xref: /linux/tools/lib/bpf/btf_dump.c (revision c6fbb759)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * BTF-to-C type converter.
5  *
6  * Copyright (c) 2019 Facebook
7  */
8 
9 #include <stdbool.h>
10 #include <stddef.h>
11 #include <stdlib.h>
12 #include <string.h>
13 #include <ctype.h>
14 #include <endian.h>
15 #include <errno.h>
16 #include <linux/err.h>
17 #include <linux/btf.h>
18 #include <linux/kernel.h>
19 #include "btf.h"
20 #include "hashmap.h"
21 #include "libbpf.h"
22 #include "libbpf_internal.h"
23 
24 static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
25 static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
26 
27 static const char *pfx(int lvl)
28 {
29 	return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
30 }
31 
32 enum btf_dump_type_order_state {
33 	NOT_ORDERED,
34 	ORDERING,
35 	ORDERED,
36 };
37 
38 enum btf_dump_type_emit_state {
39 	NOT_EMITTED,
40 	EMITTING,
41 	EMITTED,
42 };
43 
44 /* per-type auxiliary state */
45 struct btf_dump_type_aux_state {
46 	/* topological sorting state */
47 	enum btf_dump_type_order_state order_state: 2;
48 	/* emitting state used to determine the need for forward declaration */
49 	enum btf_dump_type_emit_state emit_state: 2;
50 	/* whether forward declaration was already emitted */
51 	__u8 fwd_emitted: 1;
52 	/* whether unique non-duplicate name was already assigned */
53 	__u8 name_resolved: 1;
54 	/* whether type is referenced from any other type */
55 	__u8 referenced: 1;
56 };
57 
58 /* indent string length; one indent string is added for each indent level */
59 #define BTF_DATA_INDENT_STR_LEN			32
60 
61 /*
62  * Common internal data for BTF type data dump operations.
63  */
64 struct btf_dump_data {
65 	const void *data_end;		/* end of valid data to show */
66 	bool compact;
67 	bool skip_names;
68 	bool emit_zeroes;
69 	__u8 indent_lvl;	/* base indent level */
70 	char indent_str[BTF_DATA_INDENT_STR_LEN];
71 	/* below are used during iteration */
72 	int depth;
73 	bool is_array_member;
74 	bool is_array_terminated;
75 	bool is_array_char;
76 };
77 
78 struct btf_dump {
79 	const struct btf *btf;
80 	btf_dump_printf_fn_t printf_fn;
81 	void *cb_ctx;
82 	int ptr_sz;
83 	bool strip_mods;
84 	bool skip_anon_defs;
85 	int last_id;
86 
87 	/* per-type auxiliary state */
88 	struct btf_dump_type_aux_state *type_states;
89 	size_t type_states_cap;
90 	/* per-type optional cached unique name, must be freed, if present */
91 	const char **cached_names;
92 	size_t cached_names_cap;
93 
94 	/* topo-sorted list of dependent type definitions */
95 	__u32 *emit_queue;
96 	int emit_queue_cap;
97 	int emit_queue_cnt;
98 
99 	/*
100 	 * stack of type declarations (e.g., chain of modifiers, arrays,
101 	 * funcs, etc)
102 	 */
103 	__u32 *decl_stack;
104 	int decl_stack_cap;
105 	int decl_stack_cnt;
106 
107 	/* maps struct/union/enum name to a number of name occurrences */
108 	struct hashmap *type_names;
109 	/*
110 	 * maps typedef identifiers and enum value names to a number of such
111 	 * name occurrences
112 	 */
113 	struct hashmap *ident_names;
114 	/*
115 	 * data for typed display; allocated if needed.
116 	 */
117 	struct btf_dump_data *typed_dump;
118 };
119 
120 static size_t str_hash_fn(const void *key, void *ctx)
121 {
122 	return str_hash(key);
123 }
124 
125 static bool str_equal_fn(const void *a, const void *b, void *ctx)
126 {
127 	return strcmp(a, b) == 0;
128 }
129 
130 static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
131 {
132 	return btf__name_by_offset(d->btf, name_off);
133 }
134 
135 static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
136 {
137 	va_list args;
138 
139 	va_start(args, fmt);
140 	d->printf_fn(d->cb_ctx, fmt, args);
141 	va_end(args);
142 }
143 
144 static int btf_dump_mark_referenced(struct btf_dump *d);
145 static int btf_dump_resize(struct btf_dump *d);
146 
147 struct btf_dump *btf_dump__new(const struct btf *btf,
148 			       btf_dump_printf_fn_t printf_fn,
149 			       void *ctx,
150 			       const struct btf_dump_opts *opts)
151 {
152 	struct btf_dump *d;
153 	int err;
154 
155 	if (!OPTS_VALID(opts, btf_dump_opts))
156 		return libbpf_err_ptr(-EINVAL);
157 
158 	if (!printf_fn)
159 		return libbpf_err_ptr(-EINVAL);
160 
161 	d = calloc(1, sizeof(struct btf_dump));
162 	if (!d)
163 		return libbpf_err_ptr(-ENOMEM);
164 
165 	d->btf = btf;
166 	d->printf_fn = printf_fn;
167 	d->cb_ctx = ctx;
168 	d->ptr_sz = btf__pointer_size(btf) ? : sizeof(void *);
169 
170 	d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
171 	if (IS_ERR(d->type_names)) {
172 		err = PTR_ERR(d->type_names);
173 		d->type_names = NULL;
174 		goto err;
175 	}
176 	d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
177 	if (IS_ERR(d->ident_names)) {
178 		err = PTR_ERR(d->ident_names);
179 		d->ident_names = NULL;
180 		goto err;
181 	}
182 
183 	err = btf_dump_resize(d);
184 	if (err)
185 		goto err;
186 
187 	return d;
188 err:
189 	btf_dump__free(d);
190 	return libbpf_err_ptr(err);
191 }
192 
193 static int btf_dump_resize(struct btf_dump *d)
194 {
195 	int err, last_id = btf__type_cnt(d->btf) - 1;
196 
197 	if (last_id <= d->last_id)
198 		return 0;
199 
200 	if (libbpf_ensure_mem((void **)&d->type_states, &d->type_states_cap,
201 			      sizeof(*d->type_states), last_id + 1))
202 		return -ENOMEM;
203 	if (libbpf_ensure_mem((void **)&d->cached_names, &d->cached_names_cap,
204 			      sizeof(*d->cached_names), last_id + 1))
205 		return -ENOMEM;
206 
207 	if (d->last_id == 0) {
208 		/* VOID is special */
209 		d->type_states[0].order_state = ORDERED;
210 		d->type_states[0].emit_state = EMITTED;
211 	}
212 
213 	/* eagerly determine referenced types for anon enums */
214 	err = btf_dump_mark_referenced(d);
215 	if (err)
216 		return err;
217 
218 	d->last_id = last_id;
219 	return 0;
220 }
221 
222 void btf_dump__free(struct btf_dump *d)
223 {
224 	int i;
225 
226 	if (IS_ERR_OR_NULL(d))
227 		return;
228 
229 	free(d->type_states);
230 	if (d->cached_names) {
231 		/* any set cached name is owned by us and should be freed */
232 		for (i = 0; i <= d->last_id; i++) {
233 			if (d->cached_names[i])
234 				free((void *)d->cached_names[i]);
235 		}
236 	}
237 	free(d->cached_names);
238 	free(d->emit_queue);
239 	free(d->decl_stack);
240 	hashmap__free(d->type_names);
241 	hashmap__free(d->ident_names);
242 
243 	free(d);
244 }
245 
246 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
247 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
248 
249 /*
250  * Dump BTF type in a compilable C syntax, including all the necessary
251  * dependent types, necessary for compilation. If some of the dependent types
252  * were already emitted as part of previous btf_dump__dump_type() invocation
253  * for another type, they won't be emitted again. This API allows callers to
254  * filter out BTF types according to user-defined criterias and emitted only
255  * minimal subset of types, necessary to compile everything. Full struct/union
256  * definitions will still be emitted, even if the only usage is through
257  * pointer and could be satisfied with just a forward declaration.
258  *
259  * Dumping is done in two high-level passes:
260  *   1. Topologically sort type definitions to satisfy C rules of compilation.
261  *   2. Emit type definitions in C syntax.
262  *
263  * Returns 0 on success; <0, otherwise.
264  */
265 int btf_dump__dump_type(struct btf_dump *d, __u32 id)
266 {
267 	int err, i;
268 
269 	if (id >= btf__type_cnt(d->btf))
270 		return libbpf_err(-EINVAL);
271 
272 	err = btf_dump_resize(d);
273 	if (err)
274 		return libbpf_err(err);
275 
276 	d->emit_queue_cnt = 0;
277 	err = btf_dump_order_type(d, id, false);
278 	if (err < 0)
279 		return libbpf_err(err);
280 
281 	for (i = 0; i < d->emit_queue_cnt; i++)
282 		btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
283 
284 	return 0;
285 }
286 
287 /*
288  * Mark all types that are referenced from any other type. This is used to
289  * determine top-level anonymous enums that need to be emitted as an
290  * independent type declarations.
291  * Anonymous enums come in two flavors: either embedded in a struct's field
292  * definition, in which case they have to be declared inline as part of field
293  * type declaration; or as a top-level anonymous enum, typically used for
294  * declaring global constants. It's impossible to distinguish between two
295  * without knowning whether given enum type was referenced from other type:
296  * top-level anonymous enum won't be referenced by anything, while embedded
297  * one will.
