xref: /linux/tools/lib/bpf/bpf_core_read.h (revision 021bc4b9)
1 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2 #ifndef __BPF_CORE_READ_H__
3 #define __BPF_CORE_READ_H__
4 
5 /*
6  * enum bpf_field_info_kind is passed as a second argument into
7  * __builtin_preserve_field_info() built-in to get a specific aspect of
8  * a field, captured as a first argument. __builtin_preserve_field_info(field,
9  * info_kind) returns __u32 integer and produces BTF field relocation, which
10  * is understood and processed by libbpf during BPF object loading. See
11  * selftests/bpf for examples.
12  */
13 enum bpf_field_info_kind {
14 	BPF_FIELD_BYTE_OFFSET = 0,	/* field byte offset */
15 	BPF_FIELD_BYTE_SIZE = 1,
16 	BPF_FIELD_EXISTS = 2,		/* field existence in target kernel */
17 	BPF_FIELD_SIGNED = 3,
18 	BPF_FIELD_LSHIFT_U64 = 4,
19 	BPF_FIELD_RSHIFT_U64 = 5,
20 };
21 
22 /* second argument to __builtin_btf_type_id() built-in */
23 enum bpf_type_id_kind {
24 	BPF_TYPE_ID_LOCAL = 0,		/* BTF type ID in local program */
25 	BPF_TYPE_ID_TARGET = 1,		/* BTF type ID in target kernel */
26 };
27 
28 /* second argument to __builtin_preserve_type_info() built-in */
29 enum bpf_type_info_kind {
30 	BPF_TYPE_EXISTS = 0,		/* type existence in target kernel */
31 	BPF_TYPE_SIZE = 1,		/* type size in target kernel */
32 	BPF_TYPE_MATCHES = 2,		/* type match in target kernel */
33 };
34 
35 /* second argument to __builtin_preserve_enum_value() built-in */
36 enum bpf_enum_value_kind {
37 	BPF_ENUMVAL_EXISTS = 0,		/* enum value existence in kernel */
38 	BPF_ENUMVAL_VALUE = 1,		/* enum value value relocation */
39 };
40 
41 #define __CORE_RELO(src, field, info)					      \
42 	__builtin_preserve_field_info((src)->field, BPF_FIELD_##info)
43 
44 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
45 #define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
46 	bpf_probe_read_kernel(						      \
47 			(void *)dst,				      \
48 			__CORE_RELO(src, fld, BYTE_SIZE),		      \
49 			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
50 #else
51 /* semantics of LSHIFT_64 assumes loading values into low-ordered bytes, so
52  * for big-endian we need to adjust destination pointer accordingly, based on
53  * field byte size
54  */
55 #define __CORE_BITFIELD_PROBE_READ(dst, src, fld)			      \
56 	bpf_probe_read_kernel(						      \
57 			(void *)dst + (8 - __CORE_RELO(src, fld, BYTE_SIZE)), \
58 			__CORE_RELO(src, fld, BYTE_SIZE),		      \
59 			(const void *)src + __CORE_RELO(src, fld, BYTE_OFFSET))
60 #endif
61 
62 /*
63  * Extract bitfield, identified by s->field, and return its value as u64.
64  * All this is done in relocatable manner, so bitfield changes such as
65  * signedness, bit size, offset changes, this will be handled automatically.
66  * This version of macro is using bpf_probe_read_kernel() to read underlying
67  * integer storage. Macro functions as an expression and its return type is
68  * bpf_probe_read_kernel()'s return value: 0, on success, <0 on error.
69  */
70 #define BPF_CORE_READ_BITFIELD_PROBED(s, field) ({			      \
71 	unsigned long long val = 0;					      \
72 									      \
73 	__CORE_BITFIELD_PROBE_READ(&val, s, field);			      \
74 	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
75 	if (__CORE_RELO(s, field, SIGNED))				      \
76 		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
77 	else								      \
78 		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
79 	val;								      \
80 })
81 
82 /*
83  * Extract bitfield, identified by s->field, and return its value as u64.
84  * This version of macro is using direct memory reads and should be used from
85  * BPF program types that support such functionality (e.g., typed raw
86  * tracepoints).
