2865 
2866 /* Mode for BPF_FUNC_skb_adjust_room helper. */
2867 enum bpf_adj_room_mode {
2868 	BPF_ADJ_ROOM_NET,
2869 	BPF_ADJ_ROOM_MAC,
2870 };
2871 
2872 /* Mode for BPF_FUNC_skb_load_bytes_relative helper. */
2873 enum bpf_hdr_start_off {
2874 	BPF_HDR_START_MAC,
2875 	BPF_HDR_START_NET,
2876 };
2877 
2878 /* Encapsulation type for BPF_FUNC_lwt_push_encap helper. */
2879 enum bpf_lwt_encap_mode {
2880 	BPF_LWT_ENCAP_SEG6,
2881 	BPF_LWT_ENCAP_SEG6_INLINE,
2882 	BPF_LWT_ENCAP_IP,
2883 };
2884 
2885 #define __bpf_md_ptr(type, name)	\
2886 union {					\
2887 	type name;			\
2888 	__u64 :64;			\
2889 } __attribute__((aligned(8)))
2890 
2891 /* user accessible mirror of in-kernel sk_buff.
2892  * new fields can only be added to the end of this structure
2893  */
2894 struct __sk_buff {
2895 	__u32 len;
2896 	__u32 pkt_type;
2897 	__u32 mark;
2898 	__u32 queue_mapping;
2899 	__u32 protocol;
2900 	__u32 vlan_present;
2901 	__u32 vlan_tci;
2902 	__u32 vlan_proto;
2903 	__u32 priority;
2904 	__u32 ingress_ifindex;
2905 	__u32 ifindex;
2906 	__u32 tc_index;
2907 	__u32 cb[5];
2908 	__u32 hash;
2909 	__u32 tc_classid;
2910 	__u32 data;
2911 	__u32 data_end;
2912 	__u32 napi_id;
2913 
2914 	/* Accessed by BPF_PROG_TYPE_sk_skb types from here to ... */
2915 	__u32 family;
2916 	__u32 remote_ip4;	/* Stored in network byte order */
2917 	__u32 local_ip4;	/* Stored in network byte order */
2918 	__u32 remote_ip6[4];	/* Stored in network byte order */
2919 	__u32 local_ip6[4];	/* Stored in network byte order */
2920 	__u32 remote_port;	/* Stored in network byte order */
2921 	__u32 local_port;	/* stored in host byte order */
2922 	/* ... here. */
2923 
2924 	__u32 data_meta;
2925 	__bpf_md_ptr(struct bpf_flow_keys *, flow_keys);
2926 	__u64 tstamp;
2927 	__u32 wire_len;
2928 	__u32 gso_segs;
2929 	__bpf_md_ptr(struct bpf_sock *, sk);
2930 };
2931 
2932 struct bpf_tunnel_key {
2933 	__u32 tunnel_id;
2934 	union {
2935 		__u32 remote_ipv4;
2936 		__u32 remote_ipv6[4];
2937 	};
2938 	__u8 tunnel_tos;
2939 	__u8 tunnel_ttl;
2940 	__u16 tunnel_ext;	/* Padding, future use. */
2941 	__u32 tunnel_label;
2942 };
2943 
2944 /* user accessible mirror of in-kernel xfrm_state.
2945  * new fields can only be added to the end of this structure
2946  */
2947 struct bpf_xfrm_state {
2948 	__u32 reqid;
2949 	__u32 spi;	/* Stored in network byte order */
2950 	__u16 family;
2951 	__u16 ext;	/* Padding, future use. */
2952 	union {
2953 		__u32 remote_ipv4;	/* Stored in network byte order */
2954 		__u32 remote_ipv6[4];	/* Stored in network byte order */
2955 	};
2956 };
2957 
2958 /* Generic BPF return codes which all BPF program types may support.
2959  * The values are binary compatible with their TC_ACT_* counter-part to
2960  * provide backwards compatibility with existing SCHED_CLS and SCHED_ACT
2961  * programs.
2962  *
2963  * XDP is handled seprately, see XDP_*.