298  */
299 static int btf_dump_mark_referenced(struct btf_dump *d)
300 {
301 	int i, j, n = btf__type_cnt(d->btf);
302 	const struct btf_type *t;
303 	__u16 vlen;
304 
305 	for (i = d->last_id + 1; i < n; i++) {
306 		t = btf__type_by_id(d->btf, i);
307 		vlen = btf_vlen(t);
308 
309 		switch (btf_kind(t)) {
310 		case BTF_KIND_INT:
311 		case BTF_KIND_ENUM:
312 		case BTF_KIND_ENUM64:
313 		case BTF_KIND_FWD:
314 		case BTF_KIND_FLOAT:
315 			break;
316 
317 		case BTF_KIND_VOLATILE:
318 		case BTF_KIND_CONST:
319 		case BTF_KIND_RESTRICT:
320 		case BTF_KIND_PTR:
321 		case BTF_KIND_TYPEDEF:
322 		case BTF_KIND_FUNC:
323 		case BTF_KIND_VAR:
324 		case BTF_KIND_DECL_TAG:
325 		case BTF_KIND_TYPE_TAG:
326 			d->type_states[t->type].referenced = 1;
327 			break;
328 
329 		case BTF_KIND_ARRAY: {
330 			const struct btf_array *a = btf_array(t);
331 
332 			d->type_states[a->index_type].referenced = 1;
333 			d->type_states[a->type].referenced = 1;
334 			break;
335 		}
336 		case BTF_KIND_STRUCT:
337 		case BTF_KIND_UNION: {
338 			const struct btf_member *m = btf_members(t);
339 
340 			for (j = 0; j < vlen; j++, m++)
341 				d->type_states[m->type].referenced = 1;
342 			break;
343 		}
344 		case BTF_KIND_FUNC_PROTO: {
345 			const struct btf_param *p = btf_params(t);
346 
347 			for (j = 0; j < vlen; j++, p++)
348 				d->type_states[p->type].referenced = 1;
349 			break;
350 		}
351 		case BTF_KIND_DATASEC: {
352 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
353 
354 			for (j = 0; j < vlen; j++, v++)
355 				d->type_states[v->type].referenced = 1;
356 			break;
357 		}
358 		default:
359 			return -EINVAL;
360 		}
361 	}
362 	return 0;
363 }
364 
365 static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
366 {
367 	__u32 *new_queue;
368 	size_t new_cap;
369 
370 	if (d->emit_queue_cnt >= d->emit_queue_cap) {
371 		new_cap = max(16, d->emit_queue_cap * 3 / 2);
372 		new_queue = libbpf_reallocarray(d->emit_queue, new_cap, sizeof(new_queue[0]));
373 		if (!new_queue)
374 			return -ENOMEM;
375 		d->emit_queue = new_queue;
376 		d->emit_queue_cap = new_cap;
377 	}
378 
379 	d->emit_queue[d->emit_queue_cnt++] = id;
380 	return 0;
381 }
382 
383 /*
384  * Determine order of emitting dependent types and specified type to satisfy
385  * C compilation rules.  This is done through topological sorting with an
386  * additional complication which comes from C rules. The main idea for C is
387  * that if some type is "embedded" into a struct/union, it's size needs to be
388  * known at the time of definition of containing type. E.g., for:
389  *
390  *	struct A {};
391  *	struct B { struct A x; }
392  *
393  * struct A *HAS* to be defined before struct B, because it's "embedded",
394  * i.e., it is part of struct B layout. But in the following case:
395  *
396  *	struct A;
397  *	struct B { struct A *x; }
398  *	struct A {};
399  *
400  * it's enough to just have a forward declaration of struct A at the time of
401  * struct B definition, as struct B has a pointer to struct A, so the size of
402  * field x is known without knowing struct A size: it's sizeof(void *).
403  *
404  * Unfortunately, there are some trickier cases we need to handle, e.g.:
405  *
406  *	struct A {}; // if this was forward-declaration: compilation error
407  *	struct B {
408  *		struct { // anonymous struct
409  *			struct A y;
410  *		} *x;
411  *	};
412  *
413  * In this case, struct B's field x is a pointer, so it's size is known
414  * regardless of the size of (anonymous) struct it points to. But because this
415  * struct is anonymous and thus defined inline inside struct B, *and* it
416  * embeds struct A, compiler requires full definition of struct A to be known
417  * before struct B can be defined. This creates a transitive dependency
418  * between struct A and struct B. If struct A was forward-declared before
419  * struct B definition and fully defined after struct B definition, that would
420  * trigger compilation error.
421  *
422  * All this means that while we are doing topological sorting on BTF type
423  * graph, we need to determine relationships between different types (graph
424  * nodes):
425  *   - weak link (relationship) between X and Y, if Y *CAN* be
426  *   forward-declared at the point of X definition;
427  *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
428  *
429  * The rule is as follows. Given a chain of BTF types from X to Y, if there is
430  * BTF_KIND_PTR type in the chain and at least one non-anonymous type
431  * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
432  * Weak/strong relationship is determined recursively during DFS traversal and
433  * is returned as a result from btf_dump_order_type().
434  *
435  * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
436  * but it is not guaranteeing that no extraneous forward declarations will be
437  * emitted.
438  *
439  * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
440  * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
441  * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
442  * entire graph path, so depending where from one came to that BTF type, it
443  * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
444  * once they are processed, there is no need to do it again, so they are
445  * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
446  * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
447  * in any case, once those are processed, no need to do it again, as the
448  * result won't change.
449  *
450  * Returns:
451  *   - 1, if type is part of strong link (so there is strong topological
452  *   ordering requirements);
453  *   - 0, if type is part of weak link (so can be satisfied through forward
454  *   declaration);
455  *   - <0, on error (e.g., unsatisfiable type loop detected).
456  */
457 static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
458 {
459 	/*
460 	 * Order state is used to detect strong link cycles, but only for BTF
461 	 * kinds that are or could be an independent definition (i.e.,
462 	 * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
463 	 * func_protos, modifiers are just means to get to these definitions.
464 	 * Int/void don't need definitions, they are assumed to be always
465 	 * properly defined.  We also ignore datasec, var, and funcs for now.
466 	 * So for all non-defining kinds, we never even set ordering state,
467 	 * for defining kinds we set ORDERING and subsequently ORDERED if it
468 	 * forms a strong link.
469 	 */
470 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
471 	const struct btf_type *t;
472 	__u16 vlen;
473 	int err, i;
474 
475 	/* return true, letting typedefs know that it's ok to be emitted */
476 	if (tstate->order_state == ORDERED)
477 		return 1;
478 
479 	t = btf__type_by_id(d->btf, id);
480 
481 	if (tstate->order_state == ORDERING) {
482 		/* type loop, but resolvable through fwd declaration */
483 		if (btf_is_composite(t) && through_ptr && t->name_off != 0)
484 			return 0;
485 		pr_warn("unsatisfiable type cycle, id:[%u]\n", id);
486 		return -ELOOP;
487 	}
488 
489 	switch (btf_kind(t)) {
490 	case BTF_KIND_INT:
491 	case BTF_KIND_FLOAT:
492 		tstate->order_state = ORDERED;
493 		return 0;
494 
495 	case BTF_KIND_PTR:
496 		err = btf_dump_order_type(d, t->type, true);
497 		tstate->order_state = ORDERED;
498 		return err;
499 
500 	case BTF_KIND_ARRAY:
501 		return btf_dump_order_type(d, btf_array(t)->type, false);
502 
503 	case BTF_KIND_STRUCT:
504 	case BTF_KIND_UNION: {
505 		const struct btf_member *m = btf_members(t);
506 		/*
507 		 * struct/union is part of strong link, only if it's embedded
508 		 * (so no ptr in a path) or it's anonymous (so has to be
509 		 * defined inline, even if declared through ptr)
510 		 */
511 		if (through_ptr && t->name_off != 0)
512 			return 0;
513 
514 		tstate->order_state = ORDERING;
515 
516 		vlen = btf_vlen(t);
517 		for (i = 0; i < vlen; i++, m++) {
518 			err = btf_dump_order_type(d, m->type, false);
519 			if (err < 0)
520 				return err;
521 		}
522 
523 		if (t->name_off != 0) {
524 			err = btf_dump_add_emit_queue_id(d, id);
525 			if (err < 0)
526 				return err;
527 		}
528 
529 		tstate->order_state = ORDERED;
530 		return 1;
531 	}
532 	case BTF_KIND_ENUM:
533 	case BTF_KIND_ENUM64:
534 	case BTF_KIND_FWD:
535 		/*
536 		 * non-anonymous or non-referenced enums are top-level
537 		 * declarations and should be emitted. Same logic can be
538 		 * applied to FWDs, it won't hurt anyways.
539 		 */
540 		if (t->name_off != 0 || !tstate->referenced) {
541 			err = btf_dump_add_emit_queue_id(d, id);
542 			if (err)
543 				return err;
544 		}
545 		tstate->order_state = ORDERED;
546 		return 1;
547 
548 	case BTF_KIND_TYPEDEF: {
549 		int is_strong;
550 
551 		is_strong = btf_dump_order_type(d, t->type, through_ptr);
552 		if (is_strong < 0)
553 			return is_strong;
554 
555 		/* typedef is similar to struct/union w.r.t. fwd-decls */
556 		if (through_ptr && !is_strong)
557 			return 0;
558 
559 		/* typedef is always a named definition */
560 		err = btf_dump_add_emit_queue_id(d, id);
561 		if (err)
562 			return err;
563 
564 		d->type_states[id].order_state = ORDERED;
565 		return 1;
566 	}
567 	case BTF_KIND_VOLATILE:
568 	case BTF_KIND_CONST:
569 	case BTF_KIND_RESTRICT:
570 	case BTF_KIND_TYPE_TAG:
571 		return btf_dump_order_type(d, t->type, through_ptr);
572 
573 	case BTF_KIND_FUNC_PROTO: {
574 		const struct btf_param *p = btf_params(t);
575 		bool is_strong;
576 
577 		err = btf_dump_order_type(d, t->type, through_ptr);
578 		if (err < 0)
579 			return err;
580 		is_strong = err > 0;
581 
582 		vlen = btf_vlen(t);
583 		for (i = 0; i < vlen; i++, p++) {
584 			err = btf_dump_order_type(d, p->type, through_ptr);
585 			if (err < 0)
586 				return err;
587 			if (err > 0)
588 				is_strong = true;
589 		}
590 		return is_strong;
591 	}
592 	case BTF_KIND_FUNC:
593 	case BTF_KIND_VAR:
594 	case BTF_KIND_DATASEC:
595 	case BTF_KIND_DECL_TAG:
596 		d->type_states[id].order_state = ORDERED;
597 		return 0;
598 
599 	default:
600 		return -EINVAL;
601 	}
602 }
603 
604 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
605 					  const struct btf_type *t);
606 
607 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
608 				     const struct btf_type *t);
609 static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
610 				     const struct btf_type *t, int lvl);
611 
612 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
613 				   const struct btf_type *t);
614 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
615 				   const struct btf_type *t, int lvl);
616 
617 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
618 				  const struct btf_type *t);
619 
620 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
621 				      const struct btf_type *t, int lvl);
622 
623 /* a local view into a shared stack */
624 struct id_stack {
625 	const __u32 *ids;
626 	int cnt;
627 };
628 
629 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
630 				    const char *fname, int lvl);
631 static void btf_dump_emit_type_chain(struct btf_dump *d,
632 				     struct id_stack *decl_stack,
633 				     const char *fname, int lvl);
634 
635 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
636 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
637 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
638 				 const char *orig_name);
639 
640 static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
641 {
642 	const struct btf_type *t = btf__type_by_id(d->btf, id);
643 
644 	/* __builtin_va_list is a compiler built-in, which causes compilation
645 	 * errors, when compiling w/ different compiler, then used to compile
646 	 * original code (e.g., GCC to compile kernel, Clang to use generated
647 	 * C header from BTF). As it is built-in, it should be already defined
648 	 * properly internally in compiler.
649 	 */
650 	if (t->name_off == 0)
651 		return false;
652 	return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
653 }
654 
655 /*
656  * Emit C-syntax definitions of types from chains of BTF types.
657  *
658  * High-level handling of determining necessary forward declarations are handled
659  * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
660  * declarations/definitions in C syntax  are handled by a combo of
661  * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
662  * corresponding btf_dump_emit_*_{def,fwd}() functions.