87  */
88 #define BPF_CORE_READ_BITFIELD(s, field) ({				      \
89 	const void *p = (const void *)s + __CORE_RELO(s, field, BYTE_OFFSET); \
90 	unsigned long long val;						      \
91 									      \
92 	/* This is a so-called barrier_var() operation that makes specified   \
93 	 * variable "a black box" for optimizing compiler.		      \
94 	 * It forces compiler to perform BYTE_OFFSET relocation on p and use  \
95 	 * its calculated value in the switch below, instead of applying      \
96 	 * the same relocation 4 times for each individual memory load.       \
97 	 */								      \
98 	asm volatile("" : "=r"(p) : "0"(p));				      \
99 									      \
100 	switch (__CORE_RELO(s, field, BYTE_SIZE)) {			      \
101 	case 1: val = *(const unsigned char *)p; break;			      \
102 	case 2: val = *(const unsigned short *)p; break;		      \
103 	case 4: val = *(const unsigned int *)p; break;			      \
104 	case 8: val = *(const unsigned long long *)p; break;		      \
105 	}								      \
106 	val <<= __CORE_RELO(s, field, LSHIFT_U64);			      \
107 	if (__CORE_RELO(s, field, SIGNED))				      \
108 		val = ((long long)val) >> __CORE_RELO(s, field, RSHIFT_U64);  \
109 	else								      \
110 		val = val >> __CORE_RELO(s, field, RSHIFT_U64);		      \
111 	val;								      \
112 })
113 
114 /*
115  * Write to a bitfield, identified by s->field.
116  * This is the inverse of BPF_CORE_WRITE_BITFIELD().
117  */
118 #define BPF_CORE_WRITE_BITFIELD(s, field, new_val) ({			\
119 	void *p = (void *)s + __CORE_RELO(s, field, BYTE_OFFSET);	\
120 	unsigned int byte_size = __CORE_RELO(s, field, BYTE_SIZE);	\
121 	unsigned int lshift = __CORE_RELO(s, field, LSHIFT_U64);	\
122 	unsigned int rshift = __CORE_RELO(s, field, RSHIFT_U64);	\
123 	unsigned long long mask, val, nval = new_val;			\
124 	unsigned int rpad = rshift - lshift;				\
125 									\
126 	asm volatile("" : "+r"(p));					\
127 									\
128 	switch (byte_size) {						\
129 	case 1: val = *(unsigned char *)p; break;			\
130 	case 2: val = *(unsigned short *)p; break;			\
131 	case 4: val = *(unsigned int *)p; break;			\
132 	case 8: val = *(unsigned long long *)p; break;			\
133 	}								\
134 									\
135 	mask = (~0ULL << rshift) >> lshift;				\
136 	val = (val & ~mask) | ((nval << rpad) & mask);			\
137 									\
138 	switch (byte_size) {						\
139 	case 1: *(unsigned char *)p      = val; break;			\
140 	case 2: *(unsigned short *)p     = val; break;			\
141 	case 4: *(unsigned int *)p       = val; break;			\
142 	case 8: *(unsigned long long *)p = val; break;			\
143 	}								\
144 })
145 
146 #define ___bpf_field_ref1(field)	(field)
147 #define ___bpf_field_ref2(type, field)	(((typeof(type) *)0)->field)
148 #define ___bpf_field_ref(args...)					    \
149 	___bpf_apply(___bpf_field_ref, ___bpf_narg(args))(args)
150 
151 /*
152  * Convenience macro to check that field actually exists in target kernel's.
153  * Returns:
154  *    1, if matching field is present in target kernel;
155  *    0, if no matching field found.
156  *
157  * Supports two forms:
158  *   - field reference through variable access:
159  *     bpf_core_field_exists(p->my_field);
160  *   - field reference through type and field names:
161  *     bpf_core_field_exists(struct my_type, my_field).
162  */
163 #define bpf_core_field_exists(field...)					    \
164 	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_EXISTS)
165 
166 /*
167  * Convenience macro to get the byte size of a field. Works for integers,
168  * struct/unions, pointers, arrays, and enums.
169  *
170  * Supports two forms:
171  *   - field reference through variable access:
172  *     bpf_core_field_size(p->my_field);
173  *   - field reference through type and field names:
174  *     bpf_core_field_size(struct my_type, my_field).
175  */
176 #define bpf_core_field_size(field...)					    \
177 	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_SIZE)
178 
179 /*
180  * Convenience macro to get field's byte offset.