2964  */
2965 enum bpf_ret_code {
2966 	BPF_OK = 0,
2967 	/* 1 reserved */
2968 	BPF_DROP = 2,
2969 	/* 3-6 reserved */
2970 	BPF_REDIRECT = 7,
2971 	/* >127 are reserved for prog type specific return codes.
2972 	 *
2973 	 * BPF_LWT_REROUTE: used by BPF_PROG_TYPE_LWT_IN and
2974 	 *    BPF_PROG_TYPE_LWT_XMIT to indicate that skb had been
2975 	 *    changed and should be routed based on its new L3 header.
2976 	 *    (This is an L3 redirect, as opposed to L2 redirect
2977 	 *    represented by BPF_REDIRECT above).
2978 	 */
2979 	BPF_LWT_REROUTE = 128,
2980 };
2981 
2982 struct bpf_sock {
2983 	__u32 bound_dev_if;
2984 	__u32 family;
2985 	__u32 type;
2986 	__u32 protocol;
2987 	__u32 mark;
2988 	__u32 priority;
2989 	/* IP address also allows 1 and 2 bytes access */
2990 	__u32 src_ip4;
2991 	__u32 src_ip6[4];
2992 	__u32 src_port;		/* host byte order */
2993 	__u32 dst_port;		/* network byte order */
2994 	__u32 dst_ip4;
2995 	__u32 dst_ip6[4];
2996 	__u32 state;
2997 };
2998 
2999 struct bpf_tcp_sock {
3000 	__u32 snd_cwnd;		/* Sending congestion window		*/
3001 	__u32 srtt_us;		/* smoothed round trip time << 3 in usecs */
3002 	__u32 rtt_min;
3003 	__u32 snd_ssthresh;	/* Slow start size threshold		*/
3004 	__u32 rcv_nxt;		/* What we want to receive next		*/
3005 	__u32 snd_nxt;		/* Next sequence we send		*/
3006 	__u32 snd_una;		/* First byte we want an ack for	*/
3007 	__u32 mss_cache;	/* Cached effective mss, not including SACKS */
3008 	__u32 ecn_flags;	/* ECN status bits.			*/
3009 	__u32 rate_delivered;	/* saved rate sample: packets delivered */
3010 	__u32 rate_interval_us;	/* saved rate sample: time elapsed */
3011 	__u32 packets_out;	/* Packets which are "in flight"	*/
3012 	__u32 retrans_out;	/* Retransmitted packets out		*/
3013 	__u32 total_retrans;	/* Total retransmits for entire connection */
3014 	__u32 segs_in;		/* RFC4898 tcpEStatsPerfSegsIn
3015 				 * total number of segments in.
3016 				 */
3017 	__u32 data_segs_in;	/* RFC4898 tcpEStatsPerfDataSegsIn
3018 				 * total number of data segments in.
3019 				 */
3020 	__u32 segs_out;		/* RFC4898 tcpEStatsPerfSegsOut
3021 				 * The total number of segments sent.
3022 				 */
3023 	__u32 data_segs_out;	/* RFC4898 tcpEStatsPerfDataSegsOut
3024 				 * total number of data segments sent.
3025 				 */
3026 	__u32 lost_out;		/* Lost packets			*/
3027 	__u32 sacked_out;	/* SACK'd packets			*/
3028 	__u64 bytes_received;	/* RFC4898 tcpEStatsAppHCThruOctetsReceived
3029 				 * sum(delta(rcv_nxt)), or how many bytes
3030 				 * were acked.
3031 				 */
3032 	__u64 bytes_acked;	/* RFC4898 tcpEStatsAppHCThruOctetsAcked
3033 				 * sum(delta(snd_una)), or how many bytes
3034 				 * were acked.
3035 				 */
3036 };
3037 
3038 struct bpf_sock_tuple {
3039 	union {
3040 		struct {
3041 			__be32 saddr;
3042 			__be32 daddr;
3043 			__be16 sport;
3044 			__be16 dport;
3045 		} ipv4;
3046 		struct {
3047 			__be32 saddr[4];
3048 			__be32 daddr[4];
3049 			__be16 sport;
3050 			__be16 dport;
3051 		} ipv6;
3052 	};
3053 };
3054 
3055 #define XDP_PACKET_HEADROOM 256
3056 
3057 /* User return codes for XDP prog type.