663  *
664  * We also keep track of "containing struct/union type ID" to determine when
665  * we reference it from inside and thus can avoid emitting unnecessary forward
666  * declaration.
667  *
668  * This algorithm is designed in such a way, that even if some error occurs
669  * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
670  * that doesn't comply to C rules completely), algorithm will try to proceed
671  * and produce as much meaningful output as possible.
672  */
673 static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
674 {
675 	struct btf_dump_type_aux_state *tstate = &d->type_states[id];
676 	bool top_level_def = cont_id == 0;
677 	const struct btf_type *t;
678 	__u16 kind;
679 
680 	if (tstate->emit_state == EMITTED)
681 		return;
682 
683 	t = btf__type_by_id(d->btf, id);
684 	kind = btf_kind(t);
685 
686 	if (tstate->emit_state == EMITTING) {
687 		if (tstate->fwd_emitted)
688 			return;
689 
690 		switch (kind) {
691 		case BTF_KIND_STRUCT:
692 		case BTF_KIND_UNION:
693 			/*
694 			 * if we are referencing a struct/union that we are
695 			 * part of - then no need for fwd declaration
696 			 */
697 			if (id == cont_id)
698 				return;
699 			if (t->name_off == 0) {
700 				pr_warn("anonymous struct/union loop, id:[%u]\n",
701 					id);
702 				return;
703 			}
704 			btf_dump_emit_struct_fwd(d, id, t);
705 			btf_dump_printf(d, ";\n\n");
706 			tstate->fwd_emitted = 1;
707 			break;
708 		case BTF_KIND_TYPEDEF:
709 			/*
710 			 * for typedef fwd_emitted means typedef definition
711 			 * was emitted, but it can be used only for "weak"
712 			 * references through pointer only, not for embedding
713 			 */
714 			if (!btf_dump_is_blacklisted(d, id)) {
715 				btf_dump_emit_typedef_def(d, id, t, 0);
716 				btf_dump_printf(d, ";\n\n");
717 			}
718 			tstate->fwd_emitted = 1;
719 			break;
720 		default:
721 			break;
722 		}
723 
724 		return;
725 	}
726 
727 	switch (kind) {
728 	case BTF_KIND_INT:
729 		/* Emit type alias definitions if necessary */
730 		btf_dump_emit_missing_aliases(d, id, t);
731 
732 		tstate->emit_state = EMITTED;
733 		break;
734 	case BTF_KIND_ENUM:
735 	case BTF_KIND_ENUM64:
736 		if (top_level_def) {
737 			btf_dump_emit_enum_def(d, id, t, 0);
738 			btf_dump_printf(d, ";\n\n");
739 		}
740 		tstate->emit_state = EMITTED;
741 		break;
742 	case BTF_KIND_PTR:
743 	case BTF_KIND_VOLATILE:
744 	case BTF_KIND_CONST:
745 	case BTF_KIND_RESTRICT:
746 	case BTF_KIND_TYPE_TAG:
747 		btf_dump_emit_type(d, t->type, cont_id);
748 		break;
749 	case BTF_KIND_ARRAY:
750 		btf_dump_emit_type(d, btf_array(t)->type, cont_id);
751 		break;
752 	case BTF_KIND_FWD:
753 		btf_dump_emit_fwd_def(d, id, t);
754 		btf_dump_printf(d, ";\n\n");
755 		tstate->emit_state = EMITTED;
756 		break;
757 	case BTF_KIND_TYPEDEF:
758 		tstate->emit_state = EMITTING;
759 		btf_dump_emit_type(d, t->type, id);
760 		/*
761 		 * typedef can server as both definition and forward
762 		 * declaration; at this stage someone depends on
763 		 * typedef as a forward declaration (refers to it
764 		 * through pointer), so unless we already did it,
765 		 * emit typedef as a forward declaration
766 		 */
767 		if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
768 			btf_dump_emit_typedef_def(d, id, t, 0);
769 			btf_dump_printf(d, ";\n\n");
770 		}
771 		tstate->emit_state = EMITTED;
772 		break;
773 	case BTF_KIND_STRUCT:
774 	case BTF_KIND_UNION:
775 		tstate->emit_state = EMITTING;
776 		/* if it's a top-level struct/union definition or struct/union
777 		 * is anonymous, then in C we'll be emitting all fields and
778 		 * their types (as opposed to just `struct X`), so we need to
779 		 * make sure that all types, referenced from struct/union
780 		 * members have necessary forward-declarations, where
781 		 * applicable
782 		 */
783 		if (top_level_def || t->name_off == 0) {
784 			const struct btf_member *m = btf_members(t);
785 			__u16 vlen = btf_vlen(t);
786 			int i, new_cont_id;
787 
788 			new_cont_id = t->name_off == 0 ? cont_id : id;
789 			for (i = 0; i < vlen; i++, m++)
790 				btf_dump_emit_type(d, m->type, new_cont_id);
791 		} else if (!tstate->fwd_emitted && id != cont_id) {
792 			btf_dump_emit_struct_fwd(d, id, t);
793 			btf_dump_printf(d, ";\n\n");
794 			tstate->fwd_emitted = 1;
795 		}
796 
797 		if (top_level_def) {
798 			btf_dump_emit_struct_def(d, id, t, 0);
799 			btf_dump_printf(d, ";\n\n");
800 			tstate->emit_state = EMITTED;
801 		} else {
802 			tstate->emit_state = NOT_EMITTED;
803 		}
804 		break;
805 	case BTF_KIND_FUNC_PROTO: {
806 		const struct btf_param *p = btf_params(t);
807 		__u16 n = btf_vlen(t);
808 		int i;
809 
810 		btf_dump_emit_type(d, t->type, cont_id);
811 		for (i = 0; i < n; i++, p++)
812 			btf_dump_emit_type(d, p->type, cont_id);
813 
814 		break;
815 	}
816 	default:
817 		break;
818 	}
819 }
820 
821 static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
822 				 const struct btf_type *t)
823 {
824 	const struct btf_member *m;
825 	int align, i, bit_sz;
826 	__u16 vlen;
827 
828 	align = btf__align_of(btf, id);
829 	/* size of a non-packed struct has to be a multiple of its alignment*/
830 	if (align && t->size % align)
831 		return true;
832 
833 	m = btf_members(t);
834 	vlen = btf_vlen(t);
835 	/* all non-bitfield fields have to be naturally aligned */
836 	for (i = 0; i < vlen; i++, m++) {
837 		align = btf__align_of(btf, m->type);
838 		bit_sz = btf_member_bitfield_size(t, i);
839 		if (align && bit_sz == 0 && m->offset % (8 * align) != 0)
840 			return true;
841 	}
842 
843 	/*
844 	 * if original struct was marked as packed, but its layout is
845 	 * naturally aligned, we'll detect that it's not packed
846 	 */
847 	return false;
848 }
849 
850 static int chip_away_bits(int total, int at_most)
851 {
852 	return total % at_most ? : at_most;
853 }
854 
855 static void btf_dump_emit_bit_padding(const struct btf_dump *d,
856 				      int cur_off, int m_off, int m_bit_sz,
857 				      int align, int lvl)
858 {
859 	int off_diff = m_off - cur_off;
860 	int ptr_bits = d->ptr_sz * 8;
861 
862 	if (off_diff <= 0)
863 		/* no gap */
864 		return;
865 	if (m_bit_sz == 0 && off_diff < align * 8)
866 		/* natural padding will take care of a gap */
867 		return;
868 
869 	while (off_diff > 0) {
870 		const char *pad_type;
871 		int pad_bits;
872 
873 		if (ptr_bits > 32 && off_diff > 32) {
874 			pad_type = "long";
875 			pad_bits = chip_away_bits(off_diff, ptr_bits);
876 		} else if (off_diff > 16) {
877 			pad_type = "int";
878 			pad_bits = chip_away_bits(off_diff, 32);
879 		} else if (off_diff > 8) {
880 			pad_type = "short";
881 			pad_bits = chip_away_bits(off_diff, 16);
882 		} else {
883 			pad_type = "char";
884 			pad_bits = chip_away_bits(off_diff, 8);
885 		}
886 		btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
887 		off_diff -= pad_bits;
888 	}
889 }
890 
891 static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
892 				     const struct btf_type *t)
893 {
894 	btf_dump_printf(d, "%s%s%s",
895 			btf_is_struct(t) ? "struct" : "union",
896 			t->name_off ? " " : "",
897 			btf_dump_type_name(d, id));
898 }
899 
900 static void btf_dump_emit_struct_def(struct btf_dump *d,
901 				     __u32 id,
902 				     const struct btf_type *t,
903 				     int lvl)
904 {
905 	const struct btf_member *m = btf_members(t);
906 	bool is_struct = btf_is_struct(t);
907 	int align, i, packed, off = 0;
908 	__u16 vlen = btf_vlen(t);
909 
910 	packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
911 
912 	btf_dump_printf(d, "%s%s%s {",
913 			is_struct ? "struct" : "union",
914 			t->name_off ? " " : "",
915 			btf_dump_type_name(d, id));
916 
917 	for (i = 0; i < vlen; i++, m++) {
918 		const char *fname;
919 		int m_off, m_sz;
920 
921 		fname = btf_name_of(d, m->name_off);
922 		m_sz = btf_member_bitfield_size(t, i);
923 		m_off = btf_member_bit_offset(t, i);
924 		align = packed ? 1 : btf__align_of(d->btf, m->type);
925 
926 		btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
927 		btf_dump_printf(d, "\n%s", pfx(lvl + 1));
928 		btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
929 
930 		if (m_sz) {
931 			btf_dump_printf(d, ": %d", m_sz);
932 			off = m_off + m_sz;
933 		} else {
934 			m_sz = max((__s64)0, btf__resolve_size(d->btf, m->type));
935 			off = m_off + m_sz * 8;
936 		}
937 		btf_dump_printf(d, ";");
938 	}
939 
940 	/* pad at the end, if necessary */
941 	if (is_struct) {
942 		align = packed ? 1 : btf__align_of(d->btf, id);
943 		btf_dump_emit_bit_padding(d, off, t->size * 8, 0, align,
944 					  lvl + 1);
945 	}
946 
947 	if (vlen)
948 		btf_dump_printf(d, "\n");
949 	btf_dump_printf(d, "%s}", pfx(lvl));
950 	if (packed)
951 		btf_dump_printf(d, " __attribute__((packed))");
952 }
953 
954 static const char *missing_base_types[][2] = {
955 	/*
956 	 * GCC emits typedefs to its internal __PolyX_t types when compiling Arm
957 	 * SIMD intrinsics. Alias them to standard base types.