181  *
182  * Supports two forms:
183  *   - field reference through variable access:
184  *     bpf_core_field_offset(p->my_field);
185  *   - field reference through type and field names:
186  *     bpf_core_field_offset(struct my_type, my_field).
187  */
188 #define bpf_core_field_offset(field...)					    \
189 	__builtin_preserve_field_info(___bpf_field_ref(field), BPF_FIELD_BYTE_OFFSET)
190 
191 /*
192  * Convenience macro to get BTF type ID of a specified type, using a local BTF
193  * information. Return 32-bit unsigned integer with type ID from program's own
194  * BTF. Always succeeds.
195  */
196 #define bpf_core_type_id_local(type)					    \
197 	__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_LOCAL)
198 
199 /*
200  * Convenience macro to get BTF type ID of a target kernel's type that matches
201  * specified local type.
202  * Returns:
203  *    - valid 32-bit unsigned type ID in kernel BTF;
204  *    - 0, if no matching type was found in a target kernel BTF.
205  */
206 #define bpf_core_type_id_kernel(type)					    \
207 	__builtin_btf_type_id(*(typeof(type) *)0, BPF_TYPE_ID_TARGET)
208 
209 /*
210  * Convenience macro to check that provided named type
211  * (struct/union/enum/typedef) exists in a target kernel.
212  * Returns:
213  *    1, if such type is present in target kernel's BTF;
214  *    0, if no matching type is found.
215  */
216 #define bpf_core_type_exists(type)					    \
217 	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_EXISTS)
218 
219 /*
220  * Convenience macro to check that provided named type
221  * (struct/union/enum/typedef) "matches" that in a target kernel.
222  * Returns:
223  *    1, if the type matches in the target kernel's BTF;
224  *    0, if the type does not match any in the target kernel
225  */
226 #define bpf_core_type_matches(type)					    \
227 	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_MATCHES)
228 
229 /*
230  * Convenience macro to get the byte size of a provided named type
231  * (struct/union/enum/typedef) in a target kernel.
232  * Returns:
233  *    >= 0 size (in bytes), if type is present in target kernel's BTF;
234  *    0, if no matching type is found.
235  */
236 #define bpf_core_type_size(type)					    \
237 	__builtin_preserve_type_info(*(typeof(type) *)0, BPF_TYPE_SIZE)
238 
239 /*
240  * Convenience macro to check that provided enumerator value is defined in
241  * a target kernel.
242  * Returns:
243  *    1, if specified enum type and its enumerator value are present in target
244  *    kernel's BTF;
245  *    0, if no matching enum and/or enum value within that enum is found.
246  */
247 #define bpf_core_enum_value_exists(enum_type, enum_value)		    \
248 	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_EXISTS)
249 
250 /*
251  * Convenience macro to get the integer value of an enumerator value in
252  * a target kernel.
253  * Returns:
254  *    64-bit value, if specified enum type and its enumerator value are
255  *    present in target kernel's BTF;
256  *    0, if no matching enum and/or enum value within that enum is found.
257  */
258 #define bpf_core_enum_value(enum_type, enum_value)			    \
259 	__builtin_preserve_enum_value(*(typeof(enum_type) *)enum_value, BPF_ENUMVAL_VALUE)
260 
261 /*
262  * bpf_core_read() abstracts away bpf_probe_read_kernel() call and captures
263  * offset relocation for source address using __builtin_preserve_access_index()
264  * built-in, provided by Clang.
265  *
266  * __builtin_preserve_access_index() takes as an argument an expression of
267  * taking an address of a field within struct/union. It makes compiler emit
268  * a relocation, which records BTF type ID describing root struct/union and an
269  * accessor string which describes exact embedded field that was used to take
270  * an address. See detailed description of this relocation format and
271  * semantics in comments to struct bpf_field_reloc in libbpf_internal.h.
272  *
273  * This relocation allows libbpf to adjust BPF instruction to use correct
274  * actual field offset, based on target kernel BTF type that matches original
275  * (local) BTF, used to record relocation.