3058  * A valid XDP program must return one of these defined values. All other
3059  * return codes are reserved for future use. Unknown return codes will
3060  * result in packet drops and a warning via bpf_warn_invalid_xdp_action().
3061  */
3062 enum xdp_action {
3063 	XDP_ABORTED = 0,
3064 	XDP_DROP,
3065 	XDP_PASS,
3066 	XDP_TX,
3067 	XDP_REDIRECT,
3068 };
3069 
3070 /* user accessible metadata for XDP packet hook
3071  * new fields must be added to the end of this structure
3072  */
3073 struct xdp_md {
3074 	__u32 data;
3075 	__u32 data_end;
3076 	__u32 data_meta;
3077 	/* Below access go through struct xdp_rxq_info */
3078 	__u32 ingress_ifindex; /* rxq->dev->ifindex */
3079 	__u32 rx_queue_index;  /* rxq->queue_index  */
3080 };
3081 
3082 enum sk_action {
3083 	SK_DROP = 0,
3084 	SK_PASS,
3085 };
3086 
3087 /* user accessible metadata for SK_MSG packet hook, new fields must
3088  * be added to the end of this structure
3089  */
3090 struct sk_msg_md {
3091 	__bpf_md_ptr(void *, data);
3092 	__bpf_md_ptr(void *, data_end);
3093 
3094 	__u32 family;
3095 	__u32 remote_ip4;	/* Stored in network byte order */
3096 	__u32 local_ip4;	/* Stored in network byte order */
3097 	__u32 remote_ip6[4];	/* Stored in network byte order */
3098 	__u32 local_ip6[4];	/* Stored in network byte order */
3099 	__u32 remote_port;	/* Stored in network byte order */
3100 	__u32 local_port;	/* stored in host byte order */
3101 	__u32 size;		/* Total size of sk_msg */
3102 };
3103 
3104 struct sk_reuseport_md {
3105 	/*
3106 	 * Start of directly accessible data. It begins from
3107 	 * the tcp/udp header.
3108 	 */
3109 	__bpf_md_ptr(void *, data);
3110 	/* End of directly accessible data */
3111 	__bpf_md_ptr(void *, data_end);
3112 	/*
3113 	 * Total length of packet (starting from the tcp/udp header).
3114 	 * Note that the directly accessible bytes (data_end - data)
3115 	 * could be less than this "len".  Those bytes could be
3116 	 * indirectly read by a helper "bpf_skb_load_bytes()".
3117 	 */
3118 	__u32 len;
3119 	/*
3120 	 * Eth protocol in the mac header (network byte order). e.g.
3121 	 * ETH_P_IP(0x0800) and ETH_P_IPV6(0x86DD)
3122 	 */
3123 	__u32 eth_protocol;
3124 	__u32 ip_protocol;	/* IP protocol. e.g. IPPROTO_TCP, IPPROTO_UDP */
3125 	__u32 bind_inany;	/* Is sock bound to an INANY address? */
3126 	__u32 hash;		/* A hash of the packet 4 tuples */
3127 };
3128 
3129 #define BPF_TAG_SIZE	8
3130 
3131 struct bpf_prog_info {
3132 	__u32 type;
3133 	__u32 id;
3134 	__u8  tag[BPF_TAG_SIZE];
3135 	__u32 jited_prog_len;
3136 	__u32 xlated_prog_len;
3137 	__aligned_u64 jited_prog_insns;
3138 	__aligned_u64 xlated_prog_insns;
3139 	__u64 load_time;	/* ns since boottime */
3140 	__u32 created_by_uid;
3141 	__u32 nr_map_ids;
3142 	__aligned_u64 map_ids;
3143 	char name[BPF_OBJ_NAME_LEN];
3144 	__u32 ifindex;
3145 	__u32 gpl_compatible:1;
3146 	__u64 netns_dev;
3147 	__u64 netns_ino;
3148 	__u32 nr_jited_ksyms;
3149 	__u32 nr_jited_func_lens;
3150 	__aligned_u64 jited_ksyms;
3151 	__aligned_u64 jited_func_lens;
3152 	__u32 btf_id;
3153 	__u32 func_info_rec_size;