958 	 */
959 	{ "__Poly8_t",		"unsigned char" },
960 	{ "__Poly16_t",		"unsigned short" },
961 	{ "__Poly64_t",		"unsigned long long" },
962 	{ "__Poly128_t",	"unsigned __int128" },
963 };
964 
965 static void btf_dump_emit_missing_aliases(struct btf_dump *d, __u32 id,
966 					  const struct btf_type *t)
967 {
968 	const char *name = btf_dump_type_name(d, id);
969 	int i;
970 
971 	for (i = 0; i < ARRAY_SIZE(missing_base_types); i++) {
972 		if (strcmp(name, missing_base_types[i][0]) == 0) {
973 			btf_dump_printf(d, "typedef %s %s;\n\n",
974 					missing_base_types[i][1], name);
975 			break;
976 		}
977 	}
978 }
979 
980 static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
981 				   const struct btf_type *t)
982 {
983 	btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
984 }
985 
986 static void btf_dump_emit_enum32_val(struct btf_dump *d,
987 				     const struct btf_type *t,
988 				     int lvl, __u16 vlen)
989 {
990 	const struct btf_enum *v = btf_enum(t);
991 	bool is_signed = btf_kflag(t);
992 	const char *fmt_str;
993 	const char *name;
994 	size_t dup_cnt;
995 	int i;
996 
997 	for (i = 0; i < vlen; i++, v++) {
998 		name = btf_name_of(d, v->name_off);
999 		/* enumerators share namespace with typedef idents */
1000 		dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1001 		if (dup_cnt > 1) {
1002 			fmt_str = is_signed ? "\n%s%s___%zd = %d," : "\n%s%s___%zd = %u,";
1003 			btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, dup_cnt, v->val);
1004 		} else {
1005 			fmt_str = is_signed ? "\n%s%s = %d," : "\n%s%s = %u,";
1006 			btf_dump_printf(d, fmt_str, pfx(lvl + 1), name, v->val);
1007 		}
1008 	}
1009 }
1010 
1011 static void btf_dump_emit_enum64_val(struct btf_dump *d,
1012 				     const struct btf_type *t,
1013 				     int lvl, __u16 vlen)
1014 {
1015 	const struct btf_enum64 *v = btf_enum64(t);
1016 	bool is_signed = btf_kflag(t);
1017 	const char *fmt_str;
1018 	const char *name;
1019 	size_t dup_cnt;
1020 	__u64 val;
1021 	int i;
1022 
1023 	for (i = 0; i < vlen; i++, v++) {
1024 		name = btf_name_of(d, v->name_off);
1025 		dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
1026 		val = btf_enum64_value(v);
1027 		if (dup_cnt > 1) {
1028 			fmt_str = is_signed ? "\n%s%s___%zd = %lldLL,"
1029 					    : "\n%s%s___%zd = %lluULL,";
1030 			btf_dump_printf(d, fmt_str,
1031 					pfx(lvl + 1), name, dup_cnt,
1032 					(unsigned long long)val);
1033 		} else {
1034 			fmt_str = is_signed ? "\n%s%s = %lldLL,"
1035 					    : "\n%s%s = %lluULL,";
1036 			btf_dump_printf(d, fmt_str,
1037 					pfx(lvl + 1), name,
1038 					(unsigned long long)val);
1039 		}
1040 	}
1041 }
1042 static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
1043 				   const struct btf_type *t,
1044 				   int lvl)
1045 {
1046 	__u16 vlen = btf_vlen(t);
1047 
1048 	btf_dump_printf(d, "enum%s%s",
1049 			t->name_off ? " " : "",
1050 			btf_dump_type_name(d, id));
1051 
1052 	if (!vlen)
1053 		return;
1054 
1055 	btf_dump_printf(d, " {");
1056 	if (btf_is_enum(t))
1057 		btf_dump_emit_enum32_val(d, t, lvl, vlen);
1058 	else
1059 		btf_dump_emit_enum64_val(d, t, lvl, vlen);
1060 	btf_dump_printf(d, "\n%s}", pfx(lvl));
1061 }
1062 
1063 static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
1064 				  const struct btf_type *t)
1065 {
1066 	const char *name = btf_dump_type_name(d, id);
1067 
1068 	if (btf_kflag(t))
1069 		btf_dump_printf(d, "union %s", name);
1070 	else
1071 		btf_dump_printf(d, "struct %s", name);
1072 }
1073 
1074 static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
1075 				     const struct btf_type *t, int lvl)
1076 {
1077 	const char *name = btf_dump_ident_name(d, id);
1078 
1079 	/*
1080 	 * Old GCC versions are emitting invalid typedef for __gnuc_va_list
1081 	 * pointing to VOID. This generates warnings from btf_dump() and
1082 	 * results in uncompilable header file, so we are fixing it up here
1083 	 * with valid typedef into __builtin_va_list.
1084 	 */
1085 	if (t->type == 0 && strcmp(name, "__gnuc_va_list") == 0) {
1086 		btf_dump_printf(d, "typedef __builtin_va_list __gnuc_va_list");
1087 		return;
1088 	}
1089 
1090 	btf_dump_printf(d, "typedef ");
1091 	btf_dump_emit_type_decl(d, t->type, name, lvl);
1092 }
1093 
1094 static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
1095 {
1096 	__u32 *new_stack;
1097 	size_t new_cap;
1098 
1099 	if (d->decl_stack_cnt >= d->decl_stack_cap) {
1100 		new_cap = max(16, d->decl_stack_cap * 3 / 2);
1101 		new_stack = libbpf_reallocarray(d->decl_stack, new_cap, sizeof(new_stack[0]));
1102 		if (!new_stack)
1103 			return -ENOMEM;
1104 		d->decl_stack = new_stack;
1105 		d->decl_stack_cap = new_cap;
1106 	}
1107 
1108 	d->decl_stack[d->decl_stack_cnt++] = id;
1109 
1110 	return 0;
1111 }
1112 
1113 /*
1114  * Emit type declaration (e.g., field type declaration in a struct or argument
1115  * declaration in function prototype) in correct C syntax.
1116  *
1117  * For most types it's trivial, but there are few quirky type declaration
1118  * cases worth mentioning:
1119  *   - function prototypes (especially nesting of function prototypes);
1120  *   - arrays;
1121  *   - const/volatile/restrict for pointers vs other types.
1122  *
1123  * For a good discussion of *PARSING* C syntax (as a human), see
1124  * Peter van der Linden's "Expert C Programming: Deep C Secrets",
1125  * Ch.3 "Unscrambling Declarations in C".
1126  *
1127  * It won't help with BTF to C conversion much, though, as it's an opposite
1128  * problem. So we came up with this algorithm in reverse to van der Linden's
1129  * parsing algorithm. It goes from structured BTF representation of type
1130  * declaration to a valid compilable C syntax.
1131  *
1132  * For instance, consider this C typedef:
1133  *	typedef const int * const * arr[10] arr_t;
1134  * It will be represented in BTF with this chain of BTF types:
1135  *	[typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
1136  *
1137  * Notice how [const] modifier always goes before type it modifies in BTF type
1138  * graph, but in C syntax, const/volatile/restrict modifiers are written to
1139  * the right of pointers, but to the left of other types. There are also other
1140  * quirks, like function pointers, arrays of them, functions returning other
1141  * functions, etc.
1142  *
1143  * We handle that by pushing all the types to a stack, until we hit "terminal"
1144  * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
1145  * top of a stack, modifiers are handled differently. Array/function pointers
1146  * have also wildly different syntax and how nesting of them are done. See
1147  * code for authoritative definition.
1148  *
1149  * To avoid allocating new stack for each independent chain of BTF types, we
1150  * share one bigger stack, with each chain working only on its own local view
1151  * of a stack frame. Some care is required to "pop" stack frames after
1152  * processing type declaration chain.
1153  */
1154 int btf_dump__emit_type_decl(struct btf_dump *d, __u32 id,
1155 			     const struct btf_dump_emit_type_decl_opts *opts)
1156 {
1157 	const char *fname;
1158 	int lvl, err;
1159 
1160 	if (!OPTS_VALID(opts, btf_dump_emit_type_decl_opts))
1161 		return libbpf_err(-EINVAL);
1162 
1163 	err = btf_dump_resize(d);
1164 	if (err)
1165 		return libbpf_err(err);
1166 
1167 	fname = OPTS_GET(opts, field_name, "");
1168 	lvl = OPTS_GET(opts, indent_level, 0);
1169 	d->strip_mods = OPTS_GET(opts, strip_mods, false);
1170 	btf_dump_emit_type_decl(d, id, fname, lvl);
1171 	d->strip_mods = false;
1172 	return 0;
1173 }
1174 
1175 static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
1176 				    const char *fname, int lvl)
1177 {
1178 	struct id_stack decl_stack;
1179 	const struct btf_type *t;
1180 	int err, stack_start;
1181 
1182 	stack_start = d->decl_stack_cnt;
1183 	for (;;) {
1184 		t = btf__type_by_id(d->btf, id);
1185 		if (d->strip_mods && btf_is_mod(t))
1186 			goto skip_mod;
1187 
1188 		err = btf_dump_push_decl_stack_id(d, id);
1189 		if (err < 0) {
1190 			/*
1191 			 * if we don't have enough memory for entire type decl
1192 			 * chain, restore stack, emit warning, and try to
1193 			 * proceed nevertheless
1194 			 */
1195 			pr_warn("not enough memory for decl stack:%d", err);
1196 			d->decl_stack_cnt = stack_start;
1197 			return;
1198 		}
1199 skip_mod:
1200 		/* VOID */
1201 		if (id == 0)
1202 			break;
1203 
1204 		switch (btf_kind(t)) {
1205 		case BTF_KIND_PTR:
1206 		case BTF_KIND_VOLATILE:
1207 		case BTF_KIND_CONST:
1208 		case BTF_KIND_RESTRICT:
1209 		case BTF_KIND_FUNC_PROTO:
1210 		case BTF_KIND_TYPE_TAG:
1211 			id = t->type;
1212 			break;
1213 		case BTF_KIND_ARRAY:
1214 			id = btf_array(t)->type;
1215 			break;
1216 		case BTF_KIND_INT:
1217 		case BTF_KIND_ENUM:
1218 		case BTF_KIND_ENUM64:
1219 		case BTF_KIND_FWD:
1220 		case BTF_KIND_STRUCT:
1221 		case BTF_KIND_UNION:
1222 		case BTF_KIND_TYPEDEF:
1223 		case BTF_KIND_FLOAT:
1224 			goto done;
1225 		default:
1226 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1227 				btf_kind(t), id);
1228 			goto done;
1229 		}
1230 	}
1231 done:
1232 	/*
1233 	 * We might be inside a chain of declarations (e.g., array of function
1234 	 * pointers returning anonymous (so inlined) structs, having another
1235 	 * array field). Each of those needs its own "stack frame" to handle
1236 	 * emitting of declarations. Those stack frames are non-overlapping
1237 	 * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1238 	 * handle this set of nested stacks, we create a view corresponding to
1239 	 * our own "stack frame" and work with it as an independent stack.
1240 	 * We'll need to clean up after emit_type_chain() returns, though.