276  */
277 #define bpf_core_read(dst, sz, src)					    \
278 	bpf_probe_read_kernel(dst, sz, (const void *)__builtin_preserve_access_index(src))
279 
280 /* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
281 #define bpf_core_read_user(dst, sz, src)				    \
282 	bpf_probe_read_user(dst, sz, (const void *)__builtin_preserve_access_index(src))
283 /*
284  * bpf_core_read_str() is a thin wrapper around bpf_probe_read_str()
285  * additionally emitting BPF CO-RE field relocation for specified source
286  * argument.
287  */
288 #define bpf_core_read_str(dst, sz, src)					    \
289 	bpf_probe_read_kernel_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
290 
291 /* NOTE: see comments for BPF_CORE_READ_USER() about the proper types use. */
292 #define bpf_core_read_user_str(dst, sz, src)				    \
293 	bpf_probe_read_user_str(dst, sz, (const void *)__builtin_preserve_access_index(src))
294 
295 #define ___concat(a, b) a ## b
296 #define ___apply(fn, n) ___concat(fn, n)
297 #define ___nth(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, __11, N, ...) N
298 
299 /*
300  * return number of provided arguments; used for switch-based variadic macro
301  * definitions (see ___last, ___arrow, etc below)
302  */
303 #define ___narg(...) ___nth(_, ##__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
304 /*
305  * return 0 if no arguments are passed, N - otherwise; used for
306  * recursively-defined macros to specify termination (0) case, and generic
307  * (N) case (e.g., ___read_ptrs, ___core_read)
308  */
309 #define ___empty(...) ___nth(_, ##__VA_ARGS__, N, N, N, N, N, N, N, N, N, N, 0)
310 
311 #define ___last1(x) x
312 #define ___last2(a, x) x
313 #define ___last3(a, b, x) x
314 #define ___last4(a, b, c, x) x
315 #define ___last5(a, b, c, d, x) x
316 #define ___last6(a, b, c, d, e, x) x
317 #define ___last7(a, b, c, d, e, f, x) x
318 #define ___last8(a, b, c, d, e, f, g, x) x
319 #define ___last9(a, b, c, d, e, f, g, h, x) x
320 #define ___last10(a, b, c, d, e, f, g, h, i, x) x
321 #define ___last(...) ___apply(___last, ___narg(__VA_ARGS__))(__VA_ARGS__)
322 
323 #define ___nolast2(a, _) a
324 #define ___nolast3(a, b, _) a, b
325 #define ___nolast4(a, b, c, _) a, b, c
326 #define ___nolast5(a, b, c, d, _) a, b, c, d
327 #define ___nolast6(a, b, c, d, e, _) a, b, c, d, e
328 #define ___nolast7(a, b, c, d, e, f, _) a, b, c, d, e, f
329 #define ___nolast8(a, b, c, d, e, f, g, _) a, b, c, d, e, f, g
330 #define ___nolast9(a, b, c, d, e, f, g, h, _) a, b, c, d, e, f, g, h
331 #define ___nolast10(a, b, c, d, e, f, g, h, i, _) a, b, c, d, e, f, g, h, i
332 #define ___nolast(...) ___apply(___nolast, ___narg(__VA_ARGS__))(__VA_ARGS__)
333 
334 #define ___arrow1(a) a
335 #define ___arrow2(a, b) a->b
336 #define ___arrow3(a, b, c) a->b->c
337 #define ___arrow4(a, b, c, d) a->b->c->d
338 #define ___arrow5(a, b, c, d, e) a->b->c->d->e
339 #define ___arrow6(a, b, c, d, e, f) a->b->c->d->e->f
340 #define ___arrow7(a, b, c, d, e, f, g) a->b->c->d->e->f->g
341 #define ___arrow8(a, b, c, d, e, f, g, h) a->b->c->d->e->f->g->h
342 #define ___arrow9(a, b, c, d, e, f, g, h, i) a->b->c->d->e->f->g->h->i
343 #define ___arrow10(a, b, c, d, e, f, g, h, i, j) a->b->c->d->e->f->g->h->i->j
344 #define ___arrow(...) ___apply(___arrow, ___narg(__VA_ARGS__))(__VA_ARGS__)
345 
346 #define ___type(...) typeof(___arrow(__VA_ARGS__))
347 
348 #define ___read(read_fn, dst, src_type, src, accessor)			    \
349 	read_fn((void *)(dst), sizeof(*(dst)), &((src_type)(src))->accessor)
350 
351 /* "recursively" read a sequence of inner pointers using local __t var */