3154 	__aligned_u64 func_info;
3155 	__u32 nr_func_info;
3156 	__u32 nr_line_info;
3157 	__aligned_u64 line_info;
3158 	__aligned_u64 jited_line_info;
3159 	__u32 nr_jited_line_info;
3160 	__u32 line_info_rec_size;
3161 	__u32 jited_line_info_rec_size;
3162 	__u32 nr_prog_tags;
3163 	__aligned_u64 prog_tags;
3164 	__u64 run_time_ns;
3165 	__u64 run_cnt;
3166 } __attribute__((aligned(8)));
3167 
3168 struct bpf_map_info {
3169 	__u32 type;
3170 	__u32 id;
3171 	__u32 key_size;
3172 	__u32 value_size;
3173 	__u32 max_entries;
3174 	__u32 map_flags;
3175 	char  name[BPF_OBJ_NAME_LEN];
3176 	__u32 ifindex;
3177 	__u32 :32;
3178 	__u64 netns_dev;
3179 	__u64 netns_ino;
3180 	__u32 btf_id;
3181 	__u32 btf_key_type_id;
3182 	__u32 btf_value_type_id;
3183 } __attribute__((aligned(8)));
3184 
3185 struct bpf_btf_info {
3186 	__aligned_u64 btf;
3187 	__u32 btf_size;
3188 	__u32 id;
3189 } __attribute__((aligned(8)));
3190 
3191 /* User bpf_sock_addr struct to access socket fields and sockaddr struct passed
3192  * by user and intended to be used by socket (e.g. to bind to, depends on
3193  * attach attach type).
3194  */
3195 struct bpf_sock_addr {
3196 	__u32 user_family;	/* Allows 4-byte read, but no write. */
3197 	__u32 user_ip4;		/* Allows 1,2,4-byte read and 4-byte write.
3198 				 * Stored in network byte order.
3199 				 */
3200 	__u32 user_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
3201 				 * Stored in network byte order.
3202 				 */
3203 	__u32 user_port;	/* Allows 4-byte read and write.
3204 				 * Stored in network byte order
3205 				 */
3206 	__u32 family;		/* Allows 4-byte read, but no write */
3207 	__u32 type;		/* Allows 4-byte read, but no write */
3208 	__u32 protocol;		/* Allows 4-byte read, but no write */
3209 	__u32 msg_src_ip4;	/* Allows 1,2,4-byte read an 4-byte write.
3210 				 * Stored in network byte order.
3211 				 */
3212 	__u32 msg_src_ip6[4];	/* Allows 1,2,4-byte read an 4-byte write.
3213 				 * Stored in network byte order.
3214 				 */
3215 };
3216 
3217 /* User bpf_sock_ops struct to access socket values and specify request ops
3218  * and their replies.
3219  * Some of this fields are in network (bigendian) byte order and may need
3220  * to be converted before use (bpf_ntohl() defined in samples/bpf/bpf_endian.h).
3221  * New fields can only be added at the end of this structure
3222  */
3223 struct bpf_sock_ops {
3224 	__u32 op;
3225 	union {
3226 		__u32 args[4];		/* Optionally passed to bpf program */
3227 		__u32 reply;		/* Returned by bpf program	    */
3228 		__u32 replylong[4];	/* Optionally returned by bpf prog  */
3229 	};
3230 	__u32 family;
3231 	__u32 remote_ip4;	/* Stored in network byte order */
3232 	__u32 local_ip4;	/* Stored in network byte order */
3233 	__u32 remote_ip6[4];	/* Stored in network byte order */
3234 	__u32 local_ip6[4];	/* Stored in network byte order */
3235 	__u32 remote_port;	/* Stored in network byte order */
3236 	__u32 local_port;	/* stored in host byte order */
3237 	__u32 is_fullsock;	/* Some TCP fields are only valid if
3238 				 * there is a full socket. If not, the
3239 				 * fields read as zero.