1241 	 */
1242 	decl_stack.ids = d->decl_stack + stack_start;
1243 	decl_stack.cnt = d->decl_stack_cnt - stack_start;
1244 	btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1245 	/*
1246 	 * emit_type_chain() guarantees that it will pop its entire decl_stack
1247 	 * frame before returning. But it works with a read-only view into
1248 	 * decl_stack, so it doesn't actually pop anything from the
1249 	 * perspective of shared btf_dump->decl_stack, per se. We need to
1250 	 * reset decl_stack state to how it was before us to avoid it growing
1251 	 * all the time.
1252 	 */
1253 	d->decl_stack_cnt = stack_start;
1254 }
1255 
1256 static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1257 {
1258 	const struct btf_type *t;
1259 	__u32 id;
1260 
1261 	while (decl_stack->cnt) {
1262 		id = decl_stack->ids[decl_stack->cnt - 1];
1263 		t = btf__type_by_id(d->btf, id);
1264 
1265 		switch (btf_kind(t)) {
1266 		case BTF_KIND_VOLATILE:
1267 			btf_dump_printf(d, "volatile ");
1268 			break;
1269 		case BTF_KIND_CONST:
1270 			btf_dump_printf(d, "const ");
1271 			break;
1272 		case BTF_KIND_RESTRICT:
1273 			btf_dump_printf(d, "restrict ");
1274 			break;
1275 		default:
1276 			return;
1277 		}
1278 		decl_stack->cnt--;
1279 	}
1280 }
1281 
1282 static void btf_dump_drop_mods(struct btf_dump *d, struct id_stack *decl_stack)
1283 {
1284 	const struct btf_type *t;
1285 	__u32 id;
1286 
1287 	while (decl_stack->cnt) {
1288 		id = decl_stack->ids[decl_stack->cnt - 1];
1289 		t = btf__type_by_id(d->btf, id);
1290 		if (!btf_is_mod(t))
1291 			return;
1292 		decl_stack->cnt--;
1293 	}
1294 }
1295 
1296 static void btf_dump_emit_name(const struct btf_dump *d,
1297 			       const char *name, bool last_was_ptr)
1298 {
1299 	bool separate = name[0] && !last_was_ptr;
1300 
1301 	btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1302 }
1303 
1304 static void btf_dump_emit_type_chain(struct btf_dump *d,
1305 				     struct id_stack *decls,
1306 				     const char *fname, int lvl)
1307 {
1308 	/*
1309 	 * last_was_ptr is used to determine if we need to separate pointer
1310 	 * asterisk (*) from previous part of type signature with space, so
1311 	 * that we get `int ***`, instead of `int * * *`. We default to true
1312 	 * for cases where we have single pointer in a chain. E.g., in ptr ->
1313 	 * func_proto case. func_proto will start a new emit_type_chain call
1314 	 * with just ptr, which should be emitted as (*) or (*<fname>), so we
1315 	 * don't want to prepend space for that last pointer.
1316 	 */
1317 	bool last_was_ptr = true;
1318 	const struct btf_type *t;
1319 	const char *name;
1320 	__u16 kind;
1321 	__u32 id;
1322 
1323 	while (decls->cnt) {
1324 		id = decls->ids[--decls->cnt];
1325 		if (id == 0) {
1326 			/* VOID is a special snowflake */
1327 			btf_dump_emit_mods(d, decls);
1328 			btf_dump_printf(d, "void");
1329 			last_was_ptr = false;
1330 			continue;
1331 		}
1332 
1333 		t = btf__type_by_id(d->btf, id);
1334 		kind = btf_kind(t);
1335 
1336 		switch (kind) {
1337 		case BTF_KIND_INT:
1338 		case BTF_KIND_FLOAT:
1339 			btf_dump_emit_mods(d, decls);
1340 			name = btf_name_of(d, t->name_off);
1341 			btf_dump_printf(d, "%s", name);
1342 			break;
1343 		case BTF_KIND_STRUCT:
1344 		case BTF_KIND_UNION:
1345 			btf_dump_emit_mods(d, decls);
1346 			/* inline anonymous struct/union */
1347 			if (t->name_off == 0 && !d->skip_anon_defs)
1348 				btf_dump_emit_struct_def(d, id, t, lvl);
1349 			else
1350 				btf_dump_emit_struct_fwd(d, id, t);
1351 			break;
1352 		case BTF_KIND_ENUM:
1353 		case BTF_KIND_ENUM64:
1354 			btf_dump_emit_mods(d, decls);
1355 			/* inline anonymous enum */
1356 			if (t->name_off == 0 && !d->skip_anon_defs)
1357 				btf_dump_emit_enum_def(d, id, t, lvl);
1358 			else
1359 				btf_dump_emit_enum_fwd(d, id, t);
1360 			break;
1361 		case BTF_KIND_FWD:
1362 			btf_dump_emit_mods(d, decls);
1363 			btf_dump_emit_fwd_def(d, id, t);
1364 			break;
1365 		case BTF_KIND_TYPEDEF:
1366 			btf_dump_emit_mods(d, decls);
1367 			btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1368 			break;
1369 		case BTF_KIND_PTR:
1370 			btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1371 			break;
1372 		case BTF_KIND_VOLATILE:
1373 			btf_dump_printf(d, " volatile");
1374 			break;
1375 		case BTF_KIND_CONST:
1376 			btf_dump_printf(d, " const");
1377 			break;
1378 		case BTF_KIND_RESTRICT:
1379 			btf_dump_printf(d, " restrict");
1380 			break;
1381 		case BTF_KIND_TYPE_TAG:
1382 			btf_dump_emit_mods(d, decls);
1383 			name = btf_name_of(d, t->name_off);
1384 			btf_dump_printf(d, " __attribute__((btf_type_tag(\"%s\")))", name);
1385 			break;
1386 		case BTF_KIND_ARRAY: {
1387 			const struct btf_array *a = btf_array(t);
1388 			const struct btf_type *next_t;
1389 			__u32 next_id;
1390 			bool multidim;
1391 			/*
1392 			 * GCC has a bug
1393 			 * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1394 			 * which causes it to emit extra const/volatile
1395 			 * modifiers for an array, if array's element type has
1396 			 * const/volatile modifiers. Clang doesn't do that.
1397 			 * In general, it doesn't seem very meaningful to have
1398 			 * a const/volatile modifier for array, so we are
1399 			 * going to silently skip them here.
1400 			 */
1401 			btf_dump_drop_mods(d, decls);
1402 
1403 			if (decls->cnt == 0) {
1404 				btf_dump_emit_name(d, fname, last_was_ptr);
1405 				btf_dump_printf(d, "[%u]", a->nelems);
1406 				return;
1407 			}
1408 
1409 			next_id = decls->ids[decls->cnt - 1];
1410 			next_t = btf__type_by_id(d->btf, next_id);
1411 			multidim = btf_is_array(next_t);
1412 			/* we need space if we have named non-pointer */
1413 			if (fname[0] && !last_was_ptr)
1414 				btf_dump_printf(d, " ");
1415 			/* no parentheses for multi-dimensional array */
1416 			if (!multidim)
1417 				btf_dump_printf(d, "(");
1418 			btf_dump_emit_type_chain(d, decls, fname, lvl);
1419 			if (!multidim)
1420 				btf_dump_printf(d, ")");
1421 			btf_dump_printf(d, "[%u]", a->nelems);
1422 			return;
1423 		}
1424 		case BTF_KIND_FUNC_PROTO: {
1425 			const struct btf_param *p = btf_params(t);
1426 			__u16 vlen = btf_vlen(t);
1427 			int i;
1428 
1429 			/*
1430 			 * GCC emits extra volatile qualifier for
1431 			 * __attribute__((noreturn)) function pointers. Clang
1432 			 * doesn't do it. It's a GCC quirk for backwards
1433 			 * compatibility with code written for GCC <2.5. So,
1434 			 * similarly to extra qualifiers for array, just drop
1435 			 * them, instead of handling them.
1436 			 */
1437 			btf_dump_drop_mods(d, decls);
1438 			if (decls->cnt) {
1439 				btf_dump_printf(d, " (");
1440 				btf_dump_emit_type_chain(d, decls, fname, lvl);
1441 				btf_dump_printf(d, ")");
1442 			} else {
1443 				btf_dump_emit_name(d, fname, last_was_ptr);
1444 			}
1445 			btf_dump_printf(d, "(");
1446 			/*
1447 			 * Clang for BPF target generates func_proto with no
1448 			 * args as a func_proto with a single void arg (e.g.,
1449 			 * `int (*f)(void)` vs just `int (*f)()`). We are
1450 			 * going to pretend there are no args for such case.
1451 			 */
1452 			if (vlen == 1 && p->type == 0) {
1453 				btf_dump_printf(d, ")");
1454 				return;
1455 			}
1456 
1457 			for (i = 0; i < vlen; i++, p++) {
1458 				if (i > 0)
1459 					btf_dump_printf(d, ", ");
1460 
1461 				/* last arg of type void is vararg */
1462 				if (i == vlen - 1 && p->type == 0) {
1463 					btf_dump_printf(d, "...");
1464 					break;
1465 				}
1466 
1467 				name = btf_name_of(d, p->name_off);
1468 				btf_dump_emit_type_decl(d, p->type, name, lvl);
1469 			}
1470 
1471 			btf_dump_printf(d, ")");
1472 			return;
1473 		}
1474 		default:
1475 			pr_warn("unexpected type in decl chain, kind:%u, id:[%u]\n",
1476 				kind, id);
1477 			return;
1478 		}
1479 
1480 		last_was_ptr = kind == BTF_KIND_PTR;
1481 	}
1482 
1483 	btf_dump_emit_name(d, fname, last_was_ptr);
1484 }
1485 
1486 /* show type name as (type_name) */
1487 static void btf_dump_emit_type_cast(struct btf_dump *d, __u32 id,
1488 				    bool top_level)
1489 {
1490 	const struct btf_type *t;
1491 
1492 	/* for array members, we don't bother emitting type name for each
1493 	 * member to avoid the redundancy of
1494 	 * .name = (char[4])[(char)'f',(char)'o',(char)'o',]
1495 	 */
1496 	if (d->typed_dump->is_array_member)
1497 		return;
1498 
1499 	/* avoid type name specification for variable/section; it will be done
1500 	 * for the associated variable value(s).