352 #define ___rd_first(fn, src, a) ___read(fn, &__t, ___type(src), src, a);
353 #define ___rd_last(fn, ...)						    \
354 	___read(fn, &__t, ___type(___nolast(__VA_ARGS__)), __t, ___last(__VA_ARGS__));
355 #define ___rd_p1(fn, ...) const void *__t; ___rd_first(fn, __VA_ARGS__)
356 #define ___rd_p2(fn, ...) ___rd_p1(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
357 #define ___rd_p3(fn, ...) ___rd_p2(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
358 #define ___rd_p4(fn, ...) ___rd_p3(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
359 #define ___rd_p5(fn, ...) ___rd_p4(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
360 #define ___rd_p6(fn, ...) ___rd_p5(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
361 #define ___rd_p7(fn, ...) ___rd_p6(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
362 #define ___rd_p8(fn, ...) ___rd_p7(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
363 #define ___rd_p9(fn, ...) ___rd_p8(fn, ___nolast(__VA_ARGS__)) ___rd_last(fn, __VA_ARGS__)
364 #define ___read_ptrs(fn, src, ...)					    \
365 	___apply(___rd_p, ___narg(__VA_ARGS__))(fn, src, __VA_ARGS__)
366 
367 #define ___core_read0(fn, fn_ptr, dst, src, a)				    \
368 	___read(fn, dst, ___type(src), src, a);
369 #define ___core_readN(fn, fn_ptr, dst, src, ...)			    \
370 	___read_ptrs(fn_ptr, src, ___nolast(__VA_ARGS__))		    \
371 	___read(fn, dst, ___type(src, ___nolast(__VA_ARGS__)), __t,	    \
372 		___last(__VA_ARGS__));
373 #define ___core_read(fn, fn_ptr, dst, src, a, ...)			    \
374 	___apply(___core_read, ___empty(__VA_ARGS__))(fn, fn_ptr, dst,	    \
375 						      src, a, ##__VA_ARGS__)
376 
377 /*
378  * BPF_CORE_READ_INTO() is a more performance-conscious variant of
379  * BPF_CORE_READ(), in which final field is read into user-provided storage.
380  * See BPF_CORE_READ() below for more details on general usage.
381  */
382 #define BPF_CORE_READ_INTO(dst, src, a, ...) ({				    \
383 	___core_read(bpf_core_read, bpf_core_read,			    \
384 		     dst, (src), a, ##__VA_ARGS__)			    \
385 })
386 
387 /*
388  * Variant of BPF_CORE_READ_INTO() for reading from user-space memory.
389  *
390  * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
391  */
392 #define BPF_CORE_READ_USER_INTO(dst, src, a, ...) ({			    \
393 	___core_read(bpf_core_read_user, bpf_core_read_user,		    \
394 		     dst, (src), a, ##__VA_ARGS__)			    \
395 })
396 
397 /* Non-CO-RE variant of BPF_CORE_READ_INTO() */
398 #define BPF_PROBE_READ_INTO(dst, src, a, ...) ({			    \
399 	___core_read(bpf_probe_read_kernel, bpf_probe_read_kernel,	    \
400 		     dst, (src), a, ##__VA_ARGS__)			    \
401 })
402 
403 /* Non-CO-RE variant of BPF_CORE_READ_USER_INTO().
404  *
405  * As no CO-RE relocations are emitted, source types can be arbitrary and are
406  * not restricted to kernel types only.
407  */
408 #define BPF_PROBE_READ_USER_INTO(dst, src, a, ...) ({			    \
409 	___core_read(bpf_probe_read_user, bpf_probe_read_user,		    \
410 		     dst, (src), a, ##__VA_ARGS__)			    \
411 })
412 
413 /*
414  * BPF_CORE_READ_STR_INTO() does same "pointer chasing" as
415  * BPF_CORE_READ() for intermediate pointers, but then executes (and returns
416  * corresponding error code) bpf_core_read_str() for final string read.
417  */
418 #define BPF_CORE_READ_STR_INTO(dst, src, a, ...) ({			    \
419 	___core_read(bpf_core_read_str, bpf_core_read,			    \
420 		     dst, (src), a, ##__VA_ARGS__)			    \
421 })
422 
423 /*
424  * Variant of BPF_CORE_READ_STR_INTO() for reading from user-space memory.