3240 				 */
3241 	__u32 snd_cwnd;
3242 	__u32 srtt_us;		/* Averaged RTT << 3 in usecs */
3243 	__u32 bpf_sock_ops_cb_flags; /* flags defined in uapi/linux/tcp.h */
3244 	__u32 state;
3245 	__u32 rtt_min;
3246 	__u32 snd_ssthresh;
3247 	__u32 rcv_nxt;
3248 	__u32 snd_nxt;
3249 	__u32 snd_una;
3250 	__u32 mss_cache;
3251 	__u32 ecn_flags;
3252 	__u32 rate_delivered;
3253 	__u32 rate_interval_us;
3254 	__u32 packets_out;
3255 	__u32 retrans_out;
3256 	__u32 total_retrans;
3257 	__u32 segs_in;
3258 	__u32 data_segs_in;
3259 	__u32 segs_out;
3260 	__u32 data_segs_out;
3261 	__u32 lost_out;
3262 	__u32 sacked_out;
3263 	__u32 sk_txhash;
3264 	__u64 bytes_received;
3265 	__u64 bytes_acked;
3266 };
3267 
3268 /* Definitions for bpf_sock_ops_cb_flags */
3269 #define BPF_SOCK_OPS_RTO_CB_FLAG	(1<<0)
3270 #define BPF_SOCK_OPS_RETRANS_CB_FLAG	(1<<1)
3271 #define BPF_SOCK_OPS_STATE_CB_FLAG	(1<<2)
3272 #define BPF_SOCK_OPS_ALL_CB_FLAGS       0x7		/* Mask of all currently
3273 							 * supported cb flags
3274 							 */
3275 
3276 /* List of known BPF sock_ops operators.
3277  * New entries can only be added at the end
3278  */
3279 enum {
3280 	BPF_SOCK_OPS_VOID,
3281 	BPF_SOCK_OPS_TIMEOUT_INIT,	/* Should return SYN-RTO value to use or
3282 					 * -1 if default value should be used
3283 					 */
3284 	BPF_SOCK_OPS_RWND_INIT,		/* Should return initial advertized
3285 					 * window (in packets) or -1 if default
3286 					 * value should be used
3287 					 */
3288 	BPF_SOCK_OPS_TCP_CONNECT_CB,	/* Calls BPF program right before an
3289 					 * active connection is initialized
3290 					 */
3291 	BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB,	/* Calls BPF program when an
3292 						 * active connection is
3293 						 * established
3294 						 */
3295 	BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,	/* Calls BPF program when a
3296 						 * passive connection is
3297 						 * established
3298 						 */
3299 	BPF_SOCK_OPS_NEEDS_ECN,		/* If connection's congestion control
3300 					 * needs ECN
3301 					 */
3302 	BPF_SOCK_OPS_BASE_RTT,		/* Get base RTT. The correct value is
3303 					 * based on the path and may be
3304 					 * dependent on the congestion control
3305 					 * algorithm. In general it indicates
3306 					 * a congestion threshold. RTTs above
3307 					 * this indicate congestion
3308 					 */
3309 	BPF_SOCK_OPS_RTO_CB,		/* Called when an RTO has triggered.
3310 					 * Arg1: value of icsk_retransmits
3311 					 * Arg2: value of icsk_rto
3312 					 * Arg3: whether RTO has expired
3313 					 */
3314 	BPF_SOCK_OPS_RETRANS_CB,	/* Called when skb is retransmitted.
3315 					 * Arg1: sequence number of 1st byte
3316 					 * Arg2: # segments
3317 					 * Arg3: return value of
3318 					 *       tcp_transmit_skb (0 => success)
3319 					 */
3320 	BPF_SOCK_OPS_STATE_CB,		/* Called when TCP changes state.
3321 					 * Arg1: old_state
3322 					 * Arg2: new_state
3323 					 */
3324 	BPF_SOCK_OPS_TCP_LISTEN_CB,	/* Called on listen(2), right after
3325 					 * socket transition to LISTEN state.