1501 	 */
1502 	t = btf__type_by_id(d->btf, id);
1503 	if (btf_is_var(t) || btf_is_datasec(t))
1504 		return;
1505 
1506 	if (top_level)
1507 		btf_dump_printf(d, "(");
1508 
1509 	d->skip_anon_defs = true;
1510 	d->strip_mods = true;
1511 	btf_dump_emit_type_decl(d, id, "", 0);
1512 	d->strip_mods = false;
1513 	d->skip_anon_defs = false;
1514 
1515 	if (top_level)
1516 		btf_dump_printf(d, ")");
1517 }
1518 
1519 /* return number of duplicates (occurrences) of a given name */
1520 static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1521 				 const char *orig_name)
1522 {
1523 	size_t dup_cnt = 0;
1524 
1525 	hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1526 	dup_cnt++;
1527 	hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1528 
1529 	return dup_cnt;
1530 }
1531 
1532 static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1533 					 struct hashmap *name_map)
1534 {
1535 	struct btf_dump_type_aux_state *s = &d->type_states[id];
1536 	const struct btf_type *t = btf__type_by_id(d->btf, id);
1537 	const char *orig_name = btf_name_of(d, t->name_off);
1538 	const char **cached_name = &d->cached_names[id];
1539 	size_t dup_cnt;
1540 
1541 	if (t->name_off == 0)
1542 		return "";
1543 
1544 	if (s->name_resolved)
1545 		return *cached_name ? *cached_name : orig_name;
1546 
1547 	if (btf_is_fwd(t) || (btf_is_enum(t) && btf_vlen(t) == 0)) {
1548 		s->name_resolved = 1;
1549 		return orig_name;
1550 	}
1551 
1552 	dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1553 	if (dup_cnt > 1) {
1554 		const size_t max_len = 256;
1555 		char new_name[max_len];
1556 
1557 		snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1558 		*cached_name = strdup(new_name);
1559 	}
1560 
1561 	s->name_resolved = 1;
1562 	return *cached_name ? *cached_name : orig_name;
1563 }
1564 
1565 static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1566 {
1567 	return btf_dump_resolve_name(d, id, d->type_names);
1568 }
1569 
1570 static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1571 {
1572 	return btf_dump_resolve_name(d, id, d->ident_names);
1573 }
1574 
1575 static int btf_dump_dump_type_data(struct btf_dump *d,
1576 				   const char *fname,
1577 				   const struct btf_type *t,
1578 				   __u32 id,
1579 				   const void *data,
1580 				   __u8 bits_offset,
1581 				   __u8 bit_sz);
1582 
1583 static const char *btf_dump_data_newline(struct btf_dump *d)
1584 {
1585 	return d->typed_dump->compact || d->typed_dump->depth == 0 ? "" : "\n";
1586 }
1587 
1588 static const char *btf_dump_data_delim(struct btf_dump *d)
1589 {
1590 	return d->typed_dump->depth == 0 ? "" : ",";
1591 }
1592 
1593 static void btf_dump_data_pfx(struct btf_dump *d)
1594 {
1595 	int i, lvl = d->typed_dump->indent_lvl + d->typed_dump->depth;
1596 
1597 	if (d->typed_dump->compact)
1598 		return;
1599 
1600 	for (i = 0; i < lvl; i++)
1601 		btf_dump_printf(d, "%s", d->typed_dump->indent_str);
1602 }
1603 
1604 /* A macro is used here as btf_type_value[s]() appends format specifiers
1605  * to the format specifier passed in; these do the work of appending
1606  * delimiters etc while the caller simply has to specify the type values
1607  * in the format specifier + value(s).
1608  */
1609 #define btf_dump_type_values(d, fmt, ...)				\
1610 	btf_dump_printf(d, fmt "%s%s",					\
1611 			##__VA_ARGS__,					\
1612 			btf_dump_data_delim(d),				\
1613 			btf_dump_data_newline(d))
1614 
1615 static int btf_dump_unsupported_data(struct btf_dump *d,
1616 				     const struct btf_type *t,
1617 				     __u32 id)
1618 {
1619 	btf_dump_printf(d, "<unsupported kind:%u>", btf_kind(t));
1620 	return -ENOTSUP;
1621 }
1622 
1623 static int btf_dump_get_bitfield_value(struct btf_dump *d,
1624 				       const struct btf_type *t,
1625 				       const void *data,
1626 				       __u8 bits_offset,
1627 				       __u8 bit_sz,
1628 				       __u64 *value)
1629 {
1630 	__u16 left_shift_bits, right_shift_bits;
1631 	const __u8 *bytes = data;
1632 	__u8 nr_copy_bits;
1633 	__u64 num = 0;
1634 	int i;
1635 
1636 	/* Maximum supported bitfield size is 64 bits */
1637 	if (t->size > 8) {
1638 		pr_warn("unexpected bitfield size %d\n", t->size);
1639 		return -EINVAL;
1640 	}
1641 
1642 	/* Bitfield value retrieval is done in two steps; first relevant bytes are
1643 	 * stored in num, then we left/right shift num to eliminate irrelevant bits.
1644 	 */
1645 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1646 	for (i = t->size - 1; i >= 0; i--)
1647 		num = num * 256 + bytes[i];
1648 	nr_copy_bits = bit_sz + bits_offset;
1649 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1650 	for (i = 0; i < t->size; i++)
1651 		num = num * 256 + bytes[i];
1652 	nr_copy_bits = t->size * 8 - bits_offset;
1653 #else
1654 # error "Unrecognized __BYTE_ORDER__"
1655 #endif
1656 	left_shift_bits = 64 - nr_copy_bits;
1657 	right_shift_bits = 64 - bit_sz;
1658 
1659 	*value = (num << left_shift_bits) >> right_shift_bits;
1660 
1661 	return 0;
1662 }
1663 
1664 static int btf_dump_bitfield_check_zero(struct btf_dump *d,
1665 					const struct btf_type *t,
1666 					const void *data,
1667 					__u8 bits_offset,
1668 					__u8 bit_sz)
1669 {
1670 	__u64 check_num;
1671 	int err;
1672 
1673 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &check_num);
1674 	if (err)
1675 		return err;
1676 	if (check_num == 0)
1677 		return -ENODATA;
1678 	return 0;
1679 }
1680 
1681 static int btf_dump_bitfield_data(struct btf_dump *d,
1682 				  const struct btf_type *t,
1683 				  const void *data,
1684 				  __u8 bits_offset,
1685 				  __u8 bit_sz)
1686 {
1687 	__u64 print_num;
1688 	int err;
1689 
1690 	err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz, &print_num);
1691 	if (err)
1692 		return err;
1693 
1694 	btf_dump_type_values(d, "0x%llx", (unsigned long long)print_num);
1695 
1696 	return 0;
1697 }
1698 
1699 /* ints, floats and ptrs */
1700 static int btf_dump_base_type_check_zero(struct btf_dump *d,
1701 					 const struct btf_type *t,
1702 					 __u32 id,
1703 					 const void *data)
1704 {
1705 	static __u8 bytecmp[16] = {};
1706 	int nr_bytes;
1707 
1708 	/* For pointer types, pointer size is not defined on a per-type basis.
1709 	 * On dump creation however, we store the pointer size.
1710 	 */
1711 	if (btf_kind(t) == BTF_KIND_PTR)
1712 		nr_bytes = d->ptr_sz;
1713 	else
1714 		nr_bytes = t->size;
1715 
1716 	if (nr_bytes < 1 || nr_bytes > 16) {
1717 		pr_warn("unexpected size %d for id [%u]\n", nr_bytes, id);
1718 		return -EINVAL;
1719 	}
1720 
1721 	if (memcmp(data, bytecmp, nr_bytes) == 0)
1722 		return -ENODATA;
1723 	return 0;
1724 }
1725 
1726 static bool ptr_is_aligned(const struct btf *btf, __u32 type_id,
1727 			   const void *data)
1728 {
1729 	int alignment = btf__align_of(btf, type_id);
1730 
1731 	if (alignment == 0)
1732 		return false;
1733 
1734 	return ((uintptr_t)data) % alignment == 0;
1735 }
1736 
1737 static int btf_dump_int_data(struct btf_dump *d,
1738 			     const struct btf_type *t,
1739 			     __u32 type_id,
1740 			     const void *data,
1741 			     __u8 bits_offset)
1742 {
1743 	__u8 encoding = btf_int_encoding(t);
1744 	bool sign = encoding & BTF_INT_SIGNED;
1745 	char buf[16] __attribute__((aligned(16)));
1746 	int sz = t->size;
1747 
1748 	if (sz == 0 || sz > sizeof(buf)) {
1749 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1750 		return -EINVAL;
1751 	}
1752 
1753 	/* handle packed int data - accesses of integers not aligned on
1754 	 * int boundaries can cause problems on some platforms.
1755 	 */
1756 	if (!ptr_is_aligned(d->btf, type_id, data)) {
1757 		memcpy(buf, data, sz);
1758 		data = buf;
1759 	}
1760 
1761 	switch (sz) {
1762 	case 16: {
1763 		const __u64 *ints = data;
1764 		__u64 lsi, msi;
1765 
1766 		/* avoid use of __int128 as some 32-bit platforms do not
1767 		 * support it.