425  *
426  * NOTE: see comments for BPF_CORE_READ_USER() about the proper types use.
427  */
428 #define BPF_CORE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
429 	___core_read(bpf_core_read_user_str, bpf_core_read_user,	    \
430 		     dst, (src), a, ##__VA_ARGS__)			    \
431 })
432 
433 /* Non-CO-RE variant of BPF_CORE_READ_STR_INTO() */
434 #define BPF_PROBE_READ_STR_INTO(dst, src, a, ...) ({			    \
435 	___core_read(bpf_probe_read_kernel_str, bpf_probe_read_kernel,	    \
436 		     dst, (src), a, ##__VA_ARGS__)			    \
437 })
438 
439 /*
440  * Non-CO-RE variant of BPF_CORE_READ_USER_STR_INTO().
441  *
442  * As no CO-RE relocations are emitted, source types can be arbitrary and are
443  * not restricted to kernel types only.
444  */
445 #define BPF_PROBE_READ_USER_STR_INTO(dst, src, a, ...) ({		    \
446 	___core_read(bpf_probe_read_user_str, bpf_probe_read_user,	    \
447 		     dst, (src), a, ##__VA_ARGS__)			    \
448 })
449 
450 /*
451  * BPF_CORE_READ() is used to simplify BPF CO-RE relocatable read, especially
452  * when there are few pointer chasing steps.
453  * E.g., what in non-BPF world (or in BPF w/ BCC) would be something like:
454  *	int x = s->a.b.c->d.e->f->g;
455  * can be succinctly achieved using BPF_CORE_READ as:
456  *	int x = BPF_CORE_READ(s, a.b.c, d.e, f, g);
457  *
458  * BPF_CORE_READ will decompose above statement into 4 bpf_core_read (BPF
459  * CO-RE relocatable bpf_probe_read_kernel() wrapper) calls, logically
460  * equivalent to:
461  * 1. const void *__t = s->a.b.c;
462  * 2. __t = __t->d.e;
463  * 3. __t = __t->f;
464  * 4. return __t->g;
465  *
466  * Equivalence is logical, because there is a heavy type casting/preservation
467  * involved, as well as all the reads are happening through
468  * bpf_probe_read_kernel() calls using __builtin_preserve_access_index() to
469  * emit CO-RE relocations.
470  *
471  * N.B. Only up to 9 "field accessors" are supported, which should be more
472  * than enough for any practical purpose.
473  */
474 #define BPF_CORE_READ(src, a, ...) ({					    \
475 	___type((src), a, ##__VA_ARGS__) __r;				    \
476 	BPF_CORE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
477 	__r;								    \
478 })
479 
480 /*
481  * Variant of BPF_CORE_READ() for reading from user-space memory.
482  *
483  * NOTE: all the source types involved are still *kernel types* and need to
484  * exist in kernel (or kernel module) BTF, otherwise CO-RE relocation will
485  * fail. Custom user types are not relocatable with CO-RE.
486  * The typical situation in which BPF_CORE_READ_USER() might be used is to
487  * read kernel UAPI types from the user-space memory passed in as a syscall
488  * input argument.
489  */
490 #define BPF_CORE_READ_USER(src, a, ...) ({				    \
491 	___type((src), a, ##__VA_ARGS__) __r;				    \
492 	BPF_CORE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
493 	__r;								    \
494 })
495 
496 /* Non-CO-RE variant of BPF_CORE_READ() */
497 #define BPF_PROBE_READ(src, a, ...) ({					    \
498 	___type((src), a, ##__VA_ARGS__) __r;				    \
499 	BPF_PROBE_READ_INTO(&__r, (src), a, ##__VA_ARGS__);		    \
500 	__r;								    \
501 })
502 
503 /*
504  * Non-CO-RE variant of BPF_CORE_READ_USER().
505  *
506  * As no CO-RE relocations are emitted, source types can be arbitrary and are
507  * not restricted to kernel types only.
508  */
509 #define BPF_PROBE_READ_USER(src, a, ...) ({				    \
510 	___type((src), a, ##__VA_ARGS__) __r;				    \
511 	BPF_PROBE_READ_USER_INTO(&__r, (src), a, ##__VA_ARGS__);	    \
512 	__r;								    \
513 })
514 
515 #endif
516 
517