3326 					 */
3327 };
3328 
3329 /* List of TCP states. There is a build check in net/ipv4/tcp.c to detect
3330  * changes between the TCP and BPF versions. Ideally this should never happen.
3331  * If it does, we need to add code to convert them before calling
3332  * the BPF sock_ops function.
3333  */
3334 enum {
3335 	BPF_TCP_ESTABLISHED = 1,
3336 	BPF_TCP_SYN_SENT,
3337 	BPF_TCP_SYN_RECV,
3338 	BPF_TCP_FIN_WAIT1,
3339 	BPF_TCP_FIN_WAIT2,
3340 	BPF_TCP_TIME_WAIT,
3341 	BPF_TCP_CLOSE,
3342 	BPF_TCP_CLOSE_WAIT,
3343 	BPF_TCP_LAST_ACK,
3344 	BPF_TCP_LISTEN,
3345 	BPF_TCP_CLOSING,	/* Now a valid state */
3346 	BPF_TCP_NEW_SYN_RECV,
3347 
3348 	BPF_TCP_MAX_STATES	/* Leave at the end! */
3349 };
3350 
3351 #define TCP_BPF_IW		1001	/* Set TCP initial congestion window */
3352 #define TCP_BPF_SNDCWND_CLAMP	1002	/* Set sndcwnd_clamp */
3353 
3354 struct bpf_perf_event_value {
3355 	__u64 counter;
3356 	__u64 enabled;
3357 	__u64 running;
3358 };
3359 
3360 #define BPF_DEVCG_ACC_MKNOD	(1ULL << 0)
3361 #define BPF_DEVCG_ACC_READ	(1ULL << 1)
3362 #define BPF_DEVCG_ACC_WRITE	(1ULL << 2)
3363 
3364 #define BPF_DEVCG_DEV_BLOCK	(1ULL << 0)
3365 #define BPF_DEVCG_DEV_CHAR	(1ULL << 1)
3366 
3367 struct bpf_cgroup_dev_ctx {
3368 	/* access_type encoded as (BPF_DEVCG_ACC_* << 16) | BPF_DEVCG_DEV_* */
3369 	__u32 access_type;
3370 	__u32 major;
3371 	__u32 minor;
3372 };
3373 
3374 struct bpf_raw_tracepoint_args {
3375 	__u64 args[0];
3376 };
3377 
3378 /* DIRECT:  Skip the FIB rules and go to FIB table associated with device
3379  * OUTPUT:  Do lookup from egress perspective; default is ingress
3380  */
3381 #define BPF_FIB_LOOKUP_DIRECT  (1U << 0)
3382 #define BPF_FIB_LOOKUP_OUTPUT  (1U << 1)
3383 
3384 enum {
3385 	BPF_FIB_LKUP_RET_SUCCESS,      /* lookup successful */
3386 	BPF_FIB_LKUP_RET_BLACKHOLE,    /* dest is blackholed; can be dropped */
3387 	BPF_FIB_LKUP_RET_UNREACHABLE,  /* dest is unreachable; can be dropped */
3388 	BPF_FIB_LKUP_RET_PROHIBIT,     /* dest not allowed; can be dropped */
3389 	BPF_FIB_LKUP_RET_NOT_FWDED,    /* packet is not forwarded */
3390 	BPF_FIB_LKUP_RET_FWD_DISABLED, /* fwding is not enabled on ingress */
3391 	BPF_FIB_LKUP_RET_UNSUPP_LWT,   /* fwd requires encapsulation */
3392 	BPF_FIB_LKUP_RET_NO_NEIGH,     /* no neighbor entry for nh */
3393 	BPF_FIB_LKUP_RET_FRAG_NEEDED,  /* fragmentation required to fwd */
3394 };
3395 
3396 struct bpf_fib_lookup {
3397 	/* input:  network family for lookup (AF_INET, AF_INET6)
3398 	 * output: network family of egress nexthop
3399 	 */
3400 	__u8	family;
3401 
3402 	/* set if lookup is to consider L4 data - e.g., FIB rules */
3403 	__u8	l4_protocol;
3404 	__be16	sport;
3405 	__be16	dport;
3406 