1768 		 */
1769 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1770 		lsi = ints[0];
1771 		msi = ints[1];
1772 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1773 		lsi = ints[1];
1774 		msi = ints[0];
1775 #else
1776 # error "Unrecognized __BYTE_ORDER__"
1777 #endif
1778 		if (msi == 0)
1779 			btf_dump_type_values(d, "0x%llx", (unsigned long long)lsi);
1780 		else
1781 			btf_dump_type_values(d, "0x%llx%016llx", (unsigned long long)msi,
1782 					     (unsigned long long)lsi);
1783 		break;
1784 	}
1785 	case 8:
1786 		if (sign)
1787 			btf_dump_type_values(d, "%lld", *(long long *)data);
1788 		else
1789 			btf_dump_type_values(d, "%llu", *(unsigned long long *)data);
1790 		break;
1791 	case 4:
1792 		if (sign)
1793 			btf_dump_type_values(d, "%d", *(__s32 *)data);
1794 		else
1795 			btf_dump_type_values(d, "%u", *(__u32 *)data);
1796 		break;
1797 	case 2:
1798 		if (sign)
1799 			btf_dump_type_values(d, "%d", *(__s16 *)data);
1800 		else
1801 			btf_dump_type_values(d, "%u", *(__u16 *)data);
1802 		break;
1803 	case 1:
1804 		if (d->typed_dump->is_array_char) {
1805 			/* check for null terminator */
1806 			if (d->typed_dump->is_array_terminated)
1807 				break;
1808 			if (*(char *)data == '\0') {
1809 				d->typed_dump->is_array_terminated = true;
1810 				break;
1811 			}
1812 			if (isprint(*(char *)data)) {
1813 				btf_dump_type_values(d, "'%c'", *(char *)data);
1814 				break;
1815 			}
1816 		}
1817 		if (sign)
1818 			btf_dump_type_values(d, "%d", *(__s8 *)data);
1819 		else
1820 			btf_dump_type_values(d, "%u", *(__u8 *)data);
1821 		break;
1822 	default:
1823 		pr_warn("unexpected sz %d for id [%u]\n", sz, type_id);
1824 		return -EINVAL;
1825 	}
1826 	return 0;
1827 }
1828 
1829 union float_data {
1830 	long double ld;
1831 	double d;
1832 	float f;
1833 };
1834 
1835 static int btf_dump_float_data(struct btf_dump *d,
1836 			       const struct btf_type *t,
1837 			       __u32 type_id,
1838 			       const void *data)
1839 {
1840 	const union float_data *flp = data;
1841 	union float_data fl;
1842 	int sz = t->size;
1843 
1844 	/* handle unaligned data; copy to local union */
1845 	if (!ptr_is_aligned(d->btf, type_id, data)) {
1846 		memcpy(&fl, data, sz);
1847 		flp = &fl;
1848 	}
1849 
1850 	switch (sz) {
1851 	case 16:
1852 		btf_dump_type_values(d, "%Lf", flp->ld);
1853 		break;
1854 	case 8:
1855 		btf_dump_type_values(d, "%lf", flp->d);
1856 		break;
1857 	case 4:
1858 		btf_dump_type_values(d, "%f", flp->f);
1859 		break;
1860 	default:
1861 		pr_warn("unexpected size %d for id [%u]\n", sz, type_id);
1862 		return -EINVAL;
1863 	}
1864 	return 0;
1865 }
1866 
1867 static int btf_dump_var_data(struct btf_dump *d,
1868 			     const struct btf_type *v,
1869 			     __u32 id,
1870 			     const void *data)
1871 {
1872 	enum btf_func_linkage linkage = btf_var(v)->linkage;
1873 	const struct btf_type *t;
1874 	const char *l;
1875 	__u32 type_id;
1876 
1877 	switch (linkage) {
1878 	case BTF_FUNC_STATIC:
1879 		l = "static ";
1880 		break;
1881 	case BTF_FUNC_EXTERN:
1882 		l = "extern ";
1883 		break;
1884 	case BTF_FUNC_GLOBAL:
1885 	default:
1886 		l = "";
1887 		break;
1888 	}
1889 
1890 	/* format of output here is [linkage] [type] [varname] = (type)value,
1891 	 * for example "static int cpu_profile_flip = (int)1"
1892 	 */
1893 	btf_dump_printf(d, "%s", l);
1894 	type_id = v->type;
1895 	t = btf__type_by_id(d->btf, type_id);
1896 	btf_dump_emit_type_cast(d, type_id, false);
1897 	btf_dump_printf(d, " %s = ", btf_name_of(d, v->name_off));
1898 	return btf_dump_dump_type_data(d, NULL, t, type_id, data, 0, 0);
1899 }
1900 
1901 static int btf_dump_array_data(struct btf_dump *d,
1902 			       const struct btf_type *t,
1903 			       __u32 id,
1904 			       const void *data)
1905 {
1906 	const struct btf_array *array = btf_array(t);
1907 	const struct btf_type *elem_type;
1908 	__u32 i, elem_type_id;
1909 	__s64 elem_size;
1910 	bool is_array_member;
1911 
1912 	elem_type_id = array->type;
1913 	elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
1914 	elem_size = btf__resolve_size(d->btf, elem_type_id);
1915 	if (elem_size <= 0) {
1916 		pr_warn("unexpected elem size %zd for array type [%u]\n",
1917 			(ssize_t)elem_size, id);
1918 		return -EINVAL;
1919 	}
1920 
1921 	if (btf_is_int(elem_type)) {
1922 		/*
1923 		 * BTF_INT_CHAR encoding never seems to be set for
1924 		 * char arrays, so if size is 1 and element is
1925 		 * printable as a char, we'll do that.
1926 		 */
1927 		if (elem_size == 1)
1928 			d->typed_dump->is_array_char = true;
1929 	}
1930 
1931 	/* note that we increment depth before calling btf_dump_print() below;
1932 	 * this is intentional.  btf_dump_data_newline() will not print a
1933 	 * newline for depth 0 (since this leaves us with trailing newlines
1934 	 * at the end of typed display), so depth is incremented first.
1935 	 * For similar reasons, we decrement depth before showing the closing
1936 	 * parenthesis.
1937 	 */
1938 	d->typed_dump->depth++;
1939 	btf_dump_printf(d, "[%s", btf_dump_data_newline(d));
1940 
1941 	/* may be a multidimensional array, so store current "is array member"
1942 	 * status so we can restore it correctly later.
1943 	 */
1944 	is_array_member = d->typed_dump->is_array_member;
1945 	d->typed_dump->is_array_member = true;
1946 	for (i = 0; i < array->nelems; i++, data += elem_size) {
1947 		if (d->typed_dump->is_array_terminated)
1948 			break;
1949 		btf_dump_dump_type_data(d, NULL, elem_type, elem_type_id, data, 0, 0);
1950 	}
1951 	d->typed_dump->is_array_member = is_array_member;
1952 	d->typed_dump->depth--;
1953 	btf_dump_data_pfx(d);
1954 	btf_dump_type_values(d, "]");
1955 
1956 	return 0;
1957 }
1958 
1959 static int btf_dump_struct_data(struct btf_dump *d,
1960 				const struct btf_type *t,
1961 				__u32 id,
1962 				const void *data)
1963 {
1964 	const struct btf_member *m = btf_members(t);
1965 	__u16 n = btf_vlen(t);
1966 	int i, err;
1967 
1968 	/* note that we increment depth before calling btf_dump_print() below;
1969 	 * this is intentional.  btf_dump_data_newline() will not print a
1970 	 * newline for depth 0 (since this leaves us with trailing newlines
1971 	 * at the end of typed display), so depth is incremented first.
1972 	 * For similar reasons, we decrement depth before showing the closing
1973 	 * parenthesis.
1974 	 */
1975 	d->typed_dump->depth++;
1976 	btf_dump_printf(d, "{%s", btf_dump_data_newline(d));
1977 
1978 	for (i = 0; i < n; i++, m++) {
1979 		const struct btf_type *mtype;
1980 		const char *mname;
1981 		__u32 moffset;
1982 		__u8 bit_sz;
1983 
1984 		mtype = btf__type_by_id(d->btf, m->type);
1985 		mname = btf_name_of(d, m->name_off);
1986 		moffset = btf_member_bit_offset(t, i);
1987 
1988 		bit_sz = btf_member_bitfield_size(t, i);
1989 		err = btf_dump_dump_type_data(d, mname, mtype, m->type, data + moffset / 8,
1990 					      moffset % 8, bit_sz);
1991 		if (err < 0)
1992 			return err;
1993 	}
1994 	d->typed_dump->depth--;
1995 	btf_dump_data_pfx(d);
1996 	btf_dump_type_values(d, "}");
1997 	return err;
1998 }
1999 
2000 union ptr_data {
2001 	unsigned int p;
2002 	unsigned long long lp;
2003 };
2004 
2005 static int btf_dump_ptr_data(struct btf_dump *d,
2006 			      const struct btf_type *t,
2007 			      __u32 id,
2008 			      const void *data)
2009 {
2010 	if (ptr_is_aligned(d->btf, id, data) && d->ptr_sz == sizeof(void *)) {
2011 		btf_dump_type_values(d, "%p", *(void **)data);
2012 	} else {
2013 		union ptr_data pt;
2014 
2015 		memcpy(&pt, data, d->ptr_sz);
2016 		if (d->ptr_sz == 4)
2017 			btf_dump_type_values(d, "0x%x", pt.p);
2018 		else
2019 			btf_dump_type_values(d, "0x%llx", pt.lp);
2020 	}
2021 	return 0;
2022 }
2023 
2024 static int btf_dump_get_enum_value(struct btf_dump *d,
2025 				   const struct btf_type *t,
2026 				   const void *data,
2027 				   __u32 id,
2028 				   __s64 *value)
2029 {
2030 	bool is_signed = btf_kflag(t);
2031 
2032 	if (!ptr_is_aligned(d->btf, id, data)) {
2033 		__u64 val;
2034 		int err;
2035 
2036 		err = btf_dump_get_bitfield_value(d, t, data, 0, 0, &val);
2037 		if (err)
2038 			return err;
2039 		*value = (__s64)val;
2040 		return 0;
2041 	}
2042 
2043 	switch (t->size) {
2044 	case 8:
2045 		*value = *(__s64 *)data;
2046 		return 0;
2047 	case 4:
2048 		*value = is_signed ? (__s64)*(__s32 *)data : *(__u32 *)data;
2049 		return 0;
2050 	case 2:
2051 		*value = is_signed ? *(__s16 *)data : *(__u16 *)data;
2052 		return 0;
2053 	case 1:
2054 		*value = is_signed ? *(__s8 *)data : *(__u8 *)data;
2055 		return 0;
2056 	default:
2057 		pr_warn("unexpected size %d for enum, id:[%u]\n", t->size, id);
2058 		return -EINVAL;
2059 	}
2060 }
2061 
2062 static int btf_dump_enum_data(struct btf_dump *d,
2063 			      const struct btf_type *t,
2064 			      __u32 id,
2065 			      const void *data)
2066 {
2067 	bool is_signed;
2068 	__s64 value;
2069 	int i, err;
2070 
2071 	err = btf_dump_get_enum_value(d, t, data, id, &value);
2072 	if (err)
2073 		return err;
2074 
2075 	is_signed = btf_kflag(t);
2076 	if (btf_is_enum(t)) {
2077 		const struct btf_enum *e;
2078 
2079 		for (i = 0, e = btf_enum(t); i < btf_vlen(t); i++, e++) {
2080 			if (value != e->val)
2081 				continue;
2082 			btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2083 			return 0;
2084 		}
2085 
2086 		btf_dump_type_values(d, is_signed ? "%d" : "%u", value);
2087 	} else {
2088 		const struct btf_enum64 *e;
2089 
2090 		for (i = 0, e = btf_enum64(t); i < btf_vlen(t); i++, e++) {
2091 			if (value != btf_enum64_value(e))
2092 				continue;
2093 			btf_dump_type_values(d, "%s", btf_name_of(d, e->name_off));
2094 			return 0;
2095 		}
2096 
2097 		btf_dump_type_values(d, is_signed ? "%lldLL" : "%lluULL",
2098 				     (unsigned long long)value);
2099 	}
2100 	return 0;
2101 }
2102 
2103 static int btf_dump_datasec_data(struct btf_dump *d,
2104 				 const struct btf_type *t,
2105 				 __u32 id,
2106 				 const void *data)
2107 {
2108 	const struct btf_var_secinfo *vsi;
2109 	const struct btf_type *var;
2110 	__u32 i;
2111 	int err;
2112 
2113 	btf_dump_type_values(d, "SEC(\"%s\") ", btf_name_of(d, t->name_off));
2114 
2115 	for (i = 0, vsi = btf_var_secinfos(t); i < btf_vlen(t); i++, vsi++) {
2116 		var = btf__type_by_id(d->btf, vsi->type);
2117 		err = btf_dump_dump_type_data(d, NULL, var, vsi->type, data + vsi->offset, 0, 0);
2118 		if (err < 0)
2119 			return err;
2120 		btf_dump_printf(d, ";");
2121 	}
2122 	return 0;
2123 }
2124 
2125 /* return size of type, or if base type overflows, return -E2BIG. */
2126 static int btf_dump_type_data_check_overflow(struct btf_dump *d,
2127 					     const struct btf_type *t,
2128 					     __u32 id,
2129 					     const void *data,
2130 					     __u8 bits_offset)
2131 {
2132 	__s64 size = btf__resolve_size(d->btf, id);
2133 
2134 	if (size < 0 || size >= INT_MAX) {
2135 		pr_warn("unexpected size [%zu] for id [%u]\n",
2136 			(size_t)size, id);
2137 		return -EINVAL;
2138 	}
2139 
2140 	/* Only do overflow checking for base types; we do not want to
2141 	 * avoid showing part of a struct, union or array, even if we
2142 	 * do not have enough data to show the full object.  By
2143 	 * restricting overflow checking to base types we can ensure
2144 	 * that partial display succeeds, while avoiding overflowing
2145 	 * and using bogus data for display.