3407 	/* total length of packet from network header - used for MTU check */
3408 	__u16	tot_len;
3409 
3410 	/* input: L3 device index for lookup
3411 	 * output: device index from FIB lookup
3412 	 */
3413 	__u32	ifindex;
3414 
3415 	union {
3416 		/* inputs to lookup */
3417 		__u8	tos;		/* AF_INET  */
3418 		__be32	flowinfo;	/* AF_INET6, flow_label + priority */
3419 
3420 		/* output: metric of fib result (IPv4/IPv6 only) */
3421 		__u32	rt_metric;
3422 	};
3423 
3424 	union {
3425 		__be32		ipv4_src;
3426 		__u32		ipv6_src[4];  /* in6_addr; network order */
3427 	};
3428 
3429 	/* input to bpf_fib_lookup, ipv{4,6}_dst is destination address in
3430 	 * network header. output: bpf_fib_lookup sets to gateway address
3431 	 * if FIB lookup returns gateway route
3432 	 */
3433 	union {
3434 		__be32		ipv4_dst;
3435 		__u32		ipv6_dst[4];  /* in6_addr; network order */
3436 	};
3437 
3438 	/* output */
3439 	__be16	h_vlan_proto;
3440 	__be16	h_vlan_TCI;
3441 	__u8	smac[6];     /* ETH_ALEN */
3442 	__u8	dmac[6];     /* ETH_ALEN */
3443 };
3444 
3445 enum bpf_task_fd_type {
3446 	BPF_FD_TYPE_RAW_TRACEPOINT,	/* tp name */
3447 	BPF_FD_TYPE_TRACEPOINT,		/* tp name */
3448 	BPF_FD_TYPE_KPROBE,		/* (symbol + offset) or addr */
3449 	BPF_FD_TYPE_KRETPROBE,		/* (symbol + offset) or addr */
3450 	BPF_FD_TYPE_UPROBE,		/* filename + offset */
3451 	BPF_FD_TYPE_URETPROBE,		/* filename + offset */
3452 };
3453 
3454 struct bpf_flow_keys {
3455 	__u16	nhoff;
3456 	__u16	thoff;
3457 	__u16	addr_proto;			/* ETH_P_* of valid addrs */
3458 	__u8	is_frag;
3459 	__u8	is_first_frag;
3460 	__u8	is_encap;
3461 	__u8	ip_proto;
3462 	__be16	n_proto;
3463 	__be16	sport;
3464 	__be16	dport;
3465 	union {
3466 		struct {
3467 			__be32	ipv4_src;
3468 			__be32	ipv4_dst;
3469 		};
3470 		struct {
3471 			__u32	ipv6_src[4];	/* in6_addr; network order */
3472 			__u32	ipv6_dst[4];	/* in6_addr; network order */
3473 		};
3474 	};
3475 };
3476 
3477 struct bpf_func_info {
3478 	__u32	insn_off;
3479 	__u32	type_id;
3480 };
3481 
3482 #define BPF_LINE_INFO_LINE_NUM(line_col)	((line_col) >> 10)
3483 #define BPF_LINE_INFO_LINE_COL(line_col)	((line_col) & 0x3ff)
3484 
3485 struct bpf_line_info {
3486 	__u32	insn_off;
3487 	__u32	file_name_off;
3488 	__u32	line_off;
3489 	__u32	line_col;
3490 };
3491 
3492 struct bpf_spin_lock {
3493 	__u32	val;
3494 };
3495 
3496 struct bpf_sysctl {
3497 	__u32	write;		/* Sysctl is being read (= 0) or written (= 1).
3498 				 * Allows 1,2,4-byte read, but no write.
3499 				 */
3500 	__u32	file_pos;	/* Sysctl file position to read from, write to.
3501 				 * Allows 1,2,4-byte read an 4-byte write.
3502 				 */
3503 };
3504 
3505 #endif /* _UAPI__LINUX_BPF_H__ */
3506