2146 	 */
2147 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2148 	if (!t) {
2149 		pr_warn("unexpected error skipping mods/typedefs for id [%u]\n",
2150 			id);
2151 		return -EINVAL;
2152 	}
2153 
2154 	switch (btf_kind(t)) {
2155 	case BTF_KIND_INT:
2156 	case BTF_KIND_FLOAT:
2157 	case BTF_KIND_PTR:
2158 	case BTF_KIND_ENUM:
2159 	case BTF_KIND_ENUM64:
2160 		if (data + bits_offset / 8 + size > d->typed_dump->data_end)
2161 			return -E2BIG;
2162 		break;
2163 	default:
2164 		break;
2165 	}
2166 	return (int)size;
2167 }
2168 
2169 static int btf_dump_type_data_check_zero(struct btf_dump *d,
2170 					 const struct btf_type *t,
2171 					 __u32 id,
2172 					 const void *data,
2173 					 __u8 bits_offset,
2174 					 __u8 bit_sz)
2175 {
2176 	__s64 value;
2177 	int i, err;
2178 
2179 	/* toplevel exceptions; we show zero values if
2180 	 * - we ask for them (emit_zeros)
2181 	 * - if we are at top-level so we see "struct empty { }"
2182 	 * - or if we are an array member and the array is non-empty and
2183 	 *   not a char array; we don't want to be in a situation where we
2184 	 *   have an integer array 0, 1, 0, 1 and only show non-zero values.
2185 	 *   If the array contains zeroes only, or is a char array starting
2186 	 *   with a '\0', the array-level check_zero() will prevent showing it;
2187 	 *   we are concerned with determining zero value at the array member
2188 	 *   level here.
2189 	 */
2190 	if (d->typed_dump->emit_zeroes || d->typed_dump->depth == 0 ||
2191 	    (d->typed_dump->is_array_member &&
2192 	     !d->typed_dump->is_array_char))
2193 		return 0;
2194 
2195 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2196 
2197 	switch (btf_kind(t)) {
2198 	case BTF_KIND_INT:
2199 		if (bit_sz)
2200 			return btf_dump_bitfield_check_zero(d, t, data, bits_offset, bit_sz);
2201 		return btf_dump_base_type_check_zero(d, t, id, data);
2202 	case BTF_KIND_FLOAT:
2203 	case BTF_KIND_PTR:
2204 		return btf_dump_base_type_check_zero(d, t, id, data);
2205 	case BTF_KIND_ARRAY: {
2206 		const struct btf_array *array = btf_array(t);
2207 		const struct btf_type *elem_type;
2208 		__u32 elem_type_id, elem_size;
2209 		bool ischar;
2210 
2211 		elem_type_id = array->type;
2212 		elem_size = btf__resolve_size(d->btf, elem_type_id);
2213 		elem_type = skip_mods_and_typedefs(d->btf, elem_type_id, NULL);
2214 
2215 		ischar = btf_is_int(elem_type) && elem_size == 1;
2216 
2217 		/* check all elements; if _any_ element is nonzero, all
2218 		 * of array is displayed.  We make an exception however
2219 		 * for char arrays where the first element is 0; these
2220 		 * are considered zeroed also, even if later elements are
2221 		 * non-zero because the string is terminated.
2222 		 */
2223 		for (i = 0; i < array->nelems; i++) {
2224 			if (i == 0 && ischar && *(char *)data == 0)
2225 				return -ENODATA;
2226 			err = btf_dump_type_data_check_zero(d, elem_type,
2227 							    elem_type_id,
2228 							    data +
2229 							    (i * elem_size),
2230 							    bits_offset, 0);
2231 			if (err != -ENODATA)
2232 				return err;
2233 		}
2234 		return -ENODATA;
2235 	}
2236 	case BTF_KIND_STRUCT:
2237 	case BTF_KIND_UNION: {
2238 		const struct btf_member *m = btf_members(t);
2239 		__u16 n = btf_vlen(t);
2240 
2241 		/* if any struct/union member is non-zero, the struct/union
2242 		 * is considered non-zero and dumped.
2243 		 */
2244 		for (i = 0; i < n; i++, m++) {
2245 			const struct btf_type *mtype;
2246 			__u32 moffset;
2247 
2248 			mtype = btf__type_by_id(d->btf, m->type);
2249 			moffset = btf_member_bit_offset(t, i);
2250 
2251 			/* btf_int_bits() does not store member bitfield size;
2252 			 * bitfield size needs to be stored here so int display
2253 			 * of member can retrieve it.
2254 			 */
2255 			bit_sz = btf_member_bitfield_size(t, i);
2256 			err = btf_dump_type_data_check_zero(d, mtype, m->type, data + moffset / 8,
2257 							    moffset % 8, bit_sz);
2258 			if (err != ENODATA)
2259 				return err;
2260 		}
2261 		return -ENODATA;
2262 	}
2263 	case BTF_KIND_ENUM:
2264 	case BTF_KIND_ENUM64:
2265 		err = btf_dump_get_enum_value(d, t, data, id, &value);
2266 		if (err)
2267 			return err;
2268 		if (value == 0)
2269 			return -ENODATA;
2270 		return 0;
2271 	default:
2272 		return 0;
2273 	}
2274 }
2275 
2276 /* returns size of data dumped, or error. */
2277 static int btf_dump_dump_type_data(struct btf_dump *d,
2278 				   const char *fname,
2279 				   const struct btf_type *t,
2280 				   __u32 id,
2281 				   const void *data,
2282 				   __u8 bits_offset,
2283 				   __u8 bit_sz)
2284 {
2285 	int size, err = 0;
2286 
2287 	size = btf_dump_type_data_check_overflow(d, t, id, data, bits_offset);
2288 	if (size < 0)
2289 		return size;
2290 	err = btf_dump_type_data_check_zero(d, t, id, data, bits_offset, bit_sz);
2291 	if (err) {
2292 		/* zeroed data is expected and not an error, so simply skip
2293 		 * dumping such data.  Record other errors however.
2294 		 */
2295 		if (err == -ENODATA)
2296 			return size;
2297 		return err;
2298 	}
2299 	btf_dump_data_pfx(d);
2300 
2301 	if (!d->typed_dump->skip_names) {
2302 		if (fname && strlen(fname) > 0)
2303 			btf_dump_printf(d, ".%s = ", fname);
2304 		btf_dump_emit_type_cast(d, id, true);
2305 	}
2306 
2307 	t = skip_mods_and_typedefs(d->btf, id, NULL);
2308 
2309 	switch (btf_kind(t)) {
2310 	case BTF_KIND_UNKN:
2311 	case BTF_KIND_FWD:
2312 	case BTF_KIND_FUNC:
2313 	case BTF_KIND_FUNC_PROTO:
2314 	case BTF_KIND_DECL_TAG:
2315 		err = btf_dump_unsupported_data(d, t, id);
2316 		break;
2317 	case BTF_KIND_INT:
2318 		if (bit_sz)
2319 			err = btf_dump_bitfield_data(d, t, data, bits_offset, bit_sz);
2320 		else
2321 			err = btf_dump_int_data(d, t, id, data, bits_offset);
2322 		break;
2323 	case BTF_KIND_FLOAT:
2324 		err = btf_dump_float_data(d, t, id, data);
2325 		break;
2326 	case BTF_KIND_PTR:
2327 		err = btf_dump_ptr_data(d, t, id, data);
2328 		break;
2329 	case BTF_KIND_ARRAY:
2330 		err = btf_dump_array_data(d, t, id, data);
2331 		break;
2332 	case BTF_KIND_STRUCT:
2333 	case BTF_KIND_UNION:
2334 		err = btf_dump_struct_data(d, t, id, data);
2335 		break;
2336 	case BTF_KIND_ENUM:
2337 	case BTF_KIND_ENUM64:
2338 		/* handle bitfield and int enum values */
2339 		if (bit_sz) {
2340 			__u64 print_num;
2341 			__s64 enum_val;
2342 
2343 			err = btf_dump_get_bitfield_value(d, t, data, bits_offset, bit_sz,
2344 							  &print_num);
2345 			if (err)
2346 				break;
2347 			enum_val = (__s64)print_num;
2348 			err = btf_dump_enum_data(d, t, id, &enum_val);
2349 		} else
2350 			err = btf_dump_enum_data(d, t, id, data);
2351 		break;
2352 	case BTF_KIND_VAR:
2353 		err = btf_dump_var_data(d, t, id, data);
2354 		break;
2355 	case BTF_KIND_DATASEC:
2356 		err = btf_dump_datasec_data(d, t, id, data);
2357 		break;
2358 	default:
2359 		pr_warn("unexpected kind [%u] for id [%u]\n",
2360 			BTF_INFO_KIND(t->info), id);
2361 		return -EINVAL;
2362 	}
2363 	if (err < 0)
2364 		return err;
2365 	return size;
2366 }
2367 
2368 int btf_dump__dump_type_data(struct btf_dump *d, __u32 id,
2369 			     const void *data, size_t data_sz,
2370 			     const struct btf_dump_type_data_opts *opts)
2371 {
2372 	struct btf_dump_data typed_dump = {};
2373 	const struct btf_type *t;
2374 	int ret;
2375 
2376 	if (!OPTS_VALID(opts, btf_dump_type_data_opts))
2377 		return libbpf_err(-EINVAL);
2378 
2379 	t = btf__type_by_id(d->btf, id);
2380 	if (!t)
2381 		return libbpf_err(-ENOENT);
2382 
2383 	d->typed_dump = &typed_dump;
2384 	d->typed_dump->data_end = data + data_sz;
2385 	d->typed_dump->indent_lvl = OPTS_GET(opts, indent_level, 0);
2386 
2387 	/* default indent string is a tab */
2388 	if (!OPTS_GET(opts, indent_str, NULL))
2389 		d->typed_dump->indent_str[0] = '\t';
2390 	else
2391 		libbpf_strlcpy(d->typed_dump->indent_str, opts->indent_str,
2392 			       sizeof(d->typed_dump->indent_str));
2393 
2394 	d->typed_dump->compact = OPTS_GET(opts, compact, false);
2395 	d->typed_dump->skip_names = OPTS_GET(opts, skip_names, false);
2396 	d->typed_dump->emit_zeroes = OPTS_GET(opts, emit_zeroes, false);
2397 
2398 	ret = btf_dump_dump_type_data(d, NULL, t, id, data, 0, 0);
2399 
2400 	d->typed_dump = NULL;
2401 
2402 	return libbpf_err(ret);
2403 }
